xref: /linux-6.15/include/linux/mm.h (revision ed2ec63d)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #ifndef PHYSMEM_END
101 # ifdef MAX_PHYSMEM_BITS
102 # define PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
103 # else
104 # define PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
105 # endif
106 #endif
107 
108 #include <asm/page.h>
109 #include <asm/processor.h>
110 
111 #ifndef __pa_symbol
112 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114 
115 #ifndef page_to_virt
116 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118 
119 #ifndef lm_alias
120 #define lm_alias(x)	__va(__pa_symbol(x))
121 #endif
122 
123 /*
124  * To prevent common memory management code establishing
125  * a zero page mapping on a read fault.
126  * This macro should be defined within <asm/pgtable.h>.
127  * s390 does this to prevent multiplexing of hardware bits
128  * related to the physical page in case of virtualization.
129  */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X)	(0)
132 #endif
133 
134 /*
135  * On some architectures it is expensive to call memset() for small sizes.
136  * If an architecture decides to implement their own version of
137  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138  * define their own version of this macro in <asm/pgtable.h>
139  */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 96
142  * or reduces below 56. The idea that compiler optimizes out switch()
143  * statement, and only leaves move/store instructions. Also the compiler can
144  * combine write statements if they are both assignments and can be reordered,
145  * this can result in several of the writes here being dropped.
146  */
147 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 	unsigned long *_pp = (void *)page;
151 
152 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
153 	BUILD_BUG_ON(sizeof(struct page) & 7);
154 	BUILD_BUG_ON(sizeof(struct page) < 56);
155 	BUILD_BUG_ON(sizeof(struct page) > 96);
156 
157 	switch (sizeof(struct page)) {
158 	case 96:
159 		_pp[11] = 0;
160 		fallthrough;
161 	case 88:
162 		_pp[10] = 0;
163 		fallthrough;
164 	case 80:
165 		_pp[9] = 0;
166 		fallthrough;
167 	case 72:
168 		_pp[8] = 0;
169 		fallthrough;
170 	case 64:
171 		_pp[7] = 0;
172 		fallthrough;
173 	case 56:
174 		_pp[6] = 0;
175 		_pp[5] = 0;
176 		_pp[4] = 0;
177 		_pp[3] = 0;
178 		_pp[2] = 0;
179 		_pp[1] = 0;
180 		_pp[0] = 0;
181 	}
182 }
183 #else
184 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
185 #endif
186 
187 /*
188  * Default maximum number of active map areas, this limits the number of vmas
189  * per mm struct. Users can overwrite this number by sysctl but there is a
190  * problem.
191  *
192  * When a program's coredump is generated as ELF format, a section is created
193  * per a vma. In ELF, the number of sections is represented in unsigned short.
194  * This means the number of sections should be smaller than 65535 at coredump.
195  * Because the kernel adds some informative sections to a image of program at
196  * generating coredump, we need some margin. The number of extra sections is
197  * 1-3 now and depends on arch. We use "5" as safe margin, here.
198  *
199  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
200  * not a hard limit any more. Although some userspace tools can be surprised by
201  * that.
202  */
203 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
204 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
205 
206 extern int sysctl_max_map_count;
207 
208 extern unsigned long sysctl_user_reserve_kbytes;
209 extern unsigned long sysctl_admin_reserve_kbytes;
210 
211 extern int sysctl_overcommit_memory;
212 extern int sysctl_overcommit_ratio;
213 extern unsigned long sysctl_overcommit_kbytes;
214 
215 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
220 		loff_t *);
221 
222 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
223 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
224 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
225 #else
226 #define nth_page(page,n) ((page) + (n))
227 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
228 #endif
229 
230 /* to align the pointer to the (next) page boundary */
231 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
232 
233 /* to align the pointer to the (prev) page boundary */
234 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
235 
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238 
239 static inline struct folio *lru_to_folio(struct list_head *head)
240 {
241 	return list_entry((head)->prev, struct folio, lru);
242 }
243 
244 void setup_initial_init_mm(void *start_code, void *end_code,
245 			   void *end_data, void *brk);
246 
247 /*
248  * Linux kernel virtual memory manager primitives.
249  * The idea being to have a "virtual" mm in the same way
250  * we have a virtual fs - giving a cleaner interface to the
251  * mm details, and allowing different kinds of memory mappings
252  * (from shared memory to executable loading to arbitrary
253  * mmap() functions).
254  */
255 
256 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
257 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
258 void vm_area_free(struct vm_area_struct *);
259 /* Use only if VMA has no other users */
260 void __vm_area_free(struct vm_area_struct *vma);
261 
262 #ifndef CONFIG_MMU
263 extern struct rb_root nommu_region_tree;
264 extern struct rw_semaphore nommu_region_sem;
265 
266 extern unsigned int kobjsize(const void *objp);
267 #endif
268 
269 /*
270  * vm_flags in vm_area_struct, see mm_types.h.
271  * When changing, update also include/trace/events/mmflags.h
272  */
273 #define VM_NONE		0x00000000
274 
275 #define VM_READ		0x00000001	/* currently active flags */
276 #define VM_WRITE	0x00000002
277 #define VM_EXEC		0x00000004
278 #define VM_SHARED	0x00000008
279 
280 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
281 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
282 #define VM_MAYWRITE	0x00000020
283 #define VM_MAYEXEC	0x00000040
284 #define VM_MAYSHARE	0x00000080
285 
286 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
287 #ifdef CONFIG_MMU
288 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
289 #else /* CONFIG_MMU */
290 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
291 #define VM_UFFD_MISSING	0
292 #endif /* CONFIG_MMU */
293 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
294 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
295 
296 #define VM_LOCKED	0x00002000
297 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
298 
299 					/* Used by sys_madvise() */
300 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
301 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
302 
303 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
304 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
305 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
306 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
307 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
308 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
309 #define VM_SYNC		0x00800000	/* Synchronous page faults */
310 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
311 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
312 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
313 
314 #ifdef CONFIG_MEM_SOFT_DIRTY
315 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
316 #else
317 # define VM_SOFTDIRTY	0
318 #endif
319 
320 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
321 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
322 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
323 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
324 
325 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
326 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
327 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
328 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
329 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
330 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
331 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
332 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
333 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
334 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
335 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
336 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
337 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
338 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
339 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
340 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
341 
342 #ifdef CONFIG_ARCH_HAS_PKEYS
343 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
344 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
345 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
346 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
347 #if CONFIG_ARCH_PKEY_BITS > 3
348 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
349 #else
350 # define VM_PKEY_BIT3  0
351 #endif
352 #if CONFIG_ARCH_PKEY_BITS > 4
353 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
354 #else
355 # define VM_PKEY_BIT4  0
356 #endif
357 #endif /* CONFIG_ARCH_HAS_PKEYS */
358 
359 #ifdef CONFIG_X86_USER_SHADOW_STACK
360 /*
361  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
362  * support core mm.
363  *
364  * These VMAs will get a single end guard page. This helps userspace protect
365  * itself from attacks. A single page is enough for current shadow stack archs
366  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
367  * for more details on the guard size.
368  */
369 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
370 #endif
371 
372 #if defined(CONFIG_ARM64_GCS)
373 /*
374  * arm64's Guarded Control Stack implements similar functionality and
375  * has similar constraints to shadow stacks.
376  */
377 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
378 #endif
379 
380 #ifndef VM_SHADOW_STACK
381 # define VM_SHADOW_STACK	VM_NONE
382 #endif
383 
384 #if defined(CONFIG_X86)
385 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
386 #elif defined(CONFIG_PPC64)
387 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
388 #elif defined(CONFIG_PARISC)
389 # define VM_GROWSUP	VM_ARCH_1
390 #elif defined(CONFIG_SPARC64)
391 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
392 # define VM_ARCH_CLEAR	VM_SPARC_ADI
393 #elif defined(CONFIG_ARM64)
394 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
395 # define VM_ARCH_CLEAR	VM_ARM64_BTI
396 #elif !defined(CONFIG_MMU)
397 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
398 #endif
399 
400 #if defined(CONFIG_ARM64_MTE)
401 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
402 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
403 #else
404 # define VM_MTE		VM_NONE
405 # define VM_MTE_ALLOWED	VM_NONE
406 #endif
407 
408 #ifndef VM_GROWSUP
409 # define VM_GROWSUP	VM_NONE
410 #endif
411 
412 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
413 # define VM_UFFD_MINOR_BIT	38
414 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
415 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
416 # define VM_UFFD_MINOR		VM_NONE
417 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
418 
419 /*
420  * This flag is used to connect VFIO to arch specific KVM code. It
421  * indicates that the memory under this VMA is safe for use with any
422  * non-cachable memory type inside KVM. Some VFIO devices, on some
423  * platforms, are thought to be unsafe and can cause machine crashes
424  * if KVM does not lock down the memory type.
425  */
426 #ifdef CONFIG_64BIT
427 #define VM_ALLOW_ANY_UNCACHED_BIT	39
428 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
429 #else
430 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
431 #endif
432 
433 #ifdef CONFIG_64BIT
434 #define VM_DROPPABLE_BIT	40
435 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
436 #elif defined(CONFIG_PPC32)
437 #define VM_DROPPABLE		VM_ARCH_1
438 #else
439 #define VM_DROPPABLE		VM_NONE
440 #endif
441 
442 #ifdef CONFIG_64BIT
443 /* VM is sealed, in vm_flags */
444 #define VM_SEALED	_BITUL(63)
445 #endif
446 
447 /* Bits set in the VMA until the stack is in its final location */
448 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
449 
450 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
451 
452 /* Common data flag combinations */
453 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
454 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
455 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
456 				 VM_MAYWRITE | VM_MAYEXEC)
457 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
458 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
459 
460 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
461 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
462 #endif
463 
464 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
465 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
466 #endif
467 
468 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
469 
470 #ifdef CONFIG_STACK_GROWSUP
471 #define VM_STACK	VM_GROWSUP
472 #define VM_STACK_EARLY	VM_GROWSDOWN
473 #else
474 #define VM_STACK	VM_GROWSDOWN
475 #define VM_STACK_EARLY	0
476 #endif
477 
478 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
479 
480 /* VMA basic access permission flags */
481 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
482 
483 
484 /*
485  * Special vmas that are non-mergable, non-mlock()able.
486  */
487 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
488 
489 /* This mask prevents VMA from being scanned with khugepaged */
490 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
491 
492 /* This mask defines which mm->def_flags a process can inherit its parent */
493 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
494 
495 /* This mask represents all the VMA flag bits used by mlock */
496 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
497 
498 /* Arch-specific flags to clear when updating VM flags on protection change */
499 #ifndef VM_ARCH_CLEAR
500 # define VM_ARCH_CLEAR	VM_NONE
501 #endif
502 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
503 
504 /*
505  * mapping from the currently active vm_flags protection bits (the
506  * low four bits) to a page protection mask..
507  */
508 
509 /*
510  * The default fault flags that should be used by most of the
511  * arch-specific page fault handlers.
512  */
513 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
514 			     FAULT_FLAG_KILLABLE | \
515 			     FAULT_FLAG_INTERRUPTIBLE)
516 
517 /**
518  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
519  * @flags: Fault flags.
520  *
521  * This is mostly used for places where we want to try to avoid taking
522  * the mmap_lock for too long a time when waiting for another condition
523  * to change, in which case we can try to be polite to release the
524  * mmap_lock in the first round to avoid potential starvation of other
525  * processes that would also want the mmap_lock.
526  *
527  * Return: true if the page fault allows retry and this is the first
528  * attempt of the fault handling; false otherwise.
529  */
530 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
531 {
532 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
533 	    (!(flags & FAULT_FLAG_TRIED));
534 }
535 
536 #define FAULT_FLAG_TRACE \
537 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
538 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
539 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
540 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
541 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
542 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
543 	{ FAULT_FLAG_USER,		"USER" }, \
544 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
545 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
546 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
547 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
548 
549 /*
550  * vm_fault is filled by the pagefault handler and passed to the vma's
551  * ->fault function. The vma's ->fault is responsible for returning a bitmask
552  * of VM_FAULT_xxx flags that give details about how the fault was handled.
553  *
554  * MM layer fills up gfp_mask for page allocations but fault handler might
555  * alter it if its implementation requires a different allocation context.
556  *
557  * pgoff should be used in favour of virtual_address, if possible.
558  */
559 struct vm_fault {
560 	const struct {
561 		struct vm_area_struct *vma;	/* Target VMA */
562 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
563 		pgoff_t pgoff;			/* Logical page offset based on vma */
564 		unsigned long address;		/* Faulting virtual address - masked */
565 		unsigned long real_address;	/* Faulting virtual address - unmasked */
566 	};
567 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
568 					 * XXX: should really be 'const' */
569 	pmd_t *pmd;			/* Pointer to pmd entry matching
570 					 * the 'address' */
571 	pud_t *pud;			/* Pointer to pud entry matching
572 					 * the 'address'
573 					 */
574 	union {
575 		pte_t orig_pte;		/* Value of PTE at the time of fault */
576 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
577 					 * used by PMD fault only.
578 					 */
579 	};
580 
581 	struct page *cow_page;		/* Page handler may use for COW fault */
582 	struct page *page;		/* ->fault handlers should return a
583 					 * page here, unless VM_FAULT_NOPAGE
584 					 * is set (which is also implied by
585 					 * VM_FAULT_ERROR).
586 					 */
587 	/* These three entries are valid only while holding ptl lock */
588 	pte_t *pte;			/* Pointer to pte entry matching
589 					 * the 'address'. NULL if the page
590 					 * table hasn't been allocated.
591 					 */
592 	spinlock_t *ptl;		/* Page table lock.
593 					 * Protects pte page table if 'pte'
594 					 * is not NULL, otherwise pmd.
595 					 */
596 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
597 					 * vm_ops->map_pages() sets up a page
598 					 * table from atomic context.
599 					 * do_fault_around() pre-allocates
600 					 * page table to avoid allocation from
601 					 * atomic context.
602 					 */
603 };
604 
605 /*
606  * These are the virtual MM functions - opening of an area, closing and
607  * unmapping it (needed to keep files on disk up-to-date etc), pointer
608  * to the functions called when a no-page or a wp-page exception occurs.
609  */
610 struct vm_operations_struct {
611 	void (*open)(struct vm_area_struct * area);
612 	/**
613 	 * @close: Called when the VMA is being removed from the MM.
614 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
615 	 */
616 	void (*close)(struct vm_area_struct * area);
617 	/* Called any time before splitting to check if it's allowed */
618 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
619 	int (*mremap)(struct vm_area_struct *area);
620 	/*
621 	 * Called by mprotect() to make driver-specific permission
622 	 * checks before mprotect() is finalised.   The VMA must not
623 	 * be modified.  Returns 0 if mprotect() can proceed.
624 	 */
625 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
626 			unsigned long end, unsigned long newflags);
627 	vm_fault_t (*fault)(struct vm_fault *vmf);
628 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
629 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
630 			pgoff_t start_pgoff, pgoff_t end_pgoff);
631 	unsigned long (*pagesize)(struct vm_area_struct * area);
632 
633 	/* notification that a previously read-only page is about to become
634 	 * writable, if an error is returned it will cause a SIGBUS */
635 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
636 
637 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
638 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
639 
640 	/* called by access_process_vm when get_user_pages() fails, typically
641 	 * for use by special VMAs. See also generic_access_phys() for a generic
642 	 * implementation useful for any iomem mapping.
643 	 */
644 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
645 		      void *buf, int len, int write);
646 
647 	/* Called by the /proc/PID/maps code to ask the vma whether it
648 	 * has a special name.  Returning non-NULL will also cause this
649 	 * vma to be dumped unconditionally. */
650 	const char *(*name)(struct vm_area_struct *vma);
651 
652 #ifdef CONFIG_NUMA
653 	/*
654 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
655 	 * to hold the policy upon return.  Caller should pass NULL @new to
656 	 * remove a policy and fall back to surrounding context--i.e. do not
657 	 * install a MPOL_DEFAULT policy, nor the task or system default
658 	 * mempolicy.
659 	 */
660 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
661 
662 	/*
663 	 * get_policy() op must add reference [mpol_get()] to any policy at
664 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
665 	 * in mm/mempolicy.c will do this automatically.
666 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
667 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
668 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
669 	 * must return NULL--i.e., do not "fallback" to task or system default
670 	 * policy.
671 	 */
672 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
673 					unsigned long addr, pgoff_t *ilx);
674 #endif
675 	/*
676 	 * Called by vm_normal_page() for special PTEs to find the
677 	 * page for @addr.  This is useful if the default behavior
678 	 * (using pte_page()) would not find the correct page.
679 	 */
680 	struct page *(*find_special_page)(struct vm_area_struct *vma,
681 					  unsigned long addr);
682 };
683 
684 #ifdef CONFIG_NUMA_BALANCING
685 static inline void vma_numab_state_init(struct vm_area_struct *vma)
686 {
687 	vma->numab_state = NULL;
688 }
689 static inline void vma_numab_state_free(struct vm_area_struct *vma)
690 {
691 	kfree(vma->numab_state);
692 }
693 #else
694 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
695 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
696 #endif /* CONFIG_NUMA_BALANCING */
697 
698 #ifdef CONFIG_PER_VMA_LOCK
699 /*
700  * Try to read-lock a vma. The function is allowed to occasionally yield false
701  * locked result to avoid performance overhead, in which case we fall back to
702  * using mmap_lock. The function should never yield false unlocked result.
703  */
704 static inline bool vma_start_read(struct vm_area_struct *vma)
705 {
706 	/*
707 	 * Check before locking. A race might cause false locked result.
708 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
709 	 * ACQUIRE semantics, because this is just a lockless check whose result
710 	 * we don't rely on for anything - the mm_lock_seq read against which we
711 	 * need ordering is below.
712 	 */
713 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
714 		return false;
715 
716 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
717 		return false;
718 
719 	/*
720 	 * Overflow might produce false locked result.
721 	 * False unlocked result is impossible because we modify and check
722 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
723 	 * modification invalidates all existing locks.
724 	 *
725 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
726 	 * racing with vma_end_write_all(), we only start reading from the VMA
727 	 * after it has been unlocked.
728 	 * This pairs with RELEASE semantics in vma_end_write_all().
729 	 */
730 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
731 		up_read(&vma->vm_lock->lock);
732 		return false;
733 	}
734 	return true;
735 }
736 
737 static inline void vma_end_read(struct vm_area_struct *vma)
738 {
739 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
740 	up_read(&vma->vm_lock->lock);
741 	rcu_read_unlock();
742 }
743 
744 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
745 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
746 {
747 	mmap_assert_write_locked(vma->vm_mm);
748 
749 	/*
750 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
751 	 * mm->mm_lock_seq can't be concurrently modified.
752 	 */
753 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
754 	return (vma->vm_lock_seq == *mm_lock_seq);
755 }
756 
757 /*
758  * Begin writing to a VMA.
759  * Exclude concurrent readers under the per-VMA lock until the currently
760  * write-locked mmap_lock is dropped or downgraded.
761  */
762 static inline void vma_start_write(struct vm_area_struct *vma)
763 {
764 	int mm_lock_seq;
765 
766 	if (__is_vma_write_locked(vma, &mm_lock_seq))
767 		return;
768 
769 	down_write(&vma->vm_lock->lock);
770 	/*
771 	 * We should use WRITE_ONCE() here because we can have concurrent reads
772 	 * from the early lockless pessimistic check in vma_start_read().
773 	 * We don't really care about the correctness of that early check, but
774 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
775 	 */
776 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
777 	up_write(&vma->vm_lock->lock);
778 }
779 
780 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
781 {
782 	int mm_lock_seq;
783 
784 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
785 }
786 
787 static inline void vma_assert_locked(struct vm_area_struct *vma)
788 {
789 	if (!rwsem_is_locked(&vma->vm_lock->lock))
790 		vma_assert_write_locked(vma);
791 }
792 
793 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
794 {
795 	/* When detaching vma should be write-locked */
796 	if (detached)
797 		vma_assert_write_locked(vma);
798 	vma->detached = detached;
799 }
800 
801 static inline void release_fault_lock(struct vm_fault *vmf)
802 {
803 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
804 		vma_end_read(vmf->vma);
805 	else
806 		mmap_read_unlock(vmf->vma->vm_mm);
807 }
808 
809 static inline void assert_fault_locked(struct vm_fault *vmf)
810 {
811 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
812 		vma_assert_locked(vmf->vma);
813 	else
814 		mmap_assert_locked(vmf->vma->vm_mm);
815 }
816 
817 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
818 					  unsigned long address);
819 
820 #else /* CONFIG_PER_VMA_LOCK */
821 
822 static inline bool vma_start_read(struct vm_area_struct *vma)
823 		{ return false; }
824 static inline void vma_end_read(struct vm_area_struct *vma) {}
825 static inline void vma_start_write(struct vm_area_struct *vma) {}
826 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
827 		{ mmap_assert_write_locked(vma->vm_mm); }
828 static inline void vma_mark_detached(struct vm_area_struct *vma,
829 				     bool detached) {}
830 
831 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
832 		unsigned long address)
833 {
834 	return NULL;
835 }
836 
837 static inline void vma_assert_locked(struct vm_area_struct *vma)
838 {
839 	mmap_assert_locked(vma->vm_mm);
840 }
841 
842 static inline void release_fault_lock(struct vm_fault *vmf)
843 {
844 	mmap_read_unlock(vmf->vma->vm_mm);
845 }
846 
847 static inline void assert_fault_locked(struct vm_fault *vmf)
848 {
849 	mmap_assert_locked(vmf->vma->vm_mm);
850 }
851 
852 #endif /* CONFIG_PER_VMA_LOCK */
853 
854 extern const struct vm_operations_struct vma_dummy_vm_ops;
855 
856 /*
857  * WARNING: vma_init does not initialize vma->vm_lock.
858  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
859  */
860 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
861 {
862 	memset(vma, 0, sizeof(*vma));
863 	vma->vm_mm = mm;
864 	vma->vm_ops = &vma_dummy_vm_ops;
865 	INIT_LIST_HEAD(&vma->anon_vma_chain);
866 	vma_mark_detached(vma, false);
867 	vma_numab_state_init(vma);
868 }
869 
870 /* Use when VMA is not part of the VMA tree and needs no locking */
871 static inline void vm_flags_init(struct vm_area_struct *vma,
872 				 vm_flags_t flags)
873 {
874 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
875 }
876 
877 /*
878  * Use when VMA is part of the VMA tree and modifications need coordination
879  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
880  * it should be locked explicitly beforehand.
881  */
882 static inline void vm_flags_reset(struct vm_area_struct *vma,
883 				  vm_flags_t flags)
884 {
885 	vma_assert_write_locked(vma);
886 	vm_flags_init(vma, flags);
887 }
888 
889 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
890 				       vm_flags_t flags)
891 {
892 	vma_assert_write_locked(vma);
893 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
894 }
895 
896 static inline void vm_flags_set(struct vm_area_struct *vma,
897 				vm_flags_t flags)
898 {
899 	vma_start_write(vma);
900 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
901 }
902 
903 static inline void vm_flags_clear(struct vm_area_struct *vma,
904 				  vm_flags_t flags)
905 {
906 	vma_start_write(vma);
907 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
908 }
909 
910 /*
911  * Use only if VMA is not part of the VMA tree or has no other users and
912  * therefore needs no locking.
913  */
914 static inline void __vm_flags_mod(struct vm_area_struct *vma,
915 				  vm_flags_t set, vm_flags_t clear)
916 {
917 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
918 }
919 
920 /*
921  * Use only when the order of set/clear operations is unimportant, otherwise
922  * use vm_flags_{set|clear} explicitly.
923  */
924 static inline void vm_flags_mod(struct vm_area_struct *vma,
925 				vm_flags_t set, vm_flags_t clear)
926 {
927 	vma_start_write(vma);
928 	__vm_flags_mod(vma, set, clear);
929 }
930 
931 static inline void vma_set_anonymous(struct vm_area_struct *vma)
932 {
933 	vma->vm_ops = NULL;
934 }
935 
936 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
937 {
938 	return !vma->vm_ops;
939 }
940 
941 /*
942  * Indicate if the VMA is a heap for the given task; for
943  * /proc/PID/maps that is the heap of the main task.
944  */
945 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
946 {
947 	return vma->vm_start < vma->vm_mm->brk &&
948 		vma->vm_end > vma->vm_mm->start_brk;
949 }
950 
951 /*
952  * Indicate if the VMA is a stack for the given task; for
953  * /proc/PID/maps that is the stack of the main task.
954  */
955 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
956 {
957 	/*
958 	 * We make no effort to guess what a given thread considers to be
959 	 * its "stack".  It's not even well-defined for programs written
960 	 * languages like Go.
961 	 */
962 	return vma->vm_start <= vma->vm_mm->start_stack &&
963 		vma->vm_end >= vma->vm_mm->start_stack;
964 }
965 
966 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
967 {
968 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
969 
970 	if (!maybe_stack)
971 		return false;
972 
973 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
974 						VM_STACK_INCOMPLETE_SETUP)
975 		return true;
976 
977 	return false;
978 }
979 
980 static inline bool vma_is_foreign(struct vm_area_struct *vma)
981 {
982 	if (!current->mm)
983 		return true;
984 
985 	if (current->mm != vma->vm_mm)
986 		return true;
987 
988 	return false;
989 }
990 
991 static inline bool vma_is_accessible(struct vm_area_struct *vma)
992 {
993 	return vma->vm_flags & VM_ACCESS_FLAGS;
994 }
995 
996 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
997 {
998 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
999 		(VM_SHARED | VM_MAYWRITE);
1000 }
1001 
1002 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1003 {
1004 	return is_shared_maywrite(vma->vm_flags);
1005 }
1006 
1007 static inline
1008 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1009 {
1010 	return mas_find(&vmi->mas, max - 1);
1011 }
1012 
1013 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1014 {
1015 	/*
1016 	 * Uses mas_find() to get the first VMA when the iterator starts.
1017 	 * Calling mas_next() could skip the first entry.
1018 	 */
1019 	return mas_find(&vmi->mas, ULONG_MAX);
1020 }
1021 
1022 static inline
1023 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1024 {
1025 	return mas_next_range(&vmi->mas, ULONG_MAX);
1026 }
1027 
1028 
1029 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1030 {
1031 	return mas_prev(&vmi->mas, 0);
1032 }
1033 
1034 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1035 			unsigned long start, unsigned long end, gfp_t gfp)
1036 {
1037 	__mas_set_range(&vmi->mas, start, end - 1);
1038 	mas_store_gfp(&vmi->mas, NULL, gfp);
1039 	if (unlikely(mas_is_err(&vmi->mas)))
1040 		return -ENOMEM;
1041 
1042 	return 0;
1043 }
1044 
1045 /* Free any unused preallocations */
1046 static inline void vma_iter_free(struct vma_iterator *vmi)
1047 {
1048 	mas_destroy(&vmi->mas);
1049 }
1050 
1051 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1052 				      struct vm_area_struct *vma)
1053 {
1054 	vmi->mas.index = vma->vm_start;
1055 	vmi->mas.last = vma->vm_end - 1;
1056 	mas_store(&vmi->mas, vma);
1057 	if (unlikely(mas_is_err(&vmi->mas)))
1058 		return -ENOMEM;
1059 
1060 	return 0;
1061 }
1062 
1063 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1064 {
1065 	mas_pause(&vmi->mas);
1066 }
1067 
1068 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1069 {
1070 	mas_set(&vmi->mas, addr);
1071 }
1072 
1073 #define for_each_vma(__vmi, __vma)					\
1074 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1075 
1076 /* The MM code likes to work with exclusive end addresses */
1077 #define for_each_vma_range(__vmi, __vma, __end)				\
1078 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1079 
1080 #ifdef CONFIG_SHMEM
1081 /*
1082  * The vma_is_shmem is not inline because it is used only by slow
1083  * paths in userfault.
1084  */
1085 bool vma_is_shmem(struct vm_area_struct *vma);
1086 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1087 #else
1088 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1089 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1090 #endif
1091 
1092 int vma_is_stack_for_current(struct vm_area_struct *vma);
1093 
1094 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1095 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1096 
1097 struct mmu_gather;
1098 struct inode;
1099 
1100 /*
1101  * compound_order() can be called without holding a reference, which means
1102  * that niceties like page_folio() don't work.  These callers should be
1103  * prepared to handle wild return values.  For example, PG_head may be
1104  * set before the order is initialised, or this may be a tail page.
1105  * See compaction.c for some good examples.
1106  */
1107 static inline unsigned int compound_order(struct page *page)
1108 {
1109 	struct folio *folio = (struct folio *)page;
1110 
1111 	if (!test_bit(PG_head, &folio->flags))
1112 		return 0;
1113 	return folio->_flags_1 & 0xff;
1114 }
1115 
1116 /**
1117  * folio_order - The allocation order of a folio.
1118  * @folio: The folio.
1119  *
1120  * A folio is composed of 2^order pages.  See get_order() for the definition
1121  * of order.
1122  *
1123  * Return: The order of the folio.
1124  */
1125 static inline unsigned int folio_order(const struct folio *folio)
1126 {
1127 	if (!folio_test_large(folio))
1128 		return 0;
1129 	return folio->_flags_1 & 0xff;
1130 }
1131 
1132 #include <linux/huge_mm.h>
1133 
1134 /*
1135  * Methods to modify the page usage count.
1136  *
1137  * What counts for a page usage:
1138  * - cache mapping   (page->mapping)
1139  * - private data    (page->private)
1140  * - page mapped in a task's page tables, each mapping
1141  *   is counted separately
1142  *
1143  * Also, many kernel routines increase the page count before a critical
1144  * routine so they can be sure the page doesn't go away from under them.
1145  */
1146 
1147 /*
1148  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1149  */
1150 static inline int put_page_testzero(struct page *page)
1151 {
1152 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1153 	return page_ref_dec_and_test(page);
1154 }
1155 
1156 static inline int folio_put_testzero(struct folio *folio)
1157 {
1158 	return put_page_testzero(&folio->page);
1159 }
1160 
1161 /*
1162  * Try to grab a ref unless the page has a refcount of zero, return false if
1163  * that is the case.
1164  * This can be called when MMU is off so it must not access
1165  * any of the virtual mappings.
1166  */
1167 static inline bool get_page_unless_zero(struct page *page)
1168 {
1169 	return page_ref_add_unless(page, 1, 0);
1170 }
1171 
1172 static inline struct folio *folio_get_nontail_page(struct page *page)
1173 {
1174 	if (unlikely(!get_page_unless_zero(page)))
1175 		return NULL;
1176 	return (struct folio *)page;
1177 }
1178 
1179 extern int page_is_ram(unsigned long pfn);
1180 
1181 enum {
1182 	REGION_INTERSECTS,
1183 	REGION_DISJOINT,
1184 	REGION_MIXED,
1185 };
1186 
1187 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1188 		      unsigned long desc);
1189 
1190 /* Support for virtually mapped pages */
1191 struct page *vmalloc_to_page(const void *addr);
1192 unsigned long vmalloc_to_pfn(const void *addr);
1193 
1194 /*
1195  * Determine if an address is within the vmalloc range
1196  *
1197  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1198  * is no special casing required.
1199  */
1200 #ifdef CONFIG_MMU
1201 extern bool is_vmalloc_addr(const void *x);
1202 extern int is_vmalloc_or_module_addr(const void *x);
1203 #else
1204 static inline bool is_vmalloc_addr(const void *x)
1205 {
1206 	return false;
1207 }
1208 static inline int is_vmalloc_or_module_addr(const void *x)
1209 {
1210 	return 0;
1211 }
1212 #endif
1213 
1214 /*
1215  * How many times the entire folio is mapped as a single unit (eg by a
1216  * PMD or PUD entry).  This is probably not what you want, except for
1217  * debugging purposes or implementation of other core folio_*() primitives.
1218  */
1219 static inline int folio_entire_mapcount(const struct folio *folio)
1220 {
1221 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1222 	return atomic_read(&folio->_entire_mapcount) + 1;
1223 }
1224 
1225 static inline int folio_large_mapcount(const struct folio *folio)
1226 {
1227 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1228 	return atomic_read(&folio->_large_mapcount) + 1;
1229 }
1230 
1231 /**
1232  * folio_mapcount() - Number of mappings of this folio.
1233  * @folio: The folio.
1234  *
1235  * The folio mapcount corresponds to the number of present user page table
1236  * entries that reference any part of a folio. Each such present user page
1237  * table entry must be paired with exactly on folio reference.
1238  *
1239  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1240  * exactly once.
1241  *
1242  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1243  * references the entire folio counts exactly once, even when such special
1244  * page table entries are comprised of multiple ordinary page table entries.
1245  *
1246  * Will report 0 for pages which cannot be mapped into userspace, such as
1247  * slab, page tables and similar.
1248  *
1249  * Return: The number of times this folio is mapped.
1250  */
1251 static inline int folio_mapcount(const struct folio *folio)
1252 {
1253 	int mapcount;
1254 
1255 	if (likely(!folio_test_large(folio))) {
1256 		mapcount = atomic_read(&folio->_mapcount) + 1;
1257 		if (page_mapcount_is_type(mapcount))
1258 			mapcount = 0;
1259 		return mapcount;
1260 	}
1261 	return folio_large_mapcount(folio);
1262 }
1263 
1264 /**
1265  * folio_mapped - Is this folio mapped into userspace?
1266  * @folio: The folio.
1267  *
1268  * Return: True if any page in this folio is referenced by user page tables.
1269  */
1270 static inline bool folio_mapped(const struct folio *folio)
1271 {
1272 	return folio_mapcount(folio) >= 1;
1273 }
1274 
1275 /*
1276  * Return true if this page is mapped into pagetables.
1277  * For compound page it returns true if any sub-page of compound page is mapped,
1278  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1279  */
1280 static inline bool page_mapped(const struct page *page)
1281 {
1282 	return folio_mapped(page_folio(page));
1283 }
1284 
1285 static inline struct page *virt_to_head_page(const void *x)
1286 {
1287 	struct page *page = virt_to_page(x);
1288 
1289 	return compound_head(page);
1290 }
1291 
1292 static inline struct folio *virt_to_folio(const void *x)
1293 {
1294 	struct page *page = virt_to_page(x);
1295 
1296 	return page_folio(page);
1297 }
1298 
1299 void __folio_put(struct folio *folio);
1300 
1301 void put_pages_list(struct list_head *pages);
1302 
1303 void split_page(struct page *page, unsigned int order);
1304 void folio_copy(struct folio *dst, struct folio *src);
1305 int folio_mc_copy(struct folio *dst, struct folio *src);
1306 
1307 unsigned long nr_free_buffer_pages(void);
1308 
1309 /* Returns the number of bytes in this potentially compound page. */
1310 static inline unsigned long page_size(struct page *page)
1311 {
1312 	return PAGE_SIZE << compound_order(page);
1313 }
1314 
1315 /* Returns the number of bits needed for the number of bytes in a page */
1316 static inline unsigned int page_shift(struct page *page)
1317 {
1318 	return PAGE_SHIFT + compound_order(page);
1319 }
1320 
1321 /**
1322  * thp_order - Order of a transparent huge page.
1323  * @page: Head page of a transparent huge page.
1324  */
1325 static inline unsigned int thp_order(struct page *page)
1326 {
1327 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1328 	return compound_order(page);
1329 }
1330 
1331 /**
1332  * thp_size - Size of a transparent huge page.
1333  * @page: Head page of a transparent huge page.
1334  *
1335  * Return: Number of bytes in this page.
1336  */
1337 static inline unsigned long thp_size(struct page *page)
1338 {
1339 	return PAGE_SIZE << thp_order(page);
1340 }
1341 
1342 #ifdef CONFIG_MMU
1343 /*
1344  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1345  * servicing faults for write access.  In the normal case, do always want
1346  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1347  * that do not have writing enabled, when used by access_process_vm.
1348  */
1349 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1350 {
1351 	if (likely(vma->vm_flags & VM_WRITE))
1352 		pte = pte_mkwrite(pte, vma);
1353 	return pte;
1354 }
1355 
1356 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1357 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1358 		struct page *page, unsigned int nr, unsigned long addr);
1359 
1360 vm_fault_t finish_fault(struct vm_fault *vmf);
1361 #endif
1362 
1363 /*
1364  * Multiple processes may "see" the same page. E.g. for untouched
1365  * mappings of /dev/null, all processes see the same page full of
1366  * zeroes, and text pages of executables and shared libraries have
1367  * only one copy in memory, at most, normally.
1368  *
1369  * For the non-reserved pages, page_count(page) denotes a reference count.
1370  *   page_count() == 0 means the page is free. page->lru is then used for
1371  *   freelist management in the buddy allocator.
1372  *   page_count() > 0  means the page has been allocated.
1373  *
1374  * Pages are allocated by the slab allocator in order to provide memory
1375  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1376  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1377  * unless a particular usage is carefully commented. (the responsibility of
1378  * freeing the kmalloc memory is the caller's, of course).
1379  *
1380  * A page may be used by anyone else who does a __get_free_page().
1381  * In this case, page_count still tracks the references, and should only
1382  * be used through the normal accessor functions. The top bits of page->flags
1383  * and page->virtual store page management information, but all other fields
1384  * are unused and could be used privately, carefully. The management of this
1385  * page is the responsibility of the one who allocated it, and those who have
1386  * subsequently been given references to it.
1387  *
1388  * The other pages (we may call them "pagecache pages") are completely
1389  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1390  * The following discussion applies only to them.
1391  *
1392  * A pagecache page contains an opaque `private' member, which belongs to the
1393  * page's address_space. Usually, this is the address of a circular list of
1394  * the page's disk buffers. PG_private must be set to tell the VM to call
1395  * into the filesystem to release these pages.
1396  *
1397  * A page may belong to an inode's memory mapping. In this case, page->mapping
1398  * is the pointer to the inode, and page->index is the file offset of the page,
1399  * in units of PAGE_SIZE.
1400  *
1401  * If pagecache pages are not associated with an inode, they are said to be
1402  * anonymous pages. These may become associated with the swapcache, and in that
1403  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1404  *
1405  * In either case (swapcache or inode backed), the pagecache itself holds one
1406  * reference to the page. Setting PG_private should also increment the
1407  * refcount. The each user mapping also has a reference to the page.
1408  *
1409  * The pagecache pages are stored in a per-mapping radix tree, which is
1410  * rooted at mapping->i_pages, and indexed by offset.
1411  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1412  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1413  *
1414  * All pagecache pages may be subject to I/O:
1415  * - inode pages may need to be read from disk,
1416  * - inode pages which have been modified and are MAP_SHARED may need
1417  *   to be written back to the inode on disk,
1418  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1419  *   modified may need to be swapped out to swap space and (later) to be read
1420  *   back into memory.
1421  */
1422 
1423 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1424 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1425 
1426 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1427 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1428 {
1429 	if (!static_branch_unlikely(&devmap_managed_key))
1430 		return false;
1431 	if (!folio_is_zone_device(folio))
1432 		return false;
1433 	return __put_devmap_managed_folio_refs(folio, refs);
1434 }
1435 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1436 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1437 {
1438 	return false;
1439 }
1440 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1441 
1442 /* 127: arbitrary random number, small enough to assemble well */
1443 #define folio_ref_zero_or_close_to_overflow(folio) \
1444 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1445 
1446 /**
1447  * folio_get - Increment the reference count on a folio.
1448  * @folio: The folio.
1449  *
1450  * Context: May be called in any context, as long as you know that
1451  * you have a refcount on the folio.  If you do not already have one,
1452  * folio_try_get() may be the right interface for you to use.
1453  */
1454 static inline void folio_get(struct folio *folio)
1455 {
1456 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1457 	folio_ref_inc(folio);
1458 }
1459 
1460 static inline void get_page(struct page *page)
1461 {
1462 	folio_get(page_folio(page));
1463 }
1464 
1465 static inline __must_check bool try_get_page(struct page *page)
1466 {
1467 	page = compound_head(page);
1468 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1469 		return false;
1470 	page_ref_inc(page);
1471 	return true;
1472 }
1473 
1474 /**
1475  * folio_put - Decrement the reference count on a folio.
1476  * @folio: The folio.
1477  *
1478  * If the folio's reference count reaches zero, the memory will be
1479  * released back to the page allocator and may be used by another
1480  * allocation immediately.  Do not access the memory or the struct folio
1481  * after calling folio_put() unless you can be sure that it wasn't the
1482  * last reference.
1483  *
1484  * Context: May be called in process or interrupt context, but not in NMI
1485  * context.  May be called while holding a spinlock.
1486  */
1487 static inline void folio_put(struct folio *folio)
1488 {
1489 	if (folio_put_testzero(folio))
1490 		__folio_put(folio);
1491 }
1492 
1493 /**
1494  * folio_put_refs - Reduce the reference count on a folio.
1495  * @folio: The folio.
1496  * @refs: The amount to subtract from the folio's reference count.
1497  *
1498  * If the folio's reference count reaches zero, the memory will be
1499  * released back to the page allocator and may be used by another
1500  * allocation immediately.  Do not access the memory or the struct folio
1501  * after calling folio_put_refs() unless you can be sure that these weren't
1502  * the last references.
1503  *
1504  * Context: May be called in process or interrupt context, but not in NMI
1505  * context.  May be called while holding a spinlock.
1506  */
1507 static inline void folio_put_refs(struct folio *folio, int refs)
1508 {
1509 	if (folio_ref_sub_and_test(folio, refs))
1510 		__folio_put(folio);
1511 }
1512 
1513 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1514 
1515 /*
1516  * union release_pages_arg - an array of pages or folios
1517  *
1518  * release_pages() releases a simple array of multiple pages, and
1519  * accepts various different forms of said page array: either
1520  * a regular old boring array of pages, an array of folios, or
1521  * an array of encoded page pointers.
1522  *
1523  * The transparent union syntax for this kind of "any of these
1524  * argument types" is all kinds of ugly, so look away.
1525  */
1526 typedef union {
1527 	struct page **pages;
1528 	struct folio **folios;
1529 	struct encoded_page **encoded_pages;
1530 } release_pages_arg __attribute__ ((__transparent_union__));
1531 
1532 void release_pages(release_pages_arg, int nr);
1533 
1534 /**
1535  * folios_put - Decrement the reference count on an array of folios.
1536  * @folios: The folios.
1537  *
1538  * Like folio_put(), but for a batch of folios.  This is more efficient
1539  * than writing the loop yourself as it will optimise the locks which need
1540  * to be taken if the folios are freed.  The folios batch is returned
1541  * empty and ready to be reused for another batch; there is no need to
1542  * reinitialise it.
1543  *
1544  * Context: May be called in process or interrupt context, but not in NMI
1545  * context.  May be called while holding a spinlock.
1546  */
1547 static inline void folios_put(struct folio_batch *folios)
1548 {
1549 	folios_put_refs(folios, NULL);
1550 }
1551 
1552 static inline void put_page(struct page *page)
1553 {
1554 	struct folio *folio = page_folio(page);
1555 
1556 	/*
1557 	 * For some devmap managed pages we need to catch refcount transition
1558 	 * from 2 to 1:
1559 	 */
1560 	if (put_devmap_managed_folio_refs(folio, 1))
1561 		return;
1562 	folio_put(folio);
1563 }
1564 
1565 /*
1566  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1567  * the page's refcount so that two separate items are tracked: the original page
1568  * reference count, and also a new count of how many pin_user_pages() calls were
1569  * made against the page. ("gup-pinned" is another term for the latter).
1570  *
1571  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1572  * distinct from normal pages. As such, the unpin_user_page() call (and its
1573  * variants) must be used in order to release gup-pinned pages.
1574  *
1575  * Choice of value:
1576  *
1577  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1578  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1579  * simpler, due to the fact that adding an even power of two to the page
1580  * refcount has the effect of using only the upper N bits, for the code that
1581  * counts up using the bias value. This means that the lower bits are left for
1582  * the exclusive use of the original code that increments and decrements by one
1583  * (or at least, by much smaller values than the bias value).
1584  *
1585  * Of course, once the lower bits overflow into the upper bits (and this is
1586  * OK, because subtraction recovers the original values), then visual inspection
1587  * no longer suffices to directly view the separate counts. However, for normal
1588  * applications that don't have huge page reference counts, this won't be an
1589  * issue.
1590  *
1591  * Locking: the lockless algorithm described in folio_try_get_rcu()
1592  * provides safe operation for get_user_pages(), folio_mkclean() and
1593  * other calls that race to set up page table entries.
1594  */
1595 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1596 
1597 void unpin_user_page(struct page *page);
1598 void unpin_folio(struct folio *folio);
1599 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1600 				 bool make_dirty);
1601 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1602 				      bool make_dirty);
1603 void unpin_user_pages(struct page **pages, unsigned long npages);
1604 void unpin_user_folio(struct folio *folio, unsigned long npages);
1605 void unpin_folios(struct folio **folios, unsigned long nfolios);
1606 
1607 static inline bool is_cow_mapping(vm_flags_t flags)
1608 {
1609 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1610 }
1611 
1612 #ifndef CONFIG_MMU
1613 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1614 {
1615 	/*
1616 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1617 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1618 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1619 	 * underlying memory if ptrace is active, so this is only possible if
1620 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1621 	 * write permissions later.
1622 	 */
1623 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1624 }
1625 #endif
1626 
1627 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1628 #define SECTION_IN_PAGE_FLAGS
1629 #endif
1630 
1631 /*
1632  * The identification function is mainly used by the buddy allocator for
1633  * determining if two pages could be buddies. We are not really identifying
1634  * the zone since we could be using the section number id if we do not have
1635  * node id available in page flags.
1636  * We only guarantee that it will return the same value for two combinable
1637  * pages in a zone.
1638  */
1639 static inline int page_zone_id(struct page *page)
1640 {
1641 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1642 }
1643 
1644 #ifdef NODE_NOT_IN_PAGE_FLAGS
1645 int page_to_nid(const struct page *page);
1646 #else
1647 static inline int page_to_nid(const struct page *page)
1648 {
1649 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1650 }
1651 #endif
1652 
1653 static inline int folio_nid(const struct folio *folio)
1654 {
1655 	return page_to_nid(&folio->page);
1656 }
1657 
1658 #ifdef CONFIG_NUMA_BALANCING
1659 /* page access time bits needs to hold at least 4 seconds */
1660 #define PAGE_ACCESS_TIME_MIN_BITS	12
1661 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1662 #define PAGE_ACCESS_TIME_BUCKETS				\
1663 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1664 #else
1665 #define PAGE_ACCESS_TIME_BUCKETS	0
1666 #endif
1667 
1668 #define PAGE_ACCESS_TIME_MASK				\
1669 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1670 
1671 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1672 {
1673 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1674 }
1675 
1676 static inline int cpupid_to_pid(int cpupid)
1677 {
1678 	return cpupid & LAST__PID_MASK;
1679 }
1680 
1681 static inline int cpupid_to_cpu(int cpupid)
1682 {
1683 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1684 }
1685 
1686 static inline int cpupid_to_nid(int cpupid)
1687 {
1688 	return cpu_to_node(cpupid_to_cpu(cpupid));
1689 }
1690 
1691 static inline bool cpupid_pid_unset(int cpupid)
1692 {
1693 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1694 }
1695 
1696 static inline bool cpupid_cpu_unset(int cpupid)
1697 {
1698 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1699 }
1700 
1701 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1702 {
1703 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1704 }
1705 
1706 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1707 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1708 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1709 {
1710 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1711 }
1712 
1713 static inline int folio_last_cpupid(struct folio *folio)
1714 {
1715 	return folio->_last_cpupid;
1716 }
1717 static inline void page_cpupid_reset_last(struct page *page)
1718 {
1719 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1720 }
1721 #else
1722 static inline int folio_last_cpupid(struct folio *folio)
1723 {
1724 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1725 }
1726 
1727 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1728 
1729 static inline void page_cpupid_reset_last(struct page *page)
1730 {
1731 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1732 }
1733 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1734 
1735 static inline int folio_xchg_access_time(struct folio *folio, int time)
1736 {
1737 	int last_time;
1738 
1739 	last_time = folio_xchg_last_cpupid(folio,
1740 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1741 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1742 }
1743 
1744 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1745 {
1746 	unsigned int pid_bit;
1747 
1748 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1749 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1750 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1751 	}
1752 }
1753 
1754 bool folio_use_access_time(struct folio *folio);
1755 #else /* !CONFIG_NUMA_BALANCING */
1756 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1757 {
1758 	return folio_nid(folio); /* XXX */
1759 }
1760 
1761 static inline int folio_xchg_access_time(struct folio *folio, int time)
1762 {
1763 	return 0;
1764 }
1765 
1766 static inline int folio_last_cpupid(struct folio *folio)
1767 {
1768 	return folio_nid(folio); /* XXX */
1769 }
1770 
1771 static inline int cpupid_to_nid(int cpupid)
1772 {
1773 	return -1;
1774 }
1775 
1776 static inline int cpupid_to_pid(int cpupid)
1777 {
1778 	return -1;
1779 }
1780 
1781 static inline int cpupid_to_cpu(int cpupid)
1782 {
1783 	return -1;
1784 }
1785 
1786 static inline int cpu_pid_to_cpupid(int nid, int pid)
1787 {
1788 	return -1;
1789 }
1790 
1791 static inline bool cpupid_pid_unset(int cpupid)
1792 {
1793 	return true;
1794 }
1795 
1796 static inline void page_cpupid_reset_last(struct page *page)
1797 {
1798 }
1799 
1800 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1801 {
1802 	return false;
1803 }
1804 
1805 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1806 {
1807 }
1808 static inline bool folio_use_access_time(struct folio *folio)
1809 {
1810 	return false;
1811 }
1812 #endif /* CONFIG_NUMA_BALANCING */
1813 
1814 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1815 
1816 /*
1817  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1818  * setting tags for all pages to native kernel tag value 0xff, as the default
1819  * value 0x00 maps to 0xff.
1820  */
1821 
1822 static inline u8 page_kasan_tag(const struct page *page)
1823 {
1824 	u8 tag = KASAN_TAG_KERNEL;
1825 
1826 	if (kasan_enabled()) {
1827 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1828 		tag ^= 0xff;
1829 	}
1830 
1831 	return tag;
1832 }
1833 
1834 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1835 {
1836 	unsigned long old_flags, flags;
1837 
1838 	if (!kasan_enabled())
1839 		return;
1840 
1841 	tag ^= 0xff;
1842 	old_flags = READ_ONCE(page->flags);
1843 	do {
1844 		flags = old_flags;
1845 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1846 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1847 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1848 }
1849 
1850 static inline void page_kasan_tag_reset(struct page *page)
1851 {
1852 	if (kasan_enabled())
1853 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1854 }
1855 
1856 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1857 
1858 static inline u8 page_kasan_tag(const struct page *page)
1859 {
1860 	return 0xff;
1861 }
1862 
1863 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1864 static inline void page_kasan_tag_reset(struct page *page) { }
1865 
1866 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1867 
1868 static inline struct zone *page_zone(const struct page *page)
1869 {
1870 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1871 }
1872 
1873 static inline pg_data_t *page_pgdat(const struct page *page)
1874 {
1875 	return NODE_DATA(page_to_nid(page));
1876 }
1877 
1878 static inline struct zone *folio_zone(const struct folio *folio)
1879 {
1880 	return page_zone(&folio->page);
1881 }
1882 
1883 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1884 {
1885 	return page_pgdat(&folio->page);
1886 }
1887 
1888 #ifdef SECTION_IN_PAGE_FLAGS
1889 static inline void set_page_section(struct page *page, unsigned long section)
1890 {
1891 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1892 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1893 }
1894 
1895 static inline unsigned long page_to_section(const struct page *page)
1896 {
1897 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1898 }
1899 #endif
1900 
1901 /**
1902  * folio_pfn - Return the Page Frame Number of a folio.
1903  * @folio: The folio.
1904  *
1905  * A folio may contain multiple pages.  The pages have consecutive
1906  * Page Frame Numbers.
1907  *
1908  * Return: The Page Frame Number of the first page in the folio.
1909  */
1910 static inline unsigned long folio_pfn(struct folio *folio)
1911 {
1912 	return page_to_pfn(&folio->page);
1913 }
1914 
1915 static inline struct folio *pfn_folio(unsigned long pfn)
1916 {
1917 	return page_folio(pfn_to_page(pfn));
1918 }
1919 
1920 /**
1921  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1922  * @folio: The folio.
1923  *
1924  * This function checks if a folio has been pinned via a call to
1925  * a function in the pin_user_pages() family.
1926  *
1927  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1928  * because it means "definitely not pinned for DMA", but true means "probably
1929  * pinned for DMA, but possibly a false positive due to having at least
1930  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1931  *
1932  * False positives are OK, because: a) it's unlikely for a folio to
1933  * get that many refcounts, and b) all the callers of this routine are
1934  * expected to be able to deal gracefully with a false positive.
1935  *
1936  * For large folios, the result will be exactly correct. That's because
1937  * we have more tracking data available: the _pincount field is used
1938  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1939  *
1940  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1941  *
1942  * Return: True, if it is likely that the folio has been "dma-pinned".
1943  * False, if the folio is definitely not dma-pinned.
1944  */
1945 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1946 {
1947 	if (folio_test_large(folio))
1948 		return atomic_read(&folio->_pincount) > 0;
1949 
1950 	/*
1951 	 * folio_ref_count() is signed. If that refcount overflows, then
1952 	 * folio_ref_count() returns a negative value, and callers will avoid
1953 	 * further incrementing the refcount.
1954 	 *
1955 	 * Here, for that overflow case, use the sign bit to count a little
1956 	 * bit higher via unsigned math, and thus still get an accurate result.
1957 	 */
1958 	return ((unsigned int)folio_ref_count(folio)) >=
1959 		GUP_PIN_COUNTING_BIAS;
1960 }
1961 
1962 /*
1963  * This should most likely only be called during fork() to see whether we
1964  * should break the cow immediately for an anon page on the src mm.
1965  *
1966  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1967  */
1968 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1969 					  struct folio *folio)
1970 {
1971 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1972 
1973 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1974 		return false;
1975 
1976 	return folio_maybe_dma_pinned(folio);
1977 }
1978 
1979 /**
1980  * is_zero_page - Query if a page is a zero page
1981  * @page: The page to query
1982  *
1983  * This returns true if @page is one of the permanent zero pages.
1984  */
1985 static inline bool is_zero_page(const struct page *page)
1986 {
1987 	return is_zero_pfn(page_to_pfn(page));
1988 }
1989 
1990 /**
1991  * is_zero_folio - Query if a folio is a zero page
1992  * @folio: The folio to query
1993  *
1994  * This returns true if @folio is one of the permanent zero pages.
1995  */
1996 static inline bool is_zero_folio(const struct folio *folio)
1997 {
1998 	return is_zero_page(&folio->page);
1999 }
2000 
2001 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2002 #ifdef CONFIG_MIGRATION
2003 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2004 {
2005 #ifdef CONFIG_CMA
2006 	int mt = folio_migratetype(folio);
2007 
2008 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2009 		return false;
2010 #endif
2011 	/* The zero page can be "pinned" but gets special handling. */
2012 	if (is_zero_folio(folio))
2013 		return true;
2014 
2015 	/* Coherent device memory must always allow eviction. */
2016 	if (folio_is_device_coherent(folio))
2017 		return false;
2018 
2019 	/* Otherwise, non-movable zone folios can be pinned. */
2020 	return !folio_is_zone_movable(folio);
2021 
2022 }
2023 #else
2024 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2025 {
2026 	return true;
2027 }
2028 #endif
2029 
2030 static inline void set_page_zone(struct page *page, enum zone_type zone)
2031 {
2032 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2033 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2034 }
2035 
2036 static inline void set_page_node(struct page *page, unsigned long node)
2037 {
2038 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2039 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2040 }
2041 
2042 static inline void set_page_links(struct page *page, enum zone_type zone,
2043 	unsigned long node, unsigned long pfn)
2044 {
2045 	set_page_zone(page, zone);
2046 	set_page_node(page, node);
2047 #ifdef SECTION_IN_PAGE_FLAGS
2048 	set_page_section(page, pfn_to_section_nr(pfn));
2049 #endif
2050 }
2051 
2052 /**
2053  * folio_nr_pages - The number of pages in the folio.
2054  * @folio: The folio.
2055  *
2056  * Return: A positive power of two.
2057  */
2058 static inline long folio_nr_pages(const struct folio *folio)
2059 {
2060 	if (!folio_test_large(folio))
2061 		return 1;
2062 #ifdef CONFIG_64BIT
2063 	return folio->_folio_nr_pages;
2064 #else
2065 	return 1L << (folio->_flags_1 & 0xff);
2066 #endif
2067 }
2068 
2069 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2070 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2071 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2072 #else
2073 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2074 #endif
2075 
2076 /*
2077  * compound_nr() returns the number of pages in this potentially compound
2078  * page.  compound_nr() can be called on a tail page, and is defined to
2079  * return 1 in that case.
2080  */
2081 static inline unsigned long compound_nr(struct page *page)
2082 {
2083 	struct folio *folio = (struct folio *)page;
2084 
2085 	if (!test_bit(PG_head, &folio->flags))
2086 		return 1;
2087 #ifdef CONFIG_64BIT
2088 	return folio->_folio_nr_pages;
2089 #else
2090 	return 1L << (folio->_flags_1 & 0xff);
2091 #endif
2092 }
2093 
2094 /**
2095  * thp_nr_pages - The number of regular pages in this huge page.
2096  * @page: The head page of a huge page.
2097  */
2098 static inline int thp_nr_pages(struct page *page)
2099 {
2100 	return folio_nr_pages((struct folio *)page);
2101 }
2102 
2103 /**
2104  * folio_next - Move to the next physical folio.
2105  * @folio: The folio we're currently operating on.
2106  *
2107  * If you have physically contiguous memory which may span more than
2108  * one folio (eg a &struct bio_vec), use this function to move from one
2109  * folio to the next.  Do not use it if the memory is only virtually
2110  * contiguous as the folios are almost certainly not adjacent to each
2111  * other.  This is the folio equivalent to writing ``page++``.
2112  *
2113  * Context: We assume that the folios are refcounted and/or locked at a
2114  * higher level and do not adjust the reference counts.
2115  * Return: The next struct folio.
2116  */
2117 static inline struct folio *folio_next(struct folio *folio)
2118 {
2119 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2120 }
2121 
2122 /**
2123  * folio_shift - The size of the memory described by this folio.
2124  * @folio: The folio.
2125  *
2126  * A folio represents a number of bytes which is a power-of-two in size.
2127  * This function tells you which power-of-two the folio is.  See also
2128  * folio_size() and folio_order().
2129  *
2130  * Context: The caller should have a reference on the folio to prevent
2131  * it from being split.  It is not necessary for the folio to be locked.
2132  * Return: The base-2 logarithm of the size of this folio.
2133  */
2134 static inline unsigned int folio_shift(const struct folio *folio)
2135 {
2136 	return PAGE_SHIFT + folio_order(folio);
2137 }
2138 
2139 /**
2140  * folio_size - The number of bytes in a folio.
2141  * @folio: The folio.
2142  *
2143  * Context: The caller should have a reference on the folio to prevent
2144  * it from being split.  It is not necessary for the folio to be locked.
2145  * Return: The number of bytes in this folio.
2146  */
2147 static inline size_t folio_size(const struct folio *folio)
2148 {
2149 	return PAGE_SIZE << folio_order(folio);
2150 }
2151 
2152 /**
2153  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2154  *				tables of more than one MM
2155  * @folio: The folio.
2156  *
2157  * This function checks if the folio is currently mapped into more than one
2158  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2159  * ("mapped exclusively").
2160  *
2161  * For KSM folios, this function also returns "mapped shared" when a folio is
2162  * mapped multiple times into the same MM, because the individual page mappings
2163  * are independent.
2164  *
2165  * As precise information is not easily available for all folios, this function
2166  * estimates the number of MMs ("sharers") that are currently mapping a folio
2167  * using the number of times the first page of the folio is currently mapped
2168  * into page tables.
2169  *
2170  * For small anonymous folios and anonymous hugetlb folios, the return
2171  * value will be exactly correct: non-KSM folios can only be mapped at most once
2172  * into an MM, and they cannot be partially mapped. KSM folios are
2173  * considered shared even if mapped multiple times into the same MM.
2174  *
2175  * For other folios, the result can be fuzzy:
2176  *    #. For partially-mappable large folios (THP), the return value can wrongly
2177  *       indicate "mapped exclusively" (false negative) when the folio is
2178  *       only partially mapped into at least one MM.
2179  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2180  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2181  *       cover the same file range.
2182  *
2183  * Further, this function only considers current page table mappings that
2184  * are tracked using the folio mapcount(s).
2185  *
2186  * This function does not consider:
2187  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2188  *       pagecache, temporary unmapping for migration).
2189  *    #. If the folio is mapped differently (VM_PFNMAP).
2190  *    #. If hugetlb page table sharing applies. Callers might want to check
2191  *       hugetlb_pmd_shared().
2192  *
2193  * Return: Whether the folio is estimated to be mapped into more than one MM.
2194  */
2195 static inline bool folio_likely_mapped_shared(struct folio *folio)
2196 {
2197 	int mapcount = folio_mapcount(folio);
2198 
2199 	/* Only partially-mappable folios require more care. */
2200 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2201 		return mapcount > 1;
2202 
2203 	/* A single mapping implies "mapped exclusively". */
2204 	if (mapcount <= 1)
2205 		return false;
2206 
2207 	/* If any page is mapped more than once we treat it "mapped shared". */
2208 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2209 		return true;
2210 
2211 	/* Let's guess based on the first subpage. */
2212 	return atomic_read(&folio->_mapcount) > 0;
2213 }
2214 
2215 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2216 static inline int arch_make_folio_accessible(struct folio *folio)
2217 {
2218 	return 0;
2219 }
2220 #endif
2221 
2222 /*
2223  * Some inline functions in vmstat.h depend on page_zone()
2224  */
2225 #include <linux/vmstat.h>
2226 
2227 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2228 #define HASHED_PAGE_VIRTUAL
2229 #endif
2230 
2231 #if defined(WANT_PAGE_VIRTUAL)
2232 static inline void *page_address(const struct page *page)
2233 {
2234 	return page->virtual;
2235 }
2236 static inline void set_page_address(struct page *page, void *address)
2237 {
2238 	page->virtual = address;
2239 }
2240 #define page_address_init()  do { } while(0)
2241 #endif
2242 
2243 #if defined(HASHED_PAGE_VIRTUAL)
2244 void *page_address(const struct page *page);
2245 void set_page_address(struct page *page, void *virtual);
2246 void page_address_init(void);
2247 #endif
2248 
2249 static __always_inline void *lowmem_page_address(const struct page *page)
2250 {
2251 	return page_to_virt(page);
2252 }
2253 
2254 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2255 #define page_address(page) lowmem_page_address(page)
2256 #define set_page_address(page, address)  do { } while(0)
2257 #define page_address_init()  do { } while(0)
2258 #endif
2259 
2260 static inline void *folio_address(const struct folio *folio)
2261 {
2262 	return page_address(&folio->page);
2263 }
2264 
2265 /*
2266  * Return true only if the page has been allocated with
2267  * ALLOC_NO_WATERMARKS and the low watermark was not
2268  * met implying that the system is under some pressure.
2269  */
2270 static inline bool page_is_pfmemalloc(const struct page *page)
2271 {
2272 	/*
2273 	 * lru.next has bit 1 set if the page is allocated from the
2274 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2275 	 * they do not need to preserve that information.
2276 	 */
2277 	return (uintptr_t)page->lru.next & BIT(1);
2278 }
2279 
2280 /*
2281  * Return true only if the folio has been allocated with
2282  * ALLOC_NO_WATERMARKS and the low watermark was not
2283  * met implying that the system is under some pressure.
2284  */
2285 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2286 {
2287 	/*
2288 	 * lru.next has bit 1 set if the page is allocated from the
2289 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2290 	 * they do not need to preserve that information.
2291 	 */
2292 	return (uintptr_t)folio->lru.next & BIT(1);
2293 }
2294 
2295 /*
2296  * Only to be called by the page allocator on a freshly allocated
2297  * page.
2298  */
2299 static inline void set_page_pfmemalloc(struct page *page)
2300 {
2301 	page->lru.next = (void *)BIT(1);
2302 }
2303 
2304 static inline void clear_page_pfmemalloc(struct page *page)
2305 {
2306 	page->lru.next = NULL;
2307 }
2308 
2309 /*
2310  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2311  */
2312 extern void pagefault_out_of_memory(void);
2313 
2314 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2315 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2316 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2317 
2318 /*
2319  * Parameter block passed down to zap_pte_range in exceptional cases.
2320  */
2321 struct zap_details {
2322 	struct folio *single_folio;	/* Locked folio to be unmapped */
2323 	bool even_cows;			/* Zap COWed private pages too? */
2324 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2325 };
2326 
2327 /*
2328  * Whether to drop the pte markers, for example, the uffd-wp information for
2329  * file-backed memory.  This should only be specified when we will completely
2330  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2331  * default, the flag is not set.
2332  */
2333 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2334 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2335 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2336 
2337 #ifdef CONFIG_SCHED_MM_CID
2338 void sched_mm_cid_before_execve(struct task_struct *t);
2339 void sched_mm_cid_after_execve(struct task_struct *t);
2340 void sched_mm_cid_fork(struct task_struct *t);
2341 void sched_mm_cid_exit_signals(struct task_struct *t);
2342 static inline int task_mm_cid(struct task_struct *t)
2343 {
2344 	return t->mm_cid;
2345 }
2346 #else
2347 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2348 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2349 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2350 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2351 static inline int task_mm_cid(struct task_struct *t)
2352 {
2353 	/*
2354 	 * Use the processor id as a fall-back when the mm cid feature is
2355 	 * disabled. This provides functional per-cpu data structure accesses
2356 	 * in user-space, althrough it won't provide the memory usage benefits.
2357 	 */
2358 	return raw_smp_processor_id();
2359 }
2360 #endif
2361 
2362 #ifdef CONFIG_MMU
2363 extern bool can_do_mlock(void);
2364 #else
2365 static inline bool can_do_mlock(void) { return false; }
2366 #endif
2367 extern int user_shm_lock(size_t, struct ucounts *);
2368 extern void user_shm_unlock(size_t, struct ucounts *);
2369 
2370 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2371 			     pte_t pte);
2372 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2373 			     pte_t pte);
2374 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2375 				  unsigned long addr, pmd_t pmd);
2376 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2377 				pmd_t pmd);
2378 
2379 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2380 		  unsigned long size);
2381 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2382 			   unsigned long size, struct zap_details *details);
2383 static inline void zap_vma_pages(struct vm_area_struct *vma)
2384 {
2385 	zap_page_range_single(vma, vma->vm_start,
2386 			      vma->vm_end - vma->vm_start, NULL);
2387 }
2388 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2389 		struct vm_area_struct *start_vma, unsigned long start,
2390 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2391 
2392 struct mmu_notifier_range;
2393 
2394 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2395 		unsigned long end, unsigned long floor, unsigned long ceiling);
2396 int
2397 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2398 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2399 			void *buf, int len, int write);
2400 
2401 struct follow_pfnmap_args {
2402 	/**
2403 	 * Inputs:
2404 	 * @vma: Pointer to @vm_area_struct struct
2405 	 * @address: the virtual address to walk
2406 	 */
2407 	struct vm_area_struct *vma;
2408 	unsigned long address;
2409 	/**
2410 	 * Internals:
2411 	 *
2412 	 * The caller shouldn't touch any of these.
2413 	 */
2414 	spinlock_t *lock;
2415 	pte_t *ptep;
2416 	/**
2417 	 * Outputs:
2418 	 *
2419 	 * @pfn: the PFN of the address
2420 	 * @pgprot: the pgprot_t of the mapping
2421 	 * @writable: whether the mapping is writable
2422 	 * @special: whether the mapping is a special mapping (real PFN maps)
2423 	 */
2424 	unsigned long pfn;
2425 	pgprot_t pgprot;
2426 	bool writable;
2427 	bool special;
2428 };
2429 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2430 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2431 
2432 extern void truncate_pagecache(struct inode *inode, loff_t new);
2433 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2434 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2435 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2436 int generic_error_remove_folio(struct address_space *mapping,
2437 		struct folio *folio);
2438 
2439 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2440 		unsigned long address, struct pt_regs *regs);
2441 
2442 #ifdef CONFIG_MMU
2443 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2444 				  unsigned long address, unsigned int flags,
2445 				  struct pt_regs *regs);
2446 extern int fixup_user_fault(struct mm_struct *mm,
2447 			    unsigned long address, unsigned int fault_flags,
2448 			    bool *unlocked);
2449 void unmap_mapping_pages(struct address_space *mapping,
2450 		pgoff_t start, pgoff_t nr, bool even_cows);
2451 void unmap_mapping_range(struct address_space *mapping,
2452 		loff_t const holebegin, loff_t const holelen, int even_cows);
2453 #else
2454 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2455 					 unsigned long address, unsigned int flags,
2456 					 struct pt_regs *regs)
2457 {
2458 	/* should never happen if there's no MMU */
2459 	BUG();
2460 	return VM_FAULT_SIGBUS;
2461 }
2462 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2463 		unsigned int fault_flags, bool *unlocked)
2464 {
2465 	/* should never happen if there's no MMU */
2466 	BUG();
2467 	return -EFAULT;
2468 }
2469 static inline void unmap_mapping_pages(struct address_space *mapping,
2470 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2471 static inline void unmap_mapping_range(struct address_space *mapping,
2472 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2473 #endif
2474 
2475 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2476 		loff_t const holebegin, loff_t const holelen)
2477 {
2478 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2479 }
2480 
2481 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2482 						unsigned long addr);
2483 
2484 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2485 		void *buf, int len, unsigned int gup_flags);
2486 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2487 		void *buf, int len, unsigned int gup_flags);
2488 
2489 long get_user_pages_remote(struct mm_struct *mm,
2490 			   unsigned long start, unsigned long nr_pages,
2491 			   unsigned int gup_flags, struct page **pages,
2492 			   int *locked);
2493 long pin_user_pages_remote(struct mm_struct *mm,
2494 			   unsigned long start, unsigned long nr_pages,
2495 			   unsigned int gup_flags, struct page **pages,
2496 			   int *locked);
2497 
2498 /*
2499  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2500  */
2501 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2502 						    unsigned long addr,
2503 						    int gup_flags,
2504 						    struct vm_area_struct **vmap)
2505 {
2506 	struct page *page;
2507 	struct vm_area_struct *vma;
2508 	int got;
2509 
2510 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2511 		return ERR_PTR(-EINVAL);
2512 
2513 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2514 
2515 	if (got < 0)
2516 		return ERR_PTR(got);
2517 
2518 	vma = vma_lookup(mm, addr);
2519 	if (WARN_ON_ONCE(!vma)) {
2520 		put_page(page);
2521 		return ERR_PTR(-EINVAL);
2522 	}
2523 
2524 	*vmap = vma;
2525 	return page;
2526 }
2527 
2528 long get_user_pages(unsigned long start, unsigned long nr_pages,
2529 		    unsigned int gup_flags, struct page **pages);
2530 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2531 		    unsigned int gup_flags, struct page **pages);
2532 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 		    struct page **pages, unsigned int gup_flags);
2534 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2535 		    struct page **pages, unsigned int gup_flags);
2536 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2537 		      struct folio **folios, unsigned int max_folios,
2538 		      pgoff_t *offset);
2539 
2540 int get_user_pages_fast(unsigned long start, int nr_pages,
2541 			unsigned int gup_flags, struct page **pages);
2542 int pin_user_pages_fast(unsigned long start, int nr_pages,
2543 			unsigned int gup_flags, struct page **pages);
2544 void folio_add_pin(struct folio *folio);
2545 
2546 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2547 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2548 			struct task_struct *task, bool bypass_rlim);
2549 
2550 struct kvec;
2551 struct page *get_dump_page(unsigned long addr);
2552 
2553 bool folio_mark_dirty(struct folio *folio);
2554 bool set_page_dirty(struct page *page);
2555 int set_page_dirty_lock(struct page *page);
2556 
2557 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2558 
2559 /*
2560  * Flags used by change_protection().  For now we make it a bitmap so
2561  * that we can pass in multiple flags just like parameters.  However
2562  * for now all the callers are only use one of the flags at the same
2563  * time.
2564  */
2565 /*
2566  * Whether we should manually check if we can map individual PTEs writable,
2567  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2568  * PTEs automatically in a writable mapping.
2569  */
2570 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2571 /* Whether this protection change is for NUMA hints */
2572 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2573 /* Whether this change is for write protecting */
2574 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2575 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2576 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2577 					    MM_CP_UFFD_WP_RESOLVE)
2578 
2579 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2580 			     pte_t pte);
2581 extern long change_protection(struct mmu_gather *tlb,
2582 			      struct vm_area_struct *vma, unsigned long start,
2583 			      unsigned long end, unsigned long cp_flags);
2584 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2585 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2586 	  unsigned long start, unsigned long end, unsigned long newflags);
2587 
2588 /*
2589  * doesn't attempt to fault and will return short.
2590  */
2591 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2592 			     unsigned int gup_flags, struct page **pages);
2593 
2594 static inline bool get_user_page_fast_only(unsigned long addr,
2595 			unsigned int gup_flags, struct page **pagep)
2596 {
2597 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2598 }
2599 /*
2600  * per-process(per-mm_struct) statistics.
2601  */
2602 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2603 {
2604 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2605 }
2606 
2607 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2608 
2609 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2610 {
2611 	percpu_counter_add(&mm->rss_stat[member], value);
2612 
2613 	mm_trace_rss_stat(mm, member);
2614 }
2615 
2616 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2617 {
2618 	percpu_counter_inc(&mm->rss_stat[member]);
2619 
2620 	mm_trace_rss_stat(mm, member);
2621 }
2622 
2623 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2624 {
2625 	percpu_counter_dec(&mm->rss_stat[member]);
2626 
2627 	mm_trace_rss_stat(mm, member);
2628 }
2629 
2630 /* Optimized variant when folio is already known not to be anon */
2631 static inline int mm_counter_file(struct folio *folio)
2632 {
2633 	if (folio_test_swapbacked(folio))
2634 		return MM_SHMEMPAGES;
2635 	return MM_FILEPAGES;
2636 }
2637 
2638 static inline int mm_counter(struct folio *folio)
2639 {
2640 	if (folio_test_anon(folio))
2641 		return MM_ANONPAGES;
2642 	return mm_counter_file(folio);
2643 }
2644 
2645 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2646 {
2647 	return get_mm_counter(mm, MM_FILEPAGES) +
2648 		get_mm_counter(mm, MM_ANONPAGES) +
2649 		get_mm_counter(mm, MM_SHMEMPAGES);
2650 }
2651 
2652 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2653 {
2654 	return max(mm->hiwater_rss, get_mm_rss(mm));
2655 }
2656 
2657 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2658 {
2659 	return max(mm->hiwater_vm, mm->total_vm);
2660 }
2661 
2662 static inline void update_hiwater_rss(struct mm_struct *mm)
2663 {
2664 	unsigned long _rss = get_mm_rss(mm);
2665 
2666 	if ((mm)->hiwater_rss < _rss)
2667 		(mm)->hiwater_rss = _rss;
2668 }
2669 
2670 static inline void update_hiwater_vm(struct mm_struct *mm)
2671 {
2672 	if (mm->hiwater_vm < mm->total_vm)
2673 		mm->hiwater_vm = mm->total_vm;
2674 }
2675 
2676 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2677 {
2678 	mm->hiwater_rss = get_mm_rss(mm);
2679 }
2680 
2681 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2682 					 struct mm_struct *mm)
2683 {
2684 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2685 
2686 	if (*maxrss < hiwater_rss)
2687 		*maxrss = hiwater_rss;
2688 }
2689 
2690 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2691 static inline int pte_special(pte_t pte)
2692 {
2693 	return 0;
2694 }
2695 
2696 static inline pte_t pte_mkspecial(pte_t pte)
2697 {
2698 	return pte;
2699 }
2700 #endif
2701 
2702 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2703 static inline bool pmd_special(pmd_t pmd)
2704 {
2705 	return false;
2706 }
2707 
2708 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2709 {
2710 	return pmd;
2711 }
2712 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2713 
2714 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2715 static inline bool pud_special(pud_t pud)
2716 {
2717 	return false;
2718 }
2719 
2720 static inline pud_t pud_mkspecial(pud_t pud)
2721 {
2722 	return pud;
2723 }
2724 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2725 
2726 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2727 static inline int pte_devmap(pte_t pte)
2728 {
2729 	return 0;
2730 }
2731 #endif
2732 
2733 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2734 			       spinlock_t **ptl);
2735 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2736 				    spinlock_t **ptl)
2737 {
2738 	pte_t *ptep;
2739 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2740 	return ptep;
2741 }
2742 
2743 #ifdef __PAGETABLE_P4D_FOLDED
2744 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2745 						unsigned long address)
2746 {
2747 	return 0;
2748 }
2749 #else
2750 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2751 #endif
2752 
2753 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2754 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2755 						unsigned long address)
2756 {
2757 	return 0;
2758 }
2759 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2760 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2761 
2762 #else
2763 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2764 
2765 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2766 {
2767 	if (mm_pud_folded(mm))
2768 		return;
2769 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2770 }
2771 
2772 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2773 {
2774 	if (mm_pud_folded(mm))
2775 		return;
2776 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2777 }
2778 #endif
2779 
2780 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2781 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2782 						unsigned long address)
2783 {
2784 	return 0;
2785 }
2786 
2787 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2788 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2789 
2790 #else
2791 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2792 
2793 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2794 {
2795 	if (mm_pmd_folded(mm))
2796 		return;
2797 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2798 }
2799 
2800 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2801 {
2802 	if (mm_pmd_folded(mm))
2803 		return;
2804 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2805 }
2806 #endif
2807 
2808 #ifdef CONFIG_MMU
2809 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2810 {
2811 	atomic_long_set(&mm->pgtables_bytes, 0);
2812 }
2813 
2814 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2815 {
2816 	return atomic_long_read(&mm->pgtables_bytes);
2817 }
2818 
2819 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2820 {
2821 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2822 }
2823 
2824 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2825 {
2826 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2827 }
2828 #else
2829 
2830 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2831 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2832 {
2833 	return 0;
2834 }
2835 
2836 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2837 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2838 #endif
2839 
2840 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2841 int __pte_alloc_kernel(pmd_t *pmd);
2842 
2843 #if defined(CONFIG_MMU)
2844 
2845 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2846 		unsigned long address)
2847 {
2848 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2849 		NULL : p4d_offset(pgd, address);
2850 }
2851 
2852 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2853 		unsigned long address)
2854 {
2855 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2856 		NULL : pud_offset(p4d, address);
2857 }
2858 
2859 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2860 {
2861 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2862 		NULL: pmd_offset(pud, address);
2863 }
2864 #endif /* CONFIG_MMU */
2865 
2866 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2867 {
2868 	return page_ptdesc(virt_to_page(x));
2869 }
2870 
2871 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2872 {
2873 	return page_to_virt(ptdesc_page(pt));
2874 }
2875 
2876 static inline void *ptdesc_address(const struct ptdesc *pt)
2877 {
2878 	return folio_address(ptdesc_folio(pt));
2879 }
2880 
2881 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2882 {
2883 	return folio_test_reserved(ptdesc_folio(pt));
2884 }
2885 
2886 /**
2887  * pagetable_alloc - Allocate pagetables
2888  * @gfp:    GFP flags
2889  * @order:  desired pagetable order
2890  *
2891  * pagetable_alloc allocates memory for page tables as well as a page table
2892  * descriptor to describe that memory.
2893  *
2894  * Return: The ptdesc describing the allocated page tables.
2895  */
2896 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2897 {
2898 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2899 
2900 	return page_ptdesc(page);
2901 }
2902 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2903 
2904 /**
2905  * pagetable_free - Free pagetables
2906  * @pt:	The page table descriptor
2907  *
2908  * pagetable_free frees the memory of all page tables described by a page
2909  * table descriptor and the memory for the descriptor itself.
2910  */
2911 static inline void pagetable_free(struct ptdesc *pt)
2912 {
2913 	struct page *page = ptdesc_page(pt);
2914 
2915 	__free_pages(page, compound_order(page));
2916 }
2917 
2918 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2919 #if ALLOC_SPLIT_PTLOCKS
2920 void __init ptlock_cache_init(void);
2921 bool ptlock_alloc(struct ptdesc *ptdesc);
2922 void ptlock_free(struct ptdesc *ptdesc);
2923 
2924 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2925 {
2926 	return ptdesc->ptl;
2927 }
2928 #else /* ALLOC_SPLIT_PTLOCKS */
2929 static inline void ptlock_cache_init(void)
2930 {
2931 }
2932 
2933 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2934 {
2935 	return true;
2936 }
2937 
2938 static inline void ptlock_free(struct ptdesc *ptdesc)
2939 {
2940 }
2941 
2942 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2943 {
2944 	return &ptdesc->ptl;
2945 }
2946 #endif /* ALLOC_SPLIT_PTLOCKS */
2947 
2948 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2949 {
2950 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2951 }
2952 
2953 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2954 {
2955 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2956 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2957 	return ptlock_ptr(virt_to_ptdesc(pte));
2958 }
2959 
2960 static inline bool ptlock_init(struct ptdesc *ptdesc)
2961 {
2962 	/*
2963 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2964 	 * with 0. Make sure nobody took it in use in between.
2965 	 *
2966 	 * It can happen if arch try to use slab for page table allocation:
2967 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2968 	 */
2969 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2970 	if (!ptlock_alloc(ptdesc))
2971 		return false;
2972 	spin_lock_init(ptlock_ptr(ptdesc));
2973 	return true;
2974 }
2975 
2976 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2977 /*
2978  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2979  */
2980 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2981 {
2982 	return &mm->page_table_lock;
2983 }
2984 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2985 {
2986 	return &mm->page_table_lock;
2987 }
2988 static inline void ptlock_cache_init(void) {}
2989 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2990 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2991 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2992 
2993 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2994 {
2995 	struct folio *folio = ptdesc_folio(ptdesc);
2996 
2997 	if (!ptlock_init(ptdesc))
2998 		return false;
2999 	__folio_set_pgtable(folio);
3000 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3001 	return true;
3002 }
3003 
3004 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
3005 {
3006 	struct folio *folio = ptdesc_folio(ptdesc);
3007 
3008 	ptlock_free(ptdesc);
3009 	__folio_clear_pgtable(folio);
3010 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3011 }
3012 
3013 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3014 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3015 {
3016 	return __pte_offset_map(pmd, addr, NULL);
3017 }
3018 
3019 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3020 			unsigned long addr, spinlock_t **ptlp);
3021 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3022 			unsigned long addr, spinlock_t **ptlp)
3023 {
3024 	pte_t *pte;
3025 
3026 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3027 	return pte;
3028 }
3029 
3030 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3031 			unsigned long addr, spinlock_t **ptlp);
3032 
3033 #define pte_unmap_unlock(pte, ptl)	do {		\
3034 	spin_unlock(ptl);				\
3035 	pte_unmap(pte);					\
3036 } while (0)
3037 
3038 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3039 
3040 #define pte_alloc_map(mm, pmd, address)			\
3041 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3042 
3043 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3044 	(pte_alloc(mm, pmd) ?			\
3045 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3046 
3047 #define pte_alloc_kernel(pmd, address)			\
3048 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3049 		NULL: pte_offset_kernel(pmd, address))
3050 
3051 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3052 
3053 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3054 {
3055 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3056 	return virt_to_page((void *)((unsigned long) pmd & mask));
3057 }
3058 
3059 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3060 {
3061 	return page_ptdesc(pmd_pgtable_page(pmd));
3062 }
3063 
3064 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3065 {
3066 	return ptlock_ptr(pmd_ptdesc(pmd));
3067 }
3068 
3069 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3070 {
3071 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3072 	ptdesc->pmd_huge_pte = NULL;
3073 #endif
3074 	return ptlock_init(ptdesc);
3075 }
3076 
3077 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3078 {
3079 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3080 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3081 #endif
3082 	ptlock_free(ptdesc);
3083 }
3084 
3085 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3086 
3087 #else
3088 
3089 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3090 {
3091 	return &mm->page_table_lock;
3092 }
3093 
3094 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3095 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3096 
3097 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3098 
3099 #endif
3100 
3101 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3102 {
3103 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3104 	spin_lock(ptl);
3105 	return ptl;
3106 }
3107 
3108 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3109 {
3110 	struct folio *folio = ptdesc_folio(ptdesc);
3111 
3112 	if (!pmd_ptlock_init(ptdesc))
3113 		return false;
3114 	__folio_set_pgtable(folio);
3115 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3116 	return true;
3117 }
3118 
3119 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3120 {
3121 	struct folio *folio = ptdesc_folio(ptdesc);
3122 
3123 	pmd_ptlock_free(ptdesc);
3124 	__folio_clear_pgtable(folio);
3125 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3126 }
3127 
3128 /*
3129  * No scalability reason to split PUD locks yet, but follow the same pattern
3130  * as the PMD locks to make it easier if we decide to.  The VM should not be
3131  * considered ready to switch to split PUD locks yet; there may be places
3132  * which need to be converted from page_table_lock.
3133  */
3134 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3135 {
3136 	return &mm->page_table_lock;
3137 }
3138 
3139 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3140 {
3141 	spinlock_t *ptl = pud_lockptr(mm, pud);
3142 
3143 	spin_lock(ptl);
3144 	return ptl;
3145 }
3146 
3147 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3148 {
3149 	struct folio *folio = ptdesc_folio(ptdesc);
3150 
3151 	__folio_set_pgtable(folio);
3152 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3153 }
3154 
3155 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3156 {
3157 	struct folio *folio = ptdesc_folio(ptdesc);
3158 
3159 	__folio_clear_pgtable(folio);
3160 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3161 }
3162 
3163 extern void __init pagecache_init(void);
3164 extern void free_initmem(void);
3165 
3166 /*
3167  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3168  * into the buddy system. The freed pages will be poisoned with pattern
3169  * "poison" if it's within range [0, UCHAR_MAX].
3170  * Return pages freed into the buddy system.
3171  */
3172 extern unsigned long free_reserved_area(void *start, void *end,
3173 					int poison, const char *s);
3174 
3175 extern void adjust_managed_page_count(struct page *page, long count);
3176 
3177 extern void reserve_bootmem_region(phys_addr_t start,
3178 				   phys_addr_t end, int nid);
3179 
3180 /* Free the reserved page into the buddy system, so it gets managed. */
3181 void free_reserved_page(struct page *page);
3182 #define free_highmem_page(page) free_reserved_page(page)
3183 
3184 static inline void mark_page_reserved(struct page *page)
3185 {
3186 	SetPageReserved(page);
3187 	adjust_managed_page_count(page, -1);
3188 }
3189 
3190 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3191 {
3192 	free_reserved_page(ptdesc_page(pt));
3193 }
3194 
3195 /*
3196  * Default method to free all the __init memory into the buddy system.
3197  * The freed pages will be poisoned with pattern "poison" if it's within
3198  * range [0, UCHAR_MAX].
3199  * Return pages freed into the buddy system.
3200  */
3201 static inline unsigned long free_initmem_default(int poison)
3202 {
3203 	extern char __init_begin[], __init_end[];
3204 
3205 	return free_reserved_area(&__init_begin, &__init_end,
3206 				  poison, "unused kernel image (initmem)");
3207 }
3208 
3209 static inline unsigned long get_num_physpages(void)
3210 {
3211 	int nid;
3212 	unsigned long phys_pages = 0;
3213 
3214 	for_each_online_node(nid)
3215 		phys_pages += node_present_pages(nid);
3216 
3217 	return phys_pages;
3218 }
3219 
3220 /*
3221  * Using memblock node mappings, an architecture may initialise its
3222  * zones, allocate the backing mem_map and account for memory holes in an
3223  * architecture independent manner.
3224  *
3225  * An architecture is expected to register range of page frames backed by
3226  * physical memory with memblock_add[_node]() before calling
3227  * free_area_init() passing in the PFN each zone ends at. At a basic
3228  * usage, an architecture is expected to do something like
3229  *
3230  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3231  * 							 max_highmem_pfn};
3232  * for_each_valid_physical_page_range()
3233  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3234  * free_area_init(max_zone_pfns);
3235  */
3236 void free_area_init(unsigned long *max_zone_pfn);
3237 unsigned long node_map_pfn_alignment(void);
3238 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3239 						unsigned long end_pfn);
3240 extern void get_pfn_range_for_nid(unsigned int nid,
3241 			unsigned long *start_pfn, unsigned long *end_pfn);
3242 
3243 #ifndef CONFIG_NUMA
3244 static inline int early_pfn_to_nid(unsigned long pfn)
3245 {
3246 	return 0;
3247 }
3248 #else
3249 /* please see mm/page_alloc.c */
3250 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3251 #endif
3252 
3253 extern void mem_init(void);
3254 extern void __init mmap_init(void);
3255 
3256 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3257 static inline void show_mem(void)
3258 {
3259 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3260 }
3261 extern long si_mem_available(void);
3262 extern void si_meminfo(struct sysinfo * val);
3263 extern void si_meminfo_node(struct sysinfo *val, int nid);
3264 
3265 extern __printf(3, 4)
3266 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3267 
3268 extern void setup_per_cpu_pageset(void);
3269 
3270 /* nommu.c */
3271 extern atomic_long_t mmap_pages_allocated;
3272 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3273 
3274 /* interval_tree.c */
3275 void vma_interval_tree_insert(struct vm_area_struct *node,
3276 			      struct rb_root_cached *root);
3277 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3278 				    struct vm_area_struct *prev,
3279 				    struct rb_root_cached *root);
3280 void vma_interval_tree_remove(struct vm_area_struct *node,
3281 			      struct rb_root_cached *root);
3282 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3283 				unsigned long start, unsigned long last);
3284 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3285 				unsigned long start, unsigned long last);
3286 
3287 #define vma_interval_tree_foreach(vma, root, start, last)		\
3288 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3289 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3290 
3291 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3292 				   struct rb_root_cached *root);
3293 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3294 				   struct rb_root_cached *root);
3295 struct anon_vma_chain *
3296 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3297 				  unsigned long start, unsigned long last);
3298 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3299 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3300 #ifdef CONFIG_DEBUG_VM_RB
3301 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3302 #endif
3303 
3304 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3305 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3306 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3307 
3308 /* mmap.c */
3309 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3310 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3311 extern void exit_mmap(struct mm_struct *);
3312 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3313 
3314 static inline int check_data_rlimit(unsigned long rlim,
3315 				    unsigned long new,
3316 				    unsigned long start,
3317 				    unsigned long end_data,
3318 				    unsigned long start_data)
3319 {
3320 	if (rlim < RLIM_INFINITY) {
3321 		if (((new - start) + (end_data - start_data)) > rlim)
3322 			return -ENOSPC;
3323 	}
3324 
3325 	return 0;
3326 }
3327 
3328 extern int mm_take_all_locks(struct mm_struct *mm);
3329 extern void mm_drop_all_locks(struct mm_struct *mm);
3330 
3331 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3332 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3333 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3334 extern struct file *get_task_exe_file(struct task_struct *task);
3335 
3336 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3337 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3338 
3339 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3340 				   const struct vm_special_mapping *sm);
3341 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3342 				   unsigned long addr, unsigned long len,
3343 				   unsigned long flags,
3344 				   const struct vm_special_mapping *spec);
3345 
3346 unsigned long randomize_stack_top(unsigned long stack_top);
3347 unsigned long randomize_page(unsigned long start, unsigned long range);
3348 
3349 unsigned long
3350 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3351 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3352 
3353 static inline unsigned long
3354 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3355 		  unsigned long pgoff, unsigned long flags)
3356 {
3357 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3358 }
3359 
3360 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3361 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3362 	struct list_head *uf);
3363 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3364 	unsigned long len, unsigned long prot, unsigned long flags,
3365 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3366 	struct list_head *uf);
3367 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3368 			 unsigned long start, size_t len, struct list_head *uf,
3369 			 bool unlock);
3370 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3371 		    struct mm_struct *mm, unsigned long start,
3372 		    unsigned long end, struct list_head *uf, bool unlock);
3373 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3374 		     struct list_head *uf);
3375 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3376 
3377 #ifdef CONFIG_MMU
3378 extern int __mm_populate(unsigned long addr, unsigned long len,
3379 			 int ignore_errors);
3380 static inline void mm_populate(unsigned long addr, unsigned long len)
3381 {
3382 	/* Ignore errors */
3383 	(void) __mm_populate(addr, len, 1);
3384 }
3385 #else
3386 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3387 #endif
3388 
3389 /* This takes the mm semaphore itself */
3390 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3391 extern int vm_munmap(unsigned long, size_t);
3392 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3393         unsigned long, unsigned long,
3394         unsigned long, unsigned long);
3395 
3396 struct vm_unmapped_area_info {
3397 #define VM_UNMAPPED_AREA_TOPDOWN 1
3398 	unsigned long flags;
3399 	unsigned long length;
3400 	unsigned long low_limit;
3401 	unsigned long high_limit;
3402 	unsigned long align_mask;
3403 	unsigned long align_offset;
3404 	unsigned long start_gap;
3405 };
3406 
3407 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3408 
3409 /* truncate.c */
3410 extern void truncate_inode_pages(struct address_space *, loff_t);
3411 extern void truncate_inode_pages_range(struct address_space *,
3412 				       loff_t lstart, loff_t lend);
3413 extern void truncate_inode_pages_final(struct address_space *);
3414 
3415 /* generic vm_area_ops exported for stackable file systems */
3416 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3417 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3418 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3419 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3420 
3421 extern unsigned long stack_guard_gap;
3422 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3423 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3424 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3425 
3426 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3427 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3428 
3429 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3430 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3431 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3432 					     struct vm_area_struct **pprev);
3433 
3434 /*
3435  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3436  * NULL if none.  Assume start_addr < end_addr.
3437  */
3438 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3439 			unsigned long start_addr, unsigned long end_addr);
3440 
3441 /**
3442  * vma_lookup() - Find a VMA at a specific address
3443  * @mm: The process address space.
3444  * @addr: The user address.
3445  *
3446  * Return: The vm_area_struct at the given address, %NULL otherwise.
3447  */
3448 static inline
3449 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3450 {
3451 	return mtree_load(&mm->mm_mt, addr);
3452 }
3453 
3454 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3455 {
3456 	if (vma->vm_flags & VM_GROWSDOWN)
3457 		return stack_guard_gap;
3458 
3459 	/* See reasoning around the VM_SHADOW_STACK definition */
3460 	if (vma->vm_flags & VM_SHADOW_STACK)
3461 		return PAGE_SIZE;
3462 
3463 	return 0;
3464 }
3465 
3466 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3467 {
3468 	unsigned long gap = stack_guard_start_gap(vma);
3469 	unsigned long vm_start = vma->vm_start;
3470 
3471 	vm_start -= gap;
3472 	if (vm_start > vma->vm_start)
3473 		vm_start = 0;
3474 	return vm_start;
3475 }
3476 
3477 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3478 {
3479 	unsigned long vm_end = vma->vm_end;
3480 
3481 	if (vma->vm_flags & VM_GROWSUP) {
3482 		vm_end += stack_guard_gap;
3483 		if (vm_end < vma->vm_end)
3484 			vm_end = -PAGE_SIZE;
3485 	}
3486 	return vm_end;
3487 }
3488 
3489 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3490 {
3491 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3492 }
3493 
3494 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3495 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3496 				unsigned long vm_start, unsigned long vm_end)
3497 {
3498 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3499 
3500 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3501 		vma = NULL;
3502 
3503 	return vma;
3504 }
3505 
3506 static inline bool range_in_vma(struct vm_area_struct *vma,
3507 				unsigned long start, unsigned long end)
3508 {
3509 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3510 }
3511 
3512 #ifdef CONFIG_MMU
3513 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3514 void vma_set_page_prot(struct vm_area_struct *vma);
3515 #else
3516 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3517 {
3518 	return __pgprot(0);
3519 }
3520 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3521 {
3522 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3523 }
3524 #endif
3525 
3526 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3527 
3528 #ifdef CONFIG_NUMA_BALANCING
3529 unsigned long change_prot_numa(struct vm_area_struct *vma,
3530 			unsigned long start, unsigned long end);
3531 #endif
3532 
3533 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3534 		unsigned long addr);
3535 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3536 			unsigned long pfn, unsigned long size, pgprot_t);
3537 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3538 		unsigned long pfn, unsigned long size, pgprot_t prot);
3539 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3540 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3541 			struct page **pages, unsigned long *num);
3542 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3543 				unsigned long num);
3544 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3545 				unsigned long num);
3546 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3547 			unsigned long pfn);
3548 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3549 			unsigned long pfn, pgprot_t pgprot);
3550 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3551 			pfn_t pfn);
3552 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3553 		unsigned long addr, pfn_t pfn);
3554 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3555 
3556 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3557 				unsigned long addr, struct page *page)
3558 {
3559 	int err = vm_insert_page(vma, addr, page);
3560 
3561 	if (err == -ENOMEM)
3562 		return VM_FAULT_OOM;
3563 	if (err < 0 && err != -EBUSY)
3564 		return VM_FAULT_SIGBUS;
3565 
3566 	return VM_FAULT_NOPAGE;
3567 }
3568 
3569 #ifndef io_remap_pfn_range
3570 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3571 				     unsigned long addr, unsigned long pfn,
3572 				     unsigned long size, pgprot_t prot)
3573 {
3574 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3575 }
3576 #endif
3577 
3578 static inline vm_fault_t vmf_error(int err)
3579 {
3580 	if (err == -ENOMEM)
3581 		return VM_FAULT_OOM;
3582 	else if (err == -EHWPOISON)
3583 		return VM_FAULT_HWPOISON;
3584 	return VM_FAULT_SIGBUS;
3585 }
3586 
3587 /*
3588  * Convert errno to return value for ->page_mkwrite() calls.
3589  *
3590  * This should eventually be merged with vmf_error() above, but will need a
3591  * careful audit of all vmf_error() callers.
3592  */
3593 static inline vm_fault_t vmf_fs_error(int err)
3594 {
3595 	if (err == 0)
3596 		return VM_FAULT_LOCKED;
3597 	if (err == -EFAULT || err == -EAGAIN)
3598 		return VM_FAULT_NOPAGE;
3599 	if (err == -ENOMEM)
3600 		return VM_FAULT_OOM;
3601 	/* -ENOSPC, -EDQUOT, -EIO ... */
3602 	return VM_FAULT_SIGBUS;
3603 }
3604 
3605 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3606 {
3607 	if (vm_fault & VM_FAULT_OOM)
3608 		return -ENOMEM;
3609 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3610 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3611 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3612 		return -EFAULT;
3613 	return 0;
3614 }
3615 
3616 /*
3617  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3618  * a (NUMA hinting) fault is required.
3619  */
3620 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3621 					   unsigned int flags)
3622 {
3623 	/*
3624 	 * If callers don't want to honor NUMA hinting faults, no need to
3625 	 * determine if we would actually have to trigger a NUMA hinting fault.
3626 	 */
3627 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3628 		return true;
3629 
3630 	/*
3631 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3632 	 *
3633 	 * Requiring a fault here even for inaccessible VMAs would mean that
3634 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3635 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3636 	 */
3637 	return !vma_is_accessible(vma);
3638 }
3639 
3640 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3641 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3642 			       unsigned long size, pte_fn_t fn, void *data);
3643 extern int apply_to_existing_page_range(struct mm_struct *mm,
3644 				   unsigned long address, unsigned long size,
3645 				   pte_fn_t fn, void *data);
3646 
3647 #ifdef CONFIG_PAGE_POISONING
3648 extern void __kernel_poison_pages(struct page *page, int numpages);
3649 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3650 extern bool _page_poisoning_enabled_early;
3651 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3652 static inline bool page_poisoning_enabled(void)
3653 {
3654 	return _page_poisoning_enabled_early;
3655 }
3656 /*
3657  * For use in fast paths after init_mem_debugging() has run, or when a
3658  * false negative result is not harmful when called too early.
3659  */
3660 static inline bool page_poisoning_enabled_static(void)
3661 {
3662 	return static_branch_unlikely(&_page_poisoning_enabled);
3663 }
3664 static inline void kernel_poison_pages(struct page *page, int numpages)
3665 {
3666 	if (page_poisoning_enabled_static())
3667 		__kernel_poison_pages(page, numpages);
3668 }
3669 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3670 {
3671 	if (page_poisoning_enabled_static())
3672 		__kernel_unpoison_pages(page, numpages);
3673 }
3674 #else
3675 static inline bool page_poisoning_enabled(void) { return false; }
3676 static inline bool page_poisoning_enabled_static(void) { return false; }
3677 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3678 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3679 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3680 #endif
3681 
3682 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3683 static inline bool want_init_on_alloc(gfp_t flags)
3684 {
3685 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3686 				&init_on_alloc))
3687 		return true;
3688 	return flags & __GFP_ZERO;
3689 }
3690 
3691 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3692 static inline bool want_init_on_free(void)
3693 {
3694 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3695 				   &init_on_free);
3696 }
3697 
3698 extern bool _debug_pagealloc_enabled_early;
3699 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3700 
3701 static inline bool debug_pagealloc_enabled(void)
3702 {
3703 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3704 		_debug_pagealloc_enabled_early;
3705 }
3706 
3707 /*
3708  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3709  * or when a false negative result is not harmful when called too early.
3710  */
3711 static inline bool debug_pagealloc_enabled_static(void)
3712 {
3713 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3714 		return false;
3715 
3716 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3717 }
3718 
3719 /*
3720  * To support DEBUG_PAGEALLOC architecture must ensure that
3721  * __kernel_map_pages() never fails
3722  */
3723 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3724 #ifdef CONFIG_DEBUG_PAGEALLOC
3725 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3726 {
3727 	if (debug_pagealloc_enabled_static())
3728 		__kernel_map_pages(page, numpages, 1);
3729 }
3730 
3731 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3732 {
3733 	if (debug_pagealloc_enabled_static())
3734 		__kernel_map_pages(page, numpages, 0);
3735 }
3736 
3737 extern unsigned int _debug_guardpage_minorder;
3738 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3739 
3740 static inline unsigned int debug_guardpage_minorder(void)
3741 {
3742 	return _debug_guardpage_minorder;
3743 }
3744 
3745 static inline bool debug_guardpage_enabled(void)
3746 {
3747 	return static_branch_unlikely(&_debug_guardpage_enabled);
3748 }
3749 
3750 static inline bool page_is_guard(struct page *page)
3751 {
3752 	if (!debug_guardpage_enabled())
3753 		return false;
3754 
3755 	return PageGuard(page);
3756 }
3757 
3758 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3759 static inline bool set_page_guard(struct zone *zone, struct page *page,
3760 				  unsigned int order)
3761 {
3762 	if (!debug_guardpage_enabled())
3763 		return false;
3764 	return __set_page_guard(zone, page, order);
3765 }
3766 
3767 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3768 static inline void clear_page_guard(struct zone *zone, struct page *page,
3769 				    unsigned int order)
3770 {
3771 	if (!debug_guardpage_enabled())
3772 		return;
3773 	__clear_page_guard(zone, page, order);
3774 }
3775 
3776 #else	/* CONFIG_DEBUG_PAGEALLOC */
3777 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3778 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3779 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3780 static inline bool debug_guardpage_enabled(void) { return false; }
3781 static inline bool page_is_guard(struct page *page) { return false; }
3782 static inline bool set_page_guard(struct zone *zone, struct page *page,
3783 			unsigned int order) { return false; }
3784 static inline void clear_page_guard(struct zone *zone, struct page *page,
3785 				unsigned int order) {}
3786 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3787 
3788 #ifdef __HAVE_ARCH_GATE_AREA
3789 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3790 extern int in_gate_area_no_mm(unsigned long addr);
3791 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3792 #else
3793 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3794 {
3795 	return NULL;
3796 }
3797 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3798 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3799 {
3800 	return 0;
3801 }
3802 #endif	/* __HAVE_ARCH_GATE_AREA */
3803 
3804 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3805 
3806 #ifdef CONFIG_SYSCTL
3807 extern int sysctl_drop_caches;
3808 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3809 		loff_t *);
3810 #endif
3811 
3812 void drop_slab(void);
3813 
3814 #ifndef CONFIG_MMU
3815 #define randomize_va_space 0
3816 #else
3817 extern int randomize_va_space;
3818 #endif
3819 
3820 const char * arch_vma_name(struct vm_area_struct *vma);
3821 #ifdef CONFIG_MMU
3822 void print_vma_addr(char *prefix, unsigned long rip);
3823 #else
3824 static inline void print_vma_addr(char *prefix, unsigned long rip)
3825 {
3826 }
3827 #endif
3828 
3829 void *sparse_buffer_alloc(unsigned long size);
3830 struct page * __populate_section_memmap(unsigned long pfn,
3831 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3832 		struct dev_pagemap *pgmap);
3833 void pud_init(void *addr);
3834 void pmd_init(void *addr);
3835 void kernel_pte_init(void *addr);
3836 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3837 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3838 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3839 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3840 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3841 			    struct vmem_altmap *altmap, struct page *reuse);
3842 void *vmemmap_alloc_block(unsigned long size, int node);
3843 struct vmem_altmap;
3844 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3845 			      struct vmem_altmap *altmap);
3846 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3847 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3848 		     unsigned long addr, unsigned long next);
3849 int vmemmap_check_pmd(pmd_t *pmd, int node,
3850 		      unsigned long addr, unsigned long next);
3851 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3852 			       int node, struct vmem_altmap *altmap);
3853 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3854 			       int node, struct vmem_altmap *altmap);
3855 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3856 		struct vmem_altmap *altmap);
3857 void vmemmap_populate_print_last(void);
3858 #ifdef CONFIG_MEMORY_HOTPLUG
3859 void vmemmap_free(unsigned long start, unsigned long end,
3860 		struct vmem_altmap *altmap);
3861 #endif
3862 
3863 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3864 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3865 {
3866 	/* number of pfns from base where pfn_to_page() is valid */
3867 	if (altmap)
3868 		return altmap->reserve + altmap->free;
3869 	return 0;
3870 }
3871 
3872 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3873 				    unsigned long nr_pfns)
3874 {
3875 	altmap->alloc -= nr_pfns;
3876 }
3877 #else
3878 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3879 {
3880 	return 0;
3881 }
3882 
3883 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3884 				    unsigned long nr_pfns)
3885 {
3886 }
3887 #endif
3888 
3889 #define VMEMMAP_RESERVE_NR	2
3890 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3891 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3892 					  struct dev_pagemap *pgmap)
3893 {
3894 	unsigned long nr_pages;
3895 	unsigned long nr_vmemmap_pages;
3896 
3897 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3898 		return false;
3899 
3900 	nr_pages = pgmap_vmemmap_nr(pgmap);
3901 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3902 	/*
3903 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3904 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3905 	 */
3906 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3907 }
3908 /*
3909  * If we don't have an architecture override, use the generic rule
3910  */
3911 #ifndef vmemmap_can_optimize
3912 #define vmemmap_can_optimize __vmemmap_can_optimize
3913 #endif
3914 
3915 #else
3916 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3917 					   struct dev_pagemap *pgmap)
3918 {
3919 	return false;
3920 }
3921 #endif
3922 
3923 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3924 				  unsigned long nr_pages);
3925 
3926 enum mf_flags {
3927 	MF_COUNT_INCREASED = 1 << 0,
3928 	MF_ACTION_REQUIRED = 1 << 1,
3929 	MF_MUST_KILL = 1 << 2,
3930 	MF_SOFT_OFFLINE = 1 << 3,
3931 	MF_UNPOISON = 1 << 4,
3932 	MF_SW_SIMULATED = 1 << 5,
3933 	MF_NO_RETRY = 1 << 6,
3934 	MF_MEM_PRE_REMOVE = 1 << 7,
3935 };
3936 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3937 		      unsigned long count, int mf_flags);
3938 extern int memory_failure(unsigned long pfn, int flags);
3939 extern void memory_failure_queue_kick(int cpu);
3940 extern int unpoison_memory(unsigned long pfn);
3941 extern atomic_long_t num_poisoned_pages __read_mostly;
3942 extern int soft_offline_page(unsigned long pfn, int flags);
3943 #ifdef CONFIG_MEMORY_FAILURE
3944 /*
3945  * Sysfs entries for memory failure handling statistics.
3946  */
3947 extern const struct attribute_group memory_failure_attr_group;
3948 extern void memory_failure_queue(unsigned long pfn, int flags);
3949 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3950 					bool *migratable_cleared);
3951 void num_poisoned_pages_inc(unsigned long pfn);
3952 void num_poisoned_pages_sub(unsigned long pfn, long i);
3953 #else
3954 static inline void memory_failure_queue(unsigned long pfn, int flags)
3955 {
3956 }
3957 
3958 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3959 					bool *migratable_cleared)
3960 {
3961 	return 0;
3962 }
3963 
3964 static inline void num_poisoned_pages_inc(unsigned long pfn)
3965 {
3966 }
3967 
3968 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3969 {
3970 }
3971 #endif
3972 
3973 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3974 extern void memblk_nr_poison_inc(unsigned long pfn);
3975 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3976 #else
3977 static inline void memblk_nr_poison_inc(unsigned long pfn)
3978 {
3979 }
3980 
3981 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3982 {
3983 }
3984 #endif
3985 
3986 #ifndef arch_memory_failure
3987 static inline int arch_memory_failure(unsigned long pfn, int flags)
3988 {
3989 	return -ENXIO;
3990 }
3991 #endif
3992 
3993 #ifndef arch_is_platform_page
3994 static inline bool arch_is_platform_page(u64 paddr)
3995 {
3996 	return false;
3997 }
3998 #endif
3999 
4000 /*
4001  * Error handlers for various types of pages.
4002  */
4003 enum mf_result {
4004 	MF_IGNORED,	/* Error: cannot be handled */
4005 	MF_FAILED,	/* Error: handling failed */
4006 	MF_DELAYED,	/* Will be handled later */
4007 	MF_RECOVERED,	/* Successfully recovered */
4008 };
4009 
4010 enum mf_action_page_type {
4011 	MF_MSG_KERNEL,
4012 	MF_MSG_KERNEL_HIGH_ORDER,
4013 	MF_MSG_DIFFERENT_COMPOUND,
4014 	MF_MSG_HUGE,
4015 	MF_MSG_FREE_HUGE,
4016 	MF_MSG_GET_HWPOISON,
4017 	MF_MSG_UNMAP_FAILED,
4018 	MF_MSG_DIRTY_SWAPCACHE,
4019 	MF_MSG_CLEAN_SWAPCACHE,
4020 	MF_MSG_DIRTY_MLOCKED_LRU,
4021 	MF_MSG_CLEAN_MLOCKED_LRU,
4022 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4023 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4024 	MF_MSG_DIRTY_LRU,
4025 	MF_MSG_CLEAN_LRU,
4026 	MF_MSG_TRUNCATED_LRU,
4027 	MF_MSG_BUDDY,
4028 	MF_MSG_DAX,
4029 	MF_MSG_UNSPLIT_THP,
4030 	MF_MSG_ALREADY_POISONED,
4031 	MF_MSG_UNKNOWN,
4032 };
4033 
4034 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4035 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4036 int copy_user_large_folio(struct folio *dst, struct folio *src,
4037 			  unsigned long addr_hint,
4038 			  struct vm_area_struct *vma);
4039 long copy_folio_from_user(struct folio *dst_folio,
4040 			   const void __user *usr_src,
4041 			   bool allow_pagefault);
4042 
4043 /**
4044  * vma_is_special_huge - Are transhuge page-table entries considered special?
4045  * @vma: Pointer to the struct vm_area_struct to consider
4046  *
4047  * Whether transhuge page-table entries are considered "special" following
4048  * the definition in vm_normal_page().
4049  *
4050  * Return: true if transhuge page-table entries should be considered special,
4051  * false otherwise.
4052  */
4053 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4054 {
4055 	return vma_is_dax(vma) || (vma->vm_file &&
4056 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4057 }
4058 
4059 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4060 
4061 #if MAX_NUMNODES > 1
4062 void __init setup_nr_node_ids(void);
4063 #else
4064 static inline void setup_nr_node_ids(void) {}
4065 #endif
4066 
4067 extern int memcmp_pages(struct page *page1, struct page *page2);
4068 
4069 static inline int pages_identical(struct page *page1, struct page *page2)
4070 {
4071 	return !memcmp_pages(page1, page2);
4072 }
4073 
4074 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4075 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4076 						pgoff_t first_index, pgoff_t nr,
4077 						pgoff_t bitmap_pgoff,
4078 						unsigned long *bitmap,
4079 						pgoff_t *start,
4080 						pgoff_t *end);
4081 
4082 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4083 				      pgoff_t first_index, pgoff_t nr);
4084 #endif
4085 
4086 extern int sysctl_nr_trim_pages;
4087 
4088 #ifdef CONFIG_PRINTK
4089 void mem_dump_obj(void *object);
4090 #else
4091 static inline void mem_dump_obj(void *object) {}
4092 #endif
4093 
4094 /**
4095  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4096  *                    handle them.
4097  * @seals: the seals to check
4098  * @vma: the vma to operate on
4099  *
4100  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4101  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4102  */
4103 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4104 {
4105 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4106 		/*
4107 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4108 		 * write seals are active.
4109 		 */
4110 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4111 			return -EPERM;
4112 
4113 		/*
4114 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4115 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4116 		 * revert protections on such mappings. Do this only for shared
4117 		 * mappings. For private mappings, don't need to mask
4118 		 * VM_MAYWRITE as we still want them to be COW-writable.
4119 		 */
4120 		if (vma->vm_flags & VM_SHARED)
4121 			vm_flags_clear(vma, VM_MAYWRITE);
4122 	}
4123 
4124 	return 0;
4125 }
4126 
4127 #ifdef CONFIG_ANON_VMA_NAME
4128 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4129 			  unsigned long len_in,
4130 			  struct anon_vma_name *anon_name);
4131 #else
4132 static inline int
4133 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4134 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4135 	return 0;
4136 }
4137 #endif
4138 
4139 #ifdef CONFIG_UNACCEPTED_MEMORY
4140 
4141 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4142 void accept_memory(phys_addr_t start, unsigned long size);
4143 
4144 #else
4145 
4146 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4147 						    unsigned long size)
4148 {
4149 	return false;
4150 }
4151 
4152 static inline void accept_memory(phys_addr_t start, unsigned long size)
4153 {
4154 }
4155 
4156 #endif
4157 
4158 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4159 {
4160 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4161 }
4162 
4163 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4164 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4165 
4166 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4167 
4168 #ifdef CONFIG_64BIT
4169 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4170 #else
4171 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4172 {
4173 	/* noop on 32 bit */
4174 	return 0;
4175 }
4176 #endif
4177 
4178 #ifdef CONFIG_MEM_ALLOC_PROFILING
4179 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4180 {
4181 	int i;
4182 	struct alloc_tag *tag;
4183 	unsigned int nr_pages = 1 << new_order;
4184 
4185 	if (!mem_alloc_profiling_enabled())
4186 		return;
4187 
4188 	tag = pgalloc_tag_get(&folio->page);
4189 	if (!tag)
4190 		return;
4191 
4192 	for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
4193 		union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i));
4194 
4195 		if (ref) {
4196 			/* Set new reference to point to the original tag */
4197 			alloc_tag_ref_set(ref, tag);
4198 			put_page_tag_ref(ref);
4199 		}
4200 	}
4201 }
4202 
4203 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4204 {
4205 	struct alloc_tag *tag;
4206 	union codetag_ref *ref;
4207 
4208 	tag = pgalloc_tag_get(&old->page);
4209 	if (!tag)
4210 		return;
4211 
4212 	ref = get_page_tag_ref(&new->page);
4213 	if (!ref)
4214 		return;
4215 
4216 	/* Clear the old ref to the original allocation tag. */
4217 	clear_page_tag_ref(&old->page);
4218 	/* Decrement the counters of the tag on get_new_folio. */
4219 	alloc_tag_sub(ref, folio_nr_pages(new));
4220 
4221 	__alloc_tag_ref_set(ref, tag);
4222 
4223 	put_page_tag_ref(ref);
4224 }
4225 #else /* !CONFIG_MEM_ALLOC_PROFILING */
4226 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4227 {
4228 }
4229 
4230 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4231 {
4232 }
4233 #endif /* CONFIG_MEM_ALLOC_PROFILING */
4234 
4235 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4236 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4237 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4238 
4239 #endif /* _LINUX_MM_H */
4240