xref: /linux-6.15/include/linux/mm.h (revision eef8abda)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for arcitectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * To prevent common memory management code establishing
129  * a zero page mapping on a read fault.
130  * This macro should be defined within <asm/pgtable.h>.
131  * s390 does this to prevent multiplexing of hardware bits
132  * related to the physical page in case of virtualization.
133  */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X)	(0)
136 #endif
137 
138 /*
139  * On some architectures it is expensive to call memset() for small sizes.
140  * If an architecture decides to implement their own version of
141  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142  * define their own version of this macro in <asm/pgtable.h>
143  */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146  * or reduces below 56. The idea that compiler optimizes out switch()
147  * statement, and only leaves move/store instructions. Also the compiler can
148  * combine write statments if they are both assignments and can be reordered,
149  * this can result in several of the writes here being dropped.
150  */
151 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 	unsigned long *_pp = (void *)page;
155 
156 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 	BUILD_BUG_ON(sizeof(struct page) & 7);
158 	BUILD_BUG_ON(sizeof(struct page) < 56);
159 	BUILD_BUG_ON(sizeof(struct page) > 80);
160 
161 	switch (sizeof(struct page)) {
162 	case 80:
163 		_pp[9] = 0;
164 		fallthrough;
165 	case 72:
166 		_pp[8] = 0;
167 		fallthrough;
168 	case 64:
169 		_pp[7] = 0;
170 		fallthrough;
171 	case 56:
172 		_pp[6] = 0;
173 		_pp[5] = 0;
174 		_pp[4] = 0;
175 		_pp[3] = 0;
176 		_pp[2] = 0;
177 		_pp[1] = 0;
178 		_pp[0] = 0;
179 	}
180 }
181 #else
182 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184 
185 /*
186  * Default maximum number of active map areas, this limits the number of vmas
187  * per mm struct. Users can overwrite this number by sysctl but there is a
188  * problem.
189  *
190  * When a program's coredump is generated as ELF format, a section is created
191  * per a vma. In ELF, the number of sections is represented in unsigned short.
192  * This means the number of sections should be smaller than 65535 at coredump.
193  * Because the kernel adds some informative sections to a image of program at
194  * generating coredump, we need some margin. The number of extra sections is
195  * 1-3 now and depends on arch. We use "5" as safe margin, here.
196  *
197  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198  * not a hard limit any more. Although some userspace tools can be surprised by
199  * that.
200  */
201 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
202 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 
204 extern int sysctl_max_map_count;
205 
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208 
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212 
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 /*
220  * Any attempt to mark this function as static leads to build failure
221  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222  * is referred to by BPF code. This must be visible for error injection.
223  */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 		pgoff_t index, gfp_t gfp, void **shadowp);
226 
227 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228 
229 /* to align the pointer to the (next) page boundary */
230 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231 
232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234 
235 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236 
237 /*
238  * Linux kernel virtual memory manager primitives.
239  * The idea being to have a "virtual" mm in the same way
240  * we have a virtual fs - giving a cleaner interface to the
241  * mm details, and allowing different kinds of memory mappings
242  * (from shared memory to executable loading to arbitrary
243  * mmap() functions).
244  */
245 
246 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
247 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248 void vm_area_free(struct vm_area_struct *);
249 
250 #ifndef CONFIG_MMU
251 extern struct rb_root nommu_region_tree;
252 extern struct rw_semaphore nommu_region_sem;
253 
254 extern unsigned int kobjsize(const void *objp);
255 #endif
256 
257 /*
258  * vm_flags in vm_area_struct, see mm_types.h.
259  * When changing, update also include/trace/events/mmflags.h
260  */
261 #define VM_NONE		0x00000000
262 
263 #define VM_READ		0x00000001	/* currently active flags */
264 #define VM_WRITE	0x00000002
265 #define VM_EXEC		0x00000004
266 #define VM_SHARED	0x00000008
267 
268 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
269 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
270 #define VM_MAYWRITE	0x00000020
271 #define VM_MAYEXEC	0x00000040
272 #define VM_MAYSHARE	0x00000080
273 
274 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
275 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
276 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
277 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
278 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
279 
280 #define VM_LOCKED	0x00002000
281 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
282 
283 					/* Used by sys_madvise() */
284 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
285 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
286 
287 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
288 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
289 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
290 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
291 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
292 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
293 #define VM_SYNC		0x00800000	/* Synchronous page faults */
294 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
295 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
296 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
297 
298 #ifdef CONFIG_MEM_SOFT_DIRTY
299 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
300 #else
301 # define VM_SOFTDIRTY	0
302 #endif
303 
304 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
305 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
306 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
307 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
308 
309 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
312 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
316 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
317 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
318 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
319 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
320 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321 
322 #ifdef CONFIG_ARCH_HAS_PKEYS
323 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
324 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
325 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
326 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
327 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
328 #ifdef CONFIG_PPC
329 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4  0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334 
335 #if defined(CONFIG_X86)
336 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
337 #elif defined(CONFIG_PPC)
338 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
339 #elif defined(CONFIG_PARISC)
340 # define VM_GROWSUP	VM_ARCH_1
341 #elif defined(CONFIG_IA64)
342 # define VM_GROWSUP	VM_ARCH_1
343 #elif defined(CONFIG_SPARC64)
344 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
345 # define VM_ARCH_CLEAR	VM_SPARC_ADI
346 #elif defined(CONFIG_ARM64)
347 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
348 # define VM_ARCH_CLEAR	VM_ARM64_BTI
349 #elif !defined(CONFIG_MMU)
350 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
351 #endif
352 
353 #if defined(CONFIG_ARM64_MTE)
354 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
355 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
356 #else
357 # define VM_MTE		VM_NONE
358 # define VM_MTE_ALLOWED	VM_NONE
359 #endif
360 
361 #ifndef VM_GROWSUP
362 # define VM_GROWSUP	VM_NONE
363 #endif
364 
365 /* Bits set in the VMA until the stack is in its final location */
366 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
367 
368 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369 
370 /* Common data flag combinations */
371 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
372 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
374 				 VM_MAYWRITE | VM_MAYEXEC)
375 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
376 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377 
378 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
379 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
380 #endif
381 
382 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
383 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384 #endif
385 
386 #ifdef CONFIG_STACK_GROWSUP
387 #define VM_STACK	VM_GROWSUP
388 #else
389 #define VM_STACK	VM_GROWSDOWN
390 #endif
391 
392 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393 
394 /* VMA basic access permission flags */
395 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396 
397 
398 /*
399  * Special vmas that are non-mergable, non-mlock()able.
400  */
401 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
402 
403 /* This mask prevents VMA from being scanned with khugepaged */
404 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405 
406 /* This mask defines which mm->def_flags a process can inherit its parent */
407 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
408 
409 /* This mask is used to clear all the VMA flags used by mlock */
410 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
411 
412 /* Arch-specific flags to clear when updating VM flags on protection change */
413 #ifndef VM_ARCH_CLEAR
414 # define VM_ARCH_CLEAR	VM_NONE
415 #endif
416 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417 
418 /*
419  * mapping from the currently active vm_flags protection bits (the
420  * low four bits) to a page protection mask..
421  */
422 extern pgprot_t protection_map[16];
423 
424 /**
425  * Fault flag definitions.
426  *
427  * @FAULT_FLAG_WRITE: Fault was a write fault.
428  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
430  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
431  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432  * @FAULT_FLAG_TRIED: The fault has been tried once.
433  * @FAULT_FLAG_USER: The fault originated in userspace.
434  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
437  *
438  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439  * whether we would allow page faults to retry by specifying these two
440  * fault flags correctly.  Currently there can be three legal combinations:
441  *
442  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
443  *                              this is the first try
444  *
445  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
446  *                              we've already tried at least once
447  *
448  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449  *
450  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451  * be used.  Note that page faults can be allowed to retry for multiple times,
452  * in which case we'll have an initial fault with flags (a) then later on
453  * continuous faults with flags (b).  We should always try to detect pending
454  * signals before a retry to make sure the continuous page faults can still be
455  * interrupted if necessary.
456  */
457 #define FAULT_FLAG_WRITE			0x01
458 #define FAULT_FLAG_MKWRITE			0x02
459 #define FAULT_FLAG_ALLOW_RETRY			0x04
460 #define FAULT_FLAG_RETRY_NOWAIT			0x08
461 #define FAULT_FLAG_KILLABLE			0x10
462 #define FAULT_FLAG_TRIED			0x20
463 #define FAULT_FLAG_USER				0x40
464 #define FAULT_FLAG_REMOTE			0x80
465 #define FAULT_FLAG_INSTRUCTION  		0x100
466 #define FAULT_FLAG_INTERRUPTIBLE		0x200
467 
468 /*
469  * The default fault flags that should be used by most of the
470  * arch-specific page fault handlers.
471  */
472 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
473 			     FAULT_FLAG_KILLABLE | \
474 			     FAULT_FLAG_INTERRUPTIBLE)
475 
476 /**
477  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478  *
479  * This is mostly used for places where we want to try to avoid taking
480  * the mmap_lock for too long a time when waiting for another condition
481  * to change, in which case we can try to be polite to release the
482  * mmap_lock in the first round to avoid potential starvation of other
483  * processes that would also want the mmap_lock.
484  *
485  * Return: true if the page fault allows retry and this is the first
486  * attempt of the fault handling; false otherwise.
487  */
488 static inline bool fault_flag_allow_retry_first(unsigned int flags)
489 {
490 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 	    (!(flags & FAULT_FLAG_TRIED));
492 }
493 
494 #define FAULT_FLAG_TRACE \
495 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
496 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
497 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
498 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
499 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
500 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
501 	{ FAULT_FLAG_USER,		"USER" }, \
502 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
503 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
504 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
505 
506 /*
507  * vm_fault is filled by the pagefault handler and passed to the vma's
508  * ->fault function. The vma's ->fault is responsible for returning a bitmask
509  * of VM_FAULT_xxx flags that give details about how the fault was handled.
510  *
511  * MM layer fills up gfp_mask for page allocations but fault handler might
512  * alter it if its implementation requires a different allocation context.
513  *
514  * pgoff should be used in favour of virtual_address, if possible.
515  */
516 struct vm_fault {
517 	const struct {
518 		struct vm_area_struct *vma;	/* Target VMA */
519 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
520 		pgoff_t pgoff;			/* Logical page offset based on vma */
521 		unsigned long address;		/* Faulting virtual address */
522 	};
523 	unsigned int flags;		/* FAULT_FLAG_xxx flags
524 					 * XXX: should really be 'const' */
525 	pmd_t *pmd;			/* Pointer to pmd entry matching
526 					 * the 'address' */
527 	pud_t *pud;			/* Pointer to pud entry matching
528 					 * the 'address'
529 					 */
530 	pte_t orig_pte;			/* Value of PTE at the time of fault */
531 
532 	struct page *cow_page;		/* Page handler may use for COW fault */
533 	struct page *page;		/* ->fault handlers should return a
534 					 * page here, unless VM_FAULT_NOPAGE
535 					 * is set (which is also implied by
536 					 * VM_FAULT_ERROR).
537 					 */
538 	/* These three entries are valid only while holding ptl lock */
539 	pte_t *pte;			/* Pointer to pte entry matching
540 					 * the 'address'. NULL if the page
541 					 * table hasn't been allocated.
542 					 */
543 	spinlock_t *ptl;		/* Page table lock.
544 					 * Protects pte page table if 'pte'
545 					 * is not NULL, otherwise pmd.
546 					 */
547 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
548 					 * vm_ops->map_pages() sets up a page
549 					 * table from atomic context.
550 					 * do_fault_around() pre-allocates
551 					 * page table to avoid allocation from
552 					 * atomic context.
553 					 */
554 };
555 
556 /* page entry size for vm->huge_fault() */
557 enum page_entry_size {
558 	PE_SIZE_PTE = 0,
559 	PE_SIZE_PMD,
560 	PE_SIZE_PUD,
561 };
562 
563 /*
564  * These are the virtual MM functions - opening of an area, closing and
565  * unmapping it (needed to keep files on disk up-to-date etc), pointer
566  * to the functions called when a no-page or a wp-page exception occurs.
567  */
568 struct vm_operations_struct {
569 	void (*open)(struct vm_area_struct * area);
570 	void (*close)(struct vm_area_struct * area);
571 	/* Called any time before splitting to check if it's allowed */
572 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
573 	int (*mremap)(struct vm_area_struct *area, unsigned long flags);
574 	/*
575 	 * Called by mprotect() to make driver-specific permission
576 	 * checks before mprotect() is finalised.   The VMA must not
577 	 * be modified.  Returns 0 if eprotect() can proceed.
578 	 */
579 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
580 			unsigned long end, unsigned long newflags);
581 	vm_fault_t (*fault)(struct vm_fault *vmf);
582 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
583 			enum page_entry_size pe_size);
584 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
585 			pgoff_t start_pgoff, pgoff_t end_pgoff);
586 	unsigned long (*pagesize)(struct vm_area_struct * area);
587 
588 	/* notification that a previously read-only page is about to become
589 	 * writable, if an error is returned it will cause a SIGBUS */
590 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
591 
592 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
593 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
594 
595 	/* called by access_process_vm when get_user_pages() fails, typically
596 	 * for use by special VMAs. See also generic_access_phys() for a generic
597 	 * implementation useful for any iomem mapping.
598 	 */
599 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
600 		      void *buf, int len, int write);
601 
602 	/* Called by the /proc/PID/maps code to ask the vma whether it
603 	 * has a special name.  Returning non-NULL will also cause this
604 	 * vma to be dumped unconditionally. */
605 	const char *(*name)(struct vm_area_struct *vma);
606 
607 #ifdef CONFIG_NUMA
608 	/*
609 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
610 	 * to hold the policy upon return.  Caller should pass NULL @new to
611 	 * remove a policy and fall back to surrounding context--i.e. do not
612 	 * install a MPOL_DEFAULT policy, nor the task or system default
613 	 * mempolicy.
614 	 */
615 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
616 
617 	/*
618 	 * get_policy() op must add reference [mpol_get()] to any policy at
619 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
620 	 * in mm/mempolicy.c will do this automatically.
621 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
622 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
623 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
624 	 * must return NULL--i.e., do not "fallback" to task or system default
625 	 * policy.
626 	 */
627 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
628 					unsigned long addr);
629 #endif
630 	/*
631 	 * Called by vm_normal_page() for special PTEs to find the
632 	 * page for @addr.  This is useful if the default behavior
633 	 * (using pte_page()) would not find the correct page.
634 	 */
635 	struct page *(*find_special_page)(struct vm_area_struct *vma,
636 					  unsigned long addr);
637 };
638 
639 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
640 {
641 	static const struct vm_operations_struct dummy_vm_ops = {};
642 
643 	memset(vma, 0, sizeof(*vma));
644 	vma->vm_mm = mm;
645 	vma->vm_ops = &dummy_vm_ops;
646 	INIT_LIST_HEAD(&vma->anon_vma_chain);
647 }
648 
649 static inline void vma_set_anonymous(struct vm_area_struct *vma)
650 {
651 	vma->vm_ops = NULL;
652 }
653 
654 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
655 {
656 	return !vma->vm_ops;
657 }
658 
659 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
660 {
661 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
662 
663 	if (!maybe_stack)
664 		return false;
665 
666 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
667 						VM_STACK_INCOMPLETE_SETUP)
668 		return true;
669 
670 	return false;
671 }
672 
673 static inline bool vma_is_foreign(struct vm_area_struct *vma)
674 {
675 	if (!current->mm)
676 		return true;
677 
678 	if (current->mm != vma->vm_mm)
679 		return true;
680 
681 	return false;
682 }
683 
684 static inline bool vma_is_accessible(struct vm_area_struct *vma)
685 {
686 	return vma->vm_flags & VM_ACCESS_FLAGS;
687 }
688 
689 #ifdef CONFIG_SHMEM
690 /*
691  * The vma_is_shmem is not inline because it is used only by slow
692  * paths in userfault.
693  */
694 bool vma_is_shmem(struct vm_area_struct *vma);
695 #else
696 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
697 #endif
698 
699 int vma_is_stack_for_current(struct vm_area_struct *vma);
700 
701 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
702 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
703 
704 struct mmu_gather;
705 struct inode;
706 
707 #include <linux/huge_mm.h>
708 
709 /*
710  * Methods to modify the page usage count.
711  *
712  * What counts for a page usage:
713  * - cache mapping   (page->mapping)
714  * - private data    (page->private)
715  * - page mapped in a task's page tables, each mapping
716  *   is counted separately
717  *
718  * Also, many kernel routines increase the page count before a critical
719  * routine so they can be sure the page doesn't go away from under them.
720  */
721 
722 /*
723  * Drop a ref, return true if the refcount fell to zero (the page has no users)
724  */
725 static inline int put_page_testzero(struct page *page)
726 {
727 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
728 	return page_ref_dec_and_test(page);
729 }
730 
731 /*
732  * Try to grab a ref unless the page has a refcount of zero, return false if
733  * that is the case.
734  * This can be called when MMU is off so it must not access
735  * any of the virtual mappings.
736  */
737 static inline int get_page_unless_zero(struct page *page)
738 {
739 	return page_ref_add_unless(page, 1, 0);
740 }
741 
742 extern int page_is_ram(unsigned long pfn);
743 
744 enum {
745 	REGION_INTERSECTS,
746 	REGION_DISJOINT,
747 	REGION_MIXED,
748 };
749 
750 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
751 		      unsigned long desc);
752 
753 /* Support for virtually mapped pages */
754 struct page *vmalloc_to_page(const void *addr);
755 unsigned long vmalloc_to_pfn(const void *addr);
756 
757 /*
758  * Determine if an address is within the vmalloc range
759  *
760  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
761  * is no special casing required.
762  */
763 
764 #ifndef is_ioremap_addr
765 #define is_ioremap_addr(x) is_vmalloc_addr(x)
766 #endif
767 
768 #ifdef CONFIG_MMU
769 extern bool is_vmalloc_addr(const void *x);
770 extern int is_vmalloc_or_module_addr(const void *x);
771 #else
772 static inline bool is_vmalloc_addr(const void *x)
773 {
774 	return false;
775 }
776 static inline int is_vmalloc_or_module_addr(const void *x)
777 {
778 	return 0;
779 }
780 #endif
781 
782 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
783 static inline void *kvmalloc(size_t size, gfp_t flags)
784 {
785 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
786 }
787 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
788 {
789 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
790 }
791 static inline void *kvzalloc(size_t size, gfp_t flags)
792 {
793 	return kvmalloc(size, flags | __GFP_ZERO);
794 }
795 
796 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
797 {
798 	size_t bytes;
799 
800 	if (unlikely(check_mul_overflow(n, size, &bytes)))
801 		return NULL;
802 
803 	return kvmalloc(bytes, flags);
804 }
805 
806 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
807 {
808 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
809 }
810 
811 extern void kvfree(const void *addr);
812 extern void kvfree_sensitive(const void *addr, size_t len);
813 
814 static inline int head_compound_mapcount(struct page *head)
815 {
816 	return atomic_read(compound_mapcount_ptr(head)) + 1;
817 }
818 
819 /*
820  * Mapcount of compound page as a whole, does not include mapped sub-pages.
821  *
822  * Must be called only for compound pages or any their tail sub-pages.
823  */
824 static inline int compound_mapcount(struct page *page)
825 {
826 	VM_BUG_ON_PAGE(!PageCompound(page), page);
827 	page = compound_head(page);
828 	return head_compound_mapcount(page);
829 }
830 
831 /*
832  * The atomic page->_mapcount, starts from -1: so that transitions
833  * both from it and to it can be tracked, using atomic_inc_and_test
834  * and atomic_add_negative(-1).
835  */
836 static inline void page_mapcount_reset(struct page *page)
837 {
838 	atomic_set(&(page)->_mapcount, -1);
839 }
840 
841 int __page_mapcount(struct page *page);
842 
843 /*
844  * Mapcount of 0-order page; when compound sub-page, includes
845  * compound_mapcount().
846  *
847  * Result is undefined for pages which cannot be mapped into userspace.
848  * For example SLAB or special types of pages. See function page_has_type().
849  * They use this place in struct page differently.
850  */
851 static inline int page_mapcount(struct page *page)
852 {
853 	if (unlikely(PageCompound(page)))
854 		return __page_mapcount(page);
855 	return atomic_read(&page->_mapcount) + 1;
856 }
857 
858 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
859 int total_mapcount(struct page *page);
860 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
861 #else
862 static inline int total_mapcount(struct page *page)
863 {
864 	return page_mapcount(page);
865 }
866 static inline int page_trans_huge_mapcount(struct page *page,
867 					   int *total_mapcount)
868 {
869 	int mapcount = page_mapcount(page);
870 	if (total_mapcount)
871 		*total_mapcount = mapcount;
872 	return mapcount;
873 }
874 #endif
875 
876 static inline struct page *virt_to_head_page(const void *x)
877 {
878 	struct page *page = virt_to_page(x);
879 
880 	return compound_head(page);
881 }
882 
883 void __put_page(struct page *page);
884 
885 void put_pages_list(struct list_head *pages);
886 
887 void split_page(struct page *page, unsigned int order);
888 
889 /*
890  * Compound pages have a destructor function.  Provide a
891  * prototype for that function and accessor functions.
892  * These are _only_ valid on the head of a compound page.
893  */
894 typedef void compound_page_dtor(struct page *);
895 
896 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
897 enum compound_dtor_id {
898 	NULL_COMPOUND_DTOR,
899 	COMPOUND_PAGE_DTOR,
900 #ifdef CONFIG_HUGETLB_PAGE
901 	HUGETLB_PAGE_DTOR,
902 #endif
903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 	TRANSHUGE_PAGE_DTOR,
905 #endif
906 	NR_COMPOUND_DTORS,
907 };
908 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
909 
910 static inline void set_compound_page_dtor(struct page *page,
911 		enum compound_dtor_id compound_dtor)
912 {
913 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
914 	page[1].compound_dtor = compound_dtor;
915 }
916 
917 static inline void destroy_compound_page(struct page *page)
918 {
919 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
920 	compound_page_dtors[page[1].compound_dtor](page);
921 }
922 
923 static inline unsigned int compound_order(struct page *page)
924 {
925 	if (!PageHead(page))
926 		return 0;
927 	return page[1].compound_order;
928 }
929 
930 static inline bool hpage_pincount_available(struct page *page)
931 {
932 	/*
933 	 * Can the page->hpage_pinned_refcount field be used? That field is in
934 	 * the 3rd page of the compound page, so the smallest (2-page) compound
935 	 * pages cannot support it.
936 	 */
937 	page = compound_head(page);
938 	return PageCompound(page) && compound_order(page) > 1;
939 }
940 
941 static inline int head_compound_pincount(struct page *head)
942 {
943 	return atomic_read(compound_pincount_ptr(head));
944 }
945 
946 static inline int compound_pincount(struct page *page)
947 {
948 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 	page = compound_head(page);
950 	return head_compound_pincount(page);
951 }
952 
953 static inline void set_compound_order(struct page *page, unsigned int order)
954 {
955 	page[1].compound_order = order;
956 	page[1].compound_nr = 1U << order;
957 }
958 
959 /* Returns the number of pages in this potentially compound page. */
960 static inline unsigned long compound_nr(struct page *page)
961 {
962 	if (!PageHead(page))
963 		return 1;
964 	return page[1].compound_nr;
965 }
966 
967 /* Returns the number of bytes in this potentially compound page. */
968 static inline unsigned long page_size(struct page *page)
969 {
970 	return PAGE_SIZE << compound_order(page);
971 }
972 
973 /* Returns the number of bits needed for the number of bytes in a page */
974 static inline unsigned int page_shift(struct page *page)
975 {
976 	return PAGE_SHIFT + compound_order(page);
977 }
978 
979 void free_compound_page(struct page *page);
980 
981 #ifdef CONFIG_MMU
982 /*
983  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
984  * servicing faults for write access.  In the normal case, do always want
985  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
986  * that do not have writing enabled, when used by access_process_vm.
987  */
988 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989 {
990 	if (likely(vma->vm_flags & VM_WRITE))
991 		pte = pte_mkwrite(pte);
992 	return pte;
993 }
994 
995 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
996 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
997 
998 vm_fault_t finish_fault(struct vm_fault *vmf);
999 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1000 #endif
1001 
1002 /*
1003  * Multiple processes may "see" the same page. E.g. for untouched
1004  * mappings of /dev/null, all processes see the same page full of
1005  * zeroes, and text pages of executables and shared libraries have
1006  * only one copy in memory, at most, normally.
1007  *
1008  * For the non-reserved pages, page_count(page) denotes a reference count.
1009  *   page_count() == 0 means the page is free. page->lru is then used for
1010  *   freelist management in the buddy allocator.
1011  *   page_count() > 0  means the page has been allocated.
1012  *
1013  * Pages are allocated by the slab allocator in order to provide memory
1014  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016  * unless a particular usage is carefully commented. (the responsibility of
1017  * freeing the kmalloc memory is the caller's, of course).
1018  *
1019  * A page may be used by anyone else who does a __get_free_page().
1020  * In this case, page_count still tracks the references, and should only
1021  * be used through the normal accessor functions. The top bits of page->flags
1022  * and page->virtual store page management information, but all other fields
1023  * are unused and could be used privately, carefully. The management of this
1024  * page is the responsibility of the one who allocated it, and those who have
1025  * subsequently been given references to it.
1026  *
1027  * The other pages (we may call them "pagecache pages") are completely
1028  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029  * The following discussion applies only to them.
1030  *
1031  * A pagecache page contains an opaque `private' member, which belongs to the
1032  * page's address_space. Usually, this is the address of a circular list of
1033  * the page's disk buffers. PG_private must be set to tell the VM to call
1034  * into the filesystem to release these pages.
1035  *
1036  * A page may belong to an inode's memory mapping. In this case, page->mapping
1037  * is the pointer to the inode, and page->index is the file offset of the page,
1038  * in units of PAGE_SIZE.
1039  *
1040  * If pagecache pages are not associated with an inode, they are said to be
1041  * anonymous pages. These may become associated with the swapcache, and in that
1042  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1043  *
1044  * In either case (swapcache or inode backed), the pagecache itself holds one
1045  * reference to the page. Setting PG_private should also increment the
1046  * refcount. The each user mapping also has a reference to the page.
1047  *
1048  * The pagecache pages are stored in a per-mapping radix tree, which is
1049  * rooted at mapping->i_pages, and indexed by offset.
1050  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1052  *
1053  * All pagecache pages may be subject to I/O:
1054  * - inode pages may need to be read from disk,
1055  * - inode pages which have been modified and are MAP_SHARED may need
1056  *   to be written back to the inode on disk,
1057  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058  *   modified may need to be swapped out to swap space and (later) to be read
1059  *   back into memory.
1060  */
1061 
1062 /*
1063  * The zone field is never updated after free_area_init_core()
1064  * sets it, so none of the operations on it need to be atomic.
1065  */
1066 
1067 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1068 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1069 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1070 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1071 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1072 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1073 
1074 /*
1075  * Define the bit shifts to access each section.  For non-existent
1076  * sections we define the shift as 0; that plus a 0 mask ensures
1077  * the compiler will optimise away reference to them.
1078  */
1079 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1081 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1082 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1083 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1084 
1085 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086 #ifdef NODE_NOT_IN_PAGE_FLAGS
1087 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1088 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 						SECTIONS_PGOFF : ZONES_PGOFF)
1090 #else
1091 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1092 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1093 						NODES_PGOFF : ZONES_PGOFF)
1094 #endif
1095 
1096 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1097 
1098 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1099 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1100 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1101 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1102 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1103 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1104 
1105 static inline enum zone_type page_zonenum(const struct page *page)
1106 {
1107 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1108 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1109 }
1110 
1111 #ifdef CONFIG_ZONE_DEVICE
1112 static inline bool is_zone_device_page(const struct page *page)
1113 {
1114 	return page_zonenum(page) == ZONE_DEVICE;
1115 }
1116 extern void memmap_init_zone_device(struct zone *, unsigned long,
1117 				    unsigned long, struct dev_pagemap *);
1118 #else
1119 static inline bool is_zone_device_page(const struct page *page)
1120 {
1121 	return false;
1122 }
1123 #endif
1124 
1125 #ifdef CONFIG_DEV_PAGEMAP_OPS
1126 void free_devmap_managed_page(struct page *page);
1127 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1128 
1129 static inline bool page_is_devmap_managed(struct page *page)
1130 {
1131 	if (!static_branch_unlikely(&devmap_managed_key))
1132 		return false;
1133 	if (!is_zone_device_page(page))
1134 		return false;
1135 	switch (page->pgmap->type) {
1136 	case MEMORY_DEVICE_PRIVATE:
1137 	case MEMORY_DEVICE_FS_DAX:
1138 		return true;
1139 	default:
1140 		break;
1141 	}
1142 	return false;
1143 }
1144 
1145 void put_devmap_managed_page(struct page *page);
1146 
1147 #else /* CONFIG_DEV_PAGEMAP_OPS */
1148 static inline bool page_is_devmap_managed(struct page *page)
1149 {
1150 	return false;
1151 }
1152 
1153 static inline void put_devmap_managed_page(struct page *page)
1154 {
1155 }
1156 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1157 
1158 static inline bool is_device_private_page(const struct page *page)
1159 {
1160 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1161 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1162 		is_zone_device_page(page) &&
1163 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1164 }
1165 
1166 static inline bool is_pci_p2pdma_page(const struct page *page)
1167 {
1168 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1169 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1170 		is_zone_device_page(page) &&
1171 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1172 }
1173 
1174 /* 127: arbitrary random number, small enough to assemble well */
1175 #define page_ref_zero_or_close_to_overflow(page) \
1176 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1177 
1178 static inline void get_page(struct page *page)
1179 {
1180 	page = compound_head(page);
1181 	/*
1182 	 * Getting a normal page or the head of a compound page
1183 	 * requires to already have an elevated page->_refcount.
1184 	 */
1185 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1186 	page_ref_inc(page);
1187 }
1188 
1189 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1190 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1191 						   unsigned int flags);
1192 
1193 
1194 static inline __must_check bool try_get_page(struct page *page)
1195 {
1196 	page = compound_head(page);
1197 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1198 		return false;
1199 	page_ref_inc(page);
1200 	return true;
1201 }
1202 
1203 static inline void put_page(struct page *page)
1204 {
1205 	page = compound_head(page);
1206 
1207 	/*
1208 	 * For devmap managed pages we need to catch refcount transition from
1209 	 * 2 to 1, when refcount reach one it means the page is free and we
1210 	 * need to inform the device driver through callback. See
1211 	 * include/linux/memremap.h and HMM for details.
1212 	 */
1213 	if (page_is_devmap_managed(page)) {
1214 		put_devmap_managed_page(page);
1215 		return;
1216 	}
1217 
1218 	if (put_page_testzero(page))
1219 		__put_page(page);
1220 }
1221 
1222 /*
1223  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1224  * the page's refcount so that two separate items are tracked: the original page
1225  * reference count, and also a new count of how many pin_user_pages() calls were
1226  * made against the page. ("gup-pinned" is another term for the latter).
1227  *
1228  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1229  * distinct from normal pages. As such, the unpin_user_page() call (and its
1230  * variants) must be used in order to release gup-pinned pages.
1231  *
1232  * Choice of value:
1233  *
1234  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1235  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1236  * simpler, due to the fact that adding an even power of two to the page
1237  * refcount has the effect of using only the upper N bits, for the code that
1238  * counts up using the bias value. This means that the lower bits are left for
1239  * the exclusive use of the original code that increments and decrements by one
1240  * (or at least, by much smaller values than the bias value).
1241  *
1242  * Of course, once the lower bits overflow into the upper bits (and this is
1243  * OK, because subtraction recovers the original values), then visual inspection
1244  * no longer suffices to directly view the separate counts. However, for normal
1245  * applications that don't have huge page reference counts, this won't be an
1246  * issue.
1247  *
1248  * Locking: the lockless algorithm described in page_cache_get_speculative()
1249  * and page_cache_gup_pin_speculative() provides safe operation for
1250  * get_user_pages and page_mkclean and other calls that race to set up page
1251  * table entries.
1252  */
1253 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1254 
1255 void unpin_user_page(struct page *page);
1256 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1257 				 bool make_dirty);
1258 void unpin_user_pages(struct page **pages, unsigned long npages);
1259 
1260 /**
1261  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1262  *
1263  * This function checks if a page has been pinned via a call to
1264  * pin_user_pages*().
1265  *
1266  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1267  * because it means "definitely not pinned for DMA", but true means "probably
1268  * pinned for DMA, but possibly a false positive due to having at least
1269  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1270  *
1271  * False positives are OK, because: a) it's unlikely for a page to get that many
1272  * refcounts, and b) all the callers of this routine are expected to be able to
1273  * deal gracefully with a false positive.
1274  *
1275  * For huge pages, the result will be exactly correct. That's because we have
1276  * more tracking data available: the 3rd struct page in the compound page is
1277  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1278  * scheme).
1279  *
1280  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1281  *
1282  * @page:	pointer to page to be queried.
1283  * @Return:	True, if it is likely that the page has been "dma-pinned".
1284  *		False, if the page is definitely not dma-pinned.
1285  */
1286 static inline bool page_maybe_dma_pinned(struct page *page)
1287 {
1288 	if (hpage_pincount_available(page))
1289 		return compound_pincount(page) > 0;
1290 
1291 	/*
1292 	 * page_ref_count() is signed. If that refcount overflows, then
1293 	 * page_ref_count() returns a negative value, and callers will avoid
1294 	 * further incrementing the refcount.
1295 	 *
1296 	 * Here, for that overflow case, use the signed bit to count a little
1297 	 * bit higher via unsigned math, and thus still get an accurate result.
1298 	 */
1299 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1300 		GUP_PIN_COUNTING_BIAS;
1301 }
1302 
1303 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1304 #define SECTION_IN_PAGE_FLAGS
1305 #endif
1306 
1307 /*
1308  * The identification function is mainly used by the buddy allocator for
1309  * determining if two pages could be buddies. We are not really identifying
1310  * the zone since we could be using the section number id if we do not have
1311  * node id available in page flags.
1312  * We only guarantee that it will return the same value for two combinable
1313  * pages in a zone.
1314  */
1315 static inline int page_zone_id(struct page *page)
1316 {
1317 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1318 }
1319 
1320 #ifdef NODE_NOT_IN_PAGE_FLAGS
1321 extern int page_to_nid(const struct page *page);
1322 #else
1323 static inline int page_to_nid(const struct page *page)
1324 {
1325 	struct page *p = (struct page *)page;
1326 
1327 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1328 }
1329 #endif
1330 
1331 #ifdef CONFIG_NUMA_BALANCING
1332 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1333 {
1334 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1335 }
1336 
1337 static inline int cpupid_to_pid(int cpupid)
1338 {
1339 	return cpupid & LAST__PID_MASK;
1340 }
1341 
1342 static inline int cpupid_to_cpu(int cpupid)
1343 {
1344 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1345 }
1346 
1347 static inline int cpupid_to_nid(int cpupid)
1348 {
1349 	return cpu_to_node(cpupid_to_cpu(cpupid));
1350 }
1351 
1352 static inline bool cpupid_pid_unset(int cpupid)
1353 {
1354 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1355 }
1356 
1357 static inline bool cpupid_cpu_unset(int cpupid)
1358 {
1359 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1360 }
1361 
1362 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1363 {
1364 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1365 }
1366 
1367 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1368 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1369 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1370 {
1371 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1372 }
1373 
1374 static inline int page_cpupid_last(struct page *page)
1375 {
1376 	return page->_last_cpupid;
1377 }
1378 static inline void page_cpupid_reset_last(struct page *page)
1379 {
1380 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1381 }
1382 #else
1383 static inline int page_cpupid_last(struct page *page)
1384 {
1385 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1386 }
1387 
1388 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1389 
1390 static inline void page_cpupid_reset_last(struct page *page)
1391 {
1392 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1393 }
1394 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1395 #else /* !CONFIG_NUMA_BALANCING */
1396 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1397 {
1398 	return page_to_nid(page); /* XXX */
1399 }
1400 
1401 static inline int page_cpupid_last(struct page *page)
1402 {
1403 	return page_to_nid(page); /* XXX */
1404 }
1405 
1406 static inline int cpupid_to_nid(int cpupid)
1407 {
1408 	return -1;
1409 }
1410 
1411 static inline int cpupid_to_pid(int cpupid)
1412 {
1413 	return -1;
1414 }
1415 
1416 static inline int cpupid_to_cpu(int cpupid)
1417 {
1418 	return -1;
1419 }
1420 
1421 static inline int cpu_pid_to_cpupid(int nid, int pid)
1422 {
1423 	return -1;
1424 }
1425 
1426 static inline bool cpupid_pid_unset(int cpupid)
1427 {
1428 	return true;
1429 }
1430 
1431 static inline void page_cpupid_reset_last(struct page *page)
1432 {
1433 }
1434 
1435 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1436 {
1437 	return false;
1438 }
1439 #endif /* CONFIG_NUMA_BALANCING */
1440 
1441 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1442 
1443 static inline u8 page_kasan_tag(const struct page *page)
1444 {
1445 	if (kasan_enabled())
1446 		return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1447 	return 0xff;
1448 }
1449 
1450 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1451 {
1452 	if (kasan_enabled()) {
1453 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1454 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1455 	}
1456 }
1457 
1458 static inline void page_kasan_tag_reset(struct page *page)
1459 {
1460 	if (kasan_enabled())
1461 		page_kasan_tag_set(page, 0xff);
1462 }
1463 
1464 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1465 
1466 static inline u8 page_kasan_tag(const struct page *page)
1467 {
1468 	return 0xff;
1469 }
1470 
1471 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1472 static inline void page_kasan_tag_reset(struct page *page) { }
1473 
1474 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1475 
1476 static inline struct zone *page_zone(const struct page *page)
1477 {
1478 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1479 }
1480 
1481 static inline pg_data_t *page_pgdat(const struct page *page)
1482 {
1483 	return NODE_DATA(page_to_nid(page));
1484 }
1485 
1486 #ifdef SECTION_IN_PAGE_FLAGS
1487 static inline void set_page_section(struct page *page, unsigned long section)
1488 {
1489 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1490 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1491 }
1492 
1493 static inline unsigned long page_to_section(const struct page *page)
1494 {
1495 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1496 }
1497 #endif
1498 
1499 static inline void set_page_zone(struct page *page, enum zone_type zone)
1500 {
1501 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1502 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1503 }
1504 
1505 static inline void set_page_node(struct page *page, unsigned long node)
1506 {
1507 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1508 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1509 }
1510 
1511 static inline void set_page_links(struct page *page, enum zone_type zone,
1512 	unsigned long node, unsigned long pfn)
1513 {
1514 	set_page_zone(page, zone);
1515 	set_page_node(page, node);
1516 #ifdef SECTION_IN_PAGE_FLAGS
1517 	set_page_section(page, pfn_to_section_nr(pfn));
1518 #endif
1519 }
1520 
1521 /*
1522  * Some inline functions in vmstat.h depend on page_zone()
1523  */
1524 #include <linux/vmstat.h>
1525 
1526 static __always_inline void *lowmem_page_address(const struct page *page)
1527 {
1528 	return page_to_virt(page);
1529 }
1530 
1531 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1532 #define HASHED_PAGE_VIRTUAL
1533 #endif
1534 
1535 #if defined(WANT_PAGE_VIRTUAL)
1536 static inline void *page_address(const struct page *page)
1537 {
1538 	return page->virtual;
1539 }
1540 static inline void set_page_address(struct page *page, void *address)
1541 {
1542 	page->virtual = address;
1543 }
1544 #define page_address_init()  do { } while(0)
1545 #endif
1546 
1547 #if defined(HASHED_PAGE_VIRTUAL)
1548 void *page_address(const struct page *page);
1549 void set_page_address(struct page *page, void *virtual);
1550 void page_address_init(void);
1551 #endif
1552 
1553 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1554 #define page_address(page) lowmem_page_address(page)
1555 #define set_page_address(page, address)  do { } while(0)
1556 #define page_address_init()  do { } while(0)
1557 #endif
1558 
1559 extern void *page_rmapping(struct page *page);
1560 extern struct anon_vma *page_anon_vma(struct page *page);
1561 extern struct address_space *page_mapping(struct page *page);
1562 
1563 extern struct address_space *__page_file_mapping(struct page *);
1564 
1565 static inline
1566 struct address_space *page_file_mapping(struct page *page)
1567 {
1568 	if (unlikely(PageSwapCache(page)))
1569 		return __page_file_mapping(page);
1570 
1571 	return page->mapping;
1572 }
1573 
1574 extern pgoff_t __page_file_index(struct page *page);
1575 
1576 /*
1577  * Return the pagecache index of the passed page.  Regular pagecache pages
1578  * use ->index whereas swapcache pages use swp_offset(->private)
1579  */
1580 static inline pgoff_t page_index(struct page *page)
1581 {
1582 	if (unlikely(PageSwapCache(page)))
1583 		return __page_file_index(page);
1584 	return page->index;
1585 }
1586 
1587 bool page_mapped(struct page *page);
1588 struct address_space *page_mapping(struct page *page);
1589 struct address_space *page_mapping_file(struct page *page);
1590 
1591 /*
1592  * Return true only if the page has been allocated with
1593  * ALLOC_NO_WATERMARKS and the low watermark was not
1594  * met implying that the system is under some pressure.
1595  */
1596 static inline bool page_is_pfmemalloc(const struct page *page)
1597 {
1598 	/*
1599 	 * Page index cannot be this large so this must be
1600 	 * a pfmemalloc page.
1601 	 */
1602 	return page->index == -1UL;
1603 }
1604 
1605 /*
1606  * Only to be called by the page allocator on a freshly allocated
1607  * page.
1608  */
1609 static inline void set_page_pfmemalloc(struct page *page)
1610 {
1611 	page->index = -1UL;
1612 }
1613 
1614 static inline void clear_page_pfmemalloc(struct page *page)
1615 {
1616 	page->index = 0;
1617 }
1618 
1619 /*
1620  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1621  */
1622 extern void pagefault_out_of_memory(void);
1623 
1624 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1625 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1626 
1627 /*
1628  * Flags passed to show_mem() and show_free_areas() to suppress output in
1629  * various contexts.
1630  */
1631 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1632 
1633 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1634 
1635 #ifdef CONFIG_MMU
1636 extern bool can_do_mlock(void);
1637 #else
1638 static inline bool can_do_mlock(void) { return false; }
1639 #endif
1640 extern int user_shm_lock(size_t, struct user_struct *);
1641 extern void user_shm_unlock(size_t, struct user_struct *);
1642 
1643 /*
1644  * Parameter block passed down to zap_pte_range in exceptional cases.
1645  */
1646 struct zap_details {
1647 	struct address_space *check_mapping;	/* Check page->mapping if set */
1648 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1649 	pgoff_t last_index;			/* Highest page->index to unmap */
1650 };
1651 
1652 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1653 			     pte_t pte);
1654 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1655 				pmd_t pmd);
1656 
1657 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1658 		  unsigned long size);
1659 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1660 		    unsigned long size);
1661 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1662 		unsigned long start, unsigned long end);
1663 
1664 struct mmu_notifier_range;
1665 
1666 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1667 		unsigned long end, unsigned long floor, unsigned long ceiling);
1668 int
1669 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1670 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1671 			  struct mmu_notifier_range *range, pte_t **ptepp,
1672 			  pmd_t **pmdpp, spinlock_t **ptlp);
1673 int follow_pte(struct mm_struct *mm, unsigned long address,
1674 	       pte_t **ptepp, spinlock_t **ptlp);
1675 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1676 	unsigned long *pfn);
1677 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1678 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1679 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1680 			void *buf, int len, int write);
1681 
1682 extern void truncate_pagecache(struct inode *inode, loff_t new);
1683 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1684 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1685 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1686 int truncate_inode_page(struct address_space *mapping, struct page *page);
1687 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1688 int invalidate_inode_page(struct page *page);
1689 
1690 #ifdef CONFIG_MMU
1691 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1692 				  unsigned long address, unsigned int flags,
1693 				  struct pt_regs *regs);
1694 extern int fixup_user_fault(struct mm_struct *mm,
1695 			    unsigned long address, unsigned int fault_flags,
1696 			    bool *unlocked);
1697 void unmap_mapping_pages(struct address_space *mapping,
1698 		pgoff_t start, pgoff_t nr, bool even_cows);
1699 void unmap_mapping_range(struct address_space *mapping,
1700 		loff_t const holebegin, loff_t const holelen, int even_cows);
1701 #else
1702 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1703 					 unsigned long address, unsigned int flags,
1704 					 struct pt_regs *regs)
1705 {
1706 	/* should never happen if there's no MMU */
1707 	BUG();
1708 	return VM_FAULT_SIGBUS;
1709 }
1710 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1711 		unsigned int fault_flags, bool *unlocked)
1712 {
1713 	/* should never happen if there's no MMU */
1714 	BUG();
1715 	return -EFAULT;
1716 }
1717 static inline void unmap_mapping_pages(struct address_space *mapping,
1718 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1719 static inline void unmap_mapping_range(struct address_space *mapping,
1720 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1721 #endif
1722 
1723 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1724 		loff_t const holebegin, loff_t const holelen)
1725 {
1726 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1727 }
1728 
1729 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1730 		void *buf, int len, unsigned int gup_flags);
1731 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1732 		void *buf, int len, unsigned int gup_flags);
1733 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1734 			      void *buf, int len, unsigned int gup_flags);
1735 
1736 long get_user_pages_remote(struct mm_struct *mm,
1737 			    unsigned long start, unsigned long nr_pages,
1738 			    unsigned int gup_flags, struct page **pages,
1739 			    struct vm_area_struct **vmas, int *locked);
1740 long pin_user_pages_remote(struct mm_struct *mm,
1741 			   unsigned long start, unsigned long nr_pages,
1742 			   unsigned int gup_flags, struct page **pages,
1743 			   struct vm_area_struct **vmas, int *locked);
1744 long get_user_pages(unsigned long start, unsigned long nr_pages,
1745 			    unsigned int gup_flags, struct page **pages,
1746 			    struct vm_area_struct **vmas);
1747 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1748 		    unsigned int gup_flags, struct page **pages,
1749 		    struct vm_area_struct **vmas);
1750 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1751 		    unsigned int gup_flags, struct page **pages, int *locked);
1752 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1753 		    unsigned int gup_flags, struct page **pages, int *locked);
1754 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1755 		    struct page **pages, unsigned int gup_flags);
1756 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1757 		    struct page **pages, unsigned int gup_flags);
1758 
1759 int get_user_pages_fast(unsigned long start, int nr_pages,
1760 			unsigned int gup_flags, struct page **pages);
1761 int pin_user_pages_fast(unsigned long start, int nr_pages,
1762 			unsigned int gup_flags, struct page **pages);
1763 
1764 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1765 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1766 			struct task_struct *task, bool bypass_rlim);
1767 
1768 struct kvec;
1769 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1770 			struct page **pages);
1771 int get_kernel_page(unsigned long start, int write, struct page **pages);
1772 struct page *get_dump_page(unsigned long addr);
1773 
1774 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1775 extern void do_invalidatepage(struct page *page, unsigned int offset,
1776 			      unsigned int length);
1777 
1778 void __set_page_dirty(struct page *, struct address_space *, int warn);
1779 int __set_page_dirty_nobuffers(struct page *page);
1780 int __set_page_dirty_no_writeback(struct page *page);
1781 int redirty_page_for_writepage(struct writeback_control *wbc,
1782 				struct page *page);
1783 void account_page_dirtied(struct page *page, struct address_space *mapping);
1784 void account_page_cleaned(struct page *page, struct address_space *mapping,
1785 			  struct bdi_writeback *wb);
1786 int set_page_dirty(struct page *page);
1787 int set_page_dirty_lock(struct page *page);
1788 void __cancel_dirty_page(struct page *page);
1789 static inline void cancel_dirty_page(struct page *page)
1790 {
1791 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1792 	if (PageDirty(page))
1793 		__cancel_dirty_page(page);
1794 }
1795 int clear_page_dirty_for_io(struct page *page);
1796 
1797 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1798 
1799 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1800 		unsigned long old_addr, struct vm_area_struct *new_vma,
1801 		unsigned long new_addr, unsigned long len,
1802 		bool need_rmap_locks);
1803 
1804 /*
1805  * Flags used by change_protection().  For now we make it a bitmap so
1806  * that we can pass in multiple flags just like parameters.  However
1807  * for now all the callers are only use one of the flags at the same
1808  * time.
1809  */
1810 /* Whether we should allow dirty bit accounting */
1811 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1812 /* Whether this protection change is for NUMA hints */
1813 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1814 /* Whether this change is for write protecting */
1815 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1816 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1817 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1818 					    MM_CP_UFFD_WP_RESOLVE)
1819 
1820 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1821 			      unsigned long end, pgprot_t newprot,
1822 			      unsigned long cp_flags);
1823 extern int mprotect_fixup(struct vm_area_struct *vma,
1824 			  struct vm_area_struct **pprev, unsigned long start,
1825 			  unsigned long end, unsigned long newflags);
1826 
1827 /*
1828  * doesn't attempt to fault and will return short.
1829  */
1830 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1831 			     unsigned int gup_flags, struct page **pages);
1832 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1833 			     unsigned int gup_flags, struct page **pages);
1834 
1835 static inline bool get_user_page_fast_only(unsigned long addr,
1836 			unsigned int gup_flags, struct page **pagep)
1837 {
1838 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1839 }
1840 /*
1841  * per-process(per-mm_struct) statistics.
1842  */
1843 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1844 {
1845 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1846 
1847 #ifdef SPLIT_RSS_COUNTING
1848 	/*
1849 	 * counter is updated in asynchronous manner and may go to minus.
1850 	 * But it's never be expected number for users.
1851 	 */
1852 	if (val < 0)
1853 		val = 0;
1854 #endif
1855 	return (unsigned long)val;
1856 }
1857 
1858 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1859 
1860 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1861 {
1862 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1863 
1864 	mm_trace_rss_stat(mm, member, count);
1865 }
1866 
1867 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1868 {
1869 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1870 
1871 	mm_trace_rss_stat(mm, member, count);
1872 }
1873 
1874 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1875 {
1876 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1877 
1878 	mm_trace_rss_stat(mm, member, count);
1879 }
1880 
1881 /* Optimized variant when page is already known not to be PageAnon */
1882 static inline int mm_counter_file(struct page *page)
1883 {
1884 	if (PageSwapBacked(page))
1885 		return MM_SHMEMPAGES;
1886 	return MM_FILEPAGES;
1887 }
1888 
1889 static inline int mm_counter(struct page *page)
1890 {
1891 	if (PageAnon(page))
1892 		return MM_ANONPAGES;
1893 	return mm_counter_file(page);
1894 }
1895 
1896 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1897 {
1898 	return get_mm_counter(mm, MM_FILEPAGES) +
1899 		get_mm_counter(mm, MM_ANONPAGES) +
1900 		get_mm_counter(mm, MM_SHMEMPAGES);
1901 }
1902 
1903 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1904 {
1905 	return max(mm->hiwater_rss, get_mm_rss(mm));
1906 }
1907 
1908 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1909 {
1910 	return max(mm->hiwater_vm, mm->total_vm);
1911 }
1912 
1913 static inline void update_hiwater_rss(struct mm_struct *mm)
1914 {
1915 	unsigned long _rss = get_mm_rss(mm);
1916 
1917 	if ((mm)->hiwater_rss < _rss)
1918 		(mm)->hiwater_rss = _rss;
1919 }
1920 
1921 static inline void update_hiwater_vm(struct mm_struct *mm)
1922 {
1923 	if (mm->hiwater_vm < mm->total_vm)
1924 		mm->hiwater_vm = mm->total_vm;
1925 }
1926 
1927 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1928 {
1929 	mm->hiwater_rss = get_mm_rss(mm);
1930 }
1931 
1932 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1933 					 struct mm_struct *mm)
1934 {
1935 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1936 
1937 	if (*maxrss < hiwater_rss)
1938 		*maxrss = hiwater_rss;
1939 }
1940 
1941 #if defined(SPLIT_RSS_COUNTING)
1942 void sync_mm_rss(struct mm_struct *mm);
1943 #else
1944 static inline void sync_mm_rss(struct mm_struct *mm)
1945 {
1946 }
1947 #endif
1948 
1949 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1950 static inline int pte_special(pte_t pte)
1951 {
1952 	return 0;
1953 }
1954 
1955 static inline pte_t pte_mkspecial(pte_t pte)
1956 {
1957 	return pte;
1958 }
1959 #endif
1960 
1961 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1962 static inline int pte_devmap(pte_t pte)
1963 {
1964 	return 0;
1965 }
1966 #endif
1967 
1968 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1969 
1970 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1971 			       spinlock_t **ptl);
1972 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1973 				    spinlock_t **ptl)
1974 {
1975 	pte_t *ptep;
1976 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1977 	return ptep;
1978 }
1979 
1980 #ifdef __PAGETABLE_P4D_FOLDED
1981 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1982 						unsigned long address)
1983 {
1984 	return 0;
1985 }
1986 #else
1987 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1988 #endif
1989 
1990 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1991 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1992 						unsigned long address)
1993 {
1994 	return 0;
1995 }
1996 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1997 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1998 
1999 #else
2000 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2001 
2002 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2003 {
2004 	if (mm_pud_folded(mm))
2005 		return;
2006 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2007 }
2008 
2009 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2010 {
2011 	if (mm_pud_folded(mm))
2012 		return;
2013 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2014 }
2015 #endif
2016 
2017 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2018 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2019 						unsigned long address)
2020 {
2021 	return 0;
2022 }
2023 
2024 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2025 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2026 
2027 #else
2028 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2029 
2030 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2031 {
2032 	if (mm_pmd_folded(mm))
2033 		return;
2034 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2035 }
2036 
2037 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2038 {
2039 	if (mm_pmd_folded(mm))
2040 		return;
2041 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2042 }
2043 #endif
2044 
2045 #ifdef CONFIG_MMU
2046 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2047 {
2048 	atomic_long_set(&mm->pgtables_bytes, 0);
2049 }
2050 
2051 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2052 {
2053 	return atomic_long_read(&mm->pgtables_bytes);
2054 }
2055 
2056 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2057 {
2058 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2059 }
2060 
2061 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2062 {
2063 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2064 }
2065 #else
2066 
2067 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2068 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2069 {
2070 	return 0;
2071 }
2072 
2073 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2074 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2075 #endif
2076 
2077 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2078 int __pte_alloc_kernel(pmd_t *pmd);
2079 
2080 #if defined(CONFIG_MMU)
2081 
2082 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2083 		unsigned long address)
2084 {
2085 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2086 		NULL : p4d_offset(pgd, address);
2087 }
2088 
2089 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2090 		unsigned long address)
2091 {
2092 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2093 		NULL : pud_offset(p4d, address);
2094 }
2095 
2096 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2097 {
2098 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2099 		NULL: pmd_offset(pud, address);
2100 }
2101 #endif /* CONFIG_MMU */
2102 
2103 #if USE_SPLIT_PTE_PTLOCKS
2104 #if ALLOC_SPLIT_PTLOCKS
2105 void __init ptlock_cache_init(void);
2106 extern bool ptlock_alloc(struct page *page);
2107 extern void ptlock_free(struct page *page);
2108 
2109 static inline spinlock_t *ptlock_ptr(struct page *page)
2110 {
2111 	return page->ptl;
2112 }
2113 #else /* ALLOC_SPLIT_PTLOCKS */
2114 static inline void ptlock_cache_init(void)
2115 {
2116 }
2117 
2118 static inline bool ptlock_alloc(struct page *page)
2119 {
2120 	return true;
2121 }
2122 
2123 static inline void ptlock_free(struct page *page)
2124 {
2125 }
2126 
2127 static inline spinlock_t *ptlock_ptr(struct page *page)
2128 {
2129 	return &page->ptl;
2130 }
2131 #endif /* ALLOC_SPLIT_PTLOCKS */
2132 
2133 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2134 {
2135 	return ptlock_ptr(pmd_page(*pmd));
2136 }
2137 
2138 static inline bool ptlock_init(struct page *page)
2139 {
2140 	/*
2141 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2142 	 * with 0. Make sure nobody took it in use in between.
2143 	 *
2144 	 * It can happen if arch try to use slab for page table allocation:
2145 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2146 	 */
2147 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2148 	if (!ptlock_alloc(page))
2149 		return false;
2150 	spin_lock_init(ptlock_ptr(page));
2151 	return true;
2152 }
2153 
2154 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2155 /*
2156  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2157  */
2158 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2159 {
2160 	return &mm->page_table_lock;
2161 }
2162 static inline void ptlock_cache_init(void) {}
2163 static inline bool ptlock_init(struct page *page) { return true; }
2164 static inline void ptlock_free(struct page *page) {}
2165 #endif /* USE_SPLIT_PTE_PTLOCKS */
2166 
2167 static inline void pgtable_init(void)
2168 {
2169 	ptlock_cache_init();
2170 	pgtable_cache_init();
2171 }
2172 
2173 static inline bool pgtable_pte_page_ctor(struct page *page)
2174 {
2175 	if (!ptlock_init(page))
2176 		return false;
2177 	__SetPageTable(page);
2178 	inc_lruvec_page_state(page, NR_PAGETABLE);
2179 	return true;
2180 }
2181 
2182 static inline void pgtable_pte_page_dtor(struct page *page)
2183 {
2184 	ptlock_free(page);
2185 	__ClearPageTable(page);
2186 	dec_lruvec_page_state(page, NR_PAGETABLE);
2187 }
2188 
2189 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2190 ({							\
2191 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2192 	pte_t *__pte = pte_offset_map(pmd, address);	\
2193 	*(ptlp) = __ptl;				\
2194 	spin_lock(__ptl);				\
2195 	__pte;						\
2196 })
2197 
2198 #define pte_unmap_unlock(pte, ptl)	do {		\
2199 	spin_unlock(ptl);				\
2200 	pte_unmap(pte);					\
2201 } while (0)
2202 
2203 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2204 
2205 #define pte_alloc_map(mm, pmd, address)			\
2206 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2207 
2208 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2209 	(pte_alloc(mm, pmd) ?			\
2210 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2211 
2212 #define pte_alloc_kernel(pmd, address)			\
2213 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2214 		NULL: pte_offset_kernel(pmd, address))
2215 
2216 #if USE_SPLIT_PMD_PTLOCKS
2217 
2218 static struct page *pmd_to_page(pmd_t *pmd)
2219 {
2220 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2221 	return virt_to_page((void *)((unsigned long) pmd & mask));
2222 }
2223 
2224 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2225 {
2226 	return ptlock_ptr(pmd_to_page(pmd));
2227 }
2228 
2229 static inline bool pmd_ptlock_init(struct page *page)
2230 {
2231 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2232 	page->pmd_huge_pte = NULL;
2233 #endif
2234 	return ptlock_init(page);
2235 }
2236 
2237 static inline void pmd_ptlock_free(struct page *page)
2238 {
2239 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2240 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2241 #endif
2242 	ptlock_free(page);
2243 }
2244 
2245 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2246 
2247 #else
2248 
2249 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2250 {
2251 	return &mm->page_table_lock;
2252 }
2253 
2254 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2255 static inline void pmd_ptlock_free(struct page *page) {}
2256 
2257 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2258 
2259 #endif
2260 
2261 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2262 {
2263 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2264 	spin_lock(ptl);
2265 	return ptl;
2266 }
2267 
2268 static inline bool pgtable_pmd_page_ctor(struct page *page)
2269 {
2270 	if (!pmd_ptlock_init(page))
2271 		return false;
2272 	__SetPageTable(page);
2273 	inc_lruvec_page_state(page, NR_PAGETABLE);
2274 	return true;
2275 }
2276 
2277 static inline void pgtable_pmd_page_dtor(struct page *page)
2278 {
2279 	pmd_ptlock_free(page);
2280 	__ClearPageTable(page);
2281 	dec_lruvec_page_state(page, NR_PAGETABLE);
2282 }
2283 
2284 /*
2285  * No scalability reason to split PUD locks yet, but follow the same pattern
2286  * as the PMD locks to make it easier if we decide to.  The VM should not be
2287  * considered ready to switch to split PUD locks yet; there may be places
2288  * which need to be converted from page_table_lock.
2289  */
2290 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2291 {
2292 	return &mm->page_table_lock;
2293 }
2294 
2295 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2296 {
2297 	spinlock_t *ptl = pud_lockptr(mm, pud);
2298 
2299 	spin_lock(ptl);
2300 	return ptl;
2301 }
2302 
2303 extern void __init pagecache_init(void);
2304 extern void __init free_area_init_memoryless_node(int nid);
2305 extern void free_initmem(void);
2306 
2307 /*
2308  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2309  * into the buddy system. The freed pages will be poisoned with pattern
2310  * "poison" if it's within range [0, UCHAR_MAX].
2311  * Return pages freed into the buddy system.
2312  */
2313 extern unsigned long free_reserved_area(void *start, void *end,
2314 					int poison, const char *s);
2315 
2316 extern void adjust_managed_page_count(struct page *page, long count);
2317 extern void mem_init_print_info(const char *str);
2318 
2319 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2320 
2321 /* Free the reserved page into the buddy system, so it gets managed. */
2322 static inline void free_reserved_page(struct page *page)
2323 {
2324 	ClearPageReserved(page);
2325 	init_page_count(page);
2326 	__free_page(page);
2327 	adjust_managed_page_count(page, 1);
2328 }
2329 #define free_highmem_page(page) free_reserved_page(page)
2330 
2331 static inline void mark_page_reserved(struct page *page)
2332 {
2333 	SetPageReserved(page);
2334 	adjust_managed_page_count(page, -1);
2335 }
2336 
2337 /*
2338  * Default method to free all the __init memory into the buddy system.
2339  * The freed pages will be poisoned with pattern "poison" if it's within
2340  * range [0, UCHAR_MAX].
2341  * Return pages freed into the buddy system.
2342  */
2343 static inline unsigned long free_initmem_default(int poison)
2344 {
2345 	extern char __init_begin[], __init_end[];
2346 
2347 	return free_reserved_area(&__init_begin, &__init_end,
2348 				  poison, "unused kernel");
2349 }
2350 
2351 static inline unsigned long get_num_physpages(void)
2352 {
2353 	int nid;
2354 	unsigned long phys_pages = 0;
2355 
2356 	for_each_online_node(nid)
2357 		phys_pages += node_present_pages(nid);
2358 
2359 	return phys_pages;
2360 }
2361 
2362 /*
2363  * Using memblock node mappings, an architecture may initialise its
2364  * zones, allocate the backing mem_map and account for memory holes in an
2365  * architecture independent manner.
2366  *
2367  * An architecture is expected to register range of page frames backed by
2368  * physical memory with memblock_add[_node]() before calling
2369  * free_area_init() passing in the PFN each zone ends at. At a basic
2370  * usage, an architecture is expected to do something like
2371  *
2372  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2373  * 							 max_highmem_pfn};
2374  * for_each_valid_physical_page_range()
2375  * 	memblock_add_node(base, size, nid)
2376  * free_area_init(max_zone_pfns);
2377  */
2378 void free_area_init(unsigned long *max_zone_pfn);
2379 unsigned long node_map_pfn_alignment(void);
2380 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2381 						unsigned long end_pfn);
2382 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2383 						unsigned long end_pfn);
2384 extern void get_pfn_range_for_nid(unsigned int nid,
2385 			unsigned long *start_pfn, unsigned long *end_pfn);
2386 extern unsigned long find_min_pfn_with_active_regions(void);
2387 
2388 #ifndef CONFIG_NEED_MULTIPLE_NODES
2389 static inline int early_pfn_to_nid(unsigned long pfn)
2390 {
2391 	return 0;
2392 }
2393 #else
2394 /* please see mm/page_alloc.c */
2395 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2396 #endif
2397 
2398 extern void set_dma_reserve(unsigned long new_dma_reserve);
2399 extern void memmap_init_range(unsigned long, int, unsigned long,
2400 		unsigned long, unsigned long, enum meminit_context,
2401 		struct vmem_altmap *, int migratetype);
2402 extern void memmap_init_zone(struct zone *zone);
2403 extern void setup_per_zone_wmarks(void);
2404 extern int __meminit init_per_zone_wmark_min(void);
2405 extern void mem_init(void);
2406 extern void __init mmap_init(void);
2407 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2408 extern long si_mem_available(void);
2409 extern void si_meminfo(struct sysinfo * val);
2410 extern void si_meminfo_node(struct sysinfo *val, int nid);
2411 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2412 extern unsigned long arch_reserved_kernel_pages(void);
2413 #endif
2414 
2415 extern __printf(3, 4)
2416 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2417 
2418 extern void setup_per_cpu_pageset(void);
2419 
2420 /* page_alloc.c */
2421 extern int min_free_kbytes;
2422 extern int watermark_boost_factor;
2423 extern int watermark_scale_factor;
2424 extern bool arch_has_descending_max_zone_pfns(void);
2425 
2426 /* nommu.c */
2427 extern atomic_long_t mmap_pages_allocated;
2428 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2429 
2430 /* interval_tree.c */
2431 void vma_interval_tree_insert(struct vm_area_struct *node,
2432 			      struct rb_root_cached *root);
2433 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2434 				    struct vm_area_struct *prev,
2435 				    struct rb_root_cached *root);
2436 void vma_interval_tree_remove(struct vm_area_struct *node,
2437 			      struct rb_root_cached *root);
2438 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2439 				unsigned long start, unsigned long last);
2440 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2441 				unsigned long start, unsigned long last);
2442 
2443 #define vma_interval_tree_foreach(vma, root, start, last)		\
2444 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2445 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2446 
2447 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2448 				   struct rb_root_cached *root);
2449 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2450 				   struct rb_root_cached *root);
2451 struct anon_vma_chain *
2452 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2453 				  unsigned long start, unsigned long last);
2454 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2455 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2456 #ifdef CONFIG_DEBUG_VM_RB
2457 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2458 #endif
2459 
2460 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2461 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2462 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2463 
2464 /* mmap.c */
2465 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2466 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2467 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2468 	struct vm_area_struct *expand);
2469 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2470 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2471 {
2472 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2473 }
2474 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2475 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2476 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2477 	struct mempolicy *, struct vm_userfaultfd_ctx);
2478 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2479 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2480 	unsigned long addr, int new_below);
2481 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2482 	unsigned long addr, int new_below);
2483 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2484 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2485 	struct rb_node **, struct rb_node *);
2486 extern void unlink_file_vma(struct vm_area_struct *);
2487 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2488 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2489 	bool *need_rmap_locks);
2490 extern void exit_mmap(struct mm_struct *);
2491 
2492 static inline int check_data_rlimit(unsigned long rlim,
2493 				    unsigned long new,
2494 				    unsigned long start,
2495 				    unsigned long end_data,
2496 				    unsigned long start_data)
2497 {
2498 	if (rlim < RLIM_INFINITY) {
2499 		if (((new - start) + (end_data - start_data)) > rlim)
2500 			return -ENOSPC;
2501 	}
2502 
2503 	return 0;
2504 }
2505 
2506 extern int mm_take_all_locks(struct mm_struct *mm);
2507 extern void mm_drop_all_locks(struct mm_struct *mm);
2508 
2509 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2510 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2511 extern struct file *get_task_exe_file(struct task_struct *task);
2512 
2513 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2514 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2515 
2516 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2517 				   const struct vm_special_mapping *sm);
2518 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2519 				   unsigned long addr, unsigned long len,
2520 				   unsigned long flags,
2521 				   const struct vm_special_mapping *spec);
2522 /* This is an obsolete alternative to _install_special_mapping. */
2523 extern int install_special_mapping(struct mm_struct *mm,
2524 				   unsigned long addr, unsigned long len,
2525 				   unsigned long flags, struct page **pages);
2526 
2527 unsigned long randomize_stack_top(unsigned long stack_top);
2528 
2529 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2530 
2531 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2532 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2533 	struct list_head *uf);
2534 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2535 	unsigned long len, unsigned long prot, unsigned long flags,
2536 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2537 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2538 		       struct list_head *uf, bool downgrade);
2539 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2540 		     struct list_head *uf);
2541 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2542 
2543 #ifdef CONFIG_MMU
2544 extern int __mm_populate(unsigned long addr, unsigned long len,
2545 			 int ignore_errors);
2546 static inline void mm_populate(unsigned long addr, unsigned long len)
2547 {
2548 	/* Ignore errors */
2549 	(void) __mm_populate(addr, len, 1);
2550 }
2551 #else
2552 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2553 #endif
2554 
2555 /* These take the mm semaphore themselves */
2556 extern int __must_check vm_brk(unsigned long, unsigned long);
2557 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2558 extern int vm_munmap(unsigned long, size_t);
2559 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2560         unsigned long, unsigned long,
2561         unsigned long, unsigned long);
2562 
2563 struct vm_unmapped_area_info {
2564 #define VM_UNMAPPED_AREA_TOPDOWN 1
2565 	unsigned long flags;
2566 	unsigned long length;
2567 	unsigned long low_limit;
2568 	unsigned long high_limit;
2569 	unsigned long align_mask;
2570 	unsigned long align_offset;
2571 };
2572 
2573 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2574 
2575 /* truncate.c */
2576 extern void truncate_inode_pages(struct address_space *, loff_t);
2577 extern void truncate_inode_pages_range(struct address_space *,
2578 				       loff_t lstart, loff_t lend);
2579 extern void truncate_inode_pages_final(struct address_space *);
2580 
2581 /* generic vm_area_ops exported for stackable file systems */
2582 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2583 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2584 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2585 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2586 
2587 /* mm/page-writeback.c */
2588 int __must_check write_one_page(struct page *page);
2589 void task_dirty_inc(struct task_struct *tsk);
2590 
2591 extern unsigned long stack_guard_gap;
2592 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2593 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2594 
2595 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2596 extern int expand_downwards(struct vm_area_struct *vma,
2597 		unsigned long address);
2598 #if VM_GROWSUP
2599 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2600 #else
2601   #define expand_upwards(vma, address) (0)
2602 #endif
2603 
2604 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2605 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2606 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2607 					     struct vm_area_struct **pprev);
2608 
2609 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2610    NULL if none.  Assume start_addr < end_addr. */
2611 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2612 {
2613 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2614 
2615 	if (vma && end_addr <= vma->vm_start)
2616 		vma = NULL;
2617 	return vma;
2618 }
2619 
2620 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2621 {
2622 	unsigned long vm_start = vma->vm_start;
2623 
2624 	if (vma->vm_flags & VM_GROWSDOWN) {
2625 		vm_start -= stack_guard_gap;
2626 		if (vm_start > vma->vm_start)
2627 			vm_start = 0;
2628 	}
2629 	return vm_start;
2630 }
2631 
2632 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2633 {
2634 	unsigned long vm_end = vma->vm_end;
2635 
2636 	if (vma->vm_flags & VM_GROWSUP) {
2637 		vm_end += stack_guard_gap;
2638 		if (vm_end < vma->vm_end)
2639 			vm_end = -PAGE_SIZE;
2640 	}
2641 	return vm_end;
2642 }
2643 
2644 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2645 {
2646 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2647 }
2648 
2649 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2650 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2651 				unsigned long vm_start, unsigned long vm_end)
2652 {
2653 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2654 
2655 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2656 		vma = NULL;
2657 
2658 	return vma;
2659 }
2660 
2661 static inline bool range_in_vma(struct vm_area_struct *vma,
2662 				unsigned long start, unsigned long end)
2663 {
2664 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2665 }
2666 
2667 #ifdef CONFIG_MMU
2668 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2669 void vma_set_page_prot(struct vm_area_struct *vma);
2670 #else
2671 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2672 {
2673 	return __pgprot(0);
2674 }
2675 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2676 {
2677 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2678 }
2679 #endif
2680 
2681 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2682 
2683 #ifdef CONFIG_NUMA_BALANCING
2684 unsigned long change_prot_numa(struct vm_area_struct *vma,
2685 			unsigned long start, unsigned long end);
2686 #endif
2687 
2688 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2689 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2690 			unsigned long pfn, unsigned long size, pgprot_t);
2691 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2692 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2693 			struct page **pages, unsigned long *num);
2694 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2695 				unsigned long num);
2696 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2697 				unsigned long num);
2698 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2699 			unsigned long pfn);
2700 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2701 			unsigned long pfn, pgprot_t pgprot);
2702 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2703 			pfn_t pfn);
2704 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2705 			pfn_t pfn, pgprot_t pgprot);
2706 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2707 		unsigned long addr, pfn_t pfn);
2708 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2709 
2710 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2711 				unsigned long addr, struct page *page)
2712 {
2713 	int err = vm_insert_page(vma, addr, page);
2714 
2715 	if (err == -ENOMEM)
2716 		return VM_FAULT_OOM;
2717 	if (err < 0 && err != -EBUSY)
2718 		return VM_FAULT_SIGBUS;
2719 
2720 	return VM_FAULT_NOPAGE;
2721 }
2722 
2723 #ifndef io_remap_pfn_range
2724 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2725 				     unsigned long addr, unsigned long pfn,
2726 				     unsigned long size, pgprot_t prot)
2727 {
2728 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2729 }
2730 #endif
2731 
2732 static inline vm_fault_t vmf_error(int err)
2733 {
2734 	if (err == -ENOMEM)
2735 		return VM_FAULT_OOM;
2736 	return VM_FAULT_SIGBUS;
2737 }
2738 
2739 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2740 			 unsigned int foll_flags);
2741 
2742 #define FOLL_WRITE	0x01	/* check pte is writable */
2743 #define FOLL_TOUCH	0x02	/* mark page accessed */
2744 #define FOLL_GET	0x04	/* do get_page on page */
2745 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2746 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2747 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2748 				 * and return without waiting upon it */
2749 #define FOLL_POPULATE	0x40	/* fault in page */
2750 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2751 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2752 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2753 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2754 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2755 #define FOLL_MLOCK	0x1000	/* lock present pages */
2756 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2757 #define FOLL_COW	0x4000	/* internal GUP flag */
2758 #define FOLL_ANON	0x8000	/* don't do file mappings */
2759 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2760 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2761 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2762 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2763 
2764 /*
2765  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2766  * other. Here is what they mean, and how to use them:
2767  *
2768  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2769  * period _often_ under userspace control.  This is in contrast to
2770  * iov_iter_get_pages(), whose usages are transient.
2771  *
2772  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2773  * lifetime enforced by the filesystem and we need guarantees that longterm
2774  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2775  * the filesystem.  Ideas for this coordination include revoking the longterm
2776  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2777  * added after the problem with filesystems was found FS DAX VMAs are
2778  * specifically failed.  Filesystem pages are still subject to bugs and use of
2779  * FOLL_LONGTERM should be avoided on those pages.
2780  *
2781  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2782  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2783  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2784  * is due to an incompatibility with the FS DAX check and
2785  * FAULT_FLAG_ALLOW_RETRY.
2786  *
2787  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2788  * that region.  And so, CMA attempts to migrate the page before pinning, when
2789  * FOLL_LONGTERM is specified.
2790  *
2791  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2792  * but an additional pin counting system) will be invoked. This is intended for
2793  * anything that gets a page reference and then touches page data (for example,
2794  * Direct IO). This lets the filesystem know that some non-file-system entity is
2795  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2796  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2797  * a call to unpin_user_page().
2798  *
2799  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2800  * and separate refcounting mechanisms, however, and that means that each has
2801  * its own acquire and release mechanisms:
2802  *
2803  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2804  *
2805  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2806  *
2807  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2808  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2809  * calls applied to them, and that's perfectly OK. This is a constraint on the
2810  * callers, not on the pages.)
2811  *
2812  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2813  * directly by the caller. That's in order to help avoid mismatches when
2814  * releasing pages: get_user_pages*() pages must be released via put_page(),
2815  * while pin_user_pages*() pages must be released via unpin_user_page().
2816  *
2817  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2818  */
2819 
2820 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2821 {
2822 	if (vm_fault & VM_FAULT_OOM)
2823 		return -ENOMEM;
2824 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2825 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2826 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2827 		return -EFAULT;
2828 	return 0;
2829 }
2830 
2831 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2832 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2833 			       unsigned long size, pte_fn_t fn, void *data);
2834 extern int apply_to_existing_page_range(struct mm_struct *mm,
2835 				   unsigned long address, unsigned long size,
2836 				   pte_fn_t fn, void *data);
2837 
2838 extern void init_mem_debugging_and_hardening(void);
2839 #ifdef CONFIG_PAGE_POISONING
2840 extern void __kernel_poison_pages(struct page *page, int numpages);
2841 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2842 extern bool _page_poisoning_enabled_early;
2843 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2844 static inline bool page_poisoning_enabled(void)
2845 {
2846 	return _page_poisoning_enabled_early;
2847 }
2848 /*
2849  * For use in fast paths after init_mem_debugging() has run, or when a
2850  * false negative result is not harmful when called too early.
2851  */
2852 static inline bool page_poisoning_enabled_static(void)
2853 {
2854 	return static_branch_unlikely(&_page_poisoning_enabled);
2855 }
2856 static inline void kernel_poison_pages(struct page *page, int numpages)
2857 {
2858 	if (page_poisoning_enabled_static())
2859 		__kernel_poison_pages(page, numpages);
2860 }
2861 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2862 {
2863 	if (page_poisoning_enabled_static())
2864 		__kernel_unpoison_pages(page, numpages);
2865 }
2866 #else
2867 static inline bool page_poisoning_enabled(void) { return false; }
2868 static inline bool page_poisoning_enabled_static(void) { return false; }
2869 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2870 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2871 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2872 #endif
2873 
2874 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2875 static inline bool want_init_on_alloc(gfp_t flags)
2876 {
2877 	if (static_branch_unlikely(&init_on_alloc))
2878 		return true;
2879 	return flags & __GFP_ZERO;
2880 }
2881 
2882 DECLARE_STATIC_KEY_FALSE(init_on_free);
2883 static inline bool want_init_on_free(void)
2884 {
2885 	return static_branch_unlikely(&init_on_free);
2886 }
2887 
2888 extern bool _debug_pagealloc_enabled_early;
2889 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2890 
2891 static inline bool debug_pagealloc_enabled(void)
2892 {
2893 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2894 		_debug_pagealloc_enabled_early;
2895 }
2896 
2897 /*
2898  * For use in fast paths after init_debug_pagealloc() has run, or when a
2899  * false negative result is not harmful when called too early.
2900  */
2901 static inline bool debug_pagealloc_enabled_static(void)
2902 {
2903 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2904 		return false;
2905 
2906 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2907 }
2908 
2909 #ifdef CONFIG_DEBUG_PAGEALLOC
2910 /*
2911  * To support DEBUG_PAGEALLOC architecture must ensure that
2912  * __kernel_map_pages() never fails
2913  */
2914 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2915 
2916 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2917 {
2918 	if (debug_pagealloc_enabled_static())
2919 		__kernel_map_pages(page, numpages, 1);
2920 }
2921 
2922 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2923 {
2924 	if (debug_pagealloc_enabled_static())
2925 		__kernel_map_pages(page, numpages, 0);
2926 }
2927 #else	/* CONFIG_DEBUG_PAGEALLOC */
2928 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2929 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2930 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2931 
2932 #ifdef __HAVE_ARCH_GATE_AREA
2933 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2934 extern int in_gate_area_no_mm(unsigned long addr);
2935 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2936 #else
2937 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2938 {
2939 	return NULL;
2940 }
2941 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2942 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2943 {
2944 	return 0;
2945 }
2946 #endif	/* __HAVE_ARCH_GATE_AREA */
2947 
2948 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2949 
2950 #ifdef CONFIG_SYSCTL
2951 extern int sysctl_drop_caches;
2952 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2953 		loff_t *);
2954 #endif
2955 
2956 void drop_slab(void);
2957 void drop_slab_node(int nid);
2958 
2959 #ifndef CONFIG_MMU
2960 #define randomize_va_space 0
2961 #else
2962 extern int randomize_va_space;
2963 #endif
2964 
2965 const char * arch_vma_name(struct vm_area_struct *vma);
2966 #ifdef CONFIG_MMU
2967 void print_vma_addr(char *prefix, unsigned long rip);
2968 #else
2969 static inline void print_vma_addr(char *prefix, unsigned long rip)
2970 {
2971 }
2972 #endif
2973 
2974 void *sparse_buffer_alloc(unsigned long size);
2975 struct page * __populate_section_memmap(unsigned long pfn,
2976 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2977 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2978 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2979 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2980 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2981 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2982 			    struct vmem_altmap *altmap);
2983 void *vmemmap_alloc_block(unsigned long size, int node);
2984 struct vmem_altmap;
2985 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2986 			      struct vmem_altmap *altmap);
2987 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2988 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2989 			       int node, struct vmem_altmap *altmap);
2990 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2991 		struct vmem_altmap *altmap);
2992 void vmemmap_populate_print_last(void);
2993 #ifdef CONFIG_MEMORY_HOTPLUG
2994 void vmemmap_free(unsigned long start, unsigned long end,
2995 		struct vmem_altmap *altmap);
2996 #endif
2997 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2998 				  unsigned long nr_pages);
2999 
3000 enum mf_flags {
3001 	MF_COUNT_INCREASED = 1 << 0,
3002 	MF_ACTION_REQUIRED = 1 << 1,
3003 	MF_MUST_KILL = 1 << 2,
3004 	MF_SOFT_OFFLINE = 1 << 3,
3005 };
3006 extern int memory_failure(unsigned long pfn, int flags);
3007 extern void memory_failure_queue(unsigned long pfn, int flags);
3008 extern void memory_failure_queue_kick(int cpu);
3009 extern int unpoison_memory(unsigned long pfn);
3010 extern int sysctl_memory_failure_early_kill;
3011 extern int sysctl_memory_failure_recovery;
3012 extern void shake_page(struct page *p, int access);
3013 extern atomic_long_t num_poisoned_pages __read_mostly;
3014 extern int soft_offline_page(unsigned long pfn, int flags);
3015 
3016 
3017 /*
3018  * Error handlers for various types of pages.
3019  */
3020 enum mf_result {
3021 	MF_IGNORED,	/* Error: cannot be handled */
3022 	MF_FAILED,	/* Error: handling failed */
3023 	MF_DELAYED,	/* Will be handled later */
3024 	MF_RECOVERED,	/* Successfully recovered */
3025 };
3026 
3027 enum mf_action_page_type {
3028 	MF_MSG_KERNEL,
3029 	MF_MSG_KERNEL_HIGH_ORDER,
3030 	MF_MSG_SLAB,
3031 	MF_MSG_DIFFERENT_COMPOUND,
3032 	MF_MSG_POISONED_HUGE,
3033 	MF_MSG_HUGE,
3034 	MF_MSG_FREE_HUGE,
3035 	MF_MSG_NON_PMD_HUGE,
3036 	MF_MSG_UNMAP_FAILED,
3037 	MF_MSG_DIRTY_SWAPCACHE,
3038 	MF_MSG_CLEAN_SWAPCACHE,
3039 	MF_MSG_DIRTY_MLOCKED_LRU,
3040 	MF_MSG_CLEAN_MLOCKED_LRU,
3041 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3042 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3043 	MF_MSG_DIRTY_LRU,
3044 	MF_MSG_CLEAN_LRU,
3045 	MF_MSG_TRUNCATED_LRU,
3046 	MF_MSG_BUDDY,
3047 	MF_MSG_BUDDY_2ND,
3048 	MF_MSG_DAX,
3049 	MF_MSG_UNSPLIT_THP,
3050 	MF_MSG_UNKNOWN,
3051 };
3052 
3053 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3054 extern void clear_huge_page(struct page *page,
3055 			    unsigned long addr_hint,
3056 			    unsigned int pages_per_huge_page);
3057 extern void copy_user_huge_page(struct page *dst, struct page *src,
3058 				unsigned long addr_hint,
3059 				struct vm_area_struct *vma,
3060 				unsigned int pages_per_huge_page);
3061 extern long copy_huge_page_from_user(struct page *dst_page,
3062 				const void __user *usr_src,
3063 				unsigned int pages_per_huge_page,
3064 				bool allow_pagefault);
3065 
3066 /**
3067  * vma_is_special_huge - Are transhuge page-table entries considered special?
3068  * @vma: Pointer to the struct vm_area_struct to consider
3069  *
3070  * Whether transhuge page-table entries are considered "special" following
3071  * the definition in vm_normal_page().
3072  *
3073  * Return: true if transhuge page-table entries should be considered special,
3074  * false otherwise.
3075  */
3076 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3077 {
3078 	return vma_is_dax(vma) || (vma->vm_file &&
3079 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3080 }
3081 
3082 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3083 
3084 #ifdef CONFIG_DEBUG_PAGEALLOC
3085 extern unsigned int _debug_guardpage_minorder;
3086 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3087 
3088 static inline unsigned int debug_guardpage_minorder(void)
3089 {
3090 	return _debug_guardpage_minorder;
3091 }
3092 
3093 static inline bool debug_guardpage_enabled(void)
3094 {
3095 	return static_branch_unlikely(&_debug_guardpage_enabled);
3096 }
3097 
3098 static inline bool page_is_guard(struct page *page)
3099 {
3100 	if (!debug_guardpage_enabled())
3101 		return false;
3102 
3103 	return PageGuard(page);
3104 }
3105 #else
3106 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3107 static inline bool debug_guardpage_enabled(void) { return false; }
3108 static inline bool page_is_guard(struct page *page) { return false; }
3109 #endif /* CONFIG_DEBUG_PAGEALLOC */
3110 
3111 #if MAX_NUMNODES > 1
3112 void __init setup_nr_node_ids(void);
3113 #else
3114 static inline void setup_nr_node_ids(void) {}
3115 #endif
3116 
3117 extern int memcmp_pages(struct page *page1, struct page *page2);
3118 
3119 static inline int pages_identical(struct page *page1, struct page *page2)
3120 {
3121 	return !memcmp_pages(page1, page2);
3122 }
3123 
3124 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3125 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3126 						pgoff_t first_index, pgoff_t nr,
3127 						pgoff_t bitmap_pgoff,
3128 						unsigned long *bitmap,
3129 						pgoff_t *start,
3130 						pgoff_t *end);
3131 
3132 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3133 				      pgoff_t first_index, pgoff_t nr);
3134 #endif
3135 
3136 extern int sysctl_nr_trim_pages;
3137 
3138 void mem_dump_obj(void *object);
3139 
3140 #endif /* __KERNEL__ */
3141 #endif /* _LINUX_MM_H */
3142