1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for arcitectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statments if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180 } 181 #else 182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183 #endif 184 185 /* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201 #define MAPCOUNT_ELF_CORE_MARGIN (5) 202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204 extern int sysctl_max_map_count; 205 206 extern unsigned long sysctl_user_reserve_kbytes; 207 extern unsigned long sysctl_admin_reserve_kbytes; 208 209 extern int sysctl_overcommit_memory; 210 extern int sysctl_overcommit_ratio; 211 extern unsigned long sysctl_overcommit_kbytes; 212 213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 /* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 228 229 /* to align the pointer to the (next) page boundary */ 230 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 231 232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 233 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 234 235 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 236 237 /* 238 * Linux kernel virtual memory manager primitives. 239 * The idea being to have a "virtual" mm in the same way 240 * we have a virtual fs - giving a cleaner interface to the 241 * mm details, and allowing different kinds of memory mappings 242 * (from shared memory to executable loading to arbitrary 243 * mmap() functions). 244 */ 245 246 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 247 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 248 void vm_area_free(struct vm_area_struct *); 249 250 #ifndef CONFIG_MMU 251 extern struct rb_root nommu_region_tree; 252 extern struct rw_semaphore nommu_region_sem; 253 254 extern unsigned int kobjsize(const void *objp); 255 #endif 256 257 /* 258 * vm_flags in vm_area_struct, see mm_types.h. 259 * When changing, update also include/trace/events/mmflags.h 260 */ 261 #define VM_NONE 0x00000000 262 263 #define VM_READ 0x00000001 /* currently active flags */ 264 #define VM_WRITE 0x00000002 265 #define VM_EXEC 0x00000004 266 #define VM_SHARED 0x00000008 267 268 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 269 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 270 #define VM_MAYWRITE 0x00000020 271 #define VM_MAYEXEC 0x00000040 272 #define VM_MAYSHARE 0x00000080 273 274 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 275 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 276 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 277 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 278 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 279 280 #define VM_LOCKED 0x00002000 281 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 282 283 /* Used by sys_madvise() */ 284 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 285 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 286 287 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 288 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 289 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 290 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 291 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 292 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 293 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 294 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 295 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 296 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 297 298 #ifdef CONFIG_MEM_SOFT_DIRTY 299 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 300 #else 301 # define VM_SOFTDIRTY 0 302 #endif 303 304 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 305 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 306 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 307 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 308 309 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 310 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 311 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 312 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 314 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 315 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 316 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 317 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 318 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 319 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 320 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 321 322 #ifdef CONFIG_ARCH_HAS_PKEYS 323 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 324 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 325 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 326 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 327 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 328 #ifdef CONFIG_PPC 329 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 330 #else 331 # define VM_PKEY_BIT4 0 332 #endif 333 #endif /* CONFIG_ARCH_HAS_PKEYS */ 334 335 #if defined(CONFIG_X86) 336 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 337 #elif defined(CONFIG_PPC) 338 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 339 #elif defined(CONFIG_PARISC) 340 # define VM_GROWSUP VM_ARCH_1 341 #elif defined(CONFIG_IA64) 342 # define VM_GROWSUP VM_ARCH_1 343 #elif defined(CONFIG_SPARC64) 344 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 345 # define VM_ARCH_CLEAR VM_SPARC_ADI 346 #elif defined(CONFIG_ARM64) 347 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 348 # define VM_ARCH_CLEAR VM_ARM64_BTI 349 #elif !defined(CONFIG_MMU) 350 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 351 #endif 352 353 #if defined(CONFIG_ARM64_MTE) 354 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 355 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 356 #else 357 # define VM_MTE VM_NONE 358 # define VM_MTE_ALLOWED VM_NONE 359 #endif 360 361 #ifndef VM_GROWSUP 362 # define VM_GROWSUP VM_NONE 363 #endif 364 365 /* Bits set in the VMA until the stack is in its final location */ 366 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 367 368 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 369 370 /* Common data flag combinations */ 371 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 372 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 373 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 374 VM_MAYWRITE | VM_MAYEXEC) 375 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 376 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 377 378 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 379 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 380 #endif 381 382 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 383 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 384 #endif 385 386 #ifdef CONFIG_STACK_GROWSUP 387 #define VM_STACK VM_GROWSUP 388 #else 389 #define VM_STACK VM_GROWSDOWN 390 #endif 391 392 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 393 394 /* VMA basic access permission flags */ 395 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 396 397 398 /* 399 * Special vmas that are non-mergable, non-mlock()able. 400 */ 401 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 402 403 /* This mask prevents VMA from being scanned with khugepaged */ 404 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 405 406 /* This mask defines which mm->def_flags a process can inherit its parent */ 407 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 408 409 /* This mask is used to clear all the VMA flags used by mlock */ 410 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 411 412 /* Arch-specific flags to clear when updating VM flags on protection change */ 413 #ifndef VM_ARCH_CLEAR 414 # define VM_ARCH_CLEAR VM_NONE 415 #endif 416 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 417 418 /* 419 * mapping from the currently active vm_flags protection bits (the 420 * low four bits) to a page protection mask.. 421 */ 422 extern pgprot_t protection_map[16]; 423 424 /** 425 * Fault flag definitions. 426 * 427 * @FAULT_FLAG_WRITE: Fault was a write fault. 428 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 429 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 430 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 431 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 432 * @FAULT_FLAG_TRIED: The fault has been tried once. 433 * @FAULT_FLAG_USER: The fault originated in userspace. 434 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 435 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 436 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 437 * 438 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 439 * whether we would allow page faults to retry by specifying these two 440 * fault flags correctly. Currently there can be three legal combinations: 441 * 442 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 443 * this is the first try 444 * 445 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 446 * we've already tried at least once 447 * 448 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 449 * 450 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 451 * be used. Note that page faults can be allowed to retry for multiple times, 452 * in which case we'll have an initial fault with flags (a) then later on 453 * continuous faults with flags (b). We should always try to detect pending 454 * signals before a retry to make sure the continuous page faults can still be 455 * interrupted if necessary. 456 */ 457 #define FAULT_FLAG_WRITE 0x01 458 #define FAULT_FLAG_MKWRITE 0x02 459 #define FAULT_FLAG_ALLOW_RETRY 0x04 460 #define FAULT_FLAG_RETRY_NOWAIT 0x08 461 #define FAULT_FLAG_KILLABLE 0x10 462 #define FAULT_FLAG_TRIED 0x20 463 #define FAULT_FLAG_USER 0x40 464 #define FAULT_FLAG_REMOTE 0x80 465 #define FAULT_FLAG_INSTRUCTION 0x100 466 #define FAULT_FLAG_INTERRUPTIBLE 0x200 467 468 /* 469 * The default fault flags that should be used by most of the 470 * arch-specific page fault handlers. 471 */ 472 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 473 FAULT_FLAG_KILLABLE | \ 474 FAULT_FLAG_INTERRUPTIBLE) 475 476 /** 477 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 478 * 479 * This is mostly used for places where we want to try to avoid taking 480 * the mmap_lock for too long a time when waiting for another condition 481 * to change, in which case we can try to be polite to release the 482 * mmap_lock in the first round to avoid potential starvation of other 483 * processes that would also want the mmap_lock. 484 * 485 * Return: true if the page fault allows retry and this is the first 486 * attempt of the fault handling; false otherwise. 487 */ 488 static inline bool fault_flag_allow_retry_first(unsigned int flags) 489 { 490 return (flags & FAULT_FLAG_ALLOW_RETRY) && 491 (!(flags & FAULT_FLAG_TRIED)); 492 } 493 494 #define FAULT_FLAG_TRACE \ 495 { FAULT_FLAG_WRITE, "WRITE" }, \ 496 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 497 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 498 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 499 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 500 { FAULT_FLAG_TRIED, "TRIED" }, \ 501 { FAULT_FLAG_USER, "USER" }, \ 502 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 503 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 504 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 505 506 /* 507 * vm_fault is filled by the pagefault handler and passed to the vma's 508 * ->fault function. The vma's ->fault is responsible for returning a bitmask 509 * of VM_FAULT_xxx flags that give details about how the fault was handled. 510 * 511 * MM layer fills up gfp_mask for page allocations but fault handler might 512 * alter it if its implementation requires a different allocation context. 513 * 514 * pgoff should be used in favour of virtual_address, if possible. 515 */ 516 struct vm_fault { 517 const struct { 518 struct vm_area_struct *vma; /* Target VMA */ 519 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 520 pgoff_t pgoff; /* Logical page offset based on vma */ 521 unsigned long address; /* Faulting virtual address */ 522 }; 523 unsigned int flags; /* FAULT_FLAG_xxx flags 524 * XXX: should really be 'const' */ 525 pmd_t *pmd; /* Pointer to pmd entry matching 526 * the 'address' */ 527 pud_t *pud; /* Pointer to pud entry matching 528 * the 'address' 529 */ 530 pte_t orig_pte; /* Value of PTE at the time of fault */ 531 532 struct page *cow_page; /* Page handler may use for COW fault */ 533 struct page *page; /* ->fault handlers should return a 534 * page here, unless VM_FAULT_NOPAGE 535 * is set (which is also implied by 536 * VM_FAULT_ERROR). 537 */ 538 /* These three entries are valid only while holding ptl lock */ 539 pte_t *pte; /* Pointer to pte entry matching 540 * the 'address'. NULL if the page 541 * table hasn't been allocated. 542 */ 543 spinlock_t *ptl; /* Page table lock. 544 * Protects pte page table if 'pte' 545 * is not NULL, otherwise pmd. 546 */ 547 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 548 * vm_ops->map_pages() sets up a page 549 * table from atomic context. 550 * do_fault_around() pre-allocates 551 * page table to avoid allocation from 552 * atomic context. 553 */ 554 }; 555 556 /* page entry size for vm->huge_fault() */ 557 enum page_entry_size { 558 PE_SIZE_PTE = 0, 559 PE_SIZE_PMD, 560 PE_SIZE_PUD, 561 }; 562 563 /* 564 * These are the virtual MM functions - opening of an area, closing and 565 * unmapping it (needed to keep files on disk up-to-date etc), pointer 566 * to the functions called when a no-page or a wp-page exception occurs. 567 */ 568 struct vm_operations_struct { 569 void (*open)(struct vm_area_struct * area); 570 void (*close)(struct vm_area_struct * area); 571 /* Called any time before splitting to check if it's allowed */ 572 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 573 int (*mremap)(struct vm_area_struct *area, unsigned long flags); 574 /* 575 * Called by mprotect() to make driver-specific permission 576 * checks before mprotect() is finalised. The VMA must not 577 * be modified. Returns 0 if eprotect() can proceed. 578 */ 579 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 580 unsigned long end, unsigned long newflags); 581 vm_fault_t (*fault)(struct vm_fault *vmf); 582 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 583 enum page_entry_size pe_size); 584 vm_fault_t (*map_pages)(struct vm_fault *vmf, 585 pgoff_t start_pgoff, pgoff_t end_pgoff); 586 unsigned long (*pagesize)(struct vm_area_struct * area); 587 588 /* notification that a previously read-only page is about to become 589 * writable, if an error is returned it will cause a SIGBUS */ 590 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 591 592 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 593 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 594 595 /* called by access_process_vm when get_user_pages() fails, typically 596 * for use by special VMAs. See also generic_access_phys() for a generic 597 * implementation useful for any iomem mapping. 598 */ 599 int (*access)(struct vm_area_struct *vma, unsigned long addr, 600 void *buf, int len, int write); 601 602 /* Called by the /proc/PID/maps code to ask the vma whether it 603 * has a special name. Returning non-NULL will also cause this 604 * vma to be dumped unconditionally. */ 605 const char *(*name)(struct vm_area_struct *vma); 606 607 #ifdef CONFIG_NUMA 608 /* 609 * set_policy() op must add a reference to any non-NULL @new mempolicy 610 * to hold the policy upon return. Caller should pass NULL @new to 611 * remove a policy and fall back to surrounding context--i.e. do not 612 * install a MPOL_DEFAULT policy, nor the task or system default 613 * mempolicy. 614 */ 615 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 616 617 /* 618 * get_policy() op must add reference [mpol_get()] to any policy at 619 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 620 * in mm/mempolicy.c will do this automatically. 621 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 622 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 623 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 624 * must return NULL--i.e., do not "fallback" to task or system default 625 * policy. 626 */ 627 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 628 unsigned long addr); 629 #endif 630 /* 631 * Called by vm_normal_page() for special PTEs to find the 632 * page for @addr. This is useful if the default behavior 633 * (using pte_page()) would not find the correct page. 634 */ 635 struct page *(*find_special_page)(struct vm_area_struct *vma, 636 unsigned long addr); 637 }; 638 639 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 640 { 641 static const struct vm_operations_struct dummy_vm_ops = {}; 642 643 memset(vma, 0, sizeof(*vma)); 644 vma->vm_mm = mm; 645 vma->vm_ops = &dummy_vm_ops; 646 INIT_LIST_HEAD(&vma->anon_vma_chain); 647 } 648 649 static inline void vma_set_anonymous(struct vm_area_struct *vma) 650 { 651 vma->vm_ops = NULL; 652 } 653 654 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 655 { 656 return !vma->vm_ops; 657 } 658 659 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 660 { 661 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 662 663 if (!maybe_stack) 664 return false; 665 666 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 667 VM_STACK_INCOMPLETE_SETUP) 668 return true; 669 670 return false; 671 } 672 673 static inline bool vma_is_foreign(struct vm_area_struct *vma) 674 { 675 if (!current->mm) 676 return true; 677 678 if (current->mm != vma->vm_mm) 679 return true; 680 681 return false; 682 } 683 684 static inline bool vma_is_accessible(struct vm_area_struct *vma) 685 { 686 return vma->vm_flags & VM_ACCESS_FLAGS; 687 } 688 689 #ifdef CONFIG_SHMEM 690 /* 691 * The vma_is_shmem is not inline because it is used only by slow 692 * paths in userfault. 693 */ 694 bool vma_is_shmem(struct vm_area_struct *vma); 695 #else 696 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 697 #endif 698 699 int vma_is_stack_for_current(struct vm_area_struct *vma); 700 701 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 702 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 703 704 struct mmu_gather; 705 struct inode; 706 707 #include <linux/huge_mm.h> 708 709 /* 710 * Methods to modify the page usage count. 711 * 712 * What counts for a page usage: 713 * - cache mapping (page->mapping) 714 * - private data (page->private) 715 * - page mapped in a task's page tables, each mapping 716 * is counted separately 717 * 718 * Also, many kernel routines increase the page count before a critical 719 * routine so they can be sure the page doesn't go away from under them. 720 */ 721 722 /* 723 * Drop a ref, return true if the refcount fell to zero (the page has no users) 724 */ 725 static inline int put_page_testzero(struct page *page) 726 { 727 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 728 return page_ref_dec_and_test(page); 729 } 730 731 /* 732 * Try to grab a ref unless the page has a refcount of zero, return false if 733 * that is the case. 734 * This can be called when MMU is off so it must not access 735 * any of the virtual mappings. 736 */ 737 static inline int get_page_unless_zero(struct page *page) 738 { 739 return page_ref_add_unless(page, 1, 0); 740 } 741 742 extern int page_is_ram(unsigned long pfn); 743 744 enum { 745 REGION_INTERSECTS, 746 REGION_DISJOINT, 747 REGION_MIXED, 748 }; 749 750 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 751 unsigned long desc); 752 753 /* Support for virtually mapped pages */ 754 struct page *vmalloc_to_page(const void *addr); 755 unsigned long vmalloc_to_pfn(const void *addr); 756 757 /* 758 * Determine if an address is within the vmalloc range 759 * 760 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 761 * is no special casing required. 762 */ 763 764 #ifndef is_ioremap_addr 765 #define is_ioremap_addr(x) is_vmalloc_addr(x) 766 #endif 767 768 #ifdef CONFIG_MMU 769 extern bool is_vmalloc_addr(const void *x); 770 extern int is_vmalloc_or_module_addr(const void *x); 771 #else 772 static inline bool is_vmalloc_addr(const void *x) 773 { 774 return false; 775 } 776 static inline int is_vmalloc_or_module_addr(const void *x) 777 { 778 return 0; 779 } 780 #endif 781 782 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 783 static inline void *kvmalloc(size_t size, gfp_t flags) 784 { 785 return kvmalloc_node(size, flags, NUMA_NO_NODE); 786 } 787 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 788 { 789 return kvmalloc_node(size, flags | __GFP_ZERO, node); 790 } 791 static inline void *kvzalloc(size_t size, gfp_t flags) 792 { 793 return kvmalloc(size, flags | __GFP_ZERO); 794 } 795 796 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 797 { 798 size_t bytes; 799 800 if (unlikely(check_mul_overflow(n, size, &bytes))) 801 return NULL; 802 803 return kvmalloc(bytes, flags); 804 } 805 806 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 807 { 808 return kvmalloc_array(n, size, flags | __GFP_ZERO); 809 } 810 811 extern void kvfree(const void *addr); 812 extern void kvfree_sensitive(const void *addr, size_t len); 813 814 static inline int head_compound_mapcount(struct page *head) 815 { 816 return atomic_read(compound_mapcount_ptr(head)) + 1; 817 } 818 819 /* 820 * Mapcount of compound page as a whole, does not include mapped sub-pages. 821 * 822 * Must be called only for compound pages or any their tail sub-pages. 823 */ 824 static inline int compound_mapcount(struct page *page) 825 { 826 VM_BUG_ON_PAGE(!PageCompound(page), page); 827 page = compound_head(page); 828 return head_compound_mapcount(page); 829 } 830 831 /* 832 * The atomic page->_mapcount, starts from -1: so that transitions 833 * both from it and to it can be tracked, using atomic_inc_and_test 834 * and atomic_add_negative(-1). 835 */ 836 static inline void page_mapcount_reset(struct page *page) 837 { 838 atomic_set(&(page)->_mapcount, -1); 839 } 840 841 int __page_mapcount(struct page *page); 842 843 /* 844 * Mapcount of 0-order page; when compound sub-page, includes 845 * compound_mapcount(). 846 * 847 * Result is undefined for pages which cannot be mapped into userspace. 848 * For example SLAB or special types of pages. See function page_has_type(). 849 * They use this place in struct page differently. 850 */ 851 static inline int page_mapcount(struct page *page) 852 { 853 if (unlikely(PageCompound(page))) 854 return __page_mapcount(page); 855 return atomic_read(&page->_mapcount) + 1; 856 } 857 858 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 859 int total_mapcount(struct page *page); 860 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 861 #else 862 static inline int total_mapcount(struct page *page) 863 { 864 return page_mapcount(page); 865 } 866 static inline int page_trans_huge_mapcount(struct page *page, 867 int *total_mapcount) 868 { 869 int mapcount = page_mapcount(page); 870 if (total_mapcount) 871 *total_mapcount = mapcount; 872 return mapcount; 873 } 874 #endif 875 876 static inline struct page *virt_to_head_page(const void *x) 877 { 878 struct page *page = virt_to_page(x); 879 880 return compound_head(page); 881 } 882 883 void __put_page(struct page *page); 884 885 void put_pages_list(struct list_head *pages); 886 887 void split_page(struct page *page, unsigned int order); 888 889 /* 890 * Compound pages have a destructor function. Provide a 891 * prototype for that function and accessor functions. 892 * These are _only_ valid on the head of a compound page. 893 */ 894 typedef void compound_page_dtor(struct page *); 895 896 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 897 enum compound_dtor_id { 898 NULL_COMPOUND_DTOR, 899 COMPOUND_PAGE_DTOR, 900 #ifdef CONFIG_HUGETLB_PAGE 901 HUGETLB_PAGE_DTOR, 902 #endif 903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 904 TRANSHUGE_PAGE_DTOR, 905 #endif 906 NR_COMPOUND_DTORS, 907 }; 908 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 909 910 static inline void set_compound_page_dtor(struct page *page, 911 enum compound_dtor_id compound_dtor) 912 { 913 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 914 page[1].compound_dtor = compound_dtor; 915 } 916 917 static inline void destroy_compound_page(struct page *page) 918 { 919 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 920 compound_page_dtors[page[1].compound_dtor](page); 921 } 922 923 static inline unsigned int compound_order(struct page *page) 924 { 925 if (!PageHead(page)) 926 return 0; 927 return page[1].compound_order; 928 } 929 930 static inline bool hpage_pincount_available(struct page *page) 931 { 932 /* 933 * Can the page->hpage_pinned_refcount field be used? That field is in 934 * the 3rd page of the compound page, so the smallest (2-page) compound 935 * pages cannot support it. 936 */ 937 page = compound_head(page); 938 return PageCompound(page) && compound_order(page) > 1; 939 } 940 941 static inline int head_compound_pincount(struct page *head) 942 { 943 return atomic_read(compound_pincount_ptr(head)); 944 } 945 946 static inline int compound_pincount(struct page *page) 947 { 948 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 949 page = compound_head(page); 950 return head_compound_pincount(page); 951 } 952 953 static inline void set_compound_order(struct page *page, unsigned int order) 954 { 955 page[1].compound_order = order; 956 page[1].compound_nr = 1U << order; 957 } 958 959 /* Returns the number of pages in this potentially compound page. */ 960 static inline unsigned long compound_nr(struct page *page) 961 { 962 if (!PageHead(page)) 963 return 1; 964 return page[1].compound_nr; 965 } 966 967 /* Returns the number of bytes in this potentially compound page. */ 968 static inline unsigned long page_size(struct page *page) 969 { 970 return PAGE_SIZE << compound_order(page); 971 } 972 973 /* Returns the number of bits needed for the number of bytes in a page */ 974 static inline unsigned int page_shift(struct page *page) 975 { 976 return PAGE_SHIFT + compound_order(page); 977 } 978 979 void free_compound_page(struct page *page); 980 981 #ifdef CONFIG_MMU 982 /* 983 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 984 * servicing faults for write access. In the normal case, do always want 985 * pte_mkwrite. But get_user_pages can cause write faults for mappings 986 * that do not have writing enabled, when used by access_process_vm. 987 */ 988 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 989 { 990 if (likely(vma->vm_flags & VM_WRITE)) 991 pte = pte_mkwrite(pte); 992 return pte; 993 } 994 995 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 996 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 997 998 vm_fault_t finish_fault(struct vm_fault *vmf); 999 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1000 #endif 1001 1002 /* 1003 * Multiple processes may "see" the same page. E.g. for untouched 1004 * mappings of /dev/null, all processes see the same page full of 1005 * zeroes, and text pages of executables and shared libraries have 1006 * only one copy in memory, at most, normally. 1007 * 1008 * For the non-reserved pages, page_count(page) denotes a reference count. 1009 * page_count() == 0 means the page is free. page->lru is then used for 1010 * freelist management in the buddy allocator. 1011 * page_count() > 0 means the page has been allocated. 1012 * 1013 * Pages are allocated by the slab allocator in order to provide memory 1014 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1015 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1016 * unless a particular usage is carefully commented. (the responsibility of 1017 * freeing the kmalloc memory is the caller's, of course). 1018 * 1019 * A page may be used by anyone else who does a __get_free_page(). 1020 * In this case, page_count still tracks the references, and should only 1021 * be used through the normal accessor functions. The top bits of page->flags 1022 * and page->virtual store page management information, but all other fields 1023 * are unused and could be used privately, carefully. The management of this 1024 * page is the responsibility of the one who allocated it, and those who have 1025 * subsequently been given references to it. 1026 * 1027 * The other pages (we may call them "pagecache pages") are completely 1028 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1029 * The following discussion applies only to them. 1030 * 1031 * A pagecache page contains an opaque `private' member, which belongs to the 1032 * page's address_space. Usually, this is the address of a circular list of 1033 * the page's disk buffers. PG_private must be set to tell the VM to call 1034 * into the filesystem to release these pages. 1035 * 1036 * A page may belong to an inode's memory mapping. In this case, page->mapping 1037 * is the pointer to the inode, and page->index is the file offset of the page, 1038 * in units of PAGE_SIZE. 1039 * 1040 * If pagecache pages are not associated with an inode, they are said to be 1041 * anonymous pages. These may become associated with the swapcache, and in that 1042 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1043 * 1044 * In either case (swapcache or inode backed), the pagecache itself holds one 1045 * reference to the page. Setting PG_private should also increment the 1046 * refcount. The each user mapping also has a reference to the page. 1047 * 1048 * The pagecache pages are stored in a per-mapping radix tree, which is 1049 * rooted at mapping->i_pages, and indexed by offset. 1050 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1051 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1052 * 1053 * All pagecache pages may be subject to I/O: 1054 * - inode pages may need to be read from disk, 1055 * - inode pages which have been modified and are MAP_SHARED may need 1056 * to be written back to the inode on disk, 1057 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1058 * modified may need to be swapped out to swap space and (later) to be read 1059 * back into memory. 1060 */ 1061 1062 /* 1063 * The zone field is never updated after free_area_init_core() 1064 * sets it, so none of the operations on it need to be atomic. 1065 */ 1066 1067 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1068 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1069 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1070 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1071 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1072 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1073 1074 /* 1075 * Define the bit shifts to access each section. For non-existent 1076 * sections we define the shift as 0; that plus a 0 mask ensures 1077 * the compiler will optimise away reference to them. 1078 */ 1079 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1080 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1081 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1082 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1083 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1084 1085 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1086 #ifdef NODE_NOT_IN_PAGE_FLAGS 1087 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1088 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1089 SECTIONS_PGOFF : ZONES_PGOFF) 1090 #else 1091 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1092 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1093 NODES_PGOFF : ZONES_PGOFF) 1094 #endif 1095 1096 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1097 1098 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1099 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1100 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1101 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1102 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1103 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1104 1105 static inline enum zone_type page_zonenum(const struct page *page) 1106 { 1107 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1108 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1109 } 1110 1111 #ifdef CONFIG_ZONE_DEVICE 1112 static inline bool is_zone_device_page(const struct page *page) 1113 { 1114 return page_zonenum(page) == ZONE_DEVICE; 1115 } 1116 extern void memmap_init_zone_device(struct zone *, unsigned long, 1117 unsigned long, struct dev_pagemap *); 1118 #else 1119 static inline bool is_zone_device_page(const struct page *page) 1120 { 1121 return false; 1122 } 1123 #endif 1124 1125 #ifdef CONFIG_DEV_PAGEMAP_OPS 1126 void free_devmap_managed_page(struct page *page); 1127 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1128 1129 static inline bool page_is_devmap_managed(struct page *page) 1130 { 1131 if (!static_branch_unlikely(&devmap_managed_key)) 1132 return false; 1133 if (!is_zone_device_page(page)) 1134 return false; 1135 switch (page->pgmap->type) { 1136 case MEMORY_DEVICE_PRIVATE: 1137 case MEMORY_DEVICE_FS_DAX: 1138 return true; 1139 default: 1140 break; 1141 } 1142 return false; 1143 } 1144 1145 void put_devmap_managed_page(struct page *page); 1146 1147 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1148 static inline bool page_is_devmap_managed(struct page *page) 1149 { 1150 return false; 1151 } 1152 1153 static inline void put_devmap_managed_page(struct page *page) 1154 { 1155 } 1156 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1157 1158 static inline bool is_device_private_page(const struct page *page) 1159 { 1160 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1161 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1162 is_zone_device_page(page) && 1163 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1164 } 1165 1166 static inline bool is_pci_p2pdma_page(const struct page *page) 1167 { 1168 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1169 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1170 is_zone_device_page(page) && 1171 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1172 } 1173 1174 /* 127: arbitrary random number, small enough to assemble well */ 1175 #define page_ref_zero_or_close_to_overflow(page) \ 1176 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1177 1178 static inline void get_page(struct page *page) 1179 { 1180 page = compound_head(page); 1181 /* 1182 * Getting a normal page or the head of a compound page 1183 * requires to already have an elevated page->_refcount. 1184 */ 1185 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1186 page_ref_inc(page); 1187 } 1188 1189 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1190 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs, 1191 unsigned int flags); 1192 1193 1194 static inline __must_check bool try_get_page(struct page *page) 1195 { 1196 page = compound_head(page); 1197 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1198 return false; 1199 page_ref_inc(page); 1200 return true; 1201 } 1202 1203 static inline void put_page(struct page *page) 1204 { 1205 page = compound_head(page); 1206 1207 /* 1208 * For devmap managed pages we need to catch refcount transition from 1209 * 2 to 1, when refcount reach one it means the page is free and we 1210 * need to inform the device driver through callback. See 1211 * include/linux/memremap.h and HMM for details. 1212 */ 1213 if (page_is_devmap_managed(page)) { 1214 put_devmap_managed_page(page); 1215 return; 1216 } 1217 1218 if (put_page_testzero(page)) 1219 __put_page(page); 1220 } 1221 1222 /* 1223 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1224 * the page's refcount so that two separate items are tracked: the original page 1225 * reference count, and also a new count of how many pin_user_pages() calls were 1226 * made against the page. ("gup-pinned" is another term for the latter). 1227 * 1228 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1229 * distinct from normal pages. As such, the unpin_user_page() call (and its 1230 * variants) must be used in order to release gup-pinned pages. 1231 * 1232 * Choice of value: 1233 * 1234 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1235 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1236 * simpler, due to the fact that adding an even power of two to the page 1237 * refcount has the effect of using only the upper N bits, for the code that 1238 * counts up using the bias value. This means that the lower bits are left for 1239 * the exclusive use of the original code that increments and decrements by one 1240 * (or at least, by much smaller values than the bias value). 1241 * 1242 * Of course, once the lower bits overflow into the upper bits (and this is 1243 * OK, because subtraction recovers the original values), then visual inspection 1244 * no longer suffices to directly view the separate counts. However, for normal 1245 * applications that don't have huge page reference counts, this won't be an 1246 * issue. 1247 * 1248 * Locking: the lockless algorithm described in page_cache_get_speculative() 1249 * and page_cache_gup_pin_speculative() provides safe operation for 1250 * get_user_pages and page_mkclean and other calls that race to set up page 1251 * table entries. 1252 */ 1253 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1254 1255 void unpin_user_page(struct page *page); 1256 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1257 bool make_dirty); 1258 void unpin_user_pages(struct page **pages, unsigned long npages); 1259 1260 /** 1261 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1262 * 1263 * This function checks if a page has been pinned via a call to 1264 * pin_user_pages*(). 1265 * 1266 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1267 * because it means "definitely not pinned for DMA", but true means "probably 1268 * pinned for DMA, but possibly a false positive due to having at least 1269 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1270 * 1271 * False positives are OK, because: a) it's unlikely for a page to get that many 1272 * refcounts, and b) all the callers of this routine are expected to be able to 1273 * deal gracefully with a false positive. 1274 * 1275 * For huge pages, the result will be exactly correct. That's because we have 1276 * more tracking data available: the 3rd struct page in the compound page is 1277 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1278 * scheme). 1279 * 1280 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1281 * 1282 * @page: pointer to page to be queried. 1283 * @Return: True, if it is likely that the page has been "dma-pinned". 1284 * False, if the page is definitely not dma-pinned. 1285 */ 1286 static inline bool page_maybe_dma_pinned(struct page *page) 1287 { 1288 if (hpage_pincount_available(page)) 1289 return compound_pincount(page) > 0; 1290 1291 /* 1292 * page_ref_count() is signed. If that refcount overflows, then 1293 * page_ref_count() returns a negative value, and callers will avoid 1294 * further incrementing the refcount. 1295 * 1296 * Here, for that overflow case, use the signed bit to count a little 1297 * bit higher via unsigned math, and thus still get an accurate result. 1298 */ 1299 return ((unsigned int)page_ref_count(compound_head(page))) >= 1300 GUP_PIN_COUNTING_BIAS; 1301 } 1302 1303 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1304 #define SECTION_IN_PAGE_FLAGS 1305 #endif 1306 1307 /* 1308 * The identification function is mainly used by the buddy allocator for 1309 * determining if two pages could be buddies. We are not really identifying 1310 * the zone since we could be using the section number id if we do not have 1311 * node id available in page flags. 1312 * We only guarantee that it will return the same value for two combinable 1313 * pages in a zone. 1314 */ 1315 static inline int page_zone_id(struct page *page) 1316 { 1317 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1318 } 1319 1320 #ifdef NODE_NOT_IN_PAGE_FLAGS 1321 extern int page_to_nid(const struct page *page); 1322 #else 1323 static inline int page_to_nid(const struct page *page) 1324 { 1325 struct page *p = (struct page *)page; 1326 1327 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1328 } 1329 #endif 1330 1331 #ifdef CONFIG_NUMA_BALANCING 1332 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1333 { 1334 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1335 } 1336 1337 static inline int cpupid_to_pid(int cpupid) 1338 { 1339 return cpupid & LAST__PID_MASK; 1340 } 1341 1342 static inline int cpupid_to_cpu(int cpupid) 1343 { 1344 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1345 } 1346 1347 static inline int cpupid_to_nid(int cpupid) 1348 { 1349 return cpu_to_node(cpupid_to_cpu(cpupid)); 1350 } 1351 1352 static inline bool cpupid_pid_unset(int cpupid) 1353 { 1354 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1355 } 1356 1357 static inline bool cpupid_cpu_unset(int cpupid) 1358 { 1359 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1360 } 1361 1362 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1363 { 1364 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1365 } 1366 1367 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1368 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1369 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1370 { 1371 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1372 } 1373 1374 static inline int page_cpupid_last(struct page *page) 1375 { 1376 return page->_last_cpupid; 1377 } 1378 static inline void page_cpupid_reset_last(struct page *page) 1379 { 1380 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1381 } 1382 #else 1383 static inline int page_cpupid_last(struct page *page) 1384 { 1385 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1386 } 1387 1388 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1389 1390 static inline void page_cpupid_reset_last(struct page *page) 1391 { 1392 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1393 } 1394 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1395 #else /* !CONFIG_NUMA_BALANCING */ 1396 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1397 { 1398 return page_to_nid(page); /* XXX */ 1399 } 1400 1401 static inline int page_cpupid_last(struct page *page) 1402 { 1403 return page_to_nid(page); /* XXX */ 1404 } 1405 1406 static inline int cpupid_to_nid(int cpupid) 1407 { 1408 return -1; 1409 } 1410 1411 static inline int cpupid_to_pid(int cpupid) 1412 { 1413 return -1; 1414 } 1415 1416 static inline int cpupid_to_cpu(int cpupid) 1417 { 1418 return -1; 1419 } 1420 1421 static inline int cpu_pid_to_cpupid(int nid, int pid) 1422 { 1423 return -1; 1424 } 1425 1426 static inline bool cpupid_pid_unset(int cpupid) 1427 { 1428 return true; 1429 } 1430 1431 static inline void page_cpupid_reset_last(struct page *page) 1432 { 1433 } 1434 1435 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1436 { 1437 return false; 1438 } 1439 #endif /* CONFIG_NUMA_BALANCING */ 1440 1441 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1442 1443 static inline u8 page_kasan_tag(const struct page *page) 1444 { 1445 if (kasan_enabled()) 1446 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1447 return 0xff; 1448 } 1449 1450 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1451 { 1452 if (kasan_enabled()) { 1453 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1454 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1455 } 1456 } 1457 1458 static inline void page_kasan_tag_reset(struct page *page) 1459 { 1460 if (kasan_enabled()) 1461 page_kasan_tag_set(page, 0xff); 1462 } 1463 1464 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1465 1466 static inline u8 page_kasan_tag(const struct page *page) 1467 { 1468 return 0xff; 1469 } 1470 1471 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1472 static inline void page_kasan_tag_reset(struct page *page) { } 1473 1474 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1475 1476 static inline struct zone *page_zone(const struct page *page) 1477 { 1478 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1479 } 1480 1481 static inline pg_data_t *page_pgdat(const struct page *page) 1482 { 1483 return NODE_DATA(page_to_nid(page)); 1484 } 1485 1486 #ifdef SECTION_IN_PAGE_FLAGS 1487 static inline void set_page_section(struct page *page, unsigned long section) 1488 { 1489 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1490 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1491 } 1492 1493 static inline unsigned long page_to_section(const struct page *page) 1494 { 1495 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1496 } 1497 #endif 1498 1499 static inline void set_page_zone(struct page *page, enum zone_type zone) 1500 { 1501 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1502 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1503 } 1504 1505 static inline void set_page_node(struct page *page, unsigned long node) 1506 { 1507 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1508 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1509 } 1510 1511 static inline void set_page_links(struct page *page, enum zone_type zone, 1512 unsigned long node, unsigned long pfn) 1513 { 1514 set_page_zone(page, zone); 1515 set_page_node(page, node); 1516 #ifdef SECTION_IN_PAGE_FLAGS 1517 set_page_section(page, pfn_to_section_nr(pfn)); 1518 #endif 1519 } 1520 1521 /* 1522 * Some inline functions in vmstat.h depend on page_zone() 1523 */ 1524 #include <linux/vmstat.h> 1525 1526 static __always_inline void *lowmem_page_address(const struct page *page) 1527 { 1528 return page_to_virt(page); 1529 } 1530 1531 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1532 #define HASHED_PAGE_VIRTUAL 1533 #endif 1534 1535 #if defined(WANT_PAGE_VIRTUAL) 1536 static inline void *page_address(const struct page *page) 1537 { 1538 return page->virtual; 1539 } 1540 static inline void set_page_address(struct page *page, void *address) 1541 { 1542 page->virtual = address; 1543 } 1544 #define page_address_init() do { } while(0) 1545 #endif 1546 1547 #if defined(HASHED_PAGE_VIRTUAL) 1548 void *page_address(const struct page *page); 1549 void set_page_address(struct page *page, void *virtual); 1550 void page_address_init(void); 1551 #endif 1552 1553 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1554 #define page_address(page) lowmem_page_address(page) 1555 #define set_page_address(page, address) do { } while(0) 1556 #define page_address_init() do { } while(0) 1557 #endif 1558 1559 extern void *page_rmapping(struct page *page); 1560 extern struct anon_vma *page_anon_vma(struct page *page); 1561 extern struct address_space *page_mapping(struct page *page); 1562 1563 extern struct address_space *__page_file_mapping(struct page *); 1564 1565 static inline 1566 struct address_space *page_file_mapping(struct page *page) 1567 { 1568 if (unlikely(PageSwapCache(page))) 1569 return __page_file_mapping(page); 1570 1571 return page->mapping; 1572 } 1573 1574 extern pgoff_t __page_file_index(struct page *page); 1575 1576 /* 1577 * Return the pagecache index of the passed page. Regular pagecache pages 1578 * use ->index whereas swapcache pages use swp_offset(->private) 1579 */ 1580 static inline pgoff_t page_index(struct page *page) 1581 { 1582 if (unlikely(PageSwapCache(page))) 1583 return __page_file_index(page); 1584 return page->index; 1585 } 1586 1587 bool page_mapped(struct page *page); 1588 struct address_space *page_mapping(struct page *page); 1589 struct address_space *page_mapping_file(struct page *page); 1590 1591 /* 1592 * Return true only if the page has been allocated with 1593 * ALLOC_NO_WATERMARKS and the low watermark was not 1594 * met implying that the system is under some pressure. 1595 */ 1596 static inline bool page_is_pfmemalloc(const struct page *page) 1597 { 1598 /* 1599 * Page index cannot be this large so this must be 1600 * a pfmemalloc page. 1601 */ 1602 return page->index == -1UL; 1603 } 1604 1605 /* 1606 * Only to be called by the page allocator on a freshly allocated 1607 * page. 1608 */ 1609 static inline void set_page_pfmemalloc(struct page *page) 1610 { 1611 page->index = -1UL; 1612 } 1613 1614 static inline void clear_page_pfmemalloc(struct page *page) 1615 { 1616 page->index = 0; 1617 } 1618 1619 /* 1620 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1621 */ 1622 extern void pagefault_out_of_memory(void); 1623 1624 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1625 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1626 1627 /* 1628 * Flags passed to show_mem() and show_free_areas() to suppress output in 1629 * various contexts. 1630 */ 1631 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1632 1633 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1634 1635 #ifdef CONFIG_MMU 1636 extern bool can_do_mlock(void); 1637 #else 1638 static inline bool can_do_mlock(void) { return false; } 1639 #endif 1640 extern int user_shm_lock(size_t, struct user_struct *); 1641 extern void user_shm_unlock(size_t, struct user_struct *); 1642 1643 /* 1644 * Parameter block passed down to zap_pte_range in exceptional cases. 1645 */ 1646 struct zap_details { 1647 struct address_space *check_mapping; /* Check page->mapping if set */ 1648 pgoff_t first_index; /* Lowest page->index to unmap */ 1649 pgoff_t last_index; /* Highest page->index to unmap */ 1650 }; 1651 1652 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1653 pte_t pte); 1654 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1655 pmd_t pmd); 1656 1657 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1658 unsigned long size); 1659 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1660 unsigned long size); 1661 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1662 unsigned long start, unsigned long end); 1663 1664 struct mmu_notifier_range; 1665 1666 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1667 unsigned long end, unsigned long floor, unsigned long ceiling); 1668 int 1669 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1670 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1671 struct mmu_notifier_range *range, pte_t **ptepp, 1672 pmd_t **pmdpp, spinlock_t **ptlp); 1673 int follow_pte(struct mm_struct *mm, unsigned long address, 1674 pte_t **ptepp, spinlock_t **ptlp); 1675 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1676 unsigned long *pfn); 1677 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1678 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1679 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1680 void *buf, int len, int write); 1681 1682 extern void truncate_pagecache(struct inode *inode, loff_t new); 1683 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1684 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1685 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1686 int truncate_inode_page(struct address_space *mapping, struct page *page); 1687 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1688 int invalidate_inode_page(struct page *page); 1689 1690 #ifdef CONFIG_MMU 1691 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1692 unsigned long address, unsigned int flags, 1693 struct pt_regs *regs); 1694 extern int fixup_user_fault(struct mm_struct *mm, 1695 unsigned long address, unsigned int fault_flags, 1696 bool *unlocked); 1697 void unmap_mapping_pages(struct address_space *mapping, 1698 pgoff_t start, pgoff_t nr, bool even_cows); 1699 void unmap_mapping_range(struct address_space *mapping, 1700 loff_t const holebegin, loff_t const holelen, int even_cows); 1701 #else 1702 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1703 unsigned long address, unsigned int flags, 1704 struct pt_regs *regs) 1705 { 1706 /* should never happen if there's no MMU */ 1707 BUG(); 1708 return VM_FAULT_SIGBUS; 1709 } 1710 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1711 unsigned int fault_flags, bool *unlocked) 1712 { 1713 /* should never happen if there's no MMU */ 1714 BUG(); 1715 return -EFAULT; 1716 } 1717 static inline void unmap_mapping_pages(struct address_space *mapping, 1718 pgoff_t start, pgoff_t nr, bool even_cows) { } 1719 static inline void unmap_mapping_range(struct address_space *mapping, 1720 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1721 #endif 1722 1723 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1724 loff_t const holebegin, loff_t const holelen) 1725 { 1726 unmap_mapping_range(mapping, holebegin, holelen, 0); 1727 } 1728 1729 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1730 void *buf, int len, unsigned int gup_flags); 1731 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1732 void *buf, int len, unsigned int gup_flags); 1733 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1734 void *buf, int len, unsigned int gup_flags); 1735 1736 long get_user_pages_remote(struct mm_struct *mm, 1737 unsigned long start, unsigned long nr_pages, 1738 unsigned int gup_flags, struct page **pages, 1739 struct vm_area_struct **vmas, int *locked); 1740 long pin_user_pages_remote(struct mm_struct *mm, 1741 unsigned long start, unsigned long nr_pages, 1742 unsigned int gup_flags, struct page **pages, 1743 struct vm_area_struct **vmas, int *locked); 1744 long get_user_pages(unsigned long start, unsigned long nr_pages, 1745 unsigned int gup_flags, struct page **pages, 1746 struct vm_area_struct **vmas); 1747 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1748 unsigned int gup_flags, struct page **pages, 1749 struct vm_area_struct **vmas); 1750 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1751 unsigned int gup_flags, struct page **pages, int *locked); 1752 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1753 unsigned int gup_flags, struct page **pages, int *locked); 1754 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1755 struct page **pages, unsigned int gup_flags); 1756 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1757 struct page **pages, unsigned int gup_flags); 1758 1759 int get_user_pages_fast(unsigned long start, int nr_pages, 1760 unsigned int gup_flags, struct page **pages); 1761 int pin_user_pages_fast(unsigned long start, int nr_pages, 1762 unsigned int gup_flags, struct page **pages); 1763 1764 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1765 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1766 struct task_struct *task, bool bypass_rlim); 1767 1768 struct kvec; 1769 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1770 struct page **pages); 1771 int get_kernel_page(unsigned long start, int write, struct page **pages); 1772 struct page *get_dump_page(unsigned long addr); 1773 1774 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1775 extern void do_invalidatepage(struct page *page, unsigned int offset, 1776 unsigned int length); 1777 1778 void __set_page_dirty(struct page *, struct address_space *, int warn); 1779 int __set_page_dirty_nobuffers(struct page *page); 1780 int __set_page_dirty_no_writeback(struct page *page); 1781 int redirty_page_for_writepage(struct writeback_control *wbc, 1782 struct page *page); 1783 void account_page_dirtied(struct page *page, struct address_space *mapping); 1784 void account_page_cleaned(struct page *page, struct address_space *mapping, 1785 struct bdi_writeback *wb); 1786 int set_page_dirty(struct page *page); 1787 int set_page_dirty_lock(struct page *page); 1788 void __cancel_dirty_page(struct page *page); 1789 static inline void cancel_dirty_page(struct page *page) 1790 { 1791 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1792 if (PageDirty(page)) 1793 __cancel_dirty_page(page); 1794 } 1795 int clear_page_dirty_for_io(struct page *page); 1796 1797 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1798 1799 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1800 unsigned long old_addr, struct vm_area_struct *new_vma, 1801 unsigned long new_addr, unsigned long len, 1802 bool need_rmap_locks); 1803 1804 /* 1805 * Flags used by change_protection(). For now we make it a bitmap so 1806 * that we can pass in multiple flags just like parameters. However 1807 * for now all the callers are only use one of the flags at the same 1808 * time. 1809 */ 1810 /* Whether we should allow dirty bit accounting */ 1811 #define MM_CP_DIRTY_ACCT (1UL << 0) 1812 /* Whether this protection change is for NUMA hints */ 1813 #define MM_CP_PROT_NUMA (1UL << 1) 1814 /* Whether this change is for write protecting */ 1815 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1816 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1817 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1818 MM_CP_UFFD_WP_RESOLVE) 1819 1820 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1821 unsigned long end, pgprot_t newprot, 1822 unsigned long cp_flags); 1823 extern int mprotect_fixup(struct vm_area_struct *vma, 1824 struct vm_area_struct **pprev, unsigned long start, 1825 unsigned long end, unsigned long newflags); 1826 1827 /* 1828 * doesn't attempt to fault and will return short. 1829 */ 1830 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1831 unsigned int gup_flags, struct page **pages); 1832 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1833 unsigned int gup_flags, struct page **pages); 1834 1835 static inline bool get_user_page_fast_only(unsigned long addr, 1836 unsigned int gup_flags, struct page **pagep) 1837 { 1838 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1839 } 1840 /* 1841 * per-process(per-mm_struct) statistics. 1842 */ 1843 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1844 { 1845 long val = atomic_long_read(&mm->rss_stat.count[member]); 1846 1847 #ifdef SPLIT_RSS_COUNTING 1848 /* 1849 * counter is updated in asynchronous manner and may go to minus. 1850 * But it's never be expected number for users. 1851 */ 1852 if (val < 0) 1853 val = 0; 1854 #endif 1855 return (unsigned long)val; 1856 } 1857 1858 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1859 1860 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1861 { 1862 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1863 1864 mm_trace_rss_stat(mm, member, count); 1865 } 1866 1867 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1868 { 1869 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1870 1871 mm_trace_rss_stat(mm, member, count); 1872 } 1873 1874 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1875 { 1876 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1877 1878 mm_trace_rss_stat(mm, member, count); 1879 } 1880 1881 /* Optimized variant when page is already known not to be PageAnon */ 1882 static inline int mm_counter_file(struct page *page) 1883 { 1884 if (PageSwapBacked(page)) 1885 return MM_SHMEMPAGES; 1886 return MM_FILEPAGES; 1887 } 1888 1889 static inline int mm_counter(struct page *page) 1890 { 1891 if (PageAnon(page)) 1892 return MM_ANONPAGES; 1893 return mm_counter_file(page); 1894 } 1895 1896 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1897 { 1898 return get_mm_counter(mm, MM_FILEPAGES) + 1899 get_mm_counter(mm, MM_ANONPAGES) + 1900 get_mm_counter(mm, MM_SHMEMPAGES); 1901 } 1902 1903 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1904 { 1905 return max(mm->hiwater_rss, get_mm_rss(mm)); 1906 } 1907 1908 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1909 { 1910 return max(mm->hiwater_vm, mm->total_vm); 1911 } 1912 1913 static inline void update_hiwater_rss(struct mm_struct *mm) 1914 { 1915 unsigned long _rss = get_mm_rss(mm); 1916 1917 if ((mm)->hiwater_rss < _rss) 1918 (mm)->hiwater_rss = _rss; 1919 } 1920 1921 static inline void update_hiwater_vm(struct mm_struct *mm) 1922 { 1923 if (mm->hiwater_vm < mm->total_vm) 1924 mm->hiwater_vm = mm->total_vm; 1925 } 1926 1927 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1928 { 1929 mm->hiwater_rss = get_mm_rss(mm); 1930 } 1931 1932 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1933 struct mm_struct *mm) 1934 { 1935 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1936 1937 if (*maxrss < hiwater_rss) 1938 *maxrss = hiwater_rss; 1939 } 1940 1941 #if defined(SPLIT_RSS_COUNTING) 1942 void sync_mm_rss(struct mm_struct *mm); 1943 #else 1944 static inline void sync_mm_rss(struct mm_struct *mm) 1945 { 1946 } 1947 #endif 1948 1949 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1950 static inline int pte_special(pte_t pte) 1951 { 1952 return 0; 1953 } 1954 1955 static inline pte_t pte_mkspecial(pte_t pte) 1956 { 1957 return pte; 1958 } 1959 #endif 1960 1961 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1962 static inline int pte_devmap(pte_t pte) 1963 { 1964 return 0; 1965 } 1966 #endif 1967 1968 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1969 1970 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1971 spinlock_t **ptl); 1972 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1973 spinlock_t **ptl) 1974 { 1975 pte_t *ptep; 1976 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1977 return ptep; 1978 } 1979 1980 #ifdef __PAGETABLE_P4D_FOLDED 1981 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1982 unsigned long address) 1983 { 1984 return 0; 1985 } 1986 #else 1987 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1988 #endif 1989 1990 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1991 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1992 unsigned long address) 1993 { 1994 return 0; 1995 } 1996 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1997 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1998 1999 #else 2000 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2001 2002 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2003 { 2004 if (mm_pud_folded(mm)) 2005 return; 2006 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2007 } 2008 2009 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2010 { 2011 if (mm_pud_folded(mm)) 2012 return; 2013 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2014 } 2015 #endif 2016 2017 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2018 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2019 unsigned long address) 2020 { 2021 return 0; 2022 } 2023 2024 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2025 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2026 2027 #else 2028 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2029 2030 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2031 { 2032 if (mm_pmd_folded(mm)) 2033 return; 2034 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2035 } 2036 2037 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2038 { 2039 if (mm_pmd_folded(mm)) 2040 return; 2041 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2042 } 2043 #endif 2044 2045 #ifdef CONFIG_MMU 2046 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2047 { 2048 atomic_long_set(&mm->pgtables_bytes, 0); 2049 } 2050 2051 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2052 { 2053 return atomic_long_read(&mm->pgtables_bytes); 2054 } 2055 2056 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2057 { 2058 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2059 } 2060 2061 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2062 { 2063 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2064 } 2065 #else 2066 2067 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2068 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2069 { 2070 return 0; 2071 } 2072 2073 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2074 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2075 #endif 2076 2077 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2078 int __pte_alloc_kernel(pmd_t *pmd); 2079 2080 #if defined(CONFIG_MMU) 2081 2082 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2083 unsigned long address) 2084 { 2085 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2086 NULL : p4d_offset(pgd, address); 2087 } 2088 2089 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2090 unsigned long address) 2091 { 2092 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2093 NULL : pud_offset(p4d, address); 2094 } 2095 2096 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2097 { 2098 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2099 NULL: pmd_offset(pud, address); 2100 } 2101 #endif /* CONFIG_MMU */ 2102 2103 #if USE_SPLIT_PTE_PTLOCKS 2104 #if ALLOC_SPLIT_PTLOCKS 2105 void __init ptlock_cache_init(void); 2106 extern bool ptlock_alloc(struct page *page); 2107 extern void ptlock_free(struct page *page); 2108 2109 static inline spinlock_t *ptlock_ptr(struct page *page) 2110 { 2111 return page->ptl; 2112 } 2113 #else /* ALLOC_SPLIT_PTLOCKS */ 2114 static inline void ptlock_cache_init(void) 2115 { 2116 } 2117 2118 static inline bool ptlock_alloc(struct page *page) 2119 { 2120 return true; 2121 } 2122 2123 static inline void ptlock_free(struct page *page) 2124 { 2125 } 2126 2127 static inline spinlock_t *ptlock_ptr(struct page *page) 2128 { 2129 return &page->ptl; 2130 } 2131 #endif /* ALLOC_SPLIT_PTLOCKS */ 2132 2133 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2134 { 2135 return ptlock_ptr(pmd_page(*pmd)); 2136 } 2137 2138 static inline bool ptlock_init(struct page *page) 2139 { 2140 /* 2141 * prep_new_page() initialize page->private (and therefore page->ptl) 2142 * with 0. Make sure nobody took it in use in between. 2143 * 2144 * It can happen if arch try to use slab for page table allocation: 2145 * slab code uses page->slab_cache, which share storage with page->ptl. 2146 */ 2147 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2148 if (!ptlock_alloc(page)) 2149 return false; 2150 spin_lock_init(ptlock_ptr(page)); 2151 return true; 2152 } 2153 2154 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2155 /* 2156 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2157 */ 2158 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2159 { 2160 return &mm->page_table_lock; 2161 } 2162 static inline void ptlock_cache_init(void) {} 2163 static inline bool ptlock_init(struct page *page) { return true; } 2164 static inline void ptlock_free(struct page *page) {} 2165 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2166 2167 static inline void pgtable_init(void) 2168 { 2169 ptlock_cache_init(); 2170 pgtable_cache_init(); 2171 } 2172 2173 static inline bool pgtable_pte_page_ctor(struct page *page) 2174 { 2175 if (!ptlock_init(page)) 2176 return false; 2177 __SetPageTable(page); 2178 inc_lruvec_page_state(page, NR_PAGETABLE); 2179 return true; 2180 } 2181 2182 static inline void pgtable_pte_page_dtor(struct page *page) 2183 { 2184 ptlock_free(page); 2185 __ClearPageTable(page); 2186 dec_lruvec_page_state(page, NR_PAGETABLE); 2187 } 2188 2189 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2190 ({ \ 2191 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2192 pte_t *__pte = pte_offset_map(pmd, address); \ 2193 *(ptlp) = __ptl; \ 2194 spin_lock(__ptl); \ 2195 __pte; \ 2196 }) 2197 2198 #define pte_unmap_unlock(pte, ptl) do { \ 2199 spin_unlock(ptl); \ 2200 pte_unmap(pte); \ 2201 } while (0) 2202 2203 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2204 2205 #define pte_alloc_map(mm, pmd, address) \ 2206 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2207 2208 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2209 (pte_alloc(mm, pmd) ? \ 2210 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2211 2212 #define pte_alloc_kernel(pmd, address) \ 2213 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2214 NULL: pte_offset_kernel(pmd, address)) 2215 2216 #if USE_SPLIT_PMD_PTLOCKS 2217 2218 static struct page *pmd_to_page(pmd_t *pmd) 2219 { 2220 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2221 return virt_to_page((void *)((unsigned long) pmd & mask)); 2222 } 2223 2224 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2225 { 2226 return ptlock_ptr(pmd_to_page(pmd)); 2227 } 2228 2229 static inline bool pmd_ptlock_init(struct page *page) 2230 { 2231 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2232 page->pmd_huge_pte = NULL; 2233 #endif 2234 return ptlock_init(page); 2235 } 2236 2237 static inline void pmd_ptlock_free(struct page *page) 2238 { 2239 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2240 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2241 #endif 2242 ptlock_free(page); 2243 } 2244 2245 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2246 2247 #else 2248 2249 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2250 { 2251 return &mm->page_table_lock; 2252 } 2253 2254 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2255 static inline void pmd_ptlock_free(struct page *page) {} 2256 2257 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2258 2259 #endif 2260 2261 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2262 { 2263 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2264 spin_lock(ptl); 2265 return ptl; 2266 } 2267 2268 static inline bool pgtable_pmd_page_ctor(struct page *page) 2269 { 2270 if (!pmd_ptlock_init(page)) 2271 return false; 2272 __SetPageTable(page); 2273 inc_lruvec_page_state(page, NR_PAGETABLE); 2274 return true; 2275 } 2276 2277 static inline void pgtable_pmd_page_dtor(struct page *page) 2278 { 2279 pmd_ptlock_free(page); 2280 __ClearPageTable(page); 2281 dec_lruvec_page_state(page, NR_PAGETABLE); 2282 } 2283 2284 /* 2285 * No scalability reason to split PUD locks yet, but follow the same pattern 2286 * as the PMD locks to make it easier if we decide to. The VM should not be 2287 * considered ready to switch to split PUD locks yet; there may be places 2288 * which need to be converted from page_table_lock. 2289 */ 2290 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2291 { 2292 return &mm->page_table_lock; 2293 } 2294 2295 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2296 { 2297 spinlock_t *ptl = pud_lockptr(mm, pud); 2298 2299 spin_lock(ptl); 2300 return ptl; 2301 } 2302 2303 extern void __init pagecache_init(void); 2304 extern void __init free_area_init_memoryless_node(int nid); 2305 extern void free_initmem(void); 2306 2307 /* 2308 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2309 * into the buddy system. The freed pages will be poisoned with pattern 2310 * "poison" if it's within range [0, UCHAR_MAX]. 2311 * Return pages freed into the buddy system. 2312 */ 2313 extern unsigned long free_reserved_area(void *start, void *end, 2314 int poison, const char *s); 2315 2316 extern void adjust_managed_page_count(struct page *page, long count); 2317 extern void mem_init_print_info(const char *str); 2318 2319 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2320 2321 /* Free the reserved page into the buddy system, so it gets managed. */ 2322 static inline void free_reserved_page(struct page *page) 2323 { 2324 ClearPageReserved(page); 2325 init_page_count(page); 2326 __free_page(page); 2327 adjust_managed_page_count(page, 1); 2328 } 2329 #define free_highmem_page(page) free_reserved_page(page) 2330 2331 static inline void mark_page_reserved(struct page *page) 2332 { 2333 SetPageReserved(page); 2334 adjust_managed_page_count(page, -1); 2335 } 2336 2337 /* 2338 * Default method to free all the __init memory into the buddy system. 2339 * The freed pages will be poisoned with pattern "poison" if it's within 2340 * range [0, UCHAR_MAX]. 2341 * Return pages freed into the buddy system. 2342 */ 2343 static inline unsigned long free_initmem_default(int poison) 2344 { 2345 extern char __init_begin[], __init_end[]; 2346 2347 return free_reserved_area(&__init_begin, &__init_end, 2348 poison, "unused kernel"); 2349 } 2350 2351 static inline unsigned long get_num_physpages(void) 2352 { 2353 int nid; 2354 unsigned long phys_pages = 0; 2355 2356 for_each_online_node(nid) 2357 phys_pages += node_present_pages(nid); 2358 2359 return phys_pages; 2360 } 2361 2362 /* 2363 * Using memblock node mappings, an architecture may initialise its 2364 * zones, allocate the backing mem_map and account for memory holes in an 2365 * architecture independent manner. 2366 * 2367 * An architecture is expected to register range of page frames backed by 2368 * physical memory with memblock_add[_node]() before calling 2369 * free_area_init() passing in the PFN each zone ends at. At a basic 2370 * usage, an architecture is expected to do something like 2371 * 2372 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2373 * max_highmem_pfn}; 2374 * for_each_valid_physical_page_range() 2375 * memblock_add_node(base, size, nid) 2376 * free_area_init(max_zone_pfns); 2377 */ 2378 void free_area_init(unsigned long *max_zone_pfn); 2379 unsigned long node_map_pfn_alignment(void); 2380 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2381 unsigned long end_pfn); 2382 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2383 unsigned long end_pfn); 2384 extern void get_pfn_range_for_nid(unsigned int nid, 2385 unsigned long *start_pfn, unsigned long *end_pfn); 2386 extern unsigned long find_min_pfn_with_active_regions(void); 2387 2388 #ifndef CONFIG_NEED_MULTIPLE_NODES 2389 static inline int early_pfn_to_nid(unsigned long pfn) 2390 { 2391 return 0; 2392 } 2393 #else 2394 /* please see mm/page_alloc.c */ 2395 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2396 #endif 2397 2398 extern void set_dma_reserve(unsigned long new_dma_reserve); 2399 extern void memmap_init_range(unsigned long, int, unsigned long, 2400 unsigned long, unsigned long, enum meminit_context, 2401 struct vmem_altmap *, int migratetype); 2402 extern void memmap_init_zone(struct zone *zone); 2403 extern void setup_per_zone_wmarks(void); 2404 extern int __meminit init_per_zone_wmark_min(void); 2405 extern void mem_init(void); 2406 extern void __init mmap_init(void); 2407 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2408 extern long si_mem_available(void); 2409 extern void si_meminfo(struct sysinfo * val); 2410 extern void si_meminfo_node(struct sysinfo *val, int nid); 2411 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2412 extern unsigned long arch_reserved_kernel_pages(void); 2413 #endif 2414 2415 extern __printf(3, 4) 2416 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2417 2418 extern void setup_per_cpu_pageset(void); 2419 2420 /* page_alloc.c */ 2421 extern int min_free_kbytes; 2422 extern int watermark_boost_factor; 2423 extern int watermark_scale_factor; 2424 extern bool arch_has_descending_max_zone_pfns(void); 2425 2426 /* nommu.c */ 2427 extern atomic_long_t mmap_pages_allocated; 2428 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2429 2430 /* interval_tree.c */ 2431 void vma_interval_tree_insert(struct vm_area_struct *node, 2432 struct rb_root_cached *root); 2433 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2434 struct vm_area_struct *prev, 2435 struct rb_root_cached *root); 2436 void vma_interval_tree_remove(struct vm_area_struct *node, 2437 struct rb_root_cached *root); 2438 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2439 unsigned long start, unsigned long last); 2440 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2441 unsigned long start, unsigned long last); 2442 2443 #define vma_interval_tree_foreach(vma, root, start, last) \ 2444 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2445 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2446 2447 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2448 struct rb_root_cached *root); 2449 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2450 struct rb_root_cached *root); 2451 struct anon_vma_chain * 2452 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2453 unsigned long start, unsigned long last); 2454 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2455 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2456 #ifdef CONFIG_DEBUG_VM_RB 2457 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2458 #endif 2459 2460 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2461 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2462 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2463 2464 /* mmap.c */ 2465 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2466 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2467 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2468 struct vm_area_struct *expand); 2469 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2470 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2471 { 2472 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2473 } 2474 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2475 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2476 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2477 struct mempolicy *, struct vm_userfaultfd_ctx); 2478 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2479 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2480 unsigned long addr, int new_below); 2481 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2482 unsigned long addr, int new_below); 2483 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2484 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2485 struct rb_node **, struct rb_node *); 2486 extern void unlink_file_vma(struct vm_area_struct *); 2487 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2488 unsigned long addr, unsigned long len, pgoff_t pgoff, 2489 bool *need_rmap_locks); 2490 extern void exit_mmap(struct mm_struct *); 2491 2492 static inline int check_data_rlimit(unsigned long rlim, 2493 unsigned long new, 2494 unsigned long start, 2495 unsigned long end_data, 2496 unsigned long start_data) 2497 { 2498 if (rlim < RLIM_INFINITY) { 2499 if (((new - start) + (end_data - start_data)) > rlim) 2500 return -ENOSPC; 2501 } 2502 2503 return 0; 2504 } 2505 2506 extern int mm_take_all_locks(struct mm_struct *mm); 2507 extern void mm_drop_all_locks(struct mm_struct *mm); 2508 2509 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2510 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2511 extern struct file *get_task_exe_file(struct task_struct *task); 2512 2513 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2514 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2515 2516 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2517 const struct vm_special_mapping *sm); 2518 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2519 unsigned long addr, unsigned long len, 2520 unsigned long flags, 2521 const struct vm_special_mapping *spec); 2522 /* This is an obsolete alternative to _install_special_mapping. */ 2523 extern int install_special_mapping(struct mm_struct *mm, 2524 unsigned long addr, unsigned long len, 2525 unsigned long flags, struct page **pages); 2526 2527 unsigned long randomize_stack_top(unsigned long stack_top); 2528 2529 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2530 2531 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2532 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2533 struct list_head *uf); 2534 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2535 unsigned long len, unsigned long prot, unsigned long flags, 2536 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2537 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2538 struct list_head *uf, bool downgrade); 2539 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2540 struct list_head *uf); 2541 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2542 2543 #ifdef CONFIG_MMU 2544 extern int __mm_populate(unsigned long addr, unsigned long len, 2545 int ignore_errors); 2546 static inline void mm_populate(unsigned long addr, unsigned long len) 2547 { 2548 /* Ignore errors */ 2549 (void) __mm_populate(addr, len, 1); 2550 } 2551 #else 2552 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2553 #endif 2554 2555 /* These take the mm semaphore themselves */ 2556 extern int __must_check vm_brk(unsigned long, unsigned long); 2557 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2558 extern int vm_munmap(unsigned long, size_t); 2559 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2560 unsigned long, unsigned long, 2561 unsigned long, unsigned long); 2562 2563 struct vm_unmapped_area_info { 2564 #define VM_UNMAPPED_AREA_TOPDOWN 1 2565 unsigned long flags; 2566 unsigned long length; 2567 unsigned long low_limit; 2568 unsigned long high_limit; 2569 unsigned long align_mask; 2570 unsigned long align_offset; 2571 }; 2572 2573 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2574 2575 /* truncate.c */ 2576 extern void truncate_inode_pages(struct address_space *, loff_t); 2577 extern void truncate_inode_pages_range(struct address_space *, 2578 loff_t lstart, loff_t lend); 2579 extern void truncate_inode_pages_final(struct address_space *); 2580 2581 /* generic vm_area_ops exported for stackable file systems */ 2582 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2583 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2584 pgoff_t start_pgoff, pgoff_t end_pgoff); 2585 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2586 2587 /* mm/page-writeback.c */ 2588 int __must_check write_one_page(struct page *page); 2589 void task_dirty_inc(struct task_struct *tsk); 2590 2591 extern unsigned long stack_guard_gap; 2592 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2593 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2594 2595 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2596 extern int expand_downwards(struct vm_area_struct *vma, 2597 unsigned long address); 2598 #if VM_GROWSUP 2599 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2600 #else 2601 #define expand_upwards(vma, address) (0) 2602 #endif 2603 2604 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2605 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2606 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2607 struct vm_area_struct **pprev); 2608 2609 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2610 NULL if none. Assume start_addr < end_addr. */ 2611 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2612 { 2613 struct vm_area_struct * vma = find_vma(mm,start_addr); 2614 2615 if (vma && end_addr <= vma->vm_start) 2616 vma = NULL; 2617 return vma; 2618 } 2619 2620 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2621 { 2622 unsigned long vm_start = vma->vm_start; 2623 2624 if (vma->vm_flags & VM_GROWSDOWN) { 2625 vm_start -= stack_guard_gap; 2626 if (vm_start > vma->vm_start) 2627 vm_start = 0; 2628 } 2629 return vm_start; 2630 } 2631 2632 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2633 { 2634 unsigned long vm_end = vma->vm_end; 2635 2636 if (vma->vm_flags & VM_GROWSUP) { 2637 vm_end += stack_guard_gap; 2638 if (vm_end < vma->vm_end) 2639 vm_end = -PAGE_SIZE; 2640 } 2641 return vm_end; 2642 } 2643 2644 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2645 { 2646 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2647 } 2648 2649 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2650 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2651 unsigned long vm_start, unsigned long vm_end) 2652 { 2653 struct vm_area_struct *vma = find_vma(mm, vm_start); 2654 2655 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2656 vma = NULL; 2657 2658 return vma; 2659 } 2660 2661 static inline bool range_in_vma(struct vm_area_struct *vma, 2662 unsigned long start, unsigned long end) 2663 { 2664 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2665 } 2666 2667 #ifdef CONFIG_MMU 2668 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2669 void vma_set_page_prot(struct vm_area_struct *vma); 2670 #else 2671 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2672 { 2673 return __pgprot(0); 2674 } 2675 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2676 { 2677 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2678 } 2679 #endif 2680 2681 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2682 2683 #ifdef CONFIG_NUMA_BALANCING 2684 unsigned long change_prot_numa(struct vm_area_struct *vma, 2685 unsigned long start, unsigned long end); 2686 #endif 2687 2688 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2689 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2690 unsigned long pfn, unsigned long size, pgprot_t); 2691 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2692 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2693 struct page **pages, unsigned long *num); 2694 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2695 unsigned long num); 2696 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2697 unsigned long num); 2698 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2699 unsigned long pfn); 2700 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2701 unsigned long pfn, pgprot_t pgprot); 2702 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2703 pfn_t pfn); 2704 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2705 pfn_t pfn, pgprot_t pgprot); 2706 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2707 unsigned long addr, pfn_t pfn); 2708 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2709 2710 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2711 unsigned long addr, struct page *page) 2712 { 2713 int err = vm_insert_page(vma, addr, page); 2714 2715 if (err == -ENOMEM) 2716 return VM_FAULT_OOM; 2717 if (err < 0 && err != -EBUSY) 2718 return VM_FAULT_SIGBUS; 2719 2720 return VM_FAULT_NOPAGE; 2721 } 2722 2723 #ifndef io_remap_pfn_range 2724 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2725 unsigned long addr, unsigned long pfn, 2726 unsigned long size, pgprot_t prot) 2727 { 2728 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2729 } 2730 #endif 2731 2732 static inline vm_fault_t vmf_error(int err) 2733 { 2734 if (err == -ENOMEM) 2735 return VM_FAULT_OOM; 2736 return VM_FAULT_SIGBUS; 2737 } 2738 2739 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2740 unsigned int foll_flags); 2741 2742 #define FOLL_WRITE 0x01 /* check pte is writable */ 2743 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2744 #define FOLL_GET 0x04 /* do get_page on page */ 2745 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2746 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2747 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2748 * and return without waiting upon it */ 2749 #define FOLL_POPULATE 0x40 /* fault in page */ 2750 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2751 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2752 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2753 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2754 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2755 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2756 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2757 #define FOLL_COW 0x4000 /* internal GUP flag */ 2758 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2759 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2760 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2761 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2762 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2763 2764 /* 2765 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2766 * other. Here is what they mean, and how to use them: 2767 * 2768 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2769 * period _often_ under userspace control. This is in contrast to 2770 * iov_iter_get_pages(), whose usages are transient. 2771 * 2772 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2773 * lifetime enforced by the filesystem and we need guarantees that longterm 2774 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2775 * the filesystem. Ideas for this coordination include revoking the longterm 2776 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2777 * added after the problem with filesystems was found FS DAX VMAs are 2778 * specifically failed. Filesystem pages are still subject to bugs and use of 2779 * FOLL_LONGTERM should be avoided on those pages. 2780 * 2781 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2782 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2783 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2784 * is due to an incompatibility with the FS DAX check and 2785 * FAULT_FLAG_ALLOW_RETRY. 2786 * 2787 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2788 * that region. And so, CMA attempts to migrate the page before pinning, when 2789 * FOLL_LONGTERM is specified. 2790 * 2791 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2792 * but an additional pin counting system) will be invoked. This is intended for 2793 * anything that gets a page reference and then touches page data (for example, 2794 * Direct IO). This lets the filesystem know that some non-file-system entity is 2795 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2796 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2797 * a call to unpin_user_page(). 2798 * 2799 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2800 * and separate refcounting mechanisms, however, and that means that each has 2801 * its own acquire and release mechanisms: 2802 * 2803 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2804 * 2805 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2806 * 2807 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2808 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2809 * calls applied to them, and that's perfectly OK. This is a constraint on the 2810 * callers, not on the pages.) 2811 * 2812 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2813 * directly by the caller. That's in order to help avoid mismatches when 2814 * releasing pages: get_user_pages*() pages must be released via put_page(), 2815 * while pin_user_pages*() pages must be released via unpin_user_page(). 2816 * 2817 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2818 */ 2819 2820 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2821 { 2822 if (vm_fault & VM_FAULT_OOM) 2823 return -ENOMEM; 2824 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2825 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2826 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2827 return -EFAULT; 2828 return 0; 2829 } 2830 2831 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2832 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2833 unsigned long size, pte_fn_t fn, void *data); 2834 extern int apply_to_existing_page_range(struct mm_struct *mm, 2835 unsigned long address, unsigned long size, 2836 pte_fn_t fn, void *data); 2837 2838 extern void init_mem_debugging_and_hardening(void); 2839 #ifdef CONFIG_PAGE_POISONING 2840 extern void __kernel_poison_pages(struct page *page, int numpages); 2841 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2842 extern bool _page_poisoning_enabled_early; 2843 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2844 static inline bool page_poisoning_enabled(void) 2845 { 2846 return _page_poisoning_enabled_early; 2847 } 2848 /* 2849 * For use in fast paths after init_mem_debugging() has run, or when a 2850 * false negative result is not harmful when called too early. 2851 */ 2852 static inline bool page_poisoning_enabled_static(void) 2853 { 2854 return static_branch_unlikely(&_page_poisoning_enabled); 2855 } 2856 static inline void kernel_poison_pages(struct page *page, int numpages) 2857 { 2858 if (page_poisoning_enabled_static()) 2859 __kernel_poison_pages(page, numpages); 2860 } 2861 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2862 { 2863 if (page_poisoning_enabled_static()) 2864 __kernel_unpoison_pages(page, numpages); 2865 } 2866 #else 2867 static inline bool page_poisoning_enabled(void) { return false; } 2868 static inline bool page_poisoning_enabled_static(void) { return false; } 2869 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2870 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2871 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2872 #endif 2873 2874 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2875 static inline bool want_init_on_alloc(gfp_t flags) 2876 { 2877 if (static_branch_unlikely(&init_on_alloc)) 2878 return true; 2879 return flags & __GFP_ZERO; 2880 } 2881 2882 DECLARE_STATIC_KEY_FALSE(init_on_free); 2883 static inline bool want_init_on_free(void) 2884 { 2885 return static_branch_unlikely(&init_on_free); 2886 } 2887 2888 extern bool _debug_pagealloc_enabled_early; 2889 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2890 2891 static inline bool debug_pagealloc_enabled(void) 2892 { 2893 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2894 _debug_pagealloc_enabled_early; 2895 } 2896 2897 /* 2898 * For use in fast paths after init_debug_pagealloc() has run, or when a 2899 * false negative result is not harmful when called too early. 2900 */ 2901 static inline bool debug_pagealloc_enabled_static(void) 2902 { 2903 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2904 return false; 2905 2906 return static_branch_unlikely(&_debug_pagealloc_enabled); 2907 } 2908 2909 #ifdef CONFIG_DEBUG_PAGEALLOC 2910 /* 2911 * To support DEBUG_PAGEALLOC architecture must ensure that 2912 * __kernel_map_pages() never fails 2913 */ 2914 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2915 2916 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 2917 { 2918 if (debug_pagealloc_enabled_static()) 2919 __kernel_map_pages(page, numpages, 1); 2920 } 2921 2922 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 2923 { 2924 if (debug_pagealloc_enabled_static()) 2925 __kernel_map_pages(page, numpages, 0); 2926 } 2927 #else /* CONFIG_DEBUG_PAGEALLOC */ 2928 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 2929 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 2930 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2931 2932 #ifdef __HAVE_ARCH_GATE_AREA 2933 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2934 extern int in_gate_area_no_mm(unsigned long addr); 2935 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2936 #else 2937 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2938 { 2939 return NULL; 2940 } 2941 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2942 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2943 { 2944 return 0; 2945 } 2946 #endif /* __HAVE_ARCH_GATE_AREA */ 2947 2948 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2949 2950 #ifdef CONFIG_SYSCTL 2951 extern int sysctl_drop_caches; 2952 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2953 loff_t *); 2954 #endif 2955 2956 void drop_slab(void); 2957 void drop_slab_node(int nid); 2958 2959 #ifndef CONFIG_MMU 2960 #define randomize_va_space 0 2961 #else 2962 extern int randomize_va_space; 2963 #endif 2964 2965 const char * arch_vma_name(struct vm_area_struct *vma); 2966 #ifdef CONFIG_MMU 2967 void print_vma_addr(char *prefix, unsigned long rip); 2968 #else 2969 static inline void print_vma_addr(char *prefix, unsigned long rip) 2970 { 2971 } 2972 #endif 2973 2974 void *sparse_buffer_alloc(unsigned long size); 2975 struct page * __populate_section_memmap(unsigned long pfn, 2976 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2977 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2978 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2979 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2980 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2981 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 2982 struct vmem_altmap *altmap); 2983 void *vmemmap_alloc_block(unsigned long size, int node); 2984 struct vmem_altmap; 2985 void *vmemmap_alloc_block_buf(unsigned long size, int node, 2986 struct vmem_altmap *altmap); 2987 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2988 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2989 int node, struct vmem_altmap *altmap); 2990 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2991 struct vmem_altmap *altmap); 2992 void vmemmap_populate_print_last(void); 2993 #ifdef CONFIG_MEMORY_HOTPLUG 2994 void vmemmap_free(unsigned long start, unsigned long end, 2995 struct vmem_altmap *altmap); 2996 #endif 2997 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2998 unsigned long nr_pages); 2999 3000 enum mf_flags { 3001 MF_COUNT_INCREASED = 1 << 0, 3002 MF_ACTION_REQUIRED = 1 << 1, 3003 MF_MUST_KILL = 1 << 2, 3004 MF_SOFT_OFFLINE = 1 << 3, 3005 }; 3006 extern int memory_failure(unsigned long pfn, int flags); 3007 extern void memory_failure_queue(unsigned long pfn, int flags); 3008 extern void memory_failure_queue_kick(int cpu); 3009 extern int unpoison_memory(unsigned long pfn); 3010 extern int sysctl_memory_failure_early_kill; 3011 extern int sysctl_memory_failure_recovery; 3012 extern void shake_page(struct page *p, int access); 3013 extern atomic_long_t num_poisoned_pages __read_mostly; 3014 extern int soft_offline_page(unsigned long pfn, int flags); 3015 3016 3017 /* 3018 * Error handlers for various types of pages. 3019 */ 3020 enum mf_result { 3021 MF_IGNORED, /* Error: cannot be handled */ 3022 MF_FAILED, /* Error: handling failed */ 3023 MF_DELAYED, /* Will be handled later */ 3024 MF_RECOVERED, /* Successfully recovered */ 3025 }; 3026 3027 enum mf_action_page_type { 3028 MF_MSG_KERNEL, 3029 MF_MSG_KERNEL_HIGH_ORDER, 3030 MF_MSG_SLAB, 3031 MF_MSG_DIFFERENT_COMPOUND, 3032 MF_MSG_POISONED_HUGE, 3033 MF_MSG_HUGE, 3034 MF_MSG_FREE_HUGE, 3035 MF_MSG_NON_PMD_HUGE, 3036 MF_MSG_UNMAP_FAILED, 3037 MF_MSG_DIRTY_SWAPCACHE, 3038 MF_MSG_CLEAN_SWAPCACHE, 3039 MF_MSG_DIRTY_MLOCKED_LRU, 3040 MF_MSG_CLEAN_MLOCKED_LRU, 3041 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3042 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3043 MF_MSG_DIRTY_LRU, 3044 MF_MSG_CLEAN_LRU, 3045 MF_MSG_TRUNCATED_LRU, 3046 MF_MSG_BUDDY, 3047 MF_MSG_BUDDY_2ND, 3048 MF_MSG_DAX, 3049 MF_MSG_UNSPLIT_THP, 3050 MF_MSG_UNKNOWN, 3051 }; 3052 3053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3054 extern void clear_huge_page(struct page *page, 3055 unsigned long addr_hint, 3056 unsigned int pages_per_huge_page); 3057 extern void copy_user_huge_page(struct page *dst, struct page *src, 3058 unsigned long addr_hint, 3059 struct vm_area_struct *vma, 3060 unsigned int pages_per_huge_page); 3061 extern long copy_huge_page_from_user(struct page *dst_page, 3062 const void __user *usr_src, 3063 unsigned int pages_per_huge_page, 3064 bool allow_pagefault); 3065 3066 /** 3067 * vma_is_special_huge - Are transhuge page-table entries considered special? 3068 * @vma: Pointer to the struct vm_area_struct to consider 3069 * 3070 * Whether transhuge page-table entries are considered "special" following 3071 * the definition in vm_normal_page(). 3072 * 3073 * Return: true if transhuge page-table entries should be considered special, 3074 * false otherwise. 3075 */ 3076 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3077 { 3078 return vma_is_dax(vma) || (vma->vm_file && 3079 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3080 } 3081 3082 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3083 3084 #ifdef CONFIG_DEBUG_PAGEALLOC 3085 extern unsigned int _debug_guardpage_minorder; 3086 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3087 3088 static inline unsigned int debug_guardpage_minorder(void) 3089 { 3090 return _debug_guardpage_minorder; 3091 } 3092 3093 static inline bool debug_guardpage_enabled(void) 3094 { 3095 return static_branch_unlikely(&_debug_guardpage_enabled); 3096 } 3097 3098 static inline bool page_is_guard(struct page *page) 3099 { 3100 if (!debug_guardpage_enabled()) 3101 return false; 3102 3103 return PageGuard(page); 3104 } 3105 #else 3106 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3107 static inline bool debug_guardpage_enabled(void) { return false; } 3108 static inline bool page_is_guard(struct page *page) { return false; } 3109 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3110 3111 #if MAX_NUMNODES > 1 3112 void __init setup_nr_node_ids(void); 3113 #else 3114 static inline void setup_nr_node_ids(void) {} 3115 #endif 3116 3117 extern int memcmp_pages(struct page *page1, struct page *page2); 3118 3119 static inline int pages_identical(struct page *page1, struct page *page2) 3120 { 3121 return !memcmp_pages(page1, page2); 3122 } 3123 3124 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3125 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3126 pgoff_t first_index, pgoff_t nr, 3127 pgoff_t bitmap_pgoff, 3128 unsigned long *bitmap, 3129 pgoff_t *start, 3130 pgoff_t *end); 3131 3132 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3133 pgoff_t first_index, pgoff_t nr); 3134 #endif 3135 3136 extern int sysctl_nr_trim_pages; 3137 3138 void mem_dump_obj(void *object); 3139 3140 #endif /* __KERNEL__ */ 3141 #endif /* _LINUX_MM_H */ 3142