xref: /linux-6.15/include/linux/mm.h (revision ef815d2c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328 
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
333 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4  0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341 
342 #if defined(CONFIG_X86)
343 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP	VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP	VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR	VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR	VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
358 #endif
359 
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
363 #else
364 # define VM_MTE		VM_NONE
365 # define VM_MTE_ALLOWED	VM_NONE
366 #endif
367 
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP	VM_NONE
370 #endif
371 
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT	37
374 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR		VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378 
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
381 
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383 
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
388 				 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
390 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391 
392 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
394 #endif
395 
396 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399 
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK	VM_GROWSUP
402 #define VM_STACK_EARLY	VM_GROWSDOWN
403 #else
404 #define VM_STACK	VM_GROWSDOWN
405 #define VM_STACK_EARLY	0
406 #endif
407 
408 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409 
410 /* VMA basic access permission flags */
411 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412 
413 
414 /*
415  * Special vmas that are non-mergable, non-mlock()able.
416  */
417 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
418 
419 /* This mask prevents VMA from being scanned with khugepaged */
420 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421 
422 /* This mask defines which mm->def_flags a process can inherit its parent */
423 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
424 
425 /* This mask represents all the VMA flag bits used by mlock */
426 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
427 
428 /* Arch-specific flags to clear when updating VM flags on protection change */
429 #ifndef VM_ARCH_CLEAR
430 # define VM_ARCH_CLEAR	VM_NONE
431 #endif
432 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433 
434 /*
435  * mapping from the currently active vm_flags protection bits (the
436  * low four bits) to a page protection mask..
437  */
438 
439 /*
440  * The default fault flags that should be used by most of the
441  * arch-specific page fault handlers.
442  */
443 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
444 			     FAULT_FLAG_KILLABLE | \
445 			     FAULT_FLAG_INTERRUPTIBLE)
446 
447 /**
448  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
449  * @flags: Fault flags.
450  *
451  * This is mostly used for places where we want to try to avoid taking
452  * the mmap_lock for too long a time when waiting for another condition
453  * to change, in which case we can try to be polite to release the
454  * mmap_lock in the first round to avoid potential starvation of other
455  * processes that would also want the mmap_lock.
456  *
457  * Return: true if the page fault allows retry and this is the first
458  * attempt of the fault handling; false otherwise.
459  */
460 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
461 {
462 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 	    (!(flags & FAULT_FLAG_TRIED));
464 }
465 
466 #define FAULT_FLAG_TRACE \
467 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
468 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
469 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
470 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
471 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
472 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
473 	{ FAULT_FLAG_USER,		"USER" }, \
474 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
475 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
476 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
477 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
478 
479 /*
480  * vm_fault is filled by the pagefault handler and passed to the vma's
481  * ->fault function. The vma's ->fault is responsible for returning a bitmask
482  * of VM_FAULT_xxx flags that give details about how the fault was handled.
483  *
484  * MM layer fills up gfp_mask for page allocations but fault handler might
485  * alter it if its implementation requires a different allocation context.
486  *
487  * pgoff should be used in favour of virtual_address, if possible.
488  */
489 struct vm_fault {
490 	const struct {
491 		struct vm_area_struct *vma;	/* Target VMA */
492 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
493 		pgoff_t pgoff;			/* Logical page offset based on vma */
494 		unsigned long address;		/* Faulting virtual address - masked */
495 		unsigned long real_address;	/* Faulting virtual address - unmasked */
496 	};
497 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
498 					 * XXX: should really be 'const' */
499 	pmd_t *pmd;			/* Pointer to pmd entry matching
500 					 * the 'address' */
501 	pud_t *pud;			/* Pointer to pud entry matching
502 					 * the 'address'
503 					 */
504 	union {
505 		pte_t orig_pte;		/* Value of PTE at the time of fault */
506 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
507 					 * used by PMD fault only.
508 					 */
509 	};
510 
511 	struct page *cow_page;		/* Page handler may use for COW fault */
512 	struct page *page;		/* ->fault handlers should return a
513 					 * page here, unless VM_FAULT_NOPAGE
514 					 * is set (which is also implied by
515 					 * VM_FAULT_ERROR).
516 					 */
517 	/* These three entries are valid only while holding ptl lock */
518 	pte_t *pte;			/* Pointer to pte entry matching
519 					 * the 'address'. NULL if the page
520 					 * table hasn't been allocated.
521 					 */
522 	spinlock_t *ptl;		/* Page table lock.
523 					 * Protects pte page table if 'pte'
524 					 * is not NULL, otherwise pmd.
525 					 */
526 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
527 					 * vm_ops->map_pages() sets up a page
528 					 * table from atomic context.
529 					 * do_fault_around() pre-allocates
530 					 * page table to avoid allocation from
531 					 * atomic context.
532 					 */
533 };
534 
535 /* page entry size for vm->huge_fault() */
536 enum page_entry_size {
537 	PE_SIZE_PTE = 0,
538 	PE_SIZE_PMD,
539 	PE_SIZE_PUD,
540 };
541 
542 /*
543  * These are the virtual MM functions - opening of an area, closing and
544  * unmapping it (needed to keep files on disk up-to-date etc), pointer
545  * to the functions called when a no-page or a wp-page exception occurs.
546  */
547 struct vm_operations_struct {
548 	void (*open)(struct vm_area_struct * area);
549 	/**
550 	 * @close: Called when the VMA is being removed from the MM.
551 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
552 	 */
553 	void (*close)(struct vm_area_struct * area);
554 	/* Called any time before splitting to check if it's allowed */
555 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
556 	int (*mremap)(struct vm_area_struct *area);
557 	/*
558 	 * Called by mprotect() to make driver-specific permission
559 	 * checks before mprotect() is finalised.   The VMA must not
560 	 * be modified.  Returns 0 if mprotect() can proceed.
561 	 */
562 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 			unsigned long end, unsigned long newflags);
564 	vm_fault_t (*fault)(struct vm_fault *vmf);
565 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 			enum page_entry_size pe_size);
567 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
568 			pgoff_t start_pgoff, pgoff_t end_pgoff);
569 	unsigned long (*pagesize)(struct vm_area_struct * area);
570 
571 	/* notification that a previously read-only page is about to become
572 	 * writable, if an error is returned it will cause a SIGBUS */
573 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
574 
575 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
576 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
577 
578 	/* called by access_process_vm when get_user_pages() fails, typically
579 	 * for use by special VMAs. See also generic_access_phys() for a generic
580 	 * implementation useful for any iomem mapping.
581 	 */
582 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 		      void *buf, int len, int write);
584 
585 	/* Called by the /proc/PID/maps code to ask the vma whether it
586 	 * has a special name.  Returning non-NULL will also cause this
587 	 * vma to be dumped unconditionally. */
588 	const char *(*name)(struct vm_area_struct *vma);
589 
590 #ifdef CONFIG_NUMA
591 	/*
592 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 	 * to hold the policy upon return.  Caller should pass NULL @new to
594 	 * remove a policy and fall back to surrounding context--i.e. do not
595 	 * install a MPOL_DEFAULT policy, nor the task or system default
596 	 * mempolicy.
597 	 */
598 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
599 
600 	/*
601 	 * get_policy() op must add reference [mpol_get()] to any policy at
602 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
603 	 * in mm/mempolicy.c will do this automatically.
604 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
605 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
606 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 	 * must return NULL--i.e., do not "fallback" to task or system default
608 	 * policy.
609 	 */
610 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 					unsigned long addr);
612 #endif
613 	/*
614 	 * Called by vm_normal_page() for special PTEs to find the
615 	 * page for @addr.  This is useful if the default behavior
616 	 * (using pte_page()) would not find the correct page.
617 	 */
618 	struct page *(*find_special_page)(struct vm_area_struct *vma,
619 					  unsigned long addr);
620 };
621 
622 #ifdef CONFIG_NUMA_BALANCING
623 static inline void vma_numab_state_init(struct vm_area_struct *vma)
624 {
625 	vma->numab_state = NULL;
626 }
627 static inline void vma_numab_state_free(struct vm_area_struct *vma)
628 {
629 	kfree(vma->numab_state);
630 }
631 #else
632 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634 #endif /* CONFIG_NUMA_BALANCING */
635 
636 #ifdef CONFIG_PER_VMA_LOCK
637 /*
638  * Try to read-lock a vma. The function is allowed to occasionally yield false
639  * locked result to avoid performance overhead, in which case we fall back to
640  * using mmap_lock. The function should never yield false unlocked result.
641  */
642 static inline bool vma_start_read(struct vm_area_struct *vma)
643 {
644 	/*
645 	 * Check before locking. A race might cause false locked result.
646 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
647 	 * ACQUIRE semantics, because this is just a lockless check whose result
648 	 * we don't rely on for anything - the mm_lock_seq read against which we
649 	 * need ordering is below.
650 	 */
651 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
652 		return false;
653 
654 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
655 		return false;
656 
657 	/*
658 	 * Overflow might produce false locked result.
659 	 * False unlocked result is impossible because we modify and check
660 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
661 	 * modification invalidates all existing locks.
662 	 *
663 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
664 	 * racing with vma_end_write_all(), we only start reading from the VMA
665 	 * after it has been unlocked.
666 	 * This pairs with RELEASE semantics in vma_end_write_all().
667 	 */
668 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
669 		up_read(&vma->vm_lock->lock);
670 		return false;
671 	}
672 	return true;
673 }
674 
675 static inline void vma_end_read(struct vm_area_struct *vma)
676 {
677 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
678 	up_read(&vma->vm_lock->lock);
679 	rcu_read_unlock();
680 }
681 
682 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
683 {
684 	mmap_assert_write_locked(vma->vm_mm);
685 
686 	/*
687 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
688 	 * mm->mm_lock_seq can't be concurrently modified.
689 	 */
690 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
691 	return (vma->vm_lock_seq == *mm_lock_seq);
692 }
693 
694 static inline void vma_start_write(struct vm_area_struct *vma)
695 {
696 	int mm_lock_seq;
697 
698 	if (__is_vma_write_locked(vma, &mm_lock_seq))
699 		return;
700 
701 	down_write(&vma->vm_lock->lock);
702 	/*
703 	 * We should use WRITE_ONCE() here because we can have concurrent reads
704 	 * from the early lockless pessimistic check in vma_start_read().
705 	 * We don't really care about the correctness of that early check, but
706 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
707 	 */
708 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
709 	up_write(&vma->vm_lock->lock);
710 }
711 
712 static inline bool vma_try_start_write(struct vm_area_struct *vma)
713 {
714 	int mm_lock_seq;
715 
716 	if (__is_vma_write_locked(vma, &mm_lock_seq))
717 		return true;
718 
719 	if (!down_write_trylock(&vma->vm_lock->lock))
720 		return false;
721 
722 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
723 	up_write(&vma->vm_lock->lock);
724 	return true;
725 }
726 
727 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728 {
729 	int mm_lock_seq;
730 
731 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
732 }
733 
734 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
735 {
736 	/* When detaching vma should be write-locked */
737 	if (detached)
738 		vma_assert_write_locked(vma);
739 	vma->detached = detached;
740 }
741 
742 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
743 					  unsigned long address);
744 
745 #else /* CONFIG_PER_VMA_LOCK */
746 
747 static inline bool vma_start_read(struct vm_area_struct *vma)
748 		{ return false; }
749 static inline void vma_end_read(struct vm_area_struct *vma) {}
750 static inline void vma_start_write(struct vm_area_struct *vma) {}
751 static inline bool vma_try_start_write(struct vm_area_struct *vma)
752 		{ return true; }
753 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
754 static inline void vma_mark_detached(struct vm_area_struct *vma,
755 				     bool detached) {}
756 
757 #endif /* CONFIG_PER_VMA_LOCK */
758 
759 /*
760  * WARNING: vma_init does not initialize vma->vm_lock.
761  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
762  */
763 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
764 {
765 	static const struct vm_operations_struct dummy_vm_ops = {};
766 
767 	memset(vma, 0, sizeof(*vma));
768 	vma->vm_mm = mm;
769 	vma->vm_ops = &dummy_vm_ops;
770 	INIT_LIST_HEAD(&vma->anon_vma_chain);
771 	vma_mark_detached(vma, false);
772 	vma_numab_state_init(vma);
773 }
774 
775 /* Use when VMA is not part of the VMA tree and needs no locking */
776 static inline void vm_flags_init(struct vm_area_struct *vma,
777 				 vm_flags_t flags)
778 {
779 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
780 }
781 
782 /* Use when VMA is part of the VMA tree and modifications need coordination */
783 static inline void vm_flags_reset(struct vm_area_struct *vma,
784 				  vm_flags_t flags)
785 {
786 	vma_start_write(vma);
787 	vm_flags_init(vma, flags);
788 }
789 
790 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
791 				       vm_flags_t flags)
792 {
793 	vma_start_write(vma);
794 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
795 }
796 
797 static inline void vm_flags_set(struct vm_area_struct *vma,
798 				vm_flags_t flags)
799 {
800 	vma_start_write(vma);
801 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
802 }
803 
804 static inline void vm_flags_clear(struct vm_area_struct *vma,
805 				  vm_flags_t flags)
806 {
807 	vma_start_write(vma);
808 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
809 }
810 
811 /*
812  * Use only if VMA is not part of the VMA tree or has no other users and
813  * therefore needs no locking.
814  */
815 static inline void __vm_flags_mod(struct vm_area_struct *vma,
816 				  vm_flags_t set, vm_flags_t clear)
817 {
818 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
819 }
820 
821 /*
822  * Use only when the order of set/clear operations is unimportant, otherwise
823  * use vm_flags_{set|clear} explicitly.
824  */
825 static inline void vm_flags_mod(struct vm_area_struct *vma,
826 				vm_flags_t set, vm_flags_t clear)
827 {
828 	vma_start_write(vma);
829 	__vm_flags_mod(vma, set, clear);
830 }
831 
832 static inline void vma_set_anonymous(struct vm_area_struct *vma)
833 {
834 	vma->vm_ops = NULL;
835 }
836 
837 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
838 {
839 	return !vma->vm_ops;
840 }
841 
842 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
843 {
844 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
845 
846 	if (!maybe_stack)
847 		return false;
848 
849 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
850 						VM_STACK_INCOMPLETE_SETUP)
851 		return true;
852 
853 	return false;
854 }
855 
856 static inline bool vma_is_foreign(struct vm_area_struct *vma)
857 {
858 	if (!current->mm)
859 		return true;
860 
861 	if (current->mm != vma->vm_mm)
862 		return true;
863 
864 	return false;
865 }
866 
867 static inline bool vma_is_accessible(struct vm_area_struct *vma)
868 {
869 	return vma->vm_flags & VM_ACCESS_FLAGS;
870 }
871 
872 static inline
873 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
874 {
875 	return mas_find(&vmi->mas, max - 1);
876 }
877 
878 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
879 {
880 	/*
881 	 * Uses mas_find() to get the first VMA when the iterator starts.
882 	 * Calling mas_next() could skip the first entry.
883 	 */
884 	return mas_find(&vmi->mas, ULONG_MAX);
885 }
886 
887 static inline
888 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
889 {
890 	return mas_next_range(&vmi->mas, ULONG_MAX);
891 }
892 
893 
894 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
895 {
896 	return mas_prev(&vmi->mas, 0);
897 }
898 
899 static inline
900 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
901 {
902 	return mas_prev_range(&vmi->mas, 0);
903 }
904 
905 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
906 {
907 	return vmi->mas.index;
908 }
909 
910 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
911 {
912 	return vmi->mas.last + 1;
913 }
914 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
915 				      unsigned long count)
916 {
917 	return mas_expected_entries(&vmi->mas, count);
918 }
919 
920 /* Free any unused preallocations */
921 static inline void vma_iter_free(struct vma_iterator *vmi)
922 {
923 	mas_destroy(&vmi->mas);
924 }
925 
926 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
927 				      struct vm_area_struct *vma)
928 {
929 	vmi->mas.index = vma->vm_start;
930 	vmi->mas.last = vma->vm_end - 1;
931 	mas_store(&vmi->mas, vma);
932 	if (unlikely(mas_is_err(&vmi->mas)))
933 		return -ENOMEM;
934 
935 	return 0;
936 }
937 
938 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
939 {
940 	mas_pause(&vmi->mas);
941 }
942 
943 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
944 {
945 	mas_set(&vmi->mas, addr);
946 }
947 
948 #define for_each_vma(__vmi, __vma)					\
949 	while (((__vma) = vma_next(&(__vmi))) != NULL)
950 
951 /* The MM code likes to work with exclusive end addresses */
952 #define for_each_vma_range(__vmi, __vma, __end)				\
953 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
954 
955 #ifdef CONFIG_SHMEM
956 /*
957  * The vma_is_shmem is not inline because it is used only by slow
958  * paths in userfault.
959  */
960 bool vma_is_shmem(struct vm_area_struct *vma);
961 bool vma_is_anon_shmem(struct vm_area_struct *vma);
962 #else
963 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
964 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
965 #endif
966 
967 int vma_is_stack_for_current(struct vm_area_struct *vma);
968 
969 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
970 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
971 
972 struct mmu_gather;
973 struct inode;
974 
975 /*
976  * compound_order() can be called without holding a reference, which means
977  * that niceties like page_folio() don't work.  These callers should be
978  * prepared to handle wild return values.  For example, PG_head may be
979  * set before _folio_order is initialised, or this may be a tail page.
980  * See compaction.c for some good examples.
981  */
982 static inline unsigned int compound_order(struct page *page)
983 {
984 	struct folio *folio = (struct folio *)page;
985 
986 	if (!test_bit(PG_head, &folio->flags))
987 		return 0;
988 	return folio->_folio_order;
989 }
990 
991 /**
992  * folio_order - The allocation order of a folio.
993  * @folio: The folio.
994  *
995  * A folio is composed of 2^order pages.  See get_order() for the definition
996  * of order.
997  *
998  * Return: The order of the folio.
999  */
1000 static inline unsigned int folio_order(struct folio *folio)
1001 {
1002 	if (!folio_test_large(folio))
1003 		return 0;
1004 	return folio->_folio_order;
1005 }
1006 
1007 #include <linux/huge_mm.h>
1008 
1009 /*
1010  * Methods to modify the page usage count.
1011  *
1012  * What counts for a page usage:
1013  * - cache mapping   (page->mapping)
1014  * - private data    (page->private)
1015  * - page mapped in a task's page tables, each mapping
1016  *   is counted separately
1017  *
1018  * Also, many kernel routines increase the page count before a critical
1019  * routine so they can be sure the page doesn't go away from under them.
1020  */
1021 
1022 /*
1023  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1024  */
1025 static inline int put_page_testzero(struct page *page)
1026 {
1027 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1028 	return page_ref_dec_and_test(page);
1029 }
1030 
1031 static inline int folio_put_testzero(struct folio *folio)
1032 {
1033 	return put_page_testzero(&folio->page);
1034 }
1035 
1036 /*
1037  * Try to grab a ref unless the page has a refcount of zero, return false if
1038  * that is the case.
1039  * This can be called when MMU is off so it must not access
1040  * any of the virtual mappings.
1041  */
1042 static inline bool get_page_unless_zero(struct page *page)
1043 {
1044 	return page_ref_add_unless(page, 1, 0);
1045 }
1046 
1047 static inline struct folio *folio_get_nontail_page(struct page *page)
1048 {
1049 	if (unlikely(!get_page_unless_zero(page)))
1050 		return NULL;
1051 	return (struct folio *)page;
1052 }
1053 
1054 extern int page_is_ram(unsigned long pfn);
1055 
1056 enum {
1057 	REGION_INTERSECTS,
1058 	REGION_DISJOINT,
1059 	REGION_MIXED,
1060 };
1061 
1062 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1063 		      unsigned long desc);
1064 
1065 /* Support for virtually mapped pages */
1066 struct page *vmalloc_to_page(const void *addr);
1067 unsigned long vmalloc_to_pfn(const void *addr);
1068 
1069 /*
1070  * Determine if an address is within the vmalloc range
1071  *
1072  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1073  * is no special casing required.
1074  */
1075 
1076 #ifndef is_ioremap_addr
1077 #define is_ioremap_addr(x) is_vmalloc_addr(x)
1078 #endif
1079 
1080 #ifdef CONFIG_MMU
1081 extern bool is_vmalloc_addr(const void *x);
1082 extern int is_vmalloc_or_module_addr(const void *x);
1083 #else
1084 static inline bool is_vmalloc_addr(const void *x)
1085 {
1086 	return false;
1087 }
1088 static inline int is_vmalloc_or_module_addr(const void *x)
1089 {
1090 	return 0;
1091 }
1092 #endif
1093 
1094 /*
1095  * How many times the entire folio is mapped as a single unit (eg by a
1096  * PMD or PUD entry).  This is probably not what you want, except for
1097  * debugging purposes - it does not include PTE-mapped sub-pages; look
1098  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1099  */
1100 static inline int folio_entire_mapcount(struct folio *folio)
1101 {
1102 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1103 	return atomic_read(&folio->_entire_mapcount) + 1;
1104 }
1105 
1106 /*
1107  * The atomic page->_mapcount, starts from -1: so that transitions
1108  * both from it and to it can be tracked, using atomic_inc_and_test
1109  * and atomic_add_negative(-1).
1110  */
1111 static inline void page_mapcount_reset(struct page *page)
1112 {
1113 	atomic_set(&(page)->_mapcount, -1);
1114 }
1115 
1116 /**
1117  * page_mapcount() - Number of times this precise page is mapped.
1118  * @page: The page.
1119  *
1120  * The number of times this page is mapped.  If this page is part of
1121  * a large folio, it includes the number of times this page is mapped
1122  * as part of that folio.
1123  *
1124  * The result is undefined for pages which cannot be mapped into userspace.
1125  * For example SLAB or special types of pages. See function page_has_type().
1126  * They use this field in struct page differently.
1127  */
1128 static inline int page_mapcount(struct page *page)
1129 {
1130 	int mapcount = atomic_read(&page->_mapcount) + 1;
1131 
1132 	if (unlikely(PageCompound(page)))
1133 		mapcount += folio_entire_mapcount(page_folio(page));
1134 
1135 	return mapcount;
1136 }
1137 
1138 int folio_total_mapcount(struct folio *folio);
1139 
1140 /**
1141  * folio_mapcount() - Calculate the number of mappings of this folio.
1142  * @folio: The folio.
1143  *
1144  * A large folio tracks both how many times the entire folio is mapped,
1145  * and how many times each individual page in the folio is mapped.
1146  * This function calculates the total number of times the folio is
1147  * mapped.
1148  *
1149  * Return: The number of times this folio is mapped.
1150  */
1151 static inline int folio_mapcount(struct folio *folio)
1152 {
1153 	if (likely(!folio_test_large(folio)))
1154 		return atomic_read(&folio->_mapcount) + 1;
1155 	return folio_total_mapcount(folio);
1156 }
1157 
1158 static inline int total_mapcount(struct page *page)
1159 {
1160 	if (likely(!PageCompound(page)))
1161 		return atomic_read(&page->_mapcount) + 1;
1162 	return folio_total_mapcount(page_folio(page));
1163 }
1164 
1165 static inline bool folio_large_is_mapped(struct folio *folio)
1166 {
1167 	/*
1168 	 * Reading _entire_mapcount below could be omitted if hugetlb
1169 	 * participated in incrementing nr_pages_mapped when compound mapped.
1170 	 */
1171 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1172 		atomic_read(&folio->_entire_mapcount) >= 0;
1173 }
1174 
1175 /**
1176  * folio_mapped - Is this folio mapped into userspace?
1177  * @folio: The folio.
1178  *
1179  * Return: True if any page in this folio is referenced by user page tables.
1180  */
1181 static inline bool folio_mapped(struct folio *folio)
1182 {
1183 	if (likely(!folio_test_large(folio)))
1184 		return atomic_read(&folio->_mapcount) >= 0;
1185 	return folio_large_is_mapped(folio);
1186 }
1187 
1188 /*
1189  * Return true if this page is mapped into pagetables.
1190  * For compound page it returns true if any sub-page of compound page is mapped,
1191  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1192  */
1193 static inline bool page_mapped(struct page *page)
1194 {
1195 	if (likely(!PageCompound(page)))
1196 		return atomic_read(&page->_mapcount) >= 0;
1197 	return folio_large_is_mapped(page_folio(page));
1198 }
1199 
1200 static inline struct page *virt_to_head_page(const void *x)
1201 {
1202 	struct page *page = virt_to_page(x);
1203 
1204 	return compound_head(page);
1205 }
1206 
1207 static inline struct folio *virt_to_folio(const void *x)
1208 {
1209 	struct page *page = virt_to_page(x);
1210 
1211 	return page_folio(page);
1212 }
1213 
1214 void __folio_put(struct folio *folio);
1215 
1216 void put_pages_list(struct list_head *pages);
1217 
1218 void split_page(struct page *page, unsigned int order);
1219 void folio_copy(struct folio *dst, struct folio *src);
1220 
1221 unsigned long nr_free_buffer_pages(void);
1222 
1223 /*
1224  * Compound pages have a destructor function.  Provide a
1225  * prototype for that function and accessor functions.
1226  * These are _only_ valid on the head of a compound page.
1227  */
1228 typedef void compound_page_dtor(struct page *);
1229 
1230 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1231 enum compound_dtor_id {
1232 	NULL_COMPOUND_DTOR,
1233 	COMPOUND_PAGE_DTOR,
1234 #ifdef CONFIG_HUGETLB_PAGE
1235 	HUGETLB_PAGE_DTOR,
1236 #endif
1237 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1238 	TRANSHUGE_PAGE_DTOR,
1239 #endif
1240 	NR_COMPOUND_DTORS,
1241 };
1242 
1243 static inline void folio_set_compound_dtor(struct folio *folio,
1244 		enum compound_dtor_id compound_dtor)
1245 {
1246 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1247 	folio->_folio_dtor = compound_dtor;
1248 }
1249 
1250 void destroy_large_folio(struct folio *folio);
1251 
1252 /* Returns the number of bytes in this potentially compound page. */
1253 static inline unsigned long page_size(struct page *page)
1254 {
1255 	return PAGE_SIZE << compound_order(page);
1256 }
1257 
1258 /* Returns the number of bits needed for the number of bytes in a page */
1259 static inline unsigned int page_shift(struct page *page)
1260 {
1261 	return PAGE_SHIFT + compound_order(page);
1262 }
1263 
1264 /**
1265  * thp_order - Order of a transparent huge page.
1266  * @page: Head page of a transparent huge page.
1267  */
1268 static inline unsigned int thp_order(struct page *page)
1269 {
1270 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1271 	return compound_order(page);
1272 }
1273 
1274 /**
1275  * thp_size - Size of a transparent huge page.
1276  * @page: Head page of a transparent huge page.
1277  *
1278  * Return: Number of bytes in this page.
1279  */
1280 static inline unsigned long thp_size(struct page *page)
1281 {
1282 	return PAGE_SIZE << thp_order(page);
1283 }
1284 
1285 void free_compound_page(struct page *page);
1286 
1287 #ifdef CONFIG_MMU
1288 /*
1289  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1290  * servicing faults for write access.  In the normal case, do always want
1291  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1292  * that do not have writing enabled, when used by access_process_vm.
1293  */
1294 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1295 {
1296 	if (likely(vma->vm_flags & VM_WRITE))
1297 		pte = pte_mkwrite(pte);
1298 	return pte;
1299 }
1300 
1301 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1302 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1303 
1304 vm_fault_t finish_fault(struct vm_fault *vmf);
1305 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1306 #endif
1307 
1308 /*
1309  * Multiple processes may "see" the same page. E.g. for untouched
1310  * mappings of /dev/null, all processes see the same page full of
1311  * zeroes, and text pages of executables and shared libraries have
1312  * only one copy in memory, at most, normally.
1313  *
1314  * For the non-reserved pages, page_count(page) denotes a reference count.
1315  *   page_count() == 0 means the page is free. page->lru is then used for
1316  *   freelist management in the buddy allocator.
1317  *   page_count() > 0  means the page has been allocated.
1318  *
1319  * Pages are allocated by the slab allocator in order to provide memory
1320  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1321  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1322  * unless a particular usage is carefully commented. (the responsibility of
1323  * freeing the kmalloc memory is the caller's, of course).
1324  *
1325  * A page may be used by anyone else who does a __get_free_page().
1326  * In this case, page_count still tracks the references, and should only
1327  * be used through the normal accessor functions. The top bits of page->flags
1328  * and page->virtual store page management information, but all other fields
1329  * are unused and could be used privately, carefully. The management of this
1330  * page is the responsibility of the one who allocated it, and those who have
1331  * subsequently been given references to it.
1332  *
1333  * The other pages (we may call them "pagecache pages") are completely
1334  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1335  * The following discussion applies only to them.
1336  *
1337  * A pagecache page contains an opaque `private' member, which belongs to the
1338  * page's address_space. Usually, this is the address of a circular list of
1339  * the page's disk buffers. PG_private must be set to tell the VM to call
1340  * into the filesystem to release these pages.
1341  *
1342  * A page may belong to an inode's memory mapping. In this case, page->mapping
1343  * is the pointer to the inode, and page->index is the file offset of the page,
1344  * in units of PAGE_SIZE.
1345  *
1346  * If pagecache pages are not associated with an inode, they are said to be
1347  * anonymous pages. These may become associated with the swapcache, and in that
1348  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1349  *
1350  * In either case (swapcache or inode backed), the pagecache itself holds one
1351  * reference to the page. Setting PG_private should also increment the
1352  * refcount. The each user mapping also has a reference to the page.
1353  *
1354  * The pagecache pages are stored in a per-mapping radix tree, which is
1355  * rooted at mapping->i_pages, and indexed by offset.
1356  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1357  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1358  *
1359  * All pagecache pages may be subject to I/O:
1360  * - inode pages may need to be read from disk,
1361  * - inode pages which have been modified and are MAP_SHARED may need
1362  *   to be written back to the inode on disk,
1363  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1364  *   modified may need to be swapped out to swap space and (later) to be read
1365  *   back into memory.
1366  */
1367 
1368 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1369 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1370 
1371 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1372 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1373 {
1374 	if (!static_branch_unlikely(&devmap_managed_key))
1375 		return false;
1376 	if (!is_zone_device_page(page))
1377 		return false;
1378 	return __put_devmap_managed_page_refs(page, refs);
1379 }
1380 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1381 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1382 {
1383 	return false;
1384 }
1385 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1386 
1387 static inline bool put_devmap_managed_page(struct page *page)
1388 {
1389 	return put_devmap_managed_page_refs(page, 1);
1390 }
1391 
1392 /* 127: arbitrary random number, small enough to assemble well */
1393 #define folio_ref_zero_or_close_to_overflow(folio) \
1394 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1395 
1396 /**
1397  * folio_get - Increment the reference count on a folio.
1398  * @folio: The folio.
1399  *
1400  * Context: May be called in any context, as long as you know that
1401  * you have a refcount on the folio.  If you do not already have one,
1402  * folio_try_get() may be the right interface for you to use.
1403  */
1404 static inline void folio_get(struct folio *folio)
1405 {
1406 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1407 	folio_ref_inc(folio);
1408 }
1409 
1410 static inline void get_page(struct page *page)
1411 {
1412 	folio_get(page_folio(page));
1413 }
1414 
1415 static inline __must_check bool try_get_page(struct page *page)
1416 {
1417 	page = compound_head(page);
1418 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1419 		return false;
1420 	page_ref_inc(page);
1421 	return true;
1422 }
1423 
1424 /**
1425  * folio_put - Decrement the reference count on a folio.
1426  * @folio: The folio.
1427  *
1428  * If the folio's reference count reaches zero, the memory will be
1429  * released back to the page allocator and may be used by another
1430  * allocation immediately.  Do not access the memory or the struct folio
1431  * after calling folio_put() unless you can be sure that it wasn't the
1432  * last reference.
1433  *
1434  * Context: May be called in process or interrupt context, but not in NMI
1435  * context.  May be called while holding a spinlock.
1436  */
1437 static inline void folio_put(struct folio *folio)
1438 {
1439 	if (folio_put_testzero(folio))
1440 		__folio_put(folio);
1441 }
1442 
1443 /**
1444  * folio_put_refs - Reduce the reference count on a folio.
1445  * @folio: The folio.
1446  * @refs: The amount to subtract from the folio's reference count.
1447  *
1448  * If the folio's reference count reaches zero, the memory will be
1449  * released back to the page allocator and may be used by another
1450  * allocation immediately.  Do not access the memory or the struct folio
1451  * after calling folio_put_refs() unless you can be sure that these weren't
1452  * the last references.
1453  *
1454  * Context: May be called in process or interrupt context, but not in NMI
1455  * context.  May be called while holding a spinlock.
1456  */
1457 static inline void folio_put_refs(struct folio *folio, int refs)
1458 {
1459 	if (folio_ref_sub_and_test(folio, refs))
1460 		__folio_put(folio);
1461 }
1462 
1463 /*
1464  * union release_pages_arg - an array of pages or folios
1465  *
1466  * release_pages() releases a simple array of multiple pages, and
1467  * accepts various different forms of said page array: either
1468  * a regular old boring array of pages, an array of folios, or
1469  * an array of encoded page pointers.
1470  *
1471  * The transparent union syntax for this kind of "any of these
1472  * argument types" is all kinds of ugly, so look away.
1473  */
1474 typedef union {
1475 	struct page **pages;
1476 	struct folio **folios;
1477 	struct encoded_page **encoded_pages;
1478 } release_pages_arg __attribute__ ((__transparent_union__));
1479 
1480 void release_pages(release_pages_arg, int nr);
1481 
1482 /**
1483  * folios_put - Decrement the reference count on an array of folios.
1484  * @folios: The folios.
1485  * @nr: How many folios there are.
1486  *
1487  * Like folio_put(), but for an array of folios.  This is more efficient
1488  * than writing the loop yourself as it will optimise the locks which
1489  * need to be taken if the folios are freed.
1490  *
1491  * Context: May be called in process or interrupt context, but not in NMI
1492  * context.  May be called while holding a spinlock.
1493  */
1494 static inline void folios_put(struct folio **folios, unsigned int nr)
1495 {
1496 	release_pages(folios, nr);
1497 }
1498 
1499 static inline void put_page(struct page *page)
1500 {
1501 	struct folio *folio = page_folio(page);
1502 
1503 	/*
1504 	 * For some devmap managed pages we need to catch refcount transition
1505 	 * from 2 to 1:
1506 	 */
1507 	if (put_devmap_managed_page(&folio->page))
1508 		return;
1509 	folio_put(folio);
1510 }
1511 
1512 /*
1513  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1514  * the page's refcount so that two separate items are tracked: the original page
1515  * reference count, and also a new count of how many pin_user_pages() calls were
1516  * made against the page. ("gup-pinned" is another term for the latter).
1517  *
1518  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1519  * distinct from normal pages. As such, the unpin_user_page() call (and its
1520  * variants) must be used in order to release gup-pinned pages.
1521  *
1522  * Choice of value:
1523  *
1524  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1525  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1526  * simpler, due to the fact that adding an even power of two to the page
1527  * refcount has the effect of using only the upper N bits, for the code that
1528  * counts up using the bias value. This means that the lower bits are left for
1529  * the exclusive use of the original code that increments and decrements by one
1530  * (or at least, by much smaller values than the bias value).
1531  *
1532  * Of course, once the lower bits overflow into the upper bits (and this is
1533  * OK, because subtraction recovers the original values), then visual inspection
1534  * no longer suffices to directly view the separate counts. However, for normal
1535  * applications that don't have huge page reference counts, this won't be an
1536  * issue.
1537  *
1538  * Locking: the lockless algorithm described in folio_try_get_rcu()
1539  * provides safe operation for get_user_pages(), page_mkclean() and
1540  * other calls that race to set up page table entries.
1541  */
1542 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1543 
1544 void unpin_user_page(struct page *page);
1545 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1546 				 bool make_dirty);
1547 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1548 				      bool make_dirty);
1549 void unpin_user_pages(struct page **pages, unsigned long npages);
1550 
1551 static inline bool is_cow_mapping(vm_flags_t flags)
1552 {
1553 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1554 }
1555 
1556 #ifndef CONFIG_MMU
1557 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1558 {
1559 	/*
1560 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1561 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1562 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1563 	 * underlying memory if ptrace is active, so this is only possible if
1564 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1565 	 * write permissions later.
1566 	 */
1567 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1568 }
1569 #endif
1570 
1571 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1572 #define SECTION_IN_PAGE_FLAGS
1573 #endif
1574 
1575 /*
1576  * The identification function is mainly used by the buddy allocator for
1577  * determining if two pages could be buddies. We are not really identifying
1578  * the zone since we could be using the section number id if we do not have
1579  * node id available in page flags.
1580  * We only guarantee that it will return the same value for two combinable
1581  * pages in a zone.
1582  */
1583 static inline int page_zone_id(struct page *page)
1584 {
1585 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1586 }
1587 
1588 #ifdef NODE_NOT_IN_PAGE_FLAGS
1589 extern int page_to_nid(const struct page *page);
1590 #else
1591 static inline int page_to_nid(const struct page *page)
1592 {
1593 	struct page *p = (struct page *)page;
1594 
1595 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1596 }
1597 #endif
1598 
1599 static inline int folio_nid(const struct folio *folio)
1600 {
1601 	return page_to_nid(&folio->page);
1602 }
1603 
1604 #ifdef CONFIG_NUMA_BALANCING
1605 /* page access time bits needs to hold at least 4 seconds */
1606 #define PAGE_ACCESS_TIME_MIN_BITS	12
1607 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1608 #define PAGE_ACCESS_TIME_BUCKETS				\
1609 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1610 #else
1611 #define PAGE_ACCESS_TIME_BUCKETS	0
1612 #endif
1613 
1614 #define PAGE_ACCESS_TIME_MASK				\
1615 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1616 
1617 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1618 {
1619 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1620 }
1621 
1622 static inline int cpupid_to_pid(int cpupid)
1623 {
1624 	return cpupid & LAST__PID_MASK;
1625 }
1626 
1627 static inline int cpupid_to_cpu(int cpupid)
1628 {
1629 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1630 }
1631 
1632 static inline int cpupid_to_nid(int cpupid)
1633 {
1634 	return cpu_to_node(cpupid_to_cpu(cpupid));
1635 }
1636 
1637 static inline bool cpupid_pid_unset(int cpupid)
1638 {
1639 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1640 }
1641 
1642 static inline bool cpupid_cpu_unset(int cpupid)
1643 {
1644 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1645 }
1646 
1647 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1648 {
1649 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1650 }
1651 
1652 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1653 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1654 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1655 {
1656 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1657 }
1658 
1659 static inline int page_cpupid_last(struct page *page)
1660 {
1661 	return page->_last_cpupid;
1662 }
1663 static inline void page_cpupid_reset_last(struct page *page)
1664 {
1665 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1666 }
1667 #else
1668 static inline int page_cpupid_last(struct page *page)
1669 {
1670 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1671 }
1672 
1673 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1674 
1675 static inline void page_cpupid_reset_last(struct page *page)
1676 {
1677 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1678 }
1679 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1680 
1681 static inline int xchg_page_access_time(struct page *page, int time)
1682 {
1683 	int last_time;
1684 
1685 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1686 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1687 }
1688 
1689 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1690 {
1691 	unsigned int pid_bit;
1692 
1693 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1694 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1695 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1696 	}
1697 }
1698 #else /* !CONFIG_NUMA_BALANCING */
1699 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1700 {
1701 	return page_to_nid(page); /* XXX */
1702 }
1703 
1704 static inline int xchg_page_access_time(struct page *page, int time)
1705 {
1706 	return 0;
1707 }
1708 
1709 static inline int page_cpupid_last(struct page *page)
1710 {
1711 	return page_to_nid(page); /* XXX */
1712 }
1713 
1714 static inline int cpupid_to_nid(int cpupid)
1715 {
1716 	return -1;
1717 }
1718 
1719 static inline int cpupid_to_pid(int cpupid)
1720 {
1721 	return -1;
1722 }
1723 
1724 static inline int cpupid_to_cpu(int cpupid)
1725 {
1726 	return -1;
1727 }
1728 
1729 static inline int cpu_pid_to_cpupid(int nid, int pid)
1730 {
1731 	return -1;
1732 }
1733 
1734 static inline bool cpupid_pid_unset(int cpupid)
1735 {
1736 	return true;
1737 }
1738 
1739 static inline void page_cpupid_reset_last(struct page *page)
1740 {
1741 }
1742 
1743 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1744 {
1745 	return false;
1746 }
1747 
1748 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1749 {
1750 }
1751 #endif /* CONFIG_NUMA_BALANCING */
1752 
1753 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1754 
1755 /*
1756  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1757  * setting tags for all pages to native kernel tag value 0xff, as the default
1758  * value 0x00 maps to 0xff.
1759  */
1760 
1761 static inline u8 page_kasan_tag(const struct page *page)
1762 {
1763 	u8 tag = 0xff;
1764 
1765 	if (kasan_enabled()) {
1766 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1767 		tag ^= 0xff;
1768 	}
1769 
1770 	return tag;
1771 }
1772 
1773 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1774 {
1775 	unsigned long old_flags, flags;
1776 
1777 	if (!kasan_enabled())
1778 		return;
1779 
1780 	tag ^= 0xff;
1781 	old_flags = READ_ONCE(page->flags);
1782 	do {
1783 		flags = old_flags;
1784 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1785 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1786 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1787 }
1788 
1789 static inline void page_kasan_tag_reset(struct page *page)
1790 {
1791 	if (kasan_enabled())
1792 		page_kasan_tag_set(page, 0xff);
1793 }
1794 
1795 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1796 
1797 static inline u8 page_kasan_tag(const struct page *page)
1798 {
1799 	return 0xff;
1800 }
1801 
1802 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1803 static inline void page_kasan_tag_reset(struct page *page) { }
1804 
1805 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1806 
1807 static inline struct zone *page_zone(const struct page *page)
1808 {
1809 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1810 }
1811 
1812 static inline pg_data_t *page_pgdat(const struct page *page)
1813 {
1814 	return NODE_DATA(page_to_nid(page));
1815 }
1816 
1817 static inline struct zone *folio_zone(const struct folio *folio)
1818 {
1819 	return page_zone(&folio->page);
1820 }
1821 
1822 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1823 {
1824 	return page_pgdat(&folio->page);
1825 }
1826 
1827 #ifdef SECTION_IN_PAGE_FLAGS
1828 static inline void set_page_section(struct page *page, unsigned long section)
1829 {
1830 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1831 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1832 }
1833 
1834 static inline unsigned long page_to_section(const struct page *page)
1835 {
1836 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1837 }
1838 #endif
1839 
1840 /**
1841  * folio_pfn - Return the Page Frame Number of a folio.
1842  * @folio: The folio.
1843  *
1844  * A folio may contain multiple pages.  The pages have consecutive
1845  * Page Frame Numbers.
1846  *
1847  * Return: The Page Frame Number of the first page in the folio.
1848  */
1849 static inline unsigned long folio_pfn(struct folio *folio)
1850 {
1851 	return page_to_pfn(&folio->page);
1852 }
1853 
1854 static inline struct folio *pfn_folio(unsigned long pfn)
1855 {
1856 	return page_folio(pfn_to_page(pfn));
1857 }
1858 
1859 /**
1860  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1861  * @folio: The folio.
1862  *
1863  * This function checks if a folio has been pinned via a call to
1864  * a function in the pin_user_pages() family.
1865  *
1866  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1867  * because it means "definitely not pinned for DMA", but true means "probably
1868  * pinned for DMA, but possibly a false positive due to having at least
1869  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1870  *
1871  * False positives are OK, because: a) it's unlikely for a folio to
1872  * get that many refcounts, and b) all the callers of this routine are
1873  * expected to be able to deal gracefully with a false positive.
1874  *
1875  * For large folios, the result will be exactly correct. That's because
1876  * we have more tracking data available: the _pincount field is used
1877  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1878  *
1879  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1880  *
1881  * Return: True, if it is likely that the page has been "dma-pinned".
1882  * False, if the page is definitely not dma-pinned.
1883  */
1884 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1885 {
1886 	if (folio_test_large(folio))
1887 		return atomic_read(&folio->_pincount) > 0;
1888 
1889 	/*
1890 	 * folio_ref_count() is signed. If that refcount overflows, then
1891 	 * folio_ref_count() returns a negative value, and callers will avoid
1892 	 * further incrementing the refcount.
1893 	 *
1894 	 * Here, for that overflow case, use the sign bit to count a little
1895 	 * bit higher via unsigned math, and thus still get an accurate result.
1896 	 */
1897 	return ((unsigned int)folio_ref_count(folio)) >=
1898 		GUP_PIN_COUNTING_BIAS;
1899 }
1900 
1901 static inline bool page_maybe_dma_pinned(struct page *page)
1902 {
1903 	return folio_maybe_dma_pinned(page_folio(page));
1904 }
1905 
1906 /*
1907  * This should most likely only be called during fork() to see whether we
1908  * should break the cow immediately for an anon page on the src mm.
1909  *
1910  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1911  */
1912 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1913 					  struct page *page)
1914 {
1915 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1916 
1917 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1918 		return false;
1919 
1920 	return page_maybe_dma_pinned(page);
1921 }
1922 
1923 /**
1924  * is_zero_page - Query if a page is a zero page
1925  * @page: The page to query
1926  *
1927  * This returns true if @page is one of the permanent zero pages.
1928  */
1929 static inline bool is_zero_page(const struct page *page)
1930 {
1931 	return is_zero_pfn(page_to_pfn(page));
1932 }
1933 
1934 /**
1935  * is_zero_folio - Query if a folio is a zero page
1936  * @folio: The folio to query
1937  *
1938  * This returns true if @folio is one of the permanent zero pages.
1939  */
1940 static inline bool is_zero_folio(const struct folio *folio)
1941 {
1942 	return is_zero_page(&folio->page);
1943 }
1944 
1945 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1946 #ifdef CONFIG_MIGRATION
1947 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1948 {
1949 #ifdef CONFIG_CMA
1950 	int mt = folio_migratetype(folio);
1951 
1952 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1953 		return false;
1954 #endif
1955 	/* The zero page can be "pinned" but gets special handling. */
1956 	if (is_zero_folio(folio))
1957 		return true;
1958 
1959 	/* Coherent device memory must always allow eviction. */
1960 	if (folio_is_device_coherent(folio))
1961 		return false;
1962 
1963 	/* Otherwise, non-movable zone folios can be pinned. */
1964 	return !folio_is_zone_movable(folio);
1965 
1966 }
1967 #else
1968 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1969 {
1970 	return true;
1971 }
1972 #endif
1973 
1974 static inline void set_page_zone(struct page *page, enum zone_type zone)
1975 {
1976 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1977 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1978 }
1979 
1980 static inline void set_page_node(struct page *page, unsigned long node)
1981 {
1982 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1983 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1984 }
1985 
1986 static inline void set_page_links(struct page *page, enum zone_type zone,
1987 	unsigned long node, unsigned long pfn)
1988 {
1989 	set_page_zone(page, zone);
1990 	set_page_node(page, node);
1991 #ifdef SECTION_IN_PAGE_FLAGS
1992 	set_page_section(page, pfn_to_section_nr(pfn));
1993 #endif
1994 }
1995 
1996 /**
1997  * folio_nr_pages - The number of pages in the folio.
1998  * @folio: The folio.
1999  *
2000  * Return: A positive power of two.
2001  */
2002 static inline long folio_nr_pages(struct folio *folio)
2003 {
2004 	if (!folio_test_large(folio))
2005 		return 1;
2006 #ifdef CONFIG_64BIT
2007 	return folio->_folio_nr_pages;
2008 #else
2009 	return 1L << folio->_folio_order;
2010 #endif
2011 }
2012 
2013 /*
2014  * compound_nr() returns the number of pages in this potentially compound
2015  * page.  compound_nr() can be called on a tail page, and is defined to
2016  * return 1 in that case.
2017  */
2018 static inline unsigned long compound_nr(struct page *page)
2019 {
2020 	struct folio *folio = (struct folio *)page;
2021 
2022 	if (!test_bit(PG_head, &folio->flags))
2023 		return 1;
2024 #ifdef CONFIG_64BIT
2025 	return folio->_folio_nr_pages;
2026 #else
2027 	return 1L << folio->_folio_order;
2028 #endif
2029 }
2030 
2031 /**
2032  * thp_nr_pages - The number of regular pages in this huge page.
2033  * @page: The head page of a huge page.
2034  */
2035 static inline int thp_nr_pages(struct page *page)
2036 {
2037 	return folio_nr_pages((struct folio *)page);
2038 }
2039 
2040 /**
2041  * folio_next - Move to the next physical folio.
2042  * @folio: The folio we're currently operating on.
2043  *
2044  * If you have physically contiguous memory which may span more than
2045  * one folio (eg a &struct bio_vec), use this function to move from one
2046  * folio to the next.  Do not use it if the memory is only virtually
2047  * contiguous as the folios are almost certainly not adjacent to each
2048  * other.  This is the folio equivalent to writing ``page++``.
2049  *
2050  * Context: We assume that the folios are refcounted and/or locked at a
2051  * higher level and do not adjust the reference counts.
2052  * Return: The next struct folio.
2053  */
2054 static inline struct folio *folio_next(struct folio *folio)
2055 {
2056 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2057 }
2058 
2059 /**
2060  * folio_shift - The size of the memory described by this folio.
2061  * @folio: The folio.
2062  *
2063  * A folio represents a number of bytes which is a power-of-two in size.
2064  * This function tells you which power-of-two the folio is.  See also
2065  * folio_size() and folio_order().
2066  *
2067  * Context: The caller should have a reference on the folio to prevent
2068  * it from being split.  It is not necessary for the folio to be locked.
2069  * Return: The base-2 logarithm of the size of this folio.
2070  */
2071 static inline unsigned int folio_shift(struct folio *folio)
2072 {
2073 	return PAGE_SHIFT + folio_order(folio);
2074 }
2075 
2076 /**
2077  * folio_size - The number of bytes in a folio.
2078  * @folio: The folio.
2079  *
2080  * Context: The caller should have a reference on the folio to prevent
2081  * it from being split.  It is not necessary for the folio to be locked.
2082  * Return: The number of bytes in this folio.
2083  */
2084 static inline size_t folio_size(struct folio *folio)
2085 {
2086 	return PAGE_SIZE << folio_order(folio);
2087 }
2088 
2089 /**
2090  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2091  * @folio: The folio.
2092  *
2093  * folio_estimated_sharers() aims to serve as a function to efficiently
2094  * estimate the number of processes sharing a folio. This is done by
2095  * looking at the precise mapcount of the first subpage in the folio, and
2096  * assuming the other subpages are the same. This may not be true for large
2097  * folios. If you want exact mapcounts for exact calculations, look at
2098  * page_mapcount() or folio_total_mapcount().
2099  *
2100  * Return: The estimated number of processes sharing a folio.
2101  */
2102 static inline int folio_estimated_sharers(struct folio *folio)
2103 {
2104 	return page_mapcount(folio_page(folio, 0));
2105 }
2106 
2107 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2108 static inline int arch_make_page_accessible(struct page *page)
2109 {
2110 	return 0;
2111 }
2112 #endif
2113 
2114 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2115 static inline int arch_make_folio_accessible(struct folio *folio)
2116 {
2117 	int ret;
2118 	long i, nr = folio_nr_pages(folio);
2119 
2120 	for (i = 0; i < nr; i++) {
2121 		ret = arch_make_page_accessible(folio_page(folio, i));
2122 		if (ret)
2123 			break;
2124 	}
2125 
2126 	return ret;
2127 }
2128 #endif
2129 
2130 /*
2131  * Some inline functions in vmstat.h depend on page_zone()
2132  */
2133 #include <linux/vmstat.h>
2134 
2135 static __always_inline void *lowmem_page_address(const struct page *page)
2136 {
2137 	return page_to_virt(page);
2138 }
2139 
2140 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2141 #define HASHED_PAGE_VIRTUAL
2142 #endif
2143 
2144 #if defined(WANT_PAGE_VIRTUAL)
2145 static inline void *page_address(const struct page *page)
2146 {
2147 	return page->virtual;
2148 }
2149 static inline void set_page_address(struct page *page, void *address)
2150 {
2151 	page->virtual = address;
2152 }
2153 #define page_address_init()  do { } while(0)
2154 #endif
2155 
2156 #if defined(HASHED_PAGE_VIRTUAL)
2157 void *page_address(const struct page *page);
2158 void set_page_address(struct page *page, void *virtual);
2159 void page_address_init(void);
2160 #endif
2161 
2162 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2163 #define page_address(page) lowmem_page_address(page)
2164 #define set_page_address(page, address)  do { } while(0)
2165 #define page_address_init()  do { } while(0)
2166 #endif
2167 
2168 static inline void *folio_address(const struct folio *folio)
2169 {
2170 	return page_address(&folio->page);
2171 }
2172 
2173 extern void *page_rmapping(struct page *page);
2174 extern pgoff_t __page_file_index(struct page *page);
2175 
2176 /*
2177  * Return the pagecache index of the passed page.  Regular pagecache pages
2178  * use ->index whereas swapcache pages use swp_offset(->private)
2179  */
2180 static inline pgoff_t page_index(struct page *page)
2181 {
2182 	if (unlikely(PageSwapCache(page)))
2183 		return __page_file_index(page);
2184 	return page->index;
2185 }
2186 
2187 /*
2188  * Return true only if the page has been allocated with
2189  * ALLOC_NO_WATERMARKS and the low watermark was not
2190  * met implying that the system is under some pressure.
2191  */
2192 static inline bool page_is_pfmemalloc(const struct page *page)
2193 {
2194 	/*
2195 	 * lru.next has bit 1 set if the page is allocated from the
2196 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2197 	 * they do not need to preserve that information.
2198 	 */
2199 	return (uintptr_t)page->lru.next & BIT(1);
2200 }
2201 
2202 /*
2203  * Return true only if the folio has been allocated with
2204  * ALLOC_NO_WATERMARKS and the low watermark was not
2205  * met implying that the system is under some pressure.
2206  */
2207 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2208 {
2209 	/*
2210 	 * lru.next has bit 1 set if the page is allocated from the
2211 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2212 	 * they do not need to preserve that information.
2213 	 */
2214 	return (uintptr_t)folio->lru.next & BIT(1);
2215 }
2216 
2217 /*
2218  * Only to be called by the page allocator on a freshly allocated
2219  * page.
2220  */
2221 static inline void set_page_pfmemalloc(struct page *page)
2222 {
2223 	page->lru.next = (void *)BIT(1);
2224 }
2225 
2226 static inline void clear_page_pfmemalloc(struct page *page)
2227 {
2228 	page->lru.next = NULL;
2229 }
2230 
2231 /*
2232  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2233  */
2234 extern void pagefault_out_of_memory(void);
2235 
2236 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2237 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2238 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2239 
2240 /*
2241  * Flags passed to show_mem() and show_free_areas() to suppress output in
2242  * various contexts.
2243  */
2244 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
2245 
2246 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2247 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2248 {
2249 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2250 }
2251 
2252 /*
2253  * Parameter block passed down to zap_pte_range in exceptional cases.
2254  */
2255 struct zap_details {
2256 	struct folio *single_folio;	/* Locked folio to be unmapped */
2257 	bool even_cows;			/* Zap COWed private pages too? */
2258 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2259 };
2260 
2261 /*
2262  * Whether to drop the pte markers, for example, the uffd-wp information for
2263  * file-backed memory.  This should only be specified when we will completely
2264  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2265  * default, the flag is not set.
2266  */
2267 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2268 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2269 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2270 
2271 #ifdef CONFIG_SCHED_MM_CID
2272 void sched_mm_cid_before_execve(struct task_struct *t);
2273 void sched_mm_cid_after_execve(struct task_struct *t);
2274 void sched_mm_cid_fork(struct task_struct *t);
2275 void sched_mm_cid_exit_signals(struct task_struct *t);
2276 static inline int task_mm_cid(struct task_struct *t)
2277 {
2278 	return t->mm_cid;
2279 }
2280 #else
2281 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2282 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2283 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2284 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2285 static inline int task_mm_cid(struct task_struct *t)
2286 {
2287 	/*
2288 	 * Use the processor id as a fall-back when the mm cid feature is
2289 	 * disabled. This provides functional per-cpu data structure accesses
2290 	 * in user-space, althrough it won't provide the memory usage benefits.
2291 	 */
2292 	return raw_smp_processor_id();
2293 }
2294 #endif
2295 
2296 #ifdef CONFIG_MMU
2297 extern bool can_do_mlock(void);
2298 #else
2299 static inline bool can_do_mlock(void) { return false; }
2300 #endif
2301 extern int user_shm_lock(size_t, struct ucounts *);
2302 extern void user_shm_unlock(size_t, struct ucounts *);
2303 
2304 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2305 			     pte_t pte);
2306 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2307 			     pte_t pte);
2308 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2309 				pmd_t pmd);
2310 
2311 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2312 		  unsigned long size);
2313 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2314 			   unsigned long size, struct zap_details *details);
2315 static inline void zap_vma_pages(struct vm_area_struct *vma)
2316 {
2317 	zap_page_range_single(vma, vma->vm_start,
2318 			      vma->vm_end - vma->vm_start, NULL);
2319 }
2320 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2321 		struct vm_area_struct *start_vma, unsigned long start,
2322 		unsigned long end, bool mm_wr_locked);
2323 
2324 struct mmu_notifier_range;
2325 
2326 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2327 		unsigned long end, unsigned long floor, unsigned long ceiling);
2328 int
2329 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2330 int follow_pte(struct mm_struct *mm, unsigned long address,
2331 	       pte_t **ptepp, spinlock_t **ptlp);
2332 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2333 	unsigned long *pfn);
2334 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2335 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2336 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2337 			void *buf, int len, int write);
2338 
2339 extern void truncate_pagecache(struct inode *inode, loff_t new);
2340 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2341 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2342 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2343 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2344 
2345 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2346 		unsigned long address, struct pt_regs *regs);
2347 
2348 #ifdef CONFIG_MMU
2349 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2350 				  unsigned long address, unsigned int flags,
2351 				  struct pt_regs *regs);
2352 extern int fixup_user_fault(struct mm_struct *mm,
2353 			    unsigned long address, unsigned int fault_flags,
2354 			    bool *unlocked);
2355 void unmap_mapping_pages(struct address_space *mapping,
2356 		pgoff_t start, pgoff_t nr, bool even_cows);
2357 void unmap_mapping_range(struct address_space *mapping,
2358 		loff_t const holebegin, loff_t const holelen, int even_cows);
2359 #else
2360 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2361 					 unsigned long address, unsigned int flags,
2362 					 struct pt_regs *regs)
2363 {
2364 	/* should never happen if there's no MMU */
2365 	BUG();
2366 	return VM_FAULT_SIGBUS;
2367 }
2368 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2369 		unsigned int fault_flags, bool *unlocked)
2370 {
2371 	/* should never happen if there's no MMU */
2372 	BUG();
2373 	return -EFAULT;
2374 }
2375 static inline void unmap_mapping_pages(struct address_space *mapping,
2376 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2377 static inline void unmap_mapping_range(struct address_space *mapping,
2378 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2379 #endif
2380 
2381 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2382 		loff_t const holebegin, loff_t const holelen)
2383 {
2384 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2385 }
2386 
2387 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2388 						unsigned long addr);
2389 
2390 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2391 		void *buf, int len, unsigned int gup_flags);
2392 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2393 		void *buf, int len, unsigned int gup_flags);
2394 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2395 			      void *buf, int len, unsigned int gup_flags);
2396 
2397 long get_user_pages_remote(struct mm_struct *mm,
2398 			   unsigned long start, unsigned long nr_pages,
2399 			   unsigned int gup_flags, struct page **pages,
2400 			   int *locked);
2401 long pin_user_pages_remote(struct mm_struct *mm,
2402 			   unsigned long start, unsigned long nr_pages,
2403 			   unsigned int gup_flags, struct page **pages,
2404 			   int *locked);
2405 
2406 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2407 						    unsigned long addr,
2408 						    int gup_flags,
2409 						    struct vm_area_struct **vmap)
2410 {
2411 	struct page *page;
2412 	struct vm_area_struct *vma;
2413 	int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2414 
2415 	if (got < 0)
2416 		return ERR_PTR(got);
2417 	if (got == 0)
2418 		return NULL;
2419 
2420 	vma = vma_lookup(mm, addr);
2421 	if (WARN_ON_ONCE(!vma)) {
2422 		put_page(page);
2423 		return ERR_PTR(-EINVAL);
2424 	}
2425 
2426 	*vmap = vma;
2427 	return page;
2428 }
2429 
2430 long get_user_pages(unsigned long start, unsigned long nr_pages,
2431 		    unsigned int gup_flags, struct page **pages);
2432 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2433 		    unsigned int gup_flags, struct page **pages);
2434 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2435 		    struct page **pages, unsigned int gup_flags);
2436 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2437 		    struct page **pages, unsigned int gup_flags);
2438 
2439 int get_user_pages_fast(unsigned long start, int nr_pages,
2440 			unsigned int gup_flags, struct page **pages);
2441 int pin_user_pages_fast(unsigned long start, int nr_pages,
2442 			unsigned int gup_flags, struct page **pages);
2443 void folio_add_pin(struct folio *folio);
2444 
2445 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2446 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2447 			struct task_struct *task, bool bypass_rlim);
2448 
2449 struct kvec;
2450 struct page *get_dump_page(unsigned long addr);
2451 
2452 bool folio_mark_dirty(struct folio *folio);
2453 bool set_page_dirty(struct page *page);
2454 int set_page_dirty_lock(struct page *page);
2455 
2456 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2457 
2458 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2459 		unsigned long old_addr, struct vm_area_struct *new_vma,
2460 		unsigned long new_addr, unsigned long len,
2461 		bool need_rmap_locks);
2462 
2463 /*
2464  * Flags used by change_protection().  For now we make it a bitmap so
2465  * that we can pass in multiple flags just like parameters.  However
2466  * for now all the callers are only use one of the flags at the same
2467  * time.
2468  */
2469 /*
2470  * Whether we should manually check if we can map individual PTEs writable,
2471  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2472  * PTEs automatically in a writable mapping.
2473  */
2474 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2475 /* Whether this protection change is for NUMA hints */
2476 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2477 /* Whether this change is for write protecting */
2478 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2479 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2480 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2481 					    MM_CP_UFFD_WP_RESOLVE)
2482 
2483 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2484 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2485 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2486 {
2487 	/*
2488 	 * We want to check manually if we can change individual PTEs writable
2489 	 * if we can't do that automatically for all PTEs in a mapping. For
2490 	 * private mappings, that's always the case when we have write
2491 	 * permissions as we properly have to handle COW.
2492 	 */
2493 	if (vma->vm_flags & VM_SHARED)
2494 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2495 	return !!(vma->vm_flags & VM_WRITE);
2496 
2497 }
2498 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2499 			     pte_t pte);
2500 extern long change_protection(struct mmu_gather *tlb,
2501 			      struct vm_area_struct *vma, unsigned long start,
2502 			      unsigned long end, unsigned long cp_flags);
2503 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2504 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2505 	  unsigned long start, unsigned long end, unsigned long newflags);
2506 
2507 /*
2508  * doesn't attempt to fault and will return short.
2509  */
2510 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2511 			     unsigned int gup_flags, struct page **pages);
2512 
2513 static inline bool get_user_page_fast_only(unsigned long addr,
2514 			unsigned int gup_flags, struct page **pagep)
2515 {
2516 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2517 }
2518 /*
2519  * per-process(per-mm_struct) statistics.
2520  */
2521 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2522 {
2523 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2524 }
2525 
2526 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2527 
2528 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2529 {
2530 	percpu_counter_add(&mm->rss_stat[member], value);
2531 
2532 	mm_trace_rss_stat(mm, member);
2533 }
2534 
2535 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2536 {
2537 	percpu_counter_inc(&mm->rss_stat[member]);
2538 
2539 	mm_trace_rss_stat(mm, member);
2540 }
2541 
2542 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2543 {
2544 	percpu_counter_dec(&mm->rss_stat[member]);
2545 
2546 	mm_trace_rss_stat(mm, member);
2547 }
2548 
2549 /* Optimized variant when page is already known not to be PageAnon */
2550 static inline int mm_counter_file(struct page *page)
2551 {
2552 	if (PageSwapBacked(page))
2553 		return MM_SHMEMPAGES;
2554 	return MM_FILEPAGES;
2555 }
2556 
2557 static inline int mm_counter(struct page *page)
2558 {
2559 	if (PageAnon(page))
2560 		return MM_ANONPAGES;
2561 	return mm_counter_file(page);
2562 }
2563 
2564 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2565 {
2566 	return get_mm_counter(mm, MM_FILEPAGES) +
2567 		get_mm_counter(mm, MM_ANONPAGES) +
2568 		get_mm_counter(mm, MM_SHMEMPAGES);
2569 }
2570 
2571 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2572 {
2573 	return max(mm->hiwater_rss, get_mm_rss(mm));
2574 }
2575 
2576 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2577 {
2578 	return max(mm->hiwater_vm, mm->total_vm);
2579 }
2580 
2581 static inline void update_hiwater_rss(struct mm_struct *mm)
2582 {
2583 	unsigned long _rss = get_mm_rss(mm);
2584 
2585 	if ((mm)->hiwater_rss < _rss)
2586 		(mm)->hiwater_rss = _rss;
2587 }
2588 
2589 static inline void update_hiwater_vm(struct mm_struct *mm)
2590 {
2591 	if (mm->hiwater_vm < mm->total_vm)
2592 		mm->hiwater_vm = mm->total_vm;
2593 }
2594 
2595 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2596 {
2597 	mm->hiwater_rss = get_mm_rss(mm);
2598 }
2599 
2600 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2601 					 struct mm_struct *mm)
2602 {
2603 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2604 
2605 	if (*maxrss < hiwater_rss)
2606 		*maxrss = hiwater_rss;
2607 }
2608 
2609 #if defined(SPLIT_RSS_COUNTING)
2610 void sync_mm_rss(struct mm_struct *mm);
2611 #else
2612 static inline void sync_mm_rss(struct mm_struct *mm)
2613 {
2614 }
2615 #endif
2616 
2617 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2618 static inline int pte_special(pte_t pte)
2619 {
2620 	return 0;
2621 }
2622 
2623 static inline pte_t pte_mkspecial(pte_t pte)
2624 {
2625 	return pte;
2626 }
2627 #endif
2628 
2629 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2630 static inline int pte_devmap(pte_t pte)
2631 {
2632 	return 0;
2633 }
2634 #endif
2635 
2636 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2637 			       spinlock_t **ptl);
2638 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2639 				    spinlock_t **ptl)
2640 {
2641 	pte_t *ptep;
2642 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2643 	return ptep;
2644 }
2645 
2646 #ifdef __PAGETABLE_P4D_FOLDED
2647 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2648 						unsigned long address)
2649 {
2650 	return 0;
2651 }
2652 #else
2653 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2654 #endif
2655 
2656 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2657 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2658 						unsigned long address)
2659 {
2660 	return 0;
2661 }
2662 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2663 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2664 
2665 #else
2666 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2667 
2668 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2669 {
2670 	if (mm_pud_folded(mm))
2671 		return;
2672 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2673 }
2674 
2675 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2676 {
2677 	if (mm_pud_folded(mm))
2678 		return;
2679 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2680 }
2681 #endif
2682 
2683 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2684 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2685 						unsigned long address)
2686 {
2687 	return 0;
2688 }
2689 
2690 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2691 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2692 
2693 #else
2694 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2695 
2696 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2697 {
2698 	if (mm_pmd_folded(mm))
2699 		return;
2700 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2701 }
2702 
2703 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2704 {
2705 	if (mm_pmd_folded(mm))
2706 		return;
2707 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2708 }
2709 #endif
2710 
2711 #ifdef CONFIG_MMU
2712 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2713 {
2714 	atomic_long_set(&mm->pgtables_bytes, 0);
2715 }
2716 
2717 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2718 {
2719 	return atomic_long_read(&mm->pgtables_bytes);
2720 }
2721 
2722 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2723 {
2724 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2725 }
2726 
2727 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2728 {
2729 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2730 }
2731 #else
2732 
2733 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2734 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2735 {
2736 	return 0;
2737 }
2738 
2739 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2740 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2741 #endif
2742 
2743 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2744 int __pte_alloc_kernel(pmd_t *pmd);
2745 
2746 #if defined(CONFIG_MMU)
2747 
2748 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2749 		unsigned long address)
2750 {
2751 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2752 		NULL : p4d_offset(pgd, address);
2753 }
2754 
2755 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2756 		unsigned long address)
2757 {
2758 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2759 		NULL : pud_offset(p4d, address);
2760 }
2761 
2762 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2763 {
2764 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2765 		NULL: pmd_offset(pud, address);
2766 }
2767 #endif /* CONFIG_MMU */
2768 
2769 #if USE_SPLIT_PTE_PTLOCKS
2770 #if ALLOC_SPLIT_PTLOCKS
2771 void __init ptlock_cache_init(void);
2772 extern bool ptlock_alloc(struct page *page);
2773 extern void ptlock_free(struct page *page);
2774 
2775 static inline spinlock_t *ptlock_ptr(struct page *page)
2776 {
2777 	return page->ptl;
2778 }
2779 #else /* ALLOC_SPLIT_PTLOCKS */
2780 static inline void ptlock_cache_init(void)
2781 {
2782 }
2783 
2784 static inline bool ptlock_alloc(struct page *page)
2785 {
2786 	return true;
2787 }
2788 
2789 static inline void ptlock_free(struct page *page)
2790 {
2791 }
2792 
2793 static inline spinlock_t *ptlock_ptr(struct page *page)
2794 {
2795 	return &page->ptl;
2796 }
2797 #endif /* ALLOC_SPLIT_PTLOCKS */
2798 
2799 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2800 {
2801 	return ptlock_ptr(pmd_page(*pmd));
2802 }
2803 
2804 static inline bool ptlock_init(struct page *page)
2805 {
2806 	/*
2807 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2808 	 * with 0. Make sure nobody took it in use in between.
2809 	 *
2810 	 * It can happen if arch try to use slab for page table allocation:
2811 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2812 	 */
2813 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2814 	if (!ptlock_alloc(page))
2815 		return false;
2816 	spin_lock_init(ptlock_ptr(page));
2817 	return true;
2818 }
2819 
2820 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2821 /*
2822  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2823  */
2824 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2825 {
2826 	return &mm->page_table_lock;
2827 }
2828 static inline void ptlock_cache_init(void) {}
2829 static inline bool ptlock_init(struct page *page) { return true; }
2830 static inline void ptlock_free(struct page *page) {}
2831 #endif /* USE_SPLIT_PTE_PTLOCKS */
2832 
2833 static inline bool pgtable_pte_page_ctor(struct page *page)
2834 {
2835 	if (!ptlock_init(page))
2836 		return false;
2837 	__SetPageTable(page);
2838 	inc_lruvec_page_state(page, NR_PAGETABLE);
2839 	return true;
2840 }
2841 
2842 static inline void pgtable_pte_page_dtor(struct page *page)
2843 {
2844 	ptlock_free(page);
2845 	__ClearPageTable(page);
2846 	dec_lruvec_page_state(page, NR_PAGETABLE);
2847 }
2848 
2849 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2850 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2851 {
2852 	return __pte_offset_map(pmd, addr, NULL);
2853 }
2854 
2855 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2856 			unsigned long addr, spinlock_t **ptlp);
2857 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2858 			unsigned long addr, spinlock_t **ptlp)
2859 {
2860 	pte_t *pte;
2861 
2862 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2863 	return pte;
2864 }
2865 
2866 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2867 			unsigned long addr, spinlock_t **ptlp);
2868 
2869 #define pte_unmap_unlock(pte, ptl)	do {		\
2870 	spin_unlock(ptl);				\
2871 	pte_unmap(pte);					\
2872 } while (0)
2873 
2874 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2875 
2876 #define pte_alloc_map(mm, pmd, address)			\
2877 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2878 
2879 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2880 	(pte_alloc(mm, pmd) ?			\
2881 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2882 
2883 #define pte_alloc_kernel(pmd, address)			\
2884 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2885 		NULL: pte_offset_kernel(pmd, address))
2886 
2887 #if USE_SPLIT_PMD_PTLOCKS
2888 
2889 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2890 {
2891 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2892 	return virt_to_page((void *)((unsigned long) pmd & mask));
2893 }
2894 
2895 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2896 {
2897 	return ptlock_ptr(pmd_pgtable_page(pmd));
2898 }
2899 
2900 static inline bool pmd_ptlock_init(struct page *page)
2901 {
2902 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2903 	page->pmd_huge_pte = NULL;
2904 #endif
2905 	return ptlock_init(page);
2906 }
2907 
2908 static inline void pmd_ptlock_free(struct page *page)
2909 {
2910 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2911 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2912 #endif
2913 	ptlock_free(page);
2914 }
2915 
2916 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2917 
2918 #else
2919 
2920 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2921 {
2922 	return &mm->page_table_lock;
2923 }
2924 
2925 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2926 static inline void pmd_ptlock_free(struct page *page) {}
2927 
2928 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2929 
2930 #endif
2931 
2932 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2933 {
2934 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2935 	spin_lock(ptl);
2936 	return ptl;
2937 }
2938 
2939 static inline bool pgtable_pmd_page_ctor(struct page *page)
2940 {
2941 	if (!pmd_ptlock_init(page))
2942 		return false;
2943 	__SetPageTable(page);
2944 	inc_lruvec_page_state(page, NR_PAGETABLE);
2945 	return true;
2946 }
2947 
2948 static inline void pgtable_pmd_page_dtor(struct page *page)
2949 {
2950 	pmd_ptlock_free(page);
2951 	__ClearPageTable(page);
2952 	dec_lruvec_page_state(page, NR_PAGETABLE);
2953 }
2954 
2955 /*
2956  * No scalability reason to split PUD locks yet, but follow the same pattern
2957  * as the PMD locks to make it easier if we decide to.  The VM should not be
2958  * considered ready to switch to split PUD locks yet; there may be places
2959  * which need to be converted from page_table_lock.
2960  */
2961 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2962 {
2963 	return &mm->page_table_lock;
2964 }
2965 
2966 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2967 {
2968 	spinlock_t *ptl = pud_lockptr(mm, pud);
2969 
2970 	spin_lock(ptl);
2971 	return ptl;
2972 }
2973 
2974 extern void __init pagecache_init(void);
2975 extern void free_initmem(void);
2976 
2977 /*
2978  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2979  * into the buddy system. The freed pages will be poisoned with pattern
2980  * "poison" if it's within range [0, UCHAR_MAX].
2981  * Return pages freed into the buddy system.
2982  */
2983 extern unsigned long free_reserved_area(void *start, void *end,
2984 					int poison, const char *s);
2985 
2986 extern void adjust_managed_page_count(struct page *page, long count);
2987 
2988 extern void reserve_bootmem_region(phys_addr_t start,
2989 				   phys_addr_t end, int nid);
2990 
2991 /* Free the reserved page into the buddy system, so it gets managed. */
2992 static inline void free_reserved_page(struct page *page)
2993 {
2994 	ClearPageReserved(page);
2995 	init_page_count(page);
2996 	__free_page(page);
2997 	adjust_managed_page_count(page, 1);
2998 }
2999 #define free_highmem_page(page) free_reserved_page(page)
3000 
3001 static inline void mark_page_reserved(struct page *page)
3002 {
3003 	SetPageReserved(page);
3004 	adjust_managed_page_count(page, -1);
3005 }
3006 
3007 /*
3008  * Default method to free all the __init memory into the buddy system.
3009  * The freed pages will be poisoned with pattern "poison" if it's within
3010  * range [0, UCHAR_MAX].
3011  * Return pages freed into the buddy system.
3012  */
3013 static inline unsigned long free_initmem_default(int poison)
3014 {
3015 	extern char __init_begin[], __init_end[];
3016 
3017 	return free_reserved_area(&__init_begin, &__init_end,
3018 				  poison, "unused kernel image (initmem)");
3019 }
3020 
3021 static inline unsigned long get_num_physpages(void)
3022 {
3023 	int nid;
3024 	unsigned long phys_pages = 0;
3025 
3026 	for_each_online_node(nid)
3027 		phys_pages += node_present_pages(nid);
3028 
3029 	return phys_pages;
3030 }
3031 
3032 /*
3033  * Using memblock node mappings, an architecture may initialise its
3034  * zones, allocate the backing mem_map and account for memory holes in an
3035  * architecture independent manner.
3036  *
3037  * An architecture is expected to register range of page frames backed by
3038  * physical memory with memblock_add[_node]() before calling
3039  * free_area_init() passing in the PFN each zone ends at. At a basic
3040  * usage, an architecture is expected to do something like
3041  *
3042  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3043  * 							 max_highmem_pfn};
3044  * for_each_valid_physical_page_range()
3045  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3046  * free_area_init(max_zone_pfns);
3047  */
3048 void free_area_init(unsigned long *max_zone_pfn);
3049 unsigned long node_map_pfn_alignment(void);
3050 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3051 						unsigned long end_pfn);
3052 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3053 						unsigned long end_pfn);
3054 extern void get_pfn_range_for_nid(unsigned int nid,
3055 			unsigned long *start_pfn, unsigned long *end_pfn);
3056 
3057 #ifndef CONFIG_NUMA
3058 static inline int early_pfn_to_nid(unsigned long pfn)
3059 {
3060 	return 0;
3061 }
3062 #else
3063 /* please see mm/page_alloc.c */
3064 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3065 #endif
3066 
3067 extern void set_dma_reserve(unsigned long new_dma_reserve);
3068 extern void mem_init(void);
3069 extern void __init mmap_init(void);
3070 
3071 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3072 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3073 {
3074 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3075 }
3076 extern long si_mem_available(void);
3077 extern void si_meminfo(struct sysinfo * val);
3078 extern void si_meminfo_node(struct sysinfo *val, int nid);
3079 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3080 extern unsigned long arch_reserved_kernel_pages(void);
3081 #endif
3082 
3083 extern __printf(3, 4)
3084 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3085 
3086 extern void setup_per_cpu_pageset(void);
3087 
3088 /* nommu.c */
3089 extern atomic_long_t mmap_pages_allocated;
3090 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3091 
3092 /* interval_tree.c */
3093 void vma_interval_tree_insert(struct vm_area_struct *node,
3094 			      struct rb_root_cached *root);
3095 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3096 				    struct vm_area_struct *prev,
3097 				    struct rb_root_cached *root);
3098 void vma_interval_tree_remove(struct vm_area_struct *node,
3099 			      struct rb_root_cached *root);
3100 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3101 				unsigned long start, unsigned long last);
3102 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3103 				unsigned long start, unsigned long last);
3104 
3105 #define vma_interval_tree_foreach(vma, root, start, last)		\
3106 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3107 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3108 
3109 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3110 				   struct rb_root_cached *root);
3111 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3112 				   struct rb_root_cached *root);
3113 struct anon_vma_chain *
3114 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3115 				  unsigned long start, unsigned long last);
3116 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3117 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3118 #ifdef CONFIG_DEBUG_VM_RB
3119 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3120 #endif
3121 
3122 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3123 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3124 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3125 
3126 /* mmap.c */
3127 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3128 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3129 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3130 		      struct vm_area_struct *next);
3131 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3132 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3133 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3134 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3135 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3136 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3137 	struct anon_vma_name *);
3138 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3139 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3140 		       unsigned long addr, int new_below);
3141 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3142 			 unsigned long addr, int new_below);
3143 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3144 extern void unlink_file_vma(struct vm_area_struct *);
3145 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3146 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3147 	bool *need_rmap_locks);
3148 extern void exit_mmap(struct mm_struct *);
3149 
3150 static inline int check_data_rlimit(unsigned long rlim,
3151 				    unsigned long new,
3152 				    unsigned long start,
3153 				    unsigned long end_data,
3154 				    unsigned long start_data)
3155 {
3156 	if (rlim < RLIM_INFINITY) {
3157 		if (((new - start) + (end_data - start_data)) > rlim)
3158 			return -ENOSPC;
3159 	}
3160 
3161 	return 0;
3162 }
3163 
3164 extern int mm_take_all_locks(struct mm_struct *mm);
3165 extern void mm_drop_all_locks(struct mm_struct *mm);
3166 
3167 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3168 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3169 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3170 extern struct file *get_task_exe_file(struct task_struct *task);
3171 
3172 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3173 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3174 
3175 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3176 				   const struct vm_special_mapping *sm);
3177 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3178 				   unsigned long addr, unsigned long len,
3179 				   unsigned long flags,
3180 				   const struct vm_special_mapping *spec);
3181 /* This is an obsolete alternative to _install_special_mapping. */
3182 extern int install_special_mapping(struct mm_struct *mm,
3183 				   unsigned long addr, unsigned long len,
3184 				   unsigned long flags, struct page **pages);
3185 
3186 unsigned long randomize_stack_top(unsigned long stack_top);
3187 unsigned long randomize_page(unsigned long start, unsigned long range);
3188 
3189 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3190 
3191 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3192 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3193 	struct list_head *uf);
3194 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3195 	unsigned long len, unsigned long prot, unsigned long flags,
3196 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3197 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3198 			 unsigned long start, size_t len, struct list_head *uf,
3199 			 bool unlock);
3200 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3201 		     struct list_head *uf);
3202 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3203 
3204 #ifdef CONFIG_MMU
3205 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3206 			 unsigned long start, unsigned long end,
3207 			 struct list_head *uf, bool unlock);
3208 extern int __mm_populate(unsigned long addr, unsigned long len,
3209 			 int ignore_errors);
3210 static inline void mm_populate(unsigned long addr, unsigned long len)
3211 {
3212 	/* Ignore errors */
3213 	(void) __mm_populate(addr, len, 1);
3214 }
3215 #else
3216 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3217 #endif
3218 
3219 /* These take the mm semaphore themselves */
3220 extern int __must_check vm_brk(unsigned long, unsigned long);
3221 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3222 extern int vm_munmap(unsigned long, size_t);
3223 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3224         unsigned long, unsigned long,
3225         unsigned long, unsigned long);
3226 
3227 struct vm_unmapped_area_info {
3228 #define VM_UNMAPPED_AREA_TOPDOWN 1
3229 	unsigned long flags;
3230 	unsigned long length;
3231 	unsigned long low_limit;
3232 	unsigned long high_limit;
3233 	unsigned long align_mask;
3234 	unsigned long align_offset;
3235 };
3236 
3237 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3238 
3239 /* truncate.c */
3240 extern void truncate_inode_pages(struct address_space *, loff_t);
3241 extern void truncate_inode_pages_range(struct address_space *,
3242 				       loff_t lstart, loff_t lend);
3243 extern void truncate_inode_pages_final(struct address_space *);
3244 
3245 /* generic vm_area_ops exported for stackable file systems */
3246 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3247 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3248 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3249 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3250 
3251 extern unsigned long stack_guard_gap;
3252 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3253 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3254 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3255 
3256 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3257 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3258 
3259 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3260 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3261 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3262 					     struct vm_area_struct **pprev);
3263 
3264 /*
3265  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3266  * NULL if none.  Assume start_addr < end_addr.
3267  */
3268 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3269 			unsigned long start_addr, unsigned long end_addr);
3270 
3271 /**
3272  * vma_lookup() - Find a VMA at a specific address
3273  * @mm: The process address space.
3274  * @addr: The user address.
3275  *
3276  * Return: The vm_area_struct at the given address, %NULL otherwise.
3277  */
3278 static inline
3279 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3280 {
3281 	return mtree_load(&mm->mm_mt, addr);
3282 }
3283 
3284 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3285 {
3286 	unsigned long vm_start = vma->vm_start;
3287 
3288 	if (vma->vm_flags & VM_GROWSDOWN) {
3289 		vm_start -= stack_guard_gap;
3290 		if (vm_start > vma->vm_start)
3291 			vm_start = 0;
3292 	}
3293 	return vm_start;
3294 }
3295 
3296 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3297 {
3298 	unsigned long vm_end = vma->vm_end;
3299 
3300 	if (vma->vm_flags & VM_GROWSUP) {
3301 		vm_end += stack_guard_gap;
3302 		if (vm_end < vma->vm_end)
3303 			vm_end = -PAGE_SIZE;
3304 	}
3305 	return vm_end;
3306 }
3307 
3308 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3309 {
3310 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3311 }
3312 
3313 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3314 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3315 				unsigned long vm_start, unsigned long vm_end)
3316 {
3317 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3318 
3319 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3320 		vma = NULL;
3321 
3322 	return vma;
3323 }
3324 
3325 static inline bool range_in_vma(struct vm_area_struct *vma,
3326 				unsigned long start, unsigned long end)
3327 {
3328 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3329 }
3330 
3331 #ifdef CONFIG_MMU
3332 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3333 void vma_set_page_prot(struct vm_area_struct *vma);
3334 #else
3335 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3336 {
3337 	return __pgprot(0);
3338 }
3339 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3340 {
3341 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3342 }
3343 #endif
3344 
3345 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3346 
3347 #ifdef CONFIG_NUMA_BALANCING
3348 unsigned long change_prot_numa(struct vm_area_struct *vma,
3349 			unsigned long start, unsigned long end);
3350 #endif
3351 
3352 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3353 		unsigned long addr);
3354 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3355 			unsigned long pfn, unsigned long size, pgprot_t);
3356 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3357 		unsigned long pfn, unsigned long size, pgprot_t prot);
3358 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3359 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3360 			struct page **pages, unsigned long *num);
3361 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3362 				unsigned long num);
3363 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3364 				unsigned long num);
3365 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3366 			unsigned long pfn);
3367 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3368 			unsigned long pfn, pgprot_t pgprot);
3369 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3370 			pfn_t pfn);
3371 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3372 		unsigned long addr, pfn_t pfn);
3373 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3374 
3375 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3376 				unsigned long addr, struct page *page)
3377 {
3378 	int err = vm_insert_page(vma, addr, page);
3379 
3380 	if (err == -ENOMEM)
3381 		return VM_FAULT_OOM;
3382 	if (err < 0 && err != -EBUSY)
3383 		return VM_FAULT_SIGBUS;
3384 
3385 	return VM_FAULT_NOPAGE;
3386 }
3387 
3388 #ifndef io_remap_pfn_range
3389 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3390 				     unsigned long addr, unsigned long pfn,
3391 				     unsigned long size, pgprot_t prot)
3392 {
3393 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3394 }
3395 #endif
3396 
3397 static inline vm_fault_t vmf_error(int err)
3398 {
3399 	if (err == -ENOMEM)
3400 		return VM_FAULT_OOM;
3401 	else if (err == -EHWPOISON)
3402 		return VM_FAULT_HWPOISON;
3403 	return VM_FAULT_SIGBUS;
3404 }
3405 
3406 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3407 			 unsigned int foll_flags);
3408 
3409 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3410 {
3411 	if (vm_fault & VM_FAULT_OOM)
3412 		return -ENOMEM;
3413 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3414 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3415 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3416 		return -EFAULT;
3417 	return 0;
3418 }
3419 
3420 /*
3421  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3422  * a (NUMA hinting) fault is required.
3423  */
3424 static inline bool gup_can_follow_protnone(unsigned int flags)
3425 {
3426 	/*
3427 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3428 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3429 	 * application behaviour and we should avoid triggering NUMA hinting
3430 	 * faults.
3431 	 */
3432 	return flags & FOLL_FORCE;
3433 }
3434 
3435 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3436 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3437 			       unsigned long size, pte_fn_t fn, void *data);
3438 extern int apply_to_existing_page_range(struct mm_struct *mm,
3439 				   unsigned long address, unsigned long size,
3440 				   pte_fn_t fn, void *data);
3441 
3442 #ifdef CONFIG_PAGE_POISONING
3443 extern void __kernel_poison_pages(struct page *page, int numpages);
3444 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3445 extern bool _page_poisoning_enabled_early;
3446 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3447 static inline bool page_poisoning_enabled(void)
3448 {
3449 	return _page_poisoning_enabled_early;
3450 }
3451 /*
3452  * For use in fast paths after init_mem_debugging() has run, or when a
3453  * false negative result is not harmful when called too early.
3454  */
3455 static inline bool page_poisoning_enabled_static(void)
3456 {
3457 	return static_branch_unlikely(&_page_poisoning_enabled);
3458 }
3459 static inline void kernel_poison_pages(struct page *page, int numpages)
3460 {
3461 	if (page_poisoning_enabled_static())
3462 		__kernel_poison_pages(page, numpages);
3463 }
3464 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3465 {
3466 	if (page_poisoning_enabled_static())
3467 		__kernel_unpoison_pages(page, numpages);
3468 }
3469 #else
3470 static inline bool page_poisoning_enabled(void) { return false; }
3471 static inline bool page_poisoning_enabled_static(void) { return false; }
3472 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3473 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3474 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3475 #endif
3476 
3477 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3478 static inline bool want_init_on_alloc(gfp_t flags)
3479 {
3480 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3481 				&init_on_alloc))
3482 		return true;
3483 	return flags & __GFP_ZERO;
3484 }
3485 
3486 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3487 static inline bool want_init_on_free(void)
3488 {
3489 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3490 				   &init_on_free);
3491 }
3492 
3493 extern bool _debug_pagealloc_enabled_early;
3494 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3495 
3496 static inline bool debug_pagealloc_enabled(void)
3497 {
3498 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3499 		_debug_pagealloc_enabled_early;
3500 }
3501 
3502 /*
3503  * For use in fast paths after init_debug_pagealloc() has run, or when a
3504  * false negative result is not harmful when called too early.
3505  */
3506 static inline bool debug_pagealloc_enabled_static(void)
3507 {
3508 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3509 		return false;
3510 
3511 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3512 }
3513 
3514 /*
3515  * To support DEBUG_PAGEALLOC architecture must ensure that
3516  * __kernel_map_pages() never fails
3517  */
3518 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3519 #ifdef CONFIG_DEBUG_PAGEALLOC
3520 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3521 {
3522 	if (debug_pagealloc_enabled_static())
3523 		__kernel_map_pages(page, numpages, 1);
3524 }
3525 
3526 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3527 {
3528 	if (debug_pagealloc_enabled_static())
3529 		__kernel_map_pages(page, numpages, 0);
3530 }
3531 
3532 extern unsigned int _debug_guardpage_minorder;
3533 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3534 
3535 static inline unsigned int debug_guardpage_minorder(void)
3536 {
3537 	return _debug_guardpage_minorder;
3538 }
3539 
3540 static inline bool debug_guardpage_enabled(void)
3541 {
3542 	return static_branch_unlikely(&_debug_guardpage_enabled);
3543 }
3544 
3545 static inline bool page_is_guard(struct page *page)
3546 {
3547 	if (!debug_guardpage_enabled())
3548 		return false;
3549 
3550 	return PageGuard(page);
3551 }
3552 
3553 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3554 		      int migratetype);
3555 static inline bool set_page_guard(struct zone *zone, struct page *page,
3556 				  unsigned int order, int migratetype)
3557 {
3558 	if (!debug_guardpage_enabled())
3559 		return false;
3560 	return __set_page_guard(zone, page, order, migratetype);
3561 }
3562 
3563 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3564 			int migratetype);
3565 static inline void clear_page_guard(struct zone *zone, struct page *page,
3566 				    unsigned int order, int migratetype)
3567 {
3568 	if (!debug_guardpage_enabled())
3569 		return;
3570 	__clear_page_guard(zone, page, order, migratetype);
3571 }
3572 
3573 #else	/* CONFIG_DEBUG_PAGEALLOC */
3574 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3575 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3576 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3577 static inline bool debug_guardpage_enabled(void) { return false; }
3578 static inline bool page_is_guard(struct page *page) { return false; }
3579 static inline bool set_page_guard(struct zone *zone, struct page *page,
3580 			unsigned int order, int migratetype) { return false; }
3581 static inline void clear_page_guard(struct zone *zone, struct page *page,
3582 				unsigned int order, int migratetype) {}
3583 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3584 
3585 #ifdef __HAVE_ARCH_GATE_AREA
3586 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3587 extern int in_gate_area_no_mm(unsigned long addr);
3588 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3589 #else
3590 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3591 {
3592 	return NULL;
3593 }
3594 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3595 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3596 {
3597 	return 0;
3598 }
3599 #endif	/* __HAVE_ARCH_GATE_AREA */
3600 
3601 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3602 
3603 #ifdef CONFIG_SYSCTL
3604 extern int sysctl_drop_caches;
3605 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3606 		loff_t *);
3607 #endif
3608 
3609 void drop_slab(void);
3610 
3611 #ifndef CONFIG_MMU
3612 #define randomize_va_space 0
3613 #else
3614 extern int randomize_va_space;
3615 #endif
3616 
3617 const char * arch_vma_name(struct vm_area_struct *vma);
3618 #ifdef CONFIG_MMU
3619 void print_vma_addr(char *prefix, unsigned long rip);
3620 #else
3621 static inline void print_vma_addr(char *prefix, unsigned long rip)
3622 {
3623 }
3624 #endif
3625 
3626 void *sparse_buffer_alloc(unsigned long size);
3627 struct page * __populate_section_memmap(unsigned long pfn,
3628 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3629 		struct dev_pagemap *pgmap);
3630 void pmd_init(void *addr);
3631 void pud_init(void *addr);
3632 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3633 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3634 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3635 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3636 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3637 			    struct vmem_altmap *altmap, struct page *reuse);
3638 void *vmemmap_alloc_block(unsigned long size, int node);
3639 struct vmem_altmap;
3640 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3641 			      struct vmem_altmap *altmap);
3642 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3643 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3644 		     unsigned long addr, unsigned long next);
3645 int vmemmap_check_pmd(pmd_t *pmd, int node,
3646 		      unsigned long addr, unsigned long next);
3647 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3648 			       int node, struct vmem_altmap *altmap);
3649 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3650 			       int node, struct vmem_altmap *altmap);
3651 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3652 		struct vmem_altmap *altmap);
3653 void vmemmap_populate_print_last(void);
3654 #ifdef CONFIG_MEMORY_HOTPLUG
3655 void vmemmap_free(unsigned long start, unsigned long end,
3656 		struct vmem_altmap *altmap);
3657 #endif
3658 
3659 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3660 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3661 					   struct dev_pagemap *pgmap)
3662 {
3663 	return is_power_of_2(sizeof(struct page)) &&
3664 		pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3665 }
3666 #else
3667 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3668 					   struct dev_pagemap *pgmap)
3669 {
3670 	return false;
3671 }
3672 #endif
3673 
3674 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3675 				  unsigned long nr_pages);
3676 
3677 enum mf_flags {
3678 	MF_COUNT_INCREASED = 1 << 0,
3679 	MF_ACTION_REQUIRED = 1 << 1,
3680 	MF_MUST_KILL = 1 << 2,
3681 	MF_SOFT_OFFLINE = 1 << 3,
3682 	MF_UNPOISON = 1 << 4,
3683 	MF_SW_SIMULATED = 1 << 5,
3684 	MF_NO_RETRY = 1 << 6,
3685 };
3686 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3687 		      unsigned long count, int mf_flags);
3688 extern int memory_failure(unsigned long pfn, int flags);
3689 extern void memory_failure_queue_kick(int cpu);
3690 extern int unpoison_memory(unsigned long pfn);
3691 extern void shake_page(struct page *p);
3692 extern atomic_long_t num_poisoned_pages __read_mostly;
3693 extern int soft_offline_page(unsigned long pfn, int flags);
3694 #ifdef CONFIG_MEMORY_FAILURE
3695 /*
3696  * Sysfs entries for memory failure handling statistics.
3697  */
3698 extern const struct attribute_group memory_failure_attr_group;
3699 extern void memory_failure_queue(unsigned long pfn, int flags);
3700 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3701 					bool *migratable_cleared);
3702 void num_poisoned_pages_inc(unsigned long pfn);
3703 void num_poisoned_pages_sub(unsigned long pfn, long i);
3704 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3705 #else
3706 static inline void memory_failure_queue(unsigned long pfn, int flags)
3707 {
3708 }
3709 
3710 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3711 					bool *migratable_cleared)
3712 {
3713 	return 0;
3714 }
3715 
3716 static inline void num_poisoned_pages_inc(unsigned long pfn)
3717 {
3718 }
3719 
3720 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3721 {
3722 }
3723 #endif
3724 
3725 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3726 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3727 		     struct vm_area_struct *vma, struct list_head *to_kill,
3728 		     unsigned long ksm_addr);
3729 #endif
3730 
3731 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3732 extern void memblk_nr_poison_inc(unsigned long pfn);
3733 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3734 #else
3735 static inline void memblk_nr_poison_inc(unsigned long pfn)
3736 {
3737 }
3738 
3739 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3740 {
3741 }
3742 #endif
3743 
3744 #ifndef arch_memory_failure
3745 static inline int arch_memory_failure(unsigned long pfn, int flags)
3746 {
3747 	return -ENXIO;
3748 }
3749 #endif
3750 
3751 #ifndef arch_is_platform_page
3752 static inline bool arch_is_platform_page(u64 paddr)
3753 {
3754 	return false;
3755 }
3756 #endif
3757 
3758 /*
3759  * Error handlers for various types of pages.
3760  */
3761 enum mf_result {
3762 	MF_IGNORED,	/* Error: cannot be handled */
3763 	MF_FAILED,	/* Error: handling failed */
3764 	MF_DELAYED,	/* Will be handled later */
3765 	MF_RECOVERED,	/* Successfully recovered */
3766 };
3767 
3768 enum mf_action_page_type {
3769 	MF_MSG_KERNEL,
3770 	MF_MSG_KERNEL_HIGH_ORDER,
3771 	MF_MSG_SLAB,
3772 	MF_MSG_DIFFERENT_COMPOUND,
3773 	MF_MSG_HUGE,
3774 	MF_MSG_FREE_HUGE,
3775 	MF_MSG_UNMAP_FAILED,
3776 	MF_MSG_DIRTY_SWAPCACHE,
3777 	MF_MSG_CLEAN_SWAPCACHE,
3778 	MF_MSG_DIRTY_MLOCKED_LRU,
3779 	MF_MSG_CLEAN_MLOCKED_LRU,
3780 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3781 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3782 	MF_MSG_DIRTY_LRU,
3783 	MF_MSG_CLEAN_LRU,
3784 	MF_MSG_TRUNCATED_LRU,
3785 	MF_MSG_BUDDY,
3786 	MF_MSG_DAX,
3787 	MF_MSG_UNSPLIT_THP,
3788 	MF_MSG_UNKNOWN,
3789 };
3790 
3791 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3792 extern void clear_huge_page(struct page *page,
3793 			    unsigned long addr_hint,
3794 			    unsigned int pages_per_huge_page);
3795 int copy_user_large_folio(struct folio *dst, struct folio *src,
3796 			  unsigned long addr_hint,
3797 			  struct vm_area_struct *vma);
3798 long copy_folio_from_user(struct folio *dst_folio,
3799 			   const void __user *usr_src,
3800 			   bool allow_pagefault);
3801 
3802 /**
3803  * vma_is_special_huge - Are transhuge page-table entries considered special?
3804  * @vma: Pointer to the struct vm_area_struct to consider
3805  *
3806  * Whether transhuge page-table entries are considered "special" following
3807  * the definition in vm_normal_page().
3808  *
3809  * Return: true if transhuge page-table entries should be considered special,
3810  * false otherwise.
3811  */
3812 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3813 {
3814 	return vma_is_dax(vma) || (vma->vm_file &&
3815 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3816 }
3817 
3818 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3819 
3820 #if MAX_NUMNODES > 1
3821 void __init setup_nr_node_ids(void);
3822 #else
3823 static inline void setup_nr_node_ids(void) {}
3824 #endif
3825 
3826 extern int memcmp_pages(struct page *page1, struct page *page2);
3827 
3828 static inline int pages_identical(struct page *page1, struct page *page2)
3829 {
3830 	return !memcmp_pages(page1, page2);
3831 }
3832 
3833 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3834 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3835 						pgoff_t first_index, pgoff_t nr,
3836 						pgoff_t bitmap_pgoff,
3837 						unsigned long *bitmap,
3838 						pgoff_t *start,
3839 						pgoff_t *end);
3840 
3841 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3842 				      pgoff_t first_index, pgoff_t nr);
3843 #endif
3844 
3845 extern int sysctl_nr_trim_pages;
3846 
3847 #ifdef CONFIG_PRINTK
3848 void mem_dump_obj(void *object);
3849 #else
3850 static inline void mem_dump_obj(void *object) {}
3851 #endif
3852 
3853 /**
3854  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3855  * @seals: the seals to check
3856  * @vma: the vma to operate on
3857  *
3858  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3859  * the vma flags.  Return 0 if check pass, or <0 for errors.
3860  */
3861 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3862 {
3863 	if (seals & F_SEAL_FUTURE_WRITE) {
3864 		/*
3865 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3866 		 * "future write" seal active.
3867 		 */
3868 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3869 			return -EPERM;
3870 
3871 		/*
3872 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3873 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3874 		 * revert protections on such mappings. Do this only for shared
3875 		 * mappings. For private mappings, don't need to mask
3876 		 * VM_MAYWRITE as we still want them to be COW-writable.
3877 		 */
3878 		if (vma->vm_flags & VM_SHARED)
3879 			vm_flags_clear(vma, VM_MAYWRITE);
3880 	}
3881 
3882 	return 0;
3883 }
3884 
3885 #ifdef CONFIG_ANON_VMA_NAME
3886 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3887 			  unsigned long len_in,
3888 			  struct anon_vma_name *anon_name);
3889 #else
3890 static inline int
3891 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3892 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3893 	return 0;
3894 }
3895 #endif
3896 
3897 #ifdef CONFIG_UNACCEPTED_MEMORY
3898 
3899 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3900 void accept_memory(phys_addr_t start, phys_addr_t end);
3901 
3902 #else
3903 
3904 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3905 						    phys_addr_t end)
3906 {
3907 	return false;
3908 }
3909 
3910 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3911 {
3912 }
3913 
3914 #endif
3915 
3916 #endif /* _LINUX_MM_H */
3917