xref: /linux-6.15/include/linux/mm.h (revision f074158a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330 
331 #ifdef CONFIG_ARCH_HAS_PKEYS
332 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
333 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
334 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
335 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
336 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
337 #ifdef CONFIG_PPC
338 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
339 #else
340 # define VM_PKEY_BIT4  0
341 #endif
342 #endif /* CONFIG_ARCH_HAS_PKEYS */
343 
344 #ifdef CONFIG_X86_USER_SHADOW_STACK
345 /*
346  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347  * support core mm.
348  *
349  * These VMAs will get a single end guard page. This helps userspace protect
350  * itself from attacks. A single page is enough for current shadow stack archs
351  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352  * for more details on the guard size.
353  */
354 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
355 #else
356 # define VM_SHADOW_STACK	VM_NONE
357 #endif
358 
359 #if defined(CONFIG_X86)
360 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC)
362 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP	VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR	VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR	VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
373 #endif
374 
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
378 #else
379 # define VM_MTE		VM_NONE
380 # define VM_MTE_ALLOWED	VM_NONE
381 #endif
382 
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP	VM_NONE
385 #endif
386 
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT	38
389 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR		VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393 
394 /*
395  * This flag is used to connect VFIO to arch specific KVM code. It
396  * indicates that the memory under this VMA is safe for use with any
397  * non-cachable memory type inside KVM. Some VFIO devices, on some
398  * platforms, are thought to be unsafe and can cause machine crashes
399  * if KVM does not lock down the memory type.
400  */
401 #ifdef CONFIG_64BIT
402 #define VM_ALLOW_ANY_UNCACHED_BIT	39
403 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #else
405 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
406 #endif
407 
408 /* Bits set in the VMA until the stack is in its final location */
409 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
410 
411 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
412 
413 /* Common data flag combinations */
414 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
415 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
416 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
417 				 VM_MAYWRITE | VM_MAYEXEC)
418 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
419 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
420 
421 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
422 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
423 #endif
424 
425 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
426 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
427 #endif
428 
429 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
430 
431 #ifdef CONFIG_STACK_GROWSUP
432 #define VM_STACK	VM_GROWSUP
433 #define VM_STACK_EARLY	VM_GROWSDOWN
434 #else
435 #define VM_STACK	VM_GROWSDOWN
436 #define VM_STACK_EARLY	0
437 #endif
438 
439 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
440 
441 /* VMA basic access permission flags */
442 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
443 
444 
445 /*
446  * Special vmas that are non-mergable, non-mlock()able.
447  */
448 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
449 
450 /* This mask prevents VMA from being scanned with khugepaged */
451 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
452 
453 /* This mask defines which mm->def_flags a process can inherit its parent */
454 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
455 
456 /* This mask represents all the VMA flag bits used by mlock */
457 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
458 
459 /* Arch-specific flags to clear when updating VM flags on protection change */
460 #ifndef VM_ARCH_CLEAR
461 # define VM_ARCH_CLEAR	VM_NONE
462 #endif
463 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
464 
465 /*
466  * mapping from the currently active vm_flags protection bits (the
467  * low four bits) to a page protection mask..
468  */
469 
470 /*
471  * The default fault flags that should be used by most of the
472  * arch-specific page fault handlers.
473  */
474 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
475 			     FAULT_FLAG_KILLABLE | \
476 			     FAULT_FLAG_INTERRUPTIBLE)
477 
478 /**
479  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
480  * @flags: Fault flags.
481  *
482  * This is mostly used for places where we want to try to avoid taking
483  * the mmap_lock for too long a time when waiting for another condition
484  * to change, in which case we can try to be polite to release the
485  * mmap_lock in the first round to avoid potential starvation of other
486  * processes that would also want the mmap_lock.
487  *
488  * Return: true if the page fault allows retry and this is the first
489  * attempt of the fault handling; false otherwise.
490  */
491 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
492 {
493 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
494 	    (!(flags & FAULT_FLAG_TRIED));
495 }
496 
497 #define FAULT_FLAG_TRACE \
498 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
499 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
500 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
501 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
502 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
503 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
504 	{ FAULT_FLAG_USER,		"USER" }, \
505 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
506 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
507 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
508 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
509 
510 /*
511  * vm_fault is filled by the pagefault handler and passed to the vma's
512  * ->fault function. The vma's ->fault is responsible for returning a bitmask
513  * of VM_FAULT_xxx flags that give details about how the fault was handled.
514  *
515  * MM layer fills up gfp_mask for page allocations but fault handler might
516  * alter it if its implementation requires a different allocation context.
517  *
518  * pgoff should be used in favour of virtual_address, if possible.
519  */
520 struct vm_fault {
521 	const struct {
522 		struct vm_area_struct *vma;	/* Target VMA */
523 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
524 		pgoff_t pgoff;			/* Logical page offset based on vma */
525 		unsigned long address;		/* Faulting virtual address - masked */
526 		unsigned long real_address;	/* Faulting virtual address - unmasked */
527 	};
528 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
529 					 * XXX: should really be 'const' */
530 	pmd_t *pmd;			/* Pointer to pmd entry matching
531 					 * the 'address' */
532 	pud_t *pud;			/* Pointer to pud entry matching
533 					 * the 'address'
534 					 */
535 	union {
536 		pte_t orig_pte;		/* Value of PTE at the time of fault */
537 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
538 					 * used by PMD fault only.
539 					 */
540 	};
541 
542 	struct page *cow_page;		/* Page handler may use for COW fault */
543 	struct page *page;		/* ->fault handlers should return a
544 					 * page here, unless VM_FAULT_NOPAGE
545 					 * is set (which is also implied by
546 					 * VM_FAULT_ERROR).
547 					 */
548 	/* These three entries are valid only while holding ptl lock */
549 	pte_t *pte;			/* Pointer to pte entry matching
550 					 * the 'address'. NULL if the page
551 					 * table hasn't been allocated.
552 					 */
553 	spinlock_t *ptl;		/* Page table lock.
554 					 * Protects pte page table if 'pte'
555 					 * is not NULL, otherwise pmd.
556 					 */
557 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
558 					 * vm_ops->map_pages() sets up a page
559 					 * table from atomic context.
560 					 * do_fault_around() pre-allocates
561 					 * page table to avoid allocation from
562 					 * atomic context.
563 					 */
564 };
565 
566 /*
567  * These are the virtual MM functions - opening of an area, closing and
568  * unmapping it (needed to keep files on disk up-to-date etc), pointer
569  * to the functions called when a no-page or a wp-page exception occurs.
570  */
571 struct vm_operations_struct {
572 	void (*open)(struct vm_area_struct * area);
573 	/**
574 	 * @close: Called when the VMA is being removed from the MM.
575 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
576 	 */
577 	void (*close)(struct vm_area_struct * area);
578 	/* Called any time before splitting to check if it's allowed */
579 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
580 	int (*mremap)(struct vm_area_struct *area);
581 	/*
582 	 * Called by mprotect() to make driver-specific permission
583 	 * checks before mprotect() is finalised.   The VMA must not
584 	 * be modified.  Returns 0 if mprotect() can proceed.
585 	 */
586 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
587 			unsigned long end, unsigned long newflags);
588 	vm_fault_t (*fault)(struct vm_fault *vmf);
589 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
590 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
591 			pgoff_t start_pgoff, pgoff_t end_pgoff);
592 	unsigned long (*pagesize)(struct vm_area_struct * area);
593 
594 	/* notification that a previously read-only page is about to become
595 	 * writable, if an error is returned it will cause a SIGBUS */
596 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
597 
598 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
599 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
600 
601 	/* called by access_process_vm when get_user_pages() fails, typically
602 	 * for use by special VMAs. See also generic_access_phys() for a generic
603 	 * implementation useful for any iomem mapping.
604 	 */
605 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
606 		      void *buf, int len, int write);
607 
608 	/* Called by the /proc/PID/maps code to ask the vma whether it
609 	 * has a special name.  Returning non-NULL will also cause this
610 	 * vma to be dumped unconditionally. */
611 	const char *(*name)(struct vm_area_struct *vma);
612 
613 #ifdef CONFIG_NUMA
614 	/*
615 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
616 	 * to hold the policy upon return.  Caller should pass NULL @new to
617 	 * remove a policy and fall back to surrounding context--i.e. do not
618 	 * install a MPOL_DEFAULT policy, nor the task or system default
619 	 * mempolicy.
620 	 */
621 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
622 
623 	/*
624 	 * get_policy() op must add reference [mpol_get()] to any policy at
625 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
626 	 * in mm/mempolicy.c will do this automatically.
627 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
628 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
629 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
630 	 * must return NULL--i.e., do not "fallback" to task or system default
631 	 * policy.
632 	 */
633 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
634 					unsigned long addr, pgoff_t *ilx);
635 #endif
636 	/*
637 	 * Called by vm_normal_page() for special PTEs to find the
638 	 * page for @addr.  This is useful if the default behavior
639 	 * (using pte_page()) would not find the correct page.
640 	 */
641 	struct page *(*find_special_page)(struct vm_area_struct *vma,
642 					  unsigned long addr);
643 };
644 
645 #ifdef CONFIG_NUMA_BALANCING
646 static inline void vma_numab_state_init(struct vm_area_struct *vma)
647 {
648 	vma->numab_state = NULL;
649 }
650 static inline void vma_numab_state_free(struct vm_area_struct *vma)
651 {
652 	kfree(vma->numab_state);
653 }
654 #else
655 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
656 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
657 #endif /* CONFIG_NUMA_BALANCING */
658 
659 #ifdef CONFIG_PER_VMA_LOCK
660 /*
661  * Try to read-lock a vma. The function is allowed to occasionally yield false
662  * locked result to avoid performance overhead, in which case we fall back to
663  * using mmap_lock. The function should never yield false unlocked result.
664  */
665 static inline bool vma_start_read(struct vm_area_struct *vma)
666 {
667 	/*
668 	 * Check before locking. A race might cause false locked result.
669 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
670 	 * ACQUIRE semantics, because this is just a lockless check whose result
671 	 * we don't rely on for anything - the mm_lock_seq read against which we
672 	 * need ordering is below.
673 	 */
674 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
675 		return false;
676 
677 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
678 		return false;
679 
680 	/*
681 	 * Overflow might produce false locked result.
682 	 * False unlocked result is impossible because we modify and check
683 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
684 	 * modification invalidates all existing locks.
685 	 *
686 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
687 	 * racing with vma_end_write_all(), we only start reading from the VMA
688 	 * after it has been unlocked.
689 	 * This pairs with RELEASE semantics in vma_end_write_all().
690 	 */
691 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
692 		up_read(&vma->vm_lock->lock);
693 		return false;
694 	}
695 	return true;
696 }
697 
698 static inline void vma_end_read(struct vm_area_struct *vma)
699 {
700 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
701 	up_read(&vma->vm_lock->lock);
702 	rcu_read_unlock();
703 }
704 
705 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
706 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
707 {
708 	mmap_assert_write_locked(vma->vm_mm);
709 
710 	/*
711 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
712 	 * mm->mm_lock_seq can't be concurrently modified.
713 	 */
714 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
715 	return (vma->vm_lock_seq == *mm_lock_seq);
716 }
717 
718 /*
719  * Begin writing to a VMA.
720  * Exclude concurrent readers under the per-VMA lock until the currently
721  * write-locked mmap_lock is dropped or downgraded.
722  */
723 static inline void vma_start_write(struct vm_area_struct *vma)
724 {
725 	int mm_lock_seq;
726 
727 	if (__is_vma_write_locked(vma, &mm_lock_seq))
728 		return;
729 
730 	down_write(&vma->vm_lock->lock);
731 	/*
732 	 * We should use WRITE_ONCE() here because we can have concurrent reads
733 	 * from the early lockless pessimistic check in vma_start_read().
734 	 * We don't really care about the correctness of that early check, but
735 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
736 	 */
737 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
738 	up_write(&vma->vm_lock->lock);
739 }
740 
741 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
742 {
743 	int mm_lock_seq;
744 
745 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
746 }
747 
748 static inline void vma_assert_locked(struct vm_area_struct *vma)
749 {
750 	if (!rwsem_is_locked(&vma->vm_lock->lock))
751 		vma_assert_write_locked(vma);
752 }
753 
754 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
755 {
756 	/* When detaching vma should be write-locked */
757 	if (detached)
758 		vma_assert_write_locked(vma);
759 	vma->detached = detached;
760 }
761 
762 static inline void release_fault_lock(struct vm_fault *vmf)
763 {
764 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
765 		vma_end_read(vmf->vma);
766 	else
767 		mmap_read_unlock(vmf->vma->vm_mm);
768 }
769 
770 static inline void assert_fault_locked(struct vm_fault *vmf)
771 {
772 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
773 		vma_assert_locked(vmf->vma);
774 	else
775 		mmap_assert_locked(vmf->vma->vm_mm);
776 }
777 
778 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 					  unsigned long address);
780 
781 #else /* CONFIG_PER_VMA_LOCK */
782 
783 static inline bool vma_start_read(struct vm_area_struct *vma)
784 		{ return false; }
785 static inline void vma_end_read(struct vm_area_struct *vma) {}
786 static inline void vma_start_write(struct vm_area_struct *vma) {}
787 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
788 		{ mmap_assert_write_locked(vma->vm_mm); }
789 static inline void vma_mark_detached(struct vm_area_struct *vma,
790 				     bool detached) {}
791 
792 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
793 		unsigned long address)
794 {
795 	return NULL;
796 }
797 
798 static inline void release_fault_lock(struct vm_fault *vmf)
799 {
800 	mmap_read_unlock(vmf->vma->vm_mm);
801 }
802 
803 static inline void assert_fault_locked(struct vm_fault *vmf)
804 {
805 	mmap_assert_locked(vmf->vma->vm_mm);
806 }
807 
808 #endif /* CONFIG_PER_VMA_LOCK */
809 
810 extern const struct vm_operations_struct vma_dummy_vm_ops;
811 
812 /*
813  * WARNING: vma_init does not initialize vma->vm_lock.
814  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
815  */
816 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
817 {
818 	memset(vma, 0, sizeof(*vma));
819 	vma->vm_mm = mm;
820 	vma->vm_ops = &vma_dummy_vm_ops;
821 	INIT_LIST_HEAD(&vma->anon_vma_chain);
822 	vma_mark_detached(vma, false);
823 	vma_numab_state_init(vma);
824 }
825 
826 /* Use when VMA is not part of the VMA tree and needs no locking */
827 static inline void vm_flags_init(struct vm_area_struct *vma,
828 				 vm_flags_t flags)
829 {
830 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
831 }
832 
833 /*
834  * Use when VMA is part of the VMA tree and modifications need coordination
835  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
836  * it should be locked explicitly beforehand.
837  */
838 static inline void vm_flags_reset(struct vm_area_struct *vma,
839 				  vm_flags_t flags)
840 {
841 	vma_assert_write_locked(vma);
842 	vm_flags_init(vma, flags);
843 }
844 
845 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
846 				       vm_flags_t flags)
847 {
848 	vma_assert_write_locked(vma);
849 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
850 }
851 
852 static inline void vm_flags_set(struct vm_area_struct *vma,
853 				vm_flags_t flags)
854 {
855 	vma_start_write(vma);
856 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
857 }
858 
859 static inline void vm_flags_clear(struct vm_area_struct *vma,
860 				  vm_flags_t flags)
861 {
862 	vma_start_write(vma);
863 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
864 }
865 
866 /*
867  * Use only if VMA is not part of the VMA tree or has no other users and
868  * therefore needs no locking.
869  */
870 static inline void __vm_flags_mod(struct vm_area_struct *vma,
871 				  vm_flags_t set, vm_flags_t clear)
872 {
873 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
874 }
875 
876 /*
877  * Use only when the order of set/clear operations is unimportant, otherwise
878  * use vm_flags_{set|clear} explicitly.
879  */
880 static inline void vm_flags_mod(struct vm_area_struct *vma,
881 				vm_flags_t set, vm_flags_t clear)
882 {
883 	vma_start_write(vma);
884 	__vm_flags_mod(vma, set, clear);
885 }
886 
887 static inline void vma_set_anonymous(struct vm_area_struct *vma)
888 {
889 	vma->vm_ops = NULL;
890 }
891 
892 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
893 {
894 	return !vma->vm_ops;
895 }
896 
897 /*
898  * Indicate if the VMA is a heap for the given task; for
899  * /proc/PID/maps that is the heap of the main task.
900  */
901 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
902 {
903 	return vma->vm_start < vma->vm_mm->brk &&
904 		vma->vm_end > vma->vm_mm->start_brk;
905 }
906 
907 /*
908  * Indicate if the VMA is a stack for the given task; for
909  * /proc/PID/maps that is the stack of the main task.
910  */
911 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
912 {
913 	/*
914 	 * We make no effort to guess what a given thread considers to be
915 	 * its "stack".  It's not even well-defined for programs written
916 	 * languages like Go.
917 	 */
918 	return vma->vm_start <= vma->vm_mm->start_stack &&
919 		vma->vm_end >= vma->vm_mm->start_stack;
920 }
921 
922 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
923 {
924 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
925 
926 	if (!maybe_stack)
927 		return false;
928 
929 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
930 						VM_STACK_INCOMPLETE_SETUP)
931 		return true;
932 
933 	return false;
934 }
935 
936 static inline bool vma_is_foreign(struct vm_area_struct *vma)
937 {
938 	if (!current->mm)
939 		return true;
940 
941 	if (current->mm != vma->vm_mm)
942 		return true;
943 
944 	return false;
945 }
946 
947 static inline bool vma_is_accessible(struct vm_area_struct *vma)
948 {
949 	return vma->vm_flags & VM_ACCESS_FLAGS;
950 }
951 
952 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
953 {
954 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
955 		(VM_SHARED | VM_MAYWRITE);
956 }
957 
958 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
959 {
960 	return is_shared_maywrite(vma->vm_flags);
961 }
962 
963 static inline
964 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
965 {
966 	return mas_find(&vmi->mas, max - 1);
967 }
968 
969 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
970 {
971 	/*
972 	 * Uses mas_find() to get the first VMA when the iterator starts.
973 	 * Calling mas_next() could skip the first entry.
974 	 */
975 	return mas_find(&vmi->mas, ULONG_MAX);
976 }
977 
978 static inline
979 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
980 {
981 	return mas_next_range(&vmi->mas, ULONG_MAX);
982 }
983 
984 
985 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
986 {
987 	return mas_prev(&vmi->mas, 0);
988 }
989 
990 static inline
991 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
992 {
993 	return mas_prev_range(&vmi->mas, 0);
994 }
995 
996 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
997 {
998 	return vmi->mas.index;
999 }
1000 
1001 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1002 {
1003 	return vmi->mas.last + 1;
1004 }
1005 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1006 				      unsigned long count)
1007 {
1008 	return mas_expected_entries(&vmi->mas, count);
1009 }
1010 
1011 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1012 			unsigned long start, unsigned long end, gfp_t gfp)
1013 {
1014 	__mas_set_range(&vmi->mas, start, end - 1);
1015 	mas_store_gfp(&vmi->mas, NULL, gfp);
1016 	if (unlikely(mas_is_err(&vmi->mas)))
1017 		return -ENOMEM;
1018 
1019 	return 0;
1020 }
1021 
1022 /* Free any unused preallocations */
1023 static inline void vma_iter_free(struct vma_iterator *vmi)
1024 {
1025 	mas_destroy(&vmi->mas);
1026 }
1027 
1028 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1029 				      struct vm_area_struct *vma)
1030 {
1031 	vmi->mas.index = vma->vm_start;
1032 	vmi->mas.last = vma->vm_end - 1;
1033 	mas_store(&vmi->mas, vma);
1034 	if (unlikely(mas_is_err(&vmi->mas)))
1035 		return -ENOMEM;
1036 
1037 	return 0;
1038 }
1039 
1040 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1041 {
1042 	mas_pause(&vmi->mas);
1043 }
1044 
1045 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1046 {
1047 	mas_set(&vmi->mas, addr);
1048 }
1049 
1050 #define for_each_vma(__vmi, __vma)					\
1051 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1052 
1053 /* The MM code likes to work with exclusive end addresses */
1054 #define for_each_vma_range(__vmi, __vma, __end)				\
1055 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1056 
1057 #ifdef CONFIG_SHMEM
1058 /*
1059  * The vma_is_shmem is not inline because it is used only by slow
1060  * paths in userfault.
1061  */
1062 bool vma_is_shmem(struct vm_area_struct *vma);
1063 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1064 #else
1065 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1066 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1067 #endif
1068 
1069 int vma_is_stack_for_current(struct vm_area_struct *vma);
1070 
1071 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1072 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1073 
1074 struct mmu_gather;
1075 struct inode;
1076 
1077 /*
1078  * compound_order() can be called without holding a reference, which means
1079  * that niceties like page_folio() don't work.  These callers should be
1080  * prepared to handle wild return values.  For example, PG_head may be
1081  * set before the order is initialised, or this may be a tail page.
1082  * See compaction.c for some good examples.
1083  */
1084 static inline unsigned int compound_order(struct page *page)
1085 {
1086 	struct folio *folio = (struct folio *)page;
1087 
1088 	if (!test_bit(PG_head, &folio->flags))
1089 		return 0;
1090 	return folio->_flags_1 & 0xff;
1091 }
1092 
1093 /**
1094  * folio_order - The allocation order of a folio.
1095  * @folio: The folio.
1096  *
1097  * A folio is composed of 2^order pages.  See get_order() for the definition
1098  * of order.
1099  *
1100  * Return: The order of the folio.
1101  */
1102 static inline unsigned int folio_order(struct folio *folio)
1103 {
1104 	if (!folio_test_large(folio))
1105 		return 0;
1106 	return folio->_flags_1 & 0xff;
1107 }
1108 
1109 #include <linux/huge_mm.h>
1110 
1111 /*
1112  * Methods to modify the page usage count.
1113  *
1114  * What counts for a page usage:
1115  * - cache mapping   (page->mapping)
1116  * - private data    (page->private)
1117  * - page mapped in a task's page tables, each mapping
1118  *   is counted separately
1119  *
1120  * Also, many kernel routines increase the page count before a critical
1121  * routine so they can be sure the page doesn't go away from under them.
1122  */
1123 
1124 /*
1125  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1126  */
1127 static inline int put_page_testzero(struct page *page)
1128 {
1129 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1130 	return page_ref_dec_and_test(page);
1131 }
1132 
1133 static inline int folio_put_testzero(struct folio *folio)
1134 {
1135 	return put_page_testzero(&folio->page);
1136 }
1137 
1138 /*
1139  * Try to grab a ref unless the page has a refcount of zero, return false if
1140  * that is the case.
1141  * This can be called when MMU is off so it must not access
1142  * any of the virtual mappings.
1143  */
1144 static inline bool get_page_unless_zero(struct page *page)
1145 {
1146 	return page_ref_add_unless(page, 1, 0);
1147 }
1148 
1149 static inline struct folio *folio_get_nontail_page(struct page *page)
1150 {
1151 	if (unlikely(!get_page_unless_zero(page)))
1152 		return NULL;
1153 	return (struct folio *)page;
1154 }
1155 
1156 extern int page_is_ram(unsigned long pfn);
1157 
1158 enum {
1159 	REGION_INTERSECTS,
1160 	REGION_DISJOINT,
1161 	REGION_MIXED,
1162 };
1163 
1164 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1165 		      unsigned long desc);
1166 
1167 /* Support for virtually mapped pages */
1168 struct page *vmalloc_to_page(const void *addr);
1169 unsigned long vmalloc_to_pfn(const void *addr);
1170 
1171 /*
1172  * Determine if an address is within the vmalloc range
1173  *
1174  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1175  * is no special casing required.
1176  */
1177 #ifdef CONFIG_MMU
1178 extern bool is_vmalloc_addr(const void *x);
1179 extern int is_vmalloc_or_module_addr(const void *x);
1180 #else
1181 static inline bool is_vmalloc_addr(const void *x)
1182 {
1183 	return false;
1184 }
1185 static inline int is_vmalloc_or_module_addr(const void *x)
1186 {
1187 	return 0;
1188 }
1189 #endif
1190 
1191 /*
1192  * How many times the entire folio is mapped as a single unit (eg by a
1193  * PMD or PUD entry).  This is probably not what you want, except for
1194  * debugging purposes - it does not include PTE-mapped sub-pages; look
1195  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1196  */
1197 static inline int folio_entire_mapcount(struct folio *folio)
1198 {
1199 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1200 	return atomic_read(&folio->_entire_mapcount) + 1;
1201 }
1202 
1203 /*
1204  * The atomic page->_mapcount, starts from -1: so that transitions
1205  * both from it and to it can be tracked, using atomic_inc_and_test
1206  * and atomic_add_negative(-1).
1207  */
1208 static inline void page_mapcount_reset(struct page *page)
1209 {
1210 	atomic_set(&(page)->_mapcount, -1);
1211 }
1212 
1213 /**
1214  * page_mapcount() - Number of times this precise page is mapped.
1215  * @page: The page.
1216  *
1217  * The number of times this page is mapped.  If this page is part of
1218  * a large folio, it includes the number of times this page is mapped
1219  * as part of that folio.
1220  *
1221  * The result is undefined for pages which cannot be mapped into userspace.
1222  * For example SLAB or special types of pages. See function page_has_type().
1223  * They use this field in struct page differently.
1224  */
1225 static inline int page_mapcount(struct page *page)
1226 {
1227 	int mapcount = atomic_read(&page->_mapcount) + 1;
1228 
1229 	if (unlikely(PageCompound(page)))
1230 		mapcount += folio_entire_mapcount(page_folio(page));
1231 
1232 	return mapcount;
1233 }
1234 
1235 int folio_total_mapcount(struct folio *folio);
1236 
1237 /**
1238  * folio_mapcount() - Calculate the number of mappings of this folio.
1239  * @folio: The folio.
1240  *
1241  * A large folio tracks both how many times the entire folio is mapped,
1242  * and how many times each individual page in the folio is mapped.
1243  * This function calculates the total number of times the folio is
1244  * mapped.
1245  *
1246  * Return: The number of times this folio is mapped.
1247  */
1248 static inline int folio_mapcount(struct folio *folio)
1249 {
1250 	if (likely(!folio_test_large(folio)))
1251 		return atomic_read(&folio->_mapcount) + 1;
1252 	return folio_total_mapcount(folio);
1253 }
1254 
1255 static inline int total_mapcount(struct page *page)
1256 {
1257 	if (likely(!PageCompound(page)))
1258 		return atomic_read(&page->_mapcount) + 1;
1259 	return folio_total_mapcount(page_folio(page));
1260 }
1261 
1262 static inline bool folio_large_is_mapped(struct folio *folio)
1263 {
1264 	/*
1265 	 * Reading _entire_mapcount below could be omitted if hugetlb
1266 	 * participated in incrementing nr_pages_mapped when compound mapped.
1267 	 */
1268 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1269 		atomic_read(&folio->_entire_mapcount) >= 0;
1270 }
1271 
1272 /**
1273  * folio_mapped - Is this folio mapped into userspace?
1274  * @folio: The folio.
1275  *
1276  * Return: True if any page in this folio is referenced by user page tables.
1277  */
1278 static inline bool folio_mapped(struct folio *folio)
1279 {
1280 	if (likely(!folio_test_large(folio)))
1281 		return atomic_read(&folio->_mapcount) >= 0;
1282 	return folio_large_is_mapped(folio);
1283 }
1284 
1285 /*
1286  * Return true if this page is mapped into pagetables.
1287  * For compound page it returns true if any sub-page of compound page is mapped,
1288  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1289  */
1290 static inline bool page_mapped(struct page *page)
1291 {
1292 	if (likely(!PageCompound(page)))
1293 		return atomic_read(&page->_mapcount) >= 0;
1294 	return folio_large_is_mapped(page_folio(page));
1295 }
1296 
1297 static inline struct page *virt_to_head_page(const void *x)
1298 {
1299 	struct page *page = virt_to_page(x);
1300 
1301 	return compound_head(page);
1302 }
1303 
1304 static inline struct folio *virt_to_folio(const void *x)
1305 {
1306 	struct page *page = virt_to_page(x);
1307 
1308 	return page_folio(page);
1309 }
1310 
1311 void __folio_put(struct folio *folio);
1312 
1313 void put_pages_list(struct list_head *pages);
1314 
1315 void split_page(struct page *page, unsigned int order);
1316 void folio_copy(struct folio *dst, struct folio *src);
1317 
1318 unsigned long nr_free_buffer_pages(void);
1319 
1320 void destroy_large_folio(struct folio *folio);
1321 
1322 /* Returns the number of bytes in this potentially compound page. */
1323 static inline unsigned long page_size(struct page *page)
1324 {
1325 	return PAGE_SIZE << compound_order(page);
1326 }
1327 
1328 /* Returns the number of bits needed for the number of bytes in a page */
1329 static inline unsigned int page_shift(struct page *page)
1330 {
1331 	return PAGE_SHIFT + compound_order(page);
1332 }
1333 
1334 /**
1335  * thp_order - Order of a transparent huge page.
1336  * @page: Head page of a transparent huge page.
1337  */
1338 static inline unsigned int thp_order(struct page *page)
1339 {
1340 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1341 	return compound_order(page);
1342 }
1343 
1344 /**
1345  * thp_size - Size of a transparent huge page.
1346  * @page: Head page of a transparent huge page.
1347  *
1348  * Return: Number of bytes in this page.
1349  */
1350 static inline unsigned long thp_size(struct page *page)
1351 {
1352 	return PAGE_SIZE << thp_order(page);
1353 }
1354 
1355 #ifdef CONFIG_MMU
1356 /*
1357  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1358  * servicing faults for write access.  In the normal case, do always want
1359  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1360  * that do not have writing enabled, when used by access_process_vm.
1361  */
1362 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1363 {
1364 	if (likely(vma->vm_flags & VM_WRITE))
1365 		pte = pte_mkwrite(pte, vma);
1366 	return pte;
1367 }
1368 
1369 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1370 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1371 		struct page *page, unsigned int nr, unsigned long addr);
1372 
1373 vm_fault_t finish_fault(struct vm_fault *vmf);
1374 #endif
1375 
1376 /*
1377  * Multiple processes may "see" the same page. E.g. for untouched
1378  * mappings of /dev/null, all processes see the same page full of
1379  * zeroes, and text pages of executables and shared libraries have
1380  * only one copy in memory, at most, normally.
1381  *
1382  * For the non-reserved pages, page_count(page) denotes a reference count.
1383  *   page_count() == 0 means the page is free. page->lru is then used for
1384  *   freelist management in the buddy allocator.
1385  *   page_count() > 0  means the page has been allocated.
1386  *
1387  * Pages are allocated by the slab allocator in order to provide memory
1388  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1389  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1390  * unless a particular usage is carefully commented. (the responsibility of
1391  * freeing the kmalloc memory is the caller's, of course).
1392  *
1393  * A page may be used by anyone else who does a __get_free_page().
1394  * In this case, page_count still tracks the references, and should only
1395  * be used through the normal accessor functions. The top bits of page->flags
1396  * and page->virtual store page management information, but all other fields
1397  * are unused and could be used privately, carefully. The management of this
1398  * page is the responsibility of the one who allocated it, and those who have
1399  * subsequently been given references to it.
1400  *
1401  * The other pages (we may call them "pagecache pages") are completely
1402  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1403  * The following discussion applies only to them.
1404  *
1405  * A pagecache page contains an opaque `private' member, which belongs to the
1406  * page's address_space. Usually, this is the address of a circular list of
1407  * the page's disk buffers. PG_private must be set to tell the VM to call
1408  * into the filesystem to release these pages.
1409  *
1410  * A page may belong to an inode's memory mapping. In this case, page->mapping
1411  * is the pointer to the inode, and page->index is the file offset of the page,
1412  * in units of PAGE_SIZE.
1413  *
1414  * If pagecache pages are not associated with an inode, they are said to be
1415  * anonymous pages. These may become associated with the swapcache, and in that
1416  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1417  *
1418  * In either case (swapcache or inode backed), the pagecache itself holds one
1419  * reference to the page. Setting PG_private should also increment the
1420  * refcount. The each user mapping also has a reference to the page.
1421  *
1422  * The pagecache pages are stored in a per-mapping radix tree, which is
1423  * rooted at mapping->i_pages, and indexed by offset.
1424  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1425  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1426  *
1427  * All pagecache pages may be subject to I/O:
1428  * - inode pages may need to be read from disk,
1429  * - inode pages which have been modified and are MAP_SHARED may need
1430  *   to be written back to the inode on disk,
1431  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1432  *   modified may need to be swapped out to swap space and (later) to be read
1433  *   back into memory.
1434  */
1435 
1436 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1437 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1438 
1439 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1440 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1441 {
1442 	if (!static_branch_unlikely(&devmap_managed_key))
1443 		return false;
1444 	if (!is_zone_device_page(page))
1445 		return false;
1446 	return __put_devmap_managed_page_refs(page, refs);
1447 }
1448 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1449 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1450 {
1451 	return false;
1452 }
1453 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1454 
1455 static inline bool put_devmap_managed_page(struct page *page)
1456 {
1457 	return put_devmap_managed_page_refs(page, 1);
1458 }
1459 
1460 /* 127: arbitrary random number, small enough to assemble well */
1461 #define folio_ref_zero_or_close_to_overflow(folio) \
1462 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1463 
1464 /**
1465  * folio_get - Increment the reference count on a folio.
1466  * @folio: The folio.
1467  *
1468  * Context: May be called in any context, as long as you know that
1469  * you have a refcount on the folio.  If you do not already have one,
1470  * folio_try_get() may be the right interface for you to use.
1471  */
1472 static inline void folio_get(struct folio *folio)
1473 {
1474 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1475 	folio_ref_inc(folio);
1476 }
1477 
1478 static inline void get_page(struct page *page)
1479 {
1480 	folio_get(page_folio(page));
1481 }
1482 
1483 static inline __must_check bool try_get_page(struct page *page)
1484 {
1485 	page = compound_head(page);
1486 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1487 		return false;
1488 	page_ref_inc(page);
1489 	return true;
1490 }
1491 
1492 /**
1493  * folio_put - Decrement the reference count on a folio.
1494  * @folio: The folio.
1495  *
1496  * If the folio's reference count reaches zero, the memory will be
1497  * released back to the page allocator and may be used by another
1498  * allocation immediately.  Do not access the memory or the struct folio
1499  * after calling folio_put() unless you can be sure that it wasn't the
1500  * last reference.
1501  *
1502  * Context: May be called in process or interrupt context, but not in NMI
1503  * context.  May be called while holding a spinlock.
1504  */
1505 static inline void folio_put(struct folio *folio)
1506 {
1507 	if (folio_put_testzero(folio))
1508 		__folio_put(folio);
1509 }
1510 
1511 /**
1512  * folio_put_refs - Reduce the reference count on a folio.
1513  * @folio: The folio.
1514  * @refs: The amount to subtract from the folio's reference count.
1515  *
1516  * If the folio's reference count reaches zero, the memory will be
1517  * released back to the page allocator and may be used by another
1518  * allocation immediately.  Do not access the memory or the struct folio
1519  * after calling folio_put_refs() unless you can be sure that these weren't
1520  * the last references.
1521  *
1522  * Context: May be called in process or interrupt context, but not in NMI
1523  * context.  May be called while holding a spinlock.
1524  */
1525 static inline void folio_put_refs(struct folio *folio, int refs)
1526 {
1527 	if (folio_ref_sub_and_test(folio, refs))
1528 		__folio_put(folio);
1529 }
1530 
1531 /*
1532  * union release_pages_arg - an array of pages or folios
1533  *
1534  * release_pages() releases a simple array of multiple pages, and
1535  * accepts various different forms of said page array: either
1536  * a regular old boring array of pages, an array of folios, or
1537  * an array of encoded page pointers.
1538  *
1539  * The transparent union syntax for this kind of "any of these
1540  * argument types" is all kinds of ugly, so look away.
1541  */
1542 typedef union {
1543 	struct page **pages;
1544 	struct folio **folios;
1545 	struct encoded_page **encoded_pages;
1546 } release_pages_arg __attribute__ ((__transparent_union__));
1547 
1548 void release_pages(release_pages_arg, int nr);
1549 
1550 /**
1551  * folios_put - Decrement the reference count on an array of folios.
1552  * @folios: The folios.
1553  * @nr: How many folios there are.
1554  *
1555  * Like folio_put(), but for an array of folios.  This is more efficient
1556  * than writing the loop yourself as it will optimise the locks which
1557  * need to be taken if the folios are freed.
1558  *
1559  * Context: May be called in process or interrupt context, but not in NMI
1560  * context.  May be called while holding a spinlock.
1561  */
1562 static inline void folios_put(struct folio **folios, unsigned int nr)
1563 {
1564 	release_pages(folios, nr);
1565 }
1566 
1567 static inline void put_page(struct page *page)
1568 {
1569 	struct folio *folio = page_folio(page);
1570 
1571 	/*
1572 	 * For some devmap managed pages we need to catch refcount transition
1573 	 * from 2 to 1:
1574 	 */
1575 	if (put_devmap_managed_page(&folio->page))
1576 		return;
1577 	folio_put(folio);
1578 }
1579 
1580 /*
1581  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1582  * the page's refcount so that two separate items are tracked: the original page
1583  * reference count, and also a new count of how many pin_user_pages() calls were
1584  * made against the page. ("gup-pinned" is another term for the latter).
1585  *
1586  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1587  * distinct from normal pages. As such, the unpin_user_page() call (and its
1588  * variants) must be used in order to release gup-pinned pages.
1589  *
1590  * Choice of value:
1591  *
1592  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1593  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1594  * simpler, due to the fact that adding an even power of two to the page
1595  * refcount has the effect of using only the upper N bits, for the code that
1596  * counts up using the bias value. This means that the lower bits are left for
1597  * the exclusive use of the original code that increments and decrements by one
1598  * (or at least, by much smaller values than the bias value).
1599  *
1600  * Of course, once the lower bits overflow into the upper bits (and this is
1601  * OK, because subtraction recovers the original values), then visual inspection
1602  * no longer suffices to directly view the separate counts. However, for normal
1603  * applications that don't have huge page reference counts, this won't be an
1604  * issue.
1605  *
1606  * Locking: the lockless algorithm described in folio_try_get_rcu()
1607  * provides safe operation for get_user_pages(), page_mkclean() and
1608  * other calls that race to set up page table entries.
1609  */
1610 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1611 
1612 void unpin_user_page(struct page *page);
1613 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1614 				 bool make_dirty);
1615 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1616 				      bool make_dirty);
1617 void unpin_user_pages(struct page **pages, unsigned long npages);
1618 
1619 static inline bool is_cow_mapping(vm_flags_t flags)
1620 {
1621 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1622 }
1623 
1624 #ifndef CONFIG_MMU
1625 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1626 {
1627 	/*
1628 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1629 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1630 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1631 	 * underlying memory if ptrace is active, so this is only possible if
1632 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1633 	 * write permissions later.
1634 	 */
1635 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1636 }
1637 #endif
1638 
1639 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1640 #define SECTION_IN_PAGE_FLAGS
1641 #endif
1642 
1643 /*
1644  * The identification function is mainly used by the buddy allocator for
1645  * determining if two pages could be buddies. We are not really identifying
1646  * the zone since we could be using the section number id if we do not have
1647  * node id available in page flags.
1648  * We only guarantee that it will return the same value for two combinable
1649  * pages in a zone.
1650  */
1651 static inline int page_zone_id(struct page *page)
1652 {
1653 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1654 }
1655 
1656 #ifdef NODE_NOT_IN_PAGE_FLAGS
1657 extern int page_to_nid(const struct page *page);
1658 #else
1659 static inline int page_to_nid(const struct page *page)
1660 {
1661 	struct page *p = (struct page *)page;
1662 
1663 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1664 }
1665 #endif
1666 
1667 static inline int folio_nid(const struct folio *folio)
1668 {
1669 	return page_to_nid(&folio->page);
1670 }
1671 
1672 #ifdef CONFIG_NUMA_BALANCING
1673 /* page access time bits needs to hold at least 4 seconds */
1674 #define PAGE_ACCESS_TIME_MIN_BITS	12
1675 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1676 #define PAGE_ACCESS_TIME_BUCKETS				\
1677 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1678 #else
1679 #define PAGE_ACCESS_TIME_BUCKETS	0
1680 #endif
1681 
1682 #define PAGE_ACCESS_TIME_MASK				\
1683 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1684 
1685 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1686 {
1687 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1688 }
1689 
1690 static inline int cpupid_to_pid(int cpupid)
1691 {
1692 	return cpupid & LAST__PID_MASK;
1693 }
1694 
1695 static inline int cpupid_to_cpu(int cpupid)
1696 {
1697 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1698 }
1699 
1700 static inline int cpupid_to_nid(int cpupid)
1701 {
1702 	return cpu_to_node(cpupid_to_cpu(cpupid));
1703 }
1704 
1705 static inline bool cpupid_pid_unset(int cpupid)
1706 {
1707 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1708 }
1709 
1710 static inline bool cpupid_cpu_unset(int cpupid)
1711 {
1712 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1713 }
1714 
1715 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1716 {
1717 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1718 }
1719 
1720 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1721 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1722 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1723 {
1724 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1725 }
1726 
1727 static inline int folio_last_cpupid(struct folio *folio)
1728 {
1729 	return folio->_last_cpupid;
1730 }
1731 static inline void page_cpupid_reset_last(struct page *page)
1732 {
1733 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1734 }
1735 #else
1736 static inline int folio_last_cpupid(struct folio *folio)
1737 {
1738 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1739 }
1740 
1741 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1742 
1743 static inline void page_cpupid_reset_last(struct page *page)
1744 {
1745 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1746 }
1747 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1748 
1749 static inline int folio_xchg_access_time(struct folio *folio, int time)
1750 {
1751 	int last_time;
1752 
1753 	last_time = folio_xchg_last_cpupid(folio,
1754 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1755 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1756 }
1757 
1758 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1759 {
1760 	unsigned int pid_bit;
1761 
1762 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1763 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1764 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1765 	}
1766 }
1767 #else /* !CONFIG_NUMA_BALANCING */
1768 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1769 {
1770 	return folio_nid(folio); /* XXX */
1771 }
1772 
1773 static inline int folio_xchg_access_time(struct folio *folio, int time)
1774 {
1775 	return 0;
1776 }
1777 
1778 static inline int folio_last_cpupid(struct folio *folio)
1779 {
1780 	return folio_nid(folio); /* XXX */
1781 }
1782 
1783 static inline int cpupid_to_nid(int cpupid)
1784 {
1785 	return -1;
1786 }
1787 
1788 static inline int cpupid_to_pid(int cpupid)
1789 {
1790 	return -1;
1791 }
1792 
1793 static inline int cpupid_to_cpu(int cpupid)
1794 {
1795 	return -1;
1796 }
1797 
1798 static inline int cpu_pid_to_cpupid(int nid, int pid)
1799 {
1800 	return -1;
1801 }
1802 
1803 static inline bool cpupid_pid_unset(int cpupid)
1804 {
1805 	return true;
1806 }
1807 
1808 static inline void page_cpupid_reset_last(struct page *page)
1809 {
1810 }
1811 
1812 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1813 {
1814 	return false;
1815 }
1816 
1817 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1818 {
1819 }
1820 #endif /* CONFIG_NUMA_BALANCING */
1821 
1822 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1823 
1824 /*
1825  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1826  * setting tags for all pages to native kernel tag value 0xff, as the default
1827  * value 0x00 maps to 0xff.
1828  */
1829 
1830 static inline u8 page_kasan_tag(const struct page *page)
1831 {
1832 	u8 tag = KASAN_TAG_KERNEL;
1833 
1834 	if (kasan_enabled()) {
1835 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1836 		tag ^= 0xff;
1837 	}
1838 
1839 	return tag;
1840 }
1841 
1842 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1843 {
1844 	unsigned long old_flags, flags;
1845 
1846 	if (!kasan_enabled())
1847 		return;
1848 
1849 	tag ^= 0xff;
1850 	old_flags = READ_ONCE(page->flags);
1851 	do {
1852 		flags = old_flags;
1853 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1854 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1855 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1856 }
1857 
1858 static inline void page_kasan_tag_reset(struct page *page)
1859 {
1860 	if (kasan_enabled())
1861 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1862 }
1863 
1864 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1865 
1866 static inline u8 page_kasan_tag(const struct page *page)
1867 {
1868 	return 0xff;
1869 }
1870 
1871 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1872 static inline void page_kasan_tag_reset(struct page *page) { }
1873 
1874 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1875 
1876 static inline struct zone *page_zone(const struct page *page)
1877 {
1878 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1879 }
1880 
1881 static inline pg_data_t *page_pgdat(const struct page *page)
1882 {
1883 	return NODE_DATA(page_to_nid(page));
1884 }
1885 
1886 static inline struct zone *folio_zone(const struct folio *folio)
1887 {
1888 	return page_zone(&folio->page);
1889 }
1890 
1891 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1892 {
1893 	return page_pgdat(&folio->page);
1894 }
1895 
1896 #ifdef SECTION_IN_PAGE_FLAGS
1897 static inline void set_page_section(struct page *page, unsigned long section)
1898 {
1899 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1900 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1901 }
1902 
1903 static inline unsigned long page_to_section(const struct page *page)
1904 {
1905 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1906 }
1907 #endif
1908 
1909 /**
1910  * folio_pfn - Return the Page Frame Number of a folio.
1911  * @folio: The folio.
1912  *
1913  * A folio may contain multiple pages.  The pages have consecutive
1914  * Page Frame Numbers.
1915  *
1916  * Return: The Page Frame Number of the first page in the folio.
1917  */
1918 static inline unsigned long folio_pfn(struct folio *folio)
1919 {
1920 	return page_to_pfn(&folio->page);
1921 }
1922 
1923 static inline struct folio *pfn_folio(unsigned long pfn)
1924 {
1925 	return page_folio(pfn_to_page(pfn));
1926 }
1927 
1928 /**
1929  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1930  * @folio: The folio.
1931  *
1932  * This function checks if a folio has been pinned via a call to
1933  * a function in the pin_user_pages() family.
1934  *
1935  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1936  * because it means "definitely not pinned for DMA", but true means "probably
1937  * pinned for DMA, but possibly a false positive due to having at least
1938  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1939  *
1940  * False positives are OK, because: a) it's unlikely for a folio to
1941  * get that many refcounts, and b) all the callers of this routine are
1942  * expected to be able to deal gracefully with a false positive.
1943  *
1944  * For large folios, the result will be exactly correct. That's because
1945  * we have more tracking data available: the _pincount field is used
1946  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1947  *
1948  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1949  *
1950  * Return: True, if it is likely that the page has been "dma-pinned".
1951  * False, if the page is definitely not dma-pinned.
1952  */
1953 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1954 {
1955 	if (folio_test_large(folio))
1956 		return atomic_read(&folio->_pincount) > 0;
1957 
1958 	/*
1959 	 * folio_ref_count() is signed. If that refcount overflows, then
1960 	 * folio_ref_count() returns a negative value, and callers will avoid
1961 	 * further incrementing the refcount.
1962 	 *
1963 	 * Here, for that overflow case, use the sign bit to count a little
1964 	 * bit higher via unsigned math, and thus still get an accurate result.
1965 	 */
1966 	return ((unsigned int)folio_ref_count(folio)) >=
1967 		GUP_PIN_COUNTING_BIAS;
1968 }
1969 
1970 static inline bool page_maybe_dma_pinned(struct page *page)
1971 {
1972 	return folio_maybe_dma_pinned(page_folio(page));
1973 }
1974 
1975 /*
1976  * This should most likely only be called during fork() to see whether we
1977  * should break the cow immediately for an anon page on the src mm.
1978  *
1979  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1980  */
1981 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1982 					  struct folio *folio)
1983 {
1984 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1985 
1986 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1987 		return false;
1988 
1989 	return folio_maybe_dma_pinned(folio);
1990 }
1991 
1992 /**
1993  * is_zero_page - Query if a page is a zero page
1994  * @page: The page to query
1995  *
1996  * This returns true if @page is one of the permanent zero pages.
1997  */
1998 static inline bool is_zero_page(const struct page *page)
1999 {
2000 	return is_zero_pfn(page_to_pfn(page));
2001 }
2002 
2003 /**
2004  * is_zero_folio - Query if a folio is a zero page
2005  * @folio: The folio to query
2006  *
2007  * This returns true if @folio is one of the permanent zero pages.
2008  */
2009 static inline bool is_zero_folio(const struct folio *folio)
2010 {
2011 	return is_zero_page(&folio->page);
2012 }
2013 
2014 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2015 #ifdef CONFIG_MIGRATION
2016 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2017 {
2018 #ifdef CONFIG_CMA
2019 	int mt = folio_migratetype(folio);
2020 
2021 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2022 		return false;
2023 #endif
2024 	/* The zero page can be "pinned" but gets special handling. */
2025 	if (is_zero_folio(folio))
2026 		return true;
2027 
2028 	/* Coherent device memory must always allow eviction. */
2029 	if (folio_is_device_coherent(folio))
2030 		return false;
2031 
2032 	/* Otherwise, non-movable zone folios can be pinned. */
2033 	return !folio_is_zone_movable(folio);
2034 
2035 }
2036 #else
2037 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2038 {
2039 	return true;
2040 }
2041 #endif
2042 
2043 static inline void set_page_zone(struct page *page, enum zone_type zone)
2044 {
2045 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2046 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2047 }
2048 
2049 static inline void set_page_node(struct page *page, unsigned long node)
2050 {
2051 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2052 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2053 }
2054 
2055 static inline void set_page_links(struct page *page, enum zone_type zone,
2056 	unsigned long node, unsigned long pfn)
2057 {
2058 	set_page_zone(page, zone);
2059 	set_page_node(page, node);
2060 #ifdef SECTION_IN_PAGE_FLAGS
2061 	set_page_section(page, pfn_to_section_nr(pfn));
2062 #endif
2063 }
2064 
2065 /**
2066  * folio_nr_pages - The number of pages in the folio.
2067  * @folio: The folio.
2068  *
2069  * Return: A positive power of two.
2070  */
2071 static inline long folio_nr_pages(struct folio *folio)
2072 {
2073 	if (!folio_test_large(folio))
2074 		return 1;
2075 #ifdef CONFIG_64BIT
2076 	return folio->_folio_nr_pages;
2077 #else
2078 	return 1L << (folio->_flags_1 & 0xff);
2079 #endif
2080 }
2081 
2082 /*
2083  * compound_nr() returns the number of pages in this potentially compound
2084  * page.  compound_nr() can be called on a tail page, and is defined to
2085  * return 1 in that case.
2086  */
2087 static inline unsigned long compound_nr(struct page *page)
2088 {
2089 	struct folio *folio = (struct folio *)page;
2090 
2091 	if (!test_bit(PG_head, &folio->flags))
2092 		return 1;
2093 #ifdef CONFIG_64BIT
2094 	return folio->_folio_nr_pages;
2095 #else
2096 	return 1L << (folio->_flags_1 & 0xff);
2097 #endif
2098 }
2099 
2100 /**
2101  * thp_nr_pages - The number of regular pages in this huge page.
2102  * @page: The head page of a huge page.
2103  */
2104 static inline int thp_nr_pages(struct page *page)
2105 {
2106 	return folio_nr_pages((struct folio *)page);
2107 }
2108 
2109 /**
2110  * folio_next - Move to the next physical folio.
2111  * @folio: The folio we're currently operating on.
2112  *
2113  * If you have physically contiguous memory which may span more than
2114  * one folio (eg a &struct bio_vec), use this function to move from one
2115  * folio to the next.  Do not use it if the memory is only virtually
2116  * contiguous as the folios are almost certainly not adjacent to each
2117  * other.  This is the folio equivalent to writing ``page++``.
2118  *
2119  * Context: We assume that the folios are refcounted and/or locked at a
2120  * higher level and do not adjust the reference counts.
2121  * Return: The next struct folio.
2122  */
2123 static inline struct folio *folio_next(struct folio *folio)
2124 {
2125 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2126 }
2127 
2128 /**
2129  * folio_shift - The size of the memory described by this folio.
2130  * @folio: The folio.
2131  *
2132  * A folio represents a number of bytes which is a power-of-two in size.
2133  * This function tells you which power-of-two the folio is.  See also
2134  * folio_size() and folio_order().
2135  *
2136  * Context: The caller should have a reference on the folio to prevent
2137  * it from being split.  It is not necessary for the folio to be locked.
2138  * Return: The base-2 logarithm of the size of this folio.
2139  */
2140 static inline unsigned int folio_shift(struct folio *folio)
2141 {
2142 	return PAGE_SHIFT + folio_order(folio);
2143 }
2144 
2145 /**
2146  * folio_size - The number of bytes in a folio.
2147  * @folio: The folio.
2148  *
2149  * Context: The caller should have a reference on the folio to prevent
2150  * it from being split.  It is not necessary for the folio to be locked.
2151  * Return: The number of bytes in this folio.
2152  */
2153 static inline size_t folio_size(struct folio *folio)
2154 {
2155 	return PAGE_SIZE << folio_order(folio);
2156 }
2157 
2158 /**
2159  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2160  * @folio: The folio.
2161  *
2162  * folio_estimated_sharers() aims to serve as a function to efficiently
2163  * estimate the number of processes sharing a folio. This is done by
2164  * looking at the precise mapcount of the first subpage in the folio, and
2165  * assuming the other subpages are the same. This may not be true for large
2166  * folios. If you want exact mapcounts for exact calculations, look at
2167  * page_mapcount() or folio_total_mapcount().
2168  *
2169  * Return: The estimated number of processes sharing a folio.
2170  */
2171 static inline int folio_estimated_sharers(struct folio *folio)
2172 {
2173 	return page_mapcount(folio_page(folio, 0));
2174 }
2175 
2176 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2177 static inline int arch_make_page_accessible(struct page *page)
2178 {
2179 	return 0;
2180 }
2181 #endif
2182 
2183 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2184 static inline int arch_make_folio_accessible(struct folio *folio)
2185 {
2186 	int ret;
2187 	long i, nr = folio_nr_pages(folio);
2188 
2189 	for (i = 0; i < nr; i++) {
2190 		ret = arch_make_page_accessible(folio_page(folio, i));
2191 		if (ret)
2192 			break;
2193 	}
2194 
2195 	return ret;
2196 }
2197 #endif
2198 
2199 /*
2200  * Some inline functions in vmstat.h depend on page_zone()
2201  */
2202 #include <linux/vmstat.h>
2203 
2204 static __always_inline void *lowmem_page_address(const struct page *page)
2205 {
2206 	return page_to_virt(page);
2207 }
2208 
2209 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2210 #define HASHED_PAGE_VIRTUAL
2211 #endif
2212 
2213 #if defined(WANT_PAGE_VIRTUAL)
2214 static inline void *page_address(const struct page *page)
2215 {
2216 	return page->virtual;
2217 }
2218 static inline void set_page_address(struct page *page, void *address)
2219 {
2220 	page->virtual = address;
2221 }
2222 #define page_address_init()  do { } while(0)
2223 #endif
2224 
2225 #if defined(HASHED_PAGE_VIRTUAL)
2226 void *page_address(const struct page *page);
2227 void set_page_address(struct page *page, void *virtual);
2228 void page_address_init(void);
2229 #endif
2230 
2231 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2232 #define page_address(page) lowmem_page_address(page)
2233 #define set_page_address(page, address)  do { } while(0)
2234 #define page_address_init()  do { } while(0)
2235 #endif
2236 
2237 static inline void *folio_address(const struct folio *folio)
2238 {
2239 	return page_address(&folio->page);
2240 }
2241 
2242 extern pgoff_t __page_file_index(struct page *page);
2243 
2244 /*
2245  * Return the pagecache index of the passed page.  Regular pagecache pages
2246  * use ->index whereas swapcache pages use swp_offset(->private)
2247  */
2248 static inline pgoff_t page_index(struct page *page)
2249 {
2250 	if (unlikely(PageSwapCache(page)))
2251 		return __page_file_index(page);
2252 	return page->index;
2253 }
2254 
2255 /*
2256  * Return true only if the page has been allocated with
2257  * ALLOC_NO_WATERMARKS and the low watermark was not
2258  * met implying that the system is under some pressure.
2259  */
2260 static inline bool page_is_pfmemalloc(const struct page *page)
2261 {
2262 	/*
2263 	 * lru.next has bit 1 set if the page is allocated from the
2264 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2265 	 * they do not need to preserve that information.
2266 	 */
2267 	return (uintptr_t)page->lru.next & BIT(1);
2268 }
2269 
2270 /*
2271  * Return true only if the folio has been allocated with
2272  * ALLOC_NO_WATERMARKS and the low watermark was not
2273  * met implying that the system is under some pressure.
2274  */
2275 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2276 {
2277 	/*
2278 	 * lru.next has bit 1 set if the page is allocated from the
2279 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2280 	 * they do not need to preserve that information.
2281 	 */
2282 	return (uintptr_t)folio->lru.next & BIT(1);
2283 }
2284 
2285 /*
2286  * Only to be called by the page allocator on a freshly allocated
2287  * page.
2288  */
2289 static inline void set_page_pfmemalloc(struct page *page)
2290 {
2291 	page->lru.next = (void *)BIT(1);
2292 }
2293 
2294 static inline void clear_page_pfmemalloc(struct page *page)
2295 {
2296 	page->lru.next = NULL;
2297 }
2298 
2299 /*
2300  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2301  */
2302 extern void pagefault_out_of_memory(void);
2303 
2304 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2305 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2306 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2307 
2308 /*
2309  * Parameter block passed down to zap_pte_range in exceptional cases.
2310  */
2311 struct zap_details {
2312 	struct folio *single_folio;	/* Locked folio to be unmapped */
2313 	bool even_cows;			/* Zap COWed private pages too? */
2314 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2315 };
2316 
2317 /*
2318  * Whether to drop the pte markers, for example, the uffd-wp information for
2319  * file-backed memory.  This should only be specified when we will completely
2320  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2321  * default, the flag is not set.
2322  */
2323 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2324 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2325 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2326 
2327 #ifdef CONFIG_SCHED_MM_CID
2328 void sched_mm_cid_before_execve(struct task_struct *t);
2329 void sched_mm_cid_after_execve(struct task_struct *t);
2330 void sched_mm_cid_fork(struct task_struct *t);
2331 void sched_mm_cid_exit_signals(struct task_struct *t);
2332 static inline int task_mm_cid(struct task_struct *t)
2333 {
2334 	return t->mm_cid;
2335 }
2336 #else
2337 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2338 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2339 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2340 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2341 static inline int task_mm_cid(struct task_struct *t)
2342 {
2343 	/*
2344 	 * Use the processor id as a fall-back when the mm cid feature is
2345 	 * disabled. This provides functional per-cpu data structure accesses
2346 	 * in user-space, althrough it won't provide the memory usage benefits.
2347 	 */
2348 	return raw_smp_processor_id();
2349 }
2350 #endif
2351 
2352 #ifdef CONFIG_MMU
2353 extern bool can_do_mlock(void);
2354 #else
2355 static inline bool can_do_mlock(void) { return false; }
2356 #endif
2357 extern int user_shm_lock(size_t, struct ucounts *);
2358 extern void user_shm_unlock(size_t, struct ucounts *);
2359 
2360 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2361 			     pte_t pte);
2362 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2363 			     pte_t pte);
2364 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2365 				  unsigned long addr, pmd_t pmd);
2366 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2367 				pmd_t pmd);
2368 
2369 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2370 		  unsigned long size);
2371 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2372 			   unsigned long size, struct zap_details *details);
2373 static inline void zap_vma_pages(struct vm_area_struct *vma)
2374 {
2375 	zap_page_range_single(vma, vma->vm_start,
2376 			      vma->vm_end - vma->vm_start, NULL);
2377 }
2378 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2379 		struct vm_area_struct *start_vma, unsigned long start,
2380 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2381 
2382 struct mmu_notifier_range;
2383 
2384 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2385 		unsigned long end, unsigned long floor, unsigned long ceiling);
2386 int
2387 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2388 int follow_pte(struct mm_struct *mm, unsigned long address,
2389 	       pte_t **ptepp, spinlock_t **ptlp);
2390 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2391 	unsigned long *pfn);
2392 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2393 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2394 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2395 			void *buf, int len, int write);
2396 
2397 extern void truncate_pagecache(struct inode *inode, loff_t new);
2398 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2399 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2400 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2401 int generic_error_remove_folio(struct address_space *mapping,
2402 		struct folio *folio);
2403 
2404 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2405 		unsigned long address, struct pt_regs *regs);
2406 
2407 #ifdef CONFIG_MMU
2408 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2409 				  unsigned long address, unsigned int flags,
2410 				  struct pt_regs *regs);
2411 extern int fixup_user_fault(struct mm_struct *mm,
2412 			    unsigned long address, unsigned int fault_flags,
2413 			    bool *unlocked);
2414 void unmap_mapping_pages(struct address_space *mapping,
2415 		pgoff_t start, pgoff_t nr, bool even_cows);
2416 void unmap_mapping_range(struct address_space *mapping,
2417 		loff_t const holebegin, loff_t const holelen, int even_cows);
2418 #else
2419 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2420 					 unsigned long address, unsigned int flags,
2421 					 struct pt_regs *regs)
2422 {
2423 	/* should never happen if there's no MMU */
2424 	BUG();
2425 	return VM_FAULT_SIGBUS;
2426 }
2427 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2428 		unsigned int fault_flags, bool *unlocked)
2429 {
2430 	/* should never happen if there's no MMU */
2431 	BUG();
2432 	return -EFAULT;
2433 }
2434 static inline void unmap_mapping_pages(struct address_space *mapping,
2435 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2436 static inline void unmap_mapping_range(struct address_space *mapping,
2437 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2438 #endif
2439 
2440 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2441 		loff_t const holebegin, loff_t const holelen)
2442 {
2443 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2444 }
2445 
2446 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2447 						unsigned long addr);
2448 
2449 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2450 		void *buf, int len, unsigned int gup_flags);
2451 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2452 		void *buf, int len, unsigned int gup_flags);
2453 
2454 long get_user_pages_remote(struct mm_struct *mm,
2455 			   unsigned long start, unsigned long nr_pages,
2456 			   unsigned int gup_flags, struct page **pages,
2457 			   int *locked);
2458 long pin_user_pages_remote(struct mm_struct *mm,
2459 			   unsigned long start, unsigned long nr_pages,
2460 			   unsigned int gup_flags, struct page **pages,
2461 			   int *locked);
2462 
2463 /*
2464  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2465  */
2466 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2467 						    unsigned long addr,
2468 						    int gup_flags,
2469 						    struct vm_area_struct **vmap)
2470 {
2471 	struct page *page;
2472 	struct vm_area_struct *vma;
2473 	int got;
2474 
2475 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2476 		return ERR_PTR(-EINVAL);
2477 
2478 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2479 
2480 	if (got < 0)
2481 		return ERR_PTR(got);
2482 
2483 	vma = vma_lookup(mm, addr);
2484 	if (WARN_ON_ONCE(!vma)) {
2485 		put_page(page);
2486 		return ERR_PTR(-EINVAL);
2487 	}
2488 
2489 	*vmap = vma;
2490 	return page;
2491 }
2492 
2493 long get_user_pages(unsigned long start, unsigned long nr_pages,
2494 		    unsigned int gup_flags, struct page **pages);
2495 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2496 		    unsigned int gup_flags, struct page **pages);
2497 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2498 		    struct page **pages, unsigned int gup_flags);
2499 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2500 		    struct page **pages, unsigned int gup_flags);
2501 
2502 int get_user_pages_fast(unsigned long start, int nr_pages,
2503 			unsigned int gup_flags, struct page **pages);
2504 int pin_user_pages_fast(unsigned long start, int nr_pages,
2505 			unsigned int gup_flags, struct page **pages);
2506 void folio_add_pin(struct folio *folio);
2507 
2508 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2509 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2510 			struct task_struct *task, bool bypass_rlim);
2511 
2512 struct kvec;
2513 struct page *get_dump_page(unsigned long addr);
2514 
2515 bool folio_mark_dirty(struct folio *folio);
2516 bool set_page_dirty(struct page *page);
2517 int set_page_dirty_lock(struct page *page);
2518 
2519 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2520 
2521 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2522 		unsigned long old_addr, struct vm_area_struct *new_vma,
2523 		unsigned long new_addr, unsigned long len,
2524 		bool need_rmap_locks, bool for_stack);
2525 
2526 /*
2527  * Flags used by change_protection().  For now we make it a bitmap so
2528  * that we can pass in multiple flags just like parameters.  However
2529  * for now all the callers are only use one of the flags at the same
2530  * time.
2531  */
2532 /*
2533  * Whether we should manually check if we can map individual PTEs writable,
2534  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2535  * PTEs automatically in a writable mapping.
2536  */
2537 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2538 /* Whether this protection change is for NUMA hints */
2539 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2540 /* Whether this change is for write protecting */
2541 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2542 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2543 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2544 					    MM_CP_UFFD_WP_RESOLVE)
2545 
2546 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2547 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2548 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2549 {
2550 	/*
2551 	 * We want to check manually if we can change individual PTEs writable
2552 	 * if we can't do that automatically for all PTEs in a mapping. For
2553 	 * private mappings, that's always the case when we have write
2554 	 * permissions as we properly have to handle COW.
2555 	 */
2556 	if (vma->vm_flags & VM_SHARED)
2557 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2558 	return !!(vma->vm_flags & VM_WRITE);
2559 
2560 }
2561 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2562 			     pte_t pte);
2563 extern long change_protection(struct mmu_gather *tlb,
2564 			      struct vm_area_struct *vma, unsigned long start,
2565 			      unsigned long end, unsigned long cp_flags);
2566 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2567 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2568 	  unsigned long start, unsigned long end, unsigned long newflags);
2569 
2570 /*
2571  * doesn't attempt to fault and will return short.
2572  */
2573 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2574 			     unsigned int gup_flags, struct page **pages);
2575 
2576 static inline bool get_user_page_fast_only(unsigned long addr,
2577 			unsigned int gup_flags, struct page **pagep)
2578 {
2579 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2580 }
2581 /*
2582  * per-process(per-mm_struct) statistics.
2583  */
2584 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2585 {
2586 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2587 }
2588 
2589 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2590 
2591 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2592 {
2593 	percpu_counter_add(&mm->rss_stat[member], value);
2594 
2595 	mm_trace_rss_stat(mm, member);
2596 }
2597 
2598 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2599 {
2600 	percpu_counter_inc(&mm->rss_stat[member]);
2601 
2602 	mm_trace_rss_stat(mm, member);
2603 }
2604 
2605 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2606 {
2607 	percpu_counter_dec(&mm->rss_stat[member]);
2608 
2609 	mm_trace_rss_stat(mm, member);
2610 }
2611 
2612 /* Optimized variant when page is already known not to be PageAnon */
2613 static inline int mm_counter_file(struct page *page)
2614 {
2615 	if (PageSwapBacked(page))
2616 		return MM_SHMEMPAGES;
2617 	return MM_FILEPAGES;
2618 }
2619 
2620 static inline int mm_counter(struct page *page)
2621 {
2622 	if (PageAnon(page))
2623 		return MM_ANONPAGES;
2624 	return mm_counter_file(page);
2625 }
2626 
2627 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2628 {
2629 	return get_mm_counter(mm, MM_FILEPAGES) +
2630 		get_mm_counter(mm, MM_ANONPAGES) +
2631 		get_mm_counter(mm, MM_SHMEMPAGES);
2632 }
2633 
2634 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2635 {
2636 	return max(mm->hiwater_rss, get_mm_rss(mm));
2637 }
2638 
2639 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2640 {
2641 	return max(mm->hiwater_vm, mm->total_vm);
2642 }
2643 
2644 static inline void update_hiwater_rss(struct mm_struct *mm)
2645 {
2646 	unsigned long _rss = get_mm_rss(mm);
2647 
2648 	if ((mm)->hiwater_rss < _rss)
2649 		(mm)->hiwater_rss = _rss;
2650 }
2651 
2652 static inline void update_hiwater_vm(struct mm_struct *mm)
2653 {
2654 	if (mm->hiwater_vm < mm->total_vm)
2655 		mm->hiwater_vm = mm->total_vm;
2656 }
2657 
2658 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2659 {
2660 	mm->hiwater_rss = get_mm_rss(mm);
2661 }
2662 
2663 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2664 					 struct mm_struct *mm)
2665 {
2666 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2667 
2668 	if (*maxrss < hiwater_rss)
2669 		*maxrss = hiwater_rss;
2670 }
2671 
2672 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2673 static inline int pte_special(pte_t pte)
2674 {
2675 	return 0;
2676 }
2677 
2678 static inline pte_t pte_mkspecial(pte_t pte)
2679 {
2680 	return pte;
2681 }
2682 #endif
2683 
2684 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2685 static inline int pte_devmap(pte_t pte)
2686 {
2687 	return 0;
2688 }
2689 #endif
2690 
2691 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2692 			       spinlock_t **ptl);
2693 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2694 				    spinlock_t **ptl)
2695 {
2696 	pte_t *ptep;
2697 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2698 	return ptep;
2699 }
2700 
2701 #ifdef __PAGETABLE_P4D_FOLDED
2702 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2703 						unsigned long address)
2704 {
2705 	return 0;
2706 }
2707 #else
2708 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2709 #endif
2710 
2711 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2712 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2713 						unsigned long address)
2714 {
2715 	return 0;
2716 }
2717 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2718 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2719 
2720 #else
2721 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2722 
2723 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2724 {
2725 	if (mm_pud_folded(mm))
2726 		return;
2727 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2728 }
2729 
2730 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2731 {
2732 	if (mm_pud_folded(mm))
2733 		return;
2734 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2735 }
2736 #endif
2737 
2738 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2739 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2740 						unsigned long address)
2741 {
2742 	return 0;
2743 }
2744 
2745 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2746 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2747 
2748 #else
2749 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2750 
2751 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2752 {
2753 	if (mm_pmd_folded(mm))
2754 		return;
2755 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2756 }
2757 
2758 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2759 {
2760 	if (mm_pmd_folded(mm))
2761 		return;
2762 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2763 }
2764 #endif
2765 
2766 #ifdef CONFIG_MMU
2767 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2768 {
2769 	atomic_long_set(&mm->pgtables_bytes, 0);
2770 }
2771 
2772 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2773 {
2774 	return atomic_long_read(&mm->pgtables_bytes);
2775 }
2776 
2777 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2778 {
2779 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2780 }
2781 
2782 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2783 {
2784 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2785 }
2786 #else
2787 
2788 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2789 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2790 {
2791 	return 0;
2792 }
2793 
2794 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2795 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2796 #endif
2797 
2798 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2799 int __pte_alloc_kernel(pmd_t *pmd);
2800 
2801 #if defined(CONFIG_MMU)
2802 
2803 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2804 		unsigned long address)
2805 {
2806 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2807 		NULL : p4d_offset(pgd, address);
2808 }
2809 
2810 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2811 		unsigned long address)
2812 {
2813 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2814 		NULL : pud_offset(p4d, address);
2815 }
2816 
2817 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2818 {
2819 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2820 		NULL: pmd_offset(pud, address);
2821 }
2822 #endif /* CONFIG_MMU */
2823 
2824 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2825 {
2826 	return page_ptdesc(virt_to_page(x));
2827 }
2828 
2829 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2830 {
2831 	return page_to_virt(ptdesc_page(pt));
2832 }
2833 
2834 static inline void *ptdesc_address(const struct ptdesc *pt)
2835 {
2836 	return folio_address(ptdesc_folio(pt));
2837 }
2838 
2839 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2840 {
2841 	return folio_test_reserved(ptdesc_folio(pt));
2842 }
2843 
2844 /**
2845  * pagetable_alloc - Allocate pagetables
2846  * @gfp:    GFP flags
2847  * @order:  desired pagetable order
2848  *
2849  * pagetable_alloc allocates memory for page tables as well as a page table
2850  * descriptor to describe that memory.
2851  *
2852  * Return: The ptdesc describing the allocated page tables.
2853  */
2854 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2855 {
2856 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2857 
2858 	return page_ptdesc(page);
2859 }
2860 
2861 /**
2862  * pagetable_free - Free pagetables
2863  * @pt:	The page table descriptor
2864  *
2865  * pagetable_free frees the memory of all page tables described by a page
2866  * table descriptor and the memory for the descriptor itself.
2867  */
2868 static inline void pagetable_free(struct ptdesc *pt)
2869 {
2870 	struct page *page = ptdesc_page(pt);
2871 
2872 	__free_pages(page, compound_order(page));
2873 }
2874 
2875 #if USE_SPLIT_PTE_PTLOCKS
2876 #if ALLOC_SPLIT_PTLOCKS
2877 void __init ptlock_cache_init(void);
2878 bool ptlock_alloc(struct ptdesc *ptdesc);
2879 void ptlock_free(struct ptdesc *ptdesc);
2880 
2881 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2882 {
2883 	return ptdesc->ptl;
2884 }
2885 #else /* ALLOC_SPLIT_PTLOCKS */
2886 static inline void ptlock_cache_init(void)
2887 {
2888 }
2889 
2890 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2891 {
2892 	return true;
2893 }
2894 
2895 static inline void ptlock_free(struct ptdesc *ptdesc)
2896 {
2897 }
2898 
2899 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2900 {
2901 	return &ptdesc->ptl;
2902 }
2903 #endif /* ALLOC_SPLIT_PTLOCKS */
2904 
2905 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2906 {
2907 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2908 }
2909 
2910 static inline bool ptlock_init(struct ptdesc *ptdesc)
2911 {
2912 	/*
2913 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2914 	 * with 0. Make sure nobody took it in use in between.
2915 	 *
2916 	 * It can happen if arch try to use slab for page table allocation:
2917 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2918 	 */
2919 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2920 	if (!ptlock_alloc(ptdesc))
2921 		return false;
2922 	spin_lock_init(ptlock_ptr(ptdesc));
2923 	return true;
2924 }
2925 
2926 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2927 /*
2928  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2929  */
2930 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2931 {
2932 	return &mm->page_table_lock;
2933 }
2934 static inline void ptlock_cache_init(void) {}
2935 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2936 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2937 #endif /* USE_SPLIT_PTE_PTLOCKS */
2938 
2939 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2940 {
2941 	struct folio *folio = ptdesc_folio(ptdesc);
2942 
2943 	if (!ptlock_init(ptdesc))
2944 		return false;
2945 	__folio_set_pgtable(folio);
2946 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2947 	return true;
2948 }
2949 
2950 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2951 {
2952 	struct folio *folio = ptdesc_folio(ptdesc);
2953 
2954 	ptlock_free(ptdesc);
2955 	__folio_clear_pgtable(folio);
2956 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2957 }
2958 
2959 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2960 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2961 {
2962 	return __pte_offset_map(pmd, addr, NULL);
2963 }
2964 
2965 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2966 			unsigned long addr, spinlock_t **ptlp);
2967 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2968 			unsigned long addr, spinlock_t **ptlp)
2969 {
2970 	pte_t *pte;
2971 
2972 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2973 	return pte;
2974 }
2975 
2976 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2977 			unsigned long addr, spinlock_t **ptlp);
2978 
2979 #define pte_unmap_unlock(pte, ptl)	do {		\
2980 	spin_unlock(ptl);				\
2981 	pte_unmap(pte);					\
2982 } while (0)
2983 
2984 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2985 
2986 #define pte_alloc_map(mm, pmd, address)			\
2987 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2988 
2989 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2990 	(pte_alloc(mm, pmd) ?			\
2991 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2992 
2993 #define pte_alloc_kernel(pmd, address)			\
2994 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2995 		NULL: pte_offset_kernel(pmd, address))
2996 
2997 #if USE_SPLIT_PMD_PTLOCKS
2998 
2999 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3000 {
3001 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3002 	return virt_to_page((void *)((unsigned long) pmd & mask));
3003 }
3004 
3005 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3006 {
3007 	return page_ptdesc(pmd_pgtable_page(pmd));
3008 }
3009 
3010 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3011 {
3012 	return ptlock_ptr(pmd_ptdesc(pmd));
3013 }
3014 
3015 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3016 {
3017 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3018 	ptdesc->pmd_huge_pte = NULL;
3019 #endif
3020 	return ptlock_init(ptdesc);
3021 }
3022 
3023 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3024 {
3025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3026 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3027 #endif
3028 	ptlock_free(ptdesc);
3029 }
3030 
3031 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3032 
3033 #else
3034 
3035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3036 {
3037 	return &mm->page_table_lock;
3038 }
3039 
3040 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3041 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3042 
3043 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3044 
3045 #endif
3046 
3047 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3048 {
3049 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3050 	spin_lock(ptl);
3051 	return ptl;
3052 }
3053 
3054 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3055 {
3056 	struct folio *folio = ptdesc_folio(ptdesc);
3057 
3058 	if (!pmd_ptlock_init(ptdesc))
3059 		return false;
3060 	__folio_set_pgtable(folio);
3061 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3062 	return true;
3063 }
3064 
3065 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3066 {
3067 	struct folio *folio = ptdesc_folio(ptdesc);
3068 
3069 	pmd_ptlock_free(ptdesc);
3070 	__folio_clear_pgtable(folio);
3071 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3072 }
3073 
3074 /*
3075  * No scalability reason to split PUD locks yet, but follow the same pattern
3076  * as the PMD locks to make it easier if we decide to.  The VM should not be
3077  * considered ready to switch to split PUD locks yet; there may be places
3078  * which need to be converted from page_table_lock.
3079  */
3080 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3081 {
3082 	return &mm->page_table_lock;
3083 }
3084 
3085 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3086 {
3087 	spinlock_t *ptl = pud_lockptr(mm, pud);
3088 
3089 	spin_lock(ptl);
3090 	return ptl;
3091 }
3092 
3093 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3094 {
3095 	struct folio *folio = ptdesc_folio(ptdesc);
3096 
3097 	__folio_set_pgtable(folio);
3098 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3099 }
3100 
3101 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3102 {
3103 	struct folio *folio = ptdesc_folio(ptdesc);
3104 
3105 	__folio_clear_pgtable(folio);
3106 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3107 }
3108 
3109 extern void __init pagecache_init(void);
3110 extern void free_initmem(void);
3111 
3112 /*
3113  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3114  * into the buddy system. The freed pages will be poisoned with pattern
3115  * "poison" if it's within range [0, UCHAR_MAX].
3116  * Return pages freed into the buddy system.
3117  */
3118 extern unsigned long free_reserved_area(void *start, void *end,
3119 					int poison, const char *s);
3120 
3121 extern void adjust_managed_page_count(struct page *page, long count);
3122 
3123 extern void reserve_bootmem_region(phys_addr_t start,
3124 				   phys_addr_t end, int nid);
3125 
3126 /* Free the reserved page into the buddy system, so it gets managed. */
3127 static inline void free_reserved_page(struct page *page)
3128 {
3129 	ClearPageReserved(page);
3130 	init_page_count(page);
3131 	__free_page(page);
3132 	adjust_managed_page_count(page, 1);
3133 }
3134 #define free_highmem_page(page) free_reserved_page(page)
3135 
3136 static inline void mark_page_reserved(struct page *page)
3137 {
3138 	SetPageReserved(page);
3139 	adjust_managed_page_count(page, -1);
3140 }
3141 
3142 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3143 {
3144 	free_reserved_page(ptdesc_page(pt));
3145 }
3146 
3147 /*
3148  * Default method to free all the __init memory into the buddy system.
3149  * The freed pages will be poisoned with pattern "poison" if it's within
3150  * range [0, UCHAR_MAX].
3151  * Return pages freed into the buddy system.
3152  */
3153 static inline unsigned long free_initmem_default(int poison)
3154 {
3155 	extern char __init_begin[], __init_end[];
3156 
3157 	return free_reserved_area(&__init_begin, &__init_end,
3158 				  poison, "unused kernel image (initmem)");
3159 }
3160 
3161 static inline unsigned long get_num_physpages(void)
3162 {
3163 	int nid;
3164 	unsigned long phys_pages = 0;
3165 
3166 	for_each_online_node(nid)
3167 		phys_pages += node_present_pages(nid);
3168 
3169 	return phys_pages;
3170 }
3171 
3172 /*
3173  * Using memblock node mappings, an architecture may initialise its
3174  * zones, allocate the backing mem_map and account for memory holes in an
3175  * architecture independent manner.
3176  *
3177  * An architecture is expected to register range of page frames backed by
3178  * physical memory with memblock_add[_node]() before calling
3179  * free_area_init() passing in the PFN each zone ends at. At a basic
3180  * usage, an architecture is expected to do something like
3181  *
3182  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3183  * 							 max_highmem_pfn};
3184  * for_each_valid_physical_page_range()
3185  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3186  * free_area_init(max_zone_pfns);
3187  */
3188 void free_area_init(unsigned long *max_zone_pfn);
3189 unsigned long node_map_pfn_alignment(void);
3190 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3191 						unsigned long end_pfn);
3192 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3193 						unsigned long end_pfn);
3194 extern void get_pfn_range_for_nid(unsigned int nid,
3195 			unsigned long *start_pfn, unsigned long *end_pfn);
3196 
3197 #ifndef CONFIG_NUMA
3198 static inline int early_pfn_to_nid(unsigned long pfn)
3199 {
3200 	return 0;
3201 }
3202 #else
3203 /* please see mm/page_alloc.c */
3204 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3205 #endif
3206 
3207 extern void set_dma_reserve(unsigned long new_dma_reserve);
3208 extern void mem_init(void);
3209 extern void __init mmap_init(void);
3210 
3211 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3212 static inline void show_mem(void)
3213 {
3214 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3215 }
3216 extern long si_mem_available(void);
3217 extern void si_meminfo(struct sysinfo * val);
3218 extern void si_meminfo_node(struct sysinfo *val, int nid);
3219 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3220 extern unsigned long arch_reserved_kernel_pages(void);
3221 #endif
3222 
3223 extern __printf(3, 4)
3224 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3225 
3226 extern void setup_per_cpu_pageset(void);
3227 
3228 /* nommu.c */
3229 extern atomic_long_t mmap_pages_allocated;
3230 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3231 
3232 /* interval_tree.c */
3233 void vma_interval_tree_insert(struct vm_area_struct *node,
3234 			      struct rb_root_cached *root);
3235 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3236 				    struct vm_area_struct *prev,
3237 				    struct rb_root_cached *root);
3238 void vma_interval_tree_remove(struct vm_area_struct *node,
3239 			      struct rb_root_cached *root);
3240 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3241 				unsigned long start, unsigned long last);
3242 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3243 				unsigned long start, unsigned long last);
3244 
3245 #define vma_interval_tree_foreach(vma, root, start, last)		\
3246 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3247 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3248 
3249 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3250 				   struct rb_root_cached *root);
3251 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3252 				   struct rb_root_cached *root);
3253 struct anon_vma_chain *
3254 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3255 				  unsigned long start, unsigned long last);
3256 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3257 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3258 #ifdef CONFIG_DEBUG_VM_RB
3259 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3260 #endif
3261 
3262 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3263 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3264 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3265 
3266 /* mmap.c */
3267 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3268 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3269 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3270 		      struct vm_area_struct *next);
3271 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3272 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3273 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3274 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3275 extern void unlink_file_vma(struct vm_area_struct *);
3276 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3277 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3278 	bool *need_rmap_locks);
3279 extern void exit_mmap(struct mm_struct *);
3280 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3281 				  struct vm_area_struct *prev,
3282 				  struct vm_area_struct *vma,
3283 				  unsigned long start, unsigned long end,
3284 				  unsigned long vm_flags,
3285 				  struct mempolicy *policy,
3286 				  struct vm_userfaultfd_ctx uffd_ctx,
3287 				  struct anon_vma_name *anon_name);
3288 
3289 /* We are about to modify the VMA's flags. */
3290 static inline struct vm_area_struct
3291 *vma_modify_flags(struct vma_iterator *vmi,
3292 		  struct vm_area_struct *prev,
3293 		  struct vm_area_struct *vma,
3294 		  unsigned long start, unsigned long end,
3295 		  unsigned long new_flags)
3296 {
3297 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3298 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3299 			  anon_vma_name(vma));
3300 }
3301 
3302 /* We are about to modify the VMA's flags and/or anon_name. */
3303 static inline struct vm_area_struct
3304 *vma_modify_flags_name(struct vma_iterator *vmi,
3305 		       struct vm_area_struct *prev,
3306 		       struct vm_area_struct *vma,
3307 		       unsigned long start,
3308 		       unsigned long end,
3309 		       unsigned long new_flags,
3310 		       struct anon_vma_name *new_name)
3311 {
3312 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3313 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3314 }
3315 
3316 /* We are about to modify the VMA's memory policy. */
3317 static inline struct vm_area_struct
3318 *vma_modify_policy(struct vma_iterator *vmi,
3319 		   struct vm_area_struct *prev,
3320 		   struct vm_area_struct *vma,
3321 		   unsigned long start, unsigned long end,
3322 		   struct mempolicy *new_pol)
3323 {
3324 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3325 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3326 }
3327 
3328 /* We are about to modify the VMA's flags and/or uffd context. */
3329 static inline struct vm_area_struct
3330 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3331 		       struct vm_area_struct *prev,
3332 		       struct vm_area_struct *vma,
3333 		       unsigned long start, unsigned long end,
3334 		       unsigned long new_flags,
3335 		       struct vm_userfaultfd_ctx new_ctx)
3336 {
3337 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3338 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3339 }
3340 
3341 static inline int check_data_rlimit(unsigned long rlim,
3342 				    unsigned long new,
3343 				    unsigned long start,
3344 				    unsigned long end_data,
3345 				    unsigned long start_data)
3346 {
3347 	if (rlim < RLIM_INFINITY) {
3348 		if (((new - start) + (end_data - start_data)) > rlim)
3349 			return -ENOSPC;
3350 	}
3351 
3352 	return 0;
3353 }
3354 
3355 extern int mm_take_all_locks(struct mm_struct *mm);
3356 extern void mm_drop_all_locks(struct mm_struct *mm);
3357 
3358 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3359 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3360 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3361 extern struct file *get_task_exe_file(struct task_struct *task);
3362 
3363 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3364 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3365 
3366 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3367 				   const struct vm_special_mapping *sm);
3368 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3369 				   unsigned long addr, unsigned long len,
3370 				   unsigned long flags,
3371 				   const struct vm_special_mapping *spec);
3372 /* This is an obsolete alternative to _install_special_mapping. */
3373 extern int install_special_mapping(struct mm_struct *mm,
3374 				   unsigned long addr, unsigned long len,
3375 				   unsigned long flags, struct page **pages);
3376 
3377 unsigned long randomize_stack_top(unsigned long stack_top);
3378 unsigned long randomize_page(unsigned long start, unsigned long range);
3379 
3380 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3381 
3382 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3383 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3384 	struct list_head *uf);
3385 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3386 	unsigned long len, unsigned long prot, unsigned long flags,
3387 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3388 	struct list_head *uf);
3389 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3390 			 unsigned long start, size_t len, struct list_head *uf,
3391 			 bool unlock);
3392 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3393 		     struct list_head *uf);
3394 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3395 
3396 #ifdef CONFIG_MMU
3397 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3398 			 unsigned long start, unsigned long end,
3399 			 struct list_head *uf, bool unlock);
3400 extern int __mm_populate(unsigned long addr, unsigned long len,
3401 			 int ignore_errors);
3402 static inline void mm_populate(unsigned long addr, unsigned long len)
3403 {
3404 	/* Ignore errors */
3405 	(void) __mm_populate(addr, len, 1);
3406 }
3407 #else
3408 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3409 #endif
3410 
3411 /* This takes the mm semaphore itself */
3412 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3413 extern int vm_munmap(unsigned long, size_t);
3414 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3415         unsigned long, unsigned long,
3416         unsigned long, unsigned long);
3417 
3418 struct vm_unmapped_area_info {
3419 #define VM_UNMAPPED_AREA_TOPDOWN 1
3420 	unsigned long flags;
3421 	unsigned long length;
3422 	unsigned long low_limit;
3423 	unsigned long high_limit;
3424 	unsigned long align_mask;
3425 	unsigned long align_offset;
3426 };
3427 
3428 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3429 
3430 /* truncate.c */
3431 extern void truncate_inode_pages(struct address_space *, loff_t);
3432 extern void truncate_inode_pages_range(struct address_space *,
3433 				       loff_t lstart, loff_t lend);
3434 extern void truncate_inode_pages_final(struct address_space *);
3435 
3436 /* generic vm_area_ops exported for stackable file systems */
3437 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3438 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3439 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3440 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3441 
3442 extern unsigned long stack_guard_gap;
3443 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3444 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3445 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3446 
3447 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3448 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3449 
3450 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3451 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3452 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3453 					     struct vm_area_struct **pprev);
3454 
3455 /*
3456  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3457  * NULL if none.  Assume start_addr < end_addr.
3458  */
3459 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3460 			unsigned long start_addr, unsigned long end_addr);
3461 
3462 /**
3463  * vma_lookup() - Find a VMA at a specific address
3464  * @mm: The process address space.
3465  * @addr: The user address.
3466  *
3467  * Return: The vm_area_struct at the given address, %NULL otherwise.
3468  */
3469 static inline
3470 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3471 {
3472 	return mtree_load(&mm->mm_mt, addr);
3473 }
3474 
3475 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3476 {
3477 	if (vma->vm_flags & VM_GROWSDOWN)
3478 		return stack_guard_gap;
3479 
3480 	/* See reasoning around the VM_SHADOW_STACK definition */
3481 	if (vma->vm_flags & VM_SHADOW_STACK)
3482 		return PAGE_SIZE;
3483 
3484 	return 0;
3485 }
3486 
3487 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3488 {
3489 	unsigned long gap = stack_guard_start_gap(vma);
3490 	unsigned long vm_start = vma->vm_start;
3491 
3492 	vm_start -= gap;
3493 	if (vm_start > vma->vm_start)
3494 		vm_start = 0;
3495 	return vm_start;
3496 }
3497 
3498 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3499 {
3500 	unsigned long vm_end = vma->vm_end;
3501 
3502 	if (vma->vm_flags & VM_GROWSUP) {
3503 		vm_end += stack_guard_gap;
3504 		if (vm_end < vma->vm_end)
3505 			vm_end = -PAGE_SIZE;
3506 	}
3507 	return vm_end;
3508 }
3509 
3510 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3511 {
3512 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3513 }
3514 
3515 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3516 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3517 				unsigned long vm_start, unsigned long vm_end)
3518 {
3519 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3520 
3521 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3522 		vma = NULL;
3523 
3524 	return vma;
3525 }
3526 
3527 static inline bool range_in_vma(struct vm_area_struct *vma,
3528 				unsigned long start, unsigned long end)
3529 {
3530 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3531 }
3532 
3533 #ifdef CONFIG_MMU
3534 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3535 void vma_set_page_prot(struct vm_area_struct *vma);
3536 #else
3537 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3538 {
3539 	return __pgprot(0);
3540 }
3541 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3542 {
3543 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3544 }
3545 #endif
3546 
3547 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3548 
3549 #ifdef CONFIG_NUMA_BALANCING
3550 unsigned long change_prot_numa(struct vm_area_struct *vma,
3551 			unsigned long start, unsigned long end);
3552 #endif
3553 
3554 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3555 		unsigned long addr);
3556 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3557 			unsigned long pfn, unsigned long size, pgprot_t);
3558 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3559 		unsigned long pfn, unsigned long size, pgprot_t prot);
3560 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3561 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3562 			struct page **pages, unsigned long *num);
3563 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3564 				unsigned long num);
3565 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3566 				unsigned long num);
3567 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3568 			unsigned long pfn);
3569 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3570 			unsigned long pfn, pgprot_t pgprot);
3571 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3572 			pfn_t pfn);
3573 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3574 		unsigned long addr, pfn_t pfn);
3575 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3576 
3577 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3578 				unsigned long addr, struct page *page)
3579 {
3580 	int err = vm_insert_page(vma, addr, page);
3581 
3582 	if (err == -ENOMEM)
3583 		return VM_FAULT_OOM;
3584 	if (err < 0 && err != -EBUSY)
3585 		return VM_FAULT_SIGBUS;
3586 
3587 	return VM_FAULT_NOPAGE;
3588 }
3589 
3590 #ifndef io_remap_pfn_range
3591 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3592 				     unsigned long addr, unsigned long pfn,
3593 				     unsigned long size, pgprot_t prot)
3594 {
3595 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3596 }
3597 #endif
3598 
3599 static inline vm_fault_t vmf_error(int err)
3600 {
3601 	if (err == -ENOMEM)
3602 		return VM_FAULT_OOM;
3603 	else if (err == -EHWPOISON)
3604 		return VM_FAULT_HWPOISON;
3605 	return VM_FAULT_SIGBUS;
3606 }
3607 
3608 /*
3609  * Convert errno to return value for ->page_mkwrite() calls.
3610  *
3611  * This should eventually be merged with vmf_error() above, but will need a
3612  * careful audit of all vmf_error() callers.
3613  */
3614 static inline vm_fault_t vmf_fs_error(int err)
3615 {
3616 	if (err == 0)
3617 		return VM_FAULT_LOCKED;
3618 	if (err == -EFAULT || err == -EAGAIN)
3619 		return VM_FAULT_NOPAGE;
3620 	if (err == -ENOMEM)
3621 		return VM_FAULT_OOM;
3622 	/* -ENOSPC, -EDQUOT, -EIO ... */
3623 	return VM_FAULT_SIGBUS;
3624 }
3625 
3626 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3627 			 unsigned int foll_flags);
3628 
3629 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3630 {
3631 	if (vm_fault & VM_FAULT_OOM)
3632 		return -ENOMEM;
3633 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3634 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3635 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3636 		return -EFAULT;
3637 	return 0;
3638 }
3639 
3640 /*
3641  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3642  * a (NUMA hinting) fault is required.
3643  */
3644 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3645 					   unsigned int flags)
3646 {
3647 	/*
3648 	 * If callers don't want to honor NUMA hinting faults, no need to
3649 	 * determine if we would actually have to trigger a NUMA hinting fault.
3650 	 */
3651 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3652 		return true;
3653 
3654 	/*
3655 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3656 	 *
3657 	 * Requiring a fault here even for inaccessible VMAs would mean that
3658 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3659 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3660 	 */
3661 	return !vma_is_accessible(vma);
3662 }
3663 
3664 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3665 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3666 			       unsigned long size, pte_fn_t fn, void *data);
3667 extern int apply_to_existing_page_range(struct mm_struct *mm,
3668 				   unsigned long address, unsigned long size,
3669 				   pte_fn_t fn, void *data);
3670 
3671 #ifdef CONFIG_PAGE_POISONING
3672 extern void __kernel_poison_pages(struct page *page, int numpages);
3673 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3674 extern bool _page_poisoning_enabled_early;
3675 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3676 static inline bool page_poisoning_enabled(void)
3677 {
3678 	return _page_poisoning_enabled_early;
3679 }
3680 /*
3681  * For use in fast paths after init_mem_debugging() has run, or when a
3682  * false negative result is not harmful when called too early.
3683  */
3684 static inline bool page_poisoning_enabled_static(void)
3685 {
3686 	return static_branch_unlikely(&_page_poisoning_enabled);
3687 }
3688 static inline void kernel_poison_pages(struct page *page, int numpages)
3689 {
3690 	if (page_poisoning_enabled_static())
3691 		__kernel_poison_pages(page, numpages);
3692 }
3693 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3694 {
3695 	if (page_poisoning_enabled_static())
3696 		__kernel_unpoison_pages(page, numpages);
3697 }
3698 #else
3699 static inline bool page_poisoning_enabled(void) { return false; }
3700 static inline bool page_poisoning_enabled_static(void) { return false; }
3701 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3702 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3703 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3704 #endif
3705 
3706 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3707 static inline bool want_init_on_alloc(gfp_t flags)
3708 {
3709 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3710 				&init_on_alloc))
3711 		return true;
3712 	return flags & __GFP_ZERO;
3713 }
3714 
3715 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3716 static inline bool want_init_on_free(void)
3717 {
3718 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3719 				   &init_on_free);
3720 }
3721 
3722 extern bool _debug_pagealloc_enabled_early;
3723 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3724 
3725 static inline bool debug_pagealloc_enabled(void)
3726 {
3727 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3728 		_debug_pagealloc_enabled_early;
3729 }
3730 
3731 /*
3732  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3733  * or when a false negative result is not harmful when called too early.
3734  */
3735 static inline bool debug_pagealloc_enabled_static(void)
3736 {
3737 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3738 		return false;
3739 
3740 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3741 }
3742 
3743 /*
3744  * To support DEBUG_PAGEALLOC architecture must ensure that
3745  * __kernel_map_pages() never fails
3746  */
3747 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3748 #ifdef CONFIG_DEBUG_PAGEALLOC
3749 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3750 {
3751 	if (debug_pagealloc_enabled_static())
3752 		__kernel_map_pages(page, numpages, 1);
3753 }
3754 
3755 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3756 {
3757 	if (debug_pagealloc_enabled_static())
3758 		__kernel_map_pages(page, numpages, 0);
3759 }
3760 
3761 extern unsigned int _debug_guardpage_minorder;
3762 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3763 
3764 static inline unsigned int debug_guardpage_minorder(void)
3765 {
3766 	return _debug_guardpage_minorder;
3767 }
3768 
3769 static inline bool debug_guardpage_enabled(void)
3770 {
3771 	return static_branch_unlikely(&_debug_guardpage_enabled);
3772 }
3773 
3774 static inline bool page_is_guard(struct page *page)
3775 {
3776 	if (!debug_guardpage_enabled())
3777 		return false;
3778 
3779 	return PageGuard(page);
3780 }
3781 
3782 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3783 		      int migratetype);
3784 static inline bool set_page_guard(struct zone *zone, struct page *page,
3785 				  unsigned int order, int migratetype)
3786 {
3787 	if (!debug_guardpage_enabled())
3788 		return false;
3789 	return __set_page_guard(zone, page, order, migratetype);
3790 }
3791 
3792 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3793 			int migratetype);
3794 static inline void clear_page_guard(struct zone *zone, struct page *page,
3795 				    unsigned int order, int migratetype)
3796 {
3797 	if (!debug_guardpage_enabled())
3798 		return;
3799 	__clear_page_guard(zone, page, order, migratetype);
3800 }
3801 
3802 #else	/* CONFIG_DEBUG_PAGEALLOC */
3803 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3804 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3805 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3806 static inline bool debug_guardpage_enabled(void) { return false; }
3807 static inline bool page_is_guard(struct page *page) { return false; }
3808 static inline bool set_page_guard(struct zone *zone, struct page *page,
3809 			unsigned int order, int migratetype) { return false; }
3810 static inline void clear_page_guard(struct zone *zone, struct page *page,
3811 				unsigned int order, int migratetype) {}
3812 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3813 
3814 #ifdef __HAVE_ARCH_GATE_AREA
3815 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3816 extern int in_gate_area_no_mm(unsigned long addr);
3817 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3818 #else
3819 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3820 {
3821 	return NULL;
3822 }
3823 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3824 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3825 {
3826 	return 0;
3827 }
3828 #endif	/* __HAVE_ARCH_GATE_AREA */
3829 
3830 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3831 
3832 #ifdef CONFIG_SYSCTL
3833 extern int sysctl_drop_caches;
3834 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3835 		loff_t *);
3836 #endif
3837 
3838 void drop_slab(void);
3839 
3840 #ifndef CONFIG_MMU
3841 #define randomize_va_space 0
3842 #else
3843 extern int randomize_va_space;
3844 #endif
3845 
3846 const char * arch_vma_name(struct vm_area_struct *vma);
3847 #ifdef CONFIG_MMU
3848 void print_vma_addr(char *prefix, unsigned long rip);
3849 #else
3850 static inline void print_vma_addr(char *prefix, unsigned long rip)
3851 {
3852 }
3853 #endif
3854 
3855 void *sparse_buffer_alloc(unsigned long size);
3856 struct page * __populate_section_memmap(unsigned long pfn,
3857 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3858 		struct dev_pagemap *pgmap);
3859 void pmd_init(void *addr);
3860 void pud_init(void *addr);
3861 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3862 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3863 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3864 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3865 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3866 			    struct vmem_altmap *altmap, struct page *reuse);
3867 void *vmemmap_alloc_block(unsigned long size, int node);
3868 struct vmem_altmap;
3869 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3870 			      struct vmem_altmap *altmap);
3871 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3872 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3873 		     unsigned long addr, unsigned long next);
3874 int vmemmap_check_pmd(pmd_t *pmd, int node,
3875 		      unsigned long addr, unsigned long next);
3876 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3877 			       int node, struct vmem_altmap *altmap);
3878 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3879 			       int node, struct vmem_altmap *altmap);
3880 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3881 		struct vmem_altmap *altmap);
3882 void vmemmap_populate_print_last(void);
3883 #ifdef CONFIG_MEMORY_HOTPLUG
3884 void vmemmap_free(unsigned long start, unsigned long end,
3885 		struct vmem_altmap *altmap);
3886 #endif
3887 
3888 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3889 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3890 {
3891 	/* number of pfns from base where pfn_to_page() is valid */
3892 	if (altmap)
3893 		return altmap->reserve + altmap->free;
3894 	return 0;
3895 }
3896 
3897 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3898 				    unsigned long nr_pfns)
3899 {
3900 	altmap->alloc -= nr_pfns;
3901 }
3902 #else
3903 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3904 {
3905 	return 0;
3906 }
3907 
3908 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3909 				    unsigned long nr_pfns)
3910 {
3911 }
3912 #endif
3913 
3914 #define VMEMMAP_RESERVE_NR	2
3915 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3916 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3917 					  struct dev_pagemap *pgmap)
3918 {
3919 	unsigned long nr_pages;
3920 	unsigned long nr_vmemmap_pages;
3921 
3922 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3923 		return false;
3924 
3925 	nr_pages = pgmap_vmemmap_nr(pgmap);
3926 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3927 	/*
3928 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3929 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3930 	 */
3931 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3932 }
3933 /*
3934  * If we don't have an architecture override, use the generic rule
3935  */
3936 #ifndef vmemmap_can_optimize
3937 #define vmemmap_can_optimize __vmemmap_can_optimize
3938 #endif
3939 
3940 #else
3941 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3942 					   struct dev_pagemap *pgmap)
3943 {
3944 	return false;
3945 }
3946 #endif
3947 
3948 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3949 				  unsigned long nr_pages);
3950 
3951 enum mf_flags {
3952 	MF_COUNT_INCREASED = 1 << 0,
3953 	MF_ACTION_REQUIRED = 1 << 1,
3954 	MF_MUST_KILL = 1 << 2,
3955 	MF_SOFT_OFFLINE = 1 << 3,
3956 	MF_UNPOISON = 1 << 4,
3957 	MF_SW_SIMULATED = 1 << 5,
3958 	MF_NO_RETRY = 1 << 6,
3959 	MF_MEM_PRE_REMOVE = 1 << 7,
3960 };
3961 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3962 		      unsigned long count, int mf_flags);
3963 extern int memory_failure(unsigned long pfn, int flags);
3964 extern void memory_failure_queue_kick(int cpu);
3965 extern int unpoison_memory(unsigned long pfn);
3966 extern void shake_page(struct page *p);
3967 extern atomic_long_t num_poisoned_pages __read_mostly;
3968 extern int soft_offline_page(unsigned long pfn, int flags);
3969 #ifdef CONFIG_MEMORY_FAILURE
3970 /*
3971  * Sysfs entries for memory failure handling statistics.
3972  */
3973 extern const struct attribute_group memory_failure_attr_group;
3974 extern void memory_failure_queue(unsigned long pfn, int flags);
3975 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3976 					bool *migratable_cleared);
3977 void num_poisoned_pages_inc(unsigned long pfn);
3978 void num_poisoned_pages_sub(unsigned long pfn, long i);
3979 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3980 #else
3981 static inline void memory_failure_queue(unsigned long pfn, int flags)
3982 {
3983 }
3984 
3985 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3986 					bool *migratable_cleared)
3987 {
3988 	return 0;
3989 }
3990 
3991 static inline void num_poisoned_pages_inc(unsigned long pfn)
3992 {
3993 }
3994 
3995 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3996 {
3997 }
3998 #endif
3999 
4000 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4001 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4002 		     struct vm_area_struct *vma, struct list_head *to_kill,
4003 		     unsigned long ksm_addr);
4004 #endif
4005 
4006 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4007 extern void memblk_nr_poison_inc(unsigned long pfn);
4008 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4009 #else
4010 static inline void memblk_nr_poison_inc(unsigned long pfn)
4011 {
4012 }
4013 
4014 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4015 {
4016 }
4017 #endif
4018 
4019 #ifndef arch_memory_failure
4020 static inline int arch_memory_failure(unsigned long pfn, int flags)
4021 {
4022 	return -ENXIO;
4023 }
4024 #endif
4025 
4026 #ifndef arch_is_platform_page
4027 static inline bool arch_is_platform_page(u64 paddr)
4028 {
4029 	return false;
4030 }
4031 #endif
4032 
4033 /*
4034  * Error handlers for various types of pages.
4035  */
4036 enum mf_result {
4037 	MF_IGNORED,	/* Error: cannot be handled */
4038 	MF_FAILED,	/* Error: handling failed */
4039 	MF_DELAYED,	/* Will be handled later */
4040 	MF_RECOVERED,	/* Successfully recovered */
4041 };
4042 
4043 enum mf_action_page_type {
4044 	MF_MSG_KERNEL,
4045 	MF_MSG_KERNEL_HIGH_ORDER,
4046 	MF_MSG_SLAB,
4047 	MF_MSG_DIFFERENT_COMPOUND,
4048 	MF_MSG_HUGE,
4049 	MF_MSG_FREE_HUGE,
4050 	MF_MSG_UNMAP_FAILED,
4051 	MF_MSG_DIRTY_SWAPCACHE,
4052 	MF_MSG_CLEAN_SWAPCACHE,
4053 	MF_MSG_DIRTY_MLOCKED_LRU,
4054 	MF_MSG_CLEAN_MLOCKED_LRU,
4055 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4056 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4057 	MF_MSG_DIRTY_LRU,
4058 	MF_MSG_CLEAN_LRU,
4059 	MF_MSG_TRUNCATED_LRU,
4060 	MF_MSG_BUDDY,
4061 	MF_MSG_DAX,
4062 	MF_MSG_UNSPLIT_THP,
4063 	MF_MSG_UNKNOWN,
4064 };
4065 
4066 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4067 extern void clear_huge_page(struct page *page,
4068 			    unsigned long addr_hint,
4069 			    unsigned int pages_per_huge_page);
4070 int copy_user_large_folio(struct folio *dst, struct folio *src,
4071 			  unsigned long addr_hint,
4072 			  struct vm_area_struct *vma);
4073 long copy_folio_from_user(struct folio *dst_folio,
4074 			   const void __user *usr_src,
4075 			   bool allow_pagefault);
4076 
4077 /**
4078  * vma_is_special_huge - Are transhuge page-table entries considered special?
4079  * @vma: Pointer to the struct vm_area_struct to consider
4080  *
4081  * Whether transhuge page-table entries are considered "special" following
4082  * the definition in vm_normal_page().
4083  *
4084  * Return: true if transhuge page-table entries should be considered special,
4085  * false otherwise.
4086  */
4087 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4088 {
4089 	return vma_is_dax(vma) || (vma->vm_file &&
4090 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4091 }
4092 
4093 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4094 
4095 #if MAX_NUMNODES > 1
4096 void __init setup_nr_node_ids(void);
4097 #else
4098 static inline void setup_nr_node_ids(void) {}
4099 #endif
4100 
4101 extern int memcmp_pages(struct page *page1, struct page *page2);
4102 
4103 static inline int pages_identical(struct page *page1, struct page *page2)
4104 {
4105 	return !memcmp_pages(page1, page2);
4106 }
4107 
4108 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4109 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4110 						pgoff_t first_index, pgoff_t nr,
4111 						pgoff_t bitmap_pgoff,
4112 						unsigned long *bitmap,
4113 						pgoff_t *start,
4114 						pgoff_t *end);
4115 
4116 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4117 				      pgoff_t first_index, pgoff_t nr);
4118 #endif
4119 
4120 extern int sysctl_nr_trim_pages;
4121 
4122 #ifdef CONFIG_PRINTK
4123 void mem_dump_obj(void *object);
4124 #else
4125 static inline void mem_dump_obj(void *object) {}
4126 #endif
4127 
4128 /**
4129  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4130  *                    handle them.
4131  * @seals: the seals to check
4132  * @vma: the vma to operate on
4133  *
4134  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4135  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4136  */
4137 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4138 {
4139 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4140 		/*
4141 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4142 		 * write seals are active.
4143 		 */
4144 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4145 			return -EPERM;
4146 
4147 		/*
4148 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4149 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4150 		 * revert protections on such mappings. Do this only for shared
4151 		 * mappings. For private mappings, don't need to mask
4152 		 * VM_MAYWRITE as we still want them to be COW-writable.
4153 		 */
4154 		if (vma->vm_flags & VM_SHARED)
4155 			vm_flags_clear(vma, VM_MAYWRITE);
4156 	}
4157 
4158 	return 0;
4159 }
4160 
4161 #ifdef CONFIG_ANON_VMA_NAME
4162 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4163 			  unsigned long len_in,
4164 			  struct anon_vma_name *anon_name);
4165 #else
4166 static inline int
4167 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4168 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4169 	return 0;
4170 }
4171 #endif
4172 
4173 #ifdef CONFIG_UNACCEPTED_MEMORY
4174 
4175 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4176 void accept_memory(phys_addr_t start, phys_addr_t end);
4177 
4178 #else
4179 
4180 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4181 						    phys_addr_t end)
4182 {
4183 	return false;
4184 }
4185 
4186 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4187 {
4188 }
4189 
4190 #endif
4191 
4192 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4193 {
4194 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4195 
4196 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4197 }
4198 
4199 #endif /* _LINUX_MM_H */
4200