1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 #include <linux/rcuwait.h> 36 37 struct mempolicy; 38 struct anon_vma; 39 struct anon_vma_chain; 40 struct user_struct; 41 struct pt_regs; 42 struct folio_batch; 43 44 void arch_mm_preinit(void); 45 void mm_core_init(void); 46 void init_mm_internals(void); 47 48 extern atomic_long_t _totalram_pages; 49 static inline unsigned long totalram_pages(void) 50 { 51 return (unsigned long)atomic_long_read(&_totalram_pages); 52 } 53 54 static inline void totalram_pages_inc(void) 55 { 56 atomic_long_inc(&_totalram_pages); 57 } 58 59 static inline void totalram_pages_dec(void) 60 { 61 atomic_long_dec(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_add(long count) 65 { 66 atomic_long_add(count, &_totalram_pages); 67 } 68 69 extern void * high_memory; 70 71 #ifdef CONFIG_SYSCTL 72 extern int sysctl_legacy_va_layout; 73 #else 74 #define sysctl_legacy_va_layout 0 75 #endif 76 77 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 78 extern const int mmap_rnd_bits_min; 79 extern int mmap_rnd_bits_max __ro_after_init; 80 extern int mmap_rnd_bits __read_mostly; 81 #endif 82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 83 extern const int mmap_rnd_compat_bits_min; 84 extern const int mmap_rnd_compat_bits_max; 85 extern int mmap_rnd_compat_bits __read_mostly; 86 #endif 87 88 #ifndef DIRECT_MAP_PHYSMEM_END 89 # ifdef MAX_PHYSMEM_BITS 90 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 91 # else 92 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 93 # endif 94 #endif 95 96 #include <asm/page.h> 97 #include <asm/processor.h> 98 99 #ifndef __pa_symbol 100 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 101 #endif 102 103 #ifndef page_to_virt 104 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 105 #endif 106 107 #ifndef lm_alias 108 #define lm_alias(x) __va(__pa_symbol(x)) 109 #endif 110 111 /* 112 * To prevent common memory management code establishing 113 * a zero page mapping on a read fault. 114 * This macro should be defined within <asm/pgtable.h>. 115 * s390 does this to prevent multiplexing of hardware bits 116 * related to the physical page in case of virtualization. 117 */ 118 #ifndef mm_forbids_zeropage 119 #define mm_forbids_zeropage(X) (0) 120 #endif 121 122 /* 123 * On some architectures it is expensive to call memset() for small sizes. 124 * If an architecture decides to implement their own version of 125 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 126 * define their own version of this macro in <asm/pgtable.h> 127 */ 128 #if BITS_PER_LONG == 64 129 /* This function must be updated when the size of struct page grows above 96 130 * or reduces below 56. The idea that compiler optimizes out switch() 131 * statement, and only leaves move/store instructions. Also the compiler can 132 * combine write statements if they are both assignments and can be reordered, 133 * this can result in several of the writes here being dropped. 134 */ 135 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 136 static inline void __mm_zero_struct_page(struct page *page) 137 { 138 unsigned long *_pp = (void *)page; 139 140 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 141 BUILD_BUG_ON(sizeof(struct page) & 7); 142 BUILD_BUG_ON(sizeof(struct page) < 56); 143 BUILD_BUG_ON(sizeof(struct page) > 96); 144 145 switch (sizeof(struct page)) { 146 case 96: 147 _pp[11] = 0; 148 fallthrough; 149 case 88: 150 _pp[10] = 0; 151 fallthrough; 152 case 80: 153 _pp[9] = 0; 154 fallthrough; 155 case 72: 156 _pp[8] = 0; 157 fallthrough; 158 case 64: 159 _pp[7] = 0; 160 fallthrough; 161 case 56: 162 _pp[6] = 0; 163 _pp[5] = 0; 164 _pp[4] = 0; 165 _pp[3] = 0; 166 _pp[2] = 0; 167 _pp[1] = 0; 168 _pp[0] = 0; 169 } 170 } 171 #else 172 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 173 #endif 174 175 /* 176 * Default maximum number of active map areas, this limits the number of vmas 177 * per mm struct. Users can overwrite this number by sysctl but there is a 178 * problem. 179 * 180 * When a program's coredump is generated as ELF format, a section is created 181 * per a vma. In ELF, the number of sections is represented in unsigned short. 182 * This means the number of sections should be smaller than 65535 at coredump. 183 * Because the kernel adds some informative sections to a image of program at 184 * generating coredump, we need some margin. The number of extra sections is 185 * 1-3 now and depends on arch. We use "5" as safe margin, here. 186 * 187 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 188 * not a hard limit any more. Although some userspace tools can be surprised by 189 * that. 190 */ 191 #define MAPCOUNT_ELF_CORE_MARGIN (5) 192 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 193 194 extern int sysctl_max_map_count; 195 196 extern unsigned long sysctl_user_reserve_kbytes; 197 extern unsigned long sysctl_admin_reserve_kbytes; 198 199 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 200 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 201 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 202 #else 203 #define nth_page(page,n) ((page) + (n)) 204 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 205 #endif 206 207 /* to align the pointer to the (next) page boundary */ 208 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 209 210 /* to align the pointer to the (prev) page boundary */ 211 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 212 213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 214 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 215 216 static inline struct folio *lru_to_folio(struct list_head *head) 217 { 218 return list_entry((head)->prev, struct folio, lru); 219 } 220 221 void setup_initial_init_mm(void *start_code, void *end_code, 222 void *end_data, void *brk); 223 224 /* 225 * Linux kernel virtual memory manager primitives. 226 * The idea being to have a "virtual" mm in the same way 227 * we have a virtual fs - giving a cleaner interface to the 228 * mm details, and allowing different kinds of memory mappings 229 * (from shared memory to executable loading to arbitrary 230 * mmap() functions). 231 */ 232 233 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 234 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 235 void vm_area_free(struct vm_area_struct *); 236 237 #ifndef CONFIG_MMU 238 extern struct rb_root nommu_region_tree; 239 extern struct rw_semaphore nommu_region_sem; 240 241 extern unsigned int kobjsize(const void *objp); 242 #endif 243 244 /* 245 * vm_flags in vm_area_struct, see mm_types.h. 246 * When changing, update also include/trace/events/mmflags.h 247 */ 248 #define VM_NONE 0x00000000 249 250 #define VM_READ 0x00000001 /* currently active flags */ 251 #define VM_WRITE 0x00000002 252 #define VM_EXEC 0x00000004 253 #define VM_SHARED 0x00000008 254 255 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 256 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 257 #define VM_MAYWRITE 0x00000020 258 #define VM_MAYEXEC 0x00000040 259 #define VM_MAYSHARE 0x00000080 260 261 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 262 #ifdef CONFIG_MMU 263 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 264 #else /* CONFIG_MMU */ 265 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 266 #define VM_UFFD_MISSING 0 267 #endif /* CONFIG_MMU */ 268 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 269 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 270 271 #define VM_LOCKED 0x00002000 272 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 273 274 /* Used by sys_madvise() */ 275 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 276 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 277 278 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 279 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 280 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 281 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 282 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 283 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 284 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 285 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 286 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 287 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 288 289 #ifdef CONFIG_MEM_SOFT_DIRTY 290 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 291 #else 292 # define VM_SOFTDIRTY 0 293 #endif 294 295 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 296 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 297 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 298 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 299 300 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 301 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 302 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 303 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 306 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 308 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 309 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 310 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 311 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 312 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 313 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 314 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 315 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 316 317 #ifdef CONFIG_ARCH_HAS_PKEYS 318 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 319 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 320 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 321 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 322 #if CONFIG_ARCH_PKEY_BITS > 3 323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 324 #else 325 # define VM_PKEY_BIT3 0 326 #endif 327 #if CONFIG_ARCH_PKEY_BITS > 4 328 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 329 #else 330 # define VM_PKEY_BIT4 0 331 #endif 332 #endif /* CONFIG_ARCH_HAS_PKEYS */ 333 334 #ifdef CONFIG_X86_USER_SHADOW_STACK 335 /* 336 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 337 * support core mm. 338 * 339 * These VMAs will get a single end guard page. This helps userspace protect 340 * itself from attacks. A single page is enough for current shadow stack archs 341 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 342 * for more details on the guard size. 343 */ 344 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 345 #endif 346 347 #if defined(CONFIG_ARM64_GCS) 348 /* 349 * arm64's Guarded Control Stack implements similar functionality and 350 * has similar constraints to shadow stacks. 351 */ 352 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 353 #endif 354 355 #ifndef VM_SHADOW_STACK 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC64) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* 395 * This flag is used to connect VFIO to arch specific KVM code. It 396 * indicates that the memory under this VMA is safe for use with any 397 * non-cachable memory type inside KVM. Some VFIO devices, on some 398 * platforms, are thought to be unsafe and can cause machine crashes 399 * if KVM does not lock down the memory type. 400 */ 401 #ifdef CONFIG_64BIT 402 #define VM_ALLOW_ANY_UNCACHED_BIT 39 403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 404 #else 405 #define VM_ALLOW_ANY_UNCACHED VM_NONE 406 #endif 407 408 #ifdef CONFIG_64BIT 409 #define VM_DROPPABLE_BIT 40 410 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 411 #elif defined(CONFIG_PPC32) 412 #define VM_DROPPABLE VM_ARCH_1 413 #else 414 #define VM_DROPPABLE VM_NONE 415 #endif 416 417 #ifdef CONFIG_64BIT 418 /* VM is sealed, in vm_flags */ 419 #define VM_SEALED _BITUL(63) 420 #endif 421 422 /* Bits set in the VMA until the stack is in its final location */ 423 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 424 425 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 426 427 /* Common data flag combinations */ 428 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 429 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 430 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 431 VM_MAYWRITE | VM_MAYEXEC) 432 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 433 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 434 435 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 436 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 437 #endif 438 439 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 440 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 441 #endif 442 443 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 444 445 #ifdef CONFIG_STACK_GROWSUP 446 #define VM_STACK VM_GROWSUP 447 #define VM_STACK_EARLY VM_GROWSDOWN 448 #else 449 #define VM_STACK VM_GROWSDOWN 450 #define VM_STACK_EARLY 0 451 #endif 452 453 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 454 455 /* VMA basic access permission flags */ 456 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 457 458 459 /* 460 * Special vmas that are non-mergable, non-mlock()able. 461 */ 462 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 463 464 /* This mask prevents VMA from being scanned with khugepaged */ 465 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 466 467 /* This mask defines which mm->def_flags a process can inherit its parent */ 468 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 469 470 /* This mask represents all the VMA flag bits used by mlock */ 471 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 472 473 /* Arch-specific flags to clear when updating VM flags on protection change */ 474 #ifndef VM_ARCH_CLEAR 475 # define VM_ARCH_CLEAR VM_NONE 476 #endif 477 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 478 479 /* 480 * mapping from the currently active vm_flags protection bits (the 481 * low four bits) to a page protection mask.. 482 */ 483 484 /* 485 * The default fault flags that should be used by most of the 486 * arch-specific page fault handlers. 487 */ 488 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 489 FAULT_FLAG_KILLABLE | \ 490 FAULT_FLAG_INTERRUPTIBLE) 491 492 /** 493 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 494 * @flags: Fault flags. 495 * 496 * This is mostly used for places where we want to try to avoid taking 497 * the mmap_lock for too long a time when waiting for another condition 498 * to change, in which case we can try to be polite to release the 499 * mmap_lock in the first round to avoid potential starvation of other 500 * processes that would also want the mmap_lock. 501 * 502 * Return: true if the page fault allows retry and this is the first 503 * attempt of the fault handling; false otherwise. 504 */ 505 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 506 { 507 return (flags & FAULT_FLAG_ALLOW_RETRY) && 508 (!(flags & FAULT_FLAG_TRIED)); 509 } 510 511 #define FAULT_FLAG_TRACE \ 512 { FAULT_FLAG_WRITE, "WRITE" }, \ 513 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 514 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 515 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 516 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 517 { FAULT_FLAG_TRIED, "TRIED" }, \ 518 { FAULT_FLAG_USER, "USER" }, \ 519 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 520 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 521 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 522 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 523 524 /* 525 * vm_fault is filled by the pagefault handler and passed to the vma's 526 * ->fault function. The vma's ->fault is responsible for returning a bitmask 527 * of VM_FAULT_xxx flags that give details about how the fault was handled. 528 * 529 * MM layer fills up gfp_mask for page allocations but fault handler might 530 * alter it if its implementation requires a different allocation context. 531 * 532 * pgoff should be used in favour of virtual_address, if possible. 533 */ 534 struct vm_fault { 535 const struct { 536 struct vm_area_struct *vma; /* Target VMA */ 537 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 538 pgoff_t pgoff; /* Logical page offset based on vma */ 539 unsigned long address; /* Faulting virtual address - masked */ 540 unsigned long real_address; /* Faulting virtual address - unmasked */ 541 }; 542 enum fault_flag flags; /* FAULT_FLAG_xxx flags 543 * XXX: should really be 'const' */ 544 pmd_t *pmd; /* Pointer to pmd entry matching 545 * the 'address' */ 546 pud_t *pud; /* Pointer to pud entry matching 547 * the 'address' 548 */ 549 union { 550 pte_t orig_pte; /* Value of PTE at the time of fault */ 551 pmd_t orig_pmd; /* Value of PMD at the time of fault, 552 * used by PMD fault only. 553 */ 554 }; 555 556 struct page *cow_page; /* Page handler may use for COW fault */ 557 struct page *page; /* ->fault handlers should return a 558 * page here, unless VM_FAULT_NOPAGE 559 * is set (which is also implied by 560 * VM_FAULT_ERROR). 561 */ 562 /* These three entries are valid only while holding ptl lock */ 563 pte_t *pte; /* Pointer to pte entry matching 564 * the 'address'. NULL if the page 565 * table hasn't been allocated. 566 */ 567 spinlock_t *ptl; /* Page table lock. 568 * Protects pte page table if 'pte' 569 * is not NULL, otherwise pmd. 570 */ 571 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 572 * vm_ops->map_pages() sets up a page 573 * table from atomic context. 574 * do_fault_around() pre-allocates 575 * page table to avoid allocation from 576 * atomic context. 577 */ 578 }; 579 580 /* 581 * These are the virtual MM functions - opening of an area, closing and 582 * unmapping it (needed to keep files on disk up-to-date etc), pointer 583 * to the functions called when a no-page or a wp-page exception occurs. 584 */ 585 struct vm_operations_struct { 586 void (*open)(struct vm_area_struct * area); 587 /** 588 * @close: Called when the VMA is being removed from the MM. 589 * Context: User context. May sleep. Caller holds mmap_lock. 590 */ 591 void (*close)(struct vm_area_struct * area); 592 /* Called any time before splitting to check if it's allowed */ 593 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 594 int (*mremap)(struct vm_area_struct *area); 595 /* 596 * Called by mprotect() to make driver-specific permission 597 * checks before mprotect() is finalised. The VMA must not 598 * be modified. Returns 0 if mprotect() can proceed. 599 */ 600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 601 unsigned long end, unsigned long newflags); 602 vm_fault_t (*fault)(struct vm_fault *vmf); 603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 604 vm_fault_t (*map_pages)(struct vm_fault *vmf, 605 pgoff_t start_pgoff, pgoff_t end_pgoff); 606 unsigned long (*pagesize)(struct vm_area_struct * area); 607 608 /* notification that a previously read-only page is about to become 609 * writable, if an error is returned it will cause a SIGBUS */ 610 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 611 612 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 613 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 614 615 /* called by access_process_vm when get_user_pages() fails, typically 616 * for use by special VMAs. See also generic_access_phys() for a generic 617 * implementation useful for any iomem mapping. 618 */ 619 int (*access)(struct vm_area_struct *vma, unsigned long addr, 620 void *buf, int len, int write); 621 622 /* Called by the /proc/PID/maps code to ask the vma whether it 623 * has a special name. Returning non-NULL will also cause this 624 * vma to be dumped unconditionally. */ 625 const char *(*name)(struct vm_area_struct *vma); 626 627 #ifdef CONFIG_NUMA 628 /* 629 * set_policy() op must add a reference to any non-NULL @new mempolicy 630 * to hold the policy upon return. Caller should pass NULL @new to 631 * remove a policy and fall back to surrounding context--i.e. do not 632 * install a MPOL_DEFAULT policy, nor the task or system default 633 * mempolicy. 634 */ 635 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 636 637 /* 638 * get_policy() op must add reference [mpol_get()] to any policy at 639 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 640 * in mm/mempolicy.c will do this automatically. 641 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 642 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 643 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 644 * must return NULL--i.e., do not "fallback" to task or system default 645 * policy. 646 */ 647 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 648 unsigned long addr, pgoff_t *ilx); 649 #endif 650 /* 651 * Called by vm_normal_page() for special PTEs to find the 652 * page for @addr. This is useful if the default behavior 653 * (using pte_page()) would not find the correct page. 654 */ 655 struct page *(*find_special_page)(struct vm_area_struct *vma, 656 unsigned long addr); 657 }; 658 659 #ifdef CONFIG_NUMA_BALANCING 660 static inline void vma_numab_state_init(struct vm_area_struct *vma) 661 { 662 vma->numab_state = NULL; 663 } 664 static inline void vma_numab_state_free(struct vm_area_struct *vma) 665 { 666 kfree(vma->numab_state); 667 } 668 #else 669 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 670 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 671 #endif /* CONFIG_NUMA_BALANCING */ 672 673 #ifdef CONFIG_PER_VMA_LOCK 674 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 675 { 676 #ifdef CONFIG_DEBUG_LOCK_ALLOC 677 static struct lock_class_key lockdep_key; 678 679 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); 680 #endif 681 if (reset_refcnt) 682 refcount_set(&vma->vm_refcnt, 0); 683 vma->vm_lock_seq = UINT_MAX; 684 } 685 686 static inline bool is_vma_writer_only(int refcnt) 687 { 688 /* 689 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma 690 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on 691 * a detached vma happens only in vma_mark_detached() and is a rare 692 * case, therefore most of the time there will be no unnecessary wakeup. 693 */ 694 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; 695 } 696 697 static inline void vma_refcount_put(struct vm_area_struct *vma) 698 { 699 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ 700 struct mm_struct *mm = vma->vm_mm; 701 int oldcnt; 702 703 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 704 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { 705 706 if (is_vma_writer_only(oldcnt - 1)) 707 rcuwait_wake_up(&mm->vma_writer_wait); 708 } 709 } 710 711 /* 712 * Try to read-lock a vma. The function is allowed to occasionally yield false 713 * locked result to avoid performance overhead, in which case we fall back to 714 * using mmap_lock. The function should never yield false unlocked result. 715 * False locked result is possible if mm_lock_seq overflows or if vma gets 716 * reused and attached to a different mm before we lock it. 717 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got 718 * detached. 719 */ 720 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 721 struct vm_area_struct *vma) 722 { 723 int oldcnt; 724 725 /* 726 * Check before locking. A race might cause false locked result. 727 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 728 * ACQUIRE semantics, because this is just a lockless check whose result 729 * we don't rely on for anything - the mm_lock_seq read against which we 730 * need ordering is below. 731 */ 732 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) 733 return NULL; 734 735 /* 736 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() 737 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. 738 * Acquire fence is required here to avoid reordering against later 739 * vm_lock_seq check and checks inside lock_vma_under_rcu(). 740 */ 741 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 742 VMA_REF_LIMIT))) { 743 /* return EAGAIN if vma got detached from under us */ 744 return oldcnt ? NULL : ERR_PTR(-EAGAIN); 745 } 746 747 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 748 /* 749 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. 750 * False unlocked result is impossible because we modify and check 751 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq 752 * modification invalidates all existing locks. 753 * 754 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 755 * racing with vma_end_write_all(), we only start reading from the VMA 756 * after it has been unlocked. 757 * This pairs with RELEASE semantics in vma_end_write_all(). 758 */ 759 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { 760 vma_refcount_put(vma); 761 return NULL; 762 } 763 764 return vma; 765 } 766 767 /* 768 * Use only while holding mmap read lock which guarantees that locking will not 769 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 770 * not be used in such cases because it might fail due to mm_lock_seq overflow. 771 * This functionality is used to obtain vma read lock and drop the mmap read lock. 772 */ 773 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) 774 { 775 int oldcnt; 776 777 mmap_assert_locked(vma->vm_mm); 778 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 779 VMA_REF_LIMIT))) 780 return false; 781 782 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 783 return true; 784 } 785 786 /* 787 * Use only while holding mmap read lock which guarantees that locking will not 788 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 789 * not be used in such cases because it might fail due to mm_lock_seq overflow. 790 * This functionality is used to obtain vma read lock and drop the mmap read lock. 791 */ 792 static inline bool vma_start_read_locked(struct vm_area_struct *vma) 793 { 794 return vma_start_read_locked_nested(vma, 0); 795 } 796 797 static inline void vma_end_read(struct vm_area_struct *vma) 798 { 799 vma_refcount_put(vma); 800 } 801 802 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 803 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 804 { 805 mmap_assert_write_locked(vma->vm_mm); 806 807 /* 808 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 809 * mm->mm_lock_seq can't be concurrently modified. 810 */ 811 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 812 return (vma->vm_lock_seq == *mm_lock_seq); 813 } 814 815 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); 816 817 /* 818 * Begin writing to a VMA. 819 * Exclude concurrent readers under the per-VMA lock until the currently 820 * write-locked mmap_lock is dropped or downgraded. 821 */ 822 static inline void vma_start_write(struct vm_area_struct *vma) 823 { 824 unsigned int mm_lock_seq; 825 826 if (__is_vma_write_locked(vma, &mm_lock_seq)) 827 return; 828 829 __vma_start_write(vma, mm_lock_seq); 830 } 831 832 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 833 { 834 unsigned int mm_lock_seq; 835 836 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 837 } 838 839 static inline void vma_assert_locked(struct vm_area_struct *vma) 840 { 841 unsigned int mm_lock_seq; 842 843 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && 844 !__is_vma_write_locked(vma, &mm_lock_seq), vma); 845 } 846 847 /* 848 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 849 * assertions should be made either under mmap_write_lock or when the object 850 * has been isolated under mmap_write_lock, ensuring no competing writers. 851 */ 852 static inline void vma_assert_attached(struct vm_area_struct *vma) 853 { 854 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 855 } 856 857 static inline void vma_assert_detached(struct vm_area_struct *vma) 858 { 859 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 860 } 861 862 static inline void vma_mark_attached(struct vm_area_struct *vma) 863 { 864 vma_assert_write_locked(vma); 865 vma_assert_detached(vma); 866 refcount_set_release(&vma->vm_refcnt, 1); 867 } 868 869 void vma_mark_detached(struct vm_area_struct *vma); 870 871 static inline void release_fault_lock(struct vm_fault *vmf) 872 { 873 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 874 vma_end_read(vmf->vma); 875 else 876 mmap_read_unlock(vmf->vma->vm_mm); 877 } 878 879 static inline void assert_fault_locked(struct vm_fault *vmf) 880 { 881 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 882 vma_assert_locked(vmf->vma); 883 else 884 mmap_assert_locked(vmf->vma->vm_mm); 885 } 886 887 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 888 unsigned long address); 889 890 #else /* CONFIG_PER_VMA_LOCK */ 891 892 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} 893 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 894 struct vm_area_struct *vma) 895 { return NULL; } 896 static inline void vma_end_read(struct vm_area_struct *vma) {} 897 static inline void vma_start_write(struct vm_area_struct *vma) {} 898 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 899 { mmap_assert_write_locked(vma->vm_mm); } 900 static inline void vma_assert_attached(struct vm_area_struct *vma) {} 901 static inline void vma_assert_detached(struct vm_area_struct *vma) {} 902 static inline void vma_mark_attached(struct vm_area_struct *vma) {} 903 static inline void vma_mark_detached(struct vm_area_struct *vma) {} 904 905 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 906 unsigned long address) 907 { 908 return NULL; 909 } 910 911 static inline void vma_assert_locked(struct vm_area_struct *vma) 912 { 913 mmap_assert_locked(vma->vm_mm); 914 } 915 916 static inline void release_fault_lock(struct vm_fault *vmf) 917 { 918 mmap_read_unlock(vmf->vma->vm_mm); 919 } 920 921 static inline void assert_fault_locked(struct vm_fault *vmf) 922 { 923 mmap_assert_locked(vmf->vma->vm_mm); 924 } 925 926 #endif /* CONFIG_PER_VMA_LOCK */ 927 928 extern const struct vm_operations_struct vma_dummy_vm_ops; 929 930 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 931 { 932 memset(vma, 0, sizeof(*vma)); 933 vma->vm_mm = mm; 934 vma->vm_ops = &vma_dummy_vm_ops; 935 INIT_LIST_HEAD(&vma->anon_vma_chain); 936 vma_lock_init(vma, false); 937 } 938 939 /* Use when VMA is not part of the VMA tree and needs no locking */ 940 static inline void vm_flags_init(struct vm_area_struct *vma, 941 vm_flags_t flags) 942 { 943 ACCESS_PRIVATE(vma, __vm_flags) = flags; 944 } 945 946 /* 947 * Use when VMA is part of the VMA tree and modifications need coordination 948 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 949 * it should be locked explicitly beforehand. 950 */ 951 static inline void vm_flags_reset(struct vm_area_struct *vma, 952 vm_flags_t flags) 953 { 954 vma_assert_write_locked(vma); 955 vm_flags_init(vma, flags); 956 } 957 958 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 959 vm_flags_t flags) 960 { 961 vma_assert_write_locked(vma); 962 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 963 } 964 965 static inline void vm_flags_set(struct vm_area_struct *vma, 966 vm_flags_t flags) 967 { 968 vma_start_write(vma); 969 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 970 } 971 972 static inline void vm_flags_clear(struct vm_area_struct *vma, 973 vm_flags_t flags) 974 { 975 vma_start_write(vma); 976 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 977 } 978 979 /* 980 * Use only if VMA is not part of the VMA tree or has no other users and 981 * therefore needs no locking. 982 */ 983 static inline void __vm_flags_mod(struct vm_area_struct *vma, 984 vm_flags_t set, vm_flags_t clear) 985 { 986 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 987 } 988 989 /* 990 * Use only when the order of set/clear operations is unimportant, otherwise 991 * use vm_flags_{set|clear} explicitly. 992 */ 993 static inline void vm_flags_mod(struct vm_area_struct *vma, 994 vm_flags_t set, vm_flags_t clear) 995 { 996 vma_start_write(vma); 997 __vm_flags_mod(vma, set, clear); 998 } 999 1000 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1001 { 1002 vma->vm_ops = NULL; 1003 } 1004 1005 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1006 { 1007 return !vma->vm_ops; 1008 } 1009 1010 /* 1011 * Indicate if the VMA is a heap for the given task; for 1012 * /proc/PID/maps that is the heap of the main task. 1013 */ 1014 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1015 { 1016 return vma->vm_start < vma->vm_mm->brk && 1017 vma->vm_end > vma->vm_mm->start_brk; 1018 } 1019 1020 /* 1021 * Indicate if the VMA is a stack for the given task; for 1022 * /proc/PID/maps that is the stack of the main task. 1023 */ 1024 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1025 { 1026 /* 1027 * We make no effort to guess what a given thread considers to be 1028 * its "stack". It's not even well-defined for programs written 1029 * languages like Go. 1030 */ 1031 return vma->vm_start <= vma->vm_mm->start_stack && 1032 vma->vm_end >= vma->vm_mm->start_stack; 1033 } 1034 1035 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 1036 { 1037 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1038 1039 if (!maybe_stack) 1040 return false; 1041 1042 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1043 VM_STACK_INCOMPLETE_SETUP) 1044 return true; 1045 1046 return false; 1047 } 1048 1049 static inline bool vma_is_foreign(struct vm_area_struct *vma) 1050 { 1051 if (!current->mm) 1052 return true; 1053 1054 if (current->mm != vma->vm_mm) 1055 return true; 1056 1057 return false; 1058 } 1059 1060 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1061 { 1062 return vma->vm_flags & VM_ACCESS_FLAGS; 1063 } 1064 1065 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1066 { 1067 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1068 (VM_SHARED | VM_MAYWRITE); 1069 } 1070 1071 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1072 { 1073 return is_shared_maywrite(vma->vm_flags); 1074 } 1075 1076 static inline 1077 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1078 { 1079 return mas_find(&vmi->mas, max - 1); 1080 } 1081 1082 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1083 { 1084 /* 1085 * Uses mas_find() to get the first VMA when the iterator starts. 1086 * Calling mas_next() could skip the first entry. 1087 */ 1088 return mas_find(&vmi->mas, ULONG_MAX); 1089 } 1090 1091 static inline 1092 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1093 { 1094 return mas_next_range(&vmi->mas, ULONG_MAX); 1095 } 1096 1097 1098 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1099 { 1100 return mas_prev(&vmi->mas, 0); 1101 } 1102 1103 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1104 unsigned long start, unsigned long end, gfp_t gfp) 1105 { 1106 __mas_set_range(&vmi->mas, start, end - 1); 1107 mas_store_gfp(&vmi->mas, NULL, gfp); 1108 if (unlikely(mas_is_err(&vmi->mas))) 1109 return -ENOMEM; 1110 1111 return 0; 1112 } 1113 1114 /* Free any unused preallocations */ 1115 static inline void vma_iter_free(struct vma_iterator *vmi) 1116 { 1117 mas_destroy(&vmi->mas); 1118 } 1119 1120 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1121 struct vm_area_struct *vma) 1122 { 1123 vmi->mas.index = vma->vm_start; 1124 vmi->mas.last = vma->vm_end - 1; 1125 mas_store(&vmi->mas, vma); 1126 if (unlikely(mas_is_err(&vmi->mas))) 1127 return -ENOMEM; 1128 1129 vma_mark_attached(vma); 1130 return 0; 1131 } 1132 1133 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1134 { 1135 mas_pause(&vmi->mas); 1136 } 1137 1138 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1139 { 1140 mas_set(&vmi->mas, addr); 1141 } 1142 1143 #define for_each_vma(__vmi, __vma) \ 1144 while (((__vma) = vma_next(&(__vmi))) != NULL) 1145 1146 /* The MM code likes to work with exclusive end addresses */ 1147 #define for_each_vma_range(__vmi, __vma, __end) \ 1148 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1149 1150 #ifdef CONFIG_SHMEM 1151 /* 1152 * The vma_is_shmem is not inline because it is used only by slow 1153 * paths in userfault. 1154 */ 1155 bool vma_is_shmem(struct vm_area_struct *vma); 1156 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1157 #else 1158 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1159 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1160 #endif 1161 1162 int vma_is_stack_for_current(struct vm_area_struct *vma); 1163 1164 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1165 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1166 1167 struct mmu_gather; 1168 struct inode; 1169 1170 extern void prep_compound_page(struct page *page, unsigned int order); 1171 1172 static inline unsigned int folio_large_order(const struct folio *folio) 1173 { 1174 return folio->_flags_1 & 0xff; 1175 } 1176 1177 #ifdef NR_PAGES_IN_LARGE_FOLIO 1178 static inline long folio_large_nr_pages(const struct folio *folio) 1179 { 1180 return folio->_nr_pages; 1181 } 1182 #else 1183 static inline long folio_large_nr_pages(const struct folio *folio) 1184 { 1185 return 1L << folio_large_order(folio); 1186 } 1187 #endif 1188 1189 /* 1190 * compound_order() can be called without holding a reference, which means 1191 * that niceties like page_folio() don't work. These callers should be 1192 * prepared to handle wild return values. For example, PG_head may be 1193 * set before the order is initialised, or this may be a tail page. 1194 * See compaction.c for some good examples. 1195 */ 1196 static inline unsigned int compound_order(struct page *page) 1197 { 1198 struct folio *folio = (struct folio *)page; 1199 1200 if (!test_bit(PG_head, &folio->flags)) 1201 return 0; 1202 return folio_large_order(folio); 1203 } 1204 1205 /** 1206 * folio_order - The allocation order of a folio. 1207 * @folio: The folio. 1208 * 1209 * A folio is composed of 2^order pages. See get_order() for the definition 1210 * of order. 1211 * 1212 * Return: The order of the folio. 1213 */ 1214 static inline unsigned int folio_order(const struct folio *folio) 1215 { 1216 if (!folio_test_large(folio)) 1217 return 0; 1218 return folio_large_order(folio); 1219 } 1220 1221 /** 1222 * folio_reset_order - Reset the folio order and derived _nr_pages 1223 * @folio: The folio. 1224 * 1225 * Reset the order and derived _nr_pages to 0. Must only be used in the 1226 * process of splitting large folios. 1227 */ 1228 static inline void folio_reset_order(struct folio *folio) 1229 { 1230 if (WARN_ON_ONCE(!folio_test_large(folio))) 1231 return; 1232 folio->_flags_1 &= ~0xffUL; 1233 #ifdef NR_PAGES_IN_LARGE_FOLIO 1234 folio->_nr_pages = 0; 1235 #endif 1236 } 1237 1238 #include <linux/huge_mm.h> 1239 1240 /* 1241 * Methods to modify the page usage count. 1242 * 1243 * What counts for a page usage: 1244 * - cache mapping (page->mapping) 1245 * - private data (page->private) 1246 * - page mapped in a task's page tables, each mapping 1247 * is counted separately 1248 * 1249 * Also, many kernel routines increase the page count before a critical 1250 * routine so they can be sure the page doesn't go away from under them. 1251 */ 1252 1253 /* 1254 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1255 */ 1256 static inline int put_page_testzero(struct page *page) 1257 { 1258 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1259 return page_ref_dec_and_test(page); 1260 } 1261 1262 static inline int folio_put_testzero(struct folio *folio) 1263 { 1264 return put_page_testzero(&folio->page); 1265 } 1266 1267 /* 1268 * Try to grab a ref unless the page has a refcount of zero, return false if 1269 * that is the case. 1270 * This can be called when MMU is off so it must not access 1271 * any of the virtual mappings. 1272 */ 1273 static inline bool get_page_unless_zero(struct page *page) 1274 { 1275 return page_ref_add_unless(page, 1, 0); 1276 } 1277 1278 static inline struct folio *folio_get_nontail_page(struct page *page) 1279 { 1280 if (unlikely(!get_page_unless_zero(page))) 1281 return NULL; 1282 return (struct folio *)page; 1283 } 1284 1285 extern int page_is_ram(unsigned long pfn); 1286 1287 enum { 1288 REGION_INTERSECTS, 1289 REGION_DISJOINT, 1290 REGION_MIXED, 1291 }; 1292 1293 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1294 unsigned long desc); 1295 1296 /* Support for virtually mapped pages */ 1297 struct page *vmalloc_to_page(const void *addr); 1298 unsigned long vmalloc_to_pfn(const void *addr); 1299 1300 /* 1301 * Determine if an address is within the vmalloc range 1302 * 1303 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1304 * is no special casing required. 1305 */ 1306 #ifdef CONFIG_MMU 1307 extern bool is_vmalloc_addr(const void *x); 1308 extern int is_vmalloc_or_module_addr(const void *x); 1309 #else 1310 static inline bool is_vmalloc_addr(const void *x) 1311 { 1312 return false; 1313 } 1314 static inline int is_vmalloc_or_module_addr(const void *x) 1315 { 1316 return 0; 1317 } 1318 #endif 1319 1320 /* 1321 * How many times the entire folio is mapped as a single unit (eg by a 1322 * PMD or PUD entry). This is probably not what you want, except for 1323 * debugging purposes or implementation of other core folio_*() primitives. 1324 */ 1325 static inline int folio_entire_mapcount(const struct folio *folio) 1326 { 1327 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1328 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1329 return 0; 1330 return atomic_read(&folio->_entire_mapcount) + 1; 1331 } 1332 1333 static inline int folio_large_mapcount(const struct folio *folio) 1334 { 1335 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1336 return atomic_read(&folio->_large_mapcount) + 1; 1337 } 1338 1339 /** 1340 * folio_mapcount() - Number of mappings of this folio. 1341 * @folio: The folio. 1342 * 1343 * The folio mapcount corresponds to the number of present user page table 1344 * entries that reference any part of a folio. Each such present user page 1345 * table entry must be paired with exactly on folio reference. 1346 * 1347 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1348 * exactly once. 1349 * 1350 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1351 * references the entire folio counts exactly once, even when such special 1352 * page table entries are comprised of multiple ordinary page table entries. 1353 * 1354 * Will report 0 for pages which cannot be mapped into userspace, such as 1355 * slab, page tables and similar. 1356 * 1357 * Return: The number of times this folio is mapped. 1358 */ 1359 static inline int folio_mapcount(const struct folio *folio) 1360 { 1361 int mapcount; 1362 1363 if (likely(!folio_test_large(folio))) { 1364 mapcount = atomic_read(&folio->_mapcount) + 1; 1365 if (page_mapcount_is_type(mapcount)) 1366 mapcount = 0; 1367 return mapcount; 1368 } 1369 return folio_large_mapcount(folio); 1370 } 1371 1372 /** 1373 * folio_mapped - Is this folio mapped into userspace? 1374 * @folio: The folio. 1375 * 1376 * Return: True if any page in this folio is referenced by user page tables. 1377 */ 1378 static inline bool folio_mapped(const struct folio *folio) 1379 { 1380 return folio_mapcount(folio) >= 1; 1381 } 1382 1383 /* 1384 * Return true if this page is mapped into pagetables. 1385 * For compound page it returns true if any sub-page of compound page is mapped, 1386 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1387 */ 1388 static inline bool page_mapped(const struct page *page) 1389 { 1390 return folio_mapped(page_folio(page)); 1391 } 1392 1393 static inline struct page *virt_to_head_page(const void *x) 1394 { 1395 struct page *page = virt_to_page(x); 1396 1397 return compound_head(page); 1398 } 1399 1400 static inline struct folio *virt_to_folio(const void *x) 1401 { 1402 struct page *page = virt_to_page(x); 1403 1404 return page_folio(page); 1405 } 1406 1407 void __folio_put(struct folio *folio); 1408 1409 void split_page(struct page *page, unsigned int order); 1410 void folio_copy(struct folio *dst, struct folio *src); 1411 int folio_mc_copy(struct folio *dst, struct folio *src); 1412 1413 unsigned long nr_free_buffer_pages(void); 1414 1415 /* Returns the number of bytes in this potentially compound page. */ 1416 static inline unsigned long page_size(struct page *page) 1417 { 1418 return PAGE_SIZE << compound_order(page); 1419 } 1420 1421 /* Returns the number of bits needed for the number of bytes in a page */ 1422 static inline unsigned int page_shift(struct page *page) 1423 { 1424 return PAGE_SHIFT + compound_order(page); 1425 } 1426 1427 /** 1428 * thp_order - Order of a transparent huge page. 1429 * @page: Head page of a transparent huge page. 1430 */ 1431 static inline unsigned int thp_order(struct page *page) 1432 { 1433 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1434 return compound_order(page); 1435 } 1436 1437 /** 1438 * thp_size - Size of a transparent huge page. 1439 * @page: Head page of a transparent huge page. 1440 * 1441 * Return: Number of bytes in this page. 1442 */ 1443 static inline unsigned long thp_size(struct page *page) 1444 { 1445 return PAGE_SIZE << thp_order(page); 1446 } 1447 1448 #ifdef CONFIG_MMU 1449 /* 1450 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1451 * servicing faults for write access. In the normal case, do always want 1452 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1453 * that do not have writing enabled, when used by access_process_vm. 1454 */ 1455 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1456 { 1457 if (likely(vma->vm_flags & VM_WRITE)) 1458 pte = pte_mkwrite(pte, vma); 1459 return pte; 1460 } 1461 1462 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1463 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1464 struct page *page, unsigned int nr, unsigned long addr); 1465 1466 vm_fault_t finish_fault(struct vm_fault *vmf); 1467 #endif 1468 1469 /* 1470 * Multiple processes may "see" the same page. E.g. for untouched 1471 * mappings of /dev/null, all processes see the same page full of 1472 * zeroes, and text pages of executables and shared libraries have 1473 * only one copy in memory, at most, normally. 1474 * 1475 * For the non-reserved pages, page_count(page) denotes a reference count. 1476 * page_count() == 0 means the page is free. page->lru is then used for 1477 * freelist management in the buddy allocator. 1478 * page_count() > 0 means the page has been allocated. 1479 * 1480 * Pages are allocated by the slab allocator in order to provide memory 1481 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1482 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1483 * unless a particular usage is carefully commented. (the responsibility of 1484 * freeing the kmalloc memory is the caller's, of course). 1485 * 1486 * A page may be used by anyone else who does a __get_free_page(). 1487 * In this case, page_count still tracks the references, and should only 1488 * be used through the normal accessor functions. The top bits of page->flags 1489 * and page->virtual store page management information, but all other fields 1490 * are unused and could be used privately, carefully. The management of this 1491 * page is the responsibility of the one who allocated it, and those who have 1492 * subsequently been given references to it. 1493 * 1494 * The other pages (we may call them "pagecache pages") are completely 1495 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1496 * The following discussion applies only to them. 1497 * 1498 * A pagecache page contains an opaque `private' member, which belongs to the 1499 * page's address_space. Usually, this is the address of a circular list of 1500 * the page's disk buffers. PG_private must be set to tell the VM to call 1501 * into the filesystem to release these pages. 1502 * 1503 * A page may belong to an inode's memory mapping. In this case, page->mapping 1504 * is the pointer to the inode, and page->index is the file offset of the page, 1505 * in units of PAGE_SIZE. 1506 * 1507 * If pagecache pages are not associated with an inode, they are said to be 1508 * anonymous pages. These may become associated with the swapcache, and in that 1509 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1510 * 1511 * In either case (swapcache or inode backed), the pagecache itself holds one 1512 * reference to the page. Setting PG_private should also increment the 1513 * refcount. The each user mapping also has a reference to the page. 1514 * 1515 * The pagecache pages are stored in a per-mapping radix tree, which is 1516 * rooted at mapping->i_pages, and indexed by offset. 1517 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1518 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1519 * 1520 * All pagecache pages may be subject to I/O: 1521 * - inode pages may need to be read from disk, 1522 * - inode pages which have been modified and are MAP_SHARED may need 1523 * to be written back to the inode on disk, 1524 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1525 * modified may need to be swapped out to swap space and (later) to be read 1526 * back into memory. 1527 */ 1528 1529 /* 127: arbitrary random number, small enough to assemble well */ 1530 #define folio_ref_zero_or_close_to_overflow(folio) \ 1531 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1532 1533 /** 1534 * folio_get - Increment the reference count on a folio. 1535 * @folio: The folio. 1536 * 1537 * Context: May be called in any context, as long as you know that 1538 * you have a refcount on the folio. If you do not already have one, 1539 * folio_try_get() may be the right interface for you to use. 1540 */ 1541 static inline void folio_get(struct folio *folio) 1542 { 1543 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1544 folio_ref_inc(folio); 1545 } 1546 1547 static inline void get_page(struct page *page) 1548 { 1549 struct folio *folio = page_folio(page); 1550 if (WARN_ON_ONCE(folio_test_slab(folio))) 1551 return; 1552 folio_get(folio); 1553 } 1554 1555 static inline __must_check bool try_get_page(struct page *page) 1556 { 1557 page = compound_head(page); 1558 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1559 return false; 1560 page_ref_inc(page); 1561 return true; 1562 } 1563 1564 /** 1565 * folio_put - Decrement the reference count on a folio. 1566 * @folio: The folio. 1567 * 1568 * If the folio's reference count reaches zero, the memory will be 1569 * released back to the page allocator and may be used by another 1570 * allocation immediately. Do not access the memory or the struct folio 1571 * after calling folio_put() unless you can be sure that it wasn't the 1572 * last reference. 1573 * 1574 * Context: May be called in process or interrupt context, but not in NMI 1575 * context. May be called while holding a spinlock. 1576 */ 1577 static inline void folio_put(struct folio *folio) 1578 { 1579 if (folio_put_testzero(folio)) 1580 __folio_put(folio); 1581 } 1582 1583 /** 1584 * folio_put_refs - Reduce the reference count on a folio. 1585 * @folio: The folio. 1586 * @refs: The amount to subtract from the folio's reference count. 1587 * 1588 * If the folio's reference count reaches zero, the memory will be 1589 * released back to the page allocator and may be used by another 1590 * allocation immediately. Do not access the memory or the struct folio 1591 * after calling folio_put_refs() unless you can be sure that these weren't 1592 * the last references. 1593 * 1594 * Context: May be called in process or interrupt context, but not in NMI 1595 * context. May be called while holding a spinlock. 1596 */ 1597 static inline void folio_put_refs(struct folio *folio, int refs) 1598 { 1599 if (folio_ref_sub_and_test(folio, refs)) 1600 __folio_put(folio); 1601 } 1602 1603 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1604 1605 /* 1606 * union release_pages_arg - an array of pages or folios 1607 * 1608 * release_pages() releases a simple array of multiple pages, and 1609 * accepts various different forms of said page array: either 1610 * a regular old boring array of pages, an array of folios, or 1611 * an array of encoded page pointers. 1612 * 1613 * The transparent union syntax for this kind of "any of these 1614 * argument types" is all kinds of ugly, so look away. 1615 */ 1616 typedef union { 1617 struct page **pages; 1618 struct folio **folios; 1619 struct encoded_page **encoded_pages; 1620 } release_pages_arg __attribute__ ((__transparent_union__)); 1621 1622 void release_pages(release_pages_arg, int nr); 1623 1624 /** 1625 * folios_put - Decrement the reference count on an array of folios. 1626 * @folios: The folios. 1627 * 1628 * Like folio_put(), but for a batch of folios. This is more efficient 1629 * than writing the loop yourself as it will optimise the locks which need 1630 * to be taken if the folios are freed. The folios batch is returned 1631 * empty and ready to be reused for another batch; there is no need to 1632 * reinitialise it. 1633 * 1634 * Context: May be called in process or interrupt context, but not in NMI 1635 * context. May be called while holding a spinlock. 1636 */ 1637 static inline void folios_put(struct folio_batch *folios) 1638 { 1639 folios_put_refs(folios, NULL); 1640 } 1641 1642 static inline void put_page(struct page *page) 1643 { 1644 struct folio *folio = page_folio(page); 1645 1646 if (folio_test_slab(folio)) 1647 return; 1648 1649 folio_put(folio); 1650 } 1651 1652 /* 1653 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1654 * the page's refcount so that two separate items are tracked: the original page 1655 * reference count, and also a new count of how many pin_user_pages() calls were 1656 * made against the page. ("gup-pinned" is another term for the latter). 1657 * 1658 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1659 * distinct from normal pages. As such, the unpin_user_page() call (and its 1660 * variants) must be used in order to release gup-pinned pages. 1661 * 1662 * Choice of value: 1663 * 1664 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1665 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1666 * simpler, due to the fact that adding an even power of two to the page 1667 * refcount has the effect of using only the upper N bits, for the code that 1668 * counts up using the bias value. This means that the lower bits are left for 1669 * the exclusive use of the original code that increments and decrements by one 1670 * (or at least, by much smaller values than the bias value). 1671 * 1672 * Of course, once the lower bits overflow into the upper bits (and this is 1673 * OK, because subtraction recovers the original values), then visual inspection 1674 * no longer suffices to directly view the separate counts. However, for normal 1675 * applications that don't have huge page reference counts, this won't be an 1676 * issue. 1677 * 1678 * Locking: the lockless algorithm described in folio_try_get_rcu() 1679 * provides safe operation for get_user_pages(), folio_mkclean() and 1680 * other calls that race to set up page table entries. 1681 */ 1682 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1683 1684 void unpin_user_page(struct page *page); 1685 void unpin_folio(struct folio *folio); 1686 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1687 bool make_dirty); 1688 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1689 bool make_dirty); 1690 void unpin_user_pages(struct page **pages, unsigned long npages); 1691 void unpin_user_folio(struct folio *folio, unsigned long npages); 1692 void unpin_folios(struct folio **folios, unsigned long nfolios); 1693 1694 static inline bool is_cow_mapping(vm_flags_t flags) 1695 { 1696 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1697 } 1698 1699 #ifndef CONFIG_MMU 1700 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1701 { 1702 /* 1703 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1704 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1705 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1706 * underlying memory if ptrace is active, so this is only possible if 1707 * ptrace does not apply. Note that there is no mprotect() to upgrade 1708 * write permissions later. 1709 */ 1710 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1711 } 1712 #endif 1713 1714 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1715 #define SECTION_IN_PAGE_FLAGS 1716 #endif 1717 1718 /* 1719 * The identification function is mainly used by the buddy allocator for 1720 * determining if two pages could be buddies. We are not really identifying 1721 * the zone since we could be using the section number id if we do not have 1722 * node id available in page flags. 1723 * We only guarantee that it will return the same value for two combinable 1724 * pages in a zone. 1725 */ 1726 static inline int page_zone_id(struct page *page) 1727 { 1728 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1729 } 1730 1731 #ifdef NODE_NOT_IN_PAGE_FLAGS 1732 int page_to_nid(const struct page *page); 1733 #else 1734 static inline int page_to_nid(const struct page *page) 1735 { 1736 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1737 } 1738 #endif 1739 1740 static inline int folio_nid(const struct folio *folio) 1741 { 1742 return page_to_nid(&folio->page); 1743 } 1744 1745 #ifdef CONFIG_NUMA_BALANCING 1746 /* page access time bits needs to hold at least 4 seconds */ 1747 #define PAGE_ACCESS_TIME_MIN_BITS 12 1748 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1749 #define PAGE_ACCESS_TIME_BUCKETS \ 1750 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1751 #else 1752 #define PAGE_ACCESS_TIME_BUCKETS 0 1753 #endif 1754 1755 #define PAGE_ACCESS_TIME_MASK \ 1756 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1757 1758 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1759 { 1760 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1761 } 1762 1763 static inline int cpupid_to_pid(int cpupid) 1764 { 1765 return cpupid & LAST__PID_MASK; 1766 } 1767 1768 static inline int cpupid_to_cpu(int cpupid) 1769 { 1770 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1771 } 1772 1773 static inline int cpupid_to_nid(int cpupid) 1774 { 1775 return cpu_to_node(cpupid_to_cpu(cpupid)); 1776 } 1777 1778 static inline bool cpupid_pid_unset(int cpupid) 1779 { 1780 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1781 } 1782 1783 static inline bool cpupid_cpu_unset(int cpupid) 1784 { 1785 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1786 } 1787 1788 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1789 { 1790 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1791 } 1792 1793 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1794 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1795 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1796 { 1797 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1798 } 1799 1800 static inline int folio_last_cpupid(struct folio *folio) 1801 { 1802 return folio->_last_cpupid; 1803 } 1804 static inline void page_cpupid_reset_last(struct page *page) 1805 { 1806 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1807 } 1808 #else 1809 static inline int folio_last_cpupid(struct folio *folio) 1810 { 1811 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1812 } 1813 1814 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1815 1816 static inline void page_cpupid_reset_last(struct page *page) 1817 { 1818 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1819 } 1820 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1821 1822 static inline int folio_xchg_access_time(struct folio *folio, int time) 1823 { 1824 int last_time; 1825 1826 last_time = folio_xchg_last_cpupid(folio, 1827 time >> PAGE_ACCESS_TIME_BUCKETS); 1828 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1829 } 1830 1831 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1832 { 1833 unsigned int pid_bit; 1834 1835 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1836 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1837 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1838 } 1839 } 1840 1841 bool folio_use_access_time(struct folio *folio); 1842 #else /* !CONFIG_NUMA_BALANCING */ 1843 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1844 { 1845 return folio_nid(folio); /* XXX */ 1846 } 1847 1848 static inline int folio_xchg_access_time(struct folio *folio, int time) 1849 { 1850 return 0; 1851 } 1852 1853 static inline int folio_last_cpupid(struct folio *folio) 1854 { 1855 return folio_nid(folio); /* XXX */ 1856 } 1857 1858 static inline int cpupid_to_nid(int cpupid) 1859 { 1860 return -1; 1861 } 1862 1863 static inline int cpupid_to_pid(int cpupid) 1864 { 1865 return -1; 1866 } 1867 1868 static inline int cpupid_to_cpu(int cpupid) 1869 { 1870 return -1; 1871 } 1872 1873 static inline int cpu_pid_to_cpupid(int nid, int pid) 1874 { 1875 return -1; 1876 } 1877 1878 static inline bool cpupid_pid_unset(int cpupid) 1879 { 1880 return true; 1881 } 1882 1883 static inline void page_cpupid_reset_last(struct page *page) 1884 { 1885 } 1886 1887 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1888 { 1889 return false; 1890 } 1891 1892 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1893 { 1894 } 1895 static inline bool folio_use_access_time(struct folio *folio) 1896 { 1897 return false; 1898 } 1899 #endif /* CONFIG_NUMA_BALANCING */ 1900 1901 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1902 1903 /* 1904 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1905 * setting tags for all pages to native kernel tag value 0xff, as the default 1906 * value 0x00 maps to 0xff. 1907 */ 1908 1909 static inline u8 page_kasan_tag(const struct page *page) 1910 { 1911 u8 tag = KASAN_TAG_KERNEL; 1912 1913 if (kasan_enabled()) { 1914 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1915 tag ^= 0xff; 1916 } 1917 1918 return tag; 1919 } 1920 1921 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1922 { 1923 unsigned long old_flags, flags; 1924 1925 if (!kasan_enabled()) 1926 return; 1927 1928 tag ^= 0xff; 1929 old_flags = READ_ONCE(page->flags); 1930 do { 1931 flags = old_flags; 1932 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1933 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1934 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1935 } 1936 1937 static inline void page_kasan_tag_reset(struct page *page) 1938 { 1939 if (kasan_enabled()) 1940 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1941 } 1942 1943 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1944 1945 static inline u8 page_kasan_tag(const struct page *page) 1946 { 1947 return 0xff; 1948 } 1949 1950 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1951 static inline void page_kasan_tag_reset(struct page *page) { } 1952 1953 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1954 1955 static inline struct zone *page_zone(const struct page *page) 1956 { 1957 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1958 } 1959 1960 static inline pg_data_t *page_pgdat(const struct page *page) 1961 { 1962 return NODE_DATA(page_to_nid(page)); 1963 } 1964 1965 static inline struct zone *folio_zone(const struct folio *folio) 1966 { 1967 return page_zone(&folio->page); 1968 } 1969 1970 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1971 { 1972 return page_pgdat(&folio->page); 1973 } 1974 1975 #ifdef SECTION_IN_PAGE_FLAGS 1976 static inline void set_page_section(struct page *page, unsigned long section) 1977 { 1978 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1979 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1980 } 1981 1982 static inline unsigned long page_to_section(const struct page *page) 1983 { 1984 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1985 } 1986 #endif 1987 1988 /** 1989 * folio_pfn - Return the Page Frame Number of a folio. 1990 * @folio: The folio. 1991 * 1992 * A folio may contain multiple pages. The pages have consecutive 1993 * Page Frame Numbers. 1994 * 1995 * Return: The Page Frame Number of the first page in the folio. 1996 */ 1997 static inline unsigned long folio_pfn(const struct folio *folio) 1998 { 1999 return page_to_pfn(&folio->page); 2000 } 2001 2002 static inline struct folio *pfn_folio(unsigned long pfn) 2003 { 2004 return page_folio(pfn_to_page(pfn)); 2005 } 2006 2007 static inline bool folio_has_pincount(const struct folio *folio) 2008 { 2009 if (IS_ENABLED(CONFIG_64BIT)) 2010 return folio_test_large(folio); 2011 return folio_order(folio) > 1; 2012 } 2013 2014 /** 2015 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2016 * @folio: The folio. 2017 * 2018 * This function checks if a folio has been pinned via a call to 2019 * a function in the pin_user_pages() family. 2020 * 2021 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2022 * because it means "definitely not pinned for DMA", but true means "probably 2023 * pinned for DMA, but possibly a false positive due to having at least 2024 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2025 * 2026 * False positives are OK, because: a) it's unlikely for a folio to 2027 * get that many refcounts, and b) all the callers of this routine are 2028 * expected to be able to deal gracefully with a false positive. 2029 * 2030 * For most large folios, the result will be exactly correct. That's because 2031 * we have more tracking data available: the _pincount field is used 2032 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2033 * 2034 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2035 * 2036 * Return: True, if it is likely that the folio has been "dma-pinned". 2037 * False, if the folio is definitely not dma-pinned. 2038 */ 2039 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2040 { 2041 if (folio_has_pincount(folio)) 2042 return atomic_read(&folio->_pincount) > 0; 2043 2044 /* 2045 * folio_ref_count() is signed. If that refcount overflows, then 2046 * folio_ref_count() returns a negative value, and callers will avoid 2047 * further incrementing the refcount. 2048 * 2049 * Here, for that overflow case, use the sign bit to count a little 2050 * bit higher via unsigned math, and thus still get an accurate result. 2051 */ 2052 return ((unsigned int)folio_ref_count(folio)) >= 2053 GUP_PIN_COUNTING_BIAS; 2054 } 2055 2056 /* 2057 * This should most likely only be called during fork() to see whether we 2058 * should break the cow immediately for an anon page on the src mm. 2059 * 2060 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2061 */ 2062 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2063 struct folio *folio) 2064 { 2065 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2066 2067 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 2068 return false; 2069 2070 return folio_maybe_dma_pinned(folio); 2071 } 2072 2073 /** 2074 * is_zero_page - Query if a page is a zero page 2075 * @page: The page to query 2076 * 2077 * This returns true if @page is one of the permanent zero pages. 2078 */ 2079 static inline bool is_zero_page(const struct page *page) 2080 { 2081 return is_zero_pfn(page_to_pfn(page)); 2082 } 2083 2084 /** 2085 * is_zero_folio - Query if a folio is a zero page 2086 * @folio: The folio to query 2087 * 2088 * This returns true if @folio is one of the permanent zero pages. 2089 */ 2090 static inline bool is_zero_folio(const struct folio *folio) 2091 { 2092 return is_zero_page(&folio->page); 2093 } 2094 2095 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2096 #ifdef CONFIG_MIGRATION 2097 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2098 { 2099 #ifdef CONFIG_CMA 2100 int mt = folio_migratetype(folio); 2101 2102 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2103 return false; 2104 #endif 2105 /* The zero page can be "pinned" but gets special handling. */ 2106 if (is_zero_folio(folio)) 2107 return true; 2108 2109 /* Coherent device memory must always allow eviction. */ 2110 if (folio_is_device_coherent(folio)) 2111 return false; 2112 2113 /* 2114 * Filesystems can only tolerate transient delays to truncate and 2115 * hole-punch operations 2116 */ 2117 if (folio_is_fsdax(folio)) 2118 return false; 2119 2120 /* Otherwise, non-movable zone folios can be pinned. */ 2121 return !folio_is_zone_movable(folio); 2122 2123 } 2124 #else 2125 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2126 { 2127 return true; 2128 } 2129 #endif 2130 2131 static inline void set_page_zone(struct page *page, enum zone_type zone) 2132 { 2133 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2134 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2135 } 2136 2137 static inline void set_page_node(struct page *page, unsigned long node) 2138 { 2139 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2140 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2141 } 2142 2143 static inline void set_page_links(struct page *page, enum zone_type zone, 2144 unsigned long node, unsigned long pfn) 2145 { 2146 set_page_zone(page, zone); 2147 set_page_node(page, node); 2148 #ifdef SECTION_IN_PAGE_FLAGS 2149 set_page_section(page, pfn_to_section_nr(pfn)); 2150 #endif 2151 } 2152 2153 /** 2154 * folio_nr_pages - The number of pages in the folio. 2155 * @folio: The folio. 2156 * 2157 * Return: A positive power of two. 2158 */ 2159 static inline long folio_nr_pages(const struct folio *folio) 2160 { 2161 if (!folio_test_large(folio)) 2162 return 1; 2163 return folio_large_nr_pages(folio); 2164 } 2165 2166 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2167 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2168 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2169 #else 2170 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2171 #endif 2172 2173 /* 2174 * compound_nr() returns the number of pages in this potentially compound 2175 * page. compound_nr() can be called on a tail page, and is defined to 2176 * return 1 in that case. 2177 */ 2178 static inline long compound_nr(struct page *page) 2179 { 2180 struct folio *folio = (struct folio *)page; 2181 2182 if (!test_bit(PG_head, &folio->flags)) 2183 return 1; 2184 return folio_large_nr_pages(folio); 2185 } 2186 2187 /** 2188 * thp_nr_pages - The number of regular pages in this huge page. 2189 * @page: The head page of a huge page. 2190 */ 2191 static inline long thp_nr_pages(struct page *page) 2192 { 2193 return folio_nr_pages((struct folio *)page); 2194 } 2195 2196 /** 2197 * folio_next - Move to the next physical folio. 2198 * @folio: The folio we're currently operating on. 2199 * 2200 * If you have physically contiguous memory which may span more than 2201 * one folio (eg a &struct bio_vec), use this function to move from one 2202 * folio to the next. Do not use it if the memory is only virtually 2203 * contiguous as the folios are almost certainly not adjacent to each 2204 * other. This is the folio equivalent to writing ``page++``. 2205 * 2206 * Context: We assume that the folios are refcounted and/or locked at a 2207 * higher level and do not adjust the reference counts. 2208 * Return: The next struct folio. 2209 */ 2210 static inline struct folio *folio_next(struct folio *folio) 2211 { 2212 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2213 } 2214 2215 /** 2216 * folio_shift - The size of the memory described by this folio. 2217 * @folio: The folio. 2218 * 2219 * A folio represents a number of bytes which is a power-of-two in size. 2220 * This function tells you which power-of-two the folio is. See also 2221 * folio_size() and folio_order(). 2222 * 2223 * Context: The caller should have a reference on the folio to prevent 2224 * it from being split. It is not necessary for the folio to be locked. 2225 * Return: The base-2 logarithm of the size of this folio. 2226 */ 2227 static inline unsigned int folio_shift(const struct folio *folio) 2228 { 2229 return PAGE_SHIFT + folio_order(folio); 2230 } 2231 2232 /** 2233 * folio_size - The number of bytes in a folio. 2234 * @folio: The folio. 2235 * 2236 * Context: The caller should have a reference on the folio to prevent 2237 * it from being split. It is not necessary for the folio to be locked. 2238 * Return: The number of bytes in this folio. 2239 */ 2240 static inline size_t folio_size(const struct folio *folio) 2241 { 2242 return PAGE_SIZE << folio_order(folio); 2243 } 2244 2245 /** 2246 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2247 * tables of more than one MM 2248 * @folio: The folio. 2249 * 2250 * This function checks if the folio maybe currently mapped into more than one 2251 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2252 * MM ("mapped exclusively"). 2253 * 2254 * For KSM folios, this function also returns "mapped shared" when a folio is 2255 * mapped multiple times into the same MM, because the individual page mappings 2256 * are independent. 2257 * 2258 * For small anonymous folios and anonymous hugetlb folios, the return 2259 * value will be exactly correct: non-KSM folios can only be mapped at most once 2260 * into an MM, and they cannot be partially mapped. KSM folios are 2261 * considered shared even if mapped multiple times into the same MM. 2262 * 2263 * For other folios, the result can be fuzzy: 2264 * #. For partially-mappable large folios (THP), the return value can wrongly 2265 * indicate "mapped shared" (false positive) if a folio was mapped by 2266 * more than two MMs at one point in time. 2267 * #. For pagecache folios (including hugetlb), the return value can wrongly 2268 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2269 * cover the same file range. 2270 * 2271 * Further, this function only considers current page table mappings that 2272 * are tracked using the folio mapcount(s). 2273 * 2274 * This function does not consider: 2275 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2276 * pagecache, temporary unmapping for migration). 2277 * #. If the folio is mapped differently (VM_PFNMAP). 2278 * #. If hugetlb page table sharing applies. Callers might want to check 2279 * hugetlb_pmd_shared(). 2280 * 2281 * Return: Whether the folio is estimated to be mapped into more than one MM. 2282 */ 2283 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2284 { 2285 int mapcount = folio_mapcount(folio); 2286 2287 /* Only partially-mappable folios require more care. */ 2288 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2289 return mapcount > 1; 2290 2291 /* 2292 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2293 * simply assume "mapped shared", nobody should really care 2294 * about this for arbitrary kernel allocations. 2295 */ 2296 if (!IS_ENABLED(CONFIG_MM_ID)) 2297 return true; 2298 2299 /* 2300 * A single mapping implies "mapped exclusively", even if the 2301 * folio flag says something different: it's easier to handle this 2302 * case here instead of on the RMAP hot path. 2303 */ 2304 if (mapcount <= 1) 2305 return false; 2306 return folio_test_large_maybe_mapped_shared(folio); 2307 } 2308 2309 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2310 static inline int arch_make_folio_accessible(struct folio *folio) 2311 { 2312 return 0; 2313 } 2314 #endif 2315 2316 /* 2317 * Some inline functions in vmstat.h depend on page_zone() 2318 */ 2319 #include <linux/vmstat.h> 2320 2321 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2322 #define HASHED_PAGE_VIRTUAL 2323 #endif 2324 2325 #if defined(WANT_PAGE_VIRTUAL) 2326 static inline void *page_address(const struct page *page) 2327 { 2328 return page->virtual; 2329 } 2330 static inline void set_page_address(struct page *page, void *address) 2331 { 2332 page->virtual = address; 2333 } 2334 #define page_address_init() do { } while(0) 2335 #endif 2336 2337 #if defined(HASHED_PAGE_VIRTUAL) 2338 void *page_address(const struct page *page); 2339 void set_page_address(struct page *page, void *virtual); 2340 void page_address_init(void); 2341 #endif 2342 2343 static __always_inline void *lowmem_page_address(const struct page *page) 2344 { 2345 return page_to_virt(page); 2346 } 2347 2348 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2349 #define page_address(page) lowmem_page_address(page) 2350 #define set_page_address(page, address) do { } while(0) 2351 #define page_address_init() do { } while(0) 2352 #endif 2353 2354 static inline void *folio_address(const struct folio *folio) 2355 { 2356 return page_address(&folio->page); 2357 } 2358 2359 /* 2360 * Return true only if the page has been allocated with 2361 * ALLOC_NO_WATERMARKS and the low watermark was not 2362 * met implying that the system is under some pressure. 2363 */ 2364 static inline bool page_is_pfmemalloc(const struct page *page) 2365 { 2366 /* 2367 * lru.next has bit 1 set if the page is allocated from the 2368 * pfmemalloc reserves. Callers may simply overwrite it if 2369 * they do not need to preserve that information. 2370 */ 2371 return (uintptr_t)page->lru.next & BIT(1); 2372 } 2373 2374 /* 2375 * Return true only if the folio has been allocated with 2376 * ALLOC_NO_WATERMARKS and the low watermark was not 2377 * met implying that the system is under some pressure. 2378 */ 2379 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2380 { 2381 /* 2382 * lru.next has bit 1 set if the page is allocated from the 2383 * pfmemalloc reserves. Callers may simply overwrite it if 2384 * they do not need to preserve that information. 2385 */ 2386 return (uintptr_t)folio->lru.next & BIT(1); 2387 } 2388 2389 /* 2390 * Only to be called by the page allocator on a freshly allocated 2391 * page. 2392 */ 2393 static inline void set_page_pfmemalloc(struct page *page) 2394 { 2395 page->lru.next = (void *)BIT(1); 2396 } 2397 2398 static inline void clear_page_pfmemalloc(struct page *page) 2399 { 2400 page->lru.next = NULL; 2401 } 2402 2403 /* 2404 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2405 */ 2406 extern void pagefault_out_of_memory(void); 2407 2408 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2409 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2410 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2411 2412 /* 2413 * Parameter block passed down to zap_pte_range in exceptional cases. 2414 */ 2415 struct zap_details { 2416 struct folio *single_folio; /* Locked folio to be unmapped */ 2417 bool even_cows; /* Zap COWed private pages too? */ 2418 bool reclaim_pt; /* Need reclaim page tables? */ 2419 zap_flags_t zap_flags; /* Extra flags for zapping */ 2420 }; 2421 2422 /* 2423 * Whether to drop the pte markers, for example, the uffd-wp information for 2424 * file-backed memory. This should only be specified when we will completely 2425 * drop the page in the mm, either by truncation or unmapping of the vma. By 2426 * default, the flag is not set. 2427 */ 2428 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2429 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2430 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2431 2432 #ifdef CONFIG_SCHED_MM_CID 2433 void sched_mm_cid_before_execve(struct task_struct *t); 2434 void sched_mm_cid_after_execve(struct task_struct *t); 2435 void sched_mm_cid_fork(struct task_struct *t); 2436 void sched_mm_cid_exit_signals(struct task_struct *t); 2437 static inline int task_mm_cid(struct task_struct *t) 2438 { 2439 return t->mm_cid; 2440 } 2441 #else 2442 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2443 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2444 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2445 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2446 static inline int task_mm_cid(struct task_struct *t) 2447 { 2448 /* 2449 * Use the processor id as a fall-back when the mm cid feature is 2450 * disabled. This provides functional per-cpu data structure accesses 2451 * in user-space, althrough it won't provide the memory usage benefits. 2452 */ 2453 return raw_smp_processor_id(); 2454 } 2455 #endif 2456 2457 #ifdef CONFIG_MMU 2458 extern bool can_do_mlock(void); 2459 #else 2460 static inline bool can_do_mlock(void) { return false; } 2461 #endif 2462 extern int user_shm_lock(size_t, struct ucounts *); 2463 extern void user_shm_unlock(size_t, struct ucounts *); 2464 2465 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2466 pte_t pte); 2467 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2468 pte_t pte); 2469 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2470 unsigned long addr, pmd_t pmd); 2471 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2472 pmd_t pmd); 2473 2474 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2475 unsigned long size); 2476 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2477 unsigned long size, struct zap_details *details); 2478 static inline void zap_vma_pages(struct vm_area_struct *vma) 2479 { 2480 zap_page_range_single(vma, vma->vm_start, 2481 vma->vm_end - vma->vm_start, NULL); 2482 } 2483 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2484 struct vm_area_struct *start_vma, unsigned long start, 2485 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2486 2487 struct mmu_notifier_range; 2488 2489 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2490 unsigned long end, unsigned long floor, unsigned long ceiling); 2491 int 2492 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2493 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2494 void *buf, int len, int write); 2495 2496 struct follow_pfnmap_args { 2497 /** 2498 * Inputs: 2499 * @vma: Pointer to @vm_area_struct struct 2500 * @address: the virtual address to walk 2501 */ 2502 struct vm_area_struct *vma; 2503 unsigned long address; 2504 /** 2505 * Internals: 2506 * 2507 * The caller shouldn't touch any of these. 2508 */ 2509 spinlock_t *lock; 2510 pte_t *ptep; 2511 /** 2512 * Outputs: 2513 * 2514 * @pfn: the PFN of the address 2515 * @addr_mask: address mask covering pfn 2516 * @pgprot: the pgprot_t of the mapping 2517 * @writable: whether the mapping is writable 2518 * @special: whether the mapping is a special mapping (real PFN maps) 2519 */ 2520 unsigned long pfn; 2521 unsigned long addr_mask; 2522 pgprot_t pgprot; 2523 bool writable; 2524 bool special; 2525 }; 2526 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2527 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2528 2529 extern void truncate_pagecache(struct inode *inode, loff_t new); 2530 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2531 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2532 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2533 int generic_error_remove_folio(struct address_space *mapping, 2534 struct folio *folio); 2535 2536 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2537 unsigned long address, struct pt_regs *regs); 2538 2539 #ifdef CONFIG_MMU 2540 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2541 unsigned long address, unsigned int flags, 2542 struct pt_regs *regs); 2543 extern int fixup_user_fault(struct mm_struct *mm, 2544 unsigned long address, unsigned int fault_flags, 2545 bool *unlocked); 2546 void unmap_mapping_pages(struct address_space *mapping, 2547 pgoff_t start, pgoff_t nr, bool even_cows); 2548 void unmap_mapping_range(struct address_space *mapping, 2549 loff_t const holebegin, loff_t const holelen, int even_cows); 2550 #else 2551 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2552 unsigned long address, unsigned int flags, 2553 struct pt_regs *regs) 2554 { 2555 /* should never happen if there's no MMU */ 2556 BUG(); 2557 return VM_FAULT_SIGBUS; 2558 } 2559 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2560 unsigned int fault_flags, bool *unlocked) 2561 { 2562 /* should never happen if there's no MMU */ 2563 BUG(); 2564 return -EFAULT; 2565 } 2566 static inline void unmap_mapping_pages(struct address_space *mapping, 2567 pgoff_t start, pgoff_t nr, bool even_cows) { } 2568 static inline void unmap_mapping_range(struct address_space *mapping, 2569 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2570 #endif 2571 2572 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2573 loff_t const holebegin, loff_t const holelen) 2574 { 2575 unmap_mapping_range(mapping, holebegin, holelen, 0); 2576 } 2577 2578 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2579 unsigned long addr); 2580 2581 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2582 void *buf, int len, unsigned int gup_flags); 2583 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2584 void *buf, int len, unsigned int gup_flags); 2585 2586 #ifdef CONFIG_BPF_SYSCALL 2587 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2588 void *buf, int len, unsigned int gup_flags); 2589 #endif 2590 2591 long get_user_pages_remote(struct mm_struct *mm, 2592 unsigned long start, unsigned long nr_pages, 2593 unsigned int gup_flags, struct page **pages, 2594 int *locked); 2595 long pin_user_pages_remote(struct mm_struct *mm, 2596 unsigned long start, unsigned long nr_pages, 2597 unsigned int gup_flags, struct page **pages, 2598 int *locked); 2599 2600 /* 2601 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2602 */ 2603 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2604 unsigned long addr, 2605 int gup_flags, 2606 struct vm_area_struct **vmap) 2607 { 2608 struct page *page; 2609 struct vm_area_struct *vma; 2610 int got; 2611 2612 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2613 return ERR_PTR(-EINVAL); 2614 2615 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2616 2617 if (got < 0) 2618 return ERR_PTR(got); 2619 2620 vma = vma_lookup(mm, addr); 2621 if (WARN_ON_ONCE(!vma)) { 2622 put_page(page); 2623 return ERR_PTR(-EINVAL); 2624 } 2625 2626 *vmap = vma; 2627 return page; 2628 } 2629 2630 long get_user_pages(unsigned long start, unsigned long nr_pages, 2631 unsigned int gup_flags, struct page **pages); 2632 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2633 unsigned int gup_flags, struct page **pages); 2634 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2635 struct page **pages, unsigned int gup_flags); 2636 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2637 struct page **pages, unsigned int gup_flags); 2638 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2639 struct folio **folios, unsigned int max_folios, 2640 pgoff_t *offset); 2641 int folio_add_pins(struct folio *folio, unsigned int pins); 2642 2643 int get_user_pages_fast(unsigned long start, int nr_pages, 2644 unsigned int gup_flags, struct page **pages); 2645 int pin_user_pages_fast(unsigned long start, int nr_pages, 2646 unsigned int gup_flags, struct page **pages); 2647 void folio_add_pin(struct folio *folio); 2648 2649 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2650 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2651 struct task_struct *task, bool bypass_rlim); 2652 2653 struct kvec; 2654 struct page *get_dump_page(unsigned long addr, int *locked); 2655 2656 bool folio_mark_dirty(struct folio *folio); 2657 bool folio_mark_dirty_lock(struct folio *folio); 2658 bool set_page_dirty(struct page *page); 2659 int set_page_dirty_lock(struct page *page); 2660 2661 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2662 2663 /* 2664 * Flags used by change_protection(). For now we make it a bitmap so 2665 * that we can pass in multiple flags just like parameters. However 2666 * for now all the callers are only use one of the flags at the same 2667 * time. 2668 */ 2669 /* 2670 * Whether we should manually check if we can map individual PTEs writable, 2671 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2672 * PTEs automatically in a writable mapping. 2673 */ 2674 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2675 /* Whether this protection change is for NUMA hints */ 2676 #define MM_CP_PROT_NUMA (1UL << 1) 2677 /* Whether this change is for write protecting */ 2678 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2679 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2680 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2681 MM_CP_UFFD_WP_RESOLVE) 2682 2683 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2684 pte_t pte); 2685 extern long change_protection(struct mmu_gather *tlb, 2686 struct vm_area_struct *vma, unsigned long start, 2687 unsigned long end, unsigned long cp_flags); 2688 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2689 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2690 unsigned long start, unsigned long end, unsigned long newflags); 2691 2692 /* 2693 * doesn't attempt to fault and will return short. 2694 */ 2695 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2696 unsigned int gup_flags, struct page **pages); 2697 2698 static inline bool get_user_page_fast_only(unsigned long addr, 2699 unsigned int gup_flags, struct page **pagep) 2700 { 2701 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2702 } 2703 /* 2704 * per-process(per-mm_struct) statistics. 2705 */ 2706 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2707 { 2708 return percpu_counter_read_positive(&mm->rss_stat[member]); 2709 } 2710 2711 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2712 2713 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2714 { 2715 percpu_counter_add(&mm->rss_stat[member], value); 2716 2717 mm_trace_rss_stat(mm, member); 2718 } 2719 2720 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2721 { 2722 percpu_counter_inc(&mm->rss_stat[member]); 2723 2724 mm_trace_rss_stat(mm, member); 2725 } 2726 2727 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2728 { 2729 percpu_counter_dec(&mm->rss_stat[member]); 2730 2731 mm_trace_rss_stat(mm, member); 2732 } 2733 2734 /* Optimized variant when folio is already known not to be anon */ 2735 static inline int mm_counter_file(struct folio *folio) 2736 { 2737 if (folio_test_swapbacked(folio)) 2738 return MM_SHMEMPAGES; 2739 return MM_FILEPAGES; 2740 } 2741 2742 static inline int mm_counter(struct folio *folio) 2743 { 2744 if (folio_test_anon(folio)) 2745 return MM_ANONPAGES; 2746 return mm_counter_file(folio); 2747 } 2748 2749 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2750 { 2751 return get_mm_counter(mm, MM_FILEPAGES) + 2752 get_mm_counter(mm, MM_ANONPAGES) + 2753 get_mm_counter(mm, MM_SHMEMPAGES); 2754 } 2755 2756 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2757 { 2758 return max(mm->hiwater_rss, get_mm_rss(mm)); 2759 } 2760 2761 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2762 { 2763 return max(mm->hiwater_vm, mm->total_vm); 2764 } 2765 2766 static inline void update_hiwater_rss(struct mm_struct *mm) 2767 { 2768 unsigned long _rss = get_mm_rss(mm); 2769 2770 if ((mm)->hiwater_rss < _rss) 2771 (mm)->hiwater_rss = _rss; 2772 } 2773 2774 static inline void update_hiwater_vm(struct mm_struct *mm) 2775 { 2776 if (mm->hiwater_vm < mm->total_vm) 2777 mm->hiwater_vm = mm->total_vm; 2778 } 2779 2780 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2781 { 2782 mm->hiwater_rss = get_mm_rss(mm); 2783 } 2784 2785 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2786 struct mm_struct *mm) 2787 { 2788 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2789 2790 if (*maxrss < hiwater_rss) 2791 *maxrss = hiwater_rss; 2792 } 2793 2794 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2795 static inline int pte_special(pte_t pte) 2796 { 2797 return 0; 2798 } 2799 2800 static inline pte_t pte_mkspecial(pte_t pte) 2801 { 2802 return pte; 2803 } 2804 #endif 2805 2806 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2807 static inline bool pmd_special(pmd_t pmd) 2808 { 2809 return false; 2810 } 2811 2812 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2813 { 2814 return pmd; 2815 } 2816 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2817 2818 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2819 static inline bool pud_special(pud_t pud) 2820 { 2821 return false; 2822 } 2823 2824 static inline pud_t pud_mkspecial(pud_t pud) 2825 { 2826 return pud; 2827 } 2828 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2829 2830 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2831 static inline int pte_devmap(pte_t pte) 2832 { 2833 return 0; 2834 } 2835 #endif 2836 2837 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2838 spinlock_t **ptl); 2839 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2840 spinlock_t **ptl) 2841 { 2842 pte_t *ptep; 2843 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2844 return ptep; 2845 } 2846 2847 #ifdef __PAGETABLE_P4D_FOLDED 2848 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2849 unsigned long address) 2850 { 2851 return 0; 2852 } 2853 #else 2854 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2855 #endif 2856 2857 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2858 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2859 unsigned long address) 2860 { 2861 return 0; 2862 } 2863 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2864 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2865 2866 #else 2867 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2868 2869 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2870 { 2871 if (mm_pud_folded(mm)) 2872 return; 2873 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2874 } 2875 2876 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2877 { 2878 if (mm_pud_folded(mm)) 2879 return; 2880 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2881 } 2882 #endif 2883 2884 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2885 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2886 unsigned long address) 2887 { 2888 return 0; 2889 } 2890 2891 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2892 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2893 2894 #else 2895 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2896 2897 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2898 { 2899 if (mm_pmd_folded(mm)) 2900 return; 2901 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2902 } 2903 2904 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2905 { 2906 if (mm_pmd_folded(mm)) 2907 return; 2908 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2909 } 2910 #endif 2911 2912 #ifdef CONFIG_MMU 2913 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2914 { 2915 atomic_long_set(&mm->pgtables_bytes, 0); 2916 } 2917 2918 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2919 { 2920 return atomic_long_read(&mm->pgtables_bytes); 2921 } 2922 2923 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2924 { 2925 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2926 } 2927 2928 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2929 { 2930 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2931 } 2932 #else 2933 2934 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2935 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2936 { 2937 return 0; 2938 } 2939 2940 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2941 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2942 #endif 2943 2944 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2945 int __pte_alloc_kernel(pmd_t *pmd); 2946 2947 #if defined(CONFIG_MMU) 2948 2949 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2950 unsigned long address) 2951 { 2952 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2953 NULL : p4d_offset(pgd, address); 2954 } 2955 2956 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2957 unsigned long address) 2958 { 2959 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2960 NULL : pud_offset(p4d, address); 2961 } 2962 2963 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2964 { 2965 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2966 NULL: pmd_offset(pud, address); 2967 } 2968 #endif /* CONFIG_MMU */ 2969 2970 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2971 { 2972 return page_ptdesc(virt_to_page(x)); 2973 } 2974 2975 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2976 { 2977 return page_to_virt(ptdesc_page(pt)); 2978 } 2979 2980 static inline void *ptdesc_address(const struct ptdesc *pt) 2981 { 2982 return folio_address(ptdesc_folio(pt)); 2983 } 2984 2985 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2986 { 2987 return folio_test_reserved(ptdesc_folio(pt)); 2988 } 2989 2990 /** 2991 * pagetable_alloc - Allocate pagetables 2992 * @gfp: GFP flags 2993 * @order: desired pagetable order 2994 * 2995 * pagetable_alloc allocates memory for page tables as well as a page table 2996 * descriptor to describe that memory. 2997 * 2998 * Return: The ptdesc describing the allocated page tables. 2999 */ 3000 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 3001 { 3002 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 3003 3004 return page_ptdesc(page); 3005 } 3006 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 3007 3008 /** 3009 * pagetable_free - Free pagetables 3010 * @pt: The page table descriptor 3011 * 3012 * pagetable_free frees the memory of all page tables described by a page 3013 * table descriptor and the memory for the descriptor itself. 3014 */ 3015 static inline void pagetable_free(struct ptdesc *pt) 3016 { 3017 struct page *page = ptdesc_page(pt); 3018 3019 __free_pages(page, compound_order(page)); 3020 } 3021 3022 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3023 #if ALLOC_SPLIT_PTLOCKS 3024 void __init ptlock_cache_init(void); 3025 bool ptlock_alloc(struct ptdesc *ptdesc); 3026 void ptlock_free(struct ptdesc *ptdesc); 3027 3028 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3029 { 3030 return ptdesc->ptl; 3031 } 3032 #else /* ALLOC_SPLIT_PTLOCKS */ 3033 static inline void ptlock_cache_init(void) 3034 { 3035 } 3036 3037 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3038 { 3039 return true; 3040 } 3041 3042 static inline void ptlock_free(struct ptdesc *ptdesc) 3043 { 3044 } 3045 3046 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3047 { 3048 return &ptdesc->ptl; 3049 } 3050 #endif /* ALLOC_SPLIT_PTLOCKS */ 3051 3052 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3053 { 3054 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3055 } 3056 3057 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3058 { 3059 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3060 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3061 return ptlock_ptr(virt_to_ptdesc(pte)); 3062 } 3063 3064 static inline bool ptlock_init(struct ptdesc *ptdesc) 3065 { 3066 /* 3067 * prep_new_page() initialize page->private (and therefore page->ptl) 3068 * with 0. Make sure nobody took it in use in between. 3069 * 3070 * It can happen if arch try to use slab for page table allocation: 3071 * slab code uses page->slab_cache, which share storage with page->ptl. 3072 */ 3073 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3074 if (!ptlock_alloc(ptdesc)) 3075 return false; 3076 spin_lock_init(ptlock_ptr(ptdesc)); 3077 return true; 3078 } 3079 3080 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3081 /* 3082 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3083 */ 3084 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3085 { 3086 return &mm->page_table_lock; 3087 } 3088 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3089 { 3090 return &mm->page_table_lock; 3091 } 3092 static inline void ptlock_cache_init(void) {} 3093 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3094 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3095 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3096 3097 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3098 { 3099 struct folio *folio = ptdesc_folio(ptdesc); 3100 3101 __folio_set_pgtable(folio); 3102 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3103 } 3104 3105 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3106 { 3107 struct folio *folio = ptdesc_folio(ptdesc); 3108 3109 ptlock_free(ptdesc); 3110 __folio_clear_pgtable(folio); 3111 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3112 } 3113 3114 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3115 { 3116 pagetable_dtor(ptdesc); 3117 pagetable_free(ptdesc); 3118 } 3119 3120 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3121 { 3122 if (!ptlock_init(ptdesc)) 3123 return false; 3124 __pagetable_ctor(ptdesc); 3125 return true; 3126 } 3127 3128 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3129 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3130 pmd_t *pmdvalp) 3131 { 3132 pte_t *pte; 3133 3134 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3135 return pte; 3136 } 3137 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3138 { 3139 return __pte_offset_map(pmd, addr, NULL); 3140 } 3141 3142 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3143 unsigned long addr, spinlock_t **ptlp); 3144 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3145 unsigned long addr, spinlock_t **ptlp) 3146 { 3147 pte_t *pte; 3148 3149 __cond_lock(RCU, __cond_lock(*ptlp, 3150 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3151 return pte; 3152 } 3153 3154 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3155 unsigned long addr, spinlock_t **ptlp); 3156 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3157 unsigned long addr, pmd_t *pmdvalp, 3158 spinlock_t **ptlp); 3159 3160 #define pte_unmap_unlock(pte, ptl) do { \ 3161 spin_unlock(ptl); \ 3162 pte_unmap(pte); \ 3163 } while (0) 3164 3165 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3166 3167 #define pte_alloc_map(mm, pmd, address) \ 3168 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3169 3170 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3171 (pte_alloc(mm, pmd) ? \ 3172 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3173 3174 #define pte_alloc_kernel(pmd, address) \ 3175 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3176 NULL: pte_offset_kernel(pmd, address)) 3177 3178 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3179 3180 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3181 { 3182 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3183 return virt_to_page((void *)((unsigned long) pmd & mask)); 3184 } 3185 3186 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3187 { 3188 return page_ptdesc(pmd_pgtable_page(pmd)); 3189 } 3190 3191 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3192 { 3193 return ptlock_ptr(pmd_ptdesc(pmd)); 3194 } 3195 3196 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3197 { 3198 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3199 ptdesc->pmd_huge_pte = NULL; 3200 #endif 3201 return ptlock_init(ptdesc); 3202 } 3203 3204 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3205 3206 #else 3207 3208 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3209 { 3210 return &mm->page_table_lock; 3211 } 3212 3213 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3214 3215 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3216 3217 #endif 3218 3219 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3220 { 3221 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3222 spin_lock(ptl); 3223 return ptl; 3224 } 3225 3226 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3227 { 3228 if (!pmd_ptlock_init(ptdesc)) 3229 return false; 3230 ptdesc_pmd_pts_init(ptdesc); 3231 __pagetable_ctor(ptdesc); 3232 return true; 3233 } 3234 3235 /* 3236 * No scalability reason to split PUD locks yet, but follow the same pattern 3237 * as the PMD locks to make it easier if we decide to. The VM should not be 3238 * considered ready to switch to split PUD locks yet; there may be places 3239 * which need to be converted from page_table_lock. 3240 */ 3241 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3242 { 3243 return &mm->page_table_lock; 3244 } 3245 3246 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3247 { 3248 spinlock_t *ptl = pud_lockptr(mm, pud); 3249 3250 spin_lock(ptl); 3251 return ptl; 3252 } 3253 3254 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3255 { 3256 __pagetable_ctor(ptdesc); 3257 } 3258 3259 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3260 { 3261 __pagetable_ctor(ptdesc); 3262 } 3263 3264 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3265 { 3266 __pagetable_ctor(ptdesc); 3267 } 3268 3269 extern void __init pagecache_init(void); 3270 extern void free_initmem(void); 3271 3272 /* 3273 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3274 * into the buddy system. The freed pages will be poisoned with pattern 3275 * "poison" if it's within range [0, UCHAR_MAX]. 3276 * Return pages freed into the buddy system. 3277 */ 3278 extern unsigned long free_reserved_area(void *start, void *end, 3279 int poison, const char *s); 3280 3281 extern void adjust_managed_page_count(struct page *page, long count); 3282 3283 extern void reserve_bootmem_region(phys_addr_t start, 3284 phys_addr_t end, int nid); 3285 3286 /* Free the reserved page into the buddy system, so it gets managed. */ 3287 void free_reserved_page(struct page *page); 3288 3289 static inline void mark_page_reserved(struct page *page) 3290 { 3291 SetPageReserved(page); 3292 adjust_managed_page_count(page, -1); 3293 } 3294 3295 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3296 { 3297 free_reserved_page(ptdesc_page(pt)); 3298 } 3299 3300 /* 3301 * Default method to free all the __init memory into the buddy system. 3302 * The freed pages will be poisoned with pattern "poison" if it's within 3303 * range [0, UCHAR_MAX]. 3304 * Return pages freed into the buddy system. 3305 */ 3306 static inline unsigned long free_initmem_default(int poison) 3307 { 3308 extern char __init_begin[], __init_end[]; 3309 3310 return free_reserved_area(&__init_begin, &__init_end, 3311 poison, "unused kernel image (initmem)"); 3312 } 3313 3314 static inline unsigned long get_num_physpages(void) 3315 { 3316 int nid; 3317 unsigned long phys_pages = 0; 3318 3319 for_each_online_node(nid) 3320 phys_pages += node_present_pages(nid); 3321 3322 return phys_pages; 3323 } 3324 3325 /* 3326 * Using memblock node mappings, an architecture may initialise its 3327 * zones, allocate the backing mem_map and account for memory holes in an 3328 * architecture independent manner. 3329 * 3330 * An architecture is expected to register range of page frames backed by 3331 * physical memory with memblock_add[_node]() before calling 3332 * free_area_init() passing in the PFN each zone ends at. At a basic 3333 * usage, an architecture is expected to do something like 3334 * 3335 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3336 * max_highmem_pfn}; 3337 * for_each_valid_physical_page_range() 3338 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3339 * free_area_init(max_zone_pfns); 3340 */ 3341 void free_area_init(unsigned long *max_zone_pfn); 3342 unsigned long node_map_pfn_alignment(void); 3343 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3344 unsigned long end_pfn); 3345 extern void get_pfn_range_for_nid(unsigned int nid, 3346 unsigned long *start_pfn, unsigned long *end_pfn); 3347 3348 #ifndef CONFIG_NUMA 3349 static inline int early_pfn_to_nid(unsigned long pfn) 3350 { 3351 return 0; 3352 } 3353 #else 3354 /* please see mm/page_alloc.c */ 3355 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3356 #endif 3357 3358 extern void mem_init(void); 3359 extern void __init mmap_init(void); 3360 3361 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3362 static inline void show_mem(void) 3363 { 3364 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3365 } 3366 extern long si_mem_available(void); 3367 extern void si_meminfo(struct sysinfo * val); 3368 extern void si_meminfo_node(struct sysinfo *val, int nid); 3369 3370 extern __printf(3, 4) 3371 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3372 3373 extern void setup_per_cpu_pageset(void); 3374 3375 /* nommu.c */ 3376 extern atomic_long_t mmap_pages_allocated; 3377 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3378 3379 /* interval_tree.c */ 3380 void vma_interval_tree_insert(struct vm_area_struct *node, 3381 struct rb_root_cached *root); 3382 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3383 struct vm_area_struct *prev, 3384 struct rb_root_cached *root); 3385 void vma_interval_tree_remove(struct vm_area_struct *node, 3386 struct rb_root_cached *root); 3387 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3388 unsigned long start, unsigned long last); 3389 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3390 unsigned long start, unsigned long last); 3391 3392 #define vma_interval_tree_foreach(vma, root, start, last) \ 3393 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3394 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3395 3396 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3397 struct rb_root_cached *root); 3398 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3399 struct rb_root_cached *root); 3400 struct anon_vma_chain * 3401 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3402 unsigned long start, unsigned long last); 3403 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3404 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3405 #ifdef CONFIG_DEBUG_VM_RB 3406 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3407 #endif 3408 3409 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3410 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3411 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3412 3413 /* mmap.c */ 3414 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3415 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3416 extern void exit_mmap(struct mm_struct *); 3417 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3418 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3419 unsigned long addr, bool write); 3420 3421 static inline int check_data_rlimit(unsigned long rlim, 3422 unsigned long new, 3423 unsigned long start, 3424 unsigned long end_data, 3425 unsigned long start_data) 3426 { 3427 if (rlim < RLIM_INFINITY) { 3428 if (((new - start) + (end_data - start_data)) > rlim) 3429 return -ENOSPC; 3430 } 3431 3432 return 0; 3433 } 3434 3435 extern int mm_take_all_locks(struct mm_struct *mm); 3436 extern void mm_drop_all_locks(struct mm_struct *mm); 3437 3438 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3439 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3440 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3441 extern struct file *get_task_exe_file(struct task_struct *task); 3442 3443 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3444 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3445 3446 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3447 const struct vm_special_mapping *sm); 3448 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3449 unsigned long addr, unsigned long len, 3450 unsigned long flags, 3451 const struct vm_special_mapping *spec); 3452 3453 unsigned long randomize_stack_top(unsigned long stack_top); 3454 unsigned long randomize_page(unsigned long start, unsigned long range); 3455 3456 unsigned long 3457 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3458 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3459 3460 static inline unsigned long 3461 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3462 unsigned long pgoff, unsigned long flags) 3463 { 3464 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3465 } 3466 3467 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3468 unsigned long len, unsigned long prot, unsigned long flags, 3469 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3470 struct list_head *uf); 3471 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3472 unsigned long start, size_t len, struct list_head *uf, 3473 bool unlock); 3474 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3475 struct mm_struct *mm, unsigned long start, 3476 unsigned long end, struct list_head *uf, bool unlock); 3477 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3478 struct list_head *uf); 3479 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3480 3481 #ifdef CONFIG_MMU 3482 extern int __mm_populate(unsigned long addr, unsigned long len, 3483 int ignore_errors); 3484 static inline void mm_populate(unsigned long addr, unsigned long len) 3485 { 3486 /* Ignore errors */ 3487 (void) __mm_populate(addr, len, 1); 3488 } 3489 #else 3490 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3491 #endif 3492 3493 /* This takes the mm semaphore itself */ 3494 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3495 extern int vm_munmap(unsigned long, size_t); 3496 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3497 unsigned long, unsigned long, 3498 unsigned long, unsigned long); 3499 3500 struct vm_unmapped_area_info { 3501 #define VM_UNMAPPED_AREA_TOPDOWN 1 3502 unsigned long flags; 3503 unsigned long length; 3504 unsigned long low_limit; 3505 unsigned long high_limit; 3506 unsigned long align_mask; 3507 unsigned long align_offset; 3508 unsigned long start_gap; 3509 }; 3510 3511 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3512 3513 /* truncate.c */ 3514 extern void truncate_inode_pages(struct address_space *, loff_t); 3515 extern void truncate_inode_pages_range(struct address_space *, 3516 loff_t lstart, loff_t lend); 3517 extern void truncate_inode_pages_final(struct address_space *); 3518 3519 /* generic vm_area_ops exported for stackable file systems */ 3520 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3521 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3522 pgoff_t start_pgoff, pgoff_t end_pgoff); 3523 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3524 3525 extern unsigned long stack_guard_gap; 3526 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3527 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3528 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3529 3530 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3531 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3532 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3533 struct vm_area_struct **pprev); 3534 3535 /* 3536 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3537 * NULL if none. Assume start_addr < end_addr. 3538 */ 3539 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3540 unsigned long start_addr, unsigned long end_addr); 3541 3542 /** 3543 * vma_lookup() - Find a VMA at a specific address 3544 * @mm: The process address space. 3545 * @addr: The user address. 3546 * 3547 * Return: The vm_area_struct at the given address, %NULL otherwise. 3548 */ 3549 static inline 3550 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3551 { 3552 return mtree_load(&mm->mm_mt, addr); 3553 } 3554 3555 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3556 { 3557 if (vma->vm_flags & VM_GROWSDOWN) 3558 return stack_guard_gap; 3559 3560 /* See reasoning around the VM_SHADOW_STACK definition */ 3561 if (vma->vm_flags & VM_SHADOW_STACK) 3562 return PAGE_SIZE; 3563 3564 return 0; 3565 } 3566 3567 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3568 { 3569 unsigned long gap = stack_guard_start_gap(vma); 3570 unsigned long vm_start = vma->vm_start; 3571 3572 vm_start -= gap; 3573 if (vm_start > vma->vm_start) 3574 vm_start = 0; 3575 return vm_start; 3576 } 3577 3578 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3579 { 3580 unsigned long vm_end = vma->vm_end; 3581 3582 if (vma->vm_flags & VM_GROWSUP) { 3583 vm_end += stack_guard_gap; 3584 if (vm_end < vma->vm_end) 3585 vm_end = -PAGE_SIZE; 3586 } 3587 return vm_end; 3588 } 3589 3590 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3591 { 3592 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3593 } 3594 3595 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3596 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3597 unsigned long vm_start, unsigned long vm_end) 3598 { 3599 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3600 3601 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3602 vma = NULL; 3603 3604 return vma; 3605 } 3606 3607 static inline bool range_in_vma(struct vm_area_struct *vma, 3608 unsigned long start, unsigned long end) 3609 { 3610 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3611 } 3612 3613 #ifdef CONFIG_MMU 3614 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3615 void vma_set_page_prot(struct vm_area_struct *vma); 3616 #else 3617 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3618 { 3619 return __pgprot(0); 3620 } 3621 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3622 { 3623 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3624 } 3625 #endif 3626 3627 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3628 3629 #ifdef CONFIG_NUMA_BALANCING 3630 unsigned long change_prot_numa(struct vm_area_struct *vma, 3631 unsigned long start, unsigned long end); 3632 #endif 3633 3634 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3635 unsigned long addr); 3636 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3637 unsigned long pfn, unsigned long size, pgprot_t); 3638 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3639 unsigned long pfn, unsigned long size, pgprot_t prot); 3640 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3641 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3642 struct page **pages, unsigned long *num); 3643 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3644 unsigned long num); 3645 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3646 unsigned long num); 3647 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3648 bool write); 3649 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3650 unsigned long pfn); 3651 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3652 unsigned long pfn, pgprot_t pgprot); 3653 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3654 pfn_t pfn); 3655 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3656 unsigned long addr, pfn_t pfn); 3657 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3658 3659 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3660 unsigned long addr, struct page *page) 3661 { 3662 int err = vm_insert_page(vma, addr, page); 3663 3664 if (err == -ENOMEM) 3665 return VM_FAULT_OOM; 3666 if (err < 0 && err != -EBUSY) 3667 return VM_FAULT_SIGBUS; 3668 3669 return VM_FAULT_NOPAGE; 3670 } 3671 3672 #ifndef io_remap_pfn_range 3673 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3674 unsigned long addr, unsigned long pfn, 3675 unsigned long size, pgprot_t prot) 3676 { 3677 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3678 } 3679 #endif 3680 3681 static inline vm_fault_t vmf_error(int err) 3682 { 3683 if (err == -ENOMEM) 3684 return VM_FAULT_OOM; 3685 else if (err == -EHWPOISON) 3686 return VM_FAULT_HWPOISON; 3687 return VM_FAULT_SIGBUS; 3688 } 3689 3690 /* 3691 * Convert errno to return value for ->page_mkwrite() calls. 3692 * 3693 * This should eventually be merged with vmf_error() above, but will need a 3694 * careful audit of all vmf_error() callers. 3695 */ 3696 static inline vm_fault_t vmf_fs_error(int err) 3697 { 3698 if (err == 0) 3699 return VM_FAULT_LOCKED; 3700 if (err == -EFAULT || err == -EAGAIN) 3701 return VM_FAULT_NOPAGE; 3702 if (err == -ENOMEM) 3703 return VM_FAULT_OOM; 3704 /* -ENOSPC, -EDQUOT, -EIO ... */ 3705 return VM_FAULT_SIGBUS; 3706 } 3707 3708 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3709 { 3710 if (vm_fault & VM_FAULT_OOM) 3711 return -ENOMEM; 3712 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3713 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3714 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3715 return -EFAULT; 3716 return 0; 3717 } 3718 3719 /* 3720 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3721 * a (NUMA hinting) fault is required. 3722 */ 3723 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3724 unsigned int flags) 3725 { 3726 /* 3727 * If callers don't want to honor NUMA hinting faults, no need to 3728 * determine if we would actually have to trigger a NUMA hinting fault. 3729 */ 3730 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3731 return true; 3732 3733 /* 3734 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3735 * 3736 * Requiring a fault here even for inaccessible VMAs would mean that 3737 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3738 * refuses to process NUMA hinting faults in inaccessible VMAs. 3739 */ 3740 return !vma_is_accessible(vma); 3741 } 3742 3743 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3744 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3745 unsigned long size, pte_fn_t fn, void *data); 3746 extern int apply_to_existing_page_range(struct mm_struct *mm, 3747 unsigned long address, unsigned long size, 3748 pte_fn_t fn, void *data); 3749 3750 #ifdef CONFIG_PAGE_POISONING 3751 extern void __kernel_poison_pages(struct page *page, int numpages); 3752 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3753 extern bool _page_poisoning_enabled_early; 3754 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3755 static inline bool page_poisoning_enabled(void) 3756 { 3757 return _page_poisoning_enabled_early; 3758 } 3759 /* 3760 * For use in fast paths after init_mem_debugging() has run, or when a 3761 * false negative result is not harmful when called too early. 3762 */ 3763 static inline bool page_poisoning_enabled_static(void) 3764 { 3765 return static_branch_unlikely(&_page_poisoning_enabled); 3766 } 3767 static inline void kernel_poison_pages(struct page *page, int numpages) 3768 { 3769 if (page_poisoning_enabled_static()) 3770 __kernel_poison_pages(page, numpages); 3771 } 3772 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3773 { 3774 if (page_poisoning_enabled_static()) 3775 __kernel_unpoison_pages(page, numpages); 3776 } 3777 #else 3778 static inline bool page_poisoning_enabled(void) { return false; } 3779 static inline bool page_poisoning_enabled_static(void) { return false; } 3780 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3781 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3782 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3783 #endif 3784 3785 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3786 static inline bool want_init_on_alloc(gfp_t flags) 3787 { 3788 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3789 &init_on_alloc)) 3790 return true; 3791 return flags & __GFP_ZERO; 3792 } 3793 3794 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3795 static inline bool want_init_on_free(void) 3796 { 3797 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3798 &init_on_free); 3799 } 3800 3801 extern bool _debug_pagealloc_enabled_early; 3802 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3803 3804 static inline bool debug_pagealloc_enabled(void) 3805 { 3806 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3807 _debug_pagealloc_enabled_early; 3808 } 3809 3810 /* 3811 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3812 * or when a false negative result is not harmful when called too early. 3813 */ 3814 static inline bool debug_pagealloc_enabled_static(void) 3815 { 3816 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3817 return false; 3818 3819 return static_branch_unlikely(&_debug_pagealloc_enabled); 3820 } 3821 3822 /* 3823 * To support DEBUG_PAGEALLOC architecture must ensure that 3824 * __kernel_map_pages() never fails 3825 */ 3826 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3827 #ifdef CONFIG_DEBUG_PAGEALLOC 3828 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3829 { 3830 if (debug_pagealloc_enabled_static()) 3831 __kernel_map_pages(page, numpages, 1); 3832 } 3833 3834 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3835 { 3836 if (debug_pagealloc_enabled_static()) 3837 __kernel_map_pages(page, numpages, 0); 3838 } 3839 3840 extern unsigned int _debug_guardpage_minorder; 3841 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3842 3843 static inline unsigned int debug_guardpage_minorder(void) 3844 { 3845 return _debug_guardpage_minorder; 3846 } 3847 3848 static inline bool debug_guardpage_enabled(void) 3849 { 3850 return static_branch_unlikely(&_debug_guardpage_enabled); 3851 } 3852 3853 static inline bool page_is_guard(struct page *page) 3854 { 3855 if (!debug_guardpage_enabled()) 3856 return false; 3857 3858 return PageGuard(page); 3859 } 3860 3861 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3862 static inline bool set_page_guard(struct zone *zone, struct page *page, 3863 unsigned int order) 3864 { 3865 if (!debug_guardpage_enabled()) 3866 return false; 3867 return __set_page_guard(zone, page, order); 3868 } 3869 3870 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3871 static inline void clear_page_guard(struct zone *zone, struct page *page, 3872 unsigned int order) 3873 { 3874 if (!debug_guardpage_enabled()) 3875 return; 3876 __clear_page_guard(zone, page, order); 3877 } 3878 3879 #else /* CONFIG_DEBUG_PAGEALLOC */ 3880 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3881 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3882 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3883 static inline bool debug_guardpage_enabled(void) { return false; } 3884 static inline bool page_is_guard(struct page *page) { return false; } 3885 static inline bool set_page_guard(struct zone *zone, struct page *page, 3886 unsigned int order) { return false; } 3887 static inline void clear_page_guard(struct zone *zone, struct page *page, 3888 unsigned int order) {} 3889 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3890 3891 #ifdef __HAVE_ARCH_GATE_AREA 3892 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3893 extern int in_gate_area_no_mm(unsigned long addr); 3894 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3895 #else 3896 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3897 { 3898 return NULL; 3899 } 3900 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3901 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3902 { 3903 return 0; 3904 } 3905 #endif /* __HAVE_ARCH_GATE_AREA */ 3906 3907 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3908 3909 void drop_slab(void); 3910 3911 #ifndef CONFIG_MMU 3912 #define randomize_va_space 0 3913 #else 3914 extern int randomize_va_space; 3915 #endif 3916 3917 const char * arch_vma_name(struct vm_area_struct *vma); 3918 #ifdef CONFIG_MMU 3919 void print_vma_addr(char *prefix, unsigned long rip); 3920 #else 3921 static inline void print_vma_addr(char *prefix, unsigned long rip) 3922 { 3923 } 3924 #endif 3925 3926 void *sparse_buffer_alloc(unsigned long size); 3927 unsigned long section_map_size(void); 3928 struct page * __populate_section_memmap(unsigned long pfn, 3929 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3930 struct dev_pagemap *pgmap); 3931 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3932 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3933 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3934 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3935 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3936 struct vmem_altmap *altmap, unsigned long ptpfn, 3937 unsigned long flags); 3938 void *vmemmap_alloc_block(unsigned long size, int node); 3939 struct vmem_altmap; 3940 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3941 struct vmem_altmap *altmap); 3942 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3943 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3944 unsigned long addr, unsigned long next); 3945 int vmemmap_check_pmd(pmd_t *pmd, int node, 3946 unsigned long addr, unsigned long next); 3947 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3948 int node, struct vmem_altmap *altmap); 3949 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3950 int node, struct vmem_altmap *altmap); 3951 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3952 struct vmem_altmap *altmap); 3953 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3954 unsigned long headsize); 3955 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3956 unsigned long headsize); 3957 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3958 unsigned long headsize); 3959 void vmemmap_populate_print_last(void); 3960 #ifdef CONFIG_MEMORY_HOTPLUG 3961 void vmemmap_free(unsigned long start, unsigned long end, 3962 struct vmem_altmap *altmap); 3963 #endif 3964 3965 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3966 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3967 { 3968 /* number of pfns from base where pfn_to_page() is valid */ 3969 if (altmap) 3970 return altmap->reserve + altmap->free; 3971 return 0; 3972 } 3973 3974 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3975 unsigned long nr_pfns) 3976 { 3977 altmap->alloc -= nr_pfns; 3978 } 3979 #else 3980 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3981 { 3982 return 0; 3983 } 3984 3985 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3986 unsigned long nr_pfns) 3987 { 3988 } 3989 #endif 3990 3991 #define VMEMMAP_RESERVE_NR 2 3992 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3993 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3994 struct dev_pagemap *pgmap) 3995 { 3996 unsigned long nr_pages; 3997 unsigned long nr_vmemmap_pages; 3998 3999 if (!pgmap || !is_power_of_2(sizeof(struct page))) 4000 return false; 4001 4002 nr_pages = pgmap_vmemmap_nr(pgmap); 4003 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4004 /* 4005 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4006 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4007 */ 4008 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4009 } 4010 /* 4011 * If we don't have an architecture override, use the generic rule 4012 */ 4013 #ifndef vmemmap_can_optimize 4014 #define vmemmap_can_optimize __vmemmap_can_optimize 4015 #endif 4016 4017 #else 4018 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4019 struct dev_pagemap *pgmap) 4020 { 4021 return false; 4022 } 4023 #endif 4024 4025 enum mf_flags { 4026 MF_COUNT_INCREASED = 1 << 0, 4027 MF_ACTION_REQUIRED = 1 << 1, 4028 MF_MUST_KILL = 1 << 2, 4029 MF_SOFT_OFFLINE = 1 << 3, 4030 MF_UNPOISON = 1 << 4, 4031 MF_SW_SIMULATED = 1 << 5, 4032 MF_NO_RETRY = 1 << 6, 4033 MF_MEM_PRE_REMOVE = 1 << 7, 4034 }; 4035 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4036 unsigned long count, int mf_flags); 4037 extern int memory_failure(unsigned long pfn, int flags); 4038 extern void memory_failure_queue_kick(int cpu); 4039 extern int unpoison_memory(unsigned long pfn); 4040 extern atomic_long_t num_poisoned_pages __read_mostly; 4041 extern int soft_offline_page(unsigned long pfn, int flags); 4042 #ifdef CONFIG_MEMORY_FAILURE 4043 /* 4044 * Sysfs entries for memory failure handling statistics. 4045 */ 4046 extern const struct attribute_group memory_failure_attr_group; 4047 extern void memory_failure_queue(unsigned long pfn, int flags); 4048 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4049 bool *migratable_cleared); 4050 void num_poisoned_pages_inc(unsigned long pfn); 4051 void num_poisoned_pages_sub(unsigned long pfn, long i); 4052 #else 4053 static inline void memory_failure_queue(unsigned long pfn, int flags) 4054 { 4055 } 4056 4057 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4058 bool *migratable_cleared) 4059 { 4060 return 0; 4061 } 4062 4063 static inline void num_poisoned_pages_inc(unsigned long pfn) 4064 { 4065 } 4066 4067 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4068 { 4069 } 4070 #endif 4071 4072 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4073 extern void memblk_nr_poison_inc(unsigned long pfn); 4074 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4075 #else 4076 static inline void memblk_nr_poison_inc(unsigned long pfn) 4077 { 4078 } 4079 4080 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4081 { 4082 } 4083 #endif 4084 4085 #ifndef arch_memory_failure 4086 static inline int arch_memory_failure(unsigned long pfn, int flags) 4087 { 4088 return -ENXIO; 4089 } 4090 #endif 4091 4092 #ifndef arch_is_platform_page 4093 static inline bool arch_is_platform_page(u64 paddr) 4094 { 4095 return false; 4096 } 4097 #endif 4098 4099 /* 4100 * Error handlers for various types of pages. 4101 */ 4102 enum mf_result { 4103 MF_IGNORED, /* Error: cannot be handled */ 4104 MF_FAILED, /* Error: handling failed */ 4105 MF_DELAYED, /* Will be handled later */ 4106 MF_RECOVERED, /* Successfully recovered */ 4107 }; 4108 4109 enum mf_action_page_type { 4110 MF_MSG_KERNEL, 4111 MF_MSG_KERNEL_HIGH_ORDER, 4112 MF_MSG_DIFFERENT_COMPOUND, 4113 MF_MSG_HUGE, 4114 MF_MSG_FREE_HUGE, 4115 MF_MSG_GET_HWPOISON, 4116 MF_MSG_UNMAP_FAILED, 4117 MF_MSG_DIRTY_SWAPCACHE, 4118 MF_MSG_CLEAN_SWAPCACHE, 4119 MF_MSG_DIRTY_MLOCKED_LRU, 4120 MF_MSG_CLEAN_MLOCKED_LRU, 4121 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4122 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4123 MF_MSG_DIRTY_LRU, 4124 MF_MSG_CLEAN_LRU, 4125 MF_MSG_TRUNCATED_LRU, 4126 MF_MSG_BUDDY, 4127 MF_MSG_DAX, 4128 MF_MSG_UNSPLIT_THP, 4129 MF_MSG_ALREADY_POISONED, 4130 MF_MSG_UNKNOWN, 4131 }; 4132 4133 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4134 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4135 int copy_user_large_folio(struct folio *dst, struct folio *src, 4136 unsigned long addr_hint, 4137 struct vm_area_struct *vma); 4138 long copy_folio_from_user(struct folio *dst_folio, 4139 const void __user *usr_src, 4140 bool allow_pagefault); 4141 4142 /** 4143 * vma_is_special_huge - Are transhuge page-table entries considered special? 4144 * @vma: Pointer to the struct vm_area_struct to consider 4145 * 4146 * Whether transhuge page-table entries are considered "special" following 4147 * the definition in vm_normal_page(). 4148 * 4149 * Return: true if transhuge page-table entries should be considered special, 4150 * false otherwise. 4151 */ 4152 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4153 { 4154 return vma_is_dax(vma) || (vma->vm_file && 4155 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4156 } 4157 4158 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4159 4160 #if MAX_NUMNODES > 1 4161 void __init setup_nr_node_ids(void); 4162 #else 4163 static inline void setup_nr_node_ids(void) {} 4164 #endif 4165 4166 extern int memcmp_pages(struct page *page1, struct page *page2); 4167 4168 static inline int pages_identical(struct page *page1, struct page *page2) 4169 { 4170 return !memcmp_pages(page1, page2); 4171 } 4172 4173 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4174 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4175 pgoff_t first_index, pgoff_t nr, 4176 pgoff_t bitmap_pgoff, 4177 unsigned long *bitmap, 4178 pgoff_t *start, 4179 pgoff_t *end); 4180 4181 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4182 pgoff_t first_index, pgoff_t nr); 4183 #endif 4184 4185 #ifdef CONFIG_ANON_VMA_NAME 4186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4187 unsigned long len_in, 4188 struct anon_vma_name *anon_name); 4189 #else 4190 static inline int 4191 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4192 unsigned long len_in, struct anon_vma_name *anon_name) { 4193 return 0; 4194 } 4195 #endif 4196 4197 #ifdef CONFIG_UNACCEPTED_MEMORY 4198 4199 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4200 void accept_memory(phys_addr_t start, unsigned long size); 4201 4202 #else 4203 4204 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4205 unsigned long size) 4206 { 4207 return false; 4208 } 4209 4210 static inline void accept_memory(phys_addr_t start, unsigned long size) 4211 { 4212 } 4213 4214 #endif 4215 4216 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4217 { 4218 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4219 } 4220 4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4222 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4223 4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4225 int reserve_mem_release_by_name(const char *name); 4226 4227 #ifdef CONFIG_64BIT 4228 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4229 #else 4230 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4231 { 4232 /* noop on 32 bit */ 4233 return 0; 4234 } 4235 #endif 4236 4237 /* 4238 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4239 * be zeroed or not. 4240 */ 4241 static inline bool user_alloc_needs_zeroing(void) 4242 { 4243 /* 4244 * for user folios, arch with cache aliasing requires cache flush and 4245 * arc changes folio->flags to make icache coherent with dcache, so 4246 * always return false to make caller use 4247 * clear_user_page()/clear_user_highpage(). 4248 */ 4249 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4250 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4251 &init_on_alloc); 4252 } 4253 4254 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4255 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4256 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4257 4258 4259 /* 4260 * mseal of userspace process's system mappings. 4261 */ 4262 #ifdef CONFIG_MSEAL_SYSTEM_MAPPINGS 4263 #define VM_SEALED_SYSMAP VM_SEALED 4264 #else 4265 #define VM_SEALED_SYSMAP VM_NONE 4266 #endif 4267 4268 #endif /* _LINUX_MM_H */ 4269