1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 23 struct mempolicy; 24 struct anon_vma; 25 struct anon_vma_chain; 26 struct file_ra_state; 27 struct user_struct; 28 struct writeback_control; 29 30 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 31 extern unsigned long max_mapnr; 32 33 static inline void set_max_mapnr(unsigned long limit) 34 { 35 max_mapnr = limit; 36 } 37 #else 38 static inline void set_max_mapnr(unsigned long limit) { } 39 #endif 40 41 extern unsigned long totalram_pages; 42 extern void * high_memory; 43 extern int page_cluster; 44 45 #ifdef CONFIG_SYSCTL 46 extern int sysctl_legacy_va_layout; 47 #else 48 #define sysctl_legacy_va_layout 0 49 #endif 50 51 #include <asm/page.h> 52 #include <asm/pgtable.h> 53 #include <asm/processor.h> 54 55 #ifndef __pa_symbol 56 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 57 #endif 58 59 extern unsigned long sysctl_user_reserve_kbytes; 60 extern unsigned long sysctl_admin_reserve_kbytes; 61 62 extern int sysctl_overcommit_memory; 63 extern int sysctl_overcommit_ratio; 64 extern unsigned long sysctl_overcommit_kbytes; 65 66 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 67 size_t *, loff_t *); 68 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 69 size_t *, loff_t *); 70 71 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 72 73 /* to align the pointer to the (next) page boundary */ 74 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 75 76 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 77 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 78 79 /* 80 * Linux kernel virtual memory manager primitives. 81 * The idea being to have a "virtual" mm in the same way 82 * we have a virtual fs - giving a cleaner interface to the 83 * mm details, and allowing different kinds of memory mappings 84 * (from shared memory to executable loading to arbitrary 85 * mmap() functions). 86 */ 87 88 extern struct kmem_cache *vm_area_cachep; 89 90 #ifndef CONFIG_MMU 91 extern struct rb_root nommu_region_tree; 92 extern struct rw_semaphore nommu_region_sem; 93 94 extern unsigned int kobjsize(const void *objp); 95 #endif 96 97 /* 98 * vm_flags in vm_area_struct, see mm_types.h. 99 */ 100 #define VM_NONE 0x00000000 101 102 #define VM_READ 0x00000001 /* currently active flags */ 103 #define VM_WRITE 0x00000002 104 #define VM_EXEC 0x00000004 105 #define VM_SHARED 0x00000008 106 107 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 108 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 109 #define VM_MAYWRITE 0x00000020 110 #define VM_MAYEXEC 0x00000040 111 #define VM_MAYSHARE 0x00000080 112 113 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 114 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 115 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 116 117 #define VM_LOCKED 0x00002000 118 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 119 120 /* Used by sys_madvise() */ 121 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 122 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 123 124 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 125 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 126 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 127 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 128 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 129 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 130 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 131 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 132 133 #ifdef CONFIG_MEM_SOFT_DIRTY 134 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 135 #else 136 # define VM_SOFTDIRTY 0 137 #endif 138 139 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 140 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 141 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 142 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 143 144 #if defined(CONFIG_X86) 145 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 146 #elif defined(CONFIG_PPC) 147 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 148 #elif defined(CONFIG_PARISC) 149 # define VM_GROWSUP VM_ARCH_1 150 #elif defined(CONFIG_METAG) 151 # define VM_GROWSUP VM_ARCH_1 152 #elif defined(CONFIG_IA64) 153 # define VM_GROWSUP VM_ARCH_1 154 #elif !defined(CONFIG_MMU) 155 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 156 #endif 157 158 #ifndef VM_GROWSUP 159 # define VM_GROWSUP VM_NONE 160 #endif 161 162 /* Bits set in the VMA until the stack is in its final location */ 163 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 164 165 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 166 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 167 #endif 168 169 #ifdef CONFIG_STACK_GROWSUP 170 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 171 #else 172 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 173 #endif 174 175 /* 176 * Special vmas that are non-mergable, non-mlock()able. 177 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 178 */ 179 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 180 181 /* This mask defines which mm->def_flags a process can inherit its parent */ 182 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 183 184 /* 185 * mapping from the currently active vm_flags protection bits (the 186 * low four bits) to a page protection mask.. 187 */ 188 extern pgprot_t protection_map[16]; 189 190 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 191 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 192 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 193 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 194 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 195 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 196 #define FAULT_FLAG_TRIED 0x40 /* second try */ 197 #define FAULT_FLAG_USER 0x80 /* The fault originated in userspace */ 198 199 /* 200 * vm_fault is filled by the the pagefault handler and passed to the vma's 201 * ->fault function. The vma's ->fault is responsible for returning a bitmask 202 * of VM_FAULT_xxx flags that give details about how the fault was handled. 203 * 204 * pgoff should be used in favour of virtual_address, if possible. If pgoff 205 * is used, one may implement ->remap_pages to get nonlinear mapping support. 206 */ 207 struct vm_fault { 208 unsigned int flags; /* FAULT_FLAG_xxx flags */ 209 pgoff_t pgoff; /* Logical page offset based on vma */ 210 void __user *virtual_address; /* Faulting virtual address */ 211 212 struct page *page; /* ->fault handlers should return a 213 * page here, unless VM_FAULT_NOPAGE 214 * is set (which is also implied by 215 * VM_FAULT_ERROR). 216 */ 217 /* for ->map_pages() only */ 218 pgoff_t max_pgoff; /* map pages for offset from pgoff till 219 * max_pgoff inclusive */ 220 pte_t *pte; /* pte entry associated with ->pgoff */ 221 }; 222 223 /* 224 * These are the virtual MM functions - opening of an area, closing and 225 * unmapping it (needed to keep files on disk up-to-date etc), pointer 226 * to the functions called when a no-page or a wp-page exception occurs. 227 */ 228 struct vm_operations_struct { 229 void (*open)(struct vm_area_struct * area); 230 void (*close)(struct vm_area_struct * area); 231 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 232 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 233 234 /* notification that a previously read-only page is about to become 235 * writable, if an error is returned it will cause a SIGBUS */ 236 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 237 238 /* called by access_process_vm when get_user_pages() fails, typically 239 * for use by special VMAs that can switch between memory and hardware 240 */ 241 int (*access)(struct vm_area_struct *vma, unsigned long addr, 242 void *buf, int len, int write); 243 244 /* Called by the /proc/PID/maps code to ask the vma whether it 245 * has a special name. Returning non-NULL will also cause this 246 * vma to be dumped unconditionally. */ 247 const char *(*name)(struct vm_area_struct *vma); 248 249 #ifdef CONFIG_NUMA 250 /* 251 * set_policy() op must add a reference to any non-NULL @new mempolicy 252 * to hold the policy upon return. Caller should pass NULL @new to 253 * remove a policy and fall back to surrounding context--i.e. do not 254 * install a MPOL_DEFAULT policy, nor the task or system default 255 * mempolicy. 256 */ 257 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 258 259 /* 260 * get_policy() op must add reference [mpol_get()] to any policy at 261 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 262 * in mm/mempolicy.c will do this automatically. 263 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 264 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 265 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 266 * must return NULL--i.e., do not "fallback" to task or system default 267 * policy. 268 */ 269 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 270 unsigned long addr); 271 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 272 const nodemask_t *to, unsigned long flags); 273 #endif 274 /* called by sys_remap_file_pages() to populate non-linear mapping */ 275 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 276 unsigned long size, pgoff_t pgoff); 277 }; 278 279 struct mmu_gather; 280 struct inode; 281 282 #define page_private(page) ((page)->private) 283 #define set_page_private(page, v) ((page)->private = (v)) 284 285 /* It's valid only if the page is free path or free_list */ 286 static inline void set_freepage_migratetype(struct page *page, int migratetype) 287 { 288 page->index = migratetype; 289 } 290 291 /* It's valid only if the page is free path or free_list */ 292 static inline int get_freepage_migratetype(struct page *page) 293 { 294 return page->index; 295 } 296 297 /* 298 * FIXME: take this include out, include page-flags.h in 299 * files which need it (119 of them) 300 */ 301 #include <linux/page-flags.h> 302 #include <linux/huge_mm.h> 303 304 /* 305 * Methods to modify the page usage count. 306 * 307 * What counts for a page usage: 308 * - cache mapping (page->mapping) 309 * - private data (page->private) 310 * - page mapped in a task's page tables, each mapping 311 * is counted separately 312 * 313 * Also, many kernel routines increase the page count before a critical 314 * routine so they can be sure the page doesn't go away from under them. 315 */ 316 317 /* 318 * Drop a ref, return true if the refcount fell to zero (the page has no users) 319 */ 320 static inline int put_page_testzero(struct page *page) 321 { 322 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 323 return atomic_dec_and_test(&page->_count); 324 } 325 326 /* 327 * Try to grab a ref unless the page has a refcount of zero, return false if 328 * that is the case. 329 * This can be called when MMU is off so it must not access 330 * any of the virtual mappings. 331 */ 332 static inline int get_page_unless_zero(struct page *page) 333 { 334 return atomic_inc_not_zero(&page->_count); 335 } 336 337 /* 338 * Try to drop a ref unless the page has a refcount of one, return false if 339 * that is the case. 340 * This is to make sure that the refcount won't become zero after this drop. 341 * This can be called when MMU is off so it must not access 342 * any of the virtual mappings. 343 */ 344 static inline int put_page_unless_one(struct page *page) 345 { 346 return atomic_add_unless(&page->_count, -1, 1); 347 } 348 349 extern int page_is_ram(unsigned long pfn); 350 extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 351 352 /* Support for virtually mapped pages */ 353 struct page *vmalloc_to_page(const void *addr); 354 unsigned long vmalloc_to_pfn(const void *addr); 355 356 /* 357 * Determine if an address is within the vmalloc range 358 * 359 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 360 * is no special casing required. 361 */ 362 static inline int is_vmalloc_addr(const void *x) 363 { 364 #ifdef CONFIG_MMU 365 unsigned long addr = (unsigned long)x; 366 367 return addr >= VMALLOC_START && addr < VMALLOC_END; 368 #else 369 return 0; 370 #endif 371 } 372 #ifdef CONFIG_MMU 373 extern int is_vmalloc_or_module_addr(const void *x); 374 #else 375 static inline int is_vmalloc_or_module_addr(const void *x) 376 { 377 return 0; 378 } 379 #endif 380 381 extern void kvfree(const void *addr); 382 383 static inline void compound_lock(struct page *page) 384 { 385 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 386 VM_BUG_ON_PAGE(PageSlab(page), page); 387 bit_spin_lock(PG_compound_lock, &page->flags); 388 #endif 389 } 390 391 static inline void compound_unlock(struct page *page) 392 { 393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 394 VM_BUG_ON_PAGE(PageSlab(page), page); 395 bit_spin_unlock(PG_compound_lock, &page->flags); 396 #endif 397 } 398 399 static inline unsigned long compound_lock_irqsave(struct page *page) 400 { 401 unsigned long uninitialized_var(flags); 402 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 403 local_irq_save(flags); 404 compound_lock(page); 405 #endif 406 return flags; 407 } 408 409 static inline void compound_unlock_irqrestore(struct page *page, 410 unsigned long flags) 411 { 412 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 413 compound_unlock(page); 414 local_irq_restore(flags); 415 #endif 416 } 417 418 static inline struct page *compound_head_by_tail(struct page *tail) 419 { 420 struct page *head = tail->first_page; 421 422 /* 423 * page->first_page may be a dangling pointer to an old 424 * compound page, so recheck that it is still a tail 425 * page before returning. 426 */ 427 smp_rmb(); 428 if (likely(PageTail(tail))) 429 return head; 430 return tail; 431 } 432 433 static inline struct page *compound_head(struct page *page) 434 { 435 if (unlikely(PageTail(page))) 436 return compound_head_by_tail(page); 437 return page; 438 } 439 440 /* 441 * The atomic page->_mapcount, starts from -1: so that transitions 442 * both from it and to it can be tracked, using atomic_inc_and_test 443 * and atomic_add_negative(-1). 444 */ 445 static inline void page_mapcount_reset(struct page *page) 446 { 447 atomic_set(&(page)->_mapcount, -1); 448 } 449 450 static inline int page_mapcount(struct page *page) 451 { 452 return atomic_read(&(page)->_mapcount) + 1; 453 } 454 455 static inline int page_count(struct page *page) 456 { 457 return atomic_read(&compound_head(page)->_count); 458 } 459 460 #ifdef CONFIG_HUGETLB_PAGE 461 extern int PageHeadHuge(struct page *page_head); 462 #else /* CONFIG_HUGETLB_PAGE */ 463 static inline int PageHeadHuge(struct page *page_head) 464 { 465 return 0; 466 } 467 #endif /* CONFIG_HUGETLB_PAGE */ 468 469 static inline bool __compound_tail_refcounted(struct page *page) 470 { 471 return !PageSlab(page) && !PageHeadHuge(page); 472 } 473 474 /* 475 * This takes a head page as parameter and tells if the 476 * tail page reference counting can be skipped. 477 * 478 * For this to be safe, PageSlab and PageHeadHuge must remain true on 479 * any given page where they return true here, until all tail pins 480 * have been released. 481 */ 482 static inline bool compound_tail_refcounted(struct page *page) 483 { 484 VM_BUG_ON_PAGE(!PageHead(page), page); 485 return __compound_tail_refcounted(page); 486 } 487 488 static inline void get_huge_page_tail(struct page *page) 489 { 490 /* 491 * __split_huge_page_refcount() cannot run from under us. 492 */ 493 VM_BUG_ON_PAGE(!PageTail(page), page); 494 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 495 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 496 if (compound_tail_refcounted(page->first_page)) 497 atomic_inc(&page->_mapcount); 498 } 499 500 extern bool __get_page_tail(struct page *page); 501 502 static inline void get_page(struct page *page) 503 { 504 if (unlikely(PageTail(page))) 505 if (likely(__get_page_tail(page))) 506 return; 507 /* 508 * Getting a normal page or the head of a compound page 509 * requires to already have an elevated page->_count. 510 */ 511 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 512 atomic_inc(&page->_count); 513 } 514 515 static inline struct page *virt_to_head_page(const void *x) 516 { 517 struct page *page = virt_to_page(x); 518 return compound_head(page); 519 } 520 521 /* 522 * Setup the page count before being freed into the page allocator for 523 * the first time (boot or memory hotplug) 524 */ 525 static inline void init_page_count(struct page *page) 526 { 527 atomic_set(&page->_count, 1); 528 } 529 530 /* 531 * PageBuddy() indicate that the page is free and in the buddy system 532 * (see mm/page_alloc.c). 533 * 534 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 535 * -2 so that an underflow of the page_mapcount() won't be mistaken 536 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 537 * efficiently by most CPU architectures. 538 */ 539 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 540 541 static inline int PageBuddy(struct page *page) 542 { 543 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 544 } 545 546 static inline void __SetPageBuddy(struct page *page) 547 { 548 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 549 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 550 } 551 552 static inline void __ClearPageBuddy(struct page *page) 553 { 554 VM_BUG_ON_PAGE(!PageBuddy(page), page); 555 atomic_set(&page->_mapcount, -1); 556 } 557 558 #define PAGE_BALLOON_MAPCOUNT_VALUE (-256) 559 560 static inline int PageBalloon(struct page *page) 561 { 562 return atomic_read(&page->_mapcount) == PAGE_BALLOON_MAPCOUNT_VALUE; 563 } 564 565 static inline void __SetPageBalloon(struct page *page) 566 { 567 VM_BUG_ON_PAGE(atomic_read(&page->_mapcount) != -1, page); 568 atomic_set(&page->_mapcount, PAGE_BALLOON_MAPCOUNT_VALUE); 569 } 570 571 static inline void __ClearPageBalloon(struct page *page) 572 { 573 VM_BUG_ON_PAGE(!PageBalloon(page), page); 574 atomic_set(&page->_mapcount, -1); 575 } 576 577 void put_page(struct page *page); 578 void put_pages_list(struct list_head *pages); 579 580 void split_page(struct page *page, unsigned int order); 581 int split_free_page(struct page *page); 582 583 /* 584 * Compound pages have a destructor function. Provide a 585 * prototype for that function and accessor functions. 586 * These are _only_ valid on the head of a PG_compound page. 587 */ 588 typedef void compound_page_dtor(struct page *); 589 590 static inline void set_compound_page_dtor(struct page *page, 591 compound_page_dtor *dtor) 592 { 593 page[1].lru.next = (void *)dtor; 594 } 595 596 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 597 { 598 return (compound_page_dtor *)page[1].lru.next; 599 } 600 601 static inline int compound_order(struct page *page) 602 { 603 if (!PageHead(page)) 604 return 0; 605 return (unsigned long)page[1].lru.prev; 606 } 607 608 static inline void set_compound_order(struct page *page, unsigned long order) 609 { 610 page[1].lru.prev = (void *)order; 611 } 612 613 #ifdef CONFIG_MMU 614 /* 615 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 616 * servicing faults for write access. In the normal case, do always want 617 * pte_mkwrite. But get_user_pages can cause write faults for mappings 618 * that do not have writing enabled, when used by access_process_vm. 619 */ 620 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 621 { 622 if (likely(vma->vm_flags & VM_WRITE)) 623 pte = pte_mkwrite(pte); 624 return pte; 625 } 626 627 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 628 struct page *page, pte_t *pte, bool write, bool anon); 629 #endif 630 631 /* 632 * Multiple processes may "see" the same page. E.g. for untouched 633 * mappings of /dev/null, all processes see the same page full of 634 * zeroes, and text pages of executables and shared libraries have 635 * only one copy in memory, at most, normally. 636 * 637 * For the non-reserved pages, page_count(page) denotes a reference count. 638 * page_count() == 0 means the page is free. page->lru is then used for 639 * freelist management in the buddy allocator. 640 * page_count() > 0 means the page has been allocated. 641 * 642 * Pages are allocated by the slab allocator in order to provide memory 643 * to kmalloc and kmem_cache_alloc. In this case, the management of the 644 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 645 * unless a particular usage is carefully commented. (the responsibility of 646 * freeing the kmalloc memory is the caller's, of course). 647 * 648 * A page may be used by anyone else who does a __get_free_page(). 649 * In this case, page_count still tracks the references, and should only 650 * be used through the normal accessor functions. The top bits of page->flags 651 * and page->virtual store page management information, but all other fields 652 * are unused and could be used privately, carefully. The management of this 653 * page is the responsibility of the one who allocated it, and those who have 654 * subsequently been given references to it. 655 * 656 * The other pages (we may call them "pagecache pages") are completely 657 * managed by the Linux memory manager: I/O, buffers, swapping etc. 658 * The following discussion applies only to them. 659 * 660 * A pagecache page contains an opaque `private' member, which belongs to the 661 * page's address_space. Usually, this is the address of a circular list of 662 * the page's disk buffers. PG_private must be set to tell the VM to call 663 * into the filesystem to release these pages. 664 * 665 * A page may belong to an inode's memory mapping. In this case, page->mapping 666 * is the pointer to the inode, and page->index is the file offset of the page, 667 * in units of PAGE_CACHE_SIZE. 668 * 669 * If pagecache pages are not associated with an inode, they are said to be 670 * anonymous pages. These may become associated with the swapcache, and in that 671 * case PG_swapcache is set, and page->private is an offset into the swapcache. 672 * 673 * In either case (swapcache or inode backed), the pagecache itself holds one 674 * reference to the page. Setting PG_private should also increment the 675 * refcount. The each user mapping also has a reference to the page. 676 * 677 * The pagecache pages are stored in a per-mapping radix tree, which is 678 * rooted at mapping->page_tree, and indexed by offset. 679 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 680 * lists, we instead now tag pages as dirty/writeback in the radix tree. 681 * 682 * All pagecache pages may be subject to I/O: 683 * - inode pages may need to be read from disk, 684 * - inode pages which have been modified and are MAP_SHARED may need 685 * to be written back to the inode on disk, 686 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 687 * modified may need to be swapped out to swap space and (later) to be read 688 * back into memory. 689 */ 690 691 /* 692 * The zone field is never updated after free_area_init_core() 693 * sets it, so none of the operations on it need to be atomic. 694 */ 695 696 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 697 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 698 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 699 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 700 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 701 702 /* 703 * Define the bit shifts to access each section. For non-existent 704 * sections we define the shift as 0; that plus a 0 mask ensures 705 * the compiler will optimise away reference to them. 706 */ 707 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 708 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 709 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 710 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 711 712 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 713 #ifdef NODE_NOT_IN_PAGE_FLAGS 714 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 715 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 716 SECTIONS_PGOFF : ZONES_PGOFF) 717 #else 718 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 719 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 720 NODES_PGOFF : ZONES_PGOFF) 721 #endif 722 723 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 724 725 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 726 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 727 #endif 728 729 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 730 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 731 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 732 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 733 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 734 735 static inline enum zone_type page_zonenum(const struct page *page) 736 { 737 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 738 } 739 740 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 741 #define SECTION_IN_PAGE_FLAGS 742 #endif 743 744 /* 745 * The identification function is mainly used by the buddy allocator for 746 * determining if two pages could be buddies. We are not really identifying 747 * the zone since we could be using the section number id if we do not have 748 * node id available in page flags. 749 * We only guarantee that it will return the same value for two combinable 750 * pages in a zone. 751 */ 752 static inline int page_zone_id(struct page *page) 753 { 754 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 755 } 756 757 static inline int zone_to_nid(struct zone *zone) 758 { 759 #ifdef CONFIG_NUMA 760 return zone->node; 761 #else 762 return 0; 763 #endif 764 } 765 766 #ifdef NODE_NOT_IN_PAGE_FLAGS 767 extern int page_to_nid(const struct page *page); 768 #else 769 static inline int page_to_nid(const struct page *page) 770 { 771 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 772 } 773 #endif 774 775 #ifdef CONFIG_NUMA_BALANCING 776 static inline int cpu_pid_to_cpupid(int cpu, int pid) 777 { 778 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 779 } 780 781 static inline int cpupid_to_pid(int cpupid) 782 { 783 return cpupid & LAST__PID_MASK; 784 } 785 786 static inline int cpupid_to_cpu(int cpupid) 787 { 788 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 789 } 790 791 static inline int cpupid_to_nid(int cpupid) 792 { 793 return cpu_to_node(cpupid_to_cpu(cpupid)); 794 } 795 796 static inline bool cpupid_pid_unset(int cpupid) 797 { 798 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 799 } 800 801 static inline bool cpupid_cpu_unset(int cpupid) 802 { 803 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 804 } 805 806 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 807 { 808 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 809 } 810 811 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 812 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 813 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 814 { 815 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 816 } 817 818 static inline int page_cpupid_last(struct page *page) 819 { 820 return page->_last_cpupid; 821 } 822 static inline void page_cpupid_reset_last(struct page *page) 823 { 824 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 825 } 826 #else 827 static inline int page_cpupid_last(struct page *page) 828 { 829 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 830 } 831 832 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 833 834 static inline void page_cpupid_reset_last(struct page *page) 835 { 836 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 837 838 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 839 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 840 } 841 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 842 #else /* !CONFIG_NUMA_BALANCING */ 843 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 844 { 845 return page_to_nid(page); /* XXX */ 846 } 847 848 static inline int page_cpupid_last(struct page *page) 849 { 850 return page_to_nid(page); /* XXX */ 851 } 852 853 static inline int cpupid_to_nid(int cpupid) 854 { 855 return -1; 856 } 857 858 static inline int cpupid_to_pid(int cpupid) 859 { 860 return -1; 861 } 862 863 static inline int cpupid_to_cpu(int cpupid) 864 { 865 return -1; 866 } 867 868 static inline int cpu_pid_to_cpupid(int nid, int pid) 869 { 870 return -1; 871 } 872 873 static inline bool cpupid_pid_unset(int cpupid) 874 { 875 return 1; 876 } 877 878 static inline void page_cpupid_reset_last(struct page *page) 879 { 880 } 881 882 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 883 { 884 return false; 885 } 886 #endif /* CONFIG_NUMA_BALANCING */ 887 888 static inline struct zone *page_zone(const struct page *page) 889 { 890 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 891 } 892 893 #ifdef SECTION_IN_PAGE_FLAGS 894 static inline void set_page_section(struct page *page, unsigned long section) 895 { 896 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 897 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 898 } 899 900 static inline unsigned long page_to_section(const struct page *page) 901 { 902 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 903 } 904 #endif 905 906 static inline void set_page_zone(struct page *page, enum zone_type zone) 907 { 908 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 909 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 910 } 911 912 static inline void set_page_node(struct page *page, unsigned long node) 913 { 914 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 915 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 916 } 917 918 static inline void set_page_links(struct page *page, enum zone_type zone, 919 unsigned long node, unsigned long pfn) 920 { 921 set_page_zone(page, zone); 922 set_page_node(page, node); 923 #ifdef SECTION_IN_PAGE_FLAGS 924 set_page_section(page, pfn_to_section_nr(pfn)); 925 #endif 926 } 927 928 /* 929 * Some inline functions in vmstat.h depend on page_zone() 930 */ 931 #include <linux/vmstat.h> 932 933 static __always_inline void *lowmem_page_address(const struct page *page) 934 { 935 return __va(PFN_PHYS(page_to_pfn(page))); 936 } 937 938 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 939 #define HASHED_PAGE_VIRTUAL 940 #endif 941 942 #if defined(WANT_PAGE_VIRTUAL) 943 static inline void *page_address(const struct page *page) 944 { 945 return page->virtual; 946 } 947 static inline void set_page_address(struct page *page, void *address) 948 { 949 page->virtual = address; 950 } 951 #define page_address_init() do { } while(0) 952 #endif 953 954 #if defined(HASHED_PAGE_VIRTUAL) 955 void *page_address(const struct page *page); 956 void set_page_address(struct page *page, void *virtual); 957 void page_address_init(void); 958 #endif 959 960 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 961 #define page_address(page) lowmem_page_address(page) 962 #define set_page_address(page, address) do { } while(0) 963 #define page_address_init() do { } while(0) 964 #endif 965 966 /* 967 * On an anonymous page mapped into a user virtual memory area, 968 * page->mapping points to its anon_vma, not to a struct address_space; 969 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 970 * 971 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 972 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 973 * and then page->mapping points, not to an anon_vma, but to a private 974 * structure which KSM associates with that merged page. See ksm.h. 975 * 976 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 977 * 978 * Please note that, confusingly, "page_mapping" refers to the inode 979 * address_space which maps the page from disk; whereas "page_mapped" 980 * refers to user virtual address space into which the page is mapped. 981 */ 982 #define PAGE_MAPPING_ANON 1 983 #define PAGE_MAPPING_KSM 2 984 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 985 986 extern struct address_space *page_mapping(struct page *page); 987 988 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 989 static inline void *page_rmapping(struct page *page) 990 { 991 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 992 } 993 994 extern struct address_space *__page_file_mapping(struct page *); 995 996 static inline 997 struct address_space *page_file_mapping(struct page *page) 998 { 999 if (unlikely(PageSwapCache(page))) 1000 return __page_file_mapping(page); 1001 1002 return page->mapping; 1003 } 1004 1005 static inline int PageAnon(struct page *page) 1006 { 1007 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 1008 } 1009 1010 /* 1011 * Return the pagecache index of the passed page. Regular pagecache pages 1012 * use ->index whereas swapcache pages use ->private 1013 */ 1014 static inline pgoff_t page_index(struct page *page) 1015 { 1016 if (unlikely(PageSwapCache(page))) 1017 return page_private(page); 1018 return page->index; 1019 } 1020 1021 extern pgoff_t __page_file_index(struct page *page); 1022 1023 /* 1024 * Return the file index of the page. Regular pagecache pages use ->index 1025 * whereas swapcache pages use swp_offset(->private) 1026 */ 1027 static inline pgoff_t page_file_index(struct page *page) 1028 { 1029 if (unlikely(PageSwapCache(page))) 1030 return __page_file_index(page); 1031 1032 return page->index; 1033 } 1034 1035 /* 1036 * Return true if this page is mapped into pagetables. 1037 */ 1038 static inline int page_mapped(struct page *page) 1039 { 1040 return atomic_read(&(page)->_mapcount) >= 0; 1041 } 1042 1043 /* 1044 * Different kinds of faults, as returned by handle_mm_fault(). 1045 * Used to decide whether a process gets delivered SIGBUS or 1046 * just gets major/minor fault counters bumped up. 1047 */ 1048 1049 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1050 1051 #define VM_FAULT_OOM 0x0001 1052 #define VM_FAULT_SIGBUS 0x0002 1053 #define VM_FAULT_MAJOR 0x0004 1054 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1055 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1056 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1057 1058 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1059 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1060 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1061 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1062 1063 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1064 1065 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 1066 VM_FAULT_FALLBACK | VM_FAULT_HWPOISON_LARGE) 1067 1068 /* Encode hstate index for a hwpoisoned large page */ 1069 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1070 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1071 1072 /* 1073 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1074 */ 1075 extern void pagefault_out_of_memory(void); 1076 1077 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1078 1079 /* 1080 * Flags passed to show_mem() and show_free_areas() to suppress output in 1081 * various contexts. 1082 */ 1083 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1084 1085 extern void show_free_areas(unsigned int flags); 1086 extern bool skip_free_areas_node(unsigned int flags, int nid); 1087 1088 int shmem_zero_setup(struct vm_area_struct *); 1089 #ifdef CONFIG_SHMEM 1090 bool shmem_mapping(struct address_space *mapping); 1091 #else 1092 static inline bool shmem_mapping(struct address_space *mapping) 1093 { 1094 return false; 1095 } 1096 #endif 1097 1098 extern int can_do_mlock(void); 1099 extern int user_shm_lock(size_t, struct user_struct *); 1100 extern void user_shm_unlock(size_t, struct user_struct *); 1101 1102 /* 1103 * Parameter block passed down to zap_pte_range in exceptional cases. 1104 */ 1105 struct zap_details { 1106 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 1107 struct address_space *check_mapping; /* Check page->mapping if set */ 1108 pgoff_t first_index; /* Lowest page->index to unmap */ 1109 pgoff_t last_index; /* Highest page->index to unmap */ 1110 }; 1111 1112 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1113 pte_t pte); 1114 1115 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1116 unsigned long size); 1117 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1118 unsigned long size, struct zap_details *); 1119 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1120 unsigned long start, unsigned long end); 1121 1122 /** 1123 * mm_walk - callbacks for walk_page_range 1124 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 1125 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1126 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1127 * this handler is required to be able to handle 1128 * pmd_trans_huge() pmds. They may simply choose to 1129 * split_huge_page() instead of handling it explicitly. 1130 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1131 * @pte_hole: if set, called for each hole at all levels 1132 * @hugetlb_entry: if set, called for each hugetlb entry 1133 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 1134 * is used. 1135 * 1136 * (see walk_page_range for more details) 1137 */ 1138 struct mm_walk { 1139 int (*pgd_entry)(pgd_t *pgd, unsigned long addr, 1140 unsigned long next, struct mm_walk *walk); 1141 int (*pud_entry)(pud_t *pud, unsigned long addr, 1142 unsigned long next, struct mm_walk *walk); 1143 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1144 unsigned long next, struct mm_walk *walk); 1145 int (*pte_entry)(pte_t *pte, unsigned long addr, 1146 unsigned long next, struct mm_walk *walk); 1147 int (*pte_hole)(unsigned long addr, unsigned long next, 1148 struct mm_walk *walk); 1149 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1150 unsigned long addr, unsigned long next, 1151 struct mm_walk *walk); 1152 struct mm_struct *mm; 1153 void *private; 1154 }; 1155 1156 int walk_page_range(unsigned long addr, unsigned long end, 1157 struct mm_walk *walk); 1158 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1159 unsigned long end, unsigned long floor, unsigned long ceiling); 1160 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1161 struct vm_area_struct *vma); 1162 void unmap_mapping_range(struct address_space *mapping, 1163 loff_t const holebegin, loff_t const holelen, int even_cows); 1164 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1165 unsigned long *pfn); 1166 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1167 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1168 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1169 void *buf, int len, int write); 1170 1171 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1172 loff_t const holebegin, loff_t const holelen) 1173 { 1174 unmap_mapping_range(mapping, holebegin, holelen, 0); 1175 } 1176 1177 extern void truncate_pagecache(struct inode *inode, loff_t new); 1178 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1179 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1180 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1181 int truncate_inode_page(struct address_space *mapping, struct page *page); 1182 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1183 int invalidate_inode_page(struct page *page); 1184 1185 #ifdef CONFIG_MMU 1186 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1187 unsigned long address, unsigned int flags); 1188 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1189 unsigned long address, unsigned int fault_flags); 1190 #else 1191 static inline int handle_mm_fault(struct mm_struct *mm, 1192 struct vm_area_struct *vma, unsigned long address, 1193 unsigned int flags) 1194 { 1195 /* should never happen if there's no MMU */ 1196 BUG(); 1197 return VM_FAULT_SIGBUS; 1198 } 1199 static inline int fixup_user_fault(struct task_struct *tsk, 1200 struct mm_struct *mm, unsigned long address, 1201 unsigned int fault_flags) 1202 { 1203 /* should never happen if there's no MMU */ 1204 BUG(); 1205 return -EFAULT; 1206 } 1207 #endif 1208 1209 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1210 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1211 void *buf, int len, int write); 1212 1213 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1214 unsigned long start, unsigned long nr_pages, 1215 unsigned int foll_flags, struct page **pages, 1216 struct vm_area_struct **vmas, int *nonblocking); 1217 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1218 unsigned long start, unsigned long nr_pages, 1219 int write, int force, struct page **pages, 1220 struct vm_area_struct **vmas); 1221 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1222 struct page **pages); 1223 struct kvec; 1224 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1225 struct page **pages); 1226 int get_kernel_page(unsigned long start, int write, struct page **pages); 1227 struct page *get_dump_page(unsigned long addr); 1228 1229 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1230 extern void do_invalidatepage(struct page *page, unsigned int offset, 1231 unsigned int length); 1232 1233 int __set_page_dirty_nobuffers(struct page *page); 1234 int __set_page_dirty_no_writeback(struct page *page); 1235 int redirty_page_for_writepage(struct writeback_control *wbc, 1236 struct page *page); 1237 void account_page_dirtied(struct page *page, struct address_space *mapping); 1238 int set_page_dirty(struct page *page); 1239 int set_page_dirty_lock(struct page *page); 1240 int clear_page_dirty_for_io(struct page *page); 1241 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1242 1243 /* Is the vma a continuation of the stack vma above it? */ 1244 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1245 { 1246 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1247 } 1248 1249 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1250 unsigned long addr) 1251 { 1252 return (vma->vm_flags & VM_GROWSDOWN) && 1253 (vma->vm_start == addr) && 1254 !vma_growsdown(vma->vm_prev, addr); 1255 } 1256 1257 /* Is the vma a continuation of the stack vma below it? */ 1258 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1259 { 1260 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1261 } 1262 1263 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1264 unsigned long addr) 1265 { 1266 return (vma->vm_flags & VM_GROWSUP) && 1267 (vma->vm_end == addr) && 1268 !vma_growsup(vma->vm_next, addr); 1269 } 1270 1271 extern struct task_struct *task_of_stack(struct task_struct *task, 1272 struct vm_area_struct *vma, bool in_group); 1273 1274 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1275 unsigned long old_addr, struct vm_area_struct *new_vma, 1276 unsigned long new_addr, unsigned long len, 1277 bool need_rmap_locks); 1278 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1279 unsigned long end, pgprot_t newprot, 1280 int dirty_accountable, int prot_numa); 1281 extern int mprotect_fixup(struct vm_area_struct *vma, 1282 struct vm_area_struct **pprev, unsigned long start, 1283 unsigned long end, unsigned long newflags); 1284 1285 /* 1286 * doesn't attempt to fault and will return short. 1287 */ 1288 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1289 struct page **pages); 1290 /* 1291 * per-process(per-mm_struct) statistics. 1292 */ 1293 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1294 { 1295 long val = atomic_long_read(&mm->rss_stat.count[member]); 1296 1297 #ifdef SPLIT_RSS_COUNTING 1298 /* 1299 * counter is updated in asynchronous manner and may go to minus. 1300 * But it's never be expected number for users. 1301 */ 1302 if (val < 0) 1303 val = 0; 1304 #endif 1305 return (unsigned long)val; 1306 } 1307 1308 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1309 { 1310 atomic_long_add(value, &mm->rss_stat.count[member]); 1311 } 1312 1313 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1314 { 1315 atomic_long_inc(&mm->rss_stat.count[member]); 1316 } 1317 1318 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1319 { 1320 atomic_long_dec(&mm->rss_stat.count[member]); 1321 } 1322 1323 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1324 { 1325 return get_mm_counter(mm, MM_FILEPAGES) + 1326 get_mm_counter(mm, MM_ANONPAGES); 1327 } 1328 1329 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1330 { 1331 return max(mm->hiwater_rss, get_mm_rss(mm)); 1332 } 1333 1334 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1335 { 1336 return max(mm->hiwater_vm, mm->total_vm); 1337 } 1338 1339 static inline void update_hiwater_rss(struct mm_struct *mm) 1340 { 1341 unsigned long _rss = get_mm_rss(mm); 1342 1343 if ((mm)->hiwater_rss < _rss) 1344 (mm)->hiwater_rss = _rss; 1345 } 1346 1347 static inline void update_hiwater_vm(struct mm_struct *mm) 1348 { 1349 if (mm->hiwater_vm < mm->total_vm) 1350 mm->hiwater_vm = mm->total_vm; 1351 } 1352 1353 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1354 struct mm_struct *mm) 1355 { 1356 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1357 1358 if (*maxrss < hiwater_rss) 1359 *maxrss = hiwater_rss; 1360 } 1361 1362 #if defined(SPLIT_RSS_COUNTING) 1363 void sync_mm_rss(struct mm_struct *mm); 1364 #else 1365 static inline void sync_mm_rss(struct mm_struct *mm) 1366 { 1367 } 1368 #endif 1369 1370 int vma_wants_writenotify(struct vm_area_struct *vma); 1371 1372 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1373 spinlock_t **ptl); 1374 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1375 spinlock_t **ptl) 1376 { 1377 pte_t *ptep; 1378 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1379 return ptep; 1380 } 1381 1382 #ifdef __PAGETABLE_PUD_FOLDED 1383 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1384 unsigned long address) 1385 { 1386 return 0; 1387 } 1388 #else 1389 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1390 #endif 1391 1392 #ifdef __PAGETABLE_PMD_FOLDED 1393 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1394 unsigned long address) 1395 { 1396 return 0; 1397 } 1398 #else 1399 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1400 #endif 1401 1402 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1403 pmd_t *pmd, unsigned long address); 1404 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1405 1406 /* 1407 * The following ifdef needed to get the 4level-fixup.h header to work. 1408 * Remove it when 4level-fixup.h has been removed. 1409 */ 1410 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1411 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1412 { 1413 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1414 NULL: pud_offset(pgd, address); 1415 } 1416 1417 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1418 { 1419 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1420 NULL: pmd_offset(pud, address); 1421 } 1422 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1423 1424 #if USE_SPLIT_PTE_PTLOCKS 1425 #if ALLOC_SPLIT_PTLOCKS 1426 void __init ptlock_cache_init(void); 1427 extern bool ptlock_alloc(struct page *page); 1428 extern void ptlock_free(struct page *page); 1429 1430 static inline spinlock_t *ptlock_ptr(struct page *page) 1431 { 1432 return page->ptl; 1433 } 1434 #else /* ALLOC_SPLIT_PTLOCKS */ 1435 static inline void ptlock_cache_init(void) 1436 { 1437 } 1438 1439 static inline bool ptlock_alloc(struct page *page) 1440 { 1441 return true; 1442 } 1443 1444 static inline void ptlock_free(struct page *page) 1445 { 1446 } 1447 1448 static inline spinlock_t *ptlock_ptr(struct page *page) 1449 { 1450 return &page->ptl; 1451 } 1452 #endif /* ALLOC_SPLIT_PTLOCKS */ 1453 1454 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1455 { 1456 return ptlock_ptr(pmd_page(*pmd)); 1457 } 1458 1459 static inline bool ptlock_init(struct page *page) 1460 { 1461 /* 1462 * prep_new_page() initialize page->private (and therefore page->ptl) 1463 * with 0. Make sure nobody took it in use in between. 1464 * 1465 * It can happen if arch try to use slab for page table allocation: 1466 * slab code uses page->slab_cache and page->first_page (for tail 1467 * pages), which share storage with page->ptl. 1468 */ 1469 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1470 if (!ptlock_alloc(page)) 1471 return false; 1472 spin_lock_init(ptlock_ptr(page)); 1473 return true; 1474 } 1475 1476 /* Reset page->mapping so free_pages_check won't complain. */ 1477 static inline void pte_lock_deinit(struct page *page) 1478 { 1479 page->mapping = NULL; 1480 ptlock_free(page); 1481 } 1482 1483 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1484 /* 1485 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1486 */ 1487 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1488 { 1489 return &mm->page_table_lock; 1490 } 1491 static inline void ptlock_cache_init(void) {} 1492 static inline bool ptlock_init(struct page *page) { return true; } 1493 static inline void pte_lock_deinit(struct page *page) {} 1494 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1495 1496 static inline void pgtable_init(void) 1497 { 1498 ptlock_cache_init(); 1499 pgtable_cache_init(); 1500 } 1501 1502 static inline bool pgtable_page_ctor(struct page *page) 1503 { 1504 inc_zone_page_state(page, NR_PAGETABLE); 1505 return ptlock_init(page); 1506 } 1507 1508 static inline void pgtable_page_dtor(struct page *page) 1509 { 1510 pte_lock_deinit(page); 1511 dec_zone_page_state(page, NR_PAGETABLE); 1512 } 1513 1514 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1515 ({ \ 1516 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1517 pte_t *__pte = pte_offset_map(pmd, address); \ 1518 *(ptlp) = __ptl; \ 1519 spin_lock(__ptl); \ 1520 __pte; \ 1521 }) 1522 1523 #define pte_unmap_unlock(pte, ptl) do { \ 1524 spin_unlock(ptl); \ 1525 pte_unmap(pte); \ 1526 } while (0) 1527 1528 #define pte_alloc_map(mm, vma, pmd, address) \ 1529 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1530 pmd, address))? \ 1531 NULL: pte_offset_map(pmd, address)) 1532 1533 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1534 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1535 pmd, address))? \ 1536 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1537 1538 #define pte_alloc_kernel(pmd, address) \ 1539 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1540 NULL: pte_offset_kernel(pmd, address)) 1541 1542 #if USE_SPLIT_PMD_PTLOCKS 1543 1544 static struct page *pmd_to_page(pmd_t *pmd) 1545 { 1546 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1547 return virt_to_page((void *)((unsigned long) pmd & mask)); 1548 } 1549 1550 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1551 { 1552 return ptlock_ptr(pmd_to_page(pmd)); 1553 } 1554 1555 static inline bool pgtable_pmd_page_ctor(struct page *page) 1556 { 1557 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1558 page->pmd_huge_pte = NULL; 1559 #endif 1560 return ptlock_init(page); 1561 } 1562 1563 static inline void pgtable_pmd_page_dtor(struct page *page) 1564 { 1565 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1566 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1567 #endif 1568 ptlock_free(page); 1569 } 1570 1571 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1572 1573 #else 1574 1575 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1576 { 1577 return &mm->page_table_lock; 1578 } 1579 1580 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1581 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1582 1583 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1584 1585 #endif 1586 1587 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1588 { 1589 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1590 spin_lock(ptl); 1591 return ptl; 1592 } 1593 1594 extern void free_area_init(unsigned long * zones_size); 1595 extern void free_area_init_node(int nid, unsigned long * zones_size, 1596 unsigned long zone_start_pfn, unsigned long *zholes_size); 1597 extern void free_initmem(void); 1598 1599 /* 1600 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1601 * into the buddy system. The freed pages will be poisoned with pattern 1602 * "poison" if it's within range [0, UCHAR_MAX]. 1603 * Return pages freed into the buddy system. 1604 */ 1605 extern unsigned long free_reserved_area(void *start, void *end, 1606 int poison, char *s); 1607 1608 #ifdef CONFIG_HIGHMEM 1609 /* 1610 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1611 * and totalram_pages. 1612 */ 1613 extern void free_highmem_page(struct page *page); 1614 #endif 1615 1616 extern void adjust_managed_page_count(struct page *page, long count); 1617 extern void mem_init_print_info(const char *str); 1618 1619 /* Free the reserved page into the buddy system, so it gets managed. */ 1620 static inline void __free_reserved_page(struct page *page) 1621 { 1622 ClearPageReserved(page); 1623 init_page_count(page); 1624 __free_page(page); 1625 } 1626 1627 static inline void free_reserved_page(struct page *page) 1628 { 1629 __free_reserved_page(page); 1630 adjust_managed_page_count(page, 1); 1631 } 1632 1633 static inline void mark_page_reserved(struct page *page) 1634 { 1635 SetPageReserved(page); 1636 adjust_managed_page_count(page, -1); 1637 } 1638 1639 /* 1640 * Default method to free all the __init memory into the buddy system. 1641 * The freed pages will be poisoned with pattern "poison" if it's within 1642 * range [0, UCHAR_MAX]. 1643 * Return pages freed into the buddy system. 1644 */ 1645 static inline unsigned long free_initmem_default(int poison) 1646 { 1647 extern char __init_begin[], __init_end[]; 1648 1649 return free_reserved_area(&__init_begin, &__init_end, 1650 poison, "unused kernel"); 1651 } 1652 1653 static inline unsigned long get_num_physpages(void) 1654 { 1655 int nid; 1656 unsigned long phys_pages = 0; 1657 1658 for_each_online_node(nid) 1659 phys_pages += node_present_pages(nid); 1660 1661 return phys_pages; 1662 } 1663 1664 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1665 /* 1666 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1667 * zones, allocate the backing mem_map and account for memory holes in a more 1668 * architecture independent manner. This is a substitute for creating the 1669 * zone_sizes[] and zholes_size[] arrays and passing them to 1670 * free_area_init_node() 1671 * 1672 * An architecture is expected to register range of page frames backed by 1673 * physical memory with memblock_add[_node]() before calling 1674 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1675 * usage, an architecture is expected to do something like 1676 * 1677 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1678 * max_highmem_pfn}; 1679 * for_each_valid_physical_page_range() 1680 * memblock_add_node(base, size, nid) 1681 * free_area_init_nodes(max_zone_pfns); 1682 * 1683 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1684 * registered physical page range. Similarly 1685 * sparse_memory_present_with_active_regions() calls memory_present() for 1686 * each range when SPARSEMEM is enabled. 1687 * 1688 * See mm/page_alloc.c for more information on each function exposed by 1689 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1690 */ 1691 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1692 unsigned long node_map_pfn_alignment(void); 1693 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1694 unsigned long end_pfn); 1695 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1696 unsigned long end_pfn); 1697 extern void get_pfn_range_for_nid(unsigned int nid, 1698 unsigned long *start_pfn, unsigned long *end_pfn); 1699 extern unsigned long find_min_pfn_with_active_regions(void); 1700 extern void free_bootmem_with_active_regions(int nid, 1701 unsigned long max_low_pfn); 1702 extern void sparse_memory_present_with_active_regions(int nid); 1703 1704 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1705 1706 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1707 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1708 static inline int __early_pfn_to_nid(unsigned long pfn) 1709 { 1710 return 0; 1711 } 1712 #else 1713 /* please see mm/page_alloc.c */ 1714 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1715 /* there is a per-arch backend function. */ 1716 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1717 #endif 1718 1719 extern void set_dma_reserve(unsigned long new_dma_reserve); 1720 extern void memmap_init_zone(unsigned long, int, unsigned long, 1721 unsigned long, enum memmap_context); 1722 extern void setup_per_zone_wmarks(void); 1723 extern int __meminit init_per_zone_wmark_min(void); 1724 extern void mem_init(void); 1725 extern void __init mmap_init(void); 1726 extern void show_mem(unsigned int flags); 1727 extern void si_meminfo(struct sysinfo * val); 1728 extern void si_meminfo_node(struct sysinfo *val, int nid); 1729 1730 extern __printf(3, 4) 1731 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1732 1733 extern void setup_per_cpu_pageset(void); 1734 1735 extern void zone_pcp_update(struct zone *zone); 1736 extern void zone_pcp_reset(struct zone *zone); 1737 1738 /* page_alloc.c */ 1739 extern int min_free_kbytes; 1740 1741 /* nommu.c */ 1742 extern atomic_long_t mmap_pages_allocated; 1743 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1744 1745 /* interval_tree.c */ 1746 void vma_interval_tree_insert(struct vm_area_struct *node, 1747 struct rb_root *root); 1748 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1749 struct vm_area_struct *prev, 1750 struct rb_root *root); 1751 void vma_interval_tree_remove(struct vm_area_struct *node, 1752 struct rb_root *root); 1753 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1754 unsigned long start, unsigned long last); 1755 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1756 unsigned long start, unsigned long last); 1757 1758 #define vma_interval_tree_foreach(vma, root, start, last) \ 1759 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1760 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1761 1762 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1763 struct list_head *list) 1764 { 1765 list_add_tail(&vma->shared.nonlinear, list); 1766 } 1767 1768 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1769 struct rb_root *root); 1770 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1771 struct rb_root *root); 1772 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1773 struct rb_root *root, unsigned long start, unsigned long last); 1774 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1775 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1776 #ifdef CONFIG_DEBUG_VM_RB 1777 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1778 #endif 1779 1780 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1781 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1782 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1783 1784 /* mmap.c */ 1785 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1786 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1787 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1788 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1789 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1790 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1791 struct mempolicy *); 1792 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1793 extern int split_vma(struct mm_struct *, 1794 struct vm_area_struct *, unsigned long addr, int new_below); 1795 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1796 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1797 struct rb_node **, struct rb_node *); 1798 extern void unlink_file_vma(struct vm_area_struct *); 1799 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1800 unsigned long addr, unsigned long len, pgoff_t pgoff, 1801 bool *need_rmap_locks); 1802 extern void exit_mmap(struct mm_struct *); 1803 1804 static inline int check_data_rlimit(unsigned long rlim, 1805 unsigned long new, 1806 unsigned long start, 1807 unsigned long end_data, 1808 unsigned long start_data) 1809 { 1810 if (rlim < RLIM_INFINITY) { 1811 if (((new - start) + (end_data - start_data)) > rlim) 1812 return -ENOSPC; 1813 } 1814 1815 return 0; 1816 } 1817 1818 extern int mm_take_all_locks(struct mm_struct *mm); 1819 extern void mm_drop_all_locks(struct mm_struct *mm); 1820 1821 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1822 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1823 1824 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1825 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1826 unsigned long addr, unsigned long len, 1827 unsigned long flags, 1828 const struct vm_special_mapping *spec); 1829 /* This is an obsolete alternative to _install_special_mapping. */ 1830 extern int install_special_mapping(struct mm_struct *mm, 1831 unsigned long addr, unsigned long len, 1832 unsigned long flags, struct page **pages); 1833 1834 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1835 1836 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1837 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1838 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1839 unsigned long len, unsigned long prot, unsigned long flags, 1840 unsigned long pgoff, unsigned long *populate); 1841 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1842 1843 #ifdef CONFIG_MMU 1844 extern int __mm_populate(unsigned long addr, unsigned long len, 1845 int ignore_errors); 1846 static inline void mm_populate(unsigned long addr, unsigned long len) 1847 { 1848 /* Ignore errors */ 1849 (void) __mm_populate(addr, len, 1); 1850 } 1851 #else 1852 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1853 #endif 1854 1855 /* These take the mm semaphore themselves */ 1856 extern unsigned long vm_brk(unsigned long, unsigned long); 1857 extern int vm_munmap(unsigned long, size_t); 1858 extern unsigned long vm_mmap(struct file *, unsigned long, 1859 unsigned long, unsigned long, 1860 unsigned long, unsigned long); 1861 1862 struct vm_unmapped_area_info { 1863 #define VM_UNMAPPED_AREA_TOPDOWN 1 1864 unsigned long flags; 1865 unsigned long length; 1866 unsigned long low_limit; 1867 unsigned long high_limit; 1868 unsigned long align_mask; 1869 unsigned long align_offset; 1870 }; 1871 1872 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1873 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1874 1875 /* 1876 * Search for an unmapped address range. 1877 * 1878 * We are looking for a range that: 1879 * - does not intersect with any VMA; 1880 * - is contained within the [low_limit, high_limit) interval; 1881 * - is at least the desired size. 1882 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1883 */ 1884 static inline unsigned long 1885 vm_unmapped_area(struct vm_unmapped_area_info *info) 1886 { 1887 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1888 return unmapped_area(info); 1889 else 1890 return unmapped_area_topdown(info); 1891 } 1892 1893 /* truncate.c */ 1894 extern void truncate_inode_pages(struct address_space *, loff_t); 1895 extern void truncate_inode_pages_range(struct address_space *, 1896 loff_t lstart, loff_t lend); 1897 extern void truncate_inode_pages_final(struct address_space *); 1898 1899 /* generic vm_area_ops exported for stackable file systems */ 1900 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1901 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1902 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1903 1904 /* mm/page-writeback.c */ 1905 int write_one_page(struct page *page, int wait); 1906 void task_dirty_inc(struct task_struct *tsk); 1907 1908 /* readahead.c */ 1909 #define VM_MAX_READAHEAD 128 /* kbytes */ 1910 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1911 1912 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1913 pgoff_t offset, unsigned long nr_to_read); 1914 1915 void page_cache_sync_readahead(struct address_space *mapping, 1916 struct file_ra_state *ra, 1917 struct file *filp, 1918 pgoff_t offset, 1919 unsigned long size); 1920 1921 void page_cache_async_readahead(struct address_space *mapping, 1922 struct file_ra_state *ra, 1923 struct file *filp, 1924 struct page *pg, 1925 pgoff_t offset, 1926 unsigned long size); 1927 1928 unsigned long max_sane_readahead(unsigned long nr); 1929 1930 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1931 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1932 1933 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1934 extern int expand_downwards(struct vm_area_struct *vma, 1935 unsigned long address); 1936 #if VM_GROWSUP 1937 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1938 #else 1939 #define expand_upwards(vma, address) do { } while (0) 1940 #endif 1941 1942 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1943 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1944 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1945 struct vm_area_struct **pprev); 1946 1947 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1948 NULL if none. Assume start_addr < end_addr. */ 1949 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1950 { 1951 struct vm_area_struct * vma = find_vma(mm,start_addr); 1952 1953 if (vma && end_addr <= vma->vm_start) 1954 vma = NULL; 1955 return vma; 1956 } 1957 1958 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1959 { 1960 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1961 } 1962 1963 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1964 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1965 unsigned long vm_start, unsigned long vm_end) 1966 { 1967 struct vm_area_struct *vma = find_vma(mm, vm_start); 1968 1969 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1970 vma = NULL; 1971 1972 return vma; 1973 } 1974 1975 #ifdef CONFIG_MMU 1976 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1977 void vma_set_page_prot(struct vm_area_struct *vma); 1978 #else 1979 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1980 { 1981 return __pgprot(0); 1982 } 1983 static inline void vma_set_page_prot(struct vm_area_struct *vma) 1984 { 1985 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 1986 } 1987 #endif 1988 1989 #ifdef CONFIG_NUMA_BALANCING 1990 unsigned long change_prot_numa(struct vm_area_struct *vma, 1991 unsigned long start, unsigned long end); 1992 #endif 1993 1994 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1995 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1996 unsigned long pfn, unsigned long size, pgprot_t); 1997 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1998 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1999 unsigned long pfn); 2000 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2001 unsigned long pfn); 2002 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2003 2004 2005 struct page *follow_page_mask(struct vm_area_struct *vma, 2006 unsigned long address, unsigned int foll_flags, 2007 unsigned int *page_mask); 2008 2009 static inline struct page *follow_page(struct vm_area_struct *vma, 2010 unsigned long address, unsigned int foll_flags) 2011 { 2012 unsigned int unused_page_mask; 2013 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2014 } 2015 2016 #define FOLL_WRITE 0x01 /* check pte is writable */ 2017 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2018 #define FOLL_GET 0x04 /* do get_page on page */ 2019 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2020 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2021 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2022 * and return without waiting upon it */ 2023 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 2024 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2025 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2026 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2027 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2028 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2029 2030 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2031 void *data); 2032 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2033 unsigned long size, pte_fn_t fn, void *data); 2034 2035 #ifdef CONFIG_PROC_FS 2036 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2037 #else 2038 static inline void vm_stat_account(struct mm_struct *mm, 2039 unsigned long flags, struct file *file, long pages) 2040 { 2041 mm->total_vm += pages; 2042 } 2043 #endif /* CONFIG_PROC_FS */ 2044 2045 #ifdef CONFIG_DEBUG_PAGEALLOC 2046 extern void kernel_map_pages(struct page *page, int numpages, int enable); 2047 #ifdef CONFIG_HIBERNATION 2048 extern bool kernel_page_present(struct page *page); 2049 #endif /* CONFIG_HIBERNATION */ 2050 #else 2051 static inline void 2052 kernel_map_pages(struct page *page, int numpages, int enable) {} 2053 #ifdef CONFIG_HIBERNATION 2054 static inline bool kernel_page_present(struct page *page) { return true; } 2055 #endif /* CONFIG_HIBERNATION */ 2056 #endif 2057 2058 #ifdef __HAVE_ARCH_GATE_AREA 2059 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2060 extern int in_gate_area_no_mm(unsigned long addr); 2061 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2062 #else 2063 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2064 { 2065 return NULL; 2066 } 2067 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2068 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2069 { 2070 return 0; 2071 } 2072 #endif /* __HAVE_ARCH_GATE_AREA */ 2073 2074 #ifdef CONFIG_SYSCTL 2075 extern int sysctl_drop_caches; 2076 int drop_caches_sysctl_handler(struct ctl_table *, int, 2077 void __user *, size_t *, loff_t *); 2078 #endif 2079 2080 unsigned long shrink_slab(struct shrink_control *shrink, 2081 unsigned long nr_pages_scanned, 2082 unsigned long lru_pages); 2083 2084 #ifndef CONFIG_MMU 2085 #define randomize_va_space 0 2086 #else 2087 extern int randomize_va_space; 2088 #endif 2089 2090 const char * arch_vma_name(struct vm_area_struct *vma); 2091 void print_vma_addr(char *prefix, unsigned long rip); 2092 2093 void sparse_mem_maps_populate_node(struct page **map_map, 2094 unsigned long pnum_begin, 2095 unsigned long pnum_end, 2096 unsigned long map_count, 2097 int nodeid); 2098 2099 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2100 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2101 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2102 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2103 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2104 void *vmemmap_alloc_block(unsigned long size, int node); 2105 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2106 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2107 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2108 int node); 2109 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2110 void vmemmap_populate_print_last(void); 2111 #ifdef CONFIG_MEMORY_HOTPLUG 2112 void vmemmap_free(unsigned long start, unsigned long end); 2113 #endif 2114 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2115 unsigned long size); 2116 2117 enum mf_flags { 2118 MF_COUNT_INCREASED = 1 << 0, 2119 MF_ACTION_REQUIRED = 1 << 1, 2120 MF_MUST_KILL = 1 << 2, 2121 MF_SOFT_OFFLINE = 1 << 3, 2122 }; 2123 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2124 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2125 extern int unpoison_memory(unsigned long pfn); 2126 extern int sysctl_memory_failure_early_kill; 2127 extern int sysctl_memory_failure_recovery; 2128 extern void shake_page(struct page *p, int access); 2129 extern atomic_long_t num_poisoned_pages; 2130 extern int soft_offline_page(struct page *page, int flags); 2131 2132 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2133 extern void clear_huge_page(struct page *page, 2134 unsigned long addr, 2135 unsigned int pages_per_huge_page); 2136 extern void copy_user_huge_page(struct page *dst, struct page *src, 2137 unsigned long addr, struct vm_area_struct *vma, 2138 unsigned int pages_per_huge_page); 2139 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2140 2141 #ifdef CONFIG_DEBUG_PAGEALLOC 2142 extern unsigned int _debug_guardpage_minorder; 2143 2144 static inline unsigned int debug_guardpage_minorder(void) 2145 { 2146 return _debug_guardpage_minorder; 2147 } 2148 2149 static inline bool page_is_guard(struct page *page) 2150 { 2151 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 2152 } 2153 #else 2154 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2155 static inline bool page_is_guard(struct page *page) { return false; } 2156 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2157 2158 #if MAX_NUMNODES > 1 2159 void __init setup_nr_node_ids(void); 2160 #else 2161 static inline void setup_nr_node_ids(void) {} 2162 #endif 2163 2164 #endif /* __KERNEL__ */ 2165 #endif /* _LINUX_MM_H */ 2166