1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for arcitectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in 129 * instrumented C code with jump table addresses. Architectures that 130 * support CFI can define this macro to return the actual function address 131 * when needed. 132 */ 133 #ifndef function_nocfi 134 #define function_nocfi(x) (x) 135 #endif 136 137 /* 138 * To prevent common memory management code establishing 139 * a zero page mapping on a read fault. 140 * This macro should be defined within <asm/pgtable.h>. 141 * s390 does this to prevent multiplexing of hardware bits 142 * related to the physical page in case of virtualization. 143 */ 144 #ifndef mm_forbids_zeropage 145 #define mm_forbids_zeropage(X) (0) 146 #endif 147 148 /* 149 * On some architectures it is expensive to call memset() for small sizes. 150 * If an architecture decides to implement their own version of 151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 152 * define their own version of this macro in <asm/pgtable.h> 153 */ 154 #if BITS_PER_LONG == 64 155 /* This function must be updated when the size of struct page grows above 80 156 * or reduces below 56. The idea that compiler optimizes out switch() 157 * statement, and only leaves move/store instructions. Also the compiler can 158 * combine write statments if they are both assignments and can be reordered, 159 * this can result in several of the writes here being dropped. 160 */ 161 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 162 static inline void __mm_zero_struct_page(struct page *page) 163 { 164 unsigned long *_pp = (void *)page; 165 166 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 167 BUILD_BUG_ON(sizeof(struct page) & 7); 168 BUILD_BUG_ON(sizeof(struct page) < 56); 169 BUILD_BUG_ON(sizeof(struct page) > 80); 170 171 switch (sizeof(struct page)) { 172 case 80: 173 _pp[9] = 0; 174 fallthrough; 175 case 72: 176 _pp[8] = 0; 177 fallthrough; 178 case 64: 179 _pp[7] = 0; 180 fallthrough; 181 case 56: 182 _pp[6] = 0; 183 _pp[5] = 0; 184 _pp[4] = 0; 185 _pp[3] = 0; 186 _pp[2] = 0; 187 _pp[1] = 0; 188 _pp[0] = 0; 189 } 190 } 191 #else 192 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 193 #endif 194 195 /* 196 * Default maximum number of active map areas, this limits the number of vmas 197 * per mm struct. Users can overwrite this number by sysctl but there is a 198 * problem. 199 * 200 * When a program's coredump is generated as ELF format, a section is created 201 * per a vma. In ELF, the number of sections is represented in unsigned short. 202 * This means the number of sections should be smaller than 65535 at coredump. 203 * Because the kernel adds some informative sections to a image of program at 204 * generating coredump, we need some margin. The number of extra sections is 205 * 1-3 now and depends on arch. We use "5" as safe margin, here. 206 * 207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 208 * not a hard limit any more. Although some userspace tools can be surprised by 209 * that. 210 */ 211 #define MAPCOUNT_ELF_CORE_MARGIN (5) 212 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 213 214 extern int sysctl_max_map_count; 215 216 extern unsigned long sysctl_user_reserve_kbytes; 217 extern unsigned long sysctl_admin_reserve_kbytes; 218 219 extern int sysctl_overcommit_memory; 220 extern int sysctl_overcommit_ratio; 221 extern unsigned long sysctl_overcommit_kbytes; 222 223 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 224 loff_t *); 225 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 226 loff_t *); 227 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 228 loff_t *); 229 /* 230 * Any attempt to mark this function as static leads to build failure 231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 232 * is referred to by BPF code. This must be visible for error injection. 233 */ 234 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 235 pgoff_t index, gfp_t gfp, void **shadowp); 236 237 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 238 239 /* to align the pointer to the (next) page boundary */ 240 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 241 242 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 243 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 244 245 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 246 247 /* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258 void vm_area_free(struct vm_area_struct *); 259 260 #ifndef CONFIG_MMU 261 extern struct rb_root nommu_region_tree; 262 extern struct rw_semaphore nommu_region_sem; 263 264 extern unsigned int kobjsize(const void *objp); 265 #endif 266 267 /* 268 * vm_flags in vm_area_struct, see mm_types.h. 269 * When changing, update also include/trace/events/mmflags.h 270 */ 271 #define VM_NONE 0x00000000 272 273 #define VM_READ 0x00000001 /* currently active flags */ 274 #define VM_WRITE 0x00000002 275 #define VM_EXEC 0x00000004 276 #define VM_SHARED 0x00000008 277 278 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 279 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 280 #define VM_MAYWRITE 0x00000020 281 #define VM_MAYEXEC 0x00000040 282 #define VM_MAYSHARE 0x00000080 283 284 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 285 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 286 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 287 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 288 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 289 290 #define VM_LOCKED 0x00002000 291 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 292 293 /* Used by sys_madvise() */ 294 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 295 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 296 297 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 298 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 299 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 300 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 301 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 302 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 303 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 304 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 305 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 306 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 307 308 #ifdef CONFIG_MEM_SOFT_DIRTY 309 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 310 #else 311 # define VM_SOFTDIRTY 0 312 #endif 313 314 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 315 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 316 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 317 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 318 319 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 320 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 325 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 326 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 327 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 328 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 329 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #if defined(CONFIG_X86) 346 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 347 #elif defined(CONFIG_PPC) 348 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 349 #elif defined(CONFIG_PARISC) 350 # define VM_GROWSUP VM_ARCH_1 351 #elif defined(CONFIG_IA64) 352 # define VM_GROWSUP VM_ARCH_1 353 #elif defined(CONFIG_SPARC64) 354 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 355 # define VM_ARCH_CLEAR VM_SPARC_ADI 356 #elif defined(CONFIG_ARM64) 357 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 358 # define VM_ARCH_CLEAR VM_ARM64_BTI 359 #elif !defined(CONFIG_MMU) 360 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 361 #endif 362 363 #if defined(CONFIG_ARM64_MTE) 364 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 365 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 366 #else 367 # define VM_MTE VM_NONE 368 # define VM_MTE_ALLOWED VM_NONE 369 #endif 370 371 #ifndef VM_GROWSUP 372 # define VM_GROWSUP VM_NONE 373 #endif 374 375 /* Bits set in the VMA until the stack is in its final location */ 376 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 377 378 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 379 380 /* Common data flag combinations */ 381 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 383 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 384 VM_MAYWRITE | VM_MAYEXEC) 385 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 388 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 389 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 390 #endif 391 392 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 394 #endif 395 396 #ifdef CONFIG_STACK_GROWSUP 397 #define VM_STACK VM_GROWSUP 398 #else 399 #define VM_STACK VM_GROWSDOWN 400 #endif 401 402 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 403 404 /* VMA basic access permission flags */ 405 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 406 407 408 /* 409 * Special vmas that are non-mergable, non-mlock()able. 410 */ 411 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 412 413 /* This mask prevents VMA from being scanned with khugepaged */ 414 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 415 416 /* This mask defines which mm->def_flags a process can inherit its parent */ 417 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 418 419 /* This mask is used to clear all the VMA flags used by mlock */ 420 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 421 422 /* Arch-specific flags to clear when updating VM flags on protection change */ 423 #ifndef VM_ARCH_CLEAR 424 # define VM_ARCH_CLEAR VM_NONE 425 #endif 426 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 427 428 /* 429 * mapping from the currently active vm_flags protection bits (the 430 * low four bits) to a page protection mask.. 431 */ 432 extern pgprot_t protection_map[16]; 433 434 /** 435 * enum fault_flag - Fault flag definitions. 436 * @FAULT_FLAG_WRITE: Fault was a write fault. 437 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 438 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 439 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 440 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 441 * @FAULT_FLAG_TRIED: The fault has been tried once. 442 * @FAULT_FLAG_USER: The fault originated in userspace. 443 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 444 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 445 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 446 * 447 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 448 * whether we would allow page faults to retry by specifying these two 449 * fault flags correctly. Currently there can be three legal combinations: 450 * 451 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 452 * this is the first try 453 * 454 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 455 * we've already tried at least once 456 * 457 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 458 * 459 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 460 * be used. Note that page faults can be allowed to retry for multiple times, 461 * in which case we'll have an initial fault with flags (a) then later on 462 * continuous faults with flags (b). We should always try to detect pending 463 * signals before a retry to make sure the continuous page faults can still be 464 * interrupted if necessary. 465 */ 466 enum fault_flag { 467 FAULT_FLAG_WRITE = 1 << 0, 468 FAULT_FLAG_MKWRITE = 1 << 1, 469 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 470 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 471 FAULT_FLAG_KILLABLE = 1 << 4, 472 FAULT_FLAG_TRIED = 1 << 5, 473 FAULT_FLAG_USER = 1 << 6, 474 FAULT_FLAG_REMOTE = 1 << 7, 475 FAULT_FLAG_INSTRUCTION = 1 << 8, 476 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 477 }; 478 479 /* 480 * The default fault flags that should be used by most of the 481 * arch-specific page fault handlers. 482 */ 483 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 484 FAULT_FLAG_KILLABLE | \ 485 FAULT_FLAG_INTERRUPTIBLE) 486 487 /** 488 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 489 * @flags: Fault flags. 490 * 491 * This is mostly used for places where we want to try to avoid taking 492 * the mmap_lock for too long a time when waiting for another condition 493 * to change, in which case we can try to be polite to release the 494 * mmap_lock in the first round to avoid potential starvation of other 495 * processes that would also want the mmap_lock. 496 * 497 * Return: true if the page fault allows retry and this is the first 498 * attempt of the fault handling; false otherwise. 499 */ 500 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 501 { 502 return (flags & FAULT_FLAG_ALLOW_RETRY) && 503 (!(flags & FAULT_FLAG_TRIED)); 504 } 505 506 #define FAULT_FLAG_TRACE \ 507 { FAULT_FLAG_WRITE, "WRITE" }, \ 508 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 509 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 510 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 511 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 512 { FAULT_FLAG_TRIED, "TRIED" }, \ 513 { FAULT_FLAG_USER, "USER" }, \ 514 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 515 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 516 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 517 518 /* 519 * vm_fault is filled by the pagefault handler and passed to the vma's 520 * ->fault function. The vma's ->fault is responsible for returning a bitmask 521 * of VM_FAULT_xxx flags that give details about how the fault was handled. 522 * 523 * MM layer fills up gfp_mask for page allocations but fault handler might 524 * alter it if its implementation requires a different allocation context. 525 * 526 * pgoff should be used in favour of virtual_address, if possible. 527 */ 528 struct vm_fault { 529 const struct { 530 struct vm_area_struct *vma; /* Target VMA */ 531 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 532 pgoff_t pgoff; /* Logical page offset based on vma */ 533 unsigned long address; /* Faulting virtual address */ 534 }; 535 enum fault_flag flags; /* FAULT_FLAG_xxx flags 536 * XXX: should really be 'const' */ 537 pmd_t *pmd; /* Pointer to pmd entry matching 538 * the 'address' */ 539 pud_t *pud; /* Pointer to pud entry matching 540 * the 'address' 541 */ 542 pte_t orig_pte; /* Value of PTE at the time of fault */ 543 544 struct page *cow_page; /* Page handler may use for COW fault */ 545 struct page *page; /* ->fault handlers should return a 546 * page here, unless VM_FAULT_NOPAGE 547 * is set (which is also implied by 548 * VM_FAULT_ERROR). 549 */ 550 /* These three entries are valid only while holding ptl lock */ 551 pte_t *pte; /* Pointer to pte entry matching 552 * the 'address'. NULL if the page 553 * table hasn't been allocated. 554 */ 555 spinlock_t *ptl; /* Page table lock. 556 * Protects pte page table if 'pte' 557 * is not NULL, otherwise pmd. 558 */ 559 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 560 * vm_ops->map_pages() sets up a page 561 * table from atomic context. 562 * do_fault_around() pre-allocates 563 * page table to avoid allocation from 564 * atomic context. 565 */ 566 }; 567 568 /* page entry size for vm->huge_fault() */ 569 enum page_entry_size { 570 PE_SIZE_PTE = 0, 571 PE_SIZE_PMD, 572 PE_SIZE_PUD, 573 }; 574 575 /* 576 * These are the virtual MM functions - opening of an area, closing and 577 * unmapping it (needed to keep files on disk up-to-date etc), pointer 578 * to the functions called when a no-page or a wp-page exception occurs. 579 */ 580 struct vm_operations_struct { 581 void (*open)(struct vm_area_struct * area); 582 void (*close)(struct vm_area_struct * area); 583 /* Called any time before splitting to check if it's allowed */ 584 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 585 int (*mremap)(struct vm_area_struct *area); 586 /* 587 * Called by mprotect() to make driver-specific permission 588 * checks before mprotect() is finalised. The VMA must not 589 * be modified. Returns 0 if eprotect() can proceed. 590 */ 591 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 592 unsigned long end, unsigned long newflags); 593 vm_fault_t (*fault)(struct vm_fault *vmf); 594 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 595 enum page_entry_size pe_size); 596 vm_fault_t (*map_pages)(struct vm_fault *vmf, 597 pgoff_t start_pgoff, pgoff_t end_pgoff); 598 unsigned long (*pagesize)(struct vm_area_struct * area); 599 600 /* notification that a previously read-only page is about to become 601 * writable, if an error is returned it will cause a SIGBUS */ 602 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 603 604 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 605 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 606 607 /* called by access_process_vm when get_user_pages() fails, typically 608 * for use by special VMAs. See also generic_access_phys() for a generic 609 * implementation useful for any iomem mapping. 610 */ 611 int (*access)(struct vm_area_struct *vma, unsigned long addr, 612 void *buf, int len, int write); 613 614 /* Called by the /proc/PID/maps code to ask the vma whether it 615 * has a special name. Returning non-NULL will also cause this 616 * vma to be dumped unconditionally. */ 617 const char *(*name)(struct vm_area_struct *vma); 618 619 #ifdef CONFIG_NUMA 620 /* 621 * set_policy() op must add a reference to any non-NULL @new mempolicy 622 * to hold the policy upon return. Caller should pass NULL @new to 623 * remove a policy and fall back to surrounding context--i.e. do not 624 * install a MPOL_DEFAULT policy, nor the task or system default 625 * mempolicy. 626 */ 627 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 628 629 /* 630 * get_policy() op must add reference [mpol_get()] to any policy at 631 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 632 * in mm/mempolicy.c will do this automatically. 633 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 634 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 635 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 636 * must return NULL--i.e., do not "fallback" to task or system default 637 * policy. 638 */ 639 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 640 unsigned long addr); 641 #endif 642 /* 643 * Called by vm_normal_page() for special PTEs to find the 644 * page for @addr. This is useful if the default behavior 645 * (using pte_page()) would not find the correct page. 646 */ 647 struct page *(*find_special_page)(struct vm_area_struct *vma, 648 unsigned long addr); 649 }; 650 651 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 652 { 653 static const struct vm_operations_struct dummy_vm_ops = {}; 654 655 memset(vma, 0, sizeof(*vma)); 656 vma->vm_mm = mm; 657 vma->vm_ops = &dummy_vm_ops; 658 INIT_LIST_HEAD(&vma->anon_vma_chain); 659 } 660 661 static inline void vma_set_anonymous(struct vm_area_struct *vma) 662 { 663 vma->vm_ops = NULL; 664 } 665 666 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 667 { 668 return !vma->vm_ops; 669 } 670 671 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 672 { 673 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 674 675 if (!maybe_stack) 676 return false; 677 678 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 679 VM_STACK_INCOMPLETE_SETUP) 680 return true; 681 682 return false; 683 } 684 685 static inline bool vma_is_foreign(struct vm_area_struct *vma) 686 { 687 if (!current->mm) 688 return true; 689 690 if (current->mm != vma->vm_mm) 691 return true; 692 693 return false; 694 } 695 696 static inline bool vma_is_accessible(struct vm_area_struct *vma) 697 { 698 return vma->vm_flags & VM_ACCESS_FLAGS; 699 } 700 701 #ifdef CONFIG_SHMEM 702 /* 703 * The vma_is_shmem is not inline because it is used only by slow 704 * paths in userfault. 705 */ 706 bool vma_is_shmem(struct vm_area_struct *vma); 707 #else 708 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 709 #endif 710 711 int vma_is_stack_for_current(struct vm_area_struct *vma); 712 713 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 714 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 715 716 struct mmu_gather; 717 struct inode; 718 719 #include <linux/huge_mm.h> 720 721 /* 722 * Methods to modify the page usage count. 723 * 724 * What counts for a page usage: 725 * - cache mapping (page->mapping) 726 * - private data (page->private) 727 * - page mapped in a task's page tables, each mapping 728 * is counted separately 729 * 730 * Also, many kernel routines increase the page count before a critical 731 * routine so they can be sure the page doesn't go away from under them. 732 */ 733 734 /* 735 * Drop a ref, return true if the refcount fell to zero (the page has no users) 736 */ 737 static inline int put_page_testzero(struct page *page) 738 { 739 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 740 return page_ref_dec_and_test(page); 741 } 742 743 /* 744 * Try to grab a ref unless the page has a refcount of zero, return false if 745 * that is the case. 746 * This can be called when MMU is off so it must not access 747 * any of the virtual mappings. 748 */ 749 static inline int get_page_unless_zero(struct page *page) 750 { 751 return page_ref_add_unless(page, 1, 0); 752 } 753 754 extern int page_is_ram(unsigned long pfn); 755 756 enum { 757 REGION_INTERSECTS, 758 REGION_DISJOINT, 759 REGION_MIXED, 760 }; 761 762 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 763 unsigned long desc); 764 765 /* Support for virtually mapped pages */ 766 struct page *vmalloc_to_page(const void *addr); 767 unsigned long vmalloc_to_pfn(const void *addr); 768 769 /* 770 * Determine if an address is within the vmalloc range 771 * 772 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 773 * is no special casing required. 774 */ 775 776 #ifndef is_ioremap_addr 777 #define is_ioremap_addr(x) is_vmalloc_addr(x) 778 #endif 779 780 #ifdef CONFIG_MMU 781 extern bool is_vmalloc_addr(const void *x); 782 extern int is_vmalloc_or_module_addr(const void *x); 783 #else 784 static inline bool is_vmalloc_addr(const void *x) 785 { 786 return false; 787 } 788 static inline int is_vmalloc_or_module_addr(const void *x) 789 { 790 return 0; 791 } 792 #endif 793 794 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 795 static inline void *kvmalloc(size_t size, gfp_t flags) 796 { 797 return kvmalloc_node(size, flags, NUMA_NO_NODE); 798 } 799 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 800 { 801 return kvmalloc_node(size, flags | __GFP_ZERO, node); 802 } 803 static inline void *kvzalloc(size_t size, gfp_t flags) 804 { 805 return kvmalloc(size, flags | __GFP_ZERO); 806 } 807 808 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 809 { 810 size_t bytes; 811 812 if (unlikely(check_mul_overflow(n, size, &bytes))) 813 return NULL; 814 815 return kvmalloc(bytes, flags); 816 } 817 818 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 819 { 820 return kvmalloc_array(n, size, flags | __GFP_ZERO); 821 } 822 823 extern void kvfree(const void *addr); 824 extern void kvfree_sensitive(const void *addr, size_t len); 825 826 static inline int head_compound_mapcount(struct page *head) 827 { 828 return atomic_read(compound_mapcount_ptr(head)) + 1; 829 } 830 831 /* 832 * Mapcount of compound page as a whole, does not include mapped sub-pages. 833 * 834 * Must be called only for compound pages or any their tail sub-pages. 835 */ 836 static inline int compound_mapcount(struct page *page) 837 { 838 VM_BUG_ON_PAGE(!PageCompound(page), page); 839 page = compound_head(page); 840 return head_compound_mapcount(page); 841 } 842 843 /* 844 * The atomic page->_mapcount, starts from -1: so that transitions 845 * both from it and to it can be tracked, using atomic_inc_and_test 846 * and atomic_add_negative(-1). 847 */ 848 static inline void page_mapcount_reset(struct page *page) 849 { 850 atomic_set(&(page)->_mapcount, -1); 851 } 852 853 int __page_mapcount(struct page *page); 854 855 /* 856 * Mapcount of 0-order page; when compound sub-page, includes 857 * compound_mapcount(). 858 * 859 * Result is undefined for pages which cannot be mapped into userspace. 860 * For example SLAB or special types of pages. See function page_has_type(). 861 * They use this place in struct page differently. 862 */ 863 static inline int page_mapcount(struct page *page) 864 { 865 if (unlikely(PageCompound(page))) 866 return __page_mapcount(page); 867 return atomic_read(&page->_mapcount) + 1; 868 } 869 870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 871 int total_mapcount(struct page *page); 872 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 873 #else 874 static inline int total_mapcount(struct page *page) 875 { 876 return page_mapcount(page); 877 } 878 static inline int page_trans_huge_mapcount(struct page *page, 879 int *total_mapcount) 880 { 881 int mapcount = page_mapcount(page); 882 if (total_mapcount) 883 *total_mapcount = mapcount; 884 return mapcount; 885 } 886 #endif 887 888 static inline struct page *virt_to_head_page(const void *x) 889 { 890 struct page *page = virt_to_page(x); 891 892 return compound_head(page); 893 } 894 895 void __put_page(struct page *page); 896 897 void put_pages_list(struct list_head *pages); 898 899 void split_page(struct page *page, unsigned int order); 900 901 /* 902 * Compound pages have a destructor function. Provide a 903 * prototype for that function and accessor functions. 904 * These are _only_ valid on the head of a compound page. 905 */ 906 typedef void compound_page_dtor(struct page *); 907 908 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 909 enum compound_dtor_id { 910 NULL_COMPOUND_DTOR, 911 COMPOUND_PAGE_DTOR, 912 #ifdef CONFIG_HUGETLB_PAGE 913 HUGETLB_PAGE_DTOR, 914 #endif 915 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 916 TRANSHUGE_PAGE_DTOR, 917 #endif 918 NR_COMPOUND_DTORS, 919 }; 920 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 921 922 static inline void set_compound_page_dtor(struct page *page, 923 enum compound_dtor_id compound_dtor) 924 { 925 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 926 page[1].compound_dtor = compound_dtor; 927 } 928 929 static inline void destroy_compound_page(struct page *page) 930 { 931 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 932 compound_page_dtors[page[1].compound_dtor](page); 933 } 934 935 static inline unsigned int compound_order(struct page *page) 936 { 937 if (!PageHead(page)) 938 return 0; 939 return page[1].compound_order; 940 } 941 942 static inline bool hpage_pincount_available(struct page *page) 943 { 944 /* 945 * Can the page->hpage_pinned_refcount field be used? That field is in 946 * the 3rd page of the compound page, so the smallest (2-page) compound 947 * pages cannot support it. 948 */ 949 page = compound_head(page); 950 return PageCompound(page) && compound_order(page) > 1; 951 } 952 953 static inline int head_compound_pincount(struct page *head) 954 { 955 return atomic_read(compound_pincount_ptr(head)); 956 } 957 958 static inline int compound_pincount(struct page *page) 959 { 960 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 961 page = compound_head(page); 962 return head_compound_pincount(page); 963 } 964 965 static inline void set_compound_order(struct page *page, unsigned int order) 966 { 967 page[1].compound_order = order; 968 page[1].compound_nr = 1U << order; 969 } 970 971 /* Returns the number of pages in this potentially compound page. */ 972 static inline unsigned long compound_nr(struct page *page) 973 { 974 if (!PageHead(page)) 975 return 1; 976 return page[1].compound_nr; 977 } 978 979 /* Returns the number of bytes in this potentially compound page. */ 980 static inline unsigned long page_size(struct page *page) 981 { 982 return PAGE_SIZE << compound_order(page); 983 } 984 985 /* Returns the number of bits needed for the number of bytes in a page */ 986 static inline unsigned int page_shift(struct page *page) 987 { 988 return PAGE_SHIFT + compound_order(page); 989 } 990 991 void free_compound_page(struct page *page); 992 993 #ifdef CONFIG_MMU 994 /* 995 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 996 * servicing faults for write access. In the normal case, do always want 997 * pte_mkwrite. But get_user_pages can cause write faults for mappings 998 * that do not have writing enabled, when used by access_process_vm. 999 */ 1000 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1001 { 1002 if (likely(vma->vm_flags & VM_WRITE)) 1003 pte = pte_mkwrite(pte); 1004 return pte; 1005 } 1006 1007 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1008 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1009 1010 vm_fault_t finish_fault(struct vm_fault *vmf); 1011 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1012 #endif 1013 1014 /* 1015 * Multiple processes may "see" the same page. E.g. for untouched 1016 * mappings of /dev/null, all processes see the same page full of 1017 * zeroes, and text pages of executables and shared libraries have 1018 * only one copy in memory, at most, normally. 1019 * 1020 * For the non-reserved pages, page_count(page) denotes a reference count. 1021 * page_count() == 0 means the page is free. page->lru is then used for 1022 * freelist management in the buddy allocator. 1023 * page_count() > 0 means the page has been allocated. 1024 * 1025 * Pages are allocated by the slab allocator in order to provide memory 1026 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1027 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1028 * unless a particular usage is carefully commented. (the responsibility of 1029 * freeing the kmalloc memory is the caller's, of course). 1030 * 1031 * A page may be used by anyone else who does a __get_free_page(). 1032 * In this case, page_count still tracks the references, and should only 1033 * be used through the normal accessor functions. The top bits of page->flags 1034 * and page->virtual store page management information, but all other fields 1035 * are unused and could be used privately, carefully. The management of this 1036 * page is the responsibility of the one who allocated it, and those who have 1037 * subsequently been given references to it. 1038 * 1039 * The other pages (we may call them "pagecache pages") are completely 1040 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1041 * The following discussion applies only to them. 1042 * 1043 * A pagecache page contains an opaque `private' member, which belongs to the 1044 * page's address_space. Usually, this is the address of a circular list of 1045 * the page's disk buffers. PG_private must be set to tell the VM to call 1046 * into the filesystem to release these pages. 1047 * 1048 * A page may belong to an inode's memory mapping. In this case, page->mapping 1049 * is the pointer to the inode, and page->index is the file offset of the page, 1050 * in units of PAGE_SIZE. 1051 * 1052 * If pagecache pages are not associated with an inode, they are said to be 1053 * anonymous pages. These may become associated with the swapcache, and in that 1054 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1055 * 1056 * In either case (swapcache or inode backed), the pagecache itself holds one 1057 * reference to the page. Setting PG_private should also increment the 1058 * refcount. The each user mapping also has a reference to the page. 1059 * 1060 * The pagecache pages are stored in a per-mapping radix tree, which is 1061 * rooted at mapping->i_pages, and indexed by offset. 1062 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1063 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1064 * 1065 * All pagecache pages may be subject to I/O: 1066 * - inode pages may need to be read from disk, 1067 * - inode pages which have been modified and are MAP_SHARED may need 1068 * to be written back to the inode on disk, 1069 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1070 * modified may need to be swapped out to swap space and (later) to be read 1071 * back into memory. 1072 */ 1073 1074 /* 1075 * The zone field is never updated after free_area_init_core() 1076 * sets it, so none of the operations on it need to be atomic. 1077 */ 1078 1079 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1080 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1081 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1082 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1083 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1084 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1085 1086 /* 1087 * Define the bit shifts to access each section. For non-existent 1088 * sections we define the shift as 0; that plus a 0 mask ensures 1089 * the compiler will optimise away reference to them. 1090 */ 1091 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1092 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1093 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1094 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1095 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1096 1097 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1098 #ifdef NODE_NOT_IN_PAGE_FLAGS 1099 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1100 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1101 SECTIONS_PGOFF : ZONES_PGOFF) 1102 #else 1103 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1104 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1105 NODES_PGOFF : ZONES_PGOFF) 1106 #endif 1107 1108 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1109 1110 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1111 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1112 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1113 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1114 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1115 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1116 1117 static inline enum zone_type page_zonenum(const struct page *page) 1118 { 1119 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1120 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1121 } 1122 1123 #ifdef CONFIG_ZONE_DEVICE 1124 static inline bool is_zone_device_page(const struct page *page) 1125 { 1126 return page_zonenum(page) == ZONE_DEVICE; 1127 } 1128 extern void memmap_init_zone_device(struct zone *, unsigned long, 1129 unsigned long, struct dev_pagemap *); 1130 #else 1131 static inline bool is_zone_device_page(const struct page *page) 1132 { 1133 return false; 1134 } 1135 #endif 1136 1137 #ifdef CONFIG_DEV_PAGEMAP_OPS 1138 void free_devmap_managed_page(struct page *page); 1139 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1140 1141 static inline bool page_is_devmap_managed(struct page *page) 1142 { 1143 if (!static_branch_unlikely(&devmap_managed_key)) 1144 return false; 1145 if (!is_zone_device_page(page)) 1146 return false; 1147 switch (page->pgmap->type) { 1148 case MEMORY_DEVICE_PRIVATE: 1149 case MEMORY_DEVICE_FS_DAX: 1150 return true; 1151 default: 1152 break; 1153 } 1154 return false; 1155 } 1156 1157 void put_devmap_managed_page(struct page *page); 1158 1159 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1160 static inline bool page_is_devmap_managed(struct page *page) 1161 { 1162 return false; 1163 } 1164 1165 static inline void put_devmap_managed_page(struct page *page) 1166 { 1167 } 1168 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1169 1170 static inline bool is_device_private_page(const struct page *page) 1171 { 1172 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1173 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1174 is_zone_device_page(page) && 1175 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1176 } 1177 1178 static inline bool is_pci_p2pdma_page(const struct page *page) 1179 { 1180 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1181 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1182 is_zone_device_page(page) && 1183 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1184 } 1185 1186 /* 127: arbitrary random number, small enough to assemble well */ 1187 #define page_ref_zero_or_close_to_overflow(page) \ 1188 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1189 1190 static inline void get_page(struct page *page) 1191 { 1192 page = compound_head(page); 1193 /* 1194 * Getting a normal page or the head of a compound page 1195 * requires to already have an elevated page->_refcount. 1196 */ 1197 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1198 page_ref_inc(page); 1199 } 1200 1201 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1202 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1203 unsigned int flags); 1204 1205 1206 static inline __must_check bool try_get_page(struct page *page) 1207 { 1208 page = compound_head(page); 1209 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1210 return false; 1211 page_ref_inc(page); 1212 return true; 1213 } 1214 1215 static inline void put_page(struct page *page) 1216 { 1217 page = compound_head(page); 1218 1219 /* 1220 * For devmap managed pages we need to catch refcount transition from 1221 * 2 to 1, when refcount reach one it means the page is free and we 1222 * need to inform the device driver through callback. See 1223 * include/linux/memremap.h and HMM for details. 1224 */ 1225 if (page_is_devmap_managed(page)) { 1226 put_devmap_managed_page(page); 1227 return; 1228 } 1229 1230 if (put_page_testzero(page)) 1231 __put_page(page); 1232 } 1233 1234 /* 1235 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1236 * the page's refcount so that two separate items are tracked: the original page 1237 * reference count, and also a new count of how many pin_user_pages() calls were 1238 * made against the page. ("gup-pinned" is another term for the latter). 1239 * 1240 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1241 * distinct from normal pages. As such, the unpin_user_page() call (and its 1242 * variants) must be used in order to release gup-pinned pages. 1243 * 1244 * Choice of value: 1245 * 1246 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1247 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1248 * simpler, due to the fact that adding an even power of two to the page 1249 * refcount has the effect of using only the upper N bits, for the code that 1250 * counts up using the bias value. This means that the lower bits are left for 1251 * the exclusive use of the original code that increments and decrements by one 1252 * (or at least, by much smaller values than the bias value). 1253 * 1254 * Of course, once the lower bits overflow into the upper bits (and this is 1255 * OK, because subtraction recovers the original values), then visual inspection 1256 * no longer suffices to directly view the separate counts. However, for normal 1257 * applications that don't have huge page reference counts, this won't be an 1258 * issue. 1259 * 1260 * Locking: the lockless algorithm described in page_cache_get_speculative() 1261 * and page_cache_gup_pin_speculative() provides safe operation for 1262 * get_user_pages and page_mkclean and other calls that race to set up page 1263 * table entries. 1264 */ 1265 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1266 1267 void unpin_user_page(struct page *page); 1268 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1269 bool make_dirty); 1270 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1271 bool make_dirty); 1272 void unpin_user_pages(struct page **pages, unsigned long npages); 1273 1274 /** 1275 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1276 * @page: The page. 1277 * 1278 * This function checks if a page has been pinned via a call to 1279 * a function in the pin_user_pages() family. 1280 * 1281 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1282 * because it means "definitely not pinned for DMA", but true means "probably 1283 * pinned for DMA, but possibly a false positive due to having at least 1284 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1285 * 1286 * False positives are OK, because: a) it's unlikely for a page to get that many 1287 * refcounts, and b) all the callers of this routine are expected to be able to 1288 * deal gracefully with a false positive. 1289 * 1290 * For huge pages, the result will be exactly correct. That's because we have 1291 * more tracking data available: the 3rd struct page in the compound page is 1292 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1293 * scheme). 1294 * 1295 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1296 * 1297 * Return: True, if it is likely that the page has been "dma-pinned". 1298 * False, if the page is definitely not dma-pinned. 1299 */ 1300 static inline bool page_maybe_dma_pinned(struct page *page) 1301 { 1302 if (hpage_pincount_available(page)) 1303 return compound_pincount(page) > 0; 1304 1305 /* 1306 * page_ref_count() is signed. If that refcount overflows, then 1307 * page_ref_count() returns a negative value, and callers will avoid 1308 * further incrementing the refcount. 1309 * 1310 * Here, for that overflow case, use the signed bit to count a little 1311 * bit higher via unsigned math, and thus still get an accurate result. 1312 */ 1313 return ((unsigned int)page_ref_count(compound_head(page))) >= 1314 GUP_PIN_COUNTING_BIAS; 1315 } 1316 1317 static inline bool is_cow_mapping(vm_flags_t flags) 1318 { 1319 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1320 } 1321 1322 /* 1323 * This should most likely only be called during fork() to see whether we 1324 * should break the cow immediately for a page on the src mm. 1325 */ 1326 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1327 struct page *page) 1328 { 1329 if (!is_cow_mapping(vma->vm_flags)) 1330 return false; 1331 1332 if (!atomic_read(&vma->vm_mm->has_pinned)) 1333 return false; 1334 1335 return page_maybe_dma_pinned(page); 1336 } 1337 1338 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1339 #define SECTION_IN_PAGE_FLAGS 1340 #endif 1341 1342 /* 1343 * The identification function is mainly used by the buddy allocator for 1344 * determining if two pages could be buddies. We are not really identifying 1345 * the zone since we could be using the section number id if we do not have 1346 * node id available in page flags. 1347 * We only guarantee that it will return the same value for two combinable 1348 * pages in a zone. 1349 */ 1350 static inline int page_zone_id(struct page *page) 1351 { 1352 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1353 } 1354 1355 #ifdef NODE_NOT_IN_PAGE_FLAGS 1356 extern int page_to_nid(const struct page *page); 1357 #else 1358 static inline int page_to_nid(const struct page *page) 1359 { 1360 struct page *p = (struct page *)page; 1361 1362 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1363 } 1364 #endif 1365 1366 #ifdef CONFIG_NUMA_BALANCING 1367 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1368 { 1369 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1370 } 1371 1372 static inline int cpupid_to_pid(int cpupid) 1373 { 1374 return cpupid & LAST__PID_MASK; 1375 } 1376 1377 static inline int cpupid_to_cpu(int cpupid) 1378 { 1379 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1380 } 1381 1382 static inline int cpupid_to_nid(int cpupid) 1383 { 1384 return cpu_to_node(cpupid_to_cpu(cpupid)); 1385 } 1386 1387 static inline bool cpupid_pid_unset(int cpupid) 1388 { 1389 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1390 } 1391 1392 static inline bool cpupid_cpu_unset(int cpupid) 1393 { 1394 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1395 } 1396 1397 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1398 { 1399 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1400 } 1401 1402 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1403 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1404 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1405 { 1406 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1407 } 1408 1409 static inline int page_cpupid_last(struct page *page) 1410 { 1411 return page->_last_cpupid; 1412 } 1413 static inline void page_cpupid_reset_last(struct page *page) 1414 { 1415 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1416 } 1417 #else 1418 static inline int page_cpupid_last(struct page *page) 1419 { 1420 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1421 } 1422 1423 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1424 1425 static inline void page_cpupid_reset_last(struct page *page) 1426 { 1427 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1428 } 1429 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1430 #else /* !CONFIG_NUMA_BALANCING */ 1431 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1432 { 1433 return page_to_nid(page); /* XXX */ 1434 } 1435 1436 static inline int page_cpupid_last(struct page *page) 1437 { 1438 return page_to_nid(page); /* XXX */ 1439 } 1440 1441 static inline int cpupid_to_nid(int cpupid) 1442 { 1443 return -1; 1444 } 1445 1446 static inline int cpupid_to_pid(int cpupid) 1447 { 1448 return -1; 1449 } 1450 1451 static inline int cpupid_to_cpu(int cpupid) 1452 { 1453 return -1; 1454 } 1455 1456 static inline int cpu_pid_to_cpupid(int nid, int pid) 1457 { 1458 return -1; 1459 } 1460 1461 static inline bool cpupid_pid_unset(int cpupid) 1462 { 1463 return true; 1464 } 1465 1466 static inline void page_cpupid_reset_last(struct page *page) 1467 { 1468 } 1469 1470 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1471 { 1472 return false; 1473 } 1474 #endif /* CONFIG_NUMA_BALANCING */ 1475 1476 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1477 1478 /* 1479 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1480 * setting tags for all pages to native kernel tag value 0xff, as the default 1481 * value 0x00 maps to 0xff. 1482 */ 1483 1484 static inline u8 page_kasan_tag(const struct page *page) 1485 { 1486 u8 tag = 0xff; 1487 1488 if (kasan_enabled()) { 1489 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1490 tag ^= 0xff; 1491 } 1492 1493 return tag; 1494 } 1495 1496 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1497 { 1498 if (kasan_enabled()) { 1499 tag ^= 0xff; 1500 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1501 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1502 } 1503 } 1504 1505 static inline void page_kasan_tag_reset(struct page *page) 1506 { 1507 if (kasan_enabled()) 1508 page_kasan_tag_set(page, 0xff); 1509 } 1510 1511 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1512 1513 static inline u8 page_kasan_tag(const struct page *page) 1514 { 1515 return 0xff; 1516 } 1517 1518 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1519 static inline void page_kasan_tag_reset(struct page *page) { } 1520 1521 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1522 1523 static inline struct zone *page_zone(const struct page *page) 1524 { 1525 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1526 } 1527 1528 static inline pg_data_t *page_pgdat(const struct page *page) 1529 { 1530 return NODE_DATA(page_to_nid(page)); 1531 } 1532 1533 #ifdef SECTION_IN_PAGE_FLAGS 1534 static inline void set_page_section(struct page *page, unsigned long section) 1535 { 1536 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1537 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1538 } 1539 1540 static inline unsigned long page_to_section(const struct page *page) 1541 { 1542 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1543 } 1544 #endif 1545 1546 static inline void set_page_zone(struct page *page, enum zone_type zone) 1547 { 1548 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1549 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1550 } 1551 1552 static inline void set_page_node(struct page *page, unsigned long node) 1553 { 1554 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1555 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1556 } 1557 1558 static inline void set_page_links(struct page *page, enum zone_type zone, 1559 unsigned long node, unsigned long pfn) 1560 { 1561 set_page_zone(page, zone); 1562 set_page_node(page, node); 1563 #ifdef SECTION_IN_PAGE_FLAGS 1564 set_page_section(page, pfn_to_section_nr(pfn)); 1565 #endif 1566 } 1567 1568 /* 1569 * Some inline functions in vmstat.h depend on page_zone() 1570 */ 1571 #include <linux/vmstat.h> 1572 1573 static __always_inline void *lowmem_page_address(const struct page *page) 1574 { 1575 return page_to_virt(page); 1576 } 1577 1578 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1579 #define HASHED_PAGE_VIRTUAL 1580 #endif 1581 1582 #if defined(WANT_PAGE_VIRTUAL) 1583 static inline void *page_address(const struct page *page) 1584 { 1585 return page->virtual; 1586 } 1587 static inline void set_page_address(struct page *page, void *address) 1588 { 1589 page->virtual = address; 1590 } 1591 #define page_address_init() do { } while(0) 1592 #endif 1593 1594 #if defined(HASHED_PAGE_VIRTUAL) 1595 void *page_address(const struct page *page); 1596 void set_page_address(struct page *page, void *virtual); 1597 void page_address_init(void); 1598 #endif 1599 1600 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1601 #define page_address(page) lowmem_page_address(page) 1602 #define set_page_address(page, address) do { } while(0) 1603 #define page_address_init() do { } while(0) 1604 #endif 1605 1606 extern void *page_rmapping(struct page *page); 1607 extern struct anon_vma *page_anon_vma(struct page *page); 1608 extern struct address_space *page_mapping(struct page *page); 1609 1610 extern struct address_space *__page_file_mapping(struct page *); 1611 1612 static inline 1613 struct address_space *page_file_mapping(struct page *page) 1614 { 1615 if (unlikely(PageSwapCache(page))) 1616 return __page_file_mapping(page); 1617 1618 return page->mapping; 1619 } 1620 1621 extern pgoff_t __page_file_index(struct page *page); 1622 1623 /* 1624 * Return the pagecache index of the passed page. Regular pagecache pages 1625 * use ->index whereas swapcache pages use swp_offset(->private) 1626 */ 1627 static inline pgoff_t page_index(struct page *page) 1628 { 1629 if (unlikely(PageSwapCache(page))) 1630 return __page_file_index(page); 1631 return page->index; 1632 } 1633 1634 bool page_mapped(struct page *page); 1635 struct address_space *page_mapping(struct page *page); 1636 1637 /* 1638 * Return true only if the page has been allocated with 1639 * ALLOC_NO_WATERMARKS and the low watermark was not 1640 * met implying that the system is under some pressure. 1641 */ 1642 static inline bool page_is_pfmemalloc(const struct page *page) 1643 { 1644 /* 1645 * Page index cannot be this large so this must be 1646 * a pfmemalloc page. 1647 */ 1648 return page->index == -1UL; 1649 } 1650 1651 /* 1652 * Only to be called by the page allocator on a freshly allocated 1653 * page. 1654 */ 1655 static inline void set_page_pfmemalloc(struct page *page) 1656 { 1657 page->index = -1UL; 1658 } 1659 1660 static inline void clear_page_pfmemalloc(struct page *page) 1661 { 1662 page->index = 0; 1663 } 1664 1665 /* 1666 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1667 */ 1668 extern void pagefault_out_of_memory(void); 1669 1670 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1671 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1672 1673 /* 1674 * Flags passed to show_mem() and show_free_areas() to suppress output in 1675 * various contexts. 1676 */ 1677 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1678 1679 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1680 1681 #ifdef CONFIG_MMU 1682 extern bool can_do_mlock(void); 1683 #else 1684 static inline bool can_do_mlock(void) { return false; } 1685 #endif 1686 extern int user_shm_lock(size_t, struct user_struct *); 1687 extern void user_shm_unlock(size_t, struct user_struct *); 1688 1689 /* 1690 * Parameter block passed down to zap_pte_range in exceptional cases. 1691 */ 1692 struct zap_details { 1693 struct address_space *check_mapping; /* Check page->mapping if set */ 1694 pgoff_t first_index; /* Lowest page->index to unmap */ 1695 pgoff_t last_index; /* Highest page->index to unmap */ 1696 }; 1697 1698 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1699 pte_t pte); 1700 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1701 pmd_t pmd); 1702 1703 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1704 unsigned long size); 1705 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1706 unsigned long size); 1707 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1708 unsigned long start, unsigned long end); 1709 1710 struct mmu_notifier_range; 1711 1712 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1713 unsigned long end, unsigned long floor, unsigned long ceiling); 1714 int 1715 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1716 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1717 struct mmu_notifier_range *range, pte_t **ptepp, 1718 pmd_t **pmdpp, spinlock_t **ptlp); 1719 int follow_pte(struct mm_struct *mm, unsigned long address, 1720 pte_t **ptepp, spinlock_t **ptlp); 1721 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1722 unsigned long *pfn); 1723 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1724 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1725 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1726 void *buf, int len, int write); 1727 1728 extern void truncate_pagecache(struct inode *inode, loff_t new); 1729 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1730 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1731 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1732 int truncate_inode_page(struct address_space *mapping, struct page *page); 1733 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1734 int invalidate_inode_page(struct page *page); 1735 1736 #ifdef CONFIG_MMU 1737 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1738 unsigned long address, unsigned int flags, 1739 struct pt_regs *regs); 1740 extern int fixup_user_fault(struct mm_struct *mm, 1741 unsigned long address, unsigned int fault_flags, 1742 bool *unlocked); 1743 void unmap_mapping_pages(struct address_space *mapping, 1744 pgoff_t start, pgoff_t nr, bool even_cows); 1745 void unmap_mapping_range(struct address_space *mapping, 1746 loff_t const holebegin, loff_t const holelen, int even_cows); 1747 #else 1748 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1749 unsigned long address, unsigned int flags, 1750 struct pt_regs *regs) 1751 { 1752 /* should never happen if there's no MMU */ 1753 BUG(); 1754 return VM_FAULT_SIGBUS; 1755 } 1756 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1757 unsigned int fault_flags, bool *unlocked) 1758 { 1759 /* should never happen if there's no MMU */ 1760 BUG(); 1761 return -EFAULT; 1762 } 1763 static inline void unmap_mapping_pages(struct address_space *mapping, 1764 pgoff_t start, pgoff_t nr, bool even_cows) { } 1765 static inline void unmap_mapping_range(struct address_space *mapping, 1766 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1767 #endif 1768 1769 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1770 loff_t const holebegin, loff_t const holelen) 1771 { 1772 unmap_mapping_range(mapping, holebegin, holelen, 0); 1773 } 1774 1775 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1776 void *buf, int len, unsigned int gup_flags); 1777 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1778 void *buf, int len, unsigned int gup_flags); 1779 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1780 void *buf, int len, unsigned int gup_flags); 1781 1782 long get_user_pages_remote(struct mm_struct *mm, 1783 unsigned long start, unsigned long nr_pages, 1784 unsigned int gup_flags, struct page **pages, 1785 struct vm_area_struct **vmas, int *locked); 1786 long pin_user_pages_remote(struct mm_struct *mm, 1787 unsigned long start, unsigned long nr_pages, 1788 unsigned int gup_flags, struct page **pages, 1789 struct vm_area_struct **vmas, int *locked); 1790 long get_user_pages(unsigned long start, unsigned long nr_pages, 1791 unsigned int gup_flags, struct page **pages, 1792 struct vm_area_struct **vmas); 1793 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1794 unsigned int gup_flags, struct page **pages, 1795 struct vm_area_struct **vmas); 1796 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1797 unsigned int gup_flags, struct page **pages, int *locked); 1798 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1799 unsigned int gup_flags, struct page **pages, int *locked); 1800 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1801 struct page **pages, unsigned int gup_flags); 1802 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1803 struct page **pages, unsigned int gup_flags); 1804 1805 int get_user_pages_fast(unsigned long start, int nr_pages, 1806 unsigned int gup_flags, struct page **pages); 1807 int pin_user_pages_fast(unsigned long start, int nr_pages, 1808 unsigned int gup_flags, struct page **pages); 1809 1810 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1811 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1812 struct task_struct *task, bool bypass_rlim); 1813 1814 struct kvec; 1815 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1816 struct page **pages); 1817 int get_kernel_page(unsigned long start, int write, struct page **pages); 1818 struct page *get_dump_page(unsigned long addr); 1819 1820 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1821 extern void do_invalidatepage(struct page *page, unsigned int offset, 1822 unsigned int length); 1823 1824 void __set_page_dirty(struct page *, struct address_space *, int warn); 1825 int __set_page_dirty_nobuffers(struct page *page); 1826 int __set_page_dirty_no_writeback(struct page *page); 1827 int redirty_page_for_writepage(struct writeback_control *wbc, 1828 struct page *page); 1829 void account_page_dirtied(struct page *page, struct address_space *mapping); 1830 void account_page_cleaned(struct page *page, struct address_space *mapping, 1831 struct bdi_writeback *wb); 1832 int set_page_dirty(struct page *page); 1833 int set_page_dirty_lock(struct page *page); 1834 void __cancel_dirty_page(struct page *page); 1835 static inline void cancel_dirty_page(struct page *page) 1836 { 1837 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1838 if (PageDirty(page)) 1839 __cancel_dirty_page(page); 1840 } 1841 int clear_page_dirty_for_io(struct page *page); 1842 1843 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1844 1845 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1846 unsigned long old_addr, struct vm_area_struct *new_vma, 1847 unsigned long new_addr, unsigned long len, 1848 bool need_rmap_locks); 1849 1850 /* 1851 * Flags used by change_protection(). For now we make it a bitmap so 1852 * that we can pass in multiple flags just like parameters. However 1853 * for now all the callers are only use one of the flags at the same 1854 * time. 1855 */ 1856 /* Whether we should allow dirty bit accounting */ 1857 #define MM_CP_DIRTY_ACCT (1UL << 0) 1858 /* Whether this protection change is for NUMA hints */ 1859 #define MM_CP_PROT_NUMA (1UL << 1) 1860 /* Whether this change is for write protecting */ 1861 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1862 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1863 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1864 MM_CP_UFFD_WP_RESOLVE) 1865 1866 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1867 unsigned long end, pgprot_t newprot, 1868 unsigned long cp_flags); 1869 extern int mprotect_fixup(struct vm_area_struct *vma, 1870 struct vm_area_struct **pprev, unsigned long start, 1871 unsigned long end, unsigned long newflags); 1872 1873 /* 1874 * doesn't attempt to fault and will return short. 1875 */ 1876 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1877 unsigned int gup_flags, struct page **pages); 1878 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1879 unsigned int gup_flags, struct page **pages); 1880 1881 static inline bool get_user_page_fast_only(unsigned long addr, 1882 unsigned int gup_flags, struct page **pagep) 1883 { 1884 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1885 } 1886 /* 1887 * per-process(per-mm_struct) statistics. 1888 */ 1889 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1890 { 1891 long val = atomic_long_read(&mm->rss_stat.count[member]); 1892 1893 #ifdef SPLIT_RSS_COUNTING 1894 /* 1895 * counter is updated in asynchronous manner and may go to minus. 1896 * But it's never be expected number for users. 1897 */ 1898 if (val < 0) 1899 val = 0; 1900 #endif 1901 return (unsigned long)val; 1902 } 1903 1904 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1905 1906 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1907 { 1908 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1909 1910 mm_trace_rss_stat(mm, member, count); 1911 } 1912 1913 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1914 { 1915 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1916 1917 mm_trace_rss_stat(mm, member, count); 1918 } 1919 1920 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1921 { 1922 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1923 1924 mm_trace_rss_stat(mm, member, count); 1925 } 1926 1927 /* Optimized variant when page is already known not to be PageAnon */ 1928 static inline int mm_counter_file(struct page *page) 1929 { 1930 if (PageSwapBacked(page)) 1931 return MM_SHMEMPAGES; 1932 return MM_FILEPAGES; 1933 } 1934 1935 static inline int mm_counter(struct page *page) 1936 { 1937 if (PageAnon(page)) 1938 return MM_ANONPAGES; 1939 return mm_counter_file(page); 1940 } 1941 1942 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1943 { 1944 return get_mm_counter(mm, MM_FILEPAGES) + 1945 get_mm_counter(mm, MM_ANONPAGES) + 1946 get_mm_counter(mm, MM_SHMEMPAGES); 1947 } 1948 1949 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1950 { 1951 return max(mm->hiwater_rss, get_mm_rss(mm)); 1952 } 1953 1954 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1955 { 1956 return max(mm->hiwater_vm, mm->total_vm); 1957 } 1958 1959 static inline void update_hiwater_rss(struct mm_struct *mm) 1960 { 1961 unsigned long _rss = get_mm_rss(mm); 1962 1963 if ((mm)->hiwater_rss < _rss) 1964 (mm)->hiwater_rss = _rss; 1965 } 1966 1967 static inline void update_hiwater_vm(struct mm_struct *mm) 1968 { 1969 if (mm->hiwater_vm < mm->total_vm) 1970 mm->hiwater_vm = mm->total_vm; 1971 } 1972 1973 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1974 { 1975 mm->hiwater_rss = get_mm_rss(mm); 1976 } 1977 1978 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1979 struct mm_struct *mm) 1980 { 1981 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1982 1983 if (*maxrss < hiwater_rss) 1984 *maxrss = hiwater_rss; 1985 } 1986 1987 #if defined(SPLIT_RSS_COUNTING) 1988 void sync_mm_rss(struct mm_struct *mm); 1989 #else 1990 static inline void sync_mm_rss(struct mm_struct *mm) 1991 { 1992 } 1993 #endif 1994 1995 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1996 static inline int pte_special(pte_t pte) 1997 { 1998 return 0; 1999 } 2000 2001 static inline pte_t pte_mkspecial(pte_t pte) 2002 { 2003 return pte; 2004 } 2005 #endif 2006 2007 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2008 static inline int pte_devmap(pte_t pte) 2009 { 2010 return 0; 2011 } 2012 #endif 2013 2014 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2015 2016 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2017 spinlock_t **ptl); 2018 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2019 spinlock_t **ptl) 2020 { 2021 pte_t *ptep; 2022 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2023 return ptep; 2024 } 2025 2026 #ifdef __PAGETABLE_P4D_FOLDED 2027 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2028 unsigned long address) 2029 { 2030 return 0; 2031 } 2032 #else 2033 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2034 #endif 2035 2036 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2037 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2038 unsigned long address) 2039 { 2040 return 0; 2041 } 2042 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2043 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2044 2045 #else 2046 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2047 2048 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2049 { 2050 if (mm_pud_folded(mm)) 2051 return; 2052 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2053 } 2054 2055 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2056 { 2057 if (mm_pud_folded(mm)) 2058 return; 2059 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2060 } 2061 #endif 2062 2063 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2064 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2065 unsigned long address) 2066 { 2067 return 0; 2068 } 2069 2070 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2071 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2072 2073 #else 2074 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2075 2076 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2077 { 2078 if (mm_pmd_folded(mm)) 2079 return; 2080 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2081 } 2082 2083 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2084 { 2085 if (mm_pmd_folded(mm)) 2086 return; 2087 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2088 } 2089 #endif 2090 2091 #ifdef CONFIG_MMU 2092 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2093 { 2094 atomic_long_set(&mm->pgtables_bytes, 0); 2095 } 2096 2097 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2098 { 2099 return atomic_long_read(&mm->pgtables_bytes); 2100 } 2101 2102 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2103 { 2104 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2105 } 2106 2107 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2108 { 2109 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2110 } 2111 #else 2112 2113 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2114 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2115 { 2116 return 0; 2117 } 2118 2119 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2120 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2121 #endif 2122 2123 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2124 int __pte_alloc_kernel(pmd_t *pmd); 2125 2126 #if defined(CONFIG_MMU) 2127 2128 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2129 unsigned long address) 2130 { 2131 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2132 NULL : p4d_offset(pgd, address); 2133 } 2134 2135 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2136 unsigned long address) 2137 { 2138 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2139 NULL : pud_offset(p4d, address); 2140 } 2141 2142 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2143 { 2144 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2145 NULL: pmd_offset(pud, address); 2146 } 2147 #endif /* CONFIG_MMU */ 2148 2149 #if USE_SPLIT_PTE_PTLOCKS 2150 #if ALLOC_SPLIT_PTLOCKS 2151 void __init ptlock_cache_init(void); 2152 extern bool ptlock_alloc(struct page *page); 2153 extern void ptlock_free(struct page *page); 2154 2155 static inline spinlock_t *ptlock_ptr(struct page *page) 2156 { 2157 return page->ptl; 2158 } 2159 #else /* ALLOC_SPLIT_PTLOCKS */ 2160 static inline void ptlock_cache_init(void) 2161 { 2162 } 2163 2164 static inline bool ptlock_alloc(struct page *page) 2165 { 2166 return true; 2167 } 2168 2169 static inline void ptlock_free(struct page *page) 2170 { 2171 } 2172 2173 static inline spinlock_t *ptlock_ptr(struct page *page) 2174 { 2175 return &page->ptl; 2176 } 2177 #endif /* ALLOC_SPLIT_PTLOCKS */ 2178 2179 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2180 { 2181 return ptlock_ptr(pmd_page(*pmd)); 2182 } 2183 2184 static inline bool ptlock_init(struct page *page) 2185 { 2186 /* 2187 * prep_new_page() initialize page->private (and therefore page->ptl) 2188 * with 0. Make sure nobody took it in use in between. 2189 * 2190 * It can happen if arch try to use slab for page table allocation: 2191 * slab code uses page->slab_cache, which share storage with page->ptl. 2192 */ 2193 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2194 if (!ptlock_alloc(page)) 2195 return false; 2196 spin_lock_init(ptlock_ptr(page)); 2197 return true; 2198 } 2199 2200 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2201 /* 2202 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2203 */ 2204 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2205 { 2206 return &mm->page_table_lock; 2207 } 2208 static inline void ptlock_cache_init(void) {} 2209 static inline bool ptlock_init(struct page *page) { return true; } 2210 static inline void ptlock_free(struct page *page) {} 2211 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2212 2213 static inline void pgtable_init(void) 2214 { 2215 ptlock_cache_init(); 2216 pgtable_cache_init(); 2217 } 2218 2219 static inline bool pgtable_pte_page_ctor(struct page *page) 2220 { 2221 if (!ptlock_init(page)) 2222 return false; 2223 __SetPageTable(page); 2224 inc_lruvec_page_state(page, NR_PAGETABLE); 2225 return true; 2226 } 2227 2228 static inline void pgtable_pte_page_dtor(struct page *page) 2229 { 2230 ptlock_free(page); 2231 __ClearPageTable(page); 2232 dec_lruvec_page_state(page, NR_PAGETABLE); 2233 } 2234 2235 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2236 ({ \ 2237 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2238 pte_t *__pte = pte_offset_map(pmd, address); \ 2239 *(ptlp) = __ptl; \ 2240 spin_lock(__ptl); \ 2241 __pte; \ 2242 }) 2243 2244 #define pte_unmap_unlock(pte, ptl) do { \ 2245 spin_unlock(ptl); \ 2246 pte_unmap(pte); \ 2247 } while (0) 2248 2249 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2250 2251 #define pte_alloc_map(mm, pmd, address) \ 2252 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2253 2254 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2255 (pte_alloc(mm, pmd) ? \ 2256 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2257 2258 #define pte_alloc_kernel(pmd, address) \ 2259 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2260 NULL: pte_offset_kernel(pmd, address)) 2261 2262 #if USE_SPLIT_PMD_PTLOCKS 2263 2264 static struct page *pmd_to_page(pmd_t *pmd) 2265 { 2266 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2267 return virt_to_page((void *)((unsigned long) pmd & mask)); 2268 } 2269 2270 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2271 { 2272 return ptlock_ptr(pmd_to_page(pmd)); 2273 } 2274 2275 static inline bool pmd_ptlock_init(struct page *page) 2276 { 2277 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2278 page->pmd_huge_pte = NULL; 2279 #endif 2280 return ptlock_init(page); 2281 } 2282 2283 static inline void pmd_ptlock_free(struct page *page) 2284 { 2285 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2286 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2287 #endif 2288 ptlock_free(page); 2289 } 2290 2291 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2292 2293 #else 2294 2295 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2296 { 2297 return &mm->page_table_lock; 2298 } 2299 2300 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2301 static inline void pmd_ptlock_free(struct page *page) {} 2302 2303 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2304 2305 #endif 2306 2307 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2308 { 2309 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2310 spin_lock(ptl); 2311 return ptl; 2312 } 2313 2314 static inline bool pgtable_pmd_page_ctor(struct page *page) 2315 { 2316 if (!pmd_ptlock_init(page)) 2317 return false; 2318 __SetPageTable(page); 2319 inc_lruvec_page_state(page, NR_PAGETABLE); 2320 return true; 2321 } 2322 2323 static inline void pgtable_pmd_page_dtor(struct page *page) 2324 { 2325 pmd_ptlock_free(page); 2326 __ClearPageTable(page); 2327 dec_lruvec_page_state(page, NR_PAGETABLE); 2328 } 2329 2330 /* 2331 * No scalability reason to split PUD locks yet, but follow the same pattern 2332 * as the PMD locks to make it easier if we decide to. The VM should not be 2333 * considered ready to switch to split PUD locks yet; there may be places 2334 * which need to be converted from page_table_lock. 2335 */ 2336 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2337 { 2338 return &mm->page_table_lock; 2339 } 2340 2341 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2342 { 2343 spinlock_t *ptl = pud_lockptr(mm, pud); 2344 2345 spin_lock(ptl); 2346 return ptl; 2347 } 2348 2349 extern void __init pagecache_init(void); 2350 extern void __init free_area_init_memoryless_node(int nid); 2351 extern void free_initmem(void); 2352 2353 /* 2354 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2355 * into the buddy system. The freed pages will be poisoned with pattern 2356 * "poison" if it's within range [0, UCHAR_MAX]. 2357 * Return pages freed into the buddy system. 2358 */ 2359 extern unsigned long free_reserved_area(void *start, void *end, 2360 int poison, const char *s); 2361 2362 extern void adjust_managed_page_count(struct page *page, long count); 2363 extern void mem_init_print_info(void); 2364 2365 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2366 2367 /* Free the reserved page into the buddy system, so it gets managed. */ 2368 static inline void free_reserved_page(struct page *page) 2369 { 2370 ClearPageReserved(page); 2371 init_page_count(page); 2372 __free_page(page); 2373 adjust_managed_page_count(page, 1); 2374 } 2375 #define free_highmem_page(page) free_reserved_page(page) 2376 2377 static inline void mark_page_reserved(struct page *page) 2378 { 2379 SetPageReserved(page); 2380 adjust_managed_page_count(page, -1); 2381 } 2382 2383 /* 2384 * Default method to free all the __init memory into the buddy system. 2385 * The freed pages will be poisoned with pattern "poison" if it's within 2386 * range [0, UCHAR_MAX]. 2387 * Return pages freed into the buddy system. 2388 */ 2389 static inline unsigned long free_initmem_default(int poison) 2390 { 2391 extern char __init_begin[], __init_end[]; 2392 2393 return free_reserved_area(&__init_begin, &__init_end, 2394 poison, "unused kernel"); 2395 } 2396 2397 static inline unsigned long get_num_physpages(void) 2398 { 2399 int nid; 2400 unsigned long phys_pages = 0; 2401 2402 for_each_online_node(nid) 2403 phys_pages += node_present_pages(nid); 2404 2405 return phys_pages; 2406 } 2407 2408 /* 2409 * Using memblock node mappings, an architecture may initialise its 2410 * zones, allocate the backing mem_map and account for memory holes in an 2411 * architecture independent manner. 2412 * 2413 * An architecture is expected to register range of page frames backed by 2414 * physical memory with memblock_add[_node]() before calling 2415 * free_area_init() passing in the PFN each zone ends at. At a basic 2416 * usage, an architecture is expected to do something like 2417 * 2418 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2419 * max_highmem_pfn}; 2420 * for_each_valid_physical_page_range() 2421 * memblock_add_node(base, size, nid) 2422 * free_area_init(max_zone_pfns); 2423 */ 2424 void free_area_init(unsigned long *max_zone_pfn); 2425 unsigned long node_map_pfn_alignment(void); 2426 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2427 unsigned long end_pfn); 2428 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2429 unsigned long end_pfn); 2430 extern void get_pfn_range_for_nid(unsigned int nid, 2431 unsigned long *start_pfn, unsigned long *end_pfn); 2432 extern unsigned long find_min_pfn_with_active_regions(void); 2433 2434 #ifndef CONFIG_NEED_MULTIPLE_NODES 2435 static inline int early_pfn_to_nid(unsigned long pfn) 2436 { 2437 return 0; 2438 } 2439 #else 2440 /* please see mm/page_alloc.c */ 2441 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2442 #endif 2443 2444 extern void set_dma_reserve(unsigned long new_dma_reserve); 2445 extern void memmap_init_range(unsigned long, int, unsigned long, 2446 unsigned long, unsigned long, enum meminit_context, 2447 struct vmem_altmap *, int migratetype); 2448 extern void memmap_init_zone(struct zone *zone); 2449 extern void setup_per_zone_wmarks(void); 2450 extern int __meminit init_per_zone_wmark_min(void); 2451 extern void mem_init(void); 2452 extern void __init mmap_init(void); 2453 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2454 extern long si_mem_available(void); 2455 extern void si_meminfo(struct sysinfo * val); 2456 extern void si_meminfo_node(struct sysinfo *val, int nid); 2457 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2458 extern unsigned long arch_reserved_kernel_pages(void); 2459 #endif 2460 2461 extern __printf(3, 4) 2462 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2463 2464 extern void setup_per_cpu_pageset(void); 2465 2466 /* page_alloc.c */ 2467 extern int min_free_kbytes; 2468 extern int watermark_boost_factor; 2469 extern int watermark_scale_factor; 2470 extern bool arch_has_descending_max_zone_pfns(void); 2471 2472 /* nommu.c */ 2473 extern atomic_long_t mmap_pages_allocated; 2474 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2475 2476 /* interval_tree.c */ 2477 void vma_interval_tree_insert(struct vm_area_struct *node, 2478 struct rb_root_cached *root); 2479 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2480 struct vm_area_struct *prev, 2481 struct rb_root_cached *root); 2482 void vma_interval_tree_remove(struct vm_area_struct *node, 2483 struct rb_root_cached *root); 2484 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2485 unsigned long start, unsigned long last); 2486 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2487 unsigned long start, unsigned long last); 2488 2489 #define vma_interval_tree_foreach(vma, root, start, last) \ 2490 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2491 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2492 2493 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2494 struct rb_root_cached *root); 2495 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2496 struct rb_root_cached *root); 2497 struct anon_vma_chain * 2498 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2499 unsigned long start, unsigned long last); 2500 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2501 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2502 #ifdef CONFIG_DEBUG_VM_RB 2503 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2504 #endif 2505 2506 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2507 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2508 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2509 2510 /* mmap.c */ 2511 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2512 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2513 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2514 struct vm_area_struct *expand); 2515 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2516 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2517 { 2518 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2519 } 2520 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2521 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2522 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2523 struct mempolicy *, struct vm_userfaultfd_ctx); 2524 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2525 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2526 unsigned long addr, int new_below); 2527 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2528 unsigned long addr, int new_below); 2529 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2530 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2531 struct rb_node **, struct rb_node *); 2532 extern void unlink_file_vma(struct vm_area_struct *); 2533 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2534 unsigned long addr, unsigned long len, pgoff_t pgoff, 2535 bool *need_rmap_locks); 2536 extern void exit_mmap(struct mm_struct *); 2537 2538 static inline int check_data_rlimit(unsigned long rlim, 2539 unsigned long new, 2540 unsigned long start, 2541 unsigned long end_data, 2542 unsigned long start_data) 2543 { 2544 if (rlim < RLIM_INFINITY) { 2545 if (((new - start) + (end_data - start_data)) > rlim) 2546 return -ENOSPC; 2547 } 2548 2549 return 0; 2550 } 2551 2552 extern int mm_take_all_locks(struct mm_struct *mm); 2553 extern void mm_drop_all_locks(struct mm_struct *mm); 2554 2555 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2556 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2557 extern struct file *get_task_exe_file(struct task_struct *task); 2558 2559 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2560 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2561 2562 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2563 const struct vm_special_mapping *sm); 2564 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2565 unsigned long addr, unsigned long len, 2566 unsigned long flags, 2567 const struct vm_special_mapping *spec); 2568 /* This is an obsolete alternative to _install_special_mapping. */ 2569 extern int install_special_mapping(struct mm_struct *mm, 2570 unsigned long addr, unsigned long len, 2571 unsigned long flags, struct page **pages); 2572 2573 unsigned long randomize_stack_top(unsigned long stack_top); 2574 2575 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2576 2577 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2578 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2579 struct list_head *uf); 2580 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2581 unsigned long len, unsigned long prot, unsigned long flags, 2582 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2583 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2584 struct list_head *uf, bool downgrade); 2585 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2586 struct list_head *uf); 2587 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2588 2589 #ifdef CONFIG_MMU 2590 extern int __mm_populate(unsigned long addr, unsigned long len, 2591 int ignore_errors); 2592 static inline void mm_populate(unsigned long addr, unsigned long len) 2593 { 2594 /* Ignore errors */ 2595 (void) __mm_populate(addr, len, 1); 2596 } 2597 #else 2598 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2599 #endif 2600 2601 /* These take the mm semaphore themselves */ 2602 extern int __must_check vm_brk(unsigned long, unsigned long); 2603 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2604 extern int vm_munmap(unsigned long, size_t); 2605 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2606 unsigned long, unsigned long, 2607 unsigned long, unsigned long); 2608 2609 struct vm_unmapped_area_info { 2610 #define VM_UNMAPPED_AREA_TOPDOWN 1 2611 unsigned long flags; 2612 unsigned long length; 2613 unsigned long low_limit; 2614 unsigned long high_limit; 2615 unsigned long align_mask; 2616 unsigned long align_offset; 2617 }; 2618 2619 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2620 2621 /* truncate.c */ 2622 extern void truncate_inode_pages(struct address_space *, loff_t); 2623 extern void truncate_inode_pages_range(struct address_space *, 2624 loff_t lstart, loff_t lend); 2625 extern void truncate_inode_pages_final(struct address_space *); 2626 2627 /* generic vm_area_ops exported for stackable file systems */ 2628 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2629 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2630 pgoff_t start_pgoff, pgoff_t end_pgoff); 2631 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2632 2633 /* mm/page-writeback.c */ 2634 int __must_check write_one_page(struct page *page); 2635 void task_dirty_inc(struct task_struct *tsk); 2636 2637 extern unsigned long stack_guard_gap; 2638 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2639 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2640 2641 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2642 extern int expand_downwards(struct vm_area_struct *vma, 2643 unsigned long address); 2644 #if VM_GROWSUP 2645 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2646 #else 2647 #define expand_upwards(vma, address) (0) 2648 #endif 2649 2650 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2651 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2652 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2653 struct vm_area_struct **pprev); 2654 2655 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2656 NULL if none. Assume start_addr < end_addr. */ 2657 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2658 { 2659 struct vm_area_struct * vma = find_vma(mm,start_addr); 2660 2661 if (vma && end_addr <= vma->vm_start) 2662 vma = NULL; 2663 return vma; 2664 } 2665 2666 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2667 { 2668 unsigned long vm_start = vma->vm_start; 2669 2670 if (vma->vm_flags & VM_GROWSDOWN) { 2671 vm_start -= stack_guard_gap; 2672 if (vm_start > vma->vm_start) 2673 vm_start = 0; 2674 } 2675 return vm_start; 2676 } 2677 2678 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2679 { 2680 unsigned long vm_end = vma->vm_end; 2681 2682 if (vma->vm_flags & VM_GROWSUP) { 2683 vm_end += stack_guard_gap; 2684 if (vm_end < vma->vm_end) 2685 vm_end = -PAGE_SIZE; 2686 } 2687 return vm_end; 2688 } 2689 2690 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2691 { 2692 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2693 } 2694 2695 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2696 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2697 unsigned long vm_start, unsigned long vm_end) 2698 { 2699 struct vm_area_struct *vma = find_vma(mm, vm_start); 2700 2701 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2702 vma = NULL; 2703 2704 return vma; 2705 } 2706 2707 static inline bool range_in_vma(struct vm_area_struct *vma, 2708 unsigned long start, unsigned long end) 2709 { 2710 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2711 } 2712 2713 #ifdef CONFIG_MMU 2714 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2715 void vma_set_page_prot(struct vm_area_struct *vma); 2716 #else 2717 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2718 { 2719 return __pgprot(0); 2720 } 2721 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2722 { 2723 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2724 } 2725 #endif 2726 2727 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2728 2729 #ifdef CONFIG_NUMA_BALANCING 2730 unsigned long change_prot_numa(struct vm_area_struct *vma, 2731 unsigned long start, unsigned long end); 2732 #endif 2733 2734 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2735 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2736 unsigned long pfn, unsigned long size, pgprot_t); 2737 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2738 unsigned long pfn, unsigned long size, pgprot_t prot); 2739 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2740 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2741 struct page **pages, unsigned long *num); 2742 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2743 unsigned long num); 2744 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2745 unsigned long num); 2746 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2747 unsigned long pfn); 2748 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2749 unsigned long pfn, pgprot_t pgprot); 2750 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2751 pfn_t pfn); 2752 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2753 pfn_t pfn, pgprot_t pgprot); 2754 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2755 unsigned long addr, pfn_t pfn); 2756 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2757 2758 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2759 unsigned long addr, struct page *page) 2760 { 2761 int err = vm_insert_page(vma, addr, page); 2762 2763 if (err == -ENOMEM) 2764 return VM_FAULT_OOM; 2765 if (err < 0 && err != -EBUSY) 2766 return VM_FAULT_SIGBUS; 2767 2768 return VM_FAULT_NOPAGE; 2769 } 2770 2771 #ifndef io_remap_pfn_range 2772 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2773 unsigned long addr, unsigned long pfn, 2774 unsigned long size, pgprot_t prot) 2775 { 2776 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2777 } 2778 #endif 2779 2780 static inline vm_fault_t vmf_error(int err) 2781 { 2782 if (err == -ENOMEM) 2783 return VM_FAULT_OOM; 2784 return VM_FAULT_SIGBUS; 2785 } 2786 2787 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2788 unsigned int foll_flags); 2789 2790 #define FOLL_WRITE 0x01 /* check pte is writable */ 2791 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2792 #define FOLL_GET 0x04 /* do get_page on page */ 2793 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2794 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2795 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2796 * and return without waiting upon it */ 2797 #define FOLL_POPULATE 0x40 /* fault in page */ 2798 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2799 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2800 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2801 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2802 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2803 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2804 #define FOLL_COW 0x4000 /* internal GUP flag */ 2805 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2806 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2807 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2808 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2809 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2810 2811 /* 2812 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2813 * other. Here is what they mean, and how to use them: 2814 * 2815 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2816 * period _often_ under userspace control. This is in contrast to 2817 * iov_iter_get_pages(), whose usages are transient. 2818 * 2819 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2820 * lifetime enforced by the filesystem and we need guarantees that longterm 2821 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2822 * the filesystem. Ideas for this coordination include revoking the longterm 2823 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2824 * added after the problem with filesystems was found FS DAX VMAs are 2825 * specifically failed. Filesystem pages are still subject to bugs and use of 2826 * FOLL_LONGTERM should be avoided on those pages. 2827 * 2828 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2829 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2830 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2831 * is due to an incompatibility with the FS DAX check and 2832 * FAULT_FLAG_ALLOW_RETRY. 2833 * 2834 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2835 * that region. And so, CMA attempts to migrate the page before pinning, when 2836 * FOLL_LONGTERM is specified. 2837 * 2838 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2839 * but an additional pin counting system) will be invoked. This is intended for 2840 * anything that gets a page reference and then touches page data (for example, 2841 * Direct IO). This lets the filesystem know that some non-file-system entity is 2842 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2843 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2844 * a call to unpin_user_page(). 2845 * 2846 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2847 * and separate refcounting mechanisms, however, and that means that each has 2848 * its own acquire and release mechanisms: 2849 * 2850 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2851 * 2852 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2853 * 2854 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2855 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2856 * calls applied to them, and that's perfectly OK. This is a constraint on the 2857 * callers, not on the pages.) 2858 * 2859 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2860 * directly by the caller. That's in order to help avoid mismatches when 2861 * releasing pages: get_user_pages*() pages must be released via put_page(), 2862 * while pin_user_pages*() pages must be released via unpin_user_page(). 2863 * 2864 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2865 */ 2866 2867 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2868 { 2869 if (vm_fault & VM_FAULT_OOM) 2870 return -ENOMEM; 2871 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2872 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2873 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2874 return -EFAULT; 2875 return 0; 2876 } 2877 2878 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2879 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2880 unsigned long size, pte_fn_t fn, void *data); 2881 extern int apply_to_existing_page_range(struct mm_struct *mm, 2882 unsigned long address, unsigned long size, 2883 pte_fn_t fn, void *data); 2884 2885 extern void init_mem_debugging_and_hardening(void); 2886 #ifdef CONFIG_PAGE_POISONING 2887 extern void __kernel_poison_pages(struct page *page, int numpages); 2888 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2889 extern bool _page_poisoning_enabled_early; 2890 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2891 static inline bool page_poisoning_enabled(void) 2892 { 2893 return _page_poisoning_enabled_early; 2894 } 2895 /* 2896 * For use in fast paths after init_mem_debugging() has run, or when a 2897 * false negative result is not harmful when called too early. 2898 */ 2899 static inline bool page_poisoning_enabled_static(void) 2900 { 2901 return static_branch_unlikely(&_page_poisoning_enabled); 2902 } 2903 static inline void kernel_poison_pages(struct page *page, int numpages) 2904 { 2905 if (page_poisoning_enabled_static()) 2906 __kernel_poison_pages(page, numpages); 2907 } 2908 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2909 { 2910 if (page_poisoning_enabled_static()) 2911 __kernel_unpoison_pages(page, numpages); 2912 } 2913 #else 2914 static inline bool page_poisoning_enabled(void) { return false; } 2915 static inline bool page_poisoning_enabled_static(void) { return false; } 2916 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2917 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2918 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2919 #endif 2920 2921 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2922 static inline bool want_init_on_alloc(gfp_t flags) 2923 { 2924 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2925 &init_on_alloc)) 2926 return true; 2927 return flags & __GFP_ZERO; 2928 } 2929 2930 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2931 static inline bool want_init_on_free(void) 2932 { 2933 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2934 &init_on_free); 2935 } 2936 2937 extern bool _debug_pagealloc_enabled_early; 2938 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2939 2940 static inline bool debug_pagealloc_enabled(void) 2941 { 2942 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2943 _debug_pagealloc_enabled_early; 2944 } 2945 2946 /* 2947 * For use in fast paths after init_debug_pagealloc() has run, or when a 2948 * false negative result is not harmful when called too early. 2949 */ 2950 static inline bool debug_pagealloc_enabled_static(void) 2951 { 2952 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2953 return false; 2954 2955 return static_branch_unlikely(&_debug_pagealloc_enabled); 2956 } 2957 2958 #ifdef CONFIG_DEBUG_PAGEALLOC 2959 /* 2960 * To support DEBUG_PAGEALLOC architecture must ensure that 2961 * __kernel_map_pages() never fails 2962 */ 2963 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2964 2965 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2966 { 2967 if (debug_pagealloc_enabled_static()) 2968 __kernel_map_pages(page, numpages, 1); 2969 } 2970 2971 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2972 { 2973 if (debug_pagealloc_enabled_static()) 2974 __kernel_map_pages(page, numpages, 0); 2975 } 2976 #else /* CONFIG_DEBUG_PAGEALLOC */ 2977 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 2978 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 2979 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2980 2981 #ifdef __HAVE_ARCH_GATE_AREA 2982 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2983 extern int in_gate_area_no_mm(unsigned long addr); 2984 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2985 #else 2986 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2987 { 2988 return NULL; 2989 } 2990 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2991 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2992 { 2993 return 0; 2994 } 2995 #endif /* __HAVE_ARCH_GATE_AREA */ 2996 2997 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2998 2999 #ifdef CONFIG_SYSCTL 3000 extern int sysctl_drop_caches; 3001 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3002 loff_t *); 3003 #endif 3004 3005 void drop_slab(void); 3006 void drop_slab_node(int nid); 3007 3008 #ifndef CONFIG_MMU 3009 #define randomize_va_space 0 3010 #else 3011 extern int randomize_va_space; 3012 #endif 3013 3014 const char * arch_vma_name(struct vm_area_struct *vma); 3015 #ifdef CONFIG_MMU 3016 void print_vma_addr(char *prefix, unsigned long rip); 3017 #else 3018 static inline void print_vma_addr(char *prefix, unsigned long rip) 3019 { 3020 } 3021 #endif 3022 3023 void *sparse_buffer_alloc(unsigned long size); 3024 struct page * __populate_section_memmap(unsigned long pfn, 3025 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3026 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3027 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3028 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3029 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3030 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3031 struct vmem_altmap *altmap); 3032 void *vmemmap_alloc_block(unsigned long size, int node); 3033 struct vmem_altmap; 3034 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3035 struct vmem_altmap *altmap); 3036 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3037 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3038 int node, struct vmem_altmap *altmap); 3039 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3040 struct vmem_altmap *altmap); 3041 void vmemmap_populate_print_last(void); 3042 #ifdef CONFIG_MEMORY_HOTPLUG 3043 void vmemmap_free(unsigned long start, unsigned long end, 3044 struct vmem_altmap *altmap); 3045 #endif 3046 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3047 unsigned long nr_pages); 3048 3049 enum mf_flags { 3050 MF_COUNT_INCREASED = 1 << 0, 3051 MF_ACTION_REQUIRED = 1 << 1, 3052 MF_MUST_KILL = 1 << 2, 3053 MF_SOFT_OFFLINE = 1 << 3, 3054 }; 3055 extern int memory_failure(unsigned long pfn, int flags); 3056 extern void memory_failure_queue(unsigned long pfn, int flags); 3057 extern void memory_failure_queue_kick(int cpu); 3058 extern int unpoison_memory(unsigned long pfn); 3059 extern int sysctl_memory_failure_early_kill; 3060 extern int sysctl_memory_failure_recovery; 3061 extern void shake_page(struct page *p, int access); 3062 extern atomic_long_t num_poisoned_pages __read_mostly; 3063 extern int soft_offline_page(unsigned long pfn, int flags); 3064 3065 3066 /* 3067 * Error handlers for various types of pages. 3068 */ 3069 enum mf_result { 3070 MF_IGNORED, /* Error: cannot be handled */ 3071 MF_FAILED, /* Error: handling failed */ 3072 MF_DELAYED, /* Will be handled later */ 3073 MF_RECOVERED, /* Successfully recovered */ 3074 }; 3075 3076 enum mf_action_page_type { 3077 MF_MSG_KERNEL, 3078 MF_MSG_KERNEL_HIGH_ORDER, 3079 MF_MSG_SLAB, 3080 MF_MSG_DIFFERENT_COMPOUND, 3081 MF_MSG_POISONED_HUGE, 3082 MF_MSG_HUGE, 3083 MF_MSG_FREE_HUGE, 3084 MF_MSG_NON_PMD_HUGE, 3085 MF_MSG_UNMAP_FAILED, 3086 MF_MSG_DIRTY_SWAPCACHE, 3087 MF_MSG_CLEAN_SWAPCACHE, 3088 MF_MSG_DIRTY_MLOCKED_LRU, 3089 MF_MSG_CLEAN_MLOCKED_LRU, 3090 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3091 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3092 MF_MSG_DIRTY_LRU, 3093 MF_MSG_CLEAN_LRU, 3094 MF_MSG_TRUNCATED_LRU, 3095 MF_MSG_BUDDY, 3096 MF_MSG_BUDDY_2ND, 3097 MF_MSG_DAX, 3098 MF_MSG_UNSPLIT_THP, 3099 MF_MSG_UNKNOWN, 3100 }; 3101 3102 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3103 extern void clear_huge_page(struct page *page, 3104 unsigned long addr_hint, 3105 unsigned int pages_per_huge_page); 3106 extern void copy_user_huge_page(struct page *dst, struct page *src, 3107 unsigned long addr_hint, 3108 struct vm_area_struct *vma, 3109 unsigned int pages_per_huge_page); 3110 extern long copy_huge_page_from_user(struct page *dst_page, 3111 const void __user *usr_src, 3112 unsigned int pages_per_huge_page, 3113 bool allow_pagefault); 3114 3115 /** 3116 * vma_is_special_huge - Are transhuge page-table entries considered special? 3117 * @vma: Pointer to the struct vm_area_struct to consider 3118 * 3119 * Whether transhuge page-table entries are considered "special" following 3120 * the definition in vm_normal_page(). 3121 * 3122 * Return: true if transhuge page-table entries should be considered special, 3123 * false otherwise. 3124 */ 3125 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3126 { 3127 return vma_is_dax(vma) || (vma->vm_file && 3128 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3129 } 3130 3131 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3132 3133 #ifdef CONFIG_DEBUG_PAGEALLOC 3134 extern unsigned int _debug_guardpage_minorder; 3135 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3136 3137 static inline unsigned int debug_guardpage_minorder(void) 3138 { 3139 return _debug_guardpage_minorder; 3140 } 3141 3142 static inline bool debug_guardpage_enabled(void) 3143 { 3144 return static_branch_unlikely(&_debug_guardpage_enabled); 3145 } 3146 3147 static inline bool page_is_guard(struct page *page) 3148 { 3149 if (!debug_guardpage_enabled()) 3150 return false; 3151 3152 return PageGuard(page); 3153 } 3154 #else 3155 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3156 static inline bool debug_guardpage_enabled(void) { return false; } 3157 static inline bool page_is_guard(struct page *page) { return false; } 3158 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3159 3160 #if MAX_NUMNODES > 1 3161 void __init setup_nr_node_ids(void); 3162 #else 3163 static inline void setup_nr_node_ids(void) {} 3164 #endif 3165 3166 extern int memcmp_pages(struct page *page1, struct page *page2); 3167 3168 static inline int pages_identical(struct page *page1, struct page *page2) 3169 { 3170 return !memcmp_pages(page1, page2); 3171 } 3172 3173 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3174 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3175 pgoff_t first_index, pgoff_t nr, 3176 pgoff_t bitmap_pgoff, 3177 unsigned long *bitmap, 3178 pgoff_t *start, 3179 pgoff_t *end); 3180 3181 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3182 pgoff_t first_index, pgoff_t nr); 3183 #endif 3184 3185 extern int sysctl_nr_trim_pages; 3186 3187 #ifdef CONFIG_PRINTK 3188 void mem_dump_obj(void *object); 3189 #else 3190 static inline void mem_dump_obj(void *object) {} 3191 #endif 3192 3193 #endif /* __KERNEL__ */ 3194 #endif /* _LINUX_MM_H */ 3195