xref: /linux-6.15/include/linux/mm.h (revision ef04d4ff)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for arcitectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * With CONFIG_CFI_CLANG, the compiler replaces function addresses in
129  * instrumented C code with jump table addresses. Architectures that
130  * support CFI can define this macro to return the actual function address
131  * when needed.
132  */
133 #ifndef function_nocfi
134 #define function_nocfi(x) (x)
135 #endif
136 
137 /*
138  * To prevent common memory management code establishing
139  * a zero page mapping on a read fault.
140  * This macro should be defined within <asm/pgtable.h>.
141  * s390 does this to prevent multiplexing of hardware bits
142  * related to the physical page in case of virtualization.
143  */
144 #ifndef mm_forbids_zeropage
145 #define mm_forbids_zeropage(X)	(0)
146 #endif
147 
148 /*
149  * On some architectures it is expensive to call memset() for small sizes.
150  * If an architecture decides to implement their own version of
151  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
152  * define their own version of this macro in <asm/pgtable.h>
153  */
154 #if BITS_PER_LONG == 64
155 /* This function must be updated when the size of struct page grows above 80
156  * or reduces below 56. The idea that compiler optimizes out switch()
157  * statement, and only leaves move/store instructions. Also the compiler can
158  * combine write statments if they are both assignments and can be reordered,
159  * this can result in several of the writes here being dropped.
160  */
161 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
162 static inline void __mm_zero_struct_page(struct page *page)
163 {
164 	unsigned long *_pp = (void *)page;
165 
166 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
167 	BUILD_BUG_ON(sizeof(struct page) & 7);
168 	BUILD_BUG_ON(sizeof(struct page) < 56);
169 	BUILD_BUG_ON(sizeof(struct page) > 80);
170 
171 	switch (sizeof(struct page)) {
172 	case 80:
173 		_pp[9] = 0;
174 		fallthrough;
175 	case 72:
176 		_pp[8] = 0;
177 		fallthrough;
178 	case 64:
179 		_pp[7] = 0;
180 		fallthrough;
181 	case 56:
182 		_pp[6] = 0;
183 		_pp[5] = 0;
184 		_pp[4] = 0;
185 		_pp[3] = 0;
186 		_pp[2] = 0;
187 		_pp[1] = 0;
188 		_pp[0] = 0;
189 	}
190 }
191 #else
192 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
193 #endif
194 
195 /*
196  * Default maximum number of active map areas, this limits the number of vmas
197  * per mm struct. Users can overwrite this number by sysctl but there is a
198  * problem.
199  *
200  * When a program's coredump is generated as ELF format, a section is created
201  * per a vma. In ELF, the number of sections is represented in unsigned short.
202  * This means the number of sections should be smaller than 65535 at coredump.
203  * Because the kernel adds some informative sections to a image of program at
204  * generating coredump, we need some margin. The number of extra sections is
205  * 1-3 now and depends on arch. We use "5" as safe margin, here.
206  *
207  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
208  * not a hard limit any more. Although some userspace tools can be surprised by
209  * that.
210  */
211 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
212 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
213 
214 extern int sysctl_max_map_count;
215 
216 extern unsigned long sysctl_user_reserve_kbytes;
217 extern unsigned long sysctl_admin_reserve_kbytes;
218 
219 extern int sysctl_overcommit_memory;
220 extern int sysctl_overcommit_ratio;
221 extern unsigned long sysctl_overcommit_kbytes;
222 
223 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
224 		loff_t *);
225 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
226 		loff_t *);
227 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
228 		loff_t *);
229 /*
230  * Any attempt to mark this function as static leads to build failure
231  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
232  * is referred to by BPF code. This must be visible for error injection.
233  */
234 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
235 		pgoff_t index, gfp_t gfp, void **shadowp);
236 
237 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
238 
239 /* to align the pointer to the (next) page boundary */
240 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
241 
242 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
243 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
244 
245 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 
260 #ifndef CONFIG_MMU
261 extern struct rb_root nommu_region_tree;
262 extern struct rw_semaphore nommu_region_sem;
263 
264 extern unsigned int kobjsize(const void *objp);
265 #endif
266 
267 /*
268  * vm_flags in vm_area_struct, see mm_types.h.
269  * When changing, update also include/trace/events/mmflags.h
270  */
271 #define VM_NONE		0x00000000
272 
273 #define VM_READ		0x00000001	/* currently active flags */
274 #define VM_WRITE	0x00000002
275 #define VM_EXEC		0x00000004
276 #define VM_SHARED	0x00000008
277 
278 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
279 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
280 #define VM_MAYWRITE	0x00000020
281 #define VM_MAYEXEC	0x00000040
282 #define VM_MAYSHARE	0x00000080
283 
284 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
285 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
286 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
287 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
288 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
289 
290 #define VM_LOCKED	0x00002000
291 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
292 
293 					/* Used by sys_madvise() */
294 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
295 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
296 
297 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
298 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
299 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
300 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
301 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
302 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
303 #define VM_SYNC		0x00800000	/* Synchronous page faults */
304 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
305 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
306 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
307 
308 #ifdef CONFIG_MEM_SOFT_DIRTY
309 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
310 #else
311 # define VM_SOFTDIRTY	0
312 #endif
313 
314 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
315 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
316 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
317 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
318 
319 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
320 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
325 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
326 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
327 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
328 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
329 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #if defined(CONFIG_X86)
346 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
347 #elif defined(CONFIG_PPC)
348 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
349 #elif defined(CONFIG_PARISC)
350 # define VM_GROWSUP	VM_ARCH_1
351 #elif defined(CONFIG_IA64)
352 # define VM_GROWSUP	VM_ARCH_1
353 #elif defined(CONFIG_SPARC64)
354 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
355 # define VM_ARCH_CLEAR	VM_SPARC_ADI
356 #elif defined(CONFIG_ARM64)
357 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
358 # define VM_ARCH_CLEAR	VM_ARM64_BTI
359 #elif !defined(CONFIG_MMU)
360 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
361 #endif
362 
363 #if defined(CONFIG_ARM64_MTE)
364 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
365 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
366 #else
367 # define VM_MTE		VM_NONE
368 # define VM_MTE_ALLOWED	VM_NONE
369 #endif
370 
371 #ifndef VM_GROWSUP
372 # define VM_GROWSUP	VM_NONE
373 #endif
374 
375 /* Bits set in the VMA until the stack is in its final location */
376 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
377 
378 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
379 
380 /* Common data flag combinations */
381 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
382 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
384 				 VM_MAYWRITE | VM_MAYEXEC)
385 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 
388 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
389 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
390 #endif
391 
392 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
394 #endif
395 
396 #ifdef CONFIG_STACK_GROWSUP
397 #define VM_STACK	VM_GROWSUP
398 #else
399 #define VM_STACK	VM_GROWSDOWN
400 #endif
401 
402 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
403 
404 /* VMA basic access permission flags */
405 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
406 
407 
408 /*
409  * Special vmas that are non-mergable, non-mlock()able.
410  */
411 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
412 
413 /* This mask prevents VMA from being scanned with khugepaged */
414 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
415 
416 /* This mask defines which mm->def_flags a process can inherit its parent */
417 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
418 
419 /* This mask is used to clear all the VMA flags used by mlock */
420 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
421 
422 /* Arch-specific flags to clear when updating VM flags on protection change */
423 #ifndef VM_ARCH_CLEAR
424 # define VM_ARCH_CLEAR	VM_NONE
425 #endif
426 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
427 
428 /*
429  * mapping from the currently active vm_flags protection bits (the
430  * low four bits) to a page protection mask..
431  */
432 extern pgprot_t protection_map[16];
433 
434 /**
435  * Fault flag definitions.
436  *
437  * @FAULT_FLAG_WRITE: Fault was a write fault.
438  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
439  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
440  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
441  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
442  * @FAULT_FLAG_TRIED: The fault has been tried once.
443  * @FAULT_FLAG_USER: The fault originated in userspace.
444  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
445  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
446  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
447  *
448  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
449  * whether we would allow page faults to retry by specifying these two
450  * fault flags correctly.  Currently there can be three legal combinations:
451  *
452  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
453  *                              this is the first try
454  *
455  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
456  *                              we've already tried at least once
457  *
458  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
459  *
460  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
461  * be used.  Note that page faults can be allowed to retry for multiple times,
462  * in which case we'll have an initial fault with flags (a) then later on
463  * continuous faults with flags (b).  We should always try to detect pending
464  * signals before a retry to make sure the continuous page faults can still be
465  * interrupted if necessary.
466  */
467 #define FAULT_FLAG_WRITE			0x01
468 #define FAULT_FLAG_MKWRITE			0x02
469 #define FAULT_FLAG_ALLOW_RETRY			0x04
470 #define FAULT_FLAG_RETRY_NOWAIT			0x08
471 #define FAULT_FLAG_KILLABLE			0x10
472 #define FAULT_FLAG_TRIED			0x20
473 #define FAULT_FLAG_USER				0x40
474 #define FAULT_FLAG_REMOTE			0x80
475 #define FAULT_FLAG_INSTRUCTION  		0x100
476 #define FAULT_FLAG_INTERRUPTIBLE		0x200
477 
478 /*
479  * The default fault flags that should be used by most of the
480  * arch-specific page fault handlers.
481  */
482 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
483 			     FAULT_FLAG_KILLABLE | \
484 			     FAULT_FLAG_INTERRUPTIBLE)
485 
486 /**
487  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
488  *
489  * This is mostly used for places where we want to try to avoid taking
490  * the mmap_lock for too long a time when waiting for another condition
491  * to change, in which case we can try to be polite to release the
492  * mmap_lock in the first round to avoid potential starvation of other
493  * processes that would also want the mmap_lock.
494  *
495  * Return: true if the page fault allows retry and this is the first
496  * attempt of the fault handling; false otherwise.
497  */
498 static inline bool fault_flag_allow_retry_first(unsigned int flags)
499 {
500 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
501 	    (!(flags & FAULT_FLAG_TRIED));
502 }
503 
504 #define FAULT_FLAG_TRACE \
505 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
506 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
507 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
508 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
509 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
510 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
511 	{ FAULT_FLAG_USER,		"USER" }, \
512 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
513 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
514 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
515 
516 /*
517  * vm_fault is filled by the pagefault handler and passed to the vma's
518  * ->fault function. The vma's ->fault is responsible for returning a bitmask
519  * of VM_FAULT_xxx flags that give details about how the fault was handled.
520  *
521  * MM layer fills up gfp_mask for page allocations but fault handler might
522  * alter it if its implementation requires a different allocation context.
523  *
524  * pgoff should be used in favour of virtual_address, if possible.
525  */
526 struct vm_fault {
527 	const struct {
528 		struct vm_area_struct *vma;	/* Target VMA */
529 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
530 		pgoff_t pgoff;			/* Logical page offset based on vma */
531 		unsigned long address;		/* Faulting virtual address */
532 	};
533 	unsigned int flags;		/* FAULT_FLAG_xxx flags
534 					 * XXX: should really be 'const' */
535 	pmd_t *pmd;			/* Pointer to pmd entry matching
536 					 * the 'address' */
537 	pud_t *pud;			/* Pointer to pud entry matching
538 					 * the 'address'
539 					 */
540 	pte_t orig_pte;			/* Value of PTE at the time of fault */
541 
542 	struct page *cow_page;		/* Page handler may use for COW fault */
543 	struct page *page;		/* ->fault handlers should return a
544 					 * page here, unless VM_FAULT_NOPAGE
545 					 * is set (which is also implied by
546 					 * VM_FAULT_ERROR).
547 					 */
548 	/* These three entries are valid only while holding ptl lock */
549 	pte_t *pte;			/* Pointer to pte entry matching
550 					 * the 'address'. NULL if the page
551 					 * table hasn't been allocated.
552 					 */
553 	spinlock_t *ptl;		/* Page table lock.
554 					 * Protects pte page table if 'pte'
555 					 * is not NULL, otherwise pmd.
556 					 */
557 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
558 					 * vm_ops->map_pages() sets up a page
559 					 * table from atomic context.
560 					 * do_fault_around() pre-allocates
561 					 * page table to avoid allocation from
562 					 * atomic context.
563 					 */
564 };
565 
566 /* page entry size for vm->huge_fault() */
567 enum page_entry_size {
568 	PE_SIZE_PTE = 0,
569 	PE_SIZE_PMD,
570 	PE_SIZE_PUD,
571 };
572 
573 /*
574  * These are the virtual MM functions - opening of an area, closing and
575  * unmapping it (needed to keep files on disk up-to-date etc), pointer
576  * to the functions called when a no-page or a wp-page exception occurs.
577  */
578 struct vm_operations_struct {
579 	void (*open)(struct vm_area_struct * area);
580 	void (*close)(struct vm_area_struct * area);
581 	/* Called any time before splitting to check if it's allowed */
582 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
583 	int (*mremap)(struct vm_area_struct *area, unsigned long flags);
584 	/*
585 	 * Called by mprotect() to make driver-specific permission
586 	 * checks before mprotect() is finalised.   The VMA must not
587 	 * be modified.  Returns 0 if eprotect() can proceed.
588 	 */
589 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
590 			unsigned long end, unsigned long newflags);
591 	vm_fault_t (*fault)(struct vm_fault *vmf);
592 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
593 			enum page_entry_size pe_size);
594 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
595 			pgoff_t start_pgoff, pgoff_t end_pgoff);
596 	unsigned long (*pagesize)(struct vm_area_struct * area);
597 
598 	/* notification that a previously read-only page is about to become
599 	 * writable, if an error is returned it will cause a SIGBUS */
600 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
601 
602 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
603 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
604 
605 	/* called by access_process_vm when get_user_pages() fails, typically
606 	 * for use by special VMAs. See also generic_access_phys() for a generic
607 	 * implementation useful for any iomem mapping.
608 	 */
609 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
610 		      void *buf, int len, int write);
611 
612 	/* Called by the /proc/PID/maps code to ask the vma whether it
613 	 * has a special name.  Returning non-NULL will also cause this
614 	 * vma to be dumped unconditionally. */
615 	const char *(*name)(struct vm_area_struct *vma);
616 
617 #ifdef CONFIG_NUMA
618 	/*
619 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
620 	 * to hold the policy upon return.  Caller should pass NULL @new to
621 	 * remove a policy and fall back to surrounding context--i.e. do not
622 	 * install a MPOL_DEFAULT policy, nor the task or system default
623 	 * mempolicy.
624 	 */
625 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
626 
627 	/*
628 	 * get_policy() op must add reference [mpol_get()] to any policy at
629 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
630 	 * in mm/mempolicy.c will do this automatically.
631 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
632 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
633 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
634 	 * must return NULL--i.e., do not "fallback" to task or system default
635 	 * policy.
636 	 */
637 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
638 					unsigned long addr);
639 #endif
640 	/*
641 	 * Called by vm_normal_page() for special PTEs to find the
642 	 * page for @addr.  This is useful if the default behavior
643 	 * (using pte_page()) would not find the correct page.
644 	 */
645 	struct page *(*find_special_page)(struct vm_area_struct *vma,
646 					  unsigned long addr);
647 };
648 
649 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
650 {
651 	static const struct vm_operations_struct dummy_vm_ops = {};
652 
653 	memset(vma, 0, sizeof(*vma));
654 	vma->vm_mm = mm;
655 	vma->vm_ops = &dummy_vm_ops;
656 	INIT_LIST_HEAD(&vma->anon_vma_chain);
657 }
658 
659 static inline void vma_set_anonymous(struct vm_area_struct *vma)
660 {
661 	vma->vm_ops = NULL;
662 }
663 
664 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
665 {
666 	return !vma->vm_ops;
667 }
668 
669 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
670 {
671 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
672 
673 	if (!maybe_stack)
674 		return false;
675 
676 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
677 						VM_STACK_INCOMPLETE_SETUP)
678 		return true;
679 
680 	return false;
681 }
682 
683 static inline bool vma_is_foreign(struct vm_area_struct *vma)
684 {
685 	if (!current->mm)
686 		return true;
687 
688 	if (current->mm != vma->vm_mm)
689 		return true;
690 
691 	return false;
692 }
693 
694 static inline bool vma_is_accessible(struct vm_area_struct *vma)
695 {
696 	return vma->vm_flags & VM_ACCESS_FLAGS;
697 }
698 
699 #ifdef CONFIG_SHMEM
700 /*
701  * The vma_is_shmem is not inline because it is used only by slow
702  * paths in userfault.
703  */
704 bool vma_is_shmem(struct vm_area_struct *vma);
705 #else
706 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
707 #endif
708 
709 int vma_is_stack_for_current(struct vm_area_struct *vma);
710 
711 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
713 
714 struct mmu_gather;
715 struct inode;
716 
717 #include <linux/huge_mm.h>
718 
719 /*
720  * Methods to modify the page usage count.
721  *
722  * What counts for a page usage:
723  * - cache mapping   (page->mapping)
724  * - private data    (page->private)
725  * - page mapped in a task's page tables, each mapping
726  *   is counted separately
727  *
728  * Also, many kernel routines increase the page count before a critical
729  * routine so they can be sure the page doesn't go away from under them.
730  */
731 
732 /*
733  * Drop a ref, return true if the refcount fell to zero (the page has no users)
734  */
735 static inline int put_page_testzero(struct page *page)
736 {
737 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
738 	return page_ref_dec_and_test(page);
739 }
740 
741 /*
742  * Try to grab a ref unless the page has a refcount of zero, return false if
743  * that is the case.
744  * This can be called when MMU is off so it must not access
745  * any of the virtual mappings.
746  */
747 static inline int get_page_unless_zero(struct page *page)
748 {
749 	return page_ref_add_unless(page, 1, 0);
750 }
751 
752 extern int page_is_ram(unsigned long pfn);
753 
754 enum {
755 	REGION_INTERSECTS,
756 	REGION_DISJOINT,
757 	REGION_MIXED,
758 };
759 
760 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
761 		      unsigned long desc);
762 
763 /* Support for virtually mapped pages */
764 struct page *vmalloc_to_page(const void *addr);
765 unsigned long vmalloc_to_pfn(const void *addr);
766 
767 /*
768  * Determine if an address is within the vmalloc range
769  *
770  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
771  * is no special casing required.
772  */
773 
774 #ifndef is_ioremap_addr
775 #define is_ioremap_addr(x) is_vmalloc_addr(x)
776 #endif
777 
778 #ifdef CONFIG_MMU
779 extern bool is_vmalloc_addr(const void *x);
780 extern int is_vmalloc_or_module_addr(const void *x);
781 #else
782 static inline bool is_vmalloc_addr(const void *x)
783 {
784 	return false;
785 }
786 static inline int is_vmalloc_or_module_addr(const void *x)
787 {
788 	return 0;
789 }
790 #endif
791 
792 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
793 static inline void *kvmalloc(size_t size, gfp_t flags)
794 {
795 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
796 }
797 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
798 {
799 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
800 }
801 static inline void *kvzalloc(size_t size, gfp_t flags)
802 {
803 	return kvmalloc(size, flags | __GFP_ZERO);
804 }
805 
806 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
807 {
808 	size_t bytes;
809 
810 	if (unlikely(check_mul_overflow(n, size, &bytes)))
811 		return NULL;
812 
813 	return kvmalloc(bytes, flags);
814 }
815 
816 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
817 {
818 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
819 }
820 
821 extern void kvfree(const void *addr);
822 extern void kvfree_sensitive(const void *addr, size_t len);
823 
824 static inline int head_compound_mapcount(struct page *head)
825 {
826 	return atomic_read(compound_mapcount_ptr(head)) + 1;
827 }
828 
829 /*
830  * Mapcount of compound page as a whole, does not include mapped sub-pages.
831  *
832  * Must be called only for compound pages or any their tail sub-pages.
833  */
834 static inline int compound_mapcount(struct page *page)
835 {
836 	VM_BUG_ON_PAGE(!PageCompound(page), page);
837 	page = compound_head(page);
838 	return head_compound_mapcount(page);
839 }
840 
841 /*
842  * The atomic page->_mapcount, starts from -1: so that transitions
843  * both from it and to it can be tracked, using atomic_inc_and_test
844  * and atomic_add_negative(-1).
845  */
846 static inline void page_mapcount_reset(struct page *page)
847 {
848 	atomic_set(&(page)->_mapcount, -1);
849 }
850 
851 int __page_mapcount(struct page *page);
852 
853 /*
854  * Mapcount of 0-order page; when compound sub-page, includes
855  * compound_mapcount().
856  *
857  * Result is undefined for pages which cannot be mapped into userspace.
858  * For example SLAB or special types of pages. See function page_has_type().
859  * They use this place in struct page differently.
860  */
861 static inline int page_mapcount(struct page *page)
862 {
863 	if (unlikely(PageCompound(page)))
864 		return __page_mapcount(page);
865 	return atomic_read(&page->_mapcount) + 1;
866 }
867 
868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
869 int total_mapcount(struct page *page);
870 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
871 #else
872 static inline int total_mapcount(struct page *page)
873 {
874 	return page_mapcount(page);
875 }
876 static inline int page_trans_huge_mapcount(struct page *page,
877 					   int *total_mapcount)
878 {
879 	int mapcount = page_mapcount(page);
880 	if (total_mapcount)
881 		*total_mapcount = mapcount;
882 	return mapcount;
883 }
884 #endif
885 
886 static inline struct page *virt_to_head_page(const void *x)
887 {
888 	struct page *page = virt_to_page(x);
889 
890 	return compound_head(page);
891 }
892 
893 void __put_page(struct page *page);
894 
895 void put_pages_list(struct list_head *pages);
896 
897 void split_page(struct page *page, unsigned int order);
898 
899 /*
900  * Compound pages have a destructor function.  Provide a
901  * prototype for that function and accessor functions.
902  * These are _only_ valid on the head of a compound page.
903  */
904 typedef void compound_page_dtor(struct page *);
905 
906 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
907 enum compound_dtor_id {
908 	NULL_COMPOUND_DTOR,
909 	COMPOUND_PAGE_DTOR,
910 #ifdef CONFIG_HUGETLB_PAGE
911 	HUGETLB_PAGE_DTOR,
912 #endif
913 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
914 	TRANSHUGE_PAGE_DTOR,
915 #endif
916 	NR_COMPOUND_DTORS,
917 };
918 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
919 
920 static inline void set_compound_page_dtor(struct page *page,
921 		enum compound_dtor_id compound_dtor)
922 {
923 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
924 	page[1].compound_dtor = compound_dtor;
925 }
926 
927 static inline void destroy_compound_page(struct page *page)
928 {
929 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
930 	compound_page_dtors[page[1].compound_dtor](page);
931 }
932 
933 static inline unsigned int compound_order(struct page *page)
934 {
935 	if (!PageHead(page))
936 		return 0;
937 	return page[1].compound_order;
938 }
939 
940 static inline bool hpage_pincount_available(struct page *page)
941 {
942 	/*
943 	 * Can the page->hpage_pinned_refcount field be used? That field is in
944 	 * the 3rd page of the compound page, so the smallest (2-page) compound
945 	 * pages cannot support it.
946 	 */
947 	page = compound_head(page);
948 	return PageCompound(page) && compound_order(page) > 1;
949 }
950 
951 static inline int head_compound_pincount(struct page *head)
952 {
953 	return atomic_read(compound_pincount_ptr(head));
954 }
955 
956 static inline int compound_pincount(struct page *page)
957 {
958 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
959 	page = compound_head(page);
960 	return head_compound_pincount(page);
961 }
962 
963 static inline void set_compound_order(struct page *page, unsigned int order)
964 {
965 	page[1].compound_order = order;
966 	page[1].compound_nr = 1U << order;
967 }
968 
969 /* Returns the number of pages in this potentially compound page. */
970 static inline unsigned long compound_nr(struct page *page)
971 {
972 	if (!PageHead(page))
973 		return 1;
974 	return page[1].compound_nr;
975 }
976 
977 /* Returns the number of bytes in this potentially compound page. */
978 static inline unsigned long page_size(struct page *page)
979 {
980 	return PAGE_SIZE << compound_order(page);
981 }
982 
983 /* Returns the number of bits needed for the number of bytes in a page */
984 static inline unsigned int page_shift(struct page *page)
985 {
986 	return PAGE_SHIFT + compound_order(page);
987 }
988 
989 void free_compound_page(struct page *page);
990 
991 #ifdef CONFIG_MMU
992 /*
993  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
994  * servicing faults for write access.  In the normal case, do always want
995  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
996  * that do not have writing enabled, when used by access_process_vm.
997  */
998 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
999 {
1000 	if (likely(vma->vm_flags & VM_WRITE))
1001 		pte = pte_mkwrite(pte);
1002 	return pte;
1003 }
1004 
1005 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1006 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1007 
1008 vm_fault_t finish_fault(struct vm_fault *vmf);
1009 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1010 #endif
1011 
1012 /*
1013  * Multiple processes may "see" the same page. E.g. for untouched
1014  * mappings of /dev/null, all processes see the same page full of
1015  * zeroes, and text pages of executables and shared libraries have
1016  * only one copy in memory, at most, normally.
1017  *
1018  * For the non-reserved pages, page_count(page) denotes a reference count.
1019  *   page_count() == 0 means the page is free. page->lru is then used for
1020  *   freelist management in the buddy allocator.
1021  *   page_count() > 0  means the page has been allocated.
1022  *
1023  * Pages are allocated by the slab allocator in order to provide memory
1024  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1025  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1026  * unless a particular usage is carefully commented. (the responsibility of
1027  * freeing the kmalloc memory is the caller's, of course).
1028  *
1029  * A page may be used by anyone else who does a __get_free_page().
1030  * In this case, page_count still tracks the references, and should only
1031  * be used through the normal accessor functions. The top bits of page->flags
1032  * and page->virtual store page management information, but all other fields
1033  * are unused and could be used privately, carefully. The management of this
1034  * page is the responsibility of the one who allocated it, and those who have
1035  * subsequently been given references to it.
1036  *
1037  * The other pages (we may call them "pagecache pages") are completely
1038  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1039  * The following discussion applies only to them.
1040  *
1041  * A pagecache page contains an opaque `private' member, which belongs to the
1042  * page's address_space. Usually, this is the address of a circular list of
1043  * the page's disk buffers. PG_private must be set to tell the VM to call
1044  * into the filesystem to release these pages.
1045  *
1046  * A page may belong to an inode's memory mapping. In this case, page->mapping
1047  * is the pointer to the inode, and page->index is the file offset of the page,
1048  * in units of PAGE_SIZE.
1049  *
1050  * If pagecache pages are not associated with an inode, they are said to be
1051  * anonymous pages. These may become associated with the swapcache, and in that
1052  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1053  *
1054  * In either case (swapcache or inode backed), the pagecache itself holds one
1055  * reference to the page. Setting PG_private should also increment the
1056  * refcount. The each user mapping also has a reference to the page.
1057  *
1058  * The pagecache pages are stored in a per-mapping radix tree, which is
1059  * rooted at mapping->i_pages, and indexed by offset.
1060  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1061  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1062  *
1063  * All pagecache pages may be subject to I/O:
1064  * - inode pages may need to be read from disk,
1065  * - inode pages which have been modified and are MAP_SHARED may need
1066  *   to be written back to the inode on disk,
1067  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1068  *   modified may need to be swapped out to swap space and (later) to be read
1069  *   back into memory.
1070  */
1071 
1072 /*
1073  * The zone field is never updated after free_area_init_core()
1074  * sets it, so none of the operations on it need to be atomic.
1075  */
1076 
1077 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1078 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1079 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1080 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1081 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1082 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1083 
1084 /*
1085  * Define the bit shifts to access each section.  For non-existent
1086  * sections we define the shift as 0; that plus a 0 mask ensures
1087  * the compiler will optimise away reference to them.
1088  */
1089 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1090 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1091 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1092 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1093 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1094 
1095 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1096 #ifdef NODE_NOT_IN_PAGE_FLAGS
1097 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1098 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1099 						SECTIONS_PGOFF : ZONES_PGOFF)
1100 #else
1101 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1102 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1103 						NODES_PGOFF : ZONES_PGOFF)
1104 #endif
1105 
1106 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1107 
1108 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1109 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1110 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1111 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1112 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1113 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1114 
1115 static inline enum zone_type page_zonenum(const struct page *page)
1116 {
1117 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1118 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1119 }
1120 
1121 #ifdef CONFIG_ZONE_DEVICE
1122 static inline bool is_zone_device_page(const struct page *page)
1123 {
1124 	return page_zonenum(page) == ZONE_DEVICE;
1125 }
1126 extern void memmap_init_zone_device(struct zone *, unsigned long,
1127 				    unsigned long, struct dev_pagemap *);
1128 #else
1129 static inline bool is_zone_device_page(const struct page *page)
1130 {
1131 	return false;
1132 }
1133 #endif
1134 
1135 #ifdef CONFIG_DEV_PAGEMAP_OPS
1136 void free_devmap_managed_page(struct page *page);
1137 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1138 
1139 static inline bool page_is_devmap_managed(struct page *page)
1140 {
1141 	if (!static_branch_unlikely(&devmap_managed_key))
1142 		return false;
1143 	if (!is_zone_device_page(page))
1144 		return false;
1145 	switch (page->pgmap->type) {
1146 	case MEMORY_DEVICE_PRIVATE:
1147 	case MEMORY_DEVICE_FS_DAX:
1148 		return true;
1149 	default:
1150 		break;
1151 	}
1152 	return false;
1153 }
1154 
1155 void put_devmap_managed_page(struct page *page);
1156 
1157 #else /* CONFIG_DEV_PAGEMAP_OPS */
1158 static inline bool page_is_devmap_managed(struct page *page)
1159 {
1160 	return false;
1161 }
1162 
1163 static inline void put_devmap_managed_page(struct page *page)
1164 {
1165 }
1166 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1167 
1168 static inline bool is_device_private_page(const struct page *page)
1169 {
1170 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1171 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1172 		is_zone_device_page(page) &&
1173 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1174 }
1175 
1176 static inline bool is_pci_p2pdma_page(const struct page *page)
1177 {
1178 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1179 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1180 		is_zone_device_page(page) &&
1181 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1182 }
1183 
1184 /* 127: arbitrary random number, small enough to assemble well */
1185 #define page_ref_zero_or_close_to_overflow(page) \
1186 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1187 
1188 static inline void get_page(struct page *page)
1189 {
1190 	page = compound_head(page);
1191 	/*
1192 	 * Getting a normal page or the head of a compound page
1193 	 * requires to already have an elevated page->_refcount.
1194 	 */
1195 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1196 	page_ref_inc(page);
1197 }
1198 
1199 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1200 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1201 						   unsigned int flags);
1202 
1203 
1204 static inline __must_check bool try_get_page(struct page *page)
1205 {
1206 	page = compound_head(page);
1207 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1208 		return false;
1209 	page_ref_inc(page);
1210 	return true;
1211 }
1212 
1213 static inline void put_page(struct page *page)
1214 {
1215 	page = compound_head(page);
1216 
1217 	/*
1218 	 * For devmap managed pages we need to catch refcount transition from
1219 	 * 2 to 1, when refcount reach one it means the page is free and we
1220 	 * need to inform the device driver through callback. See
1221 	 * include/linux/memremap.h and HMM for details.
1222 	 */
1223 	if (page_is_devmap_managed(page)) {
1224 		put_devmap_managed_page(page);
1225 		return;
1226 	}
1227 
1228 	if (put_page_testzero(page))
1229 		__put_page(page);
1230 }
1231 
1232 /*
1233  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1234  * the page's refcount so that two separate items are tracked: the original page
1235  * reference count, and also a new count of how many pin_user_pages() calls were
1236  * made against the page. ("gup-pinned" is another term for the latter).
1237  *
1238  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1239  * distinct from normal pages. As such, the unpin_user_page() call (and its
1240  * variants) must be used in order to release gup-pinned pages.
1241  *
1242  * Choice of value:
1243  *
1244  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1245  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1246  * simpler, due to the fact that adding an even power of two to the page
1247  * refcount has the effect of using only the upper N bits, for the code that
1248  * counts up using the bias value. This means that the lower bits are left for
1249  * the exclusive use of the original code that increments and decrements by one
1250  * (or at least, by much smaller values than the bias value).
1251  *
1252  * Of course, once the lower bits overflow into the upper bits (and this is
1253  * OK, because subtraction recovers the original values), then visual inspection
1254  * no longer suffices to directly view the separate counts. However, for normal
1255  * applications that don't have huge page reference counts, this won't be an
1256  * issue.
1257  *
1258  * Locking: the lockless algorithm described in page_cache_get_speculative()
1259  * and page_cache_gup_pin_speculative() provides safe operation for
1260  * get_user_pages and page_mkclean and other calls that race to set up page
1261  * table entries.
1262  */
1263 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1264 
1265 void unpin_user_page(struct page *page);
1266 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1267 				 bool make_dirty);
1268 void unpin_user_pages(struct page **pages, unsigned long npages);
1269 
1270 /**
1271  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1272  *
1273  * This function checks if a page has been pinned via a call to
1274  * pin_user_pages*().
1275  *
1276  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1277  * because it means "definitely not pinned for DMA", but true means "probably
1278  * pinned for DMA, but possibly a false positive due to having at least
1279  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1280  *
1281  * False positives are OK, because: a) it's unlikely for a page to get that many
1282  * refcounts, and b) all the callers of this routine are expected to be able to
1283  * deal gracefully with a false positive.
1284  *
1285  * For huge pages, the result will be exactly correct. That's because we have
1286  * more tracking data available: the 3rd struct page in the compound page is
1287  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1288  * scheme).
1289  *
1290  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1291  *
1292  * @page:	pointer to page to be queried.
1293  * @Return:	True, if it is likely that the page has been "dma-pinned".
1294  *		False, if the page is definitely not dma-pinned.
1295  */
1296 static inline bool page_maybe_dma_pinned(struct page *page)
1297 {
1298 	if (hpage_pincount_available(page))
1299 		return compound_pincount(page) > 0;
1300 
1301 	/*
1302 	 * page_ref_count() is signed. If that refcount overflows, then
1303 	 * page_ref_count() returns a negative value, and callers will avoid
1304 	 * further incrementing the refcount.
1305 	 *
1306 	 * Here, for that overflow case, use the signed bit to count a little
1307 	 * bit higher via unsigned math, and thus still get an accurate result.
1308 	 */
1309 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1310 		GUP_PIN_COUNTING_BIAS;
1311 }
1312 
1313 static inline bool is_cow_mapping(vm_flags_t flags)
1314 {
1315 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1316 }
1317 
1318 /*
1319  * This should most likely only be called during fork() to see whether we
1320  * should break the cow immediately for a page on the src mm.
1321  */
1322 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1323 					  struct page *page)
1324 {
1325 	if (!is_cow_mapping(vma->vm_flags))
1326 		return false;
1327 
1328 	if (!atomic_read(&vma->vm_mm->has_pinned))
1329 		return false;
1330 
1331 	return page_maybe_dma_pinned(page);
1332 }
1333 
1334 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1335 #define SECTION_IN_PAGE_FLAGS
1336 #endif
1337 
1338 /*
1339  * The identification function is mainly used by the buddy allocator for
1340  * determining if two pages could be buddies. We are not really identifying
1341  * the zone since we could be using the section number id if we do not have
1342  * node id available in page flags.
1343  * We only guarantee that it will return the same value for two combinable
1344  * pages in a zone.
1345  */
1346 static inline int page_zone_id(struct page *page)
1347 {
1348 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1349 }
1350 
1351 #ifdef NODE_NOT_IN_PAGE_FLAGS
1352 extern int page_to_nid(const struct page *page);
1353 #else
1354 static inline int page_to_nid(const struct page *page)
1355 {
1356 	struct page *p = (struct page *)page;
1357 
1358 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1359 }
1360 #endif
1361 
1362 #ifdef CONFIG_NUMA_BALANCING
1363 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1364 {
1365 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1366 }
1367 
1368 static inline int cpupid_to_pid(int cpupid)
1369 {
1370 	return cpupid & LAST__PID_MASK;
1371 }
1372 
1373 static inline int cpupid_to_cpu(int cpupid)
1374 {
1375 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1376 }
1377 
1378 static inline int cpupid_to_nid(int cpupid)
1379 {
1380 	return cpu_to_node(cpupid_to_cpu(cpupid));
1381 }
1382 
1383 static inline bool cpupid_pid_unset(int cpupid)
1384 {
1385 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1386 }
1387 
1388 static inline bool cpupid_cpu_unset(int cpupid)
1389 {
1390 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1391 }
1392 
1393 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1394 {
1395 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1396 }
1397 
1398 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1399 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1400 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1401 {
1402 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1403 }
1404 
1405 static inline int page_cpupid_last(struct page *page)
1406 {
1407 	return page->_last_cpupid;
1408 }
1409 static inline void page_cpupid_reset_last(struct page *page)
1410 {
1411 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1412 }
1413 #else
1414 static inline int page_cpupid_last(struct page *page)
1415 {
1416 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1417 }
1418 
1419 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1420 
1421 static inline void page_cpupid_reset_last(struct page *page)
1422 {
1423 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1424 }
1425 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1426 #else /* !CONFIG_NUMA_BALANCING */
1427 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1428 {
1429 	return page_to_nid(page); /* XXX */
1430 }
1431 
1432 static inline int page_cpupid_last(struct page *page)
1433 {
1434 	return page_to_nid(page); /* XXX */
1435 }
1436 
1437 static inline int cpupid_to_nid(int cpupid)
1438 {
1439 	return -1;
1440 }
1441 
1442 static inline int cpupid_to_pid(int cpupid)
1443 {
1444 	return -1;
1445 }
1446 
1447 static inline int cpupid_to_cpu(int cpupid)
1448 {
1449 	return -1;
1450 }
1451 
1452 static inline int cpu_pid_to_cpupid(int nid, int pid)
1453 {
1454 	return -1;
1455 }
1456 
1457 static inline bool cpupid_pid_unset(int cpupid)
1458 {
1459 	return true;
1460 }
1461 
1462 static inline void page_cpupid_reset_last(struct page *page)
1463 {
1464 }
1465 
1466 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1467 {
1468 	return false;
1469 }
1470 #endif /* CONFIG_NUMA_BALANCING */
1471 
1472 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1473 
1474 /*
1475  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1476  * setting tags for all pages to native kernel tag value 0xff, as the default
1477  * value 0x00 maps to 0xff.
1478  */
1479 
1480 static inline u8 page_kasan_tag(const struct page *page)
1481 {
1482 	u8 tag = 0xff;
1483 
1484 	if (kasan_enabled()) {
1485 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1486 		tag ^= 0xff;
1487 	}
1488 
1489 	return tag;
1490 }
1491 
1492 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1493 {
1494 	if (kasan_enabled()) {
1495 		tag ^= 0xff;
1496 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1497 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1498 	}
1499 }
1500 
1501 static inline void page_kasan_tag_reset(struct page *page)
1502 {
1503 	if (kasan_enabled())
1504 		page_kasan_tag_set(page, 0xff);
1505 }
1506 
1507 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1508 
1509 static inline u8 page_kasan_tag(const struct page *page)
1510 {
1511 	return 0xff;
1512 }
1513 
1514 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1515 static inline void page_kasan_tag_reset(struct page *page) { }
1516 
1517 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1518 
1519 static inline struct zone *page_zone(const struct page *page)
1520 {
1521 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1522 }
1523 
1524 static inline pg_data_t *page_pgdat(const struct page *page)
1525 {
1526 	return NODE_DATA(page_to_nid(page));
1527 }
1528 
1529 #ifdef SECTION_IN_PAGE_FLAGS
1530 static inline void set_page_section(struct page *page, unsigned long section)
1531 {
1532 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1533 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1534 }
1535 
1536 static inline unsigned long page_to_section(const struct page *page)
1537 {
1538 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1539 }
1540 #endif
1541 
1542 static inline void set_page_zone(struct page *page, enum zone_type zone)
1543 {
1544 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1545 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1546 }
1547 
1548 static inline void set_page_node(struct page *page, unsigned long node)
1549 {
1550 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1551 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1552 }
1553 
1554 static inline void set_page_links(struct page *page, enum zone_type zone,
1555 	unsigned long node, unsigned long pfn)
1556 {
1557 	set_page_zone(page, zone);
1558 	set_page_node(page, node);
1559 #ifdef SECTION_IN_PAGE_FLAGS
1560 	set_page_section(page, pfn_to_section_nr(pfn));
1561 #endif
1562 }
1563 
1564 /*
1565  * Some inline functions in vmstat.h depend on page_zone()
1566  */
1567 #include <linux/vmstat.h>
1568 
1569 static __always_inline void *lowmem_page_address(const struct page *page)
1570 {
1571 	return page_to_virt(page);
1572 }
1573 
1574 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1575 #define HASHED_PAGE_VIRTUAL
1576 #endif
1577 
1578 #if defined(WANT_PAGE_VIRTUAL)
1579 static inline void *page_address(const struct page *page)
1580 {
1581 	return page->virtual;
1582 }
1583 static inline void set_page_address(struct page *page, void *address)
1584 {
1585 	page->virtual = address;
1586 }
1587 #define page_address_init()  do { } while(0)
1588 #endif
1589 
1590 #if defined(HASHED_PAGE_VIRTUAL)
1591 void *page_address(const struct page *page);
1592 void set_page_address(struct page *page, void *virtual);
1593 void page_address_init(void);
1594 #endif
1595 
1596 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1597 #define page_address(page) lowmem_page_address(page)
1598 #define set_page_address(page, address)  do { } while(0)
1599 #define page_address_init()  do { } while(0)
1600 #endif
1601 
1602 extern void *page_rmapping(struct page *page);
1603 extern struct anon_vma *page_anon_vma(struct page *page);
1604 extern struct address_space *page_mapping(struct page *page);
1605 
1606 extern struct address_space *__page_file_mapping(struct page *);
1607 
1608 static inline
1609 struct address_space *page_file_mapping(struct page *page)
1610 {
1611 	if (unlikely(PageSwapCache(page)))
1612 		return __page_file_mapping(page);
1613 
1614 	return page->mapping;
1615 }
1616 
1617 extern pgoff_t __page_file_index(struct page *page);
1618 
1619 /*
1620  * Return the pagecache index of the passed page.  Regular pagecache pages
1621  * use ->index whereas swapcache pages use swp_offset(->private)
1622  */
1623 static inline pgoff_t page_index(struct page *page)
1624 {
1625 	if (unlikely(PageSwapCache(page)))
1626 		return __page_file_index(page);
1627 	return page->index;
1628 }
1629 
1630 bool page_mapped(struct page *page);
1631 struct address_space *page_mapping(struct page *page);
1632 struct address_space *page_mapping_file(struct page *page);
1633 
1634 /*
1635  * Return true only if the page has been allocated with
1636  * ALLOC_NO_WATERMARKS and the low watermark was not
1637  * met implying that the system is under some pressure.
1638  */
1639 static inline bool page_is_pfmemalloc(const struct page *page)
1640 {
1641 	/*
1642 	 * Page index cannot be this large so this must be
1643 	 * a pfmemalloc page.
1644 	 */
1645 	return page->index == -1UL;
1646 }
1647 
1648 /*
1649  * Only to be called by the page allocator on a freshly allocated
1650  * page.
1651  */
1652 static inline void set_page_pfmemalloc(struct page *page)
1653 {
1654 	page->index = -1UL;
1655 }
1656 
1657 static inline void clear_page_pfmemalloc(struct page *page)
1658 {
1659 	page->index = 0;
1660 }
1661 
1662 /*
1663  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1664  */
1665 extern void pagefault_out_of_memory(void);
1666 
1667 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1668 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1669 
1670 /*
1671  * Flags passed to show_mem() and show_free_areas() to suppress output in
1672  * various contexts.
1673  */
1674 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1675 
1676 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1677 
1678 #ifdef CONFIG_MMU
1679 extern bool can_do_mlock(void);
1680 #else
1681 static inline bool can_do_mlock(void) { return false; }
1682 #endif
1683 extern int user_shm_lock(size_t, struct user_struct *);
1684 extern void user_shm_unlock(size_t, struct user_struct *);
1685 
1686 /*
1687  * Parameter block passed down to zap_pte_range in exceptional cases.
1688  */
1689 struct zap_details {
1690 	struct address_space *check_mapping;	/* Check page->mapping if set */
1691 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1692 	pgoff_t last_index;			/* Highest page->index to unmap */
1693 };
1694 
1695 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1696 			     pte_t pte);
1697 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1698 				pmd_t pmd);
1699 
1700 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1701 		  unsigned long size);
1702 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1703 		    unsigned long size);
1704 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1705 		unsigned long start, unsigned long end);
1706 
1707 struct mmu_notifier_range;
1708 
1709 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1710 		unsigned long end, unsigned long floor, unsigned long ceiling);
1711 int
1712 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1713 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1714 			  struct mmu_notifier_range *range, pte_t **ptepp,
1715 			  pmd_t **pmdpp, spinlock_t **ptlp);
1716 int follow_pte(struct mm_struct *mm, unsigned long address,
1717 	       pte_t **ptepp, spinlock_t **ptlp);
1718 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1719 	unsigned long *pfn);
1720 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1721 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1722 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1723 			void *buf, int len, int write);
1724 
1725 extern void truncate_pagecache(struct inode *inode, loff_t new);
1726 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1727 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1728 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1729 int truncate_inode_page(struct address_space *mapping, struct page *page);
1730 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1731 int invalidate_inode_page(struct page *page);
1732 
1733 #ifdef CONFIG_MMU
1734 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1735 				  unsigned long address, unsigned int flags,
1736 				  struct pt_regs *regs);
1737 extern int fixup_user_fault(struct mm_struct *mm,
1738 			    unsigned long address, unsigned int fault_flags,
1739 			    bool *unlocked);
1740 void unmap_mapping_pages(struct address_space *mapping,
1741 		pgoff_t start, pgoff_t nr, bool even_cows);
1742 void unmap_mapping_range(struct address_space *mapping,
1743 		loff_t const holebegin, loff_t const holelen, int even_cows);
1744 #else
1745 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1746 					 unsigned long address, unsigned int flags,
1747 					 struct pt_regs *regs)
1748 {
1749 	/* should never happen if there's no MMU */
1750 	BUG();
1751 	return VM_FAULT_SIGBUS;
1752 }
1753 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1754 		unsigned int fault_flags, bool *unlocked)
1755 {
1756 	/* should never happen if there's no MMU */
1757 	BUG();
1758 	return -EFAULT;
1759 }
1760 static inline void unmap_mapping_pages(struct address_space *mapping,
1761 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1762 static inline void unmap_mapping_range(struct address_space *mapping,
1763 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1764 #endif
1765 
1766 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1767 		loff_t const holebegin, loff_t const holelen)
1768 {
1769 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1770 }
1771 
1772 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1773 		void *buf, int len, unsigned int gup_flags);
1774 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1775 		void *buf, int len, unsigned int gup_flags);
1776 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1777 			      void *buf, int len, unsigned int gup_flags);
1778 
1779 long get_user_pages_remote(struct mm_struct *mm,
1780 			    unsigned long start, unsigned long nr_pages,
1781 			    unsigned int gup_flags, struct page **pages,
1782 			    struct vm_area_struct **vmas, int *locked);
1783 long pin_user_pages_remote(struct mm_struct *mm,
1784 			   unsigned long start, unsigned long nr_pages,
1785 			   unsigned int gup_flags, struct page **pages,
1786 			   struct vm_area_struct **vmas, int *locked);
1787 long get_user_pages(unsigned long start, unsigned long nr_pages,
1788 			    unsigned int gup_flags, struct page **pages,
1789 			    struct vm_area_struct **vmas);
1790 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1791 		    unsigned int gup_flags, struct page **pages,
1792 		    struct vm_area_struct **vmas);
1793 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1794 		    unsigned int gup_flags, struct page **pages, int *locked);
1795 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1796 		    unsigned int gup_flags, struct page **pages, int *locked);
1797 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1798 		    struct page **pages, unsigned int gup_flags);
1799 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1800 		    struct page **pages, unsigned int gup_flags);
1801 
1802 int get_user_pages_fast(unsigned long start, int nr_pages,
1803 			unsigned int gup_flags, struct page **pages);
1804 int pin_user_pages_fast(unsigned long start, int nr_pages,
1805 			unsigned int gup_flags, struct page **pages);
1806 
1807 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1808 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1809 			struct task_struct *task, bool bypass_rlim);
1810 
1811 struct kvec;
1812 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1813 			struct page **pages);
1814 int get_kernel_page(unsigned long start, int write, struct page **pages);
1815 struct page *get_dump_page(unsigned long addr);
1816 
1817 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1818 extern void do_invalidatepage(struct page *page, unsigned int offset,
1819 			      unsigned int length);
1820 
1821 void __set_page_dirty(struct page *, struct address_space *, int warn);
1822 int __set_page_dirty_nobuffers(struct page *page);
1823 int __set_page_dirty_no_writeback(struct page *page);
1824 int redirty_page_for_writepage(struct writeback_control *wbc,
1825 				struct page *page);
1826 void account_page_dirtied(struct page *page, struct address_space *mapping);
1827 void account_page_cleaned(struct page *page, struct address_space *mapping,
1828 			  struct bdi_writeback *wb);
1829 int set_page_dirty(struct page *page);
1830 int set_page_dirty_lock(struct page *page);
1831 void __cancel_dirty_page(struct page *page);
1832 static inline void cancel_dirty_page(struct page *page)
1833 {
1834 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1835 	if (PageDirty(page))
1836 		__cancel_dirty_page(page);
1837 }
1838 int clear_page_dirty_for_io(struct page *page);
1839 
1840 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1841 
1842 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1843 		unsigned long old_addr, struct vm_area_struct *new_vma,
1844 		unsigned long new_addr, unsigned long len,
1845 		bool need_rmap_locks);
1846 
1847 /*
1848  * Flags used by change_protection().  For now we make it a bitmap so
1849  * that we can pass in multiple flags just like parameters.  However
1850  * for now all the callers are only use one of the flags at the same
1851  * time.
1852  */
1853 /* Whether we should allow dirty bit accounting */
1854 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1855 /* Whether this protection change is for NUMA hints */
1856 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1857 /* Whether this change is for write protecting */
1858 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1859 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1860 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1861 					    MM_CP_UFFD_WP_RESOLVE)
1862 
1863 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1864 			      unsigned long end, pgprot_t newprot,
1865 			      unsigned long cp_flags);
1866 extern int mprotect_fixup(struct vm_area_struct *vma,
1867 			  struct vm_area_struct **pprev, unsigned long start,
1868 			  unsigned long end, unsigned long newflags);
1869 
1870 /*
1871  * doesn't attempt to fault and will return short.
1872  */
1873 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1874 			     unsigned int gup_flags, struct page **pages);
1875 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1876 			     unsigned int gup_flags, struct page **pages);
1877 
1878 static inline bool get_user_page_fast_only(unsigned long addr,
1879 			unsigned int gup_flags, struct page **pagep)
1880 {
1881 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1882 }
1883 /*
1884  * per-process(per-mm_struct) statistics.
1885  */
1886 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1887 {
1888 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1889 
1890 #ifdef SPLIT_RSS_COUNTING
1891 	/*
1892 	 * counter is updated in asynchronous manner and may go to minus.
1893 	 * But it's never be expected number for users.
1894 	 */
1895 	if (val < 0)
1896 		val = 0;
1897 #endif
1898 	return (unsigned long)val;
1899 }
1900 
1901 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1902 
1903 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1904 {
1905 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1906 
1907 	mm_trace_rss_stat(mm, member, count);
1908 }
1909 
1910 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1911 {
1912 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1913 
1914 	mm_trace_rss_stat(mm, member, count);
1915 }
1916 
1917 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1918 {
1919 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1920 
1921 	mm_trace_rss_stat(mm, member, count);
1922 }
1923 
1924 /* Optimized variant when page is already known not to be PageAnon */
1925 static inline int mm_counter_file(struct page *page)
1926 {
1927 	if (PageSwapBacked(page))
1928 		return MM_SHMEMPAGES;
1929 	return MM_FILEPAGES;
1930 }
1931 
1932 static inline int mm_counter(struct page *page)
1933 {
1934 	if (PageAnon(page))
1935 		return MM_ANONPAGES;
1936 	return mm_counter_file(page);
1937 }
1938 
1939 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1940 {
1941 	return get_mm_counter(mm, MM_FILEPAGES) +
1942 		get_mm_counter(mm, MM_ANONPAGES) +
1943 		get_mm_counter(mm, MM_SHMEMPAGES);
1944 }
1945 
1946 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1947 {
1948 	return max(mm->hiwater_rss, get_mm_rss(mm));
1949 }
1950 
1951 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1952 {
1953 	return max(mm->hiwater_vm, mm->total_vm);
1954 }
1955 
1956 static inline void update_hiwater_rss(struct mm_struct *mm)
1957 {
1958 	unsigned long _rss = get_mm_rss(mm);
1959 
1960 	if ((mm)->hiwater_rss < _rss)
1961 		(mm)->hiwater_rss = _rss;
1962 }
1963 
1964 static inline void update_hiwater_vm(struct mm_struct *mm)
1965 {
1966 	if (mm->hiwater_vm < mm->total_vm)
1967 		mm->hiwater_vm = mm->total_vm;
1968 }
1969 
1970 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1971 {
1972 	mm->hiwater_rss = get_mm_rss(mm);
1973 }
1974 
1975 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1976 					 struct mm_struct *mm)
1977 {
1978 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1979 
1980 	if (*maxrss < hiwater_rss)
1981 		*maxrss = hiwater_rss;
1982 }
1983 
1984 #if defined(SPLIT_RSS_COUNTING)
1985 void sync_mm_rss(struct mm_struct *mm);
1986 #else
1987 static inline void sync_mm_rss(struct mm_struct *mm)
1988 {
1989 }
1990 #endif
1991 
1992 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1993 static inline int pte_special(pte_t pte)
1994 {
1995 	return 0;
1996 }
1997 
1998 static inline pte_t pte_mkspecial(pte_t pte)
1999 {
2000 	return pte;
2001 }
2002 #endif
2003 
2004 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2005 static inline int pte_devmap(pte_t pte)
2006 {
2007 	return 0;
2008 }
2009 #endif
2010 
2011 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2012 
2013 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2014 			       spinlock_t **ptl);
2015 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2016 				    spinlock_t **ptl)
2017 {
2018 	pte_t *ptep;
2019 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2020 	return ptep;
2021 }
2022 
2023 #ifdef __PAGETABLE_P4D_FOLDED
2024 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2025 						unsigned long address)
2026 {
2027 	return 0;
2028 }
2029 #else
2030 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2031 #endif
2032 
2033 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2034 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2035 						unsigned long address)
2036 {
2037 	return 0;
2038 }
2039 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2040 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2041 
2042 #else
2043 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2044 
2045 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2046 {
2047 	if (mm_pud_folded(mm))
2048 		return;
2049 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2050 }
2051 
2052 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2053 {
2054 	if (mm_pud_folded(mm))
2055 		return;
2056 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2057 }
2058 #endif
2059 
2060 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2061 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2062 						unsigned long address)
2063 {
2064 	return 0;
2065 }
2066 
2067 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2068 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2069 
2070 #else
2071 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2072 
2073 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2074 {
2075 	if (mm_pmd_folded(mm))
2076 		return;
2077 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2078 }
2079 
2080 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2081 {
2082 	if (mm_pmd_folded(mm))
2083 		return;
2084 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2085 }
2086 #endif
2087 
2088 #ifdef CONFIG_MMU
2089 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2090 {
2091 	atomic_long_set(&mm->pgtables_bytes, 0);
2092 }
2093 
2094 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2095 {
2096 	return atomic_long_read(&mm->pgtables_bytes);
2097 }
2098 
2099 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2100 {
2101 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2102 }
2103 
2104 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2105 {
2106 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2107 }
2108 #else
2109 
2110 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2111 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2112 {
2113 	return 0;
2114 }
2115 
2116 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2117 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2118 #endif
2119 
2120 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2121 int __pte_alloc_kernel(pmd_t *pmd);
2122 
2123 #if defined(CONFIG_MMU)
2124 
2125 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2126 		unsigned long address)
2127 {
2128 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2129 		NULL : p4d_offset(pgd, address);
2130 }
2131 
2132 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2133 		unsigned long address)
2134 {
2135 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2136 		NULL : pud_offset(p4d, address);
2137 }
2138 
2139 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2140 {
2141 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2142 		NULL: pmd_offset(pud, address);
2143 }
2144 #endif /* CONFIG_MMU */
2145 
2146 #if USE_SPLIT_PTE_PTLOCKS
2147 #if ALLOC_SPLIT_PTLOCKS
2148 void __init ptlock_cache_init(void);
2149 extern bool ptlock_alloc(struct page *page);
2150 extern void ptlock_free(struct page *page);
2151 
2152 static inline spinlock_t *ptlock_ptr(struct page *page)
2153 {
2154 	return page->ptl;
2155 }
2156 #else /* ALLOC_SPLIT_PTLOCKS */
2157 static inline void ptlock_cache_init(void)
2158 {
2159 }
2160 
2161 static inline bool ptlock_alloc(struct page *page)
2162 {
2163 	return true;
2164 }
2165 
2166 static inline void ptlock_free(struct page *page)
2167 {
2168 }
2169 
2170 static inline spinlock_t *ptlock_ptr(struct page *page)
2171 {
2172 	return &page->ptl;
2173 }
2174 #endif /* ALLOC_SPLIT_PTLOCKS */
2175 
2176 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2177 {
2178 	return ptlock_ptr(pmd_page(*pmd));
2179 }
2180 
2181 static inline bool ptlock_init(struct page *page)
2182 {
2183 	/*
2184 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2185 	 * with 0. Make sure nobody took it in use in between.
2186 	 *
2187 	 * It can happen if arch try to use slab for page table allocation:
2188 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2189 	 */
2190 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2191 	if (!ptlock_alloc(page))
2192 		return false;
2193 	spin_lock_init(ptlock_ptr(page));
2194 	return true;
2195 }
2196 
2197 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2198 /*
2199  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2200  */
2201 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2202 {
2203 	return &mm->page_table_lock;
2204 }
2205 static inline void ptlock_cache_init(void) {}
2206 static inline bool ptlock_init(struct page *page) { return true; }
2207 static inline void ptlock_free(struct page *page) {}
2208 #endif /* USE_SPLIT_PTE_PTLOCKS */
2209 
2210 static inline void pgtable_init(void)
2211 {
2212 	ptlock_cache_init();
2213 	pgtable_cache_init();
2214 }
2215 
2216 static inline bool pgtable_pte_page_ctor(struct page *page)
2217 {
2218 	if (!ptlock_init(page))
2219 		return false;
2220 	__SetPageTable(page);
2221 	inc_lruvec_page_state(page, NR_PAGETABLE);
2222 	return true;
2223 }
2224 
2225 static inline void pgtable_pte_page_dtor(struct page *page)
2226 {
2227 	ptlock_free(page);
2228 	__ClearPageTable(page);
2229 	dec_lruvec_page_state(page, NR_PAGETABLE);
2230 }
2231 
2232 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2233 ({							\
2234 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2235 	pte_t *__pte = pte_offset_map(pmd, address);	\
2236 	*(ptlp) = __ptl;				\
2237 	spin_lock(__ptl);				\
2238 	__pte;						\
2239 })
2240 
2241 #define pte_unmap_unlock(pte, ptl)	do {		\
2242 	spin_unlock(ptl);				\
2243 	pte_unmap(pte);					\
2244 } while (0)
2245 
2246 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2247 
2248 #define pte_alloc_map(mm, pmd, address)			\
2249 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2250 
2251 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2252 	(pte_alloc(mm, pmd) ?			\
2253 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2254 
2255 #define pte_alloc_kernel(pmd, address)			\
2256 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2257 		NULL: pte_offset_kernel(pmd, address))
2258 
2259 #if USE_SPLIT_PMD_PTLOCKS
2260 
2261 static struct page *pmd_to_page(pmd_t *pmd)
2262 {
2263 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2264 	return virt_to_page((void *)((unsigned long) pmd & mask));
2265 }
2266 
2267 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2268 {
2269 	return ptlock_ptr(pmd_to_page(pmd));
2270 }
2271 
2272 static inline bool pmd_ptlock_init(struct page *page)
2273 {
2274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2275 	page->pmd_huge_pte = NULL;
2276 #endif
2277 	return ptlock_init(page);
2278 }
2279 
2280 static inline void pmd_ptlock_free(struct page *page)
2281 {
2282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2283 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2284 #endif
2285 	ptlock_free(page);
2286 }
2287 
2288 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2289 
2290 #else
2291 
2292 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2293 {
2294 	return &mm->page_table_lock;
2295 }
2296 
2297 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2298 static inline void pmd_ptlock_free(struct page *page) {}
2299 
2300 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2301 
2302 #endif
2303 
2304 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2305 {
2306 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2307 	spin_lock(ptl);
2308 	return ptl;
2309 }
2310 
2311 static inline bool pgtable_pmd_page_ctor(struct page *page)
2312 {
2313 	if (!pmd_ptlock_init(page))
2314 		return false;
2315 	__SetPageTable(page);
2316 	inc_lruvec_page_state(page, NR_PAGETABLE);
2317 	return true;
2318 }
2319 
2320 static inline void pgtable_pmd_page_dtor(struct page *page)
2321 {
2322 	pmd_ptlock_free(page);
2323 	__ClearPageTable(page);
2324 	dec_lruvec_page_state(page, NR_PAGETABLE);
2325 }
2326 
2327 /*
2328  * No scalability reason to split PUD locks yet, but follow the same pattern
2329  * as the PMD locks to make it easier if we decide to.  The VM should not be
2330  * considered ready to switch to split PUD locks yet; there may be places
2331  * which need to be converted from page_table_lock.
2332  */
2333 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2334 {
2335 	return &mm->page_table_lock;
2336 }
2337 
2338 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2339 {
2340 	spinlock_t *ptl = pud_lockptr(mm, pud);
2341 
2342 	spin_lock(ptl);
2343 	return ptl;
2344 }
2345 
2346 extern void __init pagecache_init(void);
2347 extern void __init free_area_init_memoryless_node(int nid);
2348 extern void free_initmem(void);
2349 
2350 /*
2351  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2352  * into the buddy system. The freed pages will be poisoned with pattern
2353  * "poison" if it's within range [0, UCHAR_MAX].
2354  * Return pages freed into the buddy system.
2355  */
2356 extern unsigned long free_reserved_area(void *start, void *end,
2357 					int poison, const char *s);
2358 
2359 extern void adjust_managed_page_count(struct page *page, long count);
2360 extern void mem_init_print_info(const char *str);
2361 
2362 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2363 
2364 /* Free the reserved page into the buddy system, so it gets managed. */
2365 static inline void free_reserved_page(struct page *page)
2366 {
2367 	ClearPageReserved(page);
2368 	init_page_count(page);
2369 	__free_page(page);
2370 	adjust_managed_page_count(page, 1);
2371 }
2372 #define free_highmem_page(page) free_reserved_page(page)
2373 
2374 static inline void mark_page_reserved(struct page *page)
2375 {
2376 	SetPageReserved(page);
2377 	adjust_managed_page_count(page, -1);
2378 }
2379 
2380 /*
2381  * Default method to free all the __init memory into the buddy system.
2382  * The freed pages will be poisoned with pattern "poison" if it's within
2383  * range [0, UCHAR_MAX].
2384  * Return pages freed into the buddy system.
2385  */
2386 static inline unsigned long free_initmem_default(int poison)
2387 {
2388 	extern char __init_begin[], __init_end[];
2389 
2390 	return free_reserved_area(&__init_begin, &__init_end,
2391 				  poison, "unused kernel");
2392 }
2393 
2394 static inline unsigned long get_num_physpages(void)
2395 {
2396 	int nid;
2397 	unsigned long phys_pages = 0;
2398 
2399 	for_each_online_node(nid)
2400 		phys_pages += node_present_pages(nid);
2401 
2402 	return phys_pages;
2403 }
2404 
2405 /*
2406  * Using memblock node mappings, an architecture may initialise its
2407  * zones, allocate the backing mem_map and account for memory holes in an
2408  * architecture independent manner.
2409  *
2410  * An architecture is expected to register range of page frames backed by
2411  * physical memory with memblock_add[_node]() before calling
2412  * free_area_init() passing in the PFN each zone ends at. At a basic
2413  * usage, an architecture is expected to do something like
2414  *
2415  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2416  * 							 max_highmem_pfn};
2417  * for_each_valid_physical_page_range()
2418  * 	memblock_add_node(base, size, nid)
2419  * free_area_init(max_zone_pfns);
2420  */
2421 void free_area_init(unsigned long *max_zone_pfn);
2422 unsigned long node_map_pfn_alignment(void);
2423 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2424 						unsigned long end_pfn);
2425 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2426 						unsigned long end_pfn);
2427 extern void get_pfn_range_for_nid(unsigned int nid,
2428 			unsigned long *start_pfn, unsigned long *end_pfn);
2429 extern unsigned long find_min_pfn_with_active_regions(void);
2430 
2431 #ifndef CONFIG_NEED_MULTIPLE_NODES
2432 static inline int early_pfn_to_nid(unsigned long pfn)
2433 {
2434 	return 0;
2435 }
2436 #else
2437 /* please see mm/page_alloc.c */
2438 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2439 #endif
2440 
2441 extern void set_dma_reserve(unsigned long new_dma_reserve);
2442 extern void memmap_init_range(unsigned long, int, unsigned long,
2443 		unsigned long, unsigned long, enum meminit_context,
2444 		struct vmem_altmap *, int migratetype);
2445 extern void memmap_init_zone(struct zone *zone);
2446 extern void setup_per_zone_wmarks(void);
2447 extern int __meminit init_per_zone_wmark_min(void);
2448 extern void mem_init(void);
2449 extern void __init mmap_init(void);
2450 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2451 extern long si_mem_available(void);
2452 extern void si_meminfo(struct sysinfo * val);
2453 extern void si_meminfo_node(struct sysinfo *val, int nid);
2454 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2455 extern unsigned long arch_reserved_kernel_pages(void);
2456 #endif
2457 
2458 extern __printf(3, 4)
2459 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2460 
2461 extern void setup_per_cpu_pageset(void);
2462 
2463 /* page_alloc.c */
2464 extern int min_free_kbytes;
2465 extern int watermark_boost_factor;
2466 extern int watermark_scale_factor;
2467 extern bool arch_has_descending_max_zone_pfns(void);
2468 
2469 /* nommu.c */
2470 extern atomic_long_t mmap_pages_allocated;
2471 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2472 
2473 /* interval_tree.c */
2474 void vma_interval_tree_insert(struct vm_area_struct *node,
2475 			      struct rb_root_cached *root);
2476 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2477 				    struct vm_area_struct *prev,
2478 				    struct rb_root_cached *root);
2479 void vma_interval_tree_remove(struct vm_area_struct *node,
2480 			      struct rb_root_cached *root);
2481 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2482 				unsigned long start, unsigned long last);
2483 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2484 				unsigned long start, unsigned long last);
2485 
2486 #define vma_interval_tree_foreach(vma, root, start, last)		\
2487 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2488 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2489 
2490 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2491 				   struct rb_root_cached *root);
2492 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2493 				   struct rb_root_cached *root);
2494 struct anon_vma_chain *
2495 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2496 				  unsigned long start, unsigned long last);
2497 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2498 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2499 #ifdef CONFIG_DEBUG_VM_RB
2500 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2501 #endif
2502 
2503 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2504 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2505 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2506 
2507 /* mmap.c */
2508 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2509 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2510 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2511 	struct vm_area_struct *expand);
2512 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2513 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2514 {
2515 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2516 }
2517 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2518 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2519 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2520 	struct mempolicy *, struct vm_userfaultfd_ctx);
2521 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2522 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2523 	unsigned long addr, int new_below);
2524 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2525 	unsigned long addr, int new_below);
2526 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2527 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2528 	struct rb_node **, struct rb_node *);
2529 extern void unlink_file_vma(struct vm_area_struct *);
2530 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2531 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2532 	bool *need_rmap_locks);
2533 extern void exit_mmap(struct mm_struct *);
2534 
2535 static inline int check_data_rlimit(unsigned long rlim,
2536 				    unsigned long new,
2537 				    unsigned long start,
2538 				    unsigned long end_data,
2539 				    unsigned long start_data)
2540 {
2541 	if (rlim < RLIM_INFINITY) {
2542 		if (((new - start) + (end_data - start_data)) > rlim)
2543 			return -ENOSPC;
2544 	}
2545 
2546 	return 0;
2547 }
2548 
2549 extern int mm_take_all_locks(struct mm_struct *mm);
2550 extern void mm_drop_all_locks(struct mm_struct *mm);
2551 
2552 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2553 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2554 extern struct file *get_task_exe_file(struct task_struct *task);
2555 
2556 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2557 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2558 
2559 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2560 				   const struct vm_special_mapping *sm);
2561 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2562 				   unsigned long addr, unsigned long len,
2563 				   unsigned long flags,
2564 				   const struct vm_special_mapping *spec);
2565 /* This is an obsolete alternative to _install_special_mapping. */
2566 extern int install_special_mapping(struct mm_struct *mm,
2567 				   unsigned long addr, unsigned long len,
2568 				   unsigned long flags, struct page **pages);
2569 
2570 unsigned long randomize_stack_top(unsigned long stack_top);
2571 
2572 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2573 
2574 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2575 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2576 	struct list_head *uf);
2577 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2578 	unsigned long len, unsigned long prot, unsigned long flags,
2579 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2580 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2581 		       struct list_head *uf, bool downgrade);
2582 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2583 		     struct list_head *uf);
2584 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2585 
2586 #ifdef CONFIG_MMU
2587 extern int __mm_populate(unsigned long addr, unsigned long len,
2588 			 int ignore_errors);
2589 static inline void mm_populate(unsigned long addr, unsigned long len)
2590 {
2591 	/* Ignore errors */
2592 	(void) __mm_populate(addr, len, 1);
2593 }
2594 #else
2595 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2596 #endif
2597 
2598 /* These take the mm semaphore themselves */
2599 extern int __must_check vm_brk(unsigned long, unsigned long);
2600 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2601 extern int vm_munmap(unsigned long, size_t);
2602 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2603         unsigned long, unsigned long,
2604         unsigned long, unsigned long);
2605 
2606 struct vm_unmapped_area_info {
2607 #define VM_UNMAPPED_AREA_TOPDOWN 1
2608 	unsigned long flags;
2609 	unsigned long length;
2610 	unsigned long low_limit;
2611 	unsigned long high_limit;
2612 	unsigned long align_mask;
2613 	unsigned long align_offset;
2614 };
2615 
2616 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2617 
2618 /* truncate.c */
2619 extern void truncate_inode_pages(struct address_space *, loff_t);
2620 extern void truncate_inode_pages_range(struct address_space *,
2621 				       loff_t lstart, loff_t lend);
2622 extern void truncate_inode_pages_final(struct address_space *);
2623 
2624 /* generic vm_area_ops exported for stackable file systems */
2625 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2626 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2627 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2628 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2629 
2630 /* mm/page-writeback.c */
2631 int __must_check write_one_page(struct page *page);
2632 void task_dirty_inc(struct task_struct *tsk);
2633 
2634 extern unsigned long stack_guard_gap;
2635 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2636 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2637 
2638 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2639 extern int expand_downwards(struct vm_area_struct *vma,
2640 		unsigned long address);
2641 #if VM_GROWSUP
2642 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2643 #else
2644   #define expand_upwards(vma, address) (0)
2645 #endif
2646 
2647 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2648 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2649 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2650 					     struct vm_area_struct **pprev);
2651 
2652 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2653    NULL if none.  Assume start_addr < end_addr. */
2654 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2655 {
2656 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2657 
2658 	if (vma && end_addr <= vma->vm_start)
2659 		vma = NULL;
2660 	return vma;
2661 }
2662 
2663 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2664 {
2665 	unsigned long vm_start = vma->vm_start;
2666 
2667 	if (vma->vm_flags & VM_GROWSDOWN) {
2668 		vm_start -= stack_guard_gap;
2669 		if (vm_start > vma->vm_start)
2670 			vm_start = 0;
2671 	}
2672 	return vm_start;
2673 }
2674 
2675 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2676 {
2677 	unsigned long vm_end = vma->vm_end;
2678 
2679 	if (vma->vm_flags & VM_GROWSUP) {
2680 		vm_end += stack_guard_gap;
2681 		if (vm_end < vma->vm_end)
2682 			vm_end = -PAGE_SIZE;
2683 	}
2684 	return vm_end;
2685 }
2686 
2687 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2688 {
2689 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2690 }
2691 
2692 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2693 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2694 				unsigned long vm_start, unsigned long vm_end)
2695 {
2696 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2697 
2698 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2699 		vma = NULL;
2700 
2701 	return vma;
2702 }
2703 
2704 static inline bool range_in_vma(struct vm_area_struct *vma,
2705 				unsigned long start, unsigned long end)
2706 {
2707 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2708 }
2709 
2710 #ifdef CONFIG_MMU
2711 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2712 void vma_set_page_prot(struct vm_area_struct *vma);
2713 #else
2714 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2715 {
2716 	return __pgprot(0);
2717 }
2718 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2719 {
2720 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2721 }
2722 #endif
2723 
2724 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2725 
2726 #ifdef CONFIG_NUMA_BALANCING
2727 unsigned long change_prot_numa(struct vm_area_struct *vma,
2728 			unsigned long start, unsigned long end);
2729 #endif
2730 
2731 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2732 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2733 			unsigned long pfn, unsigned long size, pgprot_t);
2734 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2735 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2736 			struct page **pages, unsigned long *num);
2737 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2738 				unsigned long num);
2739 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2740 				unsigned long num);
2741 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2742 			unsigned long pfn);
2743 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2744 			unsigned long pfn, pgprot_t pgprot);
2745 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2746 			pfn_t pfn);
2747 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2748 			pfn_t pfn, pgprot_t pgprot);
2749 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2750 		unsigned long addr, pfn_t pfn);
2751 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2752 
2753 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2754 				unsigned long addr, struct page *page)
2755 {
2756 	int err = vm_insert_page(vma, addr, page);
2757 
2758 	if (err == -ENOMEM)
2759 		return VM_FAULT_OOM;
2760 	if (err < 0 && err != -EBUSY)
2761 		return VM_FAULT_SIGBUS;
2762 
2763 	return VM_FAULT_NOPAGE;
2764 }
2765 
2766 #ifndef io_remap_pfn_range
2767 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2768 				     unsigned long addr, unsigned long pfn,
2769 				     unsigned long size, pgprot_t prot)
2770 {
2771 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2772 }
2773 #endif
2774 
2775 static inline vm_fault_t vmf_error(int err)
2776 {
2777 	if (err == -ENOMEM)
2778 		return VM_FAULT_OOM;
2779 	return VM_FAULT_SIGBUS;
2780 }
2781 
2782 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2783 			 unsigned int foll_flags);
2784 
2785 #define FOLL_WRITE	0x01	/* check pte is writable */
2786 #define FOLL_TOUCH	0x02	/* mark page accessed */
2787 #define FOLL_GET	0x04	/* do get_page on page */
2788 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2789 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2790 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2791 				 * and return without waiting upon it */
2792 #define FOLL_POPULATE	0x40	/* fault in page */
2793 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2794 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2795 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2796 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2797 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2798 #define FOLL_MLOCK	0x1000	/* lock present pages */
2799 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2800 #define FOLL_COW	0x4000	/* internal GUP flag */
2801 #define FOLL_ANON	0x8000	/* don't do file mappings */
2802 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2803 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2804 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2805 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2806 
2807 /*
2808  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2809  * other. Here is what they mean, and how to use them:
2810  *
2811  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2812  * period _often_ under userspace control.  This is in contrast to
2813  * iov_iter_get_pages(), whose usages are transient.
2814  *
2815  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2816  * lifetime enforced by the filesystem and we need guarantees that longterm
2817  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2818  * the filesystem.  Ideas for this coordination include revoking the longterm
2819  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2820  * added after the problem with filesystems was found FS DAX VMAs are
2821  * specifically failed.  Filesystem pages are still subject to bugs and use of
2822  * FOLL_LONGTERM should be avoided on those pages.
2823  *
2824  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2825  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2826  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2827  * is due to an incompatibility with the FS DAX check and
2828  * FAULT_FLAG_ALLOW_RETRY.
2829  *
2830  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2831  * that region.  And so, CMA attempts to migrate the page before pinning, when
2832  * FOLL_LONGTERM is specified.
2833  *
2834  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2835  * but an additional pin counting system) will be invoked. This is intended for
2836  * anything that gets a page reference and then touches page data (for example,
2837  * Direct IO). This lets the filesystem know that some non-file-system entity is
2838  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2839  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2840  * a call to unpin_user_page().
2841  *
2842  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2843  * and separate refcounting mechanisms, however, and that means that each has
2844  * its own acquire and release mechanisms:
2845  *
2846  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2847  *
2848  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2849  *
2850  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2851  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2852  * calls applied to them, and that's perfectly OK. This is a constraint on the
2853  * callers, not on the pages.)
2854  *
2855  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2856  * directly by the caller. That's in order to help avoid mismatches when
2857  * releasing pages: get_user_pages*() pages must be released via put_page(),
2858  * while pin_user_pages*() pages must be released via unpin_user_page().
2859  *
2860  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2861  */
2862 
2863 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2864 {
2865 	if (vm_fault & VM_FAULT_OOM)
2866 		return -ENOMEM;
2867 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2868 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2869 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2870 		return -EFAULT;
2871 	return 0;
2872 }
2873 
2874 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2875 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2876 			       unsigned long size, pte_fn_t fn, void *data);
2877 extern int apply_to_existing_page_range(struct mm_struct *mm,
2878 				   unsigned long address, unsigned long size,
2879 				   pte_fn_t fn, void *data);
2880 
2881 extern void init_mem_debugging_and_hardening(void);
2882 #ifdef CONFIG_PAGE_POISONING
2883 extern void __kernel_poison_pages(struct page *page, int numpages);
2884 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2885 extern bool _page_poisoning_enabled_early;
2886 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2887 static inline bool page_poisoning_enabled(void)
2888 {
2889 	return _page_poisoning_enabled_early;
2890 }
2891 /*
2892  * For use in fast paths after init_mem_debugging() has run, or when a
2893  * false negative result is not harmful when called too early.
2894  */
2895 static inline bool page_poisoning_enabled_static(void)
2896 {
2897 	return static_branch_unlikely(&_page_poisoning_enabled);
2898 }
2899 static inline void kernel_poison_pages(struct page *page, int numpages)
2900 {
2901 	if (page_poisoning_enabled_static())
2902 		__kernel_poison_pages(page, numpages);
2903 }
2904 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2905 {
2906 	if (page_poisoning_enabled_static())
2907 		__kernel_unpoison_pages(page, numpages);
2908 }
2909 #else
2910 static inline bool page_poisoning_enabled(void) { return false; }
2911 static inline bool page_poisoning_enabled_static(void) { return false; }
2912 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2913 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2914 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2915 #endif
2916 
2917 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2918 static inline bool want_init_on_alloc(gfp_t flags)
2919 {
2920 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2921 				&init_on_alloc))
2922 		return true;
2923 	return flags & __GFP_ZERO;
2924 }
2925 
2926 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2927 static inline bool want_init_on_free(void)
2928 {
2929 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2930 				   &init_on_free);
2931 }
2932 
2933 extern bool _debug_pagealloc_enabled_early;
2934 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2935 
2936 static inline bool debug_pagealloc_enabled(void)
2937 {
2938 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2939 		_debug_pagealloc_enabled_early;
2940 }
2941 
2942 /*
2943  * For use in fast paths after init_debug_pagealloc() has run, or when a
2944  * false negative result is not harmful when called too early.
2945  */
2946 static inline bool debug_pagealloc_enabled_static(void)
2947 {
2948 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2949 		return false;
2950 
2951 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2952 }
2953 
2954 #ifdef CONFIG_DEBUG_PAGEALLOC
2955 /*
2956  * To support DEBUG_PAGEALLOC architecture must ensure that
2957  * __kernel_map_pages() never fails
2958  */
2959 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2960 
2961 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2962 {
2963 	if (debug_pagealloc_enabled_static())
2964 		__kernel_map_pages(page, numpages, 1);
2965 }
2966 
2967 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2968 {
2969 	if (debug_pagealloc_enabled_static())
2970 		__kernel_map_pages(page, numpages, 0);
2971 }
2972 #else	/* CONFIG_DEBUG_PAGEALLOC */
2973 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2974 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2975 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2976 
2977 #ifdef __HAVE_ARCH_GATE_AREA
2978 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2979 extern int in_gate_area_no_mm(unsigned long addr);
2980 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2981 #else
2982 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2983 {
2984 	return NULL;
2985 }
2986 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2987 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2988 {
2989 	return 0;
2990 }
2991 #endif	/* __HAVE_ARCH_GATE_AREA */
2992 
2993 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2994 
2995 #ifdef CONFIG_SYSCTL
2996 extern int sysctl_drop_caches;
2997 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2998 		loff_t *);
2999 #endif
3000 
3001 void drop_slab(void);
3002 void drop_slab_node(int nid);
3003 
3004 #ifndef CONFIG_MMU
3005 #define randomize_va_space 0
3006 #else
3007 extern int randomize_va_space;
3008 #endif
3009 
3010 const char * arch_vma_name(struct vm_area_struct *vma);
3011 #ifdef CONFIG_MMU
3012 void print_vma_addr(char *prefix, unsigned long rip);
3013 #else
3014 static inline void print_vma_addr(char *prefix, unsigned long rip)
3015 {
3016 }
3017 #endif
3018 
3019 void *sparse_buffer_alloc(unsigned long size);
3020 struct page * __populate_section_memmap(unsigned long pfn,
3021 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3022 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3023 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3024 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3025 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3026 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3027 			    struct vmem_altmap *altmap);
3028 void *vmemmap_alloc_block(unsigned long size, int node);
3029 struct vmem_altmap;
3030 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3031 			      struct vmem_altmap *altmap);
3032 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3033 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3034 			       int node, struct vmem_altmap *altmap);
3035 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3036 		struct vmem_altmap *altmap);
3037 void vmemmap_populate_print_last(void);
3038 #ifdef CONFIG_MEMORY_HOTPLUG
3039 void vmemmap_free(unsigned long start, unsigned long end,
3040 		struct vmem_altmap *altmap);
3041 #endif
3042 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3043 				  unsigned long nr_pages);
3044 
3045 enum mf_flags {
3046 	MF_COUNT_INCREASED = 1 << 0,
3047 	MF_ACTION_REQUIRED = 1 << 1,
3048 	MF_MUST_KILL = 1 << 2,
3049 	MF_SOFT_OFFLINE = 1 << 3,
3050 };
3051 extern int memory_failure(unsigned long pfn, int flags);
3052 extern void memory_failure_queue(unsigned long pfn, int flags);
3053 extern void memory_failure_queue_kick(int cpu);
3054 extern int unpoison_memory(unsigned long pfn);
3055 extern int sysctl_memory_failure_early_kill;
3056 extern int sysctl_memory_failure_recovery;
3057 extern void shake_page(struct page *p, int access);
3058 extern atomic_long_t num_poisoned_pages __read_mostly;
3059 extern int soft_offline_page(unsigned long pfn, int flags);
3060 
3061 
3062 /*
3063  * Error handlers for various types of pages.
3064  */
3065 enum mf_result {
3066 	MF_IGNORED,	/* Error: cannot be handled */
3067 	MF_FAILED,	/* Error: handling failed */
3068 	MF_DELAYED,	/* Will be handled later */
3069 	MF_RECOVERED,	/* Successfully recovered */
3070 };
3071 
3072 enum mf_action_page_type {
3073 	MF_MSG_KERNEL,
3074 	MF_MSG_KERNEL_HIGH_ORDER,
3075 	MF_MSG_SLAB,
3076 	MF_MSG_DIFFERENT_COMPOUND,
3077 	MF_MSG_POISONED_HUGE,
3078 	MF_MSG_HUGE,
3079 	MF_MSG_FREE_HUGE,
3080 	MF_MSG_NON_PMD_HUGE,
3081 	MF_MSG_UNMAP_FAILED,
3082 	MF_MSG_DIRTY_SWAPCACHE,
3083 	MF_MSG_CLEAN_SWAPCACHE,
3084 	MF_MSG_DIRTY_MLOCKED_LRU,
3085 	MF_MSG_CLEAN_MLOCKED_LRU,
3086 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3087 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3088 	MF_MSG_DIRTY_LRU,
3089 	MF_MSG_CLEAN_LRU,
3090 	MF_MSG_TRUNCATED_LRU,
3091 	MF_MSG_BUDDY,
3092 	MF_MSG_BUDDY_2ND,
3093 	MF_MSG_DAX,
3094 	MF_MSG_UNSPLIT_THP,
3095 	MF_MSG_UNKNOWN,
3096 };
3097 
3098 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3099 extern void clear_huge_page(struct page *page,
3100 			    unsigned long addr_hint,
3101 			    unsigned int pages_per_huge_page);
3102 extern void copy_user_huge_page(struct page *dst, struct page *src,
3103 				unsigned long addr_hint,
3104 				struct vm_area_struct *vma,
3105 				unsigned int pages_per_huge_page);
3106 extern long copy_huge_page_from_user(struct page *dst_page,
3107 				const void __user *usr_src,
3108 				unsigned int pages_per_huge_page,
3109 				bool allow_pagefault);
3110 
3111 /**
3112  * vma_is_special_huge - Are transhuge page-table entries considered special?
3113  * @vma: Pointer to the struct vm_area_struct to consider
3114  *
3115  * Whether transhuge page-table entries are considered "special" following
3116  * the definition in vm_normal_page().
3117  *
3118  * Return: true if transhuge page-table entries should be considered special,
3119  * false otherwise.
3120  */
3121 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3122 {
3123 	return vma_is_dax(vma) || (vma->vm_file &&
3124 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3125 }
3126 
3127 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3128 
3129 #ifdef CONFIG_DEBUG_PAGEALLOC
3130 extern unsigned int _debug_guardpage_minorder;
3131 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3132 
3133 static inline unsigned int debug_guardpage_minorder(void)
3134 {
3135 	return _debug_guardpage_minorder;
3136 }
3137 
3138 static inline bool debug_guardpage_enabled(void)
3139 {
3140 	return static_branch_unlikely(&_debug_guardpage_enabled);
3141 }
3142 
3143 static inline bool page_is_guard(struct page *page)
3144 {
3145 	if (!debug_guardpage_enabled())
3146 		return false;
3147 
3148 	return PageGuard(page);
3149 }
3150 #else
3151 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3152 static inline bool debug_guardpage_enabled(void) { return false; }
3153 static inline bool page_is_guard(struct page *page) { return false; }
3154 #endif /* CONFIG_DEBUG_PAGEALLOC */
3155 
3156 #if MAX_NUMNODES > 1
3157 void __init setup_nr_node_ids(void);
3158 #else
3159 static inline void setup_nr_node_ids(void) {}
3160 #endif
3161 
3162 extern int memcmp_pages(struct page *page1, struct page *page2);
3163 
3164 static inline int pages_identical(struct page *page1, struct page *page2)
3165 {
3166 	return !memcmp_pages(page1, page2);
3167 }
3168 
3169 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3170 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3171 						pgoff_t first_index, pgoff_t nr,
3172 						pgoff_t bitmap_pgoff,
3173 						unsigned long *bitmap,
3174 						pgoff_t *start,
3175 						pgoff_t *end);
3176 
3177 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3178 				      pgoff_t first_index, pgoff_t nr);
3179 #endif
3180 
3181 extern int sysctl_nr_trim_pages;
3182 
3183 void mem_dump_obj(void *object);
3184 
3185 #endif /* __KERNEL__ */
3186 #endif /* _LINUX_MM_H */
3187