1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 16 struct mempolicy; 17 struct anon_vma; 18 struct file_ra_state; 19 struct user_struct; 20 struct writeback_control; 21 22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23 extern unsigned long max_mapnr; 24 #endif 25 26 extern unsigned long num_physpages; 27 extern void * high_memory; 28 extern int page_cluster; 29 30 #ifdef CONFIG_SYSCTL 31 extern int sysctl_legacy_va_layout; 32 #else 33 #define sysctl_legacy_va_layout 0 34 #endif 35 36 extern unsigned long mmap_min_addr; 37 38 #include <asm/page.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44 /* to align the pointer to the (next) page boundary */ 45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 46 47 /* 48 * Linux kernel virtual memory manager primitives. 49 * The idea being to have a "virtual" mm in the same way 50 * we have a virtual fs - giving a cleaner interface to the 51 * mm details, and allowing different kinds of memory mappings 52 * (from shared memory to executable loading to arbitrary 53 * mmap() functions). 54 */ 55 56 extern struct kmem_cache *vm_area_cachep; 57 58 /* 59 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 60 * disabled, then there's a single shared list of VMAs maintained by the 61 * system, and mm's subscribe to these individually 62 */ 63 struct vm_list_struct { 64 struct vm_list_struct *next; 65 struct vm_area_struct *vma; 66 }; 67 68 #ifndef CONFIG_MMU 69 extern struct rb_root nommu_vma_tree; 70 extern struct rw_semaphore nommu_vma_sem; 71 72 extern unsigned int kobjsize(const void *objp); 73 #endif 74 75 /* 76 * vm_flags.. 77 */ 78 #define VM_READ 0x00000001 /* currently active flags */ 79 #define VM_WRITE 0x00000002 80 #define VM_EXEC 0x00000004 81 #define VM_SHARED 0x00000008 82 83 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 84 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 85 #define VM_MAYWRITE 0x00000020 86 #define VM_MAYEXEC 0x00000040 87 #define VM_MAYSHARE 0x00000080 88 89 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 90 #define VM_GROWSUP 0x00000200 91 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 92 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 93 94 #define VM_EXECUTABLE 0x00001000 95 #define VM_LOCKED 0x00002000 96 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 97 98 /* Used by sys_madvise() */ 99 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 100 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 101 102 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 103 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 104 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 105 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 106 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 107 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 108 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 109 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 110 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 111 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 112 113 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 114 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 115 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 116 117 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 118 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 119 #endif 120 121 #ifdef CONFIG_STACK_GROWSUP 122 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 123 #else 124 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 125 #endif 126 127 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 128 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 129 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 130 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 131 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 132 133 /* 134 * mapping from the currently active vm_flags protection bits (the 135 * low four bits) to a page protection mask.. 136 */ 137 extern pgprot_t protection_map[16]; 138 139 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 140 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 141 142 143 /* 144 * vm_fault is filled by the the pagefault handler and passed to the vma's 145 * ->fault function. The vma's ->fault is responsible for returning a bitmask 146 * of VM_FAULT_xxx flags that give details about how the fault was handled. 147 * 148 * pgoff should be used in favour of virtual_address, if possible. If pgoff 149 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 150 * mapping support. 151 */ 152 struct vm_fault { 153 unsigned int flags; /* FAULT_FLAG_xxx flags */ 154 pgoff_t pgoff; /* Logical page offset based on vma */ 155 void __user *virtual_address; /* Faulting virtual address */ 156 157 struct page *page; /* ->fault handlers should return a 158 * page here, unless VM_FAULT_NOPAGE 159 * is set (which is also implied by 160 * VM_FAULT_ERROR). 161 */ 162 }; 163 164 /* 165 * These are the virtual MM functions - opening of an area, closing and 166 * unmapping it (needed to keep files on disk up-to-date etc), pointer 167 * to the functions called when a no-page or a wp-page exception occurs. 168 */ 169 struct vm_operations_struct { 170 void (*open)(struct vm_area_struct * area); 171 void (*close)(struct vm_area_struct * area); 172 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 173 174 /* notification that a previously read-only page is about to become 175 * writable, if an error is returned it will cause a SIGBUS */ 176 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 177 178 /* called by access_process_vm when get_user_pages() fails, typically 179 * for use by special VMAs that can switch between memory and hardware 180 */ 181 int (*access)(struct vm_area_struct *vma, unsigned long addr, 182 void *buf, int len, int write); 183 #ifdef CONFIG_NUMA 184 /* 185 * set_policy() op must add a reference to any non-NULL @new mempolicy 186 * to hold the policy upon return. Caller should pass NULL @new to 187 * remove a policy and fall back to surrounding context--i.e. do not 188 * install a MPOL_DEFAULT policy, nor the task or system default 189 * mempolicy. 190 */ 191 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 192 193 /* 194 * get_policy() op must add reference [mpol_get()] to any policy at 195 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 196 * in mm/mempolicy.c will do this automatically. 197 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 198 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 199 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 200 * must return NULL--i.e., do not "fallback" to task or system default 201 * policy. 202 */ 203 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 204 unsigned long addr); 205 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 206 const nodemask_t *to, unsigned long flags); 207 #endif 208 }; 209 210 struct mmu_gather; 211 struct inode; 212 213 #define page_private(page) ((page)->private) 214 #define set_page_private(page, v) ((page)->private = (v)) 215 216 /* 217 * FIXME: take this include out, include page-flags.h in 218 * files which need it (119 of them) 219 */ 220 #include <linux/page-flags.h> 221 222 #ifdef CONFIG_DEBUG_VM 223 #define VM_BUG_ON(cond) BUG_ON(cond) 224 #else 225 #define VM_BUG_ON(condition) do { } while(0) 226 #endif 227 228 /* 229 * Methods to modify the page usage count. 230 * 231 * What counts for a page usage: 232 * - cache mapping (page->mapping) 233 * - private data (page->private) 234 * - page mapped in a task's page tables, each mapping 235 * is counted separately 236 * 237 * Also, many kernel routines increase the page count before a critical 238 * routine so they can be sure the page doesn't go away from under them. 239 */ 240 241 /* 242 * Drop a ref, return true if the refcount fell to zero (the page has no users) 243 */ 244 static inline int put_page_testzero(struct page *page) 245 { 246 VM_BUG_ON(atomic_read(&page->_count) == 0); 247 return atomic_dec_and_test(&page->_count); 248 } 249 250 /* 251 * Try to grab a ref unless the page has a refcount of zero, return false if 252 * that is the case. 253 */ 254 static inline int get_page_unless_zero(struct page *page) 255 { 256 VM_BUG_ON(PageTail(page)); 257 return atomic_inc_not_zero(&page->_count); 258 } 259 260 /* Support for virtually mapped pages */ 261 struct page *vmalloc_to_page(const void *addr); 262 unsigned long vmalloc_to_pfn(const void *addr); 263 264 /* 265 * Determine if an address is within the vmalloc range 266 * 267 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 268 * is no special casing required. 269 */ 270 static inline int is_vmalloc_addr(const void *x) 271 { 272 #ifdef CONFIG_MMU 273 unsigned long addr = (unsigned long)x; 274 275 return addr >= VMALLOC_START && addr < VMALLOC_END; 276 #else 277 return 0; 278 #endif 279 } 280 281 static inline struct page *compound_head(struct page *page) 282 { 283 if (unlikely(PageTail(page))) 284 return page->first_page; 285 return page; 286 } 287 288 static inline int page_count(struct page *page) 289 { 290 return atomic_read(&compound_head(page)->_count); 291 } 292 293 static inline void get_page(struct page *page) 294 { 295 page = compound_head(page); 296 VM_BUG_ON(atomic_read(&page->_count) == 0); 297 atomic_inc(&page->_count); 298 } 299 300 static inline struct page *virt_to_head_page(const void *x) 301 { 302 struct page *page = virt_to_page(x); 303 return compound_head(page); 304 } 305 306 /* 307 * Setup the page count before being freed into the page allocator for 308 * the first time (boot or memory hotplug) 309 */ 310 static inline void init_page_count(struct page *page) 311 { 312 atomic_set(&page->_count, 1); 313 } 314 315 void put_page(struct page *page); 316 void put_pages_list(struct list_head *pages); 317 318 void split_page(struct page *page, unsigned int order); 319 320 /* 321 * Compound pages have a destructor function. Provide a 322 * prototype for that function and accessor functions. 323 * These are _only_ valid on the head of a PG_compound page. 324 */ 325 typedef void compound_page_dtor(struct page *); 326 327 static inline void set_compound_page_dtor(struct page *page, 328 compound_page_dtor *dtor) 329 { 330 page[1].lru.next = (void *)dtor; 331 } 332 333 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 334 { 335 return (compound_page_dtor *)page[1].lru.next; 336 } 337 338 static inline int compound_order(struct page *page) 339 { 340 if (!PageHead(page)) 341 return 0; 342 return (unsigned long)page[1].lru.prev; 343 } 344 345 static inline void set_compound_order(struct page *page, unsigned long order) 346 { 347 page[1].lru.prev = (void *)order; 348 } 349 350 /* 351 * Multiple processes may "see" the same page. E.g. for untouched 352 * mappings of /dev/null, all processes see the same page full of 353 * zeroes, and text pages of executables and shared libraries have 354 * only one copy in memory, at most, normally. 355 * 356 * For the non-reserved pages, page_count(page) denotes a reference count. 357 * page_count() == 0 means the page is free. page->lru is then used for 358 * freelist management in the buddy allocator. 359 * page_count() > 0 means the page has been allocated. 360 * 361 * Pages are allocated by the slab allocator in order to provide memory 362 * to kmalloc and kmem_cache_alloc. In this case, the management of the 363 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 364 * unless a particular usage is carefully commented. (the responsibility of 365 * freeing the kmalloc memory is the caller's, of course). 366 * 367 * A page may be used by anyone else who does a __get_free_page(). 368 * In this case, page_count still tracks the references, and should only 369 * be used through the normal accessor functions. The top bits of page->flags 370 * and page->virtual store page management information, but all other fields 371 * are unused and could be used privately, carefully. The management of this 372 * page is the responsibility of the one who allocated it, and those who have 373 * subsequently been given references to it. 374 * 375 * The other pages (we may call them "pagecache pages") are completely 376 * managed by the Linux memory manager: I/O, buffers, swapping etc. 377 * The following discussion applies only to them. 378 * 379 * A pagecache page contains an opaque `private' member, which belongs to the 380 * page's address_space. Usually, this is the address of a circular list of 381 * the page's disk buffers. PG_private must be set to tell the VM to call 382 * into the filesystem to release these pages. 383 * 384 * A page may belong to an inode's memory mapping. In this case, page->mapping 385 * is the pointer to the inode, and page->index is the file offset of the page, 386 * in units of PAGE_CACHE_SIZE. 387 * 388 * If pagecache pages are not associated with an inode, they are said to be 389 * anonymous pages. These may become associated with the swapcache, and in that 390 * case PG_swapcache is set, and page->private is an offset into the swapcache. 391 * 392 * In either case (swapcache or inode backed), the pagecache itself holds one 393 * reference to the page. Setting PG_private should also increment the 394 * refcount. The each user mapping also has a reference to the page. 395 * 396 * The pagecache pages are stored in a per-mapping radix tree, which is 397 * rooted at mapping->page_tree, and indexed by offset. 398 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 399 * lists, we instead now tag pages as dirty/writeback in the radix tree. 400 * 401 * All pagecache pages may be subject to I/O: 402 * - inode pages may need to be read from disk, 403 * - inode pages which have been modified and are MAP_SHARED may need 404 * to be written back to the inode on disk, 405 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 406 * modified may need to be swapped out to swap space and (later) to be read 407 * back into memory. 408 */ 409 410 /* 411 * The zone field is never updated after free_area_init_core() 412 * sets it, so none of the operations on it need to be atomic. 413 */ 414 415 416 /* 417 * page->flags layout: 418 * 419 * There are three possibilities for how page->flags get 420 * laid out. The first is for the normal case, without 421 * sparsemem. The second is for sparsemem when there is 422 * plenty of space for node and section. The last is when 423 * we have run out of space and have to fall back to an 424 * alternate (slower) way of determining the node. 425 * 426 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 427 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 428 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 429 */ 430 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 431 #define SECTIONS_WIDTH SECTIONS_SHIFT 432 #else 433 #define SECTIONS_WIDTH 0 434 #endif 435 436 #define ZONES_WIDTH ZONES_SHIFT 437 438 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 439 #define NODES_WIDTH NODES_SHIFT 440 #else 441 #ifdef CONFIG_SPARSEMEM_VMEMMAP 442 #error "Vmemmap: No space for nodes field in page flags" 443 #endif 444 #define NODES_WIDTH 0 445 #endif 446 447 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 448 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 449 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 450 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 451 452 /* 453 * We are going to use the flags for the page to node mapping if its in 454 * there. This includes the case where there is no node, so it is implicit. 455 */ 456 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 457 #define NODE_NOT_IN_PAGE_FLAGS 458 #endif 459 460 #ifndef PFN_SECTION_SHIFT 461 #define PFN_SECTION_SHIFT 0 462 #endif 463 464 /* 465 * Define the bit shifts to access each section. For non-existant 466 * sections we define the shift as 0; that plus a 0 mask ensures 467 * the compiler will optimise away reference to them. 468 */ 469 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 470 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 471 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 472 473 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 474 #ifdef NODE_NOT_IN_PAGEFLAGS 475 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 476 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 477 SECTIONS_PGOFF : ZONES_PGOFF) 478 #else 479 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 480 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 481 NODES_PGOFF : ZONES_PGOFF) 482 #endif 483 484 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 485 486 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 487 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 488 #endif 489 490 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 491 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 492 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 493 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 494 495 static inline enum zone_type page_zonenum(struct page *page) 496 { 497 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 498 } 499 500 /* 501 * The identification function is only used by the buddy allocator for 502 * determining if two pages could be buddies. We are not really 503 * identifying a zone since we could be using a the section number 504 * id if we have not node id available in page flags. 505 * We guarantee only that it will return the same value for two 506 * combinable pages in a zone. 507 */ 508 static inline int page_zone_id(struct page *page) 509 { 510 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 511 } 512 513 static inline int zone_to_nid(struct zone *zone) 514 { 515 #ifdef CONFIG_NUMA 516 return zone->node; 517 #else 518 return 0; 519 #endif 520 } 521 522 #ifdef NODE_NOT_IN_PAGE_FLAGS 523 extern int page_to_nid(struct page *page); 524 #else 525 static inline int page_to_nid(struct page *page) 526 { 527 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 528 } 529 #endif 530 531 static inline struct zone *page_zone(struct page *page) 532 { 533 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 534 } 535 536 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 537 static inline unsigned long page_to_section(struct page *page) 538 { 539 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 540 } 541 #endif 542 543 static inline void set_page_zone(struct page *page, enum zone_type zone) 544 { 545 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 546 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 547 } 548 549 static inline void set_page_node(struct page *page, unsigned long node) 550 { 551 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 552 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 553 } 554 555 static inline void set_page_section(struct page *page, unsigned long section) 556 { 557 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 558 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 559 } 560 561 static inline void set_page_links(struct page *page, enum zone_type zone, 562 unsigned long node, unsigned long pfn) 563 { 564 set_page_zone(page, zone); 565 set_page_node(page, node); 566 set_page_section(page, pfn_to_section_nr(pfn)); 567 } 568 569 /* 570 * If a hint addr is less than mmap_min_addr change hint to be as 571 * low as possible but still greater than mmap_min_addr 572 */ 573 static inline unsigned long round_hint_to_min(unsigned long hint) 574 { 575 #ifdef CONFIG_SECURITY 576 hint &= PAGE_MASK; 577 if (((void *)hint != NULL) && 578 (hint < mmap_min_addr)) 579 return PAGE_ALIGN(mmap_min_addr); 580 #endif 581 return hint; 582 } 583 584 /* 585 * Some inline functions in vmstat.h depend on page_zone() 586 */ 587 #include <linux/vmstat.h> 588 589 static __always_inline void *lowmem_page_address(struct page *page) 590 { 591 return __va(page_to_pfn(page) << PAGE_SHIFT); 592 } 593 594 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 595 #define HASHED_PAGE_VIRTUAL 596 #endif 597 598 #if defined(WANT_PAGE_VIRTUAL) 599 #define page_address(page) ((page)->virtual) 600 #define set_page_address(page, address) \ 601 do { \ 602 (page)->virtual = (address); \ 603 } while(0) 604 #define page_address_init() do { } while(0) 605 #endif 606 607 #if defined(HASHED_PAGE_VIRTUAL) 608 void *page_address(struct page *page); 609 void set_page_address(struct page *page, void *virtual); 610 void page_address_init(void); 611 #endif 612 613 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 614 #define page_address(page) lowmem_page_address(page) 615 #define set_page_address(page, address) do { } while(0) 616 #define page_address_init() do { } while(0) 617 #endif 618 619 /* 620 * On an anonymous page mapped into a user virtual memory area, 621 * page->mapping points to its anon_vma, not to a struct address_space; 622 * with the PAGE_MAPPING_ANON bit set to distinguish it. 623 * 624 * Please note that, confusingly, "page_mapping" refers to the inode 625 * address_space which maps the page from disk; whereas "page_mapped" 626 * refers to user virtual address space into which the page is mapped. 627 */ 628 #define PAGE_MAPPING_ANON 1 629 630 extern struct address_space swapper_space; 631 static inline struct address_space *page_mapping(struct page *page) 632 { 633 struct address_space *mapping = page->mapping; 634 635 VM_BUG_ON(PageSlab(page)); 636 #ifdef CONFIG_SWAP 637 if (unlikely(PageSwapCache(page))) 638 mapping = &swapper_space; 639 else 640 #endif 641 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 642 mapping = NULL; 643 return mapping; 644 } 645 646 static inline int PageAnon(struct page *page) 647 { 648 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 649 } 650 651 /* 652 * Return the pagecache index of the passed page. Regular pagecache pages 653 * use ->index whereas swapcache pages use ->private 654 */ 655 static inline pgoff_t page_index(struct page *page) 656 { 657 if (unlikely(PageSwapCache(page))) 658 return page_private(page); 659 return page->index; 660 } 661 662 /* 663 * The atomic page->_mapcount, like _count, starts from -1: 664 * so that transitions both from it and to it can be tracked, 665 * using atomic_inc_and_test and atomic_add_negative(-1). 666 */ 667 static inline void reset_page_mapcount(struct page *page) 668 { 669 atomic_set(&(page)->_mapcount, -1); 670 } 671 672 static inline int page_mapcount(struct page *page) 673 { 674 return atomic_read(&(page)->_mapcount) + 1; 675 } 676 677 /* 678 * Return true if this page is mapped into pagetables. 679 */ 680 static inline int page_mapped(struct page *page) 681 { 682 return atomic_read(&(page)->_mapcount) >= 0; 683 } 684 685 /* 686 * Different kinds of faults, as returned by handle_mm_fault(). 687 * Used to decide whether a process gets delivered SIGBUS or 688 * just gets major/minor fault counters bumped up. 689 */ 690 691 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 692 693 #define VM_FAULT_OOM 0x0001 694 #define VM_FAULT_SIGBUS 0x0002 695 #define VM_FAULT_MAJOR 0x0004 696 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 697 698 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 699 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 700 701 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 702 703 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 704 705 extern void show_free_areas(void); 706 707 #ifdef CONFIG_SHMEM 708 int shmem_lock(struct file *file, int lock, struct user_struct *user); 709 #else 710 static inline int shmem_lock(struct file *file, int lock, 711 struct user_struct *user) 712 { 713 return 0; 714 } 715 #endif 716 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 717 718 int shmem_zero_setup(struct vm_area_struct *); 719 720 #ifndef CONFIG_MMU 721 extern unsigned long shmem_get_unmapped_area(struct file *file, 722 unsigned long addr, 723 unsigned long len, 724 unsigned long pgoff, 725 unsigned long flags); 726 #endif 727 728 extern int can_do_mlock(void); 729 extern int user_shm_lock(size_t, struct user_struct *); 730 extern void user_shm_unlock(size_t, struct user_struct *); 731 732 /* 733 * Parameter block passed down to zap_pte_range in exceptional cases. 734 */ 735 struct zap_details { 736 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 737 struct address_space *check_mapping; /* Check page->mapping if set */ 738 pgoff_t first_index; /* Lowest page->index to unmap */ 739 pgoff_t last_index; /* Highest page->index to unmap */ 740 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 741 unsigned long truncate_count; /* Compare vm_truncate_count */ 742 }; 743 744 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 745 pte_t pte); 746 747 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 748 unsigned long size, struct zap_details *); 749 unsigned long unmap_vmas(struct mmu_gather **tlb, 750 struct vm_area_struct *start_vma, unsigned long start_addr, 751 unsigned long end_addr, unsigned long *nr_accounted, 752 struct zap_details *); 753 754 /** 755 * mm_walk - callbacks for walk_page_range 756 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 757 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 758 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 759 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 760 * @pte_hole: if set, called for each hole at all levels 761 * 762 * (see walk_page_range for more details) 763 */ 764 struct mm_walk { 765 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 766 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 767 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 768 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 769 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 770 struct mm_struct *mm; 771 void *private; 772 }; 773 774 int walk_page_range(unsigned long addr, unsigned long end, 775 struct mm_walk *walk); 776 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 777 unsigned long end, unsigned long floor, unsigned long ceiling); 778 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 779 struct vm_area_struct *vma); 780 void unmap_mapping_range(struct address_space *mapping, 781 loff_t const holebegin, loff_t const holelen, int even_cows); 782 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 783 void *buf, int len, int write); 784 785 static inline void unmap_shared_mapping_range(struct address_space *mapping, 786 loff_t const holebegin, loff_t const holelen) 787 { 788 unmap_mapping_range(mapping, holebegin, holelen, 0); 789 } 790 791 extern int vmtruncate(struct inode * inode, loff_t offset); 792 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 793 794 #ifdef CONFIG_MMU 795 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 796 unsigned long address, int write_access); 797 #else 798 static inline int handle_mm_fault(struct mm_struct *mm, 799 struct vm_area_struct *vma, unsigned long address, 800 int write_access) 801 { 802 /* should never happen if there's no MMU */ 803 BUG(); 804 return VM_FAULT_SIGBUS; 805 } 806 #endif 807 808 extern int make_pages_present(unsigned long addr, unsigned long end); 809 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 810 811 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 812 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 813 814 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 815 extern void do_invalidatepage(struct page *page, unsigned long offset); 816 817 int __set_page_dirty_nobuffers(struct page *page); 818 int __set_page_dirty_no_writeback(struct page *page); 819 int redirty_page_for_writepage(struct writeback_control *wbc, 820 struct page *page); 821 int set_page_dirty(struct page *page); 822 int set_page_dirty_lock(struct page *page); 823 int clear_page_dirty_for_io(struct page *page); 824 825 extern unsigned long move_page_tables(struct vm_area_struct *vma, 826 unsigned long old_addr, struct vm_area_struct *new_vma, 827 unsigned long new_addr, unsigned long len); 828 extern unsigned long do_mremap(unsigned long addr, 829 unsigned long old_len, unsigned long new_len, 830 unsigned long flags, unsigned long new_addr); 831 extern int mprotect_fixup(struct vm_area_struct *vma, 832 struct vm_area_struct **pprev, unsigned long start, 833 unsigned long end, unsigned long newflags); 834 835 #ifdef CONFIG_HAVE_GET_USER_PAGES_FAST 836 /* 837 * get_user_pages_fast provides equivalent functionality to get_user_pages, 838 * operating on current and current->mm (force=0 and doesn't return any vmas). 839 * 840 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions 841 * can be made about locking. get_user_pages_fast is to be implemented in a 842 * way that is advantageous (vs get_user_pages()) when the user memory area is 843 * already faulted in and present in ptes. However if the pages have to be 844 * faulted in, it may turn out to be slightly slower). 845 */ 846 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 847 struct page **pages); 848 849 #else 850 /* 851 * Should probably be moved to asm-generic, and architectures can include it if 852 * they don't implement their own get_user_pages_fast. 853 */ 854 #define get_user_pages_fast(start, nr_pages, write, pages) \ 855 ({ \ 856 struct mm_struct *mm = current->mm; \ 857 int ret; \ 858 \ 859 down_read(&mm->mmap_sem); \ 860 ret = get_user_pages(current, mm, start, nr_pages, \ 861 write, 0, pages, NULL); \ 862 up_read(&mm->mmap_sem); \ 863 \ 864 ret; \ 865 }) 866 #endif 867 868 /* 869 * A callback you can register to apply pressure to ageable caches. 870 * 871 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 872 * look through the least-recently-used 'nr_to_scan' entries and 873 * attempt to free them up. It should return the number of objects 874 * which remain in the cache. If it returns -1, it means it cannot do 875 * any scanning at this time (eg. there is a risk of deadlock). 876 * 877 * The 'gfpmask' refers to the allocation we are currently trying to 878 * fulfil. 879 * 880 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 881 * querying the cache size, so a fastpath for that case is appropriate. 882 */ 883 struct shrinker { 884 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 885 int seeks; /* seeks to recreate an obj */ 886 887 /* These are for internal use */ 888 struct list_head list; 889 long nr; /* objs pending delete */ 890 }; 891 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 892 extern void register_shrinker(struct shrinker *); 893 extern void unregister_shrinker(struct shrinker *); 894 895 int vma_wants_writenotify(struct vm_area_struct *vma); 896 897 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 898 899 #ifdef __PAGETABLE_PUD_FOLDED 900 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 901 unsigned long address) 902 { 903 return 0; 904 } 905 #else 906 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 907 #endif 908 909 #ifdef __PAGETABLE_PMD_FOLDED 910 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 911 unsigned long address) 912 { 913 return 0; 914 } 915 #else 916 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 917 #endif 918 919 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 920 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 921 922 /* 923 * The following ifdef needed to get the 4level-fixup.h header to work. 924 * Remove it when 4level-fixup.h has been removed. 925 */ 926 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 927 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 928 { 929 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 930 NULL: pud_offset(pgd, address); 931 } 932 933 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 934 { 935 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 936 NULL: pmd_offset(pud, address); 937 } 938 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 939 940 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 941 /* 942 * We tuck a spinlock to guard each pagetable page into its struct page, 943 * at page->private, with BUILD_BUG_ON to make sure that this will not 944 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 945 * When freeing, reset page->mapping so free_pages_check won't complain. 946 */ 947 #define __pte_lockptr(page) &((page)->ptl) 948 #define pte_lock_init(_page) do { \ 949 spin_lock_init(__pte_lockptr(_page)); \ 950 } while (0) 951 #define pte_lock_deinit(page) ((page)->mapping = NULL) 952 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 953 #else 954 /* 955 * We use mm->page_table_lock to guard all pagetable pages of the mm. 956 */ 957 #define pte_lock_init(page) do {} while (0) 958 #define pte_lock_deinit(page) do {} while (0) 959 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 960 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 961 962 static inline void pgtable_page_ctor(struct page *page) 963 { 964 pte_lock_init(page); 965 inc_zone_page_state(page, NR_PAGETABLE); 966 } 967 968 static inline void pgtable_page_dtor(struct page *page) 969 { 970 pte_lock_deinit(page); 971 dec_zone_page_state(page, NR_PAGETABLE); 972 } 973 974 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 975 ({ \ 976 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 977 pte_t *__pte = pte_offset_map(pmd, address); \ 978 *(ptlp) = __ptl; \ 979 spin_lock(__ptl); \ 980 __pte; \ 981 }) 982 983 #define pte_unmap_unlock(pte, ptl) do { \ 984 spin_unlock(ptl); \ 985 pte_unmap(pte); \ 986 } while (0) 987 988 #define pte_alloc_map(mm, pmd, address) \ 989 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 990 NULL: pte_offset_map(pmd, address)) 991 992 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 993 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 994 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 995 996 #define pte_alloc_kernel(pmd, address) \ 997 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 998 NULL: pte_offset_kernel(pmd, address)) 999 1000 extern void free_area_init(unsigned long * zones_size); 1001 extern void free_area_init_node(int nid, unsigned long * zones_size, 1002 unsigned long zone_start_pfn, unsigned long *zholes_size); 1003 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1004 /* 1005 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1006 * zones, allocate the backing mem_map and account for memory holes in a more 1007 * architecture independent manner. This is a substitute for creating the 1008 * zone_sizes[] and zholes_size[] arrays and passing them to 1009 * free_area_init_node() 1010 * 1011 * An architecture is expected to register range of page frames backed by 1012 * physical memory with add_active_range() before calling 1013 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1014 * usage, an architecture is expected to do something like 1015 * 1016 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1017 * max_highmem_pfn}; 1018 * for_each_valid_physical_page_range() 1019 * add_active_range(node_id, start_pfn, end_pfn) 1020 * free_area_init_nodes(max_zone_pfns); 1021 * 1022 * If the architecture guarantees that there are no holes in the ranges 1023 * registered with add_active_range(), free_bootmem_active_regions() 1024 * will call free_bootmem_node() for each registered physical page range. 1025 * Similarly sparse_memory_present_with_active_regions() calls 1026 * memory_present() for each range when SPARSEMEM is enabled. 1027 * 1028 * See mm/page_alloc.c for more information on each function exposed by 1029 * CONFIG_ARCH_POPULATES_NODE_MAP 1030 */ 1031 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1032 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1033 unsigned long end_pfn); 1034 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1035 unsigned long end_pfn); 1036 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 1037 unsigned long end_pfn); 1038 extern void remove_all_active_ranges(void); 1039 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1040 unsigned long end_pfn); 1041 extern void get_pfn_range_for_nid(unsigned int nid, 1042 unsigned long *start_pfn, unsigned long *end_pfn); 1043 extern unsigned long find_min_pfn_with_active_regions(void); 1044 extern unsigned long find_max_pfn_with_active_regions(void); 1045 extern void free_bootmem_with_active_regions(int nid, 1046 unsigned long max_low_pfn); 1047 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1048 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1049 extern void sparse_memory_present_with_active_regions(int nid); 1050 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1051 extern int early_pfn_to_nid(unsigned long pfn); 1052 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1053 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1054 extern void set_dma_reserve(unsigned long new_dma_reserve); 1055 extern void memmap_init_zone(unsigned long, int, unsigned long, 1056 unsigned long, enum memmap_context); 1057 extern void setup_per_zone_pages_min(void); 1058 extern void mem_init(void); 1059 extern void show_mem(void); 1060 extern void si_meminfo(struct sysinfo * val); 1061 extern void si_meminfo_node(struct sysinfo *val, int nid); 1062 extern int after_bootmem; 1063 1064 #ifdef CONFIG_NUMA 1065 extern void setup_per_cpu_pageset(void); 1066 #else 1067 static inline void setup_per_cpu_pageset(void) {} 1068 #endif 1069 1070 /* prio_tree.c */ 1071 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1072 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1073 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1074 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1075 struct prio_tree_iter *iter); 1076 1077 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1078 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1079 (vma = vma_prio_tree_next(vma, iter)); ) 1080 1081 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1082 struct list_head *list) 1083 { 1084 vma->shared.vm_set.parent = NULL; 1085 list_add_tail(&vma->shared.vm_set.list, list); 1086 } 1087 1088 /* mmap.c */ 1089 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1090 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1091 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1092 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1093 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1094 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1095 struct mempolicy *); 1096 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1097 extern int split_vma(struct mm_struct *, 1098 struct vm_area_struct *, unsigned long addr, int new_below); 1099 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1100 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1101 struct rb_node **, struct rb_node *); 1102 extern void unlink_file_vma(struct vm_area_struct *); 1103 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1104 unsigned long addr, unsigned long len, pgoff_t pgoff); 1105 extern void exit_mmap(struct mm_struct *); 1106 1107 #ifdef CONFIG_PROC_FS 1108 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1109 extern void added_exe_file_vma(struct mm_struct *mm); 1110 extern void removed_exe_file_vma(struct mm_struct *mm); 1111 #else 1112 static inline void added_exe_file_vma(struct mm_struct *mm) 1113 {} 1114 1115 static inline void removed_exe_file_vma(struct mm_struct *mm) 1116 {} 1117 #endif /* CONFIG_PROC_FS */ 1118 1119 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1120 extern int install_special_mapping(struct mm_struct *mm, 1121 unsigned long addr, unsigned long len, 1122 unsigned long flags, struct page **pages); 1123 1124 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1125 1126 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1127 unsigned long len, unsigned long prot, 1128 unsigned long flag, unsigned long pgoff); 1129 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1130 unsigned long len, unsigned long flags, 1131 unsigned int vm_flags, unsigned long pgoff, 1132 int accountable); 1133 1134 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1135 unsigned long len, unsigned long prot, 1136 unsigned long flag, unsigned long offset) 1137 { 1138 unsigned long ret = -EINVAL; 1139 if ((offset + PAGE_ALIGN(len)) < offset) 1140 goto out; 1141 if (!(offset & ~PAGE_MASK)) 1142 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1143 out: 1144 return ret; 1145 } 1146 1147 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1148 1149 extern unsigned long do_brk(unsigned long, unsigned long); 1150 1151 /* filemap.c */ 1152 extern unsigned long page_unuse(struct page *); 1153 extern void truncate_inode_pages(struct address_space *, loff_t); 1154 extern void truncate_inode_pages_range(struct address_space *, 1155 loff_t lstart, loff_t lend); 1156 1157 /* generic vm_area_ops exported for stackable file systems */ 1158 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1159 1160 /* mm/page-writeback.c */ 1161 int write_one_page(struct page *page, int wait); 1162 1163 /* readahead.c */ 1164 #define VM_MAX_READAHEAD 128 /* kbytes */ 1165 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1166 1167 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1168 pgoff_t offset, unsigned long nr_to_read); 1169 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1170 pgoff_t offset, unsigned long nr_to_read); 1171 1172 void page_cache_sync_readahead(struct address_space *mapping, 1173 struct file_ra_state *ra, 1174 struct file *filp, 1175 pgoff_t offset, 1176 unsigned long size); 1177 1178 void page_cache_async_readahead(struct address_space *mapping, 1179 struct file_ra_state *ra, 1180 struct file *filp, 1181 struct page *pg, 1182 pgoff_t offset, 1183 unsigned long size); 1184 1185 unsigned long max_sane_readahead(unsigned long nr); 1186 1187 /* Do stack extension */ 1188 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1189 #ifdef CONFIG_IA64 1190 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1191 #endif 1192 extern int expand_stack_downwards(struct vm_area_struct *vma, 1193 unsigned long address); 1194 1195 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1196 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1197 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1198 struct vm_area_struct **pprev); 1199 1200 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1201 NULL if none. Assume start_addr < end_addr. */ 1202 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1203 { 1204 struct vm_area_struct * vma = find_vma(mm,start_addr); 1205 1206 if (vma && end_addr <= vma->vm_start) 1207 vma = NULL; 1208 return vma; 1209 } 1210 1211 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1212 { 1213 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1214 } 1215 1216 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1217 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1218 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1219 unsigned long pfn, unsigned long size, pgprot_t); 1220 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1221 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1222 unsigned long pfn); 1223 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1224 unsigned long pfn); 1225 1226 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1227 unsigned int foll_flags); 1228 #define FOLL_WRITE 0x01 /* check pte is writable */ 1229 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1230 #define FOLL_GET 0x04 /* do get_page on page */ 1231 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1232 1233 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1234 void *data); 1235 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1236 unsigned long size, pte_fn_t fn, void *data); 1237 1238 #ifdef CONFIG_PROC_FS 1239 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1240 #else 1241 static inline void vm_stat_account(struct mm_struct *mm, 1242 unsigned long flags, struct file *file, long pages) 1243 { 1244 } 1245 #endif /* CONFIG_PROC_FS */ 1246 1247 #ifdef CONFIG_DEBUG_PAGEALLOC 1248 extern int debug_pagealloc_enabled; 1249 1250 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1251 1252 static inline void enable_debug_pagealloc(void) 1253 { 1254 debug_pagealloc_enabled = 1; 1255 } 1256 #ifdef CONFIG_HIBERNATION 1257 extern bool kernel_page_present(struct page *page); 1258 #endif /* CONFIG_HIBERNATION */ 1259 #else 1260 static inline void 1261 kernel_map_pages(struct page *page, int numpages, int enable) {} 1262 static inline void enable_debug_pagealloc(void) 1263 { 1264 } 1265 #ifdef CONFIG_HIBERNATION 1266 static inline bool kernel_page_present(struct page *page) { return true; } 1267 #endif /* CONFIG_HIBERNATION */ 1268 #endif 1269 1270 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1271 #ifdef __HAVE_ARCH_GATE_AREA 1272 int in_gate_area_no_task(unsigned long addr); 1273 int in_gate_area(struct task_struct *task, unsigned long addr); 1274 #else 1275 int in_gate_area_no_task(unsigned long addr); 1276 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1277 #endif /* __HAVE_ARCH_GATE_AREA */ 1278 1279 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1280 void __user *, size_t *, loff_t *); 1281 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1282 unsigned long lru_pages); 1283 1284 #ifndef CONFIG_MMU 1285 #define randomize_va_space 0 1286 #else 1287 extern int randomize_va_space; 1288 #endif 1289 1290 const char * arch_vma_name(struct vm_area_struct *vma); 1291 void print_vma_addr(char *prefix, unsigned long rip); 1292 1293 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1294 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1295 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1296 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1297 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1298 void *vmemmap_alloc_block(unsigned long size, int node); 1299 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1300 int vmemmap_populate_basepages(struct page *start_page, 1301 unsigned long pages, int node); 1302 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1303 void vmemmap_populate_print_last(void); 1304 1305 #endif /* __KERNEL__ */ 1306 #endif /* _LINUX_MM_H */ 1307