xref: /linux-6.15/include/linux/mm.h (revision f15cbe6f)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21 
22 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25 
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern int page_cluster;
29 
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35 
36 extern unsigned long mmap_min_addr;
37 
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
46 
47 /*
48  * Linux kernel virtual memory manager primitives.
49  * The idea being to have a "virtual" mm in the same way
50  * we have a virtual fs - giving a cleaner interface to the
51  * mm details, and allowing different kinds of memory mappings
52  * (from shared memory to executable loading to arbitrary
53  * mmap() functions).
54  */
55 
56 extern struct kmem_cache *vm_area_cachep;
57 
58 /*
59  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
60  * disabled, then there's a single shared list of VMAs maintained by the
61  * system, and mm's subscribe to these individually
62  */
63 struct vm_list_struct {
64 	struct vm_list_struct	*next;
65 	struct vm_area_struct	*vma;
66 };
67 
68 #ifndef CONFIG_MMU
69 extern struct rb_root nommu_vma_tree;
70 extern struct rw_semaphore nommu_vma_sem;
71 
72 extern unsigned int kobjsize(const void *objp);
73 #endif
74 
75 /*
76  * vm_flags..
77  */
78 #define VM_READ		0x00000001	/* currently active flags */
79 #define VM_WRITE	0x00000002
80 #define VM_EXEC		0x00000004
81 #define VM_SHARED	0x00000008
82 
83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
84 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
85 #define VM_MAYWRITE	0x00000020
86 #define VM_MAYEXEC	0x00000040
87 #define VM_MAYSHARE	0x00000080
88 
89 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
90 #define VM_GROWSUP	0x00000200
91 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
92 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
93 
94 #define VM_EXECUTABLE	0x00001000
95 #define VM_LOCKED	0x00002000
96 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
97 
98 					/* Used by sys_madvise() */
99 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
100 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
101 
102 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
103 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
104 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
105 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
106 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
107 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
108 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
109 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
110 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
111 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
112 
113 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
114 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
115 #define VM_SAO		0x20000000	/* Strong Access Ordering (powerpc) */
116 
117 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
118 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
119 #endif
120 
121 #ifdef CONFIG_STACK_GROWSUP
122 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
123 #else
124 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
125 #endif
126 
127 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
128 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
129 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
130 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
131 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
132 
133 /*
134  * mapping from the currently active vm_flags protection bits (the
135  * low four bits) to a page protection mask..
136  */
137 extern pgprot_t protection_map[16];
138 
139 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
140 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
141 
142 
143 /*
144  * vm_fault is filled by the the pagefault handler and passed to the vma's
145  * ->fault function. The vma's ->fault is responsible for returning a bitmask
146  * of VM_FAULT_xxx flags that give details about how the fault was handled.
147  *
148  * pgoff should be used in favour of virtual_address, if possible. If pgoff
149  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
150  * mapping support.
151  */
152 struct vm_fault {
153 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
154 	pgoff_t pgoff;			/* Logical page offset based on vma */
155 	void __user *virtual_address;	/* Faulting virtual address */
156 
157 	struct page *page;		/* ->fault handlers should return a
158 					 * page here, unless VM_FAULT_NOPAGE
159 					 * is set (which is also implied by
160 					 * VM_FAULT_ERROR).
161 					 */
162 };
163 
164 /*
165  * These are the virtual MM functions - opening of an area, closing and
166  * unmapping it (needed to keep files on disk up-to-date etc), pointer
167  * to the functions called when a no-page or a wp-page exception occurs.
168  */
169 struct vm_operations_struct {
170 	void (*open)(struct vm_area_struct * area);
171 	void (*close)(struct vm_area_struct * area);
172 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
173 
174 	/* notification that a previously read-only page is about to become
175 	 * writable, if an error is returned it will cause a SIGBUS */
176 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
177 
178 	/* called by access_process_vm when get_user_pages() fails, typically
179 	 * for use by special VMAs that can switch between memory and hardware
180 	 */
181 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
182 		      void *buf, int len, int write);
183 #ifdef CONFIG_NUMA
184 	/*
185 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
186 	 * to hold the policy upon return.  Caller should pass NULL @new to
187 	 * remove a policy and fall back to surrounding context--i.e. do not
188 	 * install a MPOL_DEFAULT policy, nor the task or system default
189 	 * mempolicy.
190 	 */
191 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
192 
193 	/*
194 	 * get_policy() op must add reference [mpol_get()] to any policy at
195 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
196 	 * in mm/mempolicy.c will do this automatically.
197 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
198 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
199 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
200 	 * must return NULL--i.e., do not "fallback" to task or system default
201 	 * policy.
202 	 */
203 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
204 					unsigned long addr);
205 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
206 		const nodemask_t *to, unsigned long flags);
207 #endif
208 };
209 
210 struct mmu_gather;
211 struct inode;
212 
213 #define page_private(page)		((page)->private)
214 #define set_page_private(page, v)	((page)->private = (v))
215 
216 /*
217  * FIXME: take this include out, include page-flags.h in
218  * files which need it (119 of them)
219  */
220 #include <linux/page-flags.h>
221 
222 #ifdef CONFIG_DEBUG_VM
223 #define VM_BUG_ON(cond) BUG_ON(cond)
224 #else
225 #define VM_BUG_ON(condition) do { } while(0)
226 #endif
227 
228 /*
229  * Methods to modify the page usage count.
230  *
231  * What counts for a page usage:
232  * - cache mapping   (page->mapping)
233  * - private data    (page->private)
234  * - page mapped in a task's page tables, each mapping
235  *   is counted separately
236  *
237  * Also, many kernel routines increase the page count before a critical
238  * routine so they can be sure the page doesn't go away from under them.
239  */
240 
241 /*
242  * Drop a ref, return true if the refcount fell to zero (the page has no users)
243  */
244 static inline int put_page_testzero(struct page *page)
245 {
246 	VM_BUG_ON(atomic_read(&page->_count) == 0);
247 	return atomic_dec_and_test(&page->_count);
248 }
249 
250 /*
251  * Try to grab a ref unless the page has a refcount of zero, return false if
252  * that is the case.
253  */
254 static inline int get_page_unless_zero(struct page *page)
255 {
256 	VM_BUG_ON(PageTail(page));
257 	return atomic_inc_not_zero(&page->_count);
258 }
259 
260 /* Support for virtually mapped pages */
261 struct page *vmalloc_to_page(const void *addr);
262 unsigned long vmalloc_to_pfn(const void *addr);
263 
264 /*
265  * Determine if an address is within the vmalloc range
266  *
267  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
268  * is no special casing required.
269  */
270 static inline int is_vmalloc_addr(const void *x)
271 {
272 #ifdef CONFIG_MMU
273 	unsigned long addr = (unsigned long)x;
274 
275 	return addr >= VMALLOC_START && addr < VMALLOC_END;
276 #else
277 	return 0;
278 #endif
279 }
280 
281 static inline struct page *compound_head(struct page *page)
282 {
283 	if (unlikely(PageTail(page)))
284 		return page->first_page;
285 	return page;
286 }
287 
288 static inline int page_count(struct page *page)
289 {
290 	return atomic_read(&compound_head(page)->_count);
291 }
292 
293 static inline void get_page(struct page *page)
294 {
295 	page = compound_head(page);
296 	VM_BUG_ON(atomic_read(&page->_count) == 0);
297 	atomic_inc(&page->_count);
298 }
299 
300 static inline struct page *virt_to_head_page(const void *x)
301 {
302 	struct page *page = virt_to_page(x);
303 	return compound_head(page);
304 }
305 
306 /*
307  * Setup the page count before being freed into the page allocator for
308  * the first time (boot or memory hotplug)
309  */
310 static inline void init_page_count(struct page *page)
311 {
312 	atomic_set(&page->_count, 1);
313 }
314 
315 void put_page(struct page *page);
316 void put_pages_list(struct list_head *pages);
317 
318 void split_page(struct page *page, unsigned int order);
319 
320 /*
321  * Compound pages have a destructor function.  Provide a
322  * prototype for that function and accessor functions.
323  * These are _only_ valid on the head of a PG_compound page.
324  */
325 typedef void compound_page_dtor(struct page *);
326 
327 static inline void set_compound_page_dtor(struct page *page,
328 						compound_page_dtor *dtor)
329 {
330 	page[1].lru.next = (void *)dtor;
331 }
332 
333 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
334 {
335 	return (compound_page_dtor *)page[1].lru.next;
336 }
337 
338 static inline int compound_order(struct page *page)
339 {
340 	if (!PageHead(page))
341 		return 0;
342 	return (unsigned long)page[1].lru.prev;
343 }
344 
345 static inline void set_compound_order(struct page *page, unsigned long order)
346 {
347 	page[1].lru.prev = (void *)order;
348 }
349 
350 /*
351  * Multiple processes may "see" the same page. E.g. for untouched
352  * mappings of /dev/null, all processes see the same page full of
353  * zeroes, and text pages of executables and shared libraries have
354  * only one copy in memory, at most, normally.
355  *
356  * For the non-reserved pages, page_count(page) denotes a reference count.
357  *   page_count() == 0 means the page is free. page->lru is then used for
358  *   freelist management in the buddy allocator.
359  *   page_count() > 0  means the page has been allocated.
360  *
361  * Pages are allocated by the slab allocator in order to provide memory
362  * to kmalloc and kmem_cache_alloc. In this case, the management of the
363  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
364  * unless a particular usage is carefully commented. (the responsibility of
365  * freeing the kmalloc memory is the caller's, of course).
366  *
367  * A page may be used by anyone else who does a __get_free_page().
368  * In this case, page_count still tracks the references, and should only
369  * be used through the normal accessor functions. The top bits of page->flags
370  * and page->virtual store page management information, but all other fields
371  * are unused and could be used privately, carefully. The management of this
372  * page is the responsibility of the one who allocated it, and those who have
373  * subsequently been given references to it.
374  *
375  * The other pages (we may call them "pagecache pages") are completely
376  * managed by the Linux memory manager: I/O, buffers, swapping etc.
377  * The following discussion applies only to them.
378  *
379  * A pagecache page contains an opaque `private' member, which belongs to the
380  * page's address_space. Usually, this is the address of a circular list of
381  * the page's disk buffers. PG_private must be set to tell the VM to call
382  * into the filesystem to release these pages.
383  *
384  * A page may belong to an inode's memory mapping. In this case, page->mapping
385  * is the pointer to the inode, and page->index is the file offset of the page,
386  * in units of PAGE_CACHE_SIZE.
387  *
388  * If pagecache pages are not associated with an inode, they are said to be
389  * anonymous pages. These may become associated with the swapcache, and in that
390  * case PG_swapcache is set, and page->private is an offset into the swapcache.
391  *
392  * In either case (swapcache or inode backed), the pagecache itself holds one
393  * reference to the page. Setting PG_private should also increment the
394  * refcount. The each user mapping also has a reference to the page.
395  *
396  * The pagecache pages are stored in a per-mapping radix tree, which is
397  * rooted at mapping->page_tree, and indexed by offset.
398  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
399  * lists, we instead now tag pages as dirty/writeback in the radix tree.
400  *
401  * All pagecache pages may be subject to I/O:
402  * - inode pages may need to be read from disk,
403  * - inode pages which have been modified and are MAP_SHARED may need
404  *   to be written back to the inode on disk,
405  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
406  *   modified may need to be swapped out to swap space and (later) to be read
407  *   back into memory.
408  */
409 
410 /*
411  * The zone field is never updated after free_area_init_core()
412  * sets it, so none of the operations on it need to be atomic.
413  */
414 
415 
416 /*
417  * page->flags layout:
418  *
419  * There are three possibilities for how page->flags get
420  * laid out.  The first is for the normal case, without
421  * sparsemem.  The second is for sparsemem when there is
422  * plenty of space for node and section.  The last is when
423  * we have run out of space and have to fall back to an
424  * alternate (slower) way of determining the node.
425  *
426  * No sparsemem or sparsemem vmemmap: |       NODE     | ZONE | ... | FLAGS |
427  * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
428  * classic sparse no space for node:  | SECTION |     ZONE    | ... | FLAGS |
429  */
430 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
431 #define SECTIONS_WIDTH		SECTIONS_SHIFT
432 #else
433 #define SECTIONS_WIDTH		0
434 #endif
435 
436 #define ZONES_WIDTH		ZONES_SHIFT
437 
438 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
439 #define NODES_WIDTH		NODES_SHIFT
440 #else
441 #ifdef CONFIG_SPARSEMEM_VMEMMAP
442 #error "Vmemmap: No space for nodes field in page flags"
443 #endif
444 #define NODES_WIDTH		0
445 #endif
446 
447 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
448 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
449 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
450 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
451 
452 /*
453  * We are going to use the flags for the page to node mapping if its in
454  * there.  This includes the case where there is no node, so it is implicit.
455  */
456 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
457 #define NODE_NOT_IN_PAGE_FLAGS
458 #endif
459 
460 #ifndef PFN_SECTION_SHIFT
461 #define PFN_SECTION_SHIFT 0
462 #endif
463 
464 /*
465  * Define the bit shifts to access each section.  For non-existant
466  * sections we define the shift as 0; that plus a 0 mask ensures
467  * the compiler will optimise away reference to them.
468  */
469 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
470 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
471 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
472 
473 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
474 #ifdef NODE_NOT_IN_PAGEFLAGS
475 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
476 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
477 						SECTIONS_PGOFF : ZONES_PGOFF)
478 #else
479 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
480 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
481 						NODES_PGOFF : ZONES_PGOFF)
482 #endif
483 
484 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
485 
486 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
487 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
488 #endif
489 
490 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
491 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
492 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
493 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
494 
495 static inline enum zone_type page_zonenum(struct page *page)
496 {
497 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
498 }
499 
500 /*
501  * The identification function is only used by the buddy allocator for
502  * determining if two pages could be buddies. We are not really
503  * identifying a zone since we could be using a the section number
504  * id if we have not node id available in page flags.
505  * We guarantee only that it will return the same value for two
506  * combinable pages in a zone.
507  */
508 static inline int page_zone_id(struct page *page)
509 {
510 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
511 }
512 
513 static inline int zone_to_nid(struct zone *zone)
514 {
515 #ifdef CONFIG_NUMA
516 	return zone->node;
517 #else
518 	return 0;
519 #endif
520 }
521 
522 #ifdef NODE_NOT_IN_PAGE_FLAGS
523 extern int page_to_nid(struct page *page);
524 #else
525 static inline int page_to_nid(struct page *page)
526 {
527 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
528 }
529 #endif
530 
531 static inline struct zone *page_zone(struct page *page)
532 {
533 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
534 }
535 
536 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
537 static inline unsigned long page_to_section(struct page *page)
538 {
539 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
540 }
541 #endif
542 
543 static inline void set_page_zone(struct page *page, enum zone_type zone)
544 {
545 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
546 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
547 }
548 
549 static inline void set_page_node(struct page *page, unsigned long node)
550 {
551 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
552 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
553 }
554 
555 static inline void set_page_section(struct page *page, unsigned long section)
556 {
557 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
558 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
559 }
560 
561 static inline void set_page_links(struct page *page, enum zone_type zone,
562 	unsigned long node, unsigned long pfn)
563 {
564 	set_page_zone(page, zone);
565 	set_page_node(page, node);
566 	set_page_section(page, pfn_to_section_nr(pfn));
567 }
568 
569 /*
570  * If a hint addr is less than mmap_min_addr change hint to be as
571  * low as possible but still greater than mmap_min_addr
572  */
573 static inline unsigned long round_hint_to_min(unsigned long hint)
574 {
575 #ifdef CONFIG_SECURITY
576 	hint &= PAGE_MASK;
577 	if (((void *)hint != NULL) &&
578 	    (hint < mmap_min_addr))
579 		return PAGE_ALIGN(mmap_min_addr);
580 #endif
581 	return hint;
582 }
583 
584 /*
585  * Some inline functions in vmstat.h depend on page_zone()
586  */
587 #include <linux/vmstat.h>
588 
589 static __always_inline void *lowmem_page_address(struct page *page)
590 {
591 	return __va(page_to_pfn(page) << PAGE_SHIFT);
592 }
593 
594 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
595 #define HASHED_PAGE_VIRTUAL
596 #endif
597 
598 #if defined(WANT_PAGE_VIRTUAL)
599 #define page_address(page) ((page)->virtual)
600 #define set_page_address(page, address)			\
601 	do {						\
602 		(page)->virtual = (address);		\
603 	} while(0)
604 #define page_address_init()  do { } while(0)
605 #endif
606 
607 #if defined(HASHED_PAGE_VIRTUAL)
608 void *page_address(struct page *page);
609 void set_page_address(struct page *page, void *virtual);
610 void page_address_init(void);
611 #endif
612 
613 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
614 #define page_address(page) lowmem_page_address(page)
615 #define set_page_address(page, address)  do { } while(0)
616 #define page_address_init()  do { } while(0)
617 #endif
618 
619 /*
620  * On an anonymous page mapped into a user virtual memory area,
621  * page->mapping points to its anon_vma, not to a struct address_space;
622  * with the PAGE_MAPPING_ANON bit set to distinguish it.
623  *
624  * Please note that, confusingly, "page_mapping" refers to the inode
625  * address_space which maps the page from disk; whereas "page_mapped"
626  * refers to user virtual address space into which the page is mapped.
627  */
628 #define PAGE_MAPPING_ANON	1
629 
630 extern struct address_space swapper_space;
631 static inline struct address_space *page_mapping(struct page *page)
632 {
633 	struct address_space *mapping = page->mapping;
634 
635 	VM_BUG_ON(PageSlab(page));
636 #ifdef CONFIG_SWAP
637 	if (unlikely(PageSwapCache(page)))
638 		mapping = &swapper_space;
639 	else
640 #endif
641 	if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
642 		mapping = NULL;
643 	return mapping;
644 }
645 
646 static inline int PageAnon(struct page *page)
647 {
648 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
649 }
650 
651 /*
652  * Return the pagecache index of the passed page.  Regular pagecache pages
653  * use ->index whereas swapcache pages use ->private
654  */
655 static inline pgoff_t page_index(struct page *page)
656 {
657 	if (unlikely(PageSwapCache(page)))
658 		return page_private(page);
659 	return page->index;
660 }
661 
662 /*
663  * The atomic page->_mapcount, like _count, starts from -1:
664  * so that transitions both from it and to it can be tracked,
665  * using atomic_inc_and_test and atomic_add_negative(-1).
666  */
667 static inline void reset_page_mapcount(struct page *page)
668 {
669 	atomic_set(&(page)->_mapcount, -1);
670 }
671 
672 static inline int page_mapcount(struct page *page)
673 {
674 	return atomic_read(&(page)->_mapcount) + 1;
675 }
676 
677 /*
678  * Return true if this page is mapped into pagetables.
679  */
680 static inline int page_mapped(struct page *page)
681 {
682 	return atomic_read(&(page)->_mapcount) >= 0;
683 }
684 
685 /*
686  * Different kinds of faults, as returned by handle_mm_fault().
687  * Used to decide whether a process gets delivered SIGBUS or
688  * just gets major/minor fault counters bumped up.
689  */
690 
691 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
692 
693 #define VM_FAULT_OOM	0x0001
694 #define VM_FAULT_SIGBUS	0x0002
695 #define VM_FAULT_MAJOR	0x0004
696 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
697 
698 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
699 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
700 
701 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS)
702 
703 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
704 
705 extern void show_free_areas(void);
706 
707 #ifdef CONFIG_SHMEM
708 int shmem_lock(struct file *file, int lock, struct user_struct *user);
709 #else
710 static inline int shmem_lock(struct file *file, int lock,
711 			     struct user_struct *user)
712 {
713 	return 0;
714 }
715 #endif
716 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
717 
718 int shmem_zero_setup(struct vm_area_struct *);
719 
720 #ifndef CONFIG_MMU
721 extern unsigned long shmem_get_unmapped_area(struct file *file,
722 					     unsigned long addr,
723 					     unsigned long len,
724 					     unsigned long pgoff,
725 					     unsigned long flags);
726 #endif
727 
728 extern int can_do_mlock(void);
729 extern int user_shm_lock(size_t, struct user_struct *);
730 extern void user_shm_unlock(size_t, struct user_struct *);
731 
732 /*
733  * Parameter block passed down to zap_pte_range in exceptional cases.
734  */
735 struct zap_details {
736 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
737 	struct address_space *check_mapping;	/* Check page->mapping if set */
738 	pgoff_t	first_index;			/* Lowest page->index to unmap */
739 	pgoff_t last_index;			/* Highest page->index to unmap */
740 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
741 	unsigned long truncate_count;		/* Compare vm_truncate_count */
742 };
743 
744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
745 		pte_t pte);
746 
747 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
748 		unsigned long size, struct zap_details *);
749 unsigned long unmap_vmas(struct mmu_gather **tlb,
750 		struct vm_area_struct *start_vma, unsigned long start_addr,
751 		unsigned long end_addr, unsigned long *nr_accounted,
752 		struct zap_details *);
753 
754 /**
755  * mm_walk - callbacks for walk_page_range
756  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
757  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
758  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
759  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
760  * @pte_hole: if set, called for each hole at all levels
761  *
762  * (see walk_page_range for more details)
763  */
764 struct mm_walk {
765 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
766 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
767 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
768 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
769 	int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
770 	struct mm_struct *mm;
771 	void *private;
772 };
773 
774 int walk_page_range(unsigned long addr, unsigned long end,
775 		struct mm_walk *walk);
776 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
777 		unsigned long end, unsigned long floor, unsigned long ceiling);
778 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
779 			struct vm_area_struct *vma);
780 void unmap_mapping_range(struct address_space *mapping,
781 		loff_t const holebegin, loff_t const holelen, int even_cows);
782 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
783 			void *buf, int len, int write);
784 
785 static inline void unmap_shared_mapping_range(struct address_space *mapping,
786 		loff_t const holebegin, loff_t const holelen)
787 {
788 	unmap_mapping_range(mapping, holebegin, holelen, 0);
789 }
790 
791 extern int vmtruncate(struct inode * inode, loff_t offset);
792 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
793 
794 #ifdef CONFIG_MMU
795 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
796 			unsigned long address, int write_access);
797 #else
798 static inline int handle_mm_fault(struct mm_struct *mm,
799 			struct vm_area_struct *vma, unsigned long address,
800 			int write_access)
801 {
802 	/* should never happen if there's no MMU */
803 	BUG();
804 	return VM_FAULT_SIGBUS;
805 }
806 #endif
807 
808 extern int make_pages_present(unsigned long addr, unsigned long end);
809 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
810 
811 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
812 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
813 
814 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
815 extern void do_invalidatepage(struct page *page, unsigned long offset);
816 
817 int __set_page_dirty_nobuffers(struct page *page);
818 int __set_page_dirty_no_writeback(struct page *page);
819 int redirty_page_for_writepage(struct writeback_control *wbc,
820 				struct page *page);
821 int set_page_dirty(struct page *page);
822 int set_page_dirty_lock(struct page *page);
823 int clear_page_dirty_for_io(struct page *page);
824 
825 extern unsigned long move_page_tables(struct vm_area_struct *vma,
826 		unsigned long old_addr, struct vm_area_struct *new_vma,
827 		unsigned long new_addr, unsigned long len);
828 extern unsigned long do_mremap(unsigned long addr,
829 			       unsigned long old_len, unsigned long new_len,
830 			       unsigned long flags, unsigned long new_addr);
831 extern int mprotect_fixup(struct vm_area_struct *vma,
832 			  struct vm_area_struct **pprev, unsigned long start,
833 			  unsigned long end, unsigned long newflags);
834 
835 #ifdef CONFIG_HAVE_GET_USER_PAGES_FAST
836 /*
837  * get_user_pages_fast provides equivalent functionality to get_user_pages,
838  * operating on current and current->mm (force=0 and doesn't return any vmas).
839  *
840  * get_user_pages_fast may take mmap_sem and page tables, so no assumptions
841  * can be made about locking. get_user_pages_fast is to be implemented in a
842  * way that is advantageous (vs get_user_pages()) when the user memory area is
843  * already faulted in and present in ptes. However if the pages have to be
844  * faulted in, it may turn out to be slightly slower).
845  */
846 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
847 			struct page **pages);
848 
849 #else
850 /*
851  * Should probably be moved to asm-generic, and architectures can include it if
852  * they don't implement their own get_user_pages_fast.
853  */
854 #define get_user_pages_fast(start, nr_pages, write, pages)	\
855 ({								\
856 	struct mm_struct *mm = current->mm;			\
857 	int ret;						\
858 								\
859 	down_read(&mm->mmap_sem);				\
860 	ret = get_user_pages(current, mm, start, nr_pages,	\
861 					write, 0, pages, NULL);	\
862 	up_read(&mm->mmap_sem);					\
863 								\
864 	ret;							\
865 })
866 #endif
867 
868 /*
869  * A callback you can register to apply pressure to ageable caches.
870  *
871  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
872  * look through the least-recently-used 'nr_to_scan' entries and
873  * attempt to free them up.  It should return the number of objects
874  * which remain in the cache.  If it returns -1, it means it cannot do
875  * any scanning at this time (eg. there is a risk of deadlock).
876  *
877  * The 'gfpmask' refers to the allocation we are currently trying to
878  * fulfil.
879  *
880  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
881  * querying the cache size, so a fastpath for that case is appropriate.
882  */
883 struct shrinker {
884 	int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
885 	int seeks;	/* seeks to recreate an obj */
886 
887 	/* These are for internal use */
888 	struct list_head list;
889 	long nr;	/* objs pending delete */
890 };
891 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
892 extern void register_shrinker(struct shrinker *);
893 extern void unregister_shrinker(struct shrinker *);
894 
895 int vma_wants_writenotify(struct vm_area_struct *vma);
896 
897 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
898 
899 #ifdef __PAGETABLE_PUD_FOLDED
900 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
901 						unsigned long address)
902 {
903 	return 0;
904 }
905 #else
906 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
907 #endif
908 
909 #ifdef __PAGETABLE_PMD_FOLDED
910 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
911 						unsigned long address)
912 {
913 	return 0;
914 }
915 #else
916 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
917 #endif
918 
919 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
920 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
921 
922 /*
923  * The following ifdef needed to get the 4level-fixup.h header to work.
924  * Remove it when 4level-fixup.h has been removed.
925  */
926 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
927 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
928 {
929 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
930 		NULL: pud_offset(pgd, address);
931 }
932 
933 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
934 {
935 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
936 		NULL: pmd_offset(pud, address);
937 }
938 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
939 
940 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
941 /*
942  * We tuck a spinlock to guard each pagetable page into its struct page,
943  * at page->private, with BUILD_BUG_ON to make sure that this will not
944  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
945  * When freeing, reset page->mapping so free_pages_check won't complain.
946  */
947 #define __pte_lockptr(page)	&((page)->ptl)
948 #define pte_lock_init(_page)	do {					\
949 	spin_lock_init(__pte_lockptr(_page));				\
950 } while (0)
951 #define pte_lock_deinit(page)	((page)->mapping = NULL)
952 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
953 #else
954 /*
955  * We use mm->page_table_lock to guard all pagetable pages of the mm.
956  */
957 #define pte_lock_init(page)	do {} while (0)
958 #define pte_lock_deinit(page)	do {} while (0)
959 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
960 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
961 
962 static inline void pgtable_page_ctor(struct page *page)
963 {
964 	pte_lock_init(page);
965 	inc_zone_page_state(page, NR_PAGETABLE);
966 }
967 
968 static inline void pgtable_page_dtor(struct page *page)
969 {
970 	pte_lock_deinit(page);
971 	dec_zone_page_state(page, NR_PAGETABLE);
972 }
973 
974 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
975 ({							\
976 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
977 	pte_t *__pte = pte_offset_map(pmd, address);	\
978 	*(ptlp) = __ptl;				\
979 	spin_lock(__ptl);				\
980 	__pte;						\
981 })
982 
983 #define pte_unmap_unlock(pte, ptl)	do {		\
984 	spin_unlock(ptl);				\
985 	pte_unmap(pte);					\
986 } while (0)
987 
988 #define pte_alloc_map(mm, pmd, address)			\
989 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
990 		NULL: pte_offset_map(pmd, address))
991 
992 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
993 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
994 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
995 
996 #define pte_alloc_kernel(pmd, address)			\
997 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
998 		NULL: pte_offset_kernel(pmd, address))
999 
1000 extern void free_area_init(unsigned long * zones_size);
1001 extern void free_area_init_node(int nid, unsigned long * zones_size,
1002 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1003 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1004 /*
1005  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1006  * zones, allocate the backing mem_map and account for memory holes in a more
1007  * architecture independent manner. This is a substitute for creating the
1008  * zone_sizes[] and zholes_size[] arrays and passing them to
1009  * free_area_init_node()
1010  *
1011  * An architecture is expected to register range of page frames backed by
1012  * physical memory with add_active_range() before calling
1013  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1014  * usage, an architecture is expected to do something like
1015  *
1016  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1017  * 							 max_highmem_pfn};
1018  * for_each_valid_physical_page_range()
1019  * 	add_active_range(node_id, start_pfn, end_pfn)
1020  * free_area_init_nodes(max_zone_pfns);
1021  *
1022  * If the architecture guarantees that there are no holes in the ranges
1023  * registered with add_active_range(), free_bootmem_active_regions()
1024  * will call free_bootmem_node() for each registered physical page range.
1025  * Similarly sparse_memory_present_with_active_regions() calls
1026  * memory_present() for each range when SPARSEMEM is enabled.
1027  *
1028  * See mm/page_alloc.c for more information on each function exposed by
1029  * CONFIG_ARCH_POPULATES_NODE_MAP
1030  */
1031 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1032 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1033 					unsigned long end_pfn);
1034 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1035 					unsigned long end_pfn);
1036 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1037 					unsigned long end_pfn);
1038 extern void remove_all_active_ranges(void);
1039 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1040 						unsigned long end_pfn);
1041 extern void get_pfn_range_for_nid(unsigned int nid,
1042 			unsigned long *start_pfn, unsigned long *end_pfn);
1043 extern unsigned long find_min_pfn_with_active_regions(void);
1044 extern unsigned long find_max_pfn_with_active_regions(void);
1045 extern void free_bootmem_with_active_regions(int nid,
1046 						unsigned long max_low_pfn);
1047 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1048 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1049 extern void sparse_memory_present_with_active_regions(int nid);
1050 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1051 extern int early_pfn_to_nid(unsigned long pfn);
1052 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1053 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1054 extern void set_dma_reserve(unsigned long new_dma_reserve);
1055 extern void memmap_init_zone(unsigned long, int, unsigned long,
1056 				unsigned long, enum memmap_context);
1057 extern void setup_per_zone_pages_min(void);
1058 extern void mem_init(void);
1059 extern void show_mem(void);
1060 extern void si_meminfo(struct sysinfo * val);
1061 extern void si_meminfo_node(struct sysinfo *val, int nid);
1062 extern int after_bootmem;
1063 
1064 #ifdef CONFIG_NUMA
1065 extern void setup_per_cpu_pageset(void);
1066 #else
1067 static inline void setup_per_cpu_pageset(void) {}
1068 #endif
1069 
1070 /* prio_tree.c */
1071 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1072 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1073 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1074 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1075 	struct prio_tree_iter *iter);
1076 
1077 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1078 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1079 		(vma = vma_prio_tree_next(vma, iter)); )
1080 
1081 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1082 					struct list_head *list)
1083 {
1084 	vma->shared.vm_set.parent = NULL;
1085 	list_add_tail(&vma->shared.vm_set.list, list);
1086 }
1087 
1088 /* mmap.c */
1089 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1090 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1091 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1092 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1093 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1094 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1095 	struct mempolicy *);
1096 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1097 extern int split_vma(struct mm_struct *,
1098 	struct vm_area_struct *, unsigned long addr, int new_below);
1099 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1100 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1101 	struct rb_node **, struct rb_node *);
1102 extern void unlink_file_vma(struct vm_area_struct *);
1103 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1104 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1105 extern void exit_mmap(struct mm_struct *);
1106 
1107 #ifdef CONFIG_PROC_FS
1108 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1109 extern void added_exe_file_vma(struct mm_struct *mm);
1110 extern void removed_exe_file_vma(struct mm_struct *mm);
1111 #else
1112 static inline void added_exe_file_vma(struct mm_struct *mm)
1113 {}
1114 
1115 static inline void removed_exe_file_vma(struct mm_struct *mm)
1116 {}
1117 #endif /* CONFIG_PROC_FS */
1118 
1119 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1120 extern int install_special_mapping(struct mm_struct *mm,
1121 				   unsigned long addr, unsigned long len,
1122 				   unsigned long flags, struct page **pages);
1123 
1124 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1125 
1126 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1127 	unsigned long len, unsigned long prot,
1128 	unsigned long flag, unsigned long pgoff);
1129 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1130 	unsigned long len, unsigned long flags,
1131 	unsigned int vm_flags, unsigned long pgoff,
1132 	int accountable);
1133 
1134 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1135 	unsigned long len, unsigned long prot,
1136 	unsigned long flag, unsigned long offset)
1137 {
1138 	unsigned long ret = -EINVAL;
1139 	if ((offset + PAGE_ALIGN(len)) < offset)
1140 		goto out;
1141 	if (!(offset & ~PAGE_MASK))
1142 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1143 out:
1144 	return ret;
1145 }
1146 
1147 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1148 
1149 extern unsigned long do_brk(unsigned long, unsigned long);
1150 
1151 /* filemap.c */
1152 extern unsigned long page_unuse(struct page *);
1153 extern void truncate_inode_pages(struct address_space *, loff_t);
1154 extern void truncate_inode_pages_range(struct address_space *,
1155 				       loff_t lstart, loff_t lend);
1156 
1157 /* generic vm_area_ops exported for stackable file systems */
1158 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1159 
1160 /* mm/page-writeback.c */
1161 int write_one_page(struct page *page, int wait);
1162 
1163 /* readahead.c */
1164 #define VM_MAX_READAHEAD	128	/* kbytes */
1165 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1166 
1167 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1168 			pgoff_t offset, unsigned long nr_to_read);
1169 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1170 			pgoff_t offset, unsigned long nr_to_read);
1171 
1172 void page_cache_sync_readahead(struct address_space *mapping,
1173 			       struct file_ra_state *ra,
1174 			       struct file *filp,
1175 			       pgoff_t offset,
1176 			       unsigned long size);
1177 
1178 void page_cache_async_readahead(struct address_space *mapping,
1179 				struct file_ra_state *ra,
1180 				struct file *filp,
1181 				struct page *pg,
1182 				pgoff_t offset,
1183 				unsigned long size);
1184 
1185 unsigned long max_sane_readahead(unsigned long nr);
1186 
1187 /* Do stack extension */
1188 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1189 #ifdef CONFIG_IA64
1190 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1191 #endif
1192 extern int expand_stack_downwards(struct vm_area_struct *vma,
1193 				  unsigned long address);
1194 
1195 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1196 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1197 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1198 					     struct vm_area_struct **pprev);
1199 
1200 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1201    NULL if none.  Assume start_addr < end_addr. */
1202 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1203 {
1204 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1205 
1206 	if (vma && end_addr <= vma->vm_start)
1207 		vma = NULL;
1208 	return vma;
1209 }
1210 
1211 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1212 {
1213 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1214 }
1215 
1216 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1217 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1218 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1219 			unsigned long pfn, unsigned long size, pgprot_t);
1220 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1221 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1222 			unsigned long pfn);
1223 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1224 			unsigned long pfn);
1225 
1226 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1227 			unsigned int foll_flags);
1228 #define FOLL_WRITE	0x01	/* check pte is writable */
1229 #define FOLL_TOUCH	0x02	/* mark page accessed */
1230 #define FOLL_GET	0x04	/* do get_page on page */
1231 #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */
1232 
1233 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1234 			void *data);
1235 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1236 			       unsigned long size, pte_fn_t fn, void *data);
1237 
1238 #ifdef CONFIG_PROC_FS
1239 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1240 #else
1241 static inline void vm_stat_account(struct mm_struct *mm,
1242 			unsigned long flags, struct file *file, long pages)
1243 {
1244 }
1245 #endif /* CONFIG_PROC_FS */
1246 
1247 #ifdef CONFIG_DEBUG_PAGEALLOC
1248 extern int debug_pagealloc_enabled;
1249 
1250 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1251 
1252 static inline void enable_debug_pagealloc(void)
1253 {
1254 	debug_pagealloc_enabled = 1;
1255 }
1256 #ifdef CONFIG_HIBERNATION
1257 extern bool kernel_page_present(struct page *page);
1258 #endif /* CONFIG_HIBERNATION */
1259 #else
1260 static inline void
1261 kernel_map_pages(struct page *page, int numpages, int enable) {}
1262 static inline void enable_debug_pagealloc(void)
1263 {
1264 }
1265 #ifdef CONFIG_HIBERNATION
1266 static inline bool kernel_page_present(struct page *page) { return true; }
1267 #endif /* CONFIG_HIBERNATION */
1268 #endif
1269 
1270 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1271 #ifdef	__HAVE_ARCH_GATE_AREA
1272 int in_gate_area_no_task(unsigned long addr);
1273 int in_gate_area(struct task_struct *task, unsigned long addr);
1274 #else
1275 int in_gate_area_no_task(unsigned long addr);
1276 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1277 #endif	/* __HAVE_ARCH_GATE_AREA */
1278 
1279 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1280 					void __user *, size_t *, loff_t *);
1281 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1282 			unsigned long lru_pages);
1283 
1284 #ifndef CONFIG_MMU
1285 #define randomize_va_space 0
1286 #else
1287 extern int randomize_va_space;
1288 #endif
1289 
1290 const char * arch_vma_name(struct vm_area_struct *vma);
1291 void print_vma_addr(char *prefix, unsigned long rip);
1292 
1293 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1294 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1295 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1296 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1297 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1298 void *vmemmap_alloc_block(unsigned long size, int node);
1299 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1300 int vmemmap_populate_basepages(struct page *start_page,
1301 						unsigned long pages, int node);
1302 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1303 void vmemmap_populate_print_last(void);
1304 
1305 #endif /* __KERNEL__ */
1306 #endif /* _LINUX_MM_H */
1307