1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for arcitectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * With CONFIG_CFI_CLANG, the compiler replaces function addresses in 129 * instrumented C code with jump table addresses. Architectures that 130 * support CFI can define this macro to return the actual function address 131 * when needed. 132 */ 133 #ifndef function_nocfi 134 #define function_nocfi(x) (x) 135 #endif 136 137 /* 138 * To prevent common memory management code establishing 139 * a zero page mapping on a read fault. 140 * This macro should be defined within <asm/pgtable.h>. 141 * s390 does this to prevent multiplexing of hardware bits 142 * related to the physical page in case of virtualization. 143 */ 144 #ifndef mm_forbids_zeropage 145 #define mm_forbids_zeropage(X) (0) 146 #endif 147 148 /* 149 * On some architectures it is expensive to call memset() for small sizes. 150 * If an architecture decides to implement their own version of 151 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 152 * define their own version of this macro in <asm/pgtable.h> 153 */ 154 #if BITS_PER_LONG == 64 155 /* This function must be updated when the size of struct page grows above 80 156 * or reduces below 56. The idea that compiler optimizes out switch() 157 * statement, and only leaves move/store instructions. Also the compiler can 158 * combine write statments if they are both assignments and can be reordered, 159 * this can result in several of the writes here being dropped. 160 */ 161 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 162 static inline void __mm_zero_struct_page(struct page *page) 163 { 164 unsigned long *_pp = (void *)page; 165 166 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 167 BUILD_BUG_ON(sizeof(struct page) & 7); 168 BUILD_BUG_ON(sizeof(struct page) < 56); 169 BUILD_BUG_ON(sizeof(struct page) > 80); 170 171 switch (sizeof(struct page)) { 172 case 80: 173 _pp[9] = 0; 174 fallthrough; 175 case 72: 176 _pp[8] = 0; 177 fallthrough; 178 case 64: 179 _pp[7] = 0; 180 fallthrough; 181 case 56: 182 _pp[6] = 0; 183 _pp[5] = 0; 184 _pp[4] = 0; 185 _pp[3] = 0; 186 _pp[2] = 0; 187 _pp[1] = 0; 188 _pp[0] = 0; 189 } 190 } 191 #else 192 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 193 #endif 194 195 /* 196 * Default maximum number of active map areas, this limits the number of vmas 197 * per mm struct. Users can overwrite this number by sysctl but there is a 198 * problem. 199 * 200 * When a program's coredump is generated as ELF format, a section is created 201 * per a vma. In ELF, the number of sections is represented in unsigned short. 202 * This means the number of sections should be smaller than 65535 at coredump. 203 * Because the kernel adds some informative sections to a image of program at 204 * generating coredump, we need some margin. The number of extra sections is 205 * 1-3 now and depends on arch. We use "5" as safe margin, here. 206 * 207 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 208 * not a hard limit any more. Although some userspace tools can be surprised by 209 * that. 210 */ 211 #define MAPCOUNT_ELF_CORE_MARGIN (5) 212 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 213 214 extern int sysctl_max_map_count; 215 216 extern unsigned long sysctl_user_reserve_kbytes; 217 extern unsigned long sysctl_admin_reserve_kbytes; 218 219 extern int sysctl_overcommit_memory; 220 extern int sysctl_overcommit_ratio; 221 extern unsigned long sysctl_overcommit_kbytes; 222 223 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 224 loff_t *); 225 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 226 loff_t *); 227 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 228 loff_t *); 229 /* 230 * Any attempt to mark this function as static leads to build failure 231 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 232 * is referred to by BPF code. This must be visible for error injection. 233 */ 234 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 235 pgoff_t index, gfp_t gfp, void **shadowp); 236 237 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 238 239 /* to align the pointer to the (next) page boundary */ 240 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 241 242 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 243 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 244 245 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 246 247 /* 248 * Linux kernel virtual memory manager primitives. 249 * The idea being to have a "virtual" mm in the same way 250 * we have a virtual fs - giving a cleaner interface to the 251 * mm details, and allowing different kinds of memory mappings 252 * (from shared memory to executable loading to arbitrary 253 * mmap() functions). 254 */ 255 256 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 258 void vm_area_free(struct vm_area_struct *); 259 260 #ifndef CONFIG_MMU 261 extern struct rb_root nommu_region_tree; 262 extern struct rw_semaphore nommu_region_sem; 263 264 extern unsigned int kobjsize(const void *objp); 265 #endif 266 267 /* 268 * vm_flags in vm_area_struct, see mm_types.h. 269 * When changing, update also include/trace/events/mmflags.h 270 */ 271 #define VM_NONE 0x00000000 272 273 #define VM_READ 0x00000001 /* currently active flags */ 274 #define VM_WRITE 0x00000002 275 #define VM_EXEC 0x00000004 276 #define VM_SHARED 0x00000008 277 278 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 279 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 280 #define VM_MAYWRITE 0x00000020 281 #define VM_MAYEXEC 0x00000040 282 #define VM_MAYSHARE 0x00000080 283 284 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 285 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 286 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 287 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 288 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 289 290 #define VM_LOCKED 0x00002000 291 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 292 293 /* Used by sys_madvise() */ 294 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 295 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 296 297 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 298 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 299 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 300 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 301 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 302 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 303 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 304 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 305 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 306 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 307 308 #ifdef CONFIG_MEM_SOFT_DIRTY 309 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 310 #else 311 # define VM_SOFTDIRTY 0 312 #endif 313 314 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 315 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 316 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 317 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 318 319 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 320 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 325 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 326 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 327 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 328 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 329 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #if defined(CONFIG_X86) 346 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 347 #elif defined(CONFIG_PPC) 348 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 349 #elif defined(CONFIG_PARISC) 350 # define VM_GROWSUP VM_ARCH_1 351 #elif defined(CONFIG_IA64) 352 # define VM_GROWSUP VM_ARCH_1 353 #elif defined(CONFIG_SPARC64) 354 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 355 # define VM_ARCH_CLEAR VM_SPARC_ADI 356 #elif defined(CONFIG_ARM64) 357 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 358 # define VM_ARCH_CLEAR VM_ARM64_BTI 359 #elif !defined(CONFIG_MMU) 360 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 361 #endif 362 363 #if defined(CONFIG_ARM64_MTE) 364 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 365 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 366 #else 367 # define VM_MTE VM_NONE 368 # define VM_MTE_ALLOWED VM_NONE 369 #endif 370 371 #ifndef VM_GROWSUP 372 # define VM_GROWSUP VM_NONE 373 #endif 374 375 /* Bits set in the VMA until the stack is in its final location */ 376 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 377 378 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 379 380 /* Common data flag combinations */ 381 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 382 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 383 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 384 VM_MAYWRITE | VM_MAYEXEC) 385 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 388 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 389 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 390 #endif 391 392 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 394 #endif 395 396 #ifdef CONFIG_STACK_GROWSUP 397 #define VM_STACK VM_GROWSUP 398 #else 399 #define VM_STACK VM_GROWSDOWN 400 #endif 401 402 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 403 404 /* VMA basic access permission flags */ 405 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 406 407 408 /* 409 * Special vmas that are non-mergable, non-mlock()able. 410 */ 411 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 412 413 /* This mask prevents VMA from being scanned with khugepaged */ 414 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 415 416 /* This mask defines which mm->def_flags a process can inherit its parent */ 417 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 418 419 /* This mask is used to clear all the VMA flags used by mlock */ 420 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 421 422 /* Arch-specific flags to clear when updating VM flags on protection change */ 423 #ifndef VM_ARCH_CLEAR 424 # define VM_ARCH_CLEAR VM_NONE 425 #endif 426 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 427 428 /* 429 * mapping from the currently active vm_flags protection bits (the 430 * low four bits) to a page protection mask.. 431 */ 432 extern pgprot_t protection_map[16]; 433 434 /** 435 * Fault flag definitions. 436 * 437 * @FAULT_FLAG_WRITE: Fault was a write fault. 438 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 439 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 440 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 441 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 442 * @FAULT_FLAG_TRIED: The fault has been tried once. 443 * @FAULT_FLAG_USER: The fault originated in userspace. 444 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 445 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 446 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 447 * 448 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 449 * whether we would allow page faults to retry by specifying these two 450 * fault flags correctly. Currently there can be three legal combinations: 451 * 452 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 453 * this is the first try 454 * 455 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 456 * we've already tried at least once 457 * 458 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 459 * 460 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 461 * be used. Note that page faults can be allowed to retry for multiple times, 462 * in which case we'll have an initial fault with flags (a) then later on 463 * continuous faults with flags (b). We should always try to detect pending 464 * signals before a retry to make sure the continuous page faults can still be 465 * interrupted if necessary. 466 */ 467 #define FAULT_FLAG_WRITE 0x01 468 #define FAULT_FLAG_MKWRITE 0x02 469 #define FAULT_FLAG_ALLOW_RETRY 0x04 470 #define FAULT_FLAG_RETRY_NOWAIT 0x08 471 #define FAULT_FLAG_KILLABLE 0x10 472 #define FAULT_FLAG_TRIED 0x20 473 #define FAULT_FLAG_USER 0x40 474 #define FAULT_FLAG_REMOTE 0x80 475 #define FAULT_FLAG_INSTRUCTION 0x100 476 #define FAULT_FLAG_INTERRUPTIBLE 0x200 477 478 /* 479 * The default fault flags that should be used by most of the 480 * arch-specific page fault handlers. 481 */ 482 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 483 FAULT_FLAG_KILLABLE | \ 484 FAULT_FLAG_INTERRUPTIBLE) 485 486 /** 487 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 488 * 489 * This is mostly used for places where we want to try to avoid taking 490 * the mmap_lock for too long a time when waiting for another condition 491 * to change, in which case we can try to be polite to release the 492 * mmap_lock in the first round to avoid potential starvation of other 493 * processes that would also want the mmap_lock. 494 * 495 * Return: true if the page fault allows retry and this is the first 496 * attempt of the fault handling; false otherwise. 497 */ 498 static inline bool fault_flag_allow_retry_first(unsigned int flags) 499 { 500 return (flags & FAULT_FLAG_ALLOW_RETRY) && 501 (!(flags & FAULT_FLAG_TRIED)); 502 } 503 504 #define FAULT_FLAG_TRACE \ 505 { FAULT_FLAG_WRITE, "WRITE" }, \ 506 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 507 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 508 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 509 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 510 { FAULT_FLAG_TRIED, "TRIED" }, \ 511 { FAULT_FLAG_USER, "USER" }, \ 512 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 513 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 514 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 515 516 /* 517 * vm_fault is filled by the pagefault handler and passed to the vma's 518 * ->fault function. The vma's ->fault is responsible for returning a bitmask 519 * of VM_FAULT_xxx flags that give details about how the fault was handled. 520 * 521 * MM layer fills up gfp_mask for page allocations but fault handler might 522 * alter it if its implementation requires a different allocation context. 523 * 524 * pgoff should be used in favour of virtual_address, if possible. 525 */ 526 struct vm_fault { 527 const struct { 528 struct vm_area_struct *vma; /* Target VMA */ 529 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 530 pgoff_t pgoff; /* Logical page offset based on vma */ 531 unsigned long address; /* Faulting virtual address */ 532 }; 533 unsigned int flags; /* FAULT_FLAG_xxx flags 534 * XXX: should really be 'const' */ 535 pmd_t *pmd; /* Pointer to pmd entry matching 536 * the 'address' */ 537 pud_t *pud; /* Pointer to pud entry matching 538 * the 'address' 539 */ 540 pte_t orig_pte; /* Value of PTE at the time of fault */ 541 542 struct page *cow_page; /* Page handler may use for COW fault */ 543 struct page *page; /* ->fault handlers should return a 544 * page here, unless VM_FAULT_NOPAGE 545 * is set (which is also implied by 546 * VM_FAULT_ERROR). 547 */ 548 /* These three entries are valid only while holding ptl lock */ 549 pte_t *pte; /* Pointer to pte entry matching 550 * the 'address'. NULL if the page 551 * table hasn't been allocated. 552 */ 553 spinlock_t *ptl; /* Page table lock. 554 * Protects pte page table if 'pte' 555 * is not NULL, otherwise pmd. 556 */ 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 558 * vm_ops->map_pages() sets up a page 559 * table from atomic context. 560 * do_fault_around() pre-allocates 561 * page table to avoid allocation from 562 * atomic context. 563 */ 564 }; 565 566 /* page entry size for vm->huge_fault() */ 567 enum page_entry_size { 568 PE_SIZE_PTE = 0, 569 PE_SIZE_PMD, 570 PE_SIZE_PUD, 571 }; 572 573 /* 574 * These are the virtual MM functions - opening of an area, closing and 575 * unmapping it (needed to keep files on disk up-to-date etc), pointer 576 * to the functions called when a no-page or a wp-page exception occurs. 577 */ 578 struct vm_operations_struct { 579 void (*open)(struct vm_area_struct * area); 580 void (*close)(struct vm_area_struct * area); 581 /* Called any time before splitting to check if it's allowed */ 582 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 583 int (*mremap)(struct vm_area_struct *area, unsigned long flags); 584 /* 585 * Called by mprotect() to make driver-specific permission 586 * checks before mprotect() is finalised. The VMA must not 587 * be modified. Returns 0 if eprotect() can proceed. 588 */ 589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 590 unsigned long end, unsigned long newflags); 591 vm_fault_t (*fault)(struct vm_fault *vmf); 592 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 593 enum page_entry_size pe_size); 594 vm_fault_t (*map_pages)(struct vm_fault *vmf, 595 pgoff_t start_pgoff, pgoff_t end_pgoff); 596 unsigned long (*pagesize)(struct vm_area_struct * area); 597 598 /* notification that a previously read-only page is about to become 599 * writable, if an error is returned it will cause a SIGBUS */ 600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 601 602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 604 605 /* called by access_process_vm when get_user_pages() fails, typically 606 * for use by special VMAs. See also generic_access_phys() for a generic 607 * implementation useful for any iomem mapping. 608 */ 609 int (*access)(struct vm_area_struct *vma, unsigned long addr, 610 void *buf, int len, int write); 611 612 /* Called by the /proc/PID/maps code to ask the vma whether it 613 * has a special name. Returning non-NULL will also cause this 614 * vma to be dumped unconditionally. */ 615 const char *(*name)(struct vm_area_struct *vma); 616 617 #ifdef CONFIG_NUMA 618 /* 619 * set_policy() op must add a reference to any non-NULL @new mempolicy 620 * to hold the policy upon return. Caller should pass NULL @new to 621 * remove a policy and fall back to surrounding context--i.e. do not 622 * install a MPOL_DEFAULT policy, nor the task or system default 623 * mempolicy. 624 */ 625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 626 627 /* 628 * get_policy() op must add reference [mpol_get()] to any policy at 629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 630 * in mm/mempolicy.c will do this automatically. 631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 634 * must return NULL--i.e., do not "fallback" to task or system default 635 * policy. 636 */ 637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 638 unsigned long addr); 639 #endif 640 /* 641 * Called by vm_normal_page() for special PTEs to find the 642 * page for @addr. This is useful if the default behavior 643 * (using pte_page()) would not find the correct page. 644 */ 645 struct page *(*find_special_page)(struct vm_area_struct *vma, 646 unsigned long addr); 647 }; 648 649 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 650 { 651 static const struct vm_operations_struct dummy_vm_ops = {}; 652 653 memset(vma, 0, sizeof(*vma)); 654 vma->vm_mm = mm; 655 vma->vm_ops = &dummy_vm_ops; 656 INIT_LIST_HEAD(&vma->anon_vma_chain); 657 } 658 659 static inline void vma_set_anonymous(struct vm_area_struct *vma) 660 { 661 vma->vm_ops = NULL; 662 } 663 664 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 665 { 666 return !vma->vm_ops; 667 } 668 669 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 670 { 671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 672 673 if (!maybe_stack) 674 return false; 675 676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 677 VM_STACK_INCOMPLETE_SETUP) 678 return true; 679 680 return false; 681 } 682 683 static inline bool vma_is_foreign(struct vm_area_struct *vma) 684 { 685 if (!current->mm) 686 return true; 687 688 if (current->mm != vma->vm_mm) 689 return true; 690 691 return false; 692 } 693 694 static inline bool vma_is_accessible(struct vm_area_struct *vma) 695 { 696 return vma->vm_flags & VM_ACCESS_FLAGS; 697 } 698 699 #ifdef CONFIG_SHMEM 700 /* 701 * The vma_is_shmem is not inline because it is used only by slow 702 * paths in userfault. 703 */ 704 bool vma_is_shmem(struct vm_area_struct *vma); 705 #else 706 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 707 #endif 708 709 int vma_is_stack_for_current(struct vm_area_struct *vma); 710 711 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 712 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 713 714 struct mmu_gather; 715 struct inode; 716 717 #include <linux/huge_mm.h> 718 719 /* 720 * Methods to modify the page usage count. 721 * 722 * What counts for a page usage: 723 * - cache mapping (page->mapping) 724 * - private data (page->private) 725 * - page mapped in a task's page tables, each mapping 726 * is counted separately 727 * 728 * Also, many kernel routines increase the page count before a critical 729 * routine so they can be sure the page doesn't go away from under them. 730 */ 731 732 /* 733 * Drop a ref, return true if the refcount fell to zero (the page has no users) 734 */ 735 static inline int put_page_testzero(struct page *page) 736 { 737 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 738 return page_ref_dec_and_test(page); 739 } 740 741 /* 742 * Try to grab a ref unless the page has a refcount of zero, return false if 743 * that is the case. 744 * This can be called when MMU is off so it must not access 745 * any of the virtual mappings. 746 */ 747 static inline int get_page_unless_zero(struct page *page) 748 { 749 return page_ref_add_unless(page, 1, 0); 750 } 751 752 extern int page_is_ram(unsigned long pfn); 753 754 enum { 755 REGION_INTERSECTS, 756 REGION_DISJOINT, 757 REGION_MIXED, 758 }; 759 760 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 761 unsigned long desc); 762 763 /* Support for virtually mapped pages */ 764 struct page *vmalloc_to_page(const void *addr); 765 unsigned long vmalloc_to_pfn(const void *addr); 766 767 /* 768 * Determine if an address is within the vmalloc range 769 * 770 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 771 * is no special casing required. 772 */ 773 774 #ifndef is_ioremap_addr 775 #define is_ioremap_addr(x) is_vmalloc_addr(x) 776 #endif 777 778 #ifdef CONFIG_MMU 779 extern bool is_vmalloc_addr(const void *x); 780 extern int is_vmalloc_or_module_addr(const void *x); 781 #else 782 static inline bool is_vmalloc_addr(const void *x) 783 { 784 return false; 785 } 786 static inline int is_vmalloc_or_module_addr(const void *x) 787 { 788 return 0; 789 } 790 #endif 791 792 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 793 static inline void *kvmalloc(size_t size, gfp_t flags) 794 { 795 return kvmalloc_node(size, flags, NUMA_NO_NODE); 796 } 797 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 798 { 799 return kvmalloc_node(size, flags | __GFP_ZERO, node); 800 } 801 static inline void *kvzalloc(size_t size, gfp_t flags) 802 { 803 return kvmalloc(size, flags | __GFP_ZERO); 804 } 805 806 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 807 { 808 size_t bytes; 809 810 if (unlikely(check_mul_overflow(n, size, &bytes))) 811 return NULL; 812 813 return kvmalloc(bytes, flags); 814 } 815 816 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 817 { 818 return kvmalloc_array(n, size, flags | __GFP_ZERO); 819 } 820 821 extern void kvfree(const void *addr); 822 extern void kvfree_sensitive(const void *addr, size_t len); 823 824 static inline int head_compound_mapcount(struct page *head) 825 { 826 return atomic_read(compound_mapcount_ptr(head)) + 1; 827 } 828 829 /* 830 * Mapcount of compound page as a whole, does not include mapped sub-pages. 831 * 832 * Must be called only for compound pages or any their tail sub-pages. 833 */ 834 static inline int compound_mapcount(struct page *page) 835 { 836 VM_BUG_ON_PAGE(!PageCompound(page), page); 837 page = compound_head(page); 838 return head_compound_mapcount(page); 839 } 840 841 /* 842 * The atomic page->_mapcount, starts from -1: so that transitions 843 * both from it and to it can be tracked, using atomic_inc_and_test 844 * and atomic_add_negative(-1). 845 */ 846 static inline void page_mapcount_reset(struct page *page) 847 { 848 atomic_set(&(page)->_mapcount, -1); 849 } 850 851 int __page_mapcount(struct page *page); 852 853 /* 854 * Mapcount of 0-order page; when compound sub-page, includes 855 * compound_mapcount(). 856 * 857 * Result is undefined for pages which cannot be mapped into userspace. 858 * For example SLAB or special types of pages. See function page_has_type(). 859 * They use this place in struct page differently. 860 */ 861 static inline int page_mapcount(struct page *page) 862 { 863 if (unlikely(PageCompound(page))) 864 return __page_mapcount(page); 865 return atomic_read(&page->_mapcount) + 1; 866 } 867 868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 869 int total_mapcount(struct page *page); 870 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 871 #else 872 static inline int total_mapcount(struct page *page) 873 { 874 return page_mapcount(page); 875 } 876 static inline int page_trans_huge_mapcount(struct page *page, 877 int *total_mapcount) 878 { 879 int mapcount = page_mapcount(page); 880 if (total_mapcount) 881 *total_mapcount = mapcount; 882 return mapcount; 883 } 884 #endif 885 886 static inline struct page *virt_to_head_page(const void *x) 887 { 888 struct page *page = virt_to_page(x); 889 890 return compound_head(page); 891 } 892 893 void __put_page(struct page *page); 894 895 void put_pages_list(struct list_head *pages); 896 897 void split_page(struct page *page, unsigned int order); 898 899 /* 900 * Compound pages have a destructor function. Provide a 901 * prototype for that function and accessor functions. 902 * These are _only_ valid on the head of a compound page. 903 */ 904 typedef void compound_page_dtor(struct page *); 905 906 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 907 enum compound_dtor_id { 908 NULL_COMPOUND_DTOR, 909 COMPOUND_PAGE_DTOR, 910 #ifdef CONFIG_HUGETLB_PAGE 911 HUGETLB_PAGE_DTOR, 912 #endif 913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 914 TRANSHUGE_PAGE_DTOR, 915 #endif 916 NR_COMPOUND_DTORS, 917 }; 918 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 919 920 static inline void set_compound_page_dtor(struct page *page, 921 enum compound_dtor_id compound_dtor) 922 { 923 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 924 page[1].compound_dtor = compound_dtor; 925 } 926 927 static inline void destroy_compound_page(struct page *page) 928 { 929 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 930 compound_page_dtors[page[1].compound_dtor](page); 931 } 932 933 static inline unsigned int compound_order(struct page *page) 934 { 935 if (!PageHead(page)) 936 return 0; 937 return page[1].compound_order; 938 } 939 940 static inline bool hpage_pincount_available(struct page *page) 941 { 942 /* 943 * Can the page->hpage_pinned_refcount field be used? That field is in 944 * the 3rd page of the compound page, so the smallest (2-page) compound 945 * pages cannot support it. 946 */ 947 page = compound_head(page); 948 return PageCompound(page) && compound_order(page) > 1; 949 } 950 951 static inline int head_compound_pincount(struct page *head) 952 { 953 return atomic_read(compound_pincount_ptr(head)); 954 } 955 956 static inline int compound_pincount(struct page *page) 957 { 958 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 959 page = compound_head(page); 960 return head_compound_pincount(page); 961 } 962 963 static inline void set_compound_order(struct page *page, unsigned int order) 964 { 965 page[1].compound_order = order; 966 page[1].compound_nr = 1U << order; 967 } 968 969 /* Returns the number of pages in this potentially compound page. */ 970 static inline unsigned long compound_nr(struct page *page) 971 { 972 if (!PageHead(page)) 973 return 1; 974 return page[1].compound_nr; 975 } 976 977 /* Returns the number of bytes in this potentially compound page. */ 978 static inline unsigned long page_size(struct page *page) 979 { 980 return PAGE_SIZE << compound_order(page); 981 } 982 983 /* Returns the number of bits needed for the number of bytes in a page */ 984 static inline unsigned int page_shift(struct page *page) 985 { 986 return PAGE_SHIFT + compound_order(page); 987 } 988 989 void free_compound_page(struct page *page); 990 991 #ifdef CONFIG_MMU 992 /* 993 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 994 * servicing faults for write access. In the normal case, do always want 995 * pte_mkwrite. But get_user_pages can cause write faults for mappings 996 * that do not have writing enabled, when used by access_process_vm. 997 */ 998 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 999 { 1000 if (likely(vma->vm_flags & VM_WRITE)) 1001 pte = pte_mkwrite(pte); 1002 return pte; 1003 } 1004 1005 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1006 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1007 1008 vm_fault_t finish_fault(struct vm_fault *vmf); 1009 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1010 #endif 1011 1012 /* 1013 * Multiple processes may "see" the same page. E.g. for untouched 1014 * mappings of /dev/null, all processes see the same page full of 1015 * zeroes, and text pages of executables and shared libraries have 1016 * only one copy in memory, at most, normally. 1017 * 1018 * For the non-reserved pages, page_count(page) denotes a reference count. 1019 * page_count() == 0 means the page is free. page->lru is then used for 1020 * freelist management in the buddy allocator. 1021 * page_count() > 0 means the page has been allocated. 1022 * 1023 * Pages are allocated by the slab allocator in order to provide memory 1024 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1025 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1026 * unless a particular usage is carefully commented. (the responsibility of 1027 * freeing the kmalloc memory is the caller's, of course). 1028 * 1029 * A page may be used by anyone else who does a __get_free_page(). 1030 * In this case, page_count still tracks the references, and should only 1031 * be used through the normal accessor functions. The top bits of page->flags 1032 * and page->virtual store page management information, but all other fields 1033 * are unused and could be used privately, carefully. The management of this 1034 * page is the responsibility of the one who allocated it, and those who have 1035 * subsequently been given references to it. 1036 * 1037 * The other pages (we may call them "pagecache pages") are completely 1038 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1039 * The following discussion applies only to them. 1040 * 1041 * A pagecache page contains an opaque `private' member, which belongs to the 1042 * page's address_space. Usually, this is the address of a circular list of 1043 * the page's disk buffers. PG_private must be set to tell the VM to call 1044 * into the filesystem to release these pages. 1045 * 1046 * A page may belong to an inode's memory mapping. In this case, page->mapping 1047 * is the pointer to the inode, and page->index is the file offset of the page, 1048 * in units of PAGE_SIZE. 1049 * 1050 * If pagecache pages are not associated with an inode, they are said to be 1051 * anonymous pages. These may become associated with the swapcache, and in that 1052 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1053 * 1054 * In either case (swapcache or inode backed), the pagecache itself holds one 1055 * reference to the page. Setting PG_private should also increment the 1056 * refcount. The each user mapping also has a reference to the page. 1057 * 1058 * The pagecache pages are stored in a per-mapping radix tree, which is 1059 * rooted at mapping->i_pages, and indexed by offset. 1060 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1061 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1062 * 1063 * All pagecache pages may be subject to I/O: 1064 * - inode pages may need to be read from disk, 1065 * - inode pages which have been modified and are MAP_SHARED may need 1066 * to be written back to the inode on disk, 1067 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1068 * modified may need to be swapped out to swap space and (later) to be read 1069 * back into memory. 1070 */ 1071 1072 /* 1073 * The zone field is never updated after free_area_init_core() 1074 * sets it, so none of the operations on it need to be atomic. 1075 */ 1076 1077 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1078 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1079 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1080 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1081 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1082 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1083 1084 /* 1085 * Define the bit shifts to access each section. For non-existent 1086 * sections we define the shift as 0; that plus a 0 mask ensures 1087 * the compiler will optimise away reference to them. 1088 */ 1089 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1090 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1091 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1092 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1093 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1094 1095 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1096 #ifdef NODE_NOT_IN_PAGE_FLAGS 1097 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1098 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1099 SECTIONS_PGOFF : ZONES_PGOFF) 1100 #else 1101 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1102 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1103 NODES_PGOFF : ZONES_PGOFF) 1104 #endif 1105 1106 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1107 1108 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1109 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1110 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1111 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1112 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1113 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1114 1115 static inline enum zone_type page_zonenum(const struct page *page) 1116 { 1117 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1118 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1119 } 1120 1121 #ifdef CONFIG_ZONE_DEVICE 1122 static inline bool is_zone_device_page(const struct page *page) 1123 { 1124 return page_zonenum(page) == ZONE_DEVICE; 1125 } 1126 extern void memmap_init_zone_device(struct zone *, unsigned long, 1127 unsigned long, struct dev_pagemap *); 1128 #else 1129 static inline bool is_zone_device_page(const struct page *page) 1130 { 1131 return false; 1132 } 1133 #endif 1134 1135 #ifdef CONFIG_DEV_PAGEMAP_OPS 1136 void free_devmap_managed_page(struct page *page); 1137 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1138 1139 static inline bool page_is_devmap_managed(struct page *page) 1140 { 1141 if (!static_branch_unlikely(&devmap_managed_key)) 1142 return false; 1143 if (!is_zone_device_page(page)) 1144 return false; 1145 switch (page->pgmap->type) { 1146 case MEMORY_DEVICE_PRIVATE: 1147 case MEMORY_DEVICE_FS_DAX: 1148 return true; 1149 default: 1150 break; 1151 } 1152 return false; 1153 } 1154 1155 void put_devmap_managed_page(struct page *page); 1156 1157 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1158 static inline bool page_is_devmap_managed(struct page *page) 1159 { 1160 return false; 1161 } 1162 1163 static inline void put_devmap_managed_page(struct page *page) 1164 { 1165 } 1166 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1167 1168 static inline bool is_device_private_page(const struct page *page) 1169 { 1170 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1171 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1172 is_zone_device_page(page) && 1173 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1174 } 1175 1176 static inline bool is_pci_p2pdma_page(const struct page *page) 1177 { 1178 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1179 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1180 is_zone_device_page(page) && 1181 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1182 } 1183 1184 /* 127: arbitrary random number, small enough to assemble well */ 1185 #define page_ref_zero_or_close_to_overflow(page) \ 1186 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1187 1188 static inline void get_page(struct page *page) 1189 { 1190 page = compound_head(page); 1191 /* 1192 * Getting a normal page or the head of a compound page 1193 * requires to already have an elevated page->_refcount. 1194 */ 1195 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1196 page_ref_inc(page); 1197 } 1198 1199 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1200 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1201 unsigned int flags); 1202 1203 1204 static inline __must_check bool try_get_page(struct page *page) 1205 { 1206 page = compound_head(page); 1207 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1208 return false; 1209 page_ref_inc(page); 1210 return true; 1211 } 1212 1213 static inline void put_page(struct page *page) 1214 { 1215 page = compound_head(page); 1216 1217 /* 1218 * For devmap managed pages we need to catch refcount transition from 1219 * 2 to 1, when refcount reach one it means the page is free and we 1220 * need to inform the device driver through callback. See 1221 * include/linux/memremap.h and HMM for details. 1222 */ 1223 if (page_is_devmap_managed(page)) { 1224 put_devmap_managed_page(page); 1225 return; 1226 } 1227 1228 if (put_page_testzero(page)) 1229 __put_page(page); 1230 } 1231 1232 /* 1233 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1234 * the page's refcount so that two separate items are tracked: the original page 1235 * reference count, and also a new count of how many pin_user_pages() calls were 1236 * made against the page. ("gup-pinned" is another term for the latter). 1237 * 1238 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1239 * distinct from normal pages. As such, the unpin_user_page() call (and its 1240 * variants) must be used in order to release gup-pinned pages. 1241 * 1242 * Choice of value: 1243 * 1244 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1245 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1246 * simpler, due to the fact that adding an even power of two to the page 1247 * refcount has the effect of using only the upper N bits, for the code that 1248 * counts up using the bias value. This means that the lower bits are left for 1249 * the exclusive use of the original code that increments and decrements by one 1250 * (or at least, by much smaller values than the bias value). 1251 * 1252 * Of course, once the lower bits overflow into the upper bits (and this is 1253 * OK, because subtraction recovers the original values), then visual inspection 1254 * no longer suffices to directly view the separate counts. However, for normal 1255 * applications that don't have huge page reference counts, this won't be an 1256 * issue. 1257 * 1258 * Locking: the lockless algorithm described in page_cache_get_speculative() 1259 * and page_cache_gup_pin_speculative() provides safe operation for 1260 * get_user_pages and page_mkclean and other calls that race to set up page 1261 * table entries. 1262 */ 1263 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1264 1265 void unpin_user_page(struct page *page); 1266 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1267 bool make_dirty); 1268 void unpin_user_pages(struct page **pages, unsigned long npages); 1269 1270 /** 1271 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1272 * 1273 * This function checks if a page has been pinned via a call to 1274 * pin_user_pages*(). 1275 * 1276 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1277 * because it means "definitely not pinned for DMA", but true means "probably 1278 * pinned for DMA, but possibly a false positive due to having at least 1279 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1280 * 1281 * False positives are OK, because: a) it's unlikely for a page to get that many 1282 * refcounts, and b) all the callers of this routine are expected to be able to 1283 * deal gracefully with a false positive. 1284 * 1285 * For huge pages, the result will be exactly correct. That's because we have 1286 * more tracking data available: the 3rd struct page in the compound page is 1287 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1288 * scheme). 1289 * 1290 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1291 * 1292 * @page: pointer to page to be queried. 1293 * @Return: True, if it is likely that the page has been "dma-pinned". 1294 * False, if the page is definitely not dma-pinned. 1295 */ 1296 static inline bool page_maybe_dma_pinned(struct page *page) 1297 { 1298 if (hpage_pincount_available(page)) 1299 return compound_pincount(page) > 0; 1300 1301 /* 1302 * page_ref_count() is signed. If that refcount overflows, then 1303 * page_ref_count() returns a negative value, and callers will avoid 1304 * further incrementing the refcount. 1305 * 1306 * Here, for that overflow case, use the signed bit to count a little 1307 * bit higher via unsigned math, and thus still get an accurate result. 1308 */ 1309 return ((unsigned int)page_ref_count(compound_head(page))) >= 1310 GUP_PIN_COUNTING_BIAS; 1311 } 1312 1313 static inline bool is_cow_mapping(vm_flags_t flags) 1314 { 1315 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1316 } 1317 1318 /* 1319 * This should most likely only be called during fork() to see whether we 1320 * should break the cow immediately for a page on the src mm. 1321 */ 1322 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1323 struct page *page) 1324 { 1325 if (!is_cow_mapping(vma->vm_flags)) 1326 return false; 1327 1328 if (!atomic_read(&vma->vm_mm->has_pinned)) 1329 return false; 1330 1331 return page_maybe_dma_pinned(page); 1332 } 1333 1334 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1335 #define SECTION_IN_PAGE_FLAGS 1336 #endif 1337 1338 /* 1339 * The identification function is mainly used by the buddy allocator for 1340 * determining if two pages could be buddies. We are not really identifying 1341 * the zone since we could be using the section number id if we do not have 1342 * node id available in page flags. 1343 * We only guarantee that it will return the same value for two combinable 1344 * pages in a zone. 1345 */ 1346 static inline int page_zone_id(struct page *page) 1347 { 1348 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1349 } 1350 1351 #ifdef NODE_NOT_IN_PAGE_FLAGS 1352 extern int page_to_nid(const struct page *page); 1353 #else 1354 static inline int page_to_nid(const struct page *page) 1355 { 1356 struct page *p = (struct page *)page; 1357 1358 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1359 } 1360 #endif 1361 1362 #ifdef CONFIG_NUMA_BALANCING 1363 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1364 { 1365 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1366 } 1367 1368 static inline int cpupid_to_pid(int cpupid) 1369 { 1370 return cpupid & LAST__PID_MASK; 1371 } 1372 1373 static inline int cpupid_to_cpu(int cpupid) 1374 { 1375 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1376 } 1377 1378 static inline int cpupid_to_nid(int cpupid) 1379 { 1380 return cpu_to_node(cpupid_to_cpu(cpupid)); 1381 } 1382 1383 static inline bool cpupid_pid_unset(int cpupid) 1384 { 1385 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1386 } 1387 1388 static inline bool cpupid_cpu_unset(int cpupid) 1389 { 1390 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1391 } 1392 1393 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1394 { 1395 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1396 } 1397 1398 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1399 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1400 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1401 { 1402 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1403 } 1404 1405 static inline int page_cpupid_last(struct page *page) 1406 { 1407 return page->_last_cpupid; 1408 } 1409 static inline void page_cpupid_reset_last(struct page *page) 1410 { 1411 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1412 } 1413 #else 1414 static inline int page_cpupid_last(struct page *page) 1415 { 1416 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1417 } 1418 1419 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1420 1421 static inline void page_cpupid_reset_last(struct page *page) 1422 { 1423 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1424 } 1425 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1426 #else /* !CONFIG_NUMA_BALANCING */ 1427 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1428 { 1429 return page_to_nid(page); /* XXX */ 1430 } 1431 1432 static inline int page_cpupid_last(struct page *page) 1433 { 1434 return page_to_nid(page); /* XXX */ 1435 } 1436 1437 static inline int cpupid_to_nid(int cpupid) 1438 { 1439 return -1; 1440 } 1441 1442 static inline int cpupid_to_pid(int cpupid) 1443 { 1444 return -1; 1445 } 1446 1447 static inline int cpupid_to_cpu(int cpupid) 1448 { 1449 return -1; 1450 } 1451 1452 static inline int cpu_pid_to_cpupid(int nid, int pid) 1453 { 1454 return -1; 1455 } 1456 1457 static inline bool cpupid_pid_unset(int cpupid) 1458 { 1459 return true; 1460 } 1461 1462 static inline void page_cpupid_reset_last(struct page *page) 1463 { 1464 } 1465 1466 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1467 { 1468 return false; 1469 } 1470 #endif /* CONFIG_NUMA_BALANCING */ 1471 1472 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1473 1474 /* 1475 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1476 * setting tags for all pages to native kernel tag value 0xff, as the default 1477 * value 0x00 maps to 0xff. 1478 */ 1479 1480 static inline u8 page_kasan_tag(const struct page *page) 1481 { 1482 u8 tag = 0xff; 1483 1484 if (kasan_enabled()) { 1485 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1486 tag ^= 0xff; 1487 } 1488 1489 return tag; 1490 } 1491 1492 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1493 { 1494 if (kasan_enabled()) { 1495 tag ^= 0xff; 1496 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1497 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1498 } 1499 } 1500 1501 static inline void page_kasan_tag_reset(struct page *page) 1502 { 1503 if (kasan_enabled()) 1504 page_kasan_tag_set(page, 0xff); 1505 } 1506 1507 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1508 1509 static inline u8 page_kasan_tag(const struct page *page) 1510 { 1511 return 0xff; 1512 } 1513 1514 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1515 static inline void page_kasan_tag_reset(struct page *page) { } 1516 1517 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1518 1519 static inline struct zone *page_zone(const struct page *page) 1520 { 1521 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1522 } 1523 1524 static inline pg_data_t *page_pgdat(const struct page *page) 1525 { 1526 return NODE_DATA(page_to_nid(page)); 1527 } 1528 1529 #ifdef SECTION_IN_PAGE_FLAGS 1530 static inline void set_page_section(struct page *page, unsigned long section) 1531 { 1532 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1533 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1534 } 1535 1536 static inline unsigned long page_to_section(const struct page *page) 1537 { 1538 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1539 } 1540 #endif 1541 1542 static inline void set_page_zone(struct page *page, enum zone_type zone) 1543 { 1544 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1545 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1546 } 1547 1548 static inline void set_page_node(struct page *page, unsigned long node) 1549 { 1550 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1551 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1552 } 1553 1554 static inline void set_page_links(struct page *page, enum zone_type zone, 1555 unsigned long node, unsigned long pfn) 1556 { 1557 set_page_zone(page, zone); 1558 set_page_node(page, node); 1559 #ifdef SECTION_IN_PAGE_FLAGS 1560 set_page_section(page, pfn_to_section_nr(pfn)); 1561 #endif 1562 } 1563 1564 /* 1565 * Some inline functions in vmstat.h depend on page_zone() 1566 */ 1567 #include <linux/vmstat.h> 1568 1569 static __always_inline void *lowmem_page_address(const struct page *page) 1570 { 1571 return page_to_virt(page); 1572 } 1573 1574 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1575 #define HASHED_PAGE_VIRTUAL 1576 #endif 1577 1578 #if defined(WANT_PAGE_VIRTUAL) 1579 static inline void *page_address(const struct page *page) 1580 { 1581 return page->virtual; 1582 } 1583 static inline void set_page_address(struct page *page, void *address) 1584 { 1585 page->virtual = address; 1586 } 1587 #define page_address_init() do { } while(0) 1588 #endif 1589 1590 #if defined(HASHED_PAGE_VIRTUAL) 1591 void *page_address(const struct page *page); 1592 void set_page_address(struct page *page, void *virtual); 1593 void page_address_init(void); 1594 #endif 1595 1596 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1597 #define page_address(page) lowmem_page_address(page) 1598 #define set_page_address(page, address) do { } while(0) 1599 #define page_address_init() do { } while(0) 1600 #endif 1601 1602 extern void *page_rmapping(struct page *page); 1603 extern struct anon_vma *page_anon_vma(struct page *page); 1604 extern struct address_space *page_mapping(struct page *page); 1605 1606 extern struct address_space *__page_file_mapping(struct page *); 1607 1608 static inline 1609 struct address_space *page_file_mapping(struct page *page) 1610 { 1611 if (unlikely(PageSwapCache(page))) 1612 return __page_file_mapping(page); 1613 1614 return page->mapping; 1615 } 1616 1617 extern pgoff_t __page_file_index(struct page *page); 1618 1619 /* 1620 * Return the pagecache index of the passed page. Regular pagecache pages 1621 * use ->index whereas swapcache pages use swp_offset(->private) 1622 */ 1623 static inline pgoff_t page_index(struct page *page) 1624 { 1625 if (unlikely(PageSwapCache(page))) 1626 return __page_file_index(page); 1627 return page->index; 1628 } 1629 1630 bool page_mapped(struct page *page); 1631 struct address_space *page_mapping(struct page *page); 1632 struct address_space *page_mapping_file(struct page *page); 1633 1634 /* 1635 * Return true only if the page has been allocated with 1636 * ALLOC_NO_WATERMARKS and the low watermark was not 1637 * met implying that the system is under some pressure. 1638 */ 1639 static inline bool page_is_pfmemalloc(const struct page *page) 1640 { 1641 /* 1642 * Page index cannot be this large so this must be 1643 * a pfmemalloc page. 1644 */ 1645 return page->index == -1UL; 1646 } 1647 1648 /* 1649 * Only to be called by the page allocator on a freshly allocated 1650 * page. 1651 */ 1652 static inline void set_page_pfmemalloc(struct page *page) 1653 { 1654 page->index = -1UL; 1655 } 1656 1657 static inline void clear_page_pfmemalloc(struct page *page) 1658 { 1659 page->index = 0; 1660 } 1661 1662 /* 1663 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1664 */ 1665 extern void pagefault_out_of_memory(void); 1666 1667 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1668 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1669 1670 /* 1671 * Flags passed to show_mem() and show_free_areas() to suppress output in 1672 * various contexts. 1673 */ 1674 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1675 1676 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1677 1678 #ifdef CONFIG_MMU 1679 extern bool can_do_mlock(void); 1680 #else 1681 static inline bool can_do_mlock(void) { return false; } 1682 #endif 1683 extern int user_shm_lock(size_t, struct user_struct *); 1684 extern void user_shm_unlock(size_t, struct user_struct *); 1685 1686 /* 1687 * Parameter block passed down to zap_pte_range in exceptional cases. 1688 */ 1689 struct zap_details { 1690 struct address_space *check_mapping; /* Check page->mapping if set */ 1691 pgoff_t first_index; /* Lowest page->index to unmap */ 1692 pgoff_t last_index; /* Highest page->index to unmap */ 1693 }; 1694 1695 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1696 pte_t pte); 1697 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1698 pmd_t pmd); 1699 1700 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1701 unsigned long size); 1702 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1703 unsigned long size); 1704 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1705 unsigned long start, unsigned long end); 1706 1707 struct mmu_notifier_range; 1708 1709 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1710 unsigned long end, unsigned long floor, unsigned long ceiling); 1711 int 1712 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1713 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1714 struct mmu_notifier_range *range, pte_t **ptepp, 1715 pmd_t **pmdpp, spinlock_t **ptlp); 1716 int follow_pte(struct mm_struct *mm, unsigned long address, 1717 pte_t **ptepp, spinlock_t **ptlp); 1718 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1719 unsigned long *pfn); 1720 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1721 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1722 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1723 void *buf, int len, int write); 1724 1725 extern void truncate_pagecache(struct inode *inode, loff_t new); 1726 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1727 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1728 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1729 int truncate_inode_page(struct address_space *mapping, struct page *page); 1730 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1731 int invalidate_inode_page(struct page *page); 1732 1733 #ifdef CONFIG_MMU 1734 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1735 unsigned long address, unsigned int flags, 1736 struct pt_regs *regs); 1737 extern int fixup_user_fault(struct mm_struct *mm, 1738 unsigned long address, unsigned int fault_flags, 1739 bool *unlocked); 1740 void unmap_mapping_pages(struct address_space *mapping, 1741 pgoff_t start, pgoff_t nr, bool even_cows); 1742 void unmap_mapping_range(struct address_space *mapping, 1743 loff_t const holebegin, loff_t const holelen, int even_cows); 1744 #else 1745 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1746 unsigned long address, unsigned int flags, 1747 struct pt_regs *regs) 1748 { 1749 /* should never happen if there's no MMU */ 1750 BUG(); 1751 return VM_FAULT_SIGBUS; 1752 } 1753 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1754 unsigned int fault_flags, bool *unlocked) 1755 { 1756 /* should never happen if there's no MMU */ 1757 BUG(); 1758 return -EFAULT; 1759 } 1760 static inline void unmap_mapping_pages(struct address_space *mapping, 1761 pgoff_t start, pgoff_t nr, bool even_cows) { } 1762 static inline void unmap_mapping_range(struct address_space *mapping, 1763 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1764 #endif 1765 1766 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1767 loff_t const holebegin, loff_t const holelen) 1768 { 1769 unmap_mapping_range(mapping, holebegin, holelen, 0); 1770 } 1771 1772 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1773 void *buf, int len, unsigned int gup_flags); 1774 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1775 void *buf, int len, unsigned int gup_flags); 1776 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1777 void *buf, int len, unsigned int gup_flags); 1778 1779 long get_user_pages_remote(struct mm_struct *mm, 1780 unsigned long start, unsigned long nr_pages, 1781 unsigned int gup_flags, struct page **pages, 1782 struct vm_area_struct **vmas, int *locked); 1783 long pin_user_pages_remote(struct mm_struct *mm, 1784 unsigned long start, unsigned long nr_pages, 1785 unsigned int gup_flags, struct page **pages, 1786 struct vm_area_struct **vmas, int *locked); 1787 long get_user_pages(unsigned long start, unsigned long nr_pages, 1788 unsigned int gup_flags, struct page **pages, 1789 struct vm_area_struct **vmas); 1790 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1791 unsigned int gup_flags, struct page **pages, 1792 struct vm_area_struct **vmas); 1793 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1794 unsigned int gup_flags, struct page **pages, int *locked); 1795 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1796 unsigned int gup_flags, struct page **pages, int *locked); 1797 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1798 struct page **pages, unsigned int gup_flags); 1799 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1800 struct page **pages, unsigned int gup_flags); 1801 1802 int get_user_pages_fast(unsigned long start, int nr_pages, 1803 unsigned int gup_flags, struct page **pages); 1804 int pin_user_pages_fast(unsigned long start, int nr_pages, 1805 unsigned int gup_flags, struct page **pages); 1806 1807 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1808 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1809 struct task_struct *task, bool bypass_rlim); 1810 1811 struct kvec; 1812 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1813 struct page **pages); 1814 int get_kernel_page(unsigned long start, int write, struct page **pages); 1815 struct page *get_dump_page(unsigned long addr); 1816 1817 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1818 extern void do_invalidatepage(struct page *page, unsigned int offset, 1819 unsigned int length); 1820 1821 void __set_page_dirty(struct page *, struct address_space *, int warn); 1822 int __set_page_dirty_nobuffers(struct page *page); 1823 int __set_page_dirty_no_writeback(struct page *page); 1824 int redirty_page_for_writepage(struct writeback_control *wbc, 1825 struct page *page); 1826 void account_page_dirtied(struct page *page, struct address_space *mapping); 1827 void account_page_cleaned(struct page *page, struct address_space *mapping, 1828 struct bdi_writeback *wb); 1829 int set_page_dirty(struct page *page); 1830 int set_page_dirty_lock(struct page *page); 1831 void __cancel_dirty_page(struct page *page); 1832 static inline void cancel_dirty_page(struct page *page) 1833 { 1834 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1835 if (PageDirty(page)) 1836 __cancel_dirty_page(page); 1837 } 1838 int clear_page_dirty_for_io(struct page *page); 1839 1840 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1841 1842 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1843 unsigned long old_addr, struct vm_area_struct *new_vma, 1844 unsigned long new_addr, unsigned long len, 1845 bool need_rmap_locks); 1846 1847 /* 1848 * Flags used by change_protection(). For now we make it a bitmap so 1849 * that we can pass in multiple flags just like parameters. However 1850 * for now all the callers are only use one of the flags at the same 1851 * time. 1852 */ 1853 /* Whether we should allow dirty bit accounting */ 1854 #define MM_CP_DIRTY_ACCT (1UL << 0) 1855 /* Whether this protection change is for NUMA hints */ 1856 #define MM_CP_PROT_NUMA (1UL << 1) 1857 /* Whether this change is for write protecting */ 1858 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1859 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1860 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1861 MM_CP_UFFD_WP_RESOLVE) 1862 1863 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1864 unsigned long end, pgprot_t newprot, 1865 unsigned long cp_flags); 1866 extern int mprotect_fixup(struct vm_area_struct *vma, 1867 struct vm_area_struct **pprev, unsigned long start, 1868 unsigned long end, unsigned long newflags); 1869 1870 /* 1871 * doesn't attempt to fault and will return short. 1872 */ 1873 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1874 unsigned int gup_flags, struct page **pages); 1875 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1876 unsigned int gup_flags, struct page **pages); 1877 1878 static inline bool get_user_page_fast_only(unsigned long addr, 1879 unsigned int gup_flags, struct page **pagep) 1880 { 1881 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1882 } 1883 /* 1884 * per-process(per-mm_struct) statistics. 1885 */ 1886 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1887 { 1888 long val = atomic_long_read(&mm->rss_stat.count[member]); 1889 1890 #ifdef SPLIT_RSS_COUNTING 1891 /* 1892 * counter is updated in asynchronous manner and may go to minus. 1893 * But it's never be expected number for users. 1894 */ 1895 if (val < 0) 1896 val = 0; 1897 #endif 1898 return (unsigned long)val; 1899 } 1900 1901 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1902 1903 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1904 { 1905 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1906 1907 mm_trace_rss_stat(mm, member, count); 1908 } 1909 1910 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1911 { 1912 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1913 1914 mm_trace_rss_stat(mm, member, count); 1915 } 1916 1917 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1918 { 1919 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1920 1921 mm_trace_rss_stat(mm, member, count); 1922 } 1923 1924 /* Optimized variant when page is already known not to be PageAnon */ 1925 static inline int mm_counter_file(struct page *page) 1926 { 1927 if (PageSwapBacked(page)) 1928 return MM_SHMEMPAGES; 1929 return MM_FILEPAGES; 1930 } 1931 1932 static inline int mm_counter(struct page *page) 1933 { 1934 if (PageAnon(page)) 1935 return MM_ANONPAGES; 1936 return mm_counter_file(page); 1937 } 1938 1939 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1940 { 1941 return get_mm_counter(mm, MM_FILEPAGES) + 1942 get_mm_counter(mm, MM_ANONPAGES) + 1943 get_mm_counter(mm, MM_SHMEMPAGES); 1944 } 1945 1946 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1947 { 1948 return max(mm->hiwater_rss, get_mm_rss(mm)); 1949 } 1950 1951 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1952 { 1953 return max(mm->hiwater_vm, mm->total_vm); 1954 } 1955 1956 static inline void update_hiwater_rss(struct mm_struct *mm) 1957 { 1958 unsigned long _rss = get_mm_rss(mm); 1959 1960 if ((mm)->hiwater_rss < _rss) 1961 (mm)->hiwater_rss = _rss; 1962 } 1963 1964 static inline void update_hiwater_vm(struct mm_struct *mm) 1965 { 1966 if (mm->hiwater_vm < mm->total_vm) 1967 mm->hiwater_vm = mm->total_vm; 1968 } 1969 1970 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1971 { 1972 mm->hiwater_rss = get_mm_rss(mm); 1973 } 1974 1975 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1976 struct mm_struct *mm) 1977 { 1978 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1979 1980 if (*maxrss < hiwater_rss) 1981 *maxrss = hiwater_rss; 1982 } 1983 1984 #if defined(SPLIT_RSS_COUNTING) 1985 void sync_mm_rss(struct mm_struct *mm); 1986 #else 1987 static inline void sync_mm_rss(struct mm_struct *mm) 1988 { 1989 } 1990 #endif 1991 1992 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1993 static inline int pte_special(pte_t pte) 1994 { 1995 return 0; 1996 } 1997 1998 static inline pte_t pte_mkspecial(pte_t pte) 1999 { 2000 return pte; 2001 } 2002 #endif 2003 2004 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2005 static inline int pte_devmap(pte_t pte) 2006 { 2007 return 0; 2008 } 2009 #endif 2010 2011 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2012 2013 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2014 spinlock_t **ptl); 2015 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2016 spinlock_t **ptl) 2017 { 2018 pte_t *ptep; 2019 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2020 return ptep; 2021 } 2022 2023 #ifdef __PAGETABLE_P4D_FOLDED 2024 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2025 unsigned long address) 2026 { 2027 return 0; 2028 } 2029 #else 2030 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2031 #endif 2032 2033 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2034 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2035 unsigned long address) 2036 { 2037 return 0; 2038 } 2039 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2040 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2041 2042 #else 2043 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2044 2045 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2046 { 2047 if (mm_pud_folded(mm)) 2048 return; 2049 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2050 } 2051 2052 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2053 { 2054 if (mm_pud_folded(mm)) 2055 return; 2056 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2057 } 2058 #endif 2059 2060 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2061 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2062 unsigned long address) 2063 { 2064 return 0; 2065 } 2066 2067 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2068 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2069 2070 #else 2071 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2072 2073 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2074 { 2075 if (mm_pmd_folded(mm)) 2076 return; 2077 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2078 } 2079 2080 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2081 { 2082 if (mm_pmd_folded(mm)) 2083 return; 2084 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2085 } 2086 #endif 2087 2088 #ifdef CONFIG_MMU 2089 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2090 { 2091 atomic_long_set(&mm->pgtables_bytes, 0); 2092 } 2093 2094 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2095 { 2096 return atomic_long_read(&mm->pgtables_bytes); 2097 } 2098 2099 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2100 { 2101 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2102 } 2103 2104 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2105 { 2106 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2107 } 2108 #else 2109 2110 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2111 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2112 { 2113 return 0; 2114 } 2115 2116 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2117 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2118 #endif 2119 2120 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2121 int __pte_alloc_kernel(pmd_t *pmd); 2122 2123 #if defined(CONFIG_MMU) 2124 2125 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2126 unsigned long address) 2127 { 2128 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2129 NULL : p4d_offset(pgd, address); 2130 } 2131 2132 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2133 unsigned long address) 2134 { 2135 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2136 NULL : pud_offset(p4d, address); 2137 } 2138 2139 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2140 { 2141 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2142 NULL: pmd_offset(pud, address); 2143 } 2144 #endif /* CONFIG_MMU */ 2145 2146 #if USE_SPLIT_PTE_PTLOCKS 2147 #if ALLOC_SPLIT_PTLOCKS 2148 void __init ptlock_cache_init(void); 2149 extern bool ptlock_alloc(struct page *page); 2150 extern void ptlock_free(struct page *page); 2151 2152 static inline spinlock_t *ptlock_ptr(struct page *page) 2153 { 2154 return page->ptl; 2155 } 2156 #else /* ALLOC_SPLIT_PTLOCKS */ 2157 static inline void ptlock_cache_init(void) 2158 { 2159 } 2160 2161 static inline bool ptlock_alloc(struct page *page) 2162 { 2163 return true; 2164 } 2165 2166 static inline void ptlock_free(struct page *page) 2167 { 2168 } 2169 2170 static inline spinlock_t *ptlock_ptr(struct page *page) 2171 { 2172 return &page->ptl; 2173 } 2174 #endif /* ALLOC_SPLIT_PTLOCKS */ 2175 2176 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2177 { 2178 return ptlock_ptr(pmd_page(*pmd)); 2179 } 2180 2181 static inline bool ptlock_init(struct page *page) 2182 { 2183 /* 2184 * prep_new_page() initialize page->private (and therefore page->ptl) 2185 * with 0. Make sure nobody took it in use in between. 2186 * 2187 * It can happen if arch try to use slab for page table allocation: 2188 * slab code uses page->slab_cache, which share storage with page->ptl. 2189 */ 2190 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2191 if (!ptlock_alloc(page)) 2192 return false; 2193 spin_lock_init(ptlock_ptr(page)); 2194 return true; 2195 } 2196 2197 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2198 /* 2199 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2200 */ 2201 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2202 { 2203 return &mm->page_table_lock; 2204 } 2205 static inline void ptlock_cache_init(void) {} 2206 static inline bool ptlock_init(struct page *page) { return true; } 2207 static inline void ptlock_free(struct page *page) {} 2208 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2209 2210 static inline void pgtable_init(void) 2211 { 2212 ptlock_cache_init(); 2213 pgtable_cache_init(); 2214 } 2215 2216 static inline bool pgtable_pte_page_ctor(struct page *page) 2217 { 2218 if (!ptlock_init(page)) 2219 return false; 2220 __SetPageTable(page); 2221 inc_lruvec_page_state(page, NR_PAGETABLE); 2222 return true; 2223 } 2224 2225 static inline void pgtable_pte_page_dtor(struct page *page) 2226 { 2227 ptlock_free(page); 2228 __ClearPageTable(page); 2229 dec_lruvec_page_state(page, NR_PAGETABLE); 2230 } 2231 2232 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2233 ({ \ 2234 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2235 pte_t *__pte = pte_offset_map(pmd, address); \ 2236 *(ptlp) = __ptl; \ 2237 spin_lock(__ptl); \ 2238 __pte; \ 2239 }) 2240 2241 #define pte_unmap_unlock(pte, ptl) do { \ 2242 spin_unlock(ptl); \ 2243 pte_unmap(pte); \ 2244 } while (0) 2245 2246 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2247 2248 #define pte_alloc_map(mm, pmd, address) \ 2249 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2250 2251 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2252 (pte_alloc(mm, pmd) ? \ 2253 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2254 2255 #define pte_alloc_kernel(pmd, address) \ 2256 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2257 NULL: pte_offset_kernel(pmd, address)) 2258 2259 #if USE_SPLIT_PMD_PTLOCKS 2260 2261 static struct page *pmd_to_page(pmd_t *pmd) 2262 { 2263 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2264 return virt_to_page((void *)((unsigned long) pmd & mask)); 2265 } 2266 2267 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2268 { 2269 return ptlock_ptr(pmd_to_page(pmd)); 2270 } 2271 2272 static inline bool pmd_ptlock_init(struct page *page) 2273 { 2274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2275 page->pmd_huge_pte = NULL; 2276 #endif 2277 return ptlock_init(page); 2278 } 2279 2280 static inline void pmd_ptlock_free(struct page *page) 2281 { 2282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2283 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2284 #endif 2285 ptlock_free(page); 2286 } 2287 2288 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2289 2290 #else 2291 2292 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2293 { 2294 return &mm->page_table_lock; 2295 } 2296 2297 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2298 static inline void pmd_ptlock_free(struct page *page) {} 2299 2300 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2301 2302 #endif 2303 2304 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2305 { 2306 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2307 spin_lock(ptl); 2308 return ptl; 2309 } 2310 2311 static inline bool pgtable_pmd_page_ctor(struct page *page) 2312 { 2313 if (!pmd_ptlock_init(page)) 2314 return false; 2315 __SetPageTable(page); 2316 inc_lruvec_page_state(page, NR_PAGETABLE); 2317 return true; 2318 } 2319 2320 static inline void pgtable_pmd_page_dtor(struct page *page) 2321 { 2322 pmd_ptlock_free(page); 2323 __ClearPageTable(page); 2324 dec_lruvec_page_state(page, NR_PAGETABLE); 2325 } 2326 2327 /* 2328 * No scalability reason to split PUD locks yet, but follow the same pattern 2329 * as the PMD locks to make it easier if we decide to. The VM should not be 2330 * considered ready to switch to split PUD locks yet; there may be places 2331 * which need to be converted from page_table_lock. 2332 */ 2333 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2334 { 2335 return &mm->page_table_lock; 2336 } 2337 2338 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2339 { 2340 spinlock_t *ptl = pud_lockptr(mm, pud); 2341 2342 spin_lock(ptl); 2343 return ptl; 2344 } 2345 2346 extern void __init pagecache_init(void); 2347 extern void __init free_area_init_memoryless_node(int nid); 2348 extern void free_initmem(void); 2349 2350 /* 2351 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2352 * into the buddy system. The freed pages will be poisoned with pattern 2353 * "poison" if it's within range [0, UCHAR_MAX]. 2354 * Return pages freed into the buddy system. 2355 */ 2356 extern unsigned long free_reserved_area(void *start, void *end, 2357 int poison, const char *s); 2358 2359 extern void adjust_managed_page_count(struct page *page, long count); 2360 extern void mem_init_print_info(const char *str); 2361 2362 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2363 2364 /* Free the reserved page into the buddy system, so it gets managed. */ 2365 static inline void free_reserved_page(struct page *page) 2366 { 2367 ClearPageReserved(page); 2368 init_page_count(page); 2369 __free_page(page); 2370 adjust_managed_page_count(page, 1); 2371 } 2372 #define free_highmem_page(page) free_reserved_page(page) 2373 2374 static inline void mark_page_reserved(struct page *page) 2375 { 2376 SetPageReserved(page); 2377 adjust_managed_page_count(page, -1); 2378 } 2379 2380 /* 2381 * Default method to free all the __init memory into the buddy system. 2382 * The freed pages will be poisoned with pattern "poison" if it's within 2383 * range [0, UCHAR_MAX]. 2384 * Return pages freed into the buddy system. 2385 */ 2386 static inline unsigned long free_initmem_default(int poison) 2387 { 2388 extern char __init_begin[], __init_end[]; 2389 2390 return free_reserved_area(&__init_begin, &__init_end, 2391 poison, "unused kernel"); 2392 } 2393 2394 static inline unsigned long get_num_physpages(void) 2395 { 2396 int nid; 2397 unsigned long phys_pages = 0; 2398 2399 for_each_online_node(nid) 2400 phys_pages += node_present_pages(nid); 2401 2402 return phys_pages; 2403 } 2404 2405 /* 2406 * Using memblock node mappings, an architecture may initialise its 2407 * zones, allocate the backing mem_map and account for memory holes in an 2408 * architecture independent manner. 2409 * 2410 * An architecture is expected to register range of page frames backed by 2411 * physical memory with memblock_add[_node]() before calling 2412 * free_area_init() passing in the PFN each zone ends at. At a basic 2413 * usage, an architecture is expected to do something like 2414 * 2415 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2416 * max_highmem_pfn}; 2417 * for_each_valid_physical_page_range() 2418 * memblock_add_node(base, size, nid) 2419 * free_area_init(max_zone_pfns); 2420 */ 2421 void free_area_init(unsigned long *max_zone_pfn); 2422 unsigned long node_map_pfn_alignment(void); 2423 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2424 unsigned long end_pfn); 2425 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2426 unsigned long end_pfn); 2427 extern void get_pfn_range_for_nid(unsigned int nid, 2428 unsigned long *start_pfn, unsigned long *end_pfn); 2429 extern unsigned long find_min_pfn_with_active_regions(void); 2430 2431 #ifndef CONFIG_NEED_MULTIPLE_NODES 2432 static inline int early_pfn_to_nid(unsigned long pfn) 2433 { 2434 return 0; 2435 } 2436 #else 2437 /* please see mm/page_alloc.c */ 2438 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2439 #endif 2440 2441 extern void set_dma_reserve(unsigned long new_dma_reserve); 2442 extern void memmap_init_range(unsigned long, int, unsigned long, 2443 unsigned long, unsigned long, enum meminit_context, 2444 struct vmem_altmap *, int migratetype); 2445 extern void memmap_init_zone(struct zone *zone); 2446 extern void setup_per_zone_wmarks(void); 2447 extern int __meminit init_per_zone_wmark_min(void); 2448 extern void mem_init(void); 2449 extern void __init mmap_init(void); 2450 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2451 extern long si_mem_available(void); 2452 extern void si_meminfo(struct sysinfo * val); 2453 extern void si_meminfo_node(struct sysinfo *val, int nid); 2454 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2455 extern unsigned long arch_reserved_kernel_pages(void); 2456 #endif 2457 2458 extern __printf(3, 4) 2459 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2460 2461 extern void setup_per_cpu_pageset(void); 2462 2463 /* page_alloc.c */ 2464 extern int min_free_kbytes; 2465 extern int watermark_boost_factor; 2466 extern int watermark_scale_factor; 2467 extern bool arch_has_descending_max_zone_pfns(void); 2468 2469 /* nommu.c */ 2470 extern atomic_long_t mmap_pages_allocated; 2471 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2472 2473 /* interval_tree.c */ 2474 void vma_interval_tree_insert(struct vm_area_struct *node, 2475 struct rb_root_cached *root); 2476 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2477 struct vm_area_struct *prev, 2478 struct rb_root_cached *root); 2479 void vma_interval_tree_remove(struct vm_area_struct *node, 2480 struct rb_root_cached *root); 2481 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2482 unsigned long start, unsigned long last); 2483 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2484 unsigned long start, unsigned long last); 2485 2486 #define vma_interval_tree_foreach(vma, root, start, last) \ 2487 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2488 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2489 2490 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2491 struct rb_root_cached *root); 2492 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2493 struct rb_root_cached *root); 2494 struct anon_vma_chain * 2495 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2496 unsigned long start, unsigned long last); 2497 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2498 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2499 #ifdef CONFIG_DEBUG_VM_RB 2500 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2501 #endif 2502 2503 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2504 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2505 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2506 2507 /* mmap.c */ 2508 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2509 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2510 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2511 struct vm_area_struct *expand); 2512 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2513 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2514 { 2515 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2516 } 2517 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2518 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2519 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2520 struct mempolicy *, struct vm_userfaultfd_ctx); 2521 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2522 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2523 unsigned long addr, int new_below); 2524 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2525 unsigned long addr, int new_below); 2526 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2527 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2528 struct rb_node **, struct rb_node *); 2529 extern void unlink_file_vma(struct vm_area_struct *); 2530 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2531 unsigned long addr, unsigned long len, pgoff_t pgoff, 2532 bool *need_rmap_locks); 2533 extern void exit_mmap(struct mm_struct *); 2534 2535 static inline int check_data_rlimit(unsigned long rlim, 2536 unsigned long new, 2537 unsigned long start, 2538 unsigned long end_data, 2539 unsigned long start_data) 2540 { 2541 if (rlim < RLIM_INFINITY) { 2542 if (((new - start) + (end_data - start_data)) > rlim) 2543 return -ENOSPC; 2544 } 2545 2546 return 0; 2547 } 2548 2549 extern int mm_take_all_locks(struct mm_struct *mm); 2550 extern void mm_drop_all_locks(struct mm_struct *mm); 2551 2552 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2553 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2554 extern struct file *get_task_exe_file(struct task_struct *task); 2555 2556 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2557 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2558 2559 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2560 const struct vm_special_mapping *sm); 2561 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2562 unsigned long addr, unsigned long len, 2563 unsigned long flags, 2564 const struct vm_special_mapping *spec); 2565 /* This is an obsolete alternative to _install_special_mapping. */ 2566 extern int install_special_mapping(struct mm_struct *mm, 2567 unsigned long addr, unsigned long len, 2568 unsigned long flags, struct page **pages); 2569 2570 unsigned long randomize_stack_top(unsigned long stack_top); 2571 2572 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2573 2574 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2575 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2576 struct list_head *uf); 2577 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2578 unsigned long len, unsigned long prot, unsigned long flags, 2579 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2580 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2581 struct list_head *uf, bool downgrade); 2582 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2583 struct list_head *uf); 2584 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2585 2586 #ifdef CONFIG_MMU 2587 extern int __mm_populate(unsigned long addr, unsigned long len, 2588 int ignore_errors); 2589 static inline void mm_populate(unsigned long addr, unsigned long len) 2590 { 2591 /* Ignore errors */ 2592 (void) __mm_populate(addr, len, 1); 2593 } 2594 #else 2595 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2596 #endif 2597 2598 /* These take the mm semaphore themselves */ 2599 extern int __must_check vm_brk(unsigned long, unsigned long); 2600 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2601 extern int vm_munmap(unsigned long, size_t); 2602 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2603 unsigned long, unsigned long, 2604 unsigned long, unsigned long); 2605 2606 struct vm_unmapped_area_info { 2607 #define VM_UNMAPPED_AREA_TOPDOWN 1 2608 unsigned long flags; 2609 unsigned long length; 2610 unsigned long low_limit; 2611 unsigned long high_limit; 2612 unsigned long align_mask; 2613 unsigned long align_offset; 2614 }; 2615 2616 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2617 2618 /* truncate.c */ 2619 extern void truncate_inode_pages(struct address_space *, loff_t); 2620 extern void truncate_inode_pages_range(struct address_space *, 2621 loff_t lstart, loff_t lend); 2622 extern void truncate_inode_pages_final(struct address_space *); 2623 2624 /* generic vm_area_ops exported for stackable file systems */ 2625 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2626 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2627 pgoff_t start_pgoff, pgoff_t end_pgoff); 2628 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2629 2630 /* mm/page-writeback.c */ 2631 int __must_check write_one_page(struct page *page); 2632 void task_dirty_inc(struct task_struct *tsk); 2633 2634 extern unsigned long stack_guard_gap; 2635 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2636 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2637 2638 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2639 extern int expand_downwards(struct vm_area_struct *vma, 2640 unsigned long address); 2641 #if VM_GROWSUP 2642 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2643 #else 2644 #define expand_upwards(vma, address) (0) 2645 #endif 2646 2647 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2648 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2649 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2650 struct vm_area_struct **pprev); 2651 2652 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2653 NULL if none. Assume start_addr < end_addr. */ 2654 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2655 { 2656 struct vm_area_struct * vma = find_vma(mm,start_addr); 2657 2658 if (vma && end_addr <= vma->vm_start) 2659 vma = NULL; 2660 return vma; 2661 } 2662 2663 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2664 { 2665 unsigned long vm_start = vma->vm_start; 2666 2667 if (vma->vm_flags & VM_GROWSDOWN) { 2668 vm_start -= stack_guard_gap; 2669 if (vm_start > vma->vm_start) 2670 vm_start = 0; 2671 } 2672 return vm_start; 2673 } 2674 2675 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2676 { 2677 unsigned long vm_end = vma->vm_end; 2678 2679 if (vma->vm_flags & VM_GROWSUP) { 2680 vm_end += stack_guard_gap; 2681 if (vm_end < vma->vm_end) 2682 vm_end = -PAGE_SIZE; 2683 } 2684 return vm_end; 2685 } 2686 2687 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2688 { 2689 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2690 } 2691 2692 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2693 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2694 unsigned long vm_start, unsigned long vm_end) 2695 { 2696 struct vm_area_struct *vma = find_vma(mm, vm_start); 2697 2698 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2699 vma = NULL; 2700 2701 return vma; 2702 } 2703 2704 static inline bool range_in_vma(struct vm_area_struct *vma, 2705 unsigned long start, unsigned long end) 2706 { 2707 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2708 } 2709 2710 #ifdef CONFIG_MMU 2711 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2712 void vma_set_page_prot(struct vm_area_struct *vma); 2713 #else 2714 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2715 { 2716 return __pgprot(0); 2717 } 2718 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2719 { 2720 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2721 } 2722 #endif 2723 2724 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2725 2726 #ifdef CONFIG_NUMA_BALANCING 2727 unsigned long change_prot_numa(struct vm_area_struct *vma, 2728 unsigned long start, unsigned long end); 2729 #endif 2730 2731 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2732 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2733 unsigned long pfn, unsigned long size, pgprot_t); 2734 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2735 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2736 struct page **pages, unsigned long *num); 2737 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2738 unsigned long num); 2739 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2740 unsigned long num); 2741 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2742 unsigned long pfn); 2743 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2744 unsigned long pfn, pgprot_t pgprot); 2745 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2746 pfn_t pfn); 2747 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2748 pfn_t pfn, pgprot_t pgprot); 2749 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2750 unsigned long addr, pfn_t pfn); 2751 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2752 2753 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2754 unsigned long addr, struct page *page) 2755 { 2756 int err = vm_insert_page(vma, addr, page); 2757 2758 if (err == -ENOMEM) 2759 return VM_FAULT_OOM; 2760 if (err < 0 && err != -EBUSY) 2761 return VM_FAULT_SIGBUS; 2762 2763 return VM_FAULT_NOPAGE; 2764 } 2765 2766 #ifndef io_remap_pfn_range 2767 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2768 unsigned long addr, unsigned long pfn, 2769 unsigned long size, pgprot_t prot) 2770 { 2771 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2772 } 2773 #endif 2774 2775 static inline vm_fault_t vmf_error(int err) 2776 { 2777 if (err == -ENOMEM) 2778 return VM_FAULT_OOM; 2779 return VM_FAULT_SIGBUS; 2780 } 2781 2782 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2783 unsigned int foll_flags); 2784 2785 #define FOLL_WRITE 0x01 /* check pte is writable */ 2786 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2787 #define FOLL_GET 0x04 /* do get_page on page */ 2788 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2789 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2790 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2791 * and return without waiting upon it */ 2792 #define FOLL_POPULATE 0x40 /* fault in page */ 2793 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2794 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2795 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2796 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2797 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2798 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2799 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2800 #define FOLL_COW 0x4000 /* internal GUP flag */ 2801 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2802 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2803 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2804 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2805 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2806 2807 /* 2808 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2809 * other. Here is what they mean, and how to use them: 2810 * 2811 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2812 * period _often_ under userspace control. This is in contrast to 2813 * iov_iter_get_pages(), whose usages are transient. 2814 * 2815 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2816 * lifetime enforced by the filesystem and we need guarantees that longterm 2817 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2818 * the filesystem. Ideas for this coordination include revoking the longterm 2819 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2820 * added after the problem with filesystems was found FS DAX VMAs are 2821 * specifically failed. Filesystem pages are still subject to bugs and use of 2822 * FOLL_LONGTERM should be avoided on those pages. 2823 * 2824 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2825 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2826 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2827 * is due to an incompatibility with the FS DAX check and 2828 * FAULT_FLAG_ALLOW_RETRY. 2829 * 2830 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2831 * that region. And so, CMA attempts to migrate the page before pinning, when 2832 * FOLL_LONGTERM is specified. 2833 * 2834 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2835 * but an additional pin counting system) will be invoked. This is intended for 2836 * anything that gets a page reference and then touches page data (for example, 2837 * Direct IO). This lets the filesystem know that some non-file-system entity is 2838 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2839 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2840 * a call to unpin_user_page(). 2841 * 2842 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2843 * and separate refcounting mechanisms, however, and that means that each has 2844 * its own acquire and release mechanisms: 2845 * 2846 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2847 * 2848 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2849 * 2850 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2851 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2852 * calls applied to them, and that's perfectly OK. This is a constraint on the 2853 * callers, not on the pages.) 2854 * 2855 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2856 * directly by the caller. That's in order to help avoid mismatches when 2857 * releasing pages: get_user_pages*() pages must be released via put_page(), 2858 * while pin_user_pages*() pages must be released via unpin_user_page(). 2859 * 2860 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2861 */ 2862 2863 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2864 { 2865 if (vm_fault & VM_FAULT_OOM) 2866 return -ENOMEM; 2867 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2868 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2869 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2870 return -EFAULT; 2871 return 0; 2872 } 2873 2874 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2875 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2876 unsigned long size, pte_fn_t fn, void *data); 2877 extern int apply_to_existing_page_range(struct mm_struct *mm, 2878 unsigned long address, unsigned long size, 2879 pte_fn_t fn, void *data); 2880 2881 extern void init_mem_debugging_and_hardening(void); 2882 #ifdef CONFIG_PAGE_POISONING 2883 extern void __kernel_poison_pages(struct page *page, int numpages); 2884 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2885 extern bool _page_poisoning_enabled_early; 2886 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2887 static inline bool page_poisoning_enabled(void) 2888 { 2889 return _page_poisoning_enabled_early; 2890 } 2891 /* 2892 * For use in fast paths after init_mem_debugging() has run, or when a 2893 * false negative result is not harmful when called too early. 2894 */ 2895 static inline bool page_poisoning_enabled_static(void) 2896 { 2897 return static_branch_unlikely(&_page_poisoning_enabled); 2898 } 2899 static inline void kernel_poison_pages(struct page *page, int numpages) 2900 { 2901 if (page_poisoning_enabled_static()) 2902 __kernel_poison_pages(page, numpages); 2903 } 2904 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2905 { 2906 if (page_poisoning_enabled_static()) 2907 __kernel_unpoison_pages(page, numpages); 2908 } 2909 #else 2910 static inline bool page_poisoning_enabled(void) { return false; } 2911 static inline bool page_poisoning_enabled_static(void) { return false; } 2912 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2913 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2914 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2915 #endif 2916 2917 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2918 static inline bool want_init_on_alloc(gfp_t flags) 2919 { 2920 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2921 &init_on_alloc)) 2922 return true; 2923 return flags & __GFP_ZERO; 2924 } 2925 2926 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2927 static inline bool want_init_on_free(void) 2928 { 2929 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2930 &init_on_free); 2931 } 2932 2933 extern bool _debug_pagealloc_enabled_early; 2934 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2935 2936 static inline bool debug_pagealloc_enabled(void) 2937 { 2938 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2939 _debug_pagealloc_enabled_early; 2940 } 2941 2942 /* 2943 * For use in fast paths after init_debug_pagealloc() has run, or when a 2944 * false negative result is not harmful when called too early. 2945 */ 2946 static inline bool debug_pagealloc_enabled_static(void) 2947 { 2948 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2949 return false; 2950 2951 return static_branch_unlikely(&_debug_pagealloc_enabled); 2952 } 2953 2954 #ifdef CONFIG_DEBUG_PAGEALLOC 2955 /* 2956 * To support DEBUG_PAGEALLOC architecture must ensure that 2957 * __kernel_map_pages() never fails 2958 */ 2959 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2960 2961 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2962 { 2963 if (debug_pagealloc_enabled_static()) 2964 __kernel_map_pages(page, numpages, 1); 2965 } 2966 2967 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2968 { 2969 if (debug_pagealloc_enabled_static()) 2970 __kernel_map_pages(page, numpages, 0); 2971 } 2972 #else /* CONFIG_DEBUG_PAGEALLOC */ 2973 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 2974 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 2975 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2976 2977 #ifdef __HAVE_ARCH_GATE_AREA 2978 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2979 extern int in_gate_area_no_mm(unsigned long addr); 2980 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2981 #else 2982 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2983 { 2984 return NULL; 2985 } 2986 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2987 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2988 { 2989 return 0; 2990 } 2991 #endif /* __HAVE_ARCH_GATE_AREA */ 2992 2993 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2994 2995 #ifdef CONFIG_SYSCTL 2996 extern int sysctl_drop_caches; 2997 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2998 loff_t *); 2999 #endif 3000 3001 void drop_slab(void); 3002 void drop_slab_node(int nid); 3003 3004 #ifndef CONFIG_MMU 3005 #define randomize_va_space 0 3006 #else 3007 extern int randomize_va_space; 3008 #endif 3009 3010 const char * arch_vma_name(struct vm_area_struct *vma); 3011 #ifdef CONFIG_MMU 3012 void print_vma_addr(char *prefix, unsigned long rip); 3013 #else 3014 static inline void print_vma_addr(char *prefix, unsigned long rip) 3015 { 3016 } 3017 #endif 3018 3019 void *sparse_buffer_alloc(unsigned long size); 3020 struct page * __populate_section_memmap(unsigned long pfn, 3021 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3022 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3023 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3024 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3025 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3026 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3027 struct vmem_altmap *altmap); 3028 void *vmemmap_alloc_block(unsigned long size, int node); 3029 struct vmem_altmap; 3030 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3031 struct vmem_altmap *altmap); 3032 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3033 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3034 int node, struct vmem_altmap *altmap); 3035 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3036 struct vmem_altmap *altmap); 3037 void vmemmap_populate_print_last(void); 3038 #ifdef CONFIG_MEMORY_HOTPLUG 3039 void vmemmap_free(unsigned long start, unsigned long end, 3040 struct vmem_altmap *altmap); 3041 #endif 3042 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3043 unsigned long nr_pages); 3044 3045 enum mf_flags { 3046 MF_COUNT_INCREASED = 1 << 0, 3047 MF_ACTION_REQUIRED = 1 << 1, 3048 MF_MUST_KILL = 1 << 2, 3049 MF_SOFT_OFFLINE = 1 << 3, 3050 }; 3051 extern int memory_failure(unsigned long pfn, int flags); 3052 extern void memory_failure_queue(unsigned long pfn, int flags); 3053 extern void memory_failure_queue_kick(int cpu); 3054 extern int unpoison_memory(unsigned long pfn); 3055 extern int sysctl_memory_failure_early_kill; 3056 extern int sysctl_memory_failure_recovery; 3057 extern void shake_page(struct page *p, int access); 3058 extern atomic_long_t num_poisoned_pages __read_mostly; 3059 extern int soft_offline_page(unsigned long pfn, int flags); 3060 3061 3062 /* 3063 * Error handlers for various types of pages. 3064 */ 3065 enum mf_result { 3066 MF_IGNORED, /* Error: cannot be handled */ 3067 MF_FAILED, /* Error: handling failed */ 3068 MF_DELAYED, /* Will be handled later */ 3069 MF_RECOVERED, /* Successfully recovered */ 3070 }; 3071 3072 enum mf_action_page_type { 3073 MF_MSG_KERNEL, 3074 MF_MSG_KERNEL_HIGH_ORDER, 3075 MF_MSG_SLAB, 3076 MF_MSG_DIFFERENT_COMPOUND, 3077 MF_MSG_POISONED_HUGE, 3078 MF_MSG_HUGE, 3079 MF_MSG_FREE_HUGE, 3080 MF_MSG_NON_PMD_HUGE, 3081 MF_MSG_UNMAP_FAILED, 3082 MF_MSG_DIRTY_SWAPCACHE, 3083 MF_MSG_CLEAN_SWAPCACHE, 3084 MF_MSG_DIRTY_MLOCKED_LRU, 3085 MF_MSG_CLEAN_MLOCKED_LRU, 3086 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3087 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3088 MF_MSG_DIRTY_LRU, 3089 MF_MSG_CLEAN_LRU, 3090 MF_MSG_TRUNCATED_LRU, 3091 MF_MSG_BUDDY, 3092 MF_MSG_BUDDY_2ND, 3093 MF_MSG_DAX, 3094 MF_MSG_UNSPLIT_THP, 3095 MF_MSG_UNKNOWN, 3096 }; 3097 3098 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3099 extern void clear_huge_page(struct page *page, 3100 unsigned long addr_hint, 3101 unsigned int pages_per_huge_page); 3102 extern void copy_user_huge_page(struct page *dst, struct page *src, 3103 unsigned long addr_hint, 3104 struct vm_area_struct *vma, 3105 unsigned int pages_per_huge_page); 3106 extern long copy_huge_page_from_user(struct page *dst_page, 3107 const void __user *usr_src, 3108 unsigned int pages_per_huge_page, 3109 bool allow_pagefault); 3110 3111 /** 3112 * vma_is_special_huge - Are transhuge page-table entries considered special? 3113 * @vma: Pointer to the struct vm_area_struct to consider 3114 * 3115 * Whether transhuge page-table entries are considered "special" following 3116 * the definition in vm_normal_page(). 3117 * 3118 * Return: true if transhuge page-table entries should be considered special, 3119 * false otherwise. 3120 */ 3121 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3122 { 3123 return vma_is_dax(vma) || (vma->vm_file && 3124 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3125 } 3126 3127 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3128 3129 #ifdef CONFIG_DEBUG_PAGEALLOC 3130 extern unsigned int _debug_guardpage_minorder; 3131 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3132 3133 static inline unsigned int debug_guardpage_minorder(void) 3134 { 3135 return _debug_guardpage_minorder; 3136 } 3137 3138 static inline bool debug_guardpage_enabled(void) 3139 { 3140 return static_branch_unlikely(&_debug_guardpage_enabled); 3141 } 3142 3143 static inline bool page_is_guard(struct page *page) 3144 { 3145 if (!debug_guardpage_enabled()) 3146 return false; 3147 3148 return PageGuard(page); 3149 } 3150 #else 3151 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3152 static inline bool debug_guardpage_enabled(void) { return false; } 3153 static inline bool page_is_guard(struct page *page) { return false; } 3154 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3155 3156 #if MAX_NUMNODES > 1 3157 void __init setup_nr_node_ids(void); 3158 #else 3159 static inline void setup_nr_node_ids(void) {} 3160 #endif 3161 3162 extern int memcmp_pages(struct page *page1, struct page *page2); 3163 3164 static inline int pages_identical(struct page *page1, struct page *page2) 3165 { 3166 return !memcmp_pages(page1, page2); 3167 } 3168 3169 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3170 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3171 pgoff_t first_index, pgoff_t nr, 3172 pgoff_t bitmap_pgoff, 3173 unsigned long *bitmap, 3174 pgoff_t *start, 3175 pgoff_t *end); 3176 3177 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3178 pgoff_t first_index, pgoff_t nr); 3179 #endif 3180 3181 extern int sysctl_nr_trim_pages; 3182 3183 void mem_dump_obj(void *object); 3184 3185 #endif /* __KERNEL__ */ 3186 #endif /* _LINUX_MM_H */ 3187