1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331 #ifdef CONFIG_ARCH_HAS_PKEYS 332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337 #ifdef CONFIG_PPC 338 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339 #else 340 # define VM_PKEY_BIT4 0 341 #endif 342 #endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344 #ifdef CONFIG_X86_USER_SHADOW_STACK 345 /* 346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 347 * support core mm. 348 * 349 * These VMAs will get a single end guard page. This helps userspace protect 350 * itself from attacks. A single page is enough for current shadow stack archs 351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 352 * for more details on the guard size. 353 */ 354 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 355 #else 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* 395 * This flag is used to connect VFIO to arch specific KVM code. It 396 * indicates that the memory under this VMA is safe for use with any 397 * non-cachable memory type inside KVM. Some VFIO devices, on some 398 * platforms, are thought to be unsafe and can cause machine crashes 399 * if KVM does not lock down the memory type. 400 */ 401 #ifdef CONFIG_64BIT 402 #define VM_ALLOW_ANY_UNCACHED_BIT 39 403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 404 #else 405 #define VM_ALLOW_ANY_UNCACHED VM_NONE 406 #endif 407 408 /* Bits set in the VMA until the stack is in its final location */ 409 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 410 411 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 412 413 /* Common data flag combinations */ 414 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 415 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 416 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 417 VM_MAYWRITE | VM_MAYEXEC) 418 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 419 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 420 421 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 422 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 423 #endif 424 425 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 426 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 427 #endif 428 429 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 430 431 #ifdef CONFIG_STACK_GROWSUP 432 #define VM_STACK VM_GROWSUP 433 #define VM_STACK_EARLY VM_GROWSDOWN 434 #else 435 #define VM_STACK VM_GROWSDOWN 436 #define VM_STACK_EARLY 0 437 #endif 438 439 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 440 441 /* VMA basic access permission flags */ 442 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 443 444 445 /* 446 * Special vmas that are non-mergable, non-mlock()able. 447 */ 448 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 449 450 /* This mask prevents VMA from being scanned with khugepaged */ 451 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 452 453 /* This mask defines which mm->def_flags a process can inherit its parent */ 454 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 455 456 /* This mask represents all the VMA flag bits used by mlock */ 457 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 458 459 /* Arch-specific flags to clear when updating VM flags on protection change */ 460 #ifndef VM_ARCH_CLEAR 461 # define VM_ARCH_CLEAR VM_NONE 462 #endif 463 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 464 465 /* 466 * mapping from the currently active vm_flags protection bits (the 467 * low four bits) to a page protection mask.. 468 */ 469 470 /* 471 * The default fault flags that should be used by most of the 472 * arch-specific page fault handlers. 473 */ 474 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 475 FAULT_FLAG_KILLABLE | \ 476 FAULT_FLAG_INTERRUPTIBLE) 477 478 /** 479 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 480 * @flags: Fault flags. 481 * 482 * This is mostly used for places where we want to try to avoid taking 483 * the mmap_lock for too long a time when waiting for another condition 484 * to change, in which case we can try to be polite to release the 485 * mmap_lock in the first round to avoid potential starvation of other 486 * processes that would also want the mmap_lock. 487 * 488 * Return: true if the page fault allows retry and this is the first 489 * attempt of the fault handling; false otherwise. 490 */ 491 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 492 { 493 return (flags & FAULT_FLAG_ALLOW_RETRY) && 494 (!(flags & FAULT_FLAG_TRIED)); 495 } 496 497 #define FAULT_FLAG_TRACE \ 498 { FAULT_FLAG_WRITE, "WRITE" }, \ 499 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 500 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 501 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 502 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 503 { FAULT_FLAG_TRIED, "TRIED" }, \ 504 { FAULT_FLAG_USER, "USER" }, \ 505 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 506 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 507 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 508 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 509 510 /* 511 * vm_fault is filled by the pagefault handler and passed to the vma's 512 * ->fault function. The vma's ->fault is responsible for returning a bitmask 513 * of VM_FAULT_xxx flags that give details about how the fault was handled. 514 * 515 * MM layer fills up gfp_mask for page allocations but fault handler might 516 * alter it if its implementation requires a different allocation context. 517 * 518 * pgoff should be used in favour of virtual_address, if possible. 519 */ 520 struct vm_fault { 521 const struct { 522 struct vm_area_struct *vma; /* Target VMA */ 523 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 524 pgoff_t pgoff; /* Logical page offset based on vma */ 525 unsigned long address; /* Faulting virtual address - masked */ 526 unsigned long real_address; /* Faulting virtual address - unmasked */ 527 }; 528 enum fault_flag flags; /* FAULT_FLAG_xxx flags 529 * XXX: should really be 'const' */ 530 pmd_t *pmd; /* Pointer to pmd entry matching 531 * the 'address' */ 532 pud_t *pud; /* Pointer to pud entry matching 533 * the 'address' 534 */ 535 union { 536 pte_t orig_pte; /* Value of PTE at the time of fault */ 537 pmd_t orig_pmd; /* Value of PMD at the time of fault, 538 * used by PMD fault only. 539 */ 540 }; 541 542 struct page *cow_page; /* Page handler may use for COW fault */ 543 struct page *page; /* ->fault handlers should return a 544 * page here, unless VM_FAULT_NOPAGE 545 * is set (which is also implied by 546 * VM_FAULT_ERROR). 547 */ 548 /* These three entries are valid only while holding ptl lock */ 549 pte_t *pte; /* Pointer to pte entry matching 550 * the 'address'. NULL if the page 551 * table hasn't been allocated. 552 */ 553 spinlock_t *ptl; /* Page table lock. 554 * Protects pte page table if 'pte' 555 * is not NULL, otherwise pmd. 556 */ 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 558 * vm_ops->map_pages() sets up a page 559 * table from atomic context. 560 * do_fault_around() pre-allocates 561 * page table to avoid allocation from 562 * atomic context. 563 */ 564 }; 565 566 /* 567 * These are the virtual MM functions - opening of an area, closing and 568 * unmapping it (needed to keep files on disk up-to-date etc), pointer 569 * to the functions called when a no-page or a wp-page exception occurs. 570 */ 571 struct vm_operations_struct { 572 void (*open)(struct vm_area_struct * area); 573 /** 574 * @close: Called when the VMA is being removed from the MM. 575 * Context: User context. May sleep. Caller holds mmap_lock. 576 */ 577 void (*close)(struct vm_area_struct * area); 578 /* Called any time before splitting to check if it's allowed */ 579 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 580 int (*mremap)(struct vm_area_struct *area); 581 /* 582 * Called by mprotect() to make driver-specific permission 583 * checks before mprotect() is finalised. The VMA must not 584 * be modified. Returns 0 if mprotect() can proceed. 585 */ 586 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 587 unsigned long end, unsigned long newflags); 588 vm_fault_t (*fault)(struct vm_fault *vmf); 589 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 590 vm_fault_t (*map_pages)(struct vm_fault *vmf, 591 pgoff_t start_pgoff, pgoff_t end_pgoff); 592 unsigned long (*pagesize)(struct vm_area_struct * area); 593 594 /* notification that a previously read-only page is about to become 595 * writable, if an error is returned it will cause a SIGBUS */ 596 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 597 598 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 599 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 600 601 /* called by access_process_vm when get_user_pages() fails, typically 602 * for use by special VMAs. See also generic_access_phys() for a generic 603 * implementation useful for any iomem mapping. 604 */ 605 int (*access)(struct vm_area_struct *vma, unsigned long addr, 606 void *buf, int len, int write); 607 608 /* Called by the /proc/PID/maps code to ask the vma whether it 609 * has a special name. Returning non-NULL will also cause this 610 * vma to be dumped unconditionally. */ 611 const char *(*name)(struct vm_area_struct *vma); 612 613 #ifdef CONFIG_NUMA 614 /* 615 * set_policy() op must add a reference to any non-NULL @new mempolicy 616 * to hold the policy upon return. Caller should pass NULL @new to 617 * remove a policy and fall back to surrounding context--i.e. do not 618 * install a MPOL_DEFAULT policy, nor the task or system default 619 * mempolicy. 620 */ 621 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 622 623 /* 624 * get_policy() op must add reference [mpol_get()] to any policy at 625 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 626 * in mm/mempolicy.c will do this automatically. 627 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 628 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 629 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 630 * must return NULL--i.e., do not "fallback" to task or system default 631 * policy. 632 */ 633 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 634 unsigned long addr, pgoff_t *ilx); 635 #endif 636 /* 637 * Called by vm_normal_page() for special PTEs to find the 638 * page for @addr. This is useful if the default behavior 639 * (using pte_page()) would not find the correct page. 640 */ 641 struct page *(*find_special_page)(struct vm_area_struct *vma, 642 unsigned long addr); 643 }; 644 645 #ifdef CONFIG_NUMA_BALANCING 646 static inline void vma_numab_state_init(struct vm_area_struct *vma) 647 { 648 vma->numab_state = NULL; 649 } 650 static inline void vma_numab_state_free(struct vm_area_struct *vma) 651 { 652 kfree(vma->numab_state); 653 } 654 #else 655 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 656 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 657 #endif /* CONFIG_NUMA_BALANCING */ 658 659 #ifdef CONFIG_PER_VMA_LOCK 660 /* 661 * Try to read-lock a vma. The function is allowed to occasionally yield false 662 * locked result to avoid performance overhead, in which case we fall back to 663 * using mmap_lock. The function should never yield false unlocked result. 664 */ 665 static inline bool vma_start_read(struct vm_area_struct *vma) 666 { 667 /* 668 * Check before locking. A race might cause false locked result. 669 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 670 * ACQUIRE semantics, because this is just a lockless check whose result 671 * we don't rely on for anything - the mm_lock_seq read against which we 672 * need ordering is below. 673 */ 674 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 675 return false; 676 677 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 678 return false; 679 680 /* 681 * Overflow might produce false locked result. 682 * False unlocked result is impossible because we modify and check 683 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 684 * modification invalidates all existing locks. 685 * 686 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 687 * racing with vma_end_write_all(), we only start reading from the VMA 688 * after it has been unlocked. 689 * This pairs with RELEASE semantics in vma_end_write_all(). 690 */ 691 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 692 up_read(&vma->vm_lock->lock); 693 return false; 694 } 695 return true; 696 } 697 698 static inline void vma_end_read(struct vm_area_struct *vma) 699 { 700 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 701 up_read(&vma->vm_lock->lock); 702 rcu_read_unlock(); 703 } 704 705 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 706 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 707 { 708 mmap_assert_write_locked(vma->vm_mm); 709 710 /* 711 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 712 * mm->mm_lock_seq can't be concurrently modified. 713 */ 714 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 715 return (vma->vm_lock_seq == *mm_lock_seq); 716 } 717 718 /* 719 * Begin writing to a VMA. 720 * Exclude concurrent readers under the per-VMA lock until the currently 721 * write-locked mmap_lock is dropped or downgraded. 722 */ 723 static inline void vma_start_write(struct vm_area_struct *vma) 724 { 725 int mm_lock_seq; 726 727 if (__is_vma_write_locked(vma, &mm_lock_seq)) 728 return; 729 730 down_write(&vma->vm_lock->lock); 731 /* 732 * We should use WRITE_ONCE() here because we can have concurrent reads 733 * from the early lockless pessimistic check in vma_start_read(). 734 * We don't really care about the correctness of that early check, but 735 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 736 */ 737 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 738 up_write(&vma->vm_lock->lock); 739 } 740 741 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 742 { 743 int mm_lock_seq; 744 745 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 746 } 747 748 static inline void vma_assert_locked(struct vm_area_struct *vma) 749 { 750 if (!rwsem_is_locked(&vma->vm_lock->lock)) 751 vma_assert_write_locked(vma); 752 } 753 754 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 755 { 756 /* When detaching vma should be write-locked */ 757 if (detached) 758 vma_assert_write_locked(vma); 759 vma->detached = detached; 760 } 761 762 static inline void release_fault_lock(struct vm_fault *vmf) 763 { 764 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 765 vma_end_read(vmf->vma); 766 else 767 mmap_read_unlock(vmf->vma->vm_mm); 768 } 769 770 static inline void assert_fault_locked(struct vm_fault *vmf) 771 { 772 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 773 vma_assert_locked(vmf->vma); 774 else 775 mmap_assert_locked(vmf->vma->vm_mm); 776 } 777 778 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 779 unsigned long address); 780 781 #else /* CONFIG_PER_VMA_LOCK */ 782 783 static inline bool vma_start_read(struct vm_area_struct *vma) 784 { return false; } 785 static inline void vma_end_read(struct vm_area_struct *vma) {} 786 static inline void vma_start_write(struct vm_area_struct *vma) {} 787 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 788 { mmap_assert_write_locked(vma->vm_mm); } 789 static inline void vma_mark_detached(struct vm_area_struct *vma, 790 bool detached) {} 791 792 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 793 unsigned long address) 794 { 795 return NULL; 796 } 797 798 static inline void release_fault_lock(struct vm_fault *vmf) 799 { 800 mmap_read_unlock(vmf->vma->vm_mm); 801 } 802 803 static inline void assert_fault_locked(struct vm_fault *vmf) 804 { 805 mmap_assert_locked(vmf->vma->vm_mm); 806 } 807 808 #endif /* CONFIG_PER_VMA_LOCK */ 809 810 extern const struct vm_operations_struct vma_dummy_vm_ops; 811 812 /* 813 * WARNING: vma_init does not initialize vma->vm_lock. 814 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 815 */ 816 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 817 { 818 memset(vma, 0, sizeof(*vma)); 819 vma->vm_mm = mm; 820 vma->vm_ops = &vma_dummy_vm_ops; 821 INIT_LIST_HEAD(&vma->anon_vma_chain); 822 vma_mark_detached(vma, false); 823 vma_numab_state_init(vma); 824 } 825 826 /* Use when VMA is not part of the VMA tree and needs no locking */ 827 static inline void vm_flags_init(struct vm_area_struct *vma, 828 vm_flags_t flags) 829 { 830 ACCESS_PRIVATE(vma, __vm_flags) = flags; 831 } 832 833 /* 834 * Use when VMA is part of the VMA tree and modifications need coordination 835 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 836 * it should be locked explicitly beforehand. 837 */ 838 static inline void vm_flags_reset(struct vm_area_struct *vma, 839 vm_flags_t flags) 840 { 841 vma_assert_write_locked(vma); 842 vm_flags_init(vma, flags); 843 } 844 845 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 846 vm_flags_t flags) 847 { 848 vma_assert_write_locked(vma); 849 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 850 } 851 852 static inline void vm_flags_set(struct vm_area_struct *vma, 853 vm_flags_t flags) 854 { 855 vma_start_write(vma); 856 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 857 } 858 859 static inline void vm_flags_clear(struct vm_area_struct *vma, 860 vm_flags_t flags) 861 { 862 vma_start_write(vma); 863 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 864 } 865 866 /* 867 * Use only if VMA is not part of the VMA tree or has no other users and 868 * therefore needs no locking. 869 */ 870 static inline void __vm_flags_mod(struct vm_area_struct *vma, 871 vm_flags_t set, vm_flags_t clear) 872 { 873 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 874 } 875 876 /* 877 * Use only when the order of set/clear operations is unimportant, otherwise 878 * use vm_flags_{set|clear} explicitly. 879 */ 880 static inline void vm_flags_mod(struct vm_area_struct *vma, 881 vm_flags_t set, vm_flags_t clear) 882 { 883 vma_start_write(vma); 884 __vm_flags_mod(vma, set, clear); 885 } 886 887 static inline void vma_set_anonymous(struct vm_area_struct *vma) 888 { 889 vma->vm_ops = NULL; 890 } 891 892 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 893 { 894 return !vma->vm_ops; 895 } 896 897 /* 898 * Indicate if the VMA is a heap for the given task; for 899 * /proc/PID/maps that is the heap of the main task. 900 */ 901 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 902 { 903 return vma->vm_start < vma->vm_mm->brk && 904 vma->vm_end > vma->vm_mm->start_brk; 905 } 906 907 /* 908 * Indicate if the VMA is a stack for the given task; for 909 * /proc/PID/maps that is the stack of the main task. 910 */ 911 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 912 { 913 /* 914 * We make no effort to guess what a given thread considers to be 915 * its "stack". It's not even well-defined for programs written 916 * languages like Go. 917 */ 918 return vma->vm_start <= vma->vm_mm->start_stack && 919 vma->vm_end >= vma->vm_mm->start_stack; 920 } 921 922 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 923 { 924 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 925 926 if (!maybe_stack) 927 return false; 928 929 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 930 VM_STACK_INCOMPLETE_SETUP) 931 return true; 932 933 return false; 934 } 935 936 static inline bool vma_is_foreign(struct vm_area_struct *vma) 937 { 938 if (!current->mm) 939 return true; 940 941 if (current->mm != vma->vm_mm) 942 return true; 943 944 return false; 945 } 946 947 static inline bool vma_is_accessible(struct vm_area_struct *vma) 948 { 949 return vma->vm_flags & VM_ACCESS_FLAGS; 950 } 951 952 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 953 { 954 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 955 (VM_SHARED | VM_MAYWRITE); 956 } 957 958 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 959 { 960 return is_shared_maywrite(vma->vm_flags); 961 } 962 963 static inline 964 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 965 { 966 return mas_find(&vmi->mas, max - 1); 967 } 968 969 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 970 { 971 /* 972 * Uses mas_find() to get the first VMA when the iterator starts. 973 * Calling mas_next() could skip the first entry. 974 */ 975 return mas_find(&vmi->mas, ULONG_MAX); 976 } 977 978 static inline 979 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 980 { 981 return mas_next_range(&vmi->mas, ULONG_MAX); 982 } 983 984 985 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 986 { 987 return mas_prev(&vmi->mas, 0); 988 } 989 990 static inline 991 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 992 { 993 return mas_prev_range(&vmi->mas, 0); 994 } 995 996 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 997 { 998 return vmi->mas.index; 999 } 1000 1001 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1002 { 1003 return vmi->mas.last + 1; 1004 } 1005 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1006 unsigned long count) 1007 { 1008 return mas_expected_entries(&vmi->mas, count); 1009 } 1010 1011 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1012 unsigned long start, unsigned long end, gfp_t gfp) 1013 { 1014 __mas_set_range(&vmi->mas, start, end - 1); 1015 mas_store_gfp(&vmi->mas, NULL, gfp); 1016 if (unlikely(mas_is_err(&vmi->mas))) 1017 return -ENOMEM; 1018 1019 return 0; 1020 } 1021 1022 /* Free any unused preallocations */ 1023 static inline void vma_iter_free(struct vma_iterator *vmi) 1024 { 1025 mas_destroy(&vmi->mas); 1026 } 1027 1028 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1029 struct vm_area_struct *vma) 1030 { 1031 vmi->mas.index = vma->vm_start; 1032 vmi->mas.last = vma->vm_end - 1; 1033 mas_store(&vmi->mas, vma); 1034 if (unlikely(mas_is_err(&vmi->mas))) 1035 return -ENOMEM; 1036 1037 return 0; 1038 } 1039 1040 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1041 { 1042 mas_pause(&vmi->mas); 1043 } 1044 1045 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1046 { 1047 mas_set(&vmi->mas, addr); 1048 } 1049 1050 #define for_each_vma(__vmi, __vma) \ 1051 while (((__vma) = vma_next(&(__vmi))) != NULL) 1052 1053 /* The MM code likes to work with exclusive end addresses */ 1054 #define for_each_vma_range(__vmi, __vma, __end) \ 1055 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1056 1057 #ifdef CONFIG_SHMEM 1058 /* 1059 * The vma_is_shmem is not inline because it is used only by slow 1060 * paths in userfault. 1061 */ 1062 bool vma_is_shmem(struct vm_area_struct *vma); 1063 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1064 #else 1065 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1066 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1067 #endif 1068 1069 int vma_is_stack_for_current(struct vm_area_struct *vma); 1070 1071 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1072 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1073 1074 struct mmu_gather; 1075 struct inode; 1076 1077 /* 1078 * compound_order() can be called without holding a reference, which means 1079 * that niceties like page_folio() don't work. These callers should be 1080 * prepared to handle wild return values. For example, PG_head may be 1081 * set before the order is initialised, or this may be a tail page. 1082 * See compaction.c for some good examples. 1083 */ 1084 static inline unsigned int compound_order(struct page *page) 1085 { 1086 struct folio *folio = (struct folio *)page; 1087 1088 if (!test_bit(PG_head, &folio->flags)) 1089 return 0; 1090 return folio->_flags_1 & 0xff; 1091 } 1092 1093 /** 1094 * folio_order - The allocation order of a folio. 1095 * @folio: The folio. 1096 * 1097 * A folio is composed of 2^order pages. See get_order() for the definition 1098 * of order. 1099 * 1100 * Return: The order of the folio. 1101 */ 1102 static inline unsigned int folio_order(struct folio *folio) 1103 { 1104 if (!folio_test_large(folio)) 1105 return 0; 1106 return folio->_flags_1 & 0xff; 1107 } 1108 1109 #include <linux/huge_mm.h> 1110 1111 /* 1112 * Methods to modify the page usage count. 1113 * 1114 * What counts for a page usage: 1115 * - cache mapping (page->mapping) 1116 * - private data (page->private) 1117 * - page mapped in a task's page tables, each mapping 1118 * is counted separately 1119 * 1120 * Also, many kernel routines increase the page count before a critical 1121 * routine so they can be sure the page doesn't go away from under them. 1122 */ 1123 1124 /* 1125 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1126 */ 1127 static inline int put_page_testzero(struct page *page) 1128 { 1129 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1130 return page_ref_dec_and_test(page); 1131 } 1132 1133 static inline int folio_put_testzero(struct folio *folio) 1134 { 1135 return put_page_testzero(&folio->page); 1136 } 1137 1138 /* 1139 * Try to grab a ref unless the page has a refcount of zero, return false if 1140 * that is the case. 1141 * This can be called when MMU is off so it must not access 1142 * any of the virtual mappings. 1143 */ 1144 static inline bool get_page_unless_zero(struct page *page) 1145 { 1146 return page_ref_add_unless(page, 1, 0); 1147 } 1148 1149 static inline struct folio *folio_get_nontail_page(struct page *page) 1150 { 1151 if (unlikely(!get_page_unless_zero(page))) 1152 return NULL; 1153 return (struct folio *)page; 1154 } 1155 1156 extern int page_is_ram(unsigned long pfn); 1157 1158 enum { 1159 REGION_INTERSECTS, 1160 REGION_DISJOINT, 1161 REGION_MIXED, 1162 }; 1163 1164 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1165 unsigned long desc); 1166 1167 /* Support for virtually mapped pages */ 1168 struct page *vmalloc_to_page(const void *addr); 1169 unsigned long vmalloc_to_pfn(const void *addr); 1170 1171 /* 1172 * Determine if an address is within the vmalloc range 1173 * 1174 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1175 * is no special casing required. 1176 */ 1177 #ifdef CONFIG_MMU 1178 extern bool is_vmalloc_addr(const void *x); 1179 extern int is_vmalloc_or_module_addr(const void *x); 1180 #else 1181 static inline bool is_vmalloc_addr(const void *x) 1182 { 1183 return false; 1184 } 1185 static inline int is_vmalloc_or_module_addr(const void *x) 1186 { 1187 return 0; 1188 } 1189 #endif 1190 1191 /* 1192 * How many times the entire folio is mapped as a single unit (eg by a 1193 * PMD or PUD entry). This is probably not what you want, except for 1194 * debugging purposes - it does not include PTE-mapped sub-pages; look 1195 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1196 */ 1197 static inline int folio_entire_mapcount(struct folio *folio) 1198 { 1199 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1200 return atomic_read(&folio->_entire_mapcount) + 1; 1201 } 1202 1203 /* 1204 * The atomic page->_mapcount, starts from -1: so that transitions 1205 * both from it and to it can be tracked, using atomic_inc_and_test 1206 * and atomic_add_negative(-1). 1207 */ 1208 static inline void page_mapcount_reset(struct page *page) 1209 { 1210 atomic_set(&(page)->_mapcount, -1); 1211 } 1212 1213 /** 1214 * page_mapcount() - Number of times this precise page is mapped. 1215 * @page: The page. 1216 * 1217 * The number of times this page is mapped. If this page is part of 1218 * a large folio, it includes the number of times this page is mapped 1219 * as part of that folio. 1220 * 1221 * The result is undefined for pages which cannot be mapped into userspace. 1222 * For example SLAB or special types of pages. See function page_has_type(). 1223 * They use this field in struct page differently. 1224 */ 1225 static inline int page_mapcount(struct page *page) 1226 { 1227 int mapcount = atomic_read(&page->_mapcount) + 1; 1228 1229 if (unlikely(PageCompound(page))) 1230 mapcount += folio_entire_mapcount(page_folio(page)); 1231 1232 return mapcount; 1233 } 1234 1235 int folio_total_mapcount(struct folio *folio); 1236 1237 /** 1238 * folio_mapcount() - Calculate the number of mappings of this folio. 1239 * @folio: The folio. 1240 * 1241 * A large folio tracks both how many times the entire folio is mapped, 1242 * and how many times each individual page in the folio is mapped. 1243 * This function calculates the total number of times the folio is 1244 * mapped. 1245 * 1246 * Return: The number of times this folio is mapped. 1247 */ 1248 static inline int folio_mapcount(struct folio *folio) 1249 { 1250 if (likely(!folio_test_large(folio))) 1251 return atomic_read(&folio->_mapcount) + 1; 1252 return folio_total_mapcount(folio); 1253 } 1254 1255 static inline int total_mapcount(struct page *page) 1256 { 1257 if (likely(!PageCompound(page))) 1258 return atomic_read(&page->_mapcount) + 1; 1259 return folio_total_mapcount(page_folio(page)); 1260 } 1261 1262 static inline bool folio_large_is_mapped(struct folio *folio) 1263 { 1264 /* 1265 * Reading _entire_mapcount below could be omitted if hugetlb 1266 * participated in incrementing nr_pages_mapped when compound mapped. 1267 */ 1268 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1269 atomic_read(&folio->_entire_mapcount) >= 0; 1270 } 1271 1272 /** 1273 * folio_mapped - Is this folio mapped into userspace? 1274 * @folio: The folio. 1275 * 1276 * Return: True if any page in this folio is referenced by user page tables. 1277 */ 1278 static inline bool folio_mapped(struct folio *folio) 1279 { 1280 if (likely(!folio_test_large(folio))) 1281 return atomic_read(&folio->_mapcount) >= 0; 1282 return folio_large_is_mapped(folio); 1283 } 1284 1285 /* 1286 * Return true if this page is mapped into pagetables. 1287 * For compound page it returns true if any sub-page of compound page is mapped, 1288 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1289 */ 1290 static inline bool page_mapped(struct page *page) 1291 { 1292 if (likely(!PageCompound(page))) 1293 return atomic_read(&page->_mapcount) >= 0; 1294 return folio_large_is_mapped(page_folio(page)); 1295 } 1296 1297 static inline struct page *virt_to_head_page(const void *x) 1298 { 1299 struct page *page = virt_to_page(x); 1300 1301 return compound_head(page); 1302 } 1303 1304 static inline struct folio *virt_to_folio(const void *x) 1305 { 1306 struct page *page = virt_to_page(x); 1307 1308 return page_folio(page); 1309 } 1310 1311 void __folio_put(struct folio *folio); 1312 1313 void put_pages_list(struct list_head *pages); 1314 1315 void split_page(struct page *page, unsigned int order); 1316 void folio_copy(struct folio *dst, struct folio *src); 1317 1318 unsigned long nr_free_buffer_pages(void); 1319 1320 void destroy_large_folio(struct folio *folio); 1321 1322 /* Returns the number of bytes in this potentially compound page. */ 1323 static inline unsigned long page_size(struct page *page) 1324 { 1325 return PAGE_SIZE << compound_order(page); 1326 } 1327 1328 /* Returns the number of bits needed for the number of bytes in a page */ 1329 static inline unsigned int page_shift(struct page *page) 1330 { 1331 return PAGE_SHIFT + compound_order(page); 1332 } 1333 1334 /** 1335 * thp_order - Order of a transparent huge page. 1336 * @page: Head page of a transparent huge page. 1337 */ 1338 static inline unsigned int thp_order(struct page *page) 1339 { 1340 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1341 return compound_order(page); 1342 } 1343 1344 /** 1345 * thp_size - Size of a transparent huge page. 1346 * @page: Head page of a transparent huge page. 1347 * 1348 * Return: Number of bytes in this page. 1349 */ 1350 static inline unsigned long thp_size(struct page *page) 1351 { 1352 return PAGE_SIZE << thp_order(page); 1353 } 1354 1355 #ifdef CONFIG_MMU 1356 /* 1357 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1358 * servicing faults for write access. In the normal case, do always want 1359 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1360 * that do not have writing enabled, when used by access_process_vm. 1361 */ 1362 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1363 { 1364 if (likely(vma->vm_flags & VM_WRITE)) 1365 pte = pte_mkwrite(pte, vma); 1366 return pte; 1367 } 1368 1369 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1370 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1371 struct page *page, unsigned int nr, unsigned long addr); 1372 1373 vm_fault_t finish_fault(struct vm_fault *vmf); 1374 #endif 1375 1376 /* 1377 * Multiple processes may "see" the same page. E.g. for untouched 1378 * mappings of /dev/null, all processes see the same page full of 1379 * zeroes, and text pages of executables and shared libraries have 1380 * only one copy in memory, at most, normally. 1381 * 1382 * For the non-reserved pages, page_count(page) denotes a reference count. 1383 * page_count() == 0 means the page is free. page->lru is then used for 1384 * freelist management in the buddy allocator. 1385 * page_count() > 0 means the page has been allocated. 1386 * 1387 * Pages are allocated by the slab allocator in order to provide memory 1388 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1389 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1390 * unless a particular usage is carefully commented. (the responsibility of 1391 * freeing the kmalloc memory is the caller's, of course). 1392 * 1393 * A page may be used by anyone else who does a __get_free_page(). 1394 * In this case, page_count still tracks the references, and should only 1395 * be used through the normal accessor functions. The top bits of page->flags 1396 * and page->virtual store page management information, but all other fields 1397 * are unused and could be used privately, carefully. The management of this 1398 * page is the responsibility of the one who allocated it, and those who have 1399 * subsequently been given references to it. 1400 * 1401 * The other pages (we may call them "pagecache pages") are completely 1402 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1403 * The following discussion applies only to them. 1404 * 1405 * A pagecache page contains an opaque `private' member, which belongs to the 1406 * page's address_space. Usually, this is the address of a circular list of 1407 * the page's disk buffers. PG_private must be set to tell the VM to call 1408 * into the filesystem to release these pages. 1409 * 1410 * A page may belong to an inode's memory mapping. In this case, page->mapping 1411 * is the pointer to the inode, and page->index is the file offset of the page, 1412 * in units of PAGE_SIZE. 1413 * 1414 * If pagecache pages are not associated with an inode, they are said to be 1415 * anonymous pages. These may become associated with the swapcache, and in that 1416 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1417 * 1418 * In either case (swapcache or inode backed), the pagecache itself holds one 1419 * reference to the page. Setting PG_private should also increment the 1420 * refcount. The each user mapping also has a reference to the page. 1421 * 1422 * The pagecache pages are stored in a per-mapping radix tree, which is 1423 * rooted at mapping->i_pages, and indexed by offset. 1424 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1425 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1426 * 1427 * All pagecache pages may be subject to I/O: 1428 * - inode pages may need to be read from disk, 1429 * - inode pages which have been modified and are MAP_SHARED may need 1430 * to be written back to the inode on disk, 1431 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1432 * modified may need to be swapped out to swap space and (later) to be read 1433 * back into memory. 1434 */ 1435 1436 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1437 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1438 1439 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1440 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1441 { 1442 if (!static_branch_unlikely(&devmap_managed_key)) 1443 return false; 1444 if (!is_zone_device_page(page)) 1445 return false; 1446 return __put_devmap_managed_page_refs(page, refs); 1447 } 1448 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1449 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1450 { 1451 return false; 1452 } 1453 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1454 1455 static inline bool put_devmap_managed_page(struct page *page) 1456 { 1457 return put_devmap_managed_page_refs(page, 1); 1458 } 1459 1460 /* 127: arbitrary random number, small enough to assemble well */ 1461 #define folio_ref_zero_or_close_to_overflow(folio) \ 1462 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1463 1464 /** 1465 * folio_get - Increment the reference count on a folio. 1466 * @folio: The folio. 1467 * 1468 * Context: May be called in any context, as long as you know that 1469 * you have a refcount on the folio. If you do not already have one, 1470 * folio_try_get() may be the right interface for you to use. 1471 */ 1472 static inline void folio_get(struct folio *folio) 1473 { 1474 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1475 folio_ref_inc(folio); 1476 } 1477 1478 static inline void get_page(struct page *page) 1479 { 1480 folio_get(page_folio(page)); 1481 } 1482 1483 static inline __must_check bool try_get_page(struct page *page) 1484 { 1485 page = compound_head(page); 1486 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1487 return false; 1488 page_ref_inc(page); 1489 return true; 1490 } 1491 1492 /** 1493 * folio_put - Decrement the reference count on a folio. 1494 * @folio: The folio. 1495 * 1496 * If the folio's reference count reaches zero, the memory will be 1497 * released back to the page allocator and may be used by another 1498 * allocation immediately. Do not access the memory or the struct folio 1499 * after calling folio_put() unless you can be sure that it wasn't the 1500 * last reference. 1501 * 1502 * Context: May be called in process or interrupt context, but not in NMI 1503 * context. May be called while holding a spinlock. 1504 */ 1505 static inline void folio_put(struct folio *folio) 1506 { 1507 if (folio_put_testzero(folio)) 1508 __folio_put(folio); 1509 } 1510 1511 /** 1512 * folio_put_refs - Reduce the reference count on a folio. 1513 * @folio: The folio. 1514 * @refs: The amount to subtract from the folio's reference count. 1515 * 1516 * If the folio's reference count reaches zero, the memory will be 1517 * released back to the page allocator and may be used by another 1518 * allocation immediately. Do not access the memory or the struct folio 1519 * after calling folio_put_refs() unless you can be sure that these weren't 1520 * the last references. 1521 * 1522 * Context: May be called in process or interrupt context, but not in NMI 1523 * context. May be called while holding a spinlock. 1524 */ 1525 static inline void folio_put_refs(struct folio *folio, int refs) 1526 { 1527 if (folio_ref_sub_and_test(folio, refs)) 1528 __folio_put(folio); 1529 } 1530 1531 /* 1532 * union release_pages_arg - an array of pages or folios 1533 * 1534 * release_pages() releases a simple array of multiple pages, and 1535 * accepts various different forms of said page array: either 1536 * a regular old boring array of pages, an array of folios, or 1537 * an array of encoded page pointers. 1538 * 1539 * The transparent union syntax for this kind of "any of these 1540 * argument types" is all kinds of ugly, so look away. 1541 */ 1542 typedef union { 1543 struct page **pages; 1544 struct folio **folios; 1545 struct encoded_page **encoded_pages; 1546 } release_pages_arg __attribute__ ((__transparent_union__)); 1547 1548 void release_pages(release_pages_arg, int nr); 1549 1550 /** 1551 * folios_put - Decrement the reference count on an array of folios. 1552 * @folios: The folios. 1553 * @nr: How many folios there are. 1554 * 1555 * Like folio_put(), but for an array of folios. This is more efficient 1556 * than writing the loop yourself as it will optimise the locks which 1557 * need to be taken if the folios are freed. 1558 * 1559 * Context: May be called in process or interrupt context, but not in NMI 1560 * context. May be called while holding a spinlock. 1561 */ 1562 static inline void folios_put(struct folio **folios, unsigned int nr) 1563 { 1564 release_pages(folios, nr); 1565 } 1566 1567 static inline void put_page(struct page *page) 1568 { 1569 struct folio *folio = page_folio(page); 1570 1571 /* 1572 * For some devmap managed pages we need to catch refcount transition 1573 * from 2 to 1: 1574 */ 1575 if (put_devmap_managed_page(&folio->page)) 1576 return; 1577 folio_put(folio); 1578 } 1579 1580 /* 1581 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1582 * the page's refcount so that two separate items are tracked: the original page 1583 * reference count, and also a new count of how many pin_user_pages() calls were 1584 * made against the page. ("gup-pinned" is another term for the latter). 1585 * 1586 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1587 * distinct from normal pages. As such, the unpin_user_page() call (and its 1588 * variants) must be used in order to release gup-pinned pages. 1589 * 1590 * Choice of value: 1591 * 1592 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1593 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1594 * simpler, due to the fact that adding an even power of two to the page 1595 * refcount has the effect of using only the upper N bits, for the code that 1596 * counts up using the bias value. This means that the lower bits are left for 1597 * the exclusive use of the original code that increments and decrements by one 1598 * (or at least, by much smaller values than the bias value). 1599 * 1600 * Of course, once the lower bits overflow into the upper bits (and this is 1601 * OK, because subtraction recovers the original values), then visual inspection 1602 * no longer suffices to directly view the separate counts. However, for normal 1603 * applications that don't have huge page reference counts, this won't be an 1604 * issue. 1605 * 1606 * Locking: the lockless algorithm described in folio_try_get_rcu() 1607 * provides safe operation for get_user_pages(), page_mkclean() and 1608 * other calls that race to set up page table entries. 1609 */ 1610 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1611 1612 void unpin_user_page(struct page *page); 1613 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1614 bool make_dirty); 1615 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1616 bool make_dirty); 1617 void unpin_user_pages(struct page **pages, unsigned long npages); 1618 1619 static inline bool is_cow_mapping(vm_flags_t flags) 1620 { 1621 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1622 } 1623 1624 #ifndef CONFIG_MMU 1625 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1626 { 1627 /* 1628 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1629 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1630 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1631 * underlying memory if ptrace is active, so this is only possible if 1632 * ptrace does not apply. Note that there is no mprotect() to upgrade 1633 * write permissions later. 1634 */ 1635 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1636 } 1637 #endif 1638 1639 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1640 #define SECTION_IN_PAGE_FLAGS 1641 #endif 1642 1643 /* 1644 * The identification function is mainly used by the buddy allocator for 1645 * determining if two pages could be buddies. We are not really identifying 1646 * the zone since we could be using the section number id if we do not have 1647 * node id available in page flags. 1648 * We only guarantee that it will return the same value for two combinable 1649 * pages in a zone. 1650 */ 1651 static inline int page_zone_id(struct page *page) 1652 { 1653 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1654 } 1655 1656 #ifdef NODE_NOT_IN_PAGE_FLAGS 1657 extern int page_to_nid(const struct page *page); 1658 #else 1659 static inline int page_to_nid(const struct page *page) 1660 { 1661 struct page *p = (struct page *)page; 1662 1663 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1664 } 1665 #endif 1666 1667 static inline int folio_nid(const struct folio *folio) 1668 { 1669 return page_to_nid(&folio->page); 1670 } 1671 1672 #ifdef CONFIG_NUMA_BALANCING 1673 /* page access time bits needs to hold at least 4 seconds */ 1674 #define PAGE_ACCESS_TIME_MIN_BITS 12 1675 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1676 #define PAGE_ACCESS_TIME_BUCKETS \ 1677 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1678 #else 1679 #define PAGE_ACCESS_TIME_BUCKETS 0 1680 #endif 1681 1682 #define PAGE_ACCESS_TIME_MASK \ 1683 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1684 1685 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1686 { 1687 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1688 } 1689 1690 static inline int cpupid_to_pid(int cpupid) 1691 { 1692 return cpupid & LAST__PID_MASK; 1693 } 1694 1695 static inline int cpupid_to_cpu(int cpupid) 1696 { 1697 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1698 } 1699 1700 static inline int cpupid_to_nid(int cpupid) 1701 { 1702 return cpu_to_node(cpupid_to_cpu(cpupid)); 1703 } 1704 1705 static inline bool cpupid_pid_unset(int cpupid) 1706 { 1707 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1708 } 1709 1710 static inline bool cpupid_cpu_unset(int cpupid) 1711 { 1712 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1713 } 1714 1715 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1716 { 1717 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1718 } 1719 1720 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1721 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1722 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1723 { 1724 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1725 } 1726 1727 static inline int folio_last_cpupid(struct folio *folio) 1728 { 1729 return folio->_last_cpupid; 1730 } 1731 static inline void page_cpupid_reset_last(struct page *page) 1732 { 1733 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1734 } 1735 #else 1736 static inline int folio_last_cpupid(struct folio *folio) 1737 { 1738 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1739 } 1740 1741 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1742 1743 static inline void page_cpupid_reset_last(struct page *page) 1744 { 1745 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1746 } 1747 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1748 1749 static inline int folio_xchg_access_time(struct folio *folio, int time) 1750 { 1751 int last_time; 1752 1753 last_time = folio_xchg_last_cpupid(folio, 1754 time >> PAGE_ACCESS_TIME_BUCKETS); 1755 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1756 } 1757 1758 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1759 { 1760 unsigned int pid_bit; 1761 1762 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1763 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1764 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1765 } 1766 } 1767 #else /* !CONFIG_NUMA_BALANCING */ 1768 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1769 { 1770 return folio_nid(folio); /* XXX */ 1771 } 1772 1773 static inline int folio_xchg_access_time(struct folio *folio, int time) 1774 { 1775 return 0; 1776 } 1777 1778 static inline int folio_last_cpupid(struct folio *folio) 1779 { 1780 return folio_nid(folio); /* XXX */ 1781 } 1782 1783 static inline int cpupid_to_nid(int cpupid) 1784 { 1785 return -1; 1786 } 1787 1788 static inline int cpupid_to_pid(int cpupid) 1789 { 1790 return -1; 1791 } 1792 1793 static inline int cpupid_to_cpu(int cpupid) 1794 { 1795 return -1; 1796 } 1797 1798 static inline int cpu_pid_to_cpupid(int nid, int pid) 1799 { 1800 return -1; 1801 } 1802 1803 static inline bool cpupid_pid_unset(int cpupid) 1804 { 1805 return true; 1806 } 1807 1808 static inline void page_cpupid_reset_last(struct page *page) 1809 { 1810 } 1811 1812 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1813 { 1814 return false; 1815 } 1816 1817 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1818 { 1819 } 1820 #endif /* CONFIG_NUMA_BALANCING */ 1821 1822 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1823 1824 /* 1825 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1826 * setting tags for all pages to native kernel tag value 0xff, as the default 1827 * value 0x00 maps to 0xff. 1828 */ 1829 1830 static inline u8 page_kasan_tag(const struct page *page) 1831 { 1832 u8 tag = KASAN_TAG_KERNEL; 1833 1834 if (kasan_enabled()) { 1835 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1836 tag ^= 0xff; 1837 } 1838 1839 return tag; 1840 } 1841 1842 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1843 { 1844 unsigned long old_flags, flags; 1845 1846 if (!kasan_enabled()) 1847 return; 1848 1849 tag ^= 0xff; 1850 old_flags = READ_ONCE(page->flags); 1851 do { 1852 flags = old_flags; 1853 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1854 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1855 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1856 } 1857 1858 static inline void page_kasan_tag_reset(struct page *page) 1859 { 1860 if (kasan_enabled()) 1861 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1862 } 1863 1864 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1865 1866 static inline u8 page_kasan_tag(const struct page *page) 1867 { 1868 return 0xff; 1869 } 1870 1871 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1872 static inline void page_kasan_tag_reset(struct page *page) { } 1873 1874 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1875 1876 static inline struct zone *page_zone(const struct page *page) 1877 { 1878 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1879 } 1880 1881 static inline pg_data_t *page_pgdat(const struct page *page) 1882 { 1883 return NODE_DATA(page_to_nid(page)); 1884 } 1885 1886 static inline struct zone *folio_zone(const struct folio *folio) 1887 { 1888 return page_zone(&folio->page); 1889 } 1890 1891 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1892 { 1893 return page_pgdat(&folio->page); 1894 } 1895 1896 #ifdef SECTION_IN_PAGE_FLAGS 1897 static inline void set_page_section(struct page *page, unsigned long section) 1898 { 1899 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1900 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1901 } 1902 1903 static inline unsigned long page_to_section(const struct page *page) 1904 { 1905 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1906 } 1907 #endif 1908 1909 /** 1910 * folio_pfn - Return the Page Frame Number of a folio. 1911 * @folio: The folio. 1912 * 1913 * A folio may contain multiple pages. The pages have consecutive 1914 * Page Frame Numbers. 1915 * 1916 * Return: The Page Frame Number of the first page in the folio. 1917 */ 1918 static inline unsigned long folio_pfn(struct folio *folio) 1919 { 1920 return page_to_pfn(&folio->page); 1921 } 1922 1923 static inline struct folio *pfn_folio(unsigned long pfn) 1924 { 1925 return page_folio(pfn_to_page(pfn)); 1926 } 1927 1928 /** 1929 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1930 * @folio: The folio. 1931 * 1932 * This function checks if a folio has been pinned via a call to 1933 * a function in the pin_user_pages() family. 1934 * 1935 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1936 * because it means "definitely not pinned for DMA", but true means "probably 1937 * pinned for DMA, but possibly a false positive due to having at least 1938 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1939 * 1940 * False positives are OK, because: a) it's unlikely for a folio to 1941 * get that many refcounts, and b) all the callers of this routine are 1942 * expected to be able to deal gracefully with a false positive. 1943 * 1944 * For large folios, the result will be exactly correct. That's because 1945 * we have more tracking data available: the _pincount field is used 1946 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1947 * 1948 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1949 * 1950 * Return: True, if it is likely that the page has been "dma-pinned". 1951 * False, if the page is definitely not dma-pinned. 1952 */ 1953 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1954 { 1955 if (folio_test_large(folio)) 1956 return atomic_read(&folio->_pincount) > 0; 1957 1958 /* 1959 * folio_ref_count() is signed. If that refcount overflows, then 1960 * folio_ref_count() returns a negative value, and callers will avoid 1961 * further incrementing the refcount. 1962 * 1963 * Here, for that overflow case, use the sign bit to count a little 1964 * bit higher via unsigned math, and thus still get an accurate result. 1965 */ 1966 return ((unsigned int)folio_ref_count(folio)) >= 1967 GUP_PIN_COUNTING_BIAS; 1968 } 1969 1970 static inline bool page_maybe_dma_pinned(struct page *page) 1971 { 1972 return folio_maybe_dma_pinned(page_folio(page)); 1973 } 1974 1975 /* 1976 * This should most likely only be called during fork() to see whether we 1977 * should break the cow immediately for an anon page on the src mm. 1978 * 1979 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1980 */ 1981 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1982 struct folio *folio) 1983 { 1984 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1985 1986 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1987 return false; 1988 1989 return folio_maybe_dma_pinned(folio); 1990 } 1991 1992 /** 1993 * is_zero_page - Query if a page is a zero page 1994 * @page: The page to query 1995 * 1996 * This returns true if @page is one of the permanent zero pages. 1997 */ 1998 static inline bool is_zero_page(const struct page *page) 1999 { 2000 return is_zero_pfn(page_to_pfn(page)); 2001 } 2002 2003 /** 2004 * is_zero_folio - Query if a folio is a zero page 2005 * @folio: The folio to query 2006 * 2007 * This returns true if @folio is one of the permanent zero pages. 2008 */ 2009 static inline bool is_zero_folio(const struct folio *folio) 2010 { 2011 return is_zero_page(&folio->page); 2012 } 2013 2014 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2015 #ifdef CONFIG_MIGRATION 2016 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2017 { 2018 #ifdef CONFIG_CMA 2019 int mt = folio_migratetype(folio); 2020 2021 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2022 return false; 2023 #endif 2024 /* The zero page can be "pinned" but gets special handling. */ 2025 if (is_zero_folio(folio)) 2026 return true; 2027 2028 /* Coherent device memory must always allow eviction. */ 2029 if (folio_is_device_coherent(folio)) 2030 return false; 2031 2032 /* Otherwise, non-movable zone folios can be pinned. */ 2033 return !folio_is_zone_movable(folio); 2034 2035 } 2036 #else 2037 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2038 { 2039 return true; 2040 } 2041 #endif 2042 2043 static inline void set_page_zone(struct page *page, enum zone_type zone) 2044 { 2045 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2046 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2047 } 2048 2049 static inline void set_page_node(struct page *page, unsigned long node) 2050 { 2051 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2052 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2053 } 2054 2055 static inline void set_page_links(struct page *page, enum zone_type zone, 2056 unsigned long node, unsigned long pfn) 2057 { 2058 set_page_zone(page, zone); 2059 set_page_node(page, node); 2060 #ifdef SECTION_IN_PAGE_FLAGS 2061 set_page_section(page, pfn_to_section_nr(pfn)); 2062 #endif 2063 } 2064 2065 /** 2066 * folio_nr_pages - The number of pages in the folio. 2067 * @folio: The folio. 2068 * 2069 * Return: A positive power of two. 2070 */ 2071 static inline long folio_nr_pages(struct folio *folio) 2072 { 2073 if (!folio_test_large(folio)) 2074 return 1; 2075 #ifdef CONFIG_64BIT 2076 return folio->_folio_nr_pages; 2077 #else 2078 return 1L << (folio->_flags_1 & 0xff); 2079 #endif 2080 } 2081 2082 /* 2083 * compound_nr() returns the number of pages in this potentially compound 2084 * page. compound_nr() can be called on a tail page, and is defined to 2085 * return 1 in that case. 2086 */ 2087 static inline unsigned long compound_nr(struct page *page) 2088 { 2089 struct folio *folio = (struct folio *)page; 2090 2091 if (!test_bit(PG_head, &folio->flags)) 2092 return 1; 2093 #ifdef CONFIG_64BIT 2094 return folio->_folio_nr_pages; 2095 #else 2096 return 1L << (folio->_flags_1 & 0xff); 2097 #endif 2098 } 2099 2100 /** 2101 * thp_nr_pages - The number of regular pages in this huge page. 2102 * @page: The head page of a huge page. 2103 */ 2104 static inline int thp_nr_pages(struct page *page) 2105 { 2106 return folio_nr_pages((struct folio *)page); 2107 } 2108 2109 /** 2110 * folio_next - Move to the next physical folio. 2111 * @folio: The folio we're currently operating on. 2112 * 2113 * If you have physically contiguous memory which may span more than 2114 * one folio (eg a &struct bio_vec), use this function to move from one 2115 * folio to the next. Do not use it if the memory is only virtually 2116 * contiguous as the folios are almost certainly not adjacent to each 2117 * other. This is the folio equivalent to writing ``page++``. 2118 * 2119 * Context: We assume that the folios are refcounted and/or locked at a 2120 * higher level and do not adjust the reference counts. 2121 * Return: The next struct folio. 2122 */ 2123 static inline struct folio *folio_next(struct folio *folio) 2124 { 2125 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2126 } 2127 2128 /** 2129 * folio_shift - The size of the memory described by this folio. 2130 * @folio: The folio. 2131 * 2132 * A folio represents a number of bytes which is a power-of-two in size. 2133 * This function tells you which power-of-two the folio is. See also 2134 * folio_size() and folio_order(). 2135 * 2136 * Context: The caller should have a reference on the folio to prevent 2137 * it from being split. It is not necessary for the folio to be locked. 2138 * Return: The base-2 logarithm of the size of this folio. 2139 */ 2140 static inline unsigned int folio_shift(struct folio *folio) 2141 { 2142 return PAGE_SHIFT + folio_order(folio); 2143 } 2144 2145 /** 2146 * folio_size - The number of bytes in a folio. 2147 * @folio: The folio. 2148 * 2149 * Context: The caller should have a reference on the folio to prevent 2150 * it from being split. It is not necessary for the folio to be locked. 2151 * Return: The number of bytes in this folio. 2152 */ 2153 static inline size_t folio_size(struct folio *folio) 2154 { 2155 return PAGE_SIZE << folio_order(folio); 2156 } 2157 2158 /** 2159 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2160 * @folio: The folio. 2161 * 2162 * folio_estimated_sharers() aims to serve as a function to efficiently 2163 * estimate the number of processes sharing a folio. This is done by 2164 * looking at the precise mapcount of the first subpage in the folio, and 2165 * assuming the other subpages are the same. This may not be true for large 2166 * folios. If you want exact mapcounts for exact calculations, look at 2167 * page_mapcount() or folio_total_mapcount(). 2168 * 2169 * Return: The estimated number of processes sharing a folio. 2170 */ 2171 static inline int folio_estimated_sharers(struct folio *folio) 2172 { 2173 return page_mapcount(folio_page(folio, 0)); 2174 } 2175 2176 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2177 static inline int arch_make_page_accessible(struct page *page) 2178 { 2179 return 0; 2180 } 2181 #endif 2182 2183 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2184 static inline int arch_make_folio_accessible(struct folio *folio) 2185 { 2186 int ret; 2187 long i, nr = folio_nr_pages(folio); 2188 2189 for (i = 0; i < nr; i++) { 2190 ret = arch_make_page_accessible(folio_page(folio, i)); 2191 if (ret) 2192 break; 2193 } 2194 2195 return ret; 2196 } 2197 #endif 2198 2199 /* 2200 * Some inline functions in vmstat.h depend on page_zone() 2201 */ 2202 #include <linux/vmstat.h> 2203 2204 static __always_inline void *lowmem_page_address(const struct page *page) 2205 { 2206 return page_to_virt(page); 2207 } 2208 2209 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2210 #define HASHED_PAGE_VIRTUAL 2211 #endif 2212 2213 #if defined(WANT_PAGE_VIRTUAL) 2214 static inline void *page_address(const struct page *page) 2215 { 2216 return page->virtual; 2217 } 2218 static inline void set_page_address(struct page *page, void *address) 2219 { 2220 page->virtual = address; 2221 } 2222 #define page_address_init() do { } while(0) 2223 #endif 2224 2225 #if defined(HASHED_PAGE_VIRTUAL) 2226 void *page_address(const struct page *page); 2227 void set_page_address(struct page *page, void *virtual); 2228 void page_address_init(void); 2229 #endif 2230 2231 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2232 #define page_address(page) lowmem_page_address(page) 2233 #define set_page_address(page, address) do { } while(0) 2234 #define page_address_init() do { } while(0) 2235 #endif 2236 2237 static inline void *folio_address(const struct folio *folio) 2238 { 2239 return page_address(&folio->page); 2240 } 2241 2242 extern pgoff_t __page_file_index(struct page *page); 2243 2244 /* 2245 * Return the pagecache index of the passed page. Regular pagecache pages 2246 * use ->index whereas swapcache pages use swp_offset(->private) 2247 */ 2248 static inline pgoff_t page_index(struct page *page) 2249 { 2250 if (unlikely(PageSwapCache(page))) 2251 return __page_file_index(page); 2252 return page->index; 2253 } 2254 2255 /* 2256 * Return true only if the page has been allocated with 2257 * ALLOC_NO_WATERMARKS and the low watermark was not 2258 * met implying that the system is under some pressure. 2259 */ 2260 static inline bool page_is_pfmemalloc(const struct page *page) 2261 { 2262 /* 2263 * lru.next has bit 1 set if the page is allocated from the 2264 * pfmemalloc reserves. Callers may simply overwrite it if 2265 * they do not need to preserve that information. 2266 */ 2267 return (uintptr_t)page->lru.next & BIT(1); 2268 } 2269 2270 /* 2271 * Return true only if the folio has been allocated with 2272 * ALLOC_NO_WATERMARKS and the low watermark was not 2273 * met implying that the system is under some pressure. 2274 */ 2275 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2276 { 2277 /* 2278 * lru.next has bit 1 set if the page is allocated from the 2279 * pfmemalloc reserves. Callers may simply overwrite it if 2280 * they do not need to preserve that information. 2281 */ 2282 return (uintptr_t)folio->lru.next & BIT(1); 2283 } 2284 2285 /* 2286 * Only to be called by the page allocator on a freshly allocated 2287 * page. 2288 */ 2289 static inline void set_page_pfmemalloc(struct page *page) 2290 { 2291 page->lru.next = (void *)BIT(1); 2292 } 2293 2294 static inline void clear_page_pfmemalloc(struct page *page) 2295 { 2296 page->lru.next = NULL; 2297 } 2298 2299 /* 2300 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2301 */ 2302 extern void pagefault_out_of_memory(void); 2303 2304 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2305 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2306 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2307 2308 /* 2309 * Parameter block passed down to zap_pte_range in exceptional cases. 2310 */ 2311 struct zap_details { 2312 struct folio *single_folio; /* Locked folio to be unmapped */ 2313 bool even_cows; /* Zap COWed private pages too? */ 2314 zap_flags_t zap_flags; /* Extra flags for zapping */ 2315 }; 2316 2317 /* 2318 * Whether to drop the pte markers, for example, the uffd-wp information for 2319 * file-backed memory. This should only be specified when we will completely 2320 * drop the page in the mm, either by truncation or unmapping of the vma. By 2321 * default, the flag is not set. 2322 */ 2323 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2324 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2325 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2326 2327 #ifdef CONFIG_SCHED_MM_CID 2328 void sched_mm_cid_before_execve(struct task_struct *t); 2329 void sched_mm_cid_after_execve(struct task_struct *t); 2330 void sched_mm_cid_fork(struct task_struct *t); 2331 void sched_mm_cid_exit_signals(struct task_struct *t); 2332 static inline int task_mm_cid(struct task_struct *t) 2333 { 2334 return t->mm_cid; 2335 } 2336 #else 2337 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2338 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2339 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2340 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2341 static inline int task_mm_cid(struct task_struct *t) 2342 { 2343 /* 2344 * Use the processor id as a fall-back when the mm cid feature is 2345 * disabled. This provides functional per-cpu data structure accesses 2346 * in user-space, althrough it won't provide the memory usage benefits. 2347 */ 2348 return raw_smp_processor_id(); 2349 } 2350 #endif 2351 2352 #ifdef CONFIG_MMU 2353 extern bool can_do_mlock(void); 2354 #else 2355 static inline bool can_do_mlock(void) { return false; } 2356 #endif 2357 extern int user_shm_lock(size_t, struct ucounts *); 2358 extern void user_shm_unlock(size_t, struct ucounts *); 2359 2360 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2361 pte_t pte); 2362 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2363 pte_t pte); 2364 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2365 unsigned long addr, pmd_t pmd); 2366 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2367 pmd_t pmd); 2368 2369 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2370 unsigned long size); 2371 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2372 unsigned long size, struct zap_details *details); 2373 static inline void zap_vma_pages(struct vm_area_struct *vma) 2374 { 2375 zap_page_range_single(vma, vma->vm_start, 2376 vma->vm_end - vma->vm_start, NULL); 2377 } 2378 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2379 struct vm_area_struct *start_vma, unsigned long start, 2380 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2381 2382 struct mmu_notifier_range; 2383 2384 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2385 unsigned long end, unsigned long floor, unsigned long ceiling); 2386 int 2387 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2388 int follow_pte(struct mm_struct *mm, unsigned long address, 2389 pte_t **ptepp, spinlock_t **ptlp); 2390 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2391 unsigned long *pfn); 2392 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2393 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2394 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2395 void *buf, int len, int write); 2396 2397 extern void truncate_pagecache(struct inode *inode, loff_t new); 2398 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2399 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2400 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2401 int generic_error_remove_folio(struct address_space *mapping, 2402 struct folio *folio); 2403 2404 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2405 unsigned long address, struct pt_regs *regs); 2406 2407 #ifdef CONFIG_MMU 2408 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2409 unsigned long address, unsigned int flags, 2410 struct pt_regs *regs); 2411 extern int fixup_user_fault(struct mm_struct *mm, 2412 unsigned long address, unsigned int fault_flags, 2413 bool *unlocked); 2414 void unmap_mapping_pages(struct address_space *mapping, 2415 pgoff_t start, pgoff_t nr, bool even_cows); 2416 void unmap_mapping_range(struct address_space *mapping, 2417 loff_t const holebegin, loff_t const holelen, int even_cows); 2418 #else 2419 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2420 unsigned long address, unsigned int flags, 2421 struct pt_regs *regs) 2422 { 2423 /* should never happen if there's no MMU */ 2424 BUG(); 2425 return VM_FAULT_SIGBUS; 2426 } 2427 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2428 unsigned int fault_flags, bool *unlocked) 2429 { 2430 /* should never happen if there's no MMU */ 2431 BUG(); 2432 return -EFAULT; 2433 } 2434 static inline void unmap_mapping_pages(struct address_space *mapping, 2435 pgoff_t start, pgoff_t nr, bool even_cows) { } 2436 static inline void unmap_mapping_range(struct address_space *mapping, 2437 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2438 #endif 2439 2440 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2441 loff_t const holebegin, loff_t const holelen) 2442 { 2443 unmap_mapping_range(mapping, holebegin, holelen, 0); 2444 } 2445 2446 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2447 unsigned long addr); 2448 2449 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2450 void *buf, int len, unsigned int gup_flags); 2451 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2452 void *buf, int len, unsigned int gup_flags); 2453 2454 long get_user_pages_remote(struct mm_struct *mm, 2455 unsigned long start, unsigned long nr_pages, 2456 unsigned int gup_flags, struct page **pages, 2457 int *locked); 2458 long pin_user_pages_remote(struct mm_struct *mm, 2459 unsigned long start, unsigned long nr_pages, 2460 unsigned int gup_flags, struct page **pages, 2461 int *locked); 2462 2463 /* 2464 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2465 */ 2466 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2467 unsigned long addr, 2468 int gup_flags, 2469 struct vm_area_struct **vmap) 2470 { 2471 struct page *page; 2472 struct vm_area_struct *vma; 2473 int got; 2474 2475 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2476 return ERR_PTR(-EINVAL); 2477 2478 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2479 2480 if (got < 0) 2481 return ERR_PTR(got); 2482 2483 vma = vma_lookup(mm, addr); 2484 if (WARN_ON_ONCE(!vma)) { 2485 put_page(page); 2486 return ERR_PTR(-EINVAL); 2487 } 2488 2489 *vmap = vma; 2490 return page; 2491 } 2492 2493 long get_user_pages(unsigned long start, unsigned long nr_pages, 2494 unsigned int gup_flags, struct page **pages); 2495 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2496 unsigned int gup_flags, struct page **pages); 2497 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2498 struct page **pages, unsigned int gup_flags); 2499 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2500 struct page **pages, unsigned int gup_flags); 2501 2502 int get_user_pages_fast(unsigned long start, int nr_pages, 2503 unsigned int gup_flags, struct page **pages); 2504 int pin_user_pages_fast(unsigned long start, int nr_pages, 2505 unsigned int gup_flags, struct page **pages); 2506 void folio_add_pin(struct folio *folio); 2507 2508 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2509 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2510 struct task_struct *task, bool bypass_rlim); 2511 2512 struct kvec; 2513 struct page *get_dump_page(unsigned long addr); 2514 2515 bool folio_mark_dirty(struct folio *folio); 2516 bool set_page_dirty(struct page *page); 2517 int set_page_dirty_lock(struct page *page); 2518 2519 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2520 2521 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2522 unsigned long old_addr, struct vm_area_struct *new_vma, 2523 unsigned long new_addr, unsigned long len, 2524 bool need_rmap_locks, bool for_stack); 2525 2526 /* 2527 * Flags used by change_protection(). For now we make it a bitmap so 2528 * that we can pass in multiple flags just like parameters. However 2529 * for now all the callers are only use one of the flags at the same 2530 * time. 2531 */ 2532 /* 2533 * Whether we should manually check if we can map individual PTEs writable, 2534 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2535 * PTEs automatically in a writable mapping. 2536 */ 2537 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2538 /* Whether this protection change is for NUMA hints */ 2539 #define MM_CP_PROT_NUMA (1UL << 1) 2540 /* Whether this change is for write protecting */ 2541 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2542 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2543 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2544 MM_CP_UFFD_WP_RESOLVE) 2545 2546 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2547 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2548 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2549 { 2550 /* 2551 * We want to check manually if we can change individual PTEs writable 2552 * if we can't do that automatically for all PTEs in a mapping. For 2553 * private mappings, that's always the case when we have write 2554 * permissions as we properly have to handle COW. 2555 */ 2556 if (vma->vm_flags & VM_SHARED) 2557 return vma_wants_writenotify(vma, vma->vm_page_prot); 2558 return !!(vma->vm_flags & VM_WRITE); 2559 2560 } 2561 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2562 pte_t pte); 2563 extern long change_protection(struct mmu_gather *tlb, 2564 struct vm_area_struct *vma, unsigned long start, 2565 unsigned long end, unsigned long cp_flags); 2566 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2567 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2568 unsigned long start, unsigned long end, unsigned long newflags); 2569 2570 /* 2571 * doesn't attempt to fault and will return short. 2572 */ 2573 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2574 unsigned int gup_flags, struct page **pages); 2575 2576 static inline bool get_user_page_fast_only(unsigned long addr, 2577 unsigned int gup_flags, struct page **pagep) 2578 { 2579 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2580 } 2581 /* 2582 * per-process(per-mm_struct) statistics. 2583 */ 2584 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2585 { 2586 return percpu_counter_read_positive(&mm->rss_stat[member]); 2587 } 2588 2589 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2590 2591 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2592 { 2593 percpu_counter_add(&mm->rss_stat[member], value); 2594 2595 mm_trace_rss_stat(mm, member); 2596 } 2597 2598 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2599 { 2600 percpu_counter_inc(&mm->rss_stat[member]); 2601 2602 mm_trace_rss_stat(mm, member); 2603 } 2604 2605 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2606 { 2607 percpu_counter_dec(&mm->rss_stat[member]); 2608 2609 mm_trace_rss_stat(mm, member); 2610 } 2611 2612 /* Optimized variant when page is already known not to be PageAnon */ 2613 static inline int mm_counter_file(struct page *page) 2614 { 2615 if (PageSwapBacked(page)) 2616 return MM_SHMEMPAGES; 2617 return MM_FILEPAGES; 2618 } 2619 2620 static inline int mm_counter(struct page *page) 2621 { 2622 if (PageAnon(page)) 2623 return MM_ANONPAGES; 2624 return mm_counter_file(page); 2625 } 2626 2627 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2628 { 2629 return get_mm_counter(mm, MM_FILEPAGES) + 2630 get_mm_counter(mm, MM_ANONPAGES) + 2631 get_mm_counter(mm, MM_SHMEMPAGES); 2632 } 2633 2634 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2635 { 2636 return max(mm->hiwater_rss, get_mm_rss(mm)); 2637 } 2638 2639 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2640 { 2641 return max(mm->hiwater_vm, mm->total_vm); 2642 } 2643 2644 static inline void update_hiwater_rss(struct mm_struct *mm) 2645 { 2646 unsigned long _rss = get_mm_rss(mm); 2647 2648 if ((mm)->hiwater_rss < _rss) 2649 (mm)->hiwater_rss = _rss; 2650 } 2651 2652 static inline void update_hiwater_vm(struct mm_struct *mm) 2653 { 2654 if (mm->hiwater_vm < mm->total_vm) 2655 mm->hiwater_vm = mm->total_vm; 2656 } 2657 2658 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2659 { 2660 mm->hiwater_rss = get_mm_rss(mm); 2661 } 2662 2663 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2664 struct mm_struct *mm) 2665 { 2666 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2667 2668 if (*maxrss < hiwater_rss) 2669 *maxrss = hiwater_rss; 2670 } 2671 2672 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2673 static inline int pte_special(pte_t pte) 2674 { 2675 return 0; 2676 } 2677 2678 static inline pte_t pte_mkspecial(pte_t pte) 2679 { 2680 return pte; 2681 } 2682 #endif 2683 2684 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2685 static inline int pte_devmap(pte_t pte) 2686 { 2687 return 0; 2688 } 2689 #endif 2690 2691 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2692 spinlock_t **ptl); 2693 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2694 spinlock_t **ptl) 2695 { 2696 pte_t *ptep; 2697 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2698 return ptep; 2699 } 2700 2701 #ifdef __PAGETABLE_P4D_FOLDED 2702 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2703 unsigned long address) 2704 { 2705 return 0; 2706 } 2707 #else 2708 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2709 #endif 2710 2711 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2712 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2713 unsigned long address) 2714 { 2715 return 0; 2716 } 2717 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2718 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2719 2720 #else 2721 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2722 2723 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2724 { 2725 if (mm_pud_folded(mm)) 2726 return; 2727 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2728 } 2729 2730 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2731 { 2732 if (mm_pud_folded(mm)) 2733 return; 2734 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2735 } 2736 #endif 2737 2738 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2739 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2740 unsigned long address) 2741 { 2742 return 0; 2743 } 2744 2745 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2746 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2747 2748 #else 2749 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2750 2751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2752 { 2753 if (mm_pmd_folded(mm)) 2754 return; 2755 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2756 } 2757 2758 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2759 { 2760 if (mm_pmd_folded(mm)) 2761 return; 2762 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2763 } 2764 #endif 2765 2766 #ifdef CONFIG_MMU 2767 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2768 { 2769 atomic_long_set(&mm->pgtables_bytes, 0); 2770 } 2771 2772 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2773 { 2774 return atomic_long_read(&mm->pgtables_bytes); 2775 } 2776 2777 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2778 { 2779 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2780 } 2781 2782 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2783 { 2784 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2785 } 2786 #else 2787 2788 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2789 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2790 { 2791 return 0; 2792 } 2793 2794 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2795 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2796 #endif 2797 2798 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2799 int __pte_alloc_kernel(pmd_t *pmd); 2800 2801 #if defined(CONFIG_MMU) 2802 2803 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2804 unsigned long address) 2805 { 2806 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2807 NULL : p4d_offset(pgd, address); 2808 } 2809 2810 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2811 unsigned long address) 2812 { 2813 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2814 NULL : pud_offset(p4d, address); 2815 } 2816 2817 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2818 { 2819 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2820 NULL: pmd_offset(pud, address); 2821 } 2822 #endif /* CONFIG_MMU */ 2823 2824 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2825 { 2826 return page_ptdesc(virt_to_page(x)); 2827 } 2828 2829 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2830 { 2831 return page_to_virt(ptdesc_page(pt)); 2832 } 2833 2834 static inline void *ptdesc_address(const struct ptdesc *pt) 2835 { 2836 return folio_address(ptdesc_folio(pt)); 2837 } 2838 2839 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2840 { 2841 return folio_test_reserved(ptdesc_folio(pt)); 2842 } 2843 2844 /** 2845 * pagetable_alloc - Allocate pagetables 2846 * @gfp: GFP flags 2847 * @order: desired pagetable order 2848 * 2849 * pagetable_alloc allocates memory for page tables as well as a page table 2850 * descriptor to describe that memory. 2851 * 2852 * Return: The ptdesc describing the allocated page tables. 2853 */ 2854 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order) 2855 { 2856 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2857 2858 return page_ptdesc(page); 2859 } 2860 2861 /** 2862 * pagetable_free - Free pagetables 2863 * @pt: The page table descriptor 2864 * 2865 * pagetable_free frees the memory of all page tables described by a page 2866 * table descriptor and the memory for the descriptor itself. 2867 */ 2868 static inline void pagetable_free(struct ptdesc *pt) 2869 { 2870 struct page *page = ptdesc_page(pt); 2871 2872 __free_pages(page, compound_order(page)); 2873 } 2874 2875 #if USE_SPLIT_PTE_PTLOCKS 2876 #if ALLOC_SPLIT_PTLOCKS 2877 void __init ptlock_cache_init(void); 2878 bool ptlock_alloc(struct ptdesc *ptdesc); 2879 void ptlock_free(struct ptdesc *ptdesc); 2880 2881 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2882 { 2883 return ptdesc->ptl; 2884 } 2885 #else /* ALLOC_SPLIT_PTLOCKS */ 2886 static inline void ptlock_cache_init(void) 2887 { 2888 } 2889 2890 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2891 { 2892 return true; 2893 } 2894 2895 static inline void ptlock_free(struct ptdesc *ptdesc) 2896 { 2897 } 2898 2899 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2900 { 2901 return &ptdesc->ptl; 2902 } 2903 #endif /* ALLOC_SPLIT_PTLOCKS */ 2904 2905 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2906 { 2907 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2908 } 2909 2910 static inline bool ptlock_init(struct ptdesc *ptdesc) 2911 { 2912 /* 2913 * prep_new_page() initialize page->private (and therefore page->ptl) 2914 * with 0. Make sure nobody took it in use in between. 2915 * 2916 * It can happen if arch try to use slab for page table allocation: 2917 * slab code uses page->slab_cache, which share storage with page->ptl. 2918 */ 2919 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2920 if (!ptlock_alloc(ptdesc)) 2921 return false; 2922 spin_lock_init(ptlock_ptr(ptdesc)); 2923 return true; 2924 } 2925 2926 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2927 /* 2928 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2929 */ 2930 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2931 { 2932 return &mm->page_table_lock; 2933 } 2934 static inline void ptlock_cache_init(void) {} 2935 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2936 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2937 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2938 2939 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2940 { 2941 struct folio *folio = ptdesc_folio(ptdesc); 2942 2943 if (!ptlock_init(ptdesc)) 2944 return false; 2945 __folio_set_pgtable(folio); 2946 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2947 return true; 2948 } 2949 2950 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2951 { 2952 struct folio *folio = ptdesc_folio(ptdesc); 2953 2954 ptlock_free(ptdesc); 2955 __folio_clear_pgtable(folio); 2956 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2957 } 2958 2959 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2960 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2961 { 2962 return __pte_offset_map(pmd, addr, NULL); 2963 } 2964 2965 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2966 unsigned long addr, spinlock_t **ptlp); 2967 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2968 unsigned long addr, spinlock_t **ptlp) 2969 { 2970 pte_t *pte; 2971 2972 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2973 return pte; 2974 } 2975 2976 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2977 unsigned long addr, spinlock_t **ptlp); 2978 2979 #define pte_unmap_unlock(pte, ptl) do { \ 2980 spin_unlock(ptl); \ 2981 pte_unmap(pte); \ 2982 } while (0) 2983 2984 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2985 2986 #define pte_alloc_map(mm, pmd, address) \ 2987 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2988 2989 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2990 (pte_alloc(mm, pmd) ? \ 2991 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2992 2993 #define pte_alloc_kernel(pmd, address) \ 2994 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2995 NULL: pte_offset_kernel(pmd, address)) 2996 2997 #if USE_SPLIT_PMD_PTLOCKS 2998 2999 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3000 { 3001 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3002 return virt_to_page((void *)((unsigned long) pmd & mask)); 3003 } 3004 3005 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3006 { 3007 return page_ptdesc(pmd_pgtable_page(pmd)); 3008 } 3009 3010 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3011 { 3012 return ptlock_ptr(pmd_ptdesc(pmd)); 3013 } 3014 3015 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3016 { 3017 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3018 ptdesc->pmd_huge_pte = NULL; 3019 #endif 3020 return ptlock_init(ptdesc); 3021 } 3022 3023 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3024 { 3025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3026 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3027 #endif 3028 ptlock_free(ptdesc); 3029 } 3030 3031 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3032 3033 #else 3034 3035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3036 { 3037 return &mm->page_table_lock; 3038 } 3039 3040 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3041 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3042 3043 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3044 3045 #endif 3046 3047 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3048 { 3049 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3050 spin_lock(ptl); 3051 return ptl; 3052 } 3053 3054 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3055 { 3056 struct folio *folio = ptdesc_folio(ptdesc); 3057 3058 if (!pmd_ptlock_init(ptdesc)) 3059 return false; 3060 __folio_set_pgtable(folio); 3061 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3062 return true; 3063 } 3064 3065 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3066 { 3067 struct folio *folio = ptdesc_folio(ptdesc); 3068 3069 pmd_ptlock_free(ptdesc); 3070 __folio_clear_pgtable(folio); 3071 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3072 } 3073 3074 /* 3075 * No scalability reason to split PUD locks yet, but follow the same pattern 3076 * as the PMD locks to make it easier if we decide to. The VM should not be 3077 * considered ready to switch to split PUD locks yet; there may be places 3078 * which need to be converted from page_table_lock. 3079 */ 3080 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3081 { 3082 return &mm->page_table_lock; 3083 } 3084 3085 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3086 { 3087 spinlock_t *ptl = pud_lockptr(mm, pud); 3088 3089 spin_lock(ptl); 3090 return ptl; 3091 } 3092 3093 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3094 { 3095 struct folio *folio = ptdesc_folio(ptdesc); 3096 3097 __folio_set_pgtable(folio); 3098 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3099 } 3100 3101 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3102 { 3103 struct folio *folio = ptdesc_folio(ptdesc); 3104 3105 __folio_clear_pgtable(folio); 3106 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3107 } 3108 3109 extern void __init pagecache_init(void); 3110 extern void free_initmem(void); 3111 3112 /* 3113 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3114 * into the buddy system. The freed pages will be poisoned with pattern 3115 * "poison" if it's within range [0, UCHAR_MAX]. 3116 * Return pages freed into the buddy system. 3117 */ 3118 extern unsigned long free_reserved_area(void *start, void *end, 3119 int poison, const char *s); 3120 3121 extern void adjust_managed_page_count(struct page *page, long count); 3122 3123 extern void reserve_bootmem_region(phys_addr_t start, 3124 phys_addr_t end, int nid); 3125 3126 /* Free the reserved page into the buddy system, so it gets managed. */ 3127 static inline void free_reserved_page(struct page *page) 3128 { 3129 ClearPageReserved(page); 3130 init_page_count(page); 3131 __free_page(page); 3132 adjust_managed_page_count(page, 1); 3133 } 3134 #define free_highmem_page(page) free_reserved_page(page) 3135 3136 static inline void mark_page_reserved(struct page *page) 3137 { 3138 SetPageReserved(page); 3139 adjust_managed_page_count(page, -1); 3140 } 3141 3142 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3143 { 3144 free_reserved_page(ptdesc_page(pt)); 3145 } 3146 3147 /* 3148 * Default method to free all the __init memory into the buddy system. 3149 * The freed pages will be poisoned with pattern "poison" if it's within 3150 * range [0, UCHAR_MAX]. 3151 * Return pages freed into the buddy system. 3152 */ 3153 static inline unsigned long free_initmem_default(int poison) 3154 { 3155 extern char __init_begin[], __init_end[]; 3156 3157 return free_reserved_area(&__init_begin, &__init_end, 3158 poison, "unused kernel image (initmem)"); 3159 } 3160 3161 static inline unsigned long get_num_physpages(void) 3162 { 3163 int nid; 3164 unsigned long phys_pages = 0; 3165 3166 for_each_online_node(nid) 3167 phys_pages += node_present_pages(nid); 3168 3169 return phys_pages; 3170 } 3171 3172 /* 3173 * Using memblock node mappings, an architecture may initialise its 3174 * zones, allocate the backing mem_map and account for memory holes in an 3175 * architecture independent manner. 3176 * 3177 * An architecture is expected to register range of page frames backed by 3178 * physical memory with memblock_add[_node]() before calling 3179 * free_area_init() passing in the PFN each zone ends at. At a basic 3180 * usage, an architecture is expected to do something like 3181 * 3182 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3183 * max_highmem_pfn}; 3184 * for_each_valid_physical_page_range() 3185 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3186 * free_area_init(max_zone_pfns); 3187 */ 3188 void free_area_init(unsigned long *max_zone_pfn); 3189 unsigned long node_map_pfn_alignment(void); 3190 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3191 unsigned long end_pfn); 3192 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3193 unsigned long end_pfn); 3194 extern void get_pfn_range_for_nid(unsigned int nid, 3195 unsigned long *start_pfn, unsigned long *end_pfn); 3196 3197 #ifndef CONFIG_NUMA 3198 static inline int early_pfn_to_nid(unsigned long pfn) 3199 { 3200 return 0; 3201 } 3202 #else 3203 /* please see mm/page_alloc.c */ 3204 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3205 #endif 3206 3207 extern void set_dma_reserve(unsigned long new_dma_reserve); 3208 extern void mem_init(void); 3209 extern void __init mmap_init(void); 3210 3211 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3212 static inline void show_mem(void) 3213 { 3214 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3215 } 3216 extern long si_mem_available(void); 3217 extern void si_meminfo(struct sysinfo * val); 3218 extern void si_meminfo_node(struct sysinfo *val, int nid); 3219 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3220 extern unsigned long arch_reserved_kernel_pages(void); 3221 #endif 3222 3223 extern __printf(3, 4) 3224 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3225 3226 extern void setup_per_cpu_pageset(void); 3227 3228 /* nommu.c */ 3229 extern atomic_long_t mmap_pages_allocated; 3230 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3231 3232 /* interval_tree.c */ 3233 void vma_interval_tree_insert(struct vm_area_struct *node, 3234 struct rb_root_cached *root); 3235 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3236 struct vm_area_struct *prev, 3237 struct rb_root_cached *root); 3238 void vma_interval_tree_remove(struct vm_area_struct *node, 3239 struct rb_root_cached *root); 3240 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3241 unsigned long start, unsigned long last); 3242 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3243 unsigned long start, unsigned long last); 3244 3245 #define vma_interval_tree_foreach(vma, root, start, last) \ 3246 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3247 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3248 3249 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3250 struct rb_root_cached *root); 3251 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3252 struct rb_root_cached *root); 3253 struct anon_vma_chain * 3254 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3255 unsigned long start, unsigned long last); 3256 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3257 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3258 #ifdef CONFIG_DEBUG_VM_RB 3259 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3260 #endif 3261 3262 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3263 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3264 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3265 3266 /* mmap.c */ 3267 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3268 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3269 unsigned long start, unsigned long end, pgoff_t pgoff, 3270 struct vm_area_struct *next); 3271 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3272 unsigned long start, unsigned long end, pgoff_t pgoff); 3273 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3274 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3275 extern void unlink_file_vma(struct vm_area_struct *); 3276 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3277 unsigned long addr, unsigned long len, pgoff_t pgoff, 3278 bool *need_rmap_locks); 3279 extern void exit_mmap(struct mm_struct *); 3280 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3281 struct vm_area_struct *prev, 3282 struct vm_area_struct *vma, 3283 unsigned long start, unsigned long end, 3284 unsigned long vm_flags, 3285 struct mempolicy *policy, 3286 struct vm_userfaultfd_ctx uffd_ctx, 3287 struct anon_vma_name *anon_name); 3288 3289 /* We are about to modify the VMA's flags. */ 3290 static inline struct vm_area_struct 3291 *vma_modify_flags(struct vma_iterator *vmi, 3292 struct vm_area_struct *prev, 3293 struct vm_area_struct *vma, 3294 unsigned long start, unsigned long end, 3295 unsigned long new_flags) 3296 { 3297 return vma_modify(vmi, prev, vma, start, end, new_flags, 3298 vma_policy(vma), vma->vm_userfaultfd_ctx, 3299 anon_vma_name(vma)); 3300 } 3301 3302 /* We are about to modify the VMA's flags and/or anon_name. */ 3303 static inline struct vm_area_struct 3304 *vma_modify_flags_name(struct vma_iterator *vmi, 3305 struct vm_area_struct *prev, 3306 struct vm_area_struct *vma, 3307 unsigned long start, 3308 unsigned long end, 3309 unsigned long new_flags, 3310 struct anon_vma_name *new_name) 3311 { 3312 return vma_modify(vmi, prev, vma, start, end, new_flags, 3313 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3314 } 3315 3316 /* We are about to modify the VMA's memory policy. */ 3317 static inline struct vm_area_struct 3318 *vma_modify_policy(struct vma_iterator *vmi, 3319 struct vm_area_struct *prev, 3320 struct vm_area_struct *vma, 3321 unsigned long start, unsigned long end, 3322 struct mempolicy *new_pol) 3323 { 3324 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3325 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3326 } 3327 3328 /* We are about to modify the VMA's flags and/or uffd context. */ 3329 static inline struct vm_area_struct 3330 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3331 struct vm_area_struct *prev, 3332 struct vm_area_struct *vma, 3333 unsigned long start, unsigned long end, 3334 unsigned long new_flags, 3335 struct vm_userfaultfd_ctx new_ctx) 3336 { 3337 return vma_modify(vmi, prev, vma, start, end, new_flags, 3338 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3339 } 3340 3341 static inline int check_data_rlimit(unsigned long rlim, 3342 unsigned long new, 3343 unsigned long start, 3344 unsigned long end_data, 3345 unsigned long start_data) 3346 { 3347 if (rlim < RLIM_INFINITY) { 3348 if (((new - start) + (end_data - start_data)) > rlim) 3349 return -ENOSPC; 3350 } 3351 3352 return 0; 3353 } 3354 3355 extern int mm_take_all_locks(struct mm_struct *mm); 3356 extern void mm_drop_all_locks(struct mm_struct *mm); 3357 3358 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3359 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3360 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3361 extern struct file *get_task_exe_file(struct task_struct *task); 3362 3363 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3364 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3365 3366 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3367 const struct vm_special_mapping *sm); 3368 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3369 unsigned long addr, unsigned long len, 3370 unsigned long flags, 3371 const struct vm_special_mapping *spec); 3372 /* This is an obsolete alternative to _install_special_mapping. */ 3373 extern int install_special_mapping(struct mm_struct *mm, 3374 unsigned long addr, unsigned long len, 3375 unsigned long flags, struct page **pages); 3376 3377 unsigned long randomize_stack_top(unsigned long stack_top); 3378 unsigned long randomize_page(unsigned long start, unsigned long range); 3379 3380 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3381 3382 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3383 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3384 struct list_head *uf); 3385 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3386 unsigned long len, unsigned long prot, unsigned long flags, 3387 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3388 struct list_head *uf); 3389 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3390 unsigned long start, size_t len, struct list_head *uf, 3391 bool unlock); 3392 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3393 struct list_head *uf); 3394 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3395 3396 #ifdef CONFIG_MMU 3397 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3398 unsigned long start, unsigned long end, 3399 struct list_head *uf, bool unlock); 3400 extern int __mm_populate(unsigned long addr, unsigned long len, 3401 int ignore_errors); 3402 static inline void mm_populate(unsigned long addr, unsigned long len) 3403 { 3404 /* Ignore errors */ 3405 (void) __mm_populate(addr, len, 1); 3406 } 3407 #else 3408 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3409 #endif 3410 3411 /* This takes the mm semaphore itself */ 3412 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3413 extern int vm_munmap(unsigned long, size_t); 3414 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3415 unsigned long, unsigned long, 3416 unsigned long, unsigned long); 3417 3418 struct vm_unmapped_area_info { 3419 #define VM_UNMAPPED_AREA_TOPDOWN 1 3420 unsigned long flags; 3421 unsigned long length; 3422 unsigned long low_limit; 3423 unsigned long high_limit; 3424 unsigned long align_mask; 3425 unsigned long align_offset; 3426 }; 3427 3428 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3429 3430 /* truncate.c */ 3431 extern void truncate_inode_pages(struct address_space *, loff_t); 3432 extern void truncate_inode_pages_range(struct address_space *, 3433 loff_t lstart, loff_t lend); 3434 extern void truncate_inode_pages_final(struct address_space *); 3435 3436 /* generic vm_area_ops exported for stackable file systems */ 3437 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3438 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3439 pgoff_t start_pgoff, pgoff_t end_pgoff); 3440 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3441 3442 extern unsigned long stack_guard_gap; 3443 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3444 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3445 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3446 3447 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3448 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3449 3450 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3451 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3452 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3453 struct vm_area_struct **pprev); 3454 3455 /* 3456 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3457 * NULL if none. Assume start_addr < end_addr. 3458 */ 3459 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3460 unsigned long start_addr, unsigned long end_addr); 3461 3462 /** 3463 * vma_lookup() - Find a VMA at a specific address 3464 * @mm: The process address space. 3465 * @addr: The user address. 3466 * 3467 * Return: The vm_area_struct at the given address, %NULL otherwise. 3468 */ 3469 static inline 3470 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3471 { 3472 return mtree_load(&mm->mm_mt, addr); 3473 } 3474 3475 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3476 { 3477 if (vma->vm_flags & VM_GROWSDOWN) 3478 return stack_guard_gap; 3479 3480 /* See reasoning around the VM_SHADOW_STACK definition */ 3481 if (vma->vm_flags & VM_SHADOW_STACK) 3482 return PAGE_SIZE; 3483 3484 return 0; 3485 } 3486 3487 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3488 { 3489 unsigned long gap = stack_guard_start_gap(vma); 3490 unsigned long vm_start = vma->vm_start; 3491 3492 vm_start -= gap; 3493 if (vm_start > vma->vm_start) 3494 vm_start = 0; 3495 return vm_start; 3496 } 3497 3498 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3499 { 3500 unsigned long vm_end = vma->vm_end; 3501 3502 if (vma->vm_flags & VM_GROWSUP) { 3503 vm_end += stack_guard_gap; 3504 if (vm_end < vma->vm_end) 3505 vm_end = -PAGE_SIZE; 3506 } 3507 return vm_end; 3508 } 3509 3510 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3511 { 3512 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3513 } 3514 3515 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3516 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3517 unsigned long vm_start, unsigned long vm_end) 3518 { 3519 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3520 3521 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3522 vma = NULL; 3523 3524 return vma; 3525 } 3526 3527 static inline bool range_in_vma(struct vm_area_struct *vma, 3528 unsigned long start, unsigned long end) 3529 { 3530 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3531 } 3532 3533 #ifdef CONFIG_MMU 3534 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3535 void vma_set_page_prot(struct vm_area_struct *vma); 3536 #else 3537 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3538 { 3539 return __pgprot(0); 3540 } 3541 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3542 { 3543 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3544 } 3545 #endif 3546 3547 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3548 3549 #ifdef CONFIG_NUMA_BALANCING 3550 unsigned long change_prot_numa(struct vm_area_struct *vma, 3551 unsigned long start, unsigned long end); 3552 #endif 3553 3554 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3555 unsigned long addr); 3556 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3557 unsigned long pfn, unsigned long size, pgprot_t); 3558 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3559 unsigned long pfn, unsigned long size, pgprot_t prot); 3560 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3561 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3562 struct page **pages, unsigned long *num); 3563 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3564 unsigned long num); 3565 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3566 unsigned long num); 3567 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3568 unsigned long pfn); 3569 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3570 unsigned long pfn, pgprot_t pgprot); 3571 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3572 pfn_t pfn); 3573 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3574 unsigned long addr, pfn_t pfn); 3575 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3576 3577 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3578 unsigned long addr, struct page *page) 3579 { 3580 int err = vm_insert_page(vma, addr, page); 3581 3582 if (err == -ENOMEM) 3583 return VM_FAULT_OOM; 3584 if (err < 0 && err != -EBUSY) 3585 return VM_FAULT_SIGBUS; 3586 3587 return VM_FAULT_NOPAGE; 3588 } 3589 3590 #ifndef io_remap_pfn_range 3591 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3592 unsigned long addr, unsigned long pfn, 3593 unsigned long size, pgprot_t prot) 3594 { 3595 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3596 } 3597 #endif 3598 3599 static inline vm_fault_t vmf_error(int err) 3600 { 3601 if (err == -ENOMEM) 3602 return VM_FAULT_OOM; 3603 else if (err == -EHWPOISON) 3604 return VM_FAULT_HWPOISON; 3605 return VM_FAULT_SIGBUS; 3606 } 3607 3608 /* 3609 * Convert errno to return value for ->page_mkwrite() calls. 3610 * 3611 * This should eventually be merged with vmf_error() above, but will need a 3612 * careful audit of all vmf_error() callers. 3613 */ 3614 static inline vm_fault_t vmf_fs_error(int err) 3615 { 3616 if (err == 0) 3617 return VM_FAULT_LOCKED; 3618 if (err == -EFAULT || err == -EAGAIN) 3619 return VM_FAULT_NOPAGE; 3620 if (err == -ENOMEM) 3621 return VM_FAULT_OOM; 3622 /* -ENOSPC, -EDQUOT, -EIO ... */ 3623 return VM_FAULT_SIGBUS; 3624 } 3625 3626 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3627 unsigned int foll_flags); 3628 3629 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3630 { 3631 if (vm_fault & VM_FAULT_OOM) 3632 return -ENOMEM; 3633 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3634 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3635 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3636 return -EFAULT; 3637 return 0; 3638 } 3639 3640 /* 3641 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3642 * a (NUMA hinting) fault is required. 3643 */ 3644 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3645 unsigned int flags) 3646 { 3647 /* 3648 * If callers don't want to honor NUMA hinting faults, no need to 3649 * determine if we would actually have to trigger a NUMA hinting fault. 3650 */ 3651 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3652 return true; 3653 3654 /* 3655 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3656 * 3657 * Requiring a fault here even for inaccessible VMAs would mean that 3658 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3659 * refuses to process NUMA hinting faults in inaccessible VMAs. 3660 */ 3661 return !vma_is_accessible(vma); 3662 } 3663 3664 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3665 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3666 unsigned long size, pte_fn_t fn, void *data); 3667 extern int apply_to_existing_page_range(struct mm_struct *mm, 3668 unsigned long address, unsigned long size, 3669 pte_fn_t fn, void *data); 3670 3671 #ifdef CONFIG_PAGE_POISONING 3672 extern void __kernel_poison_pages(struct page *page, int numpages); 3673 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3674 extern bool _page_poisoning_enabled_early; 3675 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3676 static inline bool page_poisoning_enabled(void) 3677 { 3678 return _page_poisoning_enabled_early; 3679 } 3680 /* 3681 * For use in fast paths after init_mem_debugging() has run, or when a 3682 * false negative result is not harmful when called too early. 3683 */ 3684 static inline bool page_poisoning_enabled_static(void) 3685 { 3686 return static_branch_unlikely(&_page_poisoning_enabled); 3687 } 3688 static inline void kernel_poison_pages(struct page *page, int numpages) 3689 { 3690 if (page_poisoning_enabled_static()) 3691 __kernel_poison_pages(page, numpages); 3692 } 3693 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3694 { 3695 if (page_poisoning_enabled_static()) 3696 __kernel_unpoison_pages(page, numpages); 3697 } 3698 #else 3699 static inline bool page_poisoning_enabled(void) { return false; } 3700 static inline bool page_poisoning_enabled_static(void) { return false; } 3701 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3702 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3703 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3704 #endif 3705 3706 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3707 static inline bool want_init_on_alloc(gfp_t flags) 3708 { 3709 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3710 &init_on_alloc)) 3711 return true; 3712 return flags & __GFP_ZERO; 3713 } 3714 3715 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3716 static inline bool want_init_on_free(void) 3717 { 3718 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3719 &init_on_free); 3720 } 3721 3722 extern bool _debug_pagealloc_enabled_early; 3723 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3724 3725 static inline bool debug_pagealloc_enabled(void) 3726 { 3727 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3728 _debug_pagealloc_enabled_early; 3729 } 3730 3731 /* 3732 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3733 * or when a false negative result is not harmful when called too early. 3734 */ 3735 static inline bool debug_pagealloc_enabled_static(void) 3736 { 3737 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3738 return false; 3739 3740 return static_branch_unlikely(&_debug_pagealloc_enabled); 3741 } 3742 3743 /* 3744 * To support DEBUG_PAGEALLOC architecture must ensure that 3745 * __kernel_map_pages() never fails 3746 */ 3747 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3748 #ifdef CONFIG_DEBUG_PAGEALLOC 3749 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3750 { 3751 if (debug_pagealloc_enabled_static()) 3752 __kernel_map_pages(page, numpages, 1); 3753 } 3754 3755 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3756 { 3757 if (debug_pagealloc_enabled_static()) 3758 __kernel_map_pages(page, numpages, 0); 3759 } 3760 3761 extern unsigned int _debug_guardpage_minorder; 3762 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3763 3764 static inline unsigned int debug_guardpage_minorder(void) 3765 { 3766 return _debug_guardpage_minorder; 3767 } 3768 3769 static inline bool debug_guardpage_enabled(void) 3770 { 3771 return static_branch_unlikely(&_debug_guardpage_enabled); 3772 } 3773 3774 static inline bool page_is_guard(struct page *page) 3775 { 3776 if (!debug_guardpage_enabled()) 3777 return false; 3778 3779 return PageGuard(page); 3780 } 3781 3782 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3783 int migratetype); 3784 static inline bool set_page_guard(struct zone *zone, struct page *page, 3785 unsigned int order, int migratetype) 3786 { 3787 if (!debug_guardpage_enabled()) 3788 return false; 3789 return __set_page_guard(zone, page, order, migratetype); 3790 } 3791 3792 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3793 int migratetype); 3794 static inline void clear_page_guard(struct zone *zone, struct page *page, 3795 unsigned int order, int migratetype) 3796 { 3797 if (!debug_guardpage_enabled()) 3798 return; 3799 __clear_page_guard(zone, page, order, migratetype); 3800 } 3801 3802 #else /* CONFIG_DEBUG_PAGEALLOC */ 3803 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3804 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3805 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3806 static inline bool debug_guardpage_enabled(void) { return false; } 3807 static inline bool page_is_guard(struct page *page) { return false; } 3808 static inline bool set_page_guard(struct zone *zone, struct page *page, 3809 unsigned int order, int migratetype) { return false; } 3810 static inline void clear_page_guard(struct zone *zone, struct page *page, 3811 unsigned int order, int migratetype) {} 3812 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3813 3814 #ifdef __HAVE_ARCH_GATE_AREA 3815 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3816 extern int in_gate_area_no_mm(unsigned long addr); 3817 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3818 #else 3819 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3820 { 3821 return NULL; 3822 } 3823 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3824 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3825 { 3826 return 0; 3827 } 3828 #endif /* __HAVE_ARCH_GATE_AREA */ 3829 3830 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3831 3832 #ifdef CONFIG_SYSCTL 3833 extern int sysctl_drop_caches; 3834 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3835 loff_t *); 3836 #endif 3837 3838 void drop_slab(void); 3839 3840 #ifndef CONFIG_MMU 3841 #define randomize_va_space 0 3842 #else 3843 extern int randomize_va_space; 3844 #endif 3845 3846 const char * arch_vma_name(struct vm_area_struct *vma); 3847 #ifdef CONFIG_MMU 3848 void print_vma_addr(char *prefix, unsigned long rip); 3849 #else 3850 static inline void print_vma_addr(char *prefix, unsigned long rip) 3851 { 3852 } 3853 #endif 3854 3855 void *sparse_buffer_alloc(unsigned long size); 3856 struct page * __populate_section_memmap(unsigned long pfn, 3857 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3858 struct dev_pagemap *pgmap); 3859 void pmd_init(void *addr); 3860 void pud_init(void *addr); 3861 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3862 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3863 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3864 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3865 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3866 struct vmem_altmap *altmap, struct page *reuse); 3867 void *vmemmap_alloc_block(unsigned long size, int node); 3868 struct vmem_altmap; 3869 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3870 struct vmem_altmap *altmap); 3871 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3872 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3873 unsigned long addr, unsigned long next); 3874 int vmemmap_check_pmd(pmd_t *pmd, int node, 3875 unsigned long addr, unsigned long next); 3876 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3877 int node, struct vmem_altmap *altmap); 3878 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3879 int node, struct vmem_altmap *altmap); 3880 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3881 struct vmem_altmap *altmap); 3882 void vmemmap_populate_print_last(void); 3883 #ifdef CONFIG_MEMORY_HOTPLUG 3884 void vmemmap_free(unsigned long start, unsigned long end, 3885 struct vmem_altmap *altmap); 3886 #endif 3887 3888 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3889 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3890 { 3891 /* number of pfns from base where pfn_to_page() is valid */ 3892 if (altmap) 3893 return altmap->reserve + altmap->free; 3894 return 0; 3895 } 3896 3897 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3898 unsigned long nr_pfns) 3899 { 3900 altmap->alloc -= nr_pfns; 3901 } 3902 #else 3903 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3904 { 3905 return 0; 3906 } 3907 3908 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3909 unsigned long nr_pfns) 3910 { 3911 } 3912 #endif 3913 3914 #define VMEMMAP_RESERVE_NR 2 3915 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3916 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3917 struct dev_pagemap *pgmap) 3918 { 3919 unsigned long nr_pages; 3920 unsigned long nr_vmemmap_pages; 3921 3922 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3923 return false; 3924 3925 nr_pages = pgmap_vmemmap_nr(pgmap); 3926 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3927 /* 3928 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3929 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3930 */ 3931 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3932 } 3933 /* 3934 * If we don't have an architecture override, use the generic rule 3935 */ 3936 #ifndef vmemmap_can_optimize 3937 #define vmemmap_can_optimize __vmemmap_can_optimize 3938 #endif 3939 3940 #else 3941 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3942 struct dev_pagemap *pgmap) 3943 { 3944 return false; 3945 } 3946 #endif 3947 3948 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3949 unsigned long nr_pages); 3950 3951 enum mf_flags { 3952 MF_COUNT_INCREASED = 1 << 0, 3953 MF_ACTION_REQUIRED = 1 << 1, 3954 MF_MUST_KILL = 1 << 2, 3955 MF_SOFT_OFFLINE = 1 << 3, 3956 MF_UNPOISON = 1 << 4, 3957 MF_SW_SIMULATED = 1 << 5, 3958 MF_NO_RETRY = 1 << 6, 3959 MF_MEM_PRE_REMOVE = 1 << 7, 3960 }; 3961 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3962 unsigned long count, int mf_flags); 3963 extern int memory_failure(unsigned long pfn, int flags); 3964 extern void memory_failure_queue_kick(int cpu); 3965 extern int unpoison_memory(unsigned long pfn); 3966 extern void shake_page(struct page *p); 3967 extern atomic_long_t num_poisoned_pages __read_mostly; 3968 extern int soft_offline_page(unsigned long pfn, int flags); 3969 #ifdef CONFIG_MEMORY_FAILURE 3970 /* 3971 * Sysfs entries for memory failure handling statistics. 3972 */ 3973 extern const struct attribute_group memory_failure_attr_group; 3974 extern void memory_failure_queue(unsigned long pfn, int flags); 3975 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3976 bool *migratable_cleared); 3977 void num_poisoned_pages_inc(unsigned long pfn); 3978 void num_poisoned_pages_sub(unsigned long pfn, long i); 3979 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3980 #else 3981 static inline void memory_failure_queue(unsigned long pfn, int flags) 3982 { 3983 } 3984 3985 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3986 bool *migratable_cleared) 3987 { 3988 return 0; 3989 } 3990 3991 static inline void num_poisoned_pages_inc(unsigned long pfn) 3992 { 3993 } 3994 3995 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3996 { 3997 } 3998 #endif 3999 4000 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 4001 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 4002 struct vm_area_struct *vma, struct list_head *to_kill, 4003 unsigned long ksm_addr); 4004 #endif 4005 4006 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4007 extern void memblk_nr_poison_inc(unsigned long pfn); 4008 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4009 #else 4010 static inline void memblk_nr_poison_inc(unsigned long pfn) 4011 { 4012 } 4013 4014 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4015 { 4016 } 4017 #endif 4018 4019 #ifndef arch_memory_failure 4020 static inline int arch_memory_failure(unsigned long pfn, int flags) 4021 { 4022 return -ENXIO; 4023 } 4024 #endif 4025 4026 #ifndef arch_is_platform_page 4027 static inline bool arch_is_platform_page(u64 paddr) 4028 { 4029 return false; 4030 } 4031 #endif 4032 4033 /* 4034 * Error handlers for various types of pages. 4035 */ 4036 enum mf_result { 4037 MF_IGNORED, /* Error: cannot be handled */ 4038 MF_FAILED, /* Error: handling failed */ 4039 MF_DELAYED, /* Will be handled later */ 4040 MF_RECOVERED, /* Successfully recovered */ 4041 }; 4042 4043 enum mf_action_page_type { 4044 MF_MSG_KERNEL, 4045 MF_MSG_KERNEL_HIGH_ORDER, 4046 MF_MSG_SLAB, 4047 MF_MSG_DIFFERENT_COMPOUND, 4048 MF_MSG_HUGE, 4049 MF_MSG_FREE_HUGE, 4050 MF_MSG_UNMAP_FAILED, 4051 MF_MSG_DIRTY_SWAPCACHE, 4052 MF_MSG_CLEAN_SWAPCACHE, 4053 MF_MSG_DIRTY_MLOCKED_LRU, 4054 MF_MSG_CLEAN_MLOCKED_LRU, 4055 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4056 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4057 MF_MSG_DIRTY_LRU, 4058 MF_MSG_CLEAN_LRU, 4059 MF_MSG_TRUNCATED_LRU, 4060 MF_MSG_BUDDY, 4061 MF_MSG_DAX, 4062 MF_MSG_UNSPLIT_THP, 4063 MF_MSG_UNKNOWN, 4064 }; 4065 4066 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4067 extern void clear_huge_page(struct page *page, 4068 unsigned long addr_hint, 4069 unsigned int pages_per_huge_page); 4070 int copy_user_large_folio(struct folio *dst, struct folio *src, 4071 unsigned long addr_hint, 4072 struct vm_area_struct *vma); 4073 long copy_folio_from_user(struct folio *dst_folio, 4074 const void __user *usr_src, 4075 bool allow_pagefault); 4076 4077 /** 4078 * vma_is_special_huge - Are transhuge page-table entries considered special? 4079 * @vma: Pointer to the struct vm_area_struct to consider 4080 * 4081 * Whether transhuge page-table entries are considered "special" following 4082 * the definition in vm_normal_page(). 4083 * 4084 * Return: true if transhuge page-table entries should be considered special, 4085 * false otherwise. 4086 */ 4087 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4088 { 4089 return vma_is_dax(vma) || (vma->vm_file && 4090 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4091 } 4092 4093 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4094 4095 #if MAX_NUMNODES > 1 4096 void __init setup_nr_node_ids(void); 4097 #else 4098 static inline void setup_nr_node_ids(void) {} 4099 #endif 4100 4101 extern int memcmp_pages(struct page *page1, struct page *page2); 4102 4103 static inline int pages_identical(struct page *page1, struct page *page2) 4104 { 4105 return !memcmp_pages(page1, page2); 4106 } 4107 4108 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4109 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4110 pgoff_t first_index, pgoff_t nr, 4111 pgoff_t bitmap_pgoff, 4112 unsigned long *bitmap, 4113 pgoff_t *start, 4114 pgoff_t *end); 4115 4116 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4117 pgoff_t first_index, pgoff_t nr); 4118 #endif 4119 4120 extern int sysctl_nr_trim_pages; 4121 4122 #ifdef CONFIG_PRINTK 4123 void mem_dump_obj(void *object); 4124 #else 4125 static inline void mem_dump_obj(void *object) {} 4126 #endif 4127 4128 /** 4129 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4130 * handle them. 4131 * @seals: the seals to check 4132 * @vma: the vma to operate on 4133 * 4134 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4135 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4136 */ 4137 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4138 { 4139 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4140 /* 4141 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4142 * write seals are active. 4143 */ 4144 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4145 return -EPERM; 4146 4147 /* 4148 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4149 * MAP_SHARED and read-only, take care to not allow mprotect to 4150 * revert protections on such mappings. Do this only for shared 4151 * mappings. For private mappings, don't need to mask 4152 * VM_MAYWRITE as we still want them to be COW-writable. 4153 */ 4154 if (vma->vm_flags & VM_SHARED) 4155 vm_flags_clear(vma, VM_MAYWRITE); 4156 } 4157 4158 return 0; 4159 } 4160 4161 #ifdef CONFIG_ANON_VMA_NAME 4162 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4163 unsigned long len_in, 4164 struct anon_vma_name *anon_name); 4165 #else 4166 static inline int 4167 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4168 unsigned long len_in, struct anon_vma_name *anon_name) { 4169 return 0; 4170 } 4171 #endif 4172 4173 #ifdef CONFIG_UNACCEPTED_MEMORY 4174 4175 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4176 void accept_memory(phys_addr_t start, phys_addr_t end); 4177 4178 #else 4179 4180 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4181 phys_addr_t end) 4182 { 4183 return false; 4184 } 4185 4186 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4187 { 4188 } 4189 4190 #endif 4191 4192 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4193 { 4194 phys_addr_t paddr = pfn << PAGE_SHIFT; 4195 4196 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4197 } 4198 4199 #endif /* _LINUX_MM_H */ 4200