xref: /linux-6.15/include/linux/mm.h (revision eb2bce7f)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/sched.h>
5 #include <linux/errno.h>
6 #include <linux/capability.h>
7 
8 #ifdef __KERNEL__
9 
10 #include <linux/gfp.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/prio_tree.h>
15 #include <linux/fs.h>
16 #include <linux/mutex.h>
17 #include <linux/debug_locks.h>
18 #include <linux/backing-dev.h>
19 #include <linux/mm_types.h>
20 
21 struct mempolicy;
22 struct anon_vma;
23 
24 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
25 extern unsigned long max_mapnr;
26 #endif
27 
28 extern unsigned long num_physpages;
29 extern void * high_memory;
30 extern unsigned long vmalloc_earlyreserve;
31 extern int page_cluster;
32 
33 #ifdef CONFIG_SYSCTL
34 extern int sysctl_legacy_va_layout;
35 #else
36 #define sysctl_legacy_va_layout 0
37 #endif
38 
39 #include <asm/page.h>
40 #include <asm/pgtable.h>
41 #include <asm/processor.h>
42 
43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44 
45 /*
46  * Linux kernel virtual memory manager primitives.
47  * The idea being to have a "virtual" mm in the same way
48  * we have a virtual fs - giving a cleaner interface to the
49  * mm details, and allowing different kinds of memory mappings
50  * (from shared memory to executable loading to arbitrary
51  * mmap() functions).
52  */
53 
54 /*
55  * This struct defines a memory VMM memory area. There is one of these
56  * per VM-area/task.  A VM area is any part of the process virtual memory
57  * space that has a special rule for the page-fault handlers (ie a shared
58  * library, the executable area etc).
59  */
60 struct vm_area_struct {
61 	struct mm_struct * vm_mm;	/* The address space we belong to. */
62 	unsigned long vm_start;		/* Our start address within vm_mm. */
63 	unsigned long vm_end;		/* The first byte after our end address
64 					   within vm_mm. */
65 
66 	/* linked list of VM areas per task, sorted by address */
67 	struct vm_area_struct *vm_next;
68 
69 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */
70 	unsigned long vm_flags;		/* Flags, listed below. */
71 
72 	struct rb_node vm_rb;
73 
74 	/*
75 	 * For areas with an address space and backing store,
76 	 * linkage into the address_space->i_mmap prio tree, or
77 	 * linkage to the list of like vmas hanging off its node, or
78 	 * linkage of vma in the address_space->i_mmap_nonlinear list.
79 	 */
80 	union {
81 		struct {
82 			struct list_head list;
83 			void *parent;	/* aligns with prio_tree_node parent */
84 			struct vm_area_struct *head;
85 		} vm_set;
86 
87 		struct raw_prio_tree_node prio_tree_node;
88 	} shared;
89 
90 	/*
91 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma
92 	 * list, after a COW of one of the file pages.  A MAP_SHARED vma
93 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack
94 	 * or brk vma (with NULL file) can only be in an anon_vma list.
95 	 */
96 	struct list_head anon_vma_node;	/* Serialized by anon_vma->lock */
97 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */
98 
99 	/* Function pointers to deal with this struct. */
100 	struct vm_operations_struct * vm_ops;
101 
102 	/* Information about our backing store: */
103 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE
104 					   units, *not* PAGE_CACHE_SIZE */
105 	struct file * vm_file;		/* File we map to (can be NULL). */
106 	void * vm_private_data;		/* was vm_pte (shared mem) */
107 	unsigned long vm_truncate_count;/* truncate_count or restart_addr */
108 
109 #ifndef CONFIG_MMU
110 	atomic_t vm_usage;		/* refcount (VMAs shared if !MMU) */
111 #endif
112 #ifdef CONFIG_NUMA
113 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */
114 #endif
115 };
116 
117 extern struct kmem_cache *vm_area_cachep;
118 
119 /*
120  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
121  * disabled, then there's a single shared list of VMAs maintained by the
122  * system, and mm's subscribe to these individually
123  */
124 struct vm_list_struct {
125 	struct vm_list_struct	*next;
126 	struct vm_area_struct	*vma;
127 };
128 
129 #ifndef CONFIG_MMU
130 extern struct rb_root nommu_vma_tree;
131 extern struct rw_semaphore nommu_vma_sem;
132 
133 extern unsigned int kobjsize(const void *objp);
134 #endif
135 
136 /*
137  * vm_flags..
138  */
139 #define VM_READ		0x00000001	/* currently active flags */
140 #define VM_WRITE	0x00000002
141 #define VM_EXEC		0x00000004
142 #define VM_SHARED	0x00000008
143 
144 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
145 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
146 #define VM_MAYWRITE	0x00000020
147 #define VM_MAYEXEC	0x00000040
148 #define VM_MAYSHARE	0x00000080
149 
150 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
151 #define VM_GROWSUP	0x00000200
152 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
153 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
154 
155 #define VM_EXECUTABLE	0x00001000
156 #define VM_LOCKED	0x00002000
157 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
158 
159 					/* Used by sys_madvise() */
160 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
161 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
162 
163 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
164 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
165 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
166 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
167 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
168 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
169 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
170 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
171 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
172 
173 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
174 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
175 #endif
176 
177 #ifdef CONFIG_STACK_GROWSUP
178 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
179 #else
180 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
181 #endif
182 
183 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
184 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
185 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
186 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
187 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
188 
189 /*
190  * mapping from the currently active vm_flags protection bits (the
191  * low four bits) to a page protection mask..
192  */
193 extern pgprot_t protection_map[16];
194 
195 
196 /*
197  * These are the virtual MM functions - opening of an area, closing and
198  * unmapping it (needed to keep files on disk up-to-date etc), pointer
199  * to the functions called when a no-page or a wp-page exception occurs.
200  */
201 struct vm_operations_struct {
202 	void (*open)(struct vm_area_struct * area);
203 	void (*close)(struct vm_area_struct * area);
204 	struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type);
205 	unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address);
206 	int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock);
207 
208 	/* notification that a previously read-only page is about to become
209 	 * writable, if an error is returned it will cause a SIGBUS */
210 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
211 #ifdef CONFIG_NUMA
212 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
214 					unsigned long addr);
215 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
216 		const nodemask_t *to, unsigned long flags);
217 #endif
218 };
219 
220 struct mmu_gather;
221 struct inode;
222 
223 #define page_private(page)		((page)->private)
224 #define set_page_private(page, v)	((page)->private = (v))
225 
226 /*
227  * FIXME: take this include out, include page-flags.h in
228  * files which need it (119 of them)
229  */
230 #include <linux/page-flags.h>
231 
232 #ifdef CONFIG_DEBUG_VM
233 #define VM_BUG_ON(cond) BUG_ON(cond)
234 #else
235 #define VM_BUG_ON(condition) do { } while(0)
236 #endif
237 
238 /*
239  * Methods to modify the page usage count.
240  *
241  * What counts for a page usage:
242  * - cache mapping   (page->mapping)
243  * - private data    (page->private)
244  * - page mapped in a task's page tables, each mapping
245  *   is counted separately
246  *
247  * Also, many kernel routines increase the page count before a critical
248  * routine so they can be sure the page doesn't go away from under them.
249  */
250 
251 /*
252  * Drop a ref, return true if the refcount fell to zero (the page has no users)
253  */
254 static inline int put_page_testzero(struct page *page)
255 {
256 	VM_BUG_ON(atomic_read(&page->_count) == 0);
257 	return atomic_dec_and_test(&page->_count);
258 }
259 
260 /*
261  * Try to grab a ref unless the page has a refcount of zero, return false if
262  * that is the case.
263  */
264 static inline int get_page_unless_zero(struct page *page)
265 {
266 	VM_BUG_ON(PageCompound(page));
267 	return atomic_inc_not_zero(&page->_count);
268 }
269 
270 static inline struct page *compound_head(struct page *page)
271 {
272 	if (unlikely(PageTail(page)))
273 		return page->first_page;
274 	return page;
275 }
276 
277 static inline int page_count(struct page *page)
278 {
279 	return atomic_read(&compound_head(page)->_count);
280 }
281 
282 static inline void get_page(struct page *page)
283 {
284 	page = compound_head(page);
285 	VM_BUG_ON(atomic_read(&page->_count) == 0);
286 	atomic_inc(&page->_count);
287 }
288 
289 static inline struct page *virt_to_head_page(const void *x)
290 {
291 	struct page *page = virt_to_page(x);
292 	return compound_head(page);
293 }
294 
295 /*
296  * Setup the page count before being freed into the page allocator for
297  * the first time (boot or memory hotplug)
298  */
299 static inline void init_page_count(struct page *page)
300 {
301 	atomic_set(&page->_count, 1);
302 }
303 
304 void put_page(struct page *page);
305 void put_pages_list(struct list_head *pages);
306 
307 void split_page(struct page *page, unsigned int order);
308 
309 /*
310  * Compound pages have a destructor function.  Provide a
311  * prototype for that function and accessor functions.
312  * These are _only_ valid on the head of a PG_compound page.
313  */
314 typedef void compound_page_dtor(struct page *);
315 
316 static inline void set_compound_page_dtor(struct page *page,
317 						compound_page_dtor *dtor)
318 {
319 	page[1].lru.next = (void *)dtor;
320 }
321 
322 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
323 {
324 	return (compound_page_dtor *)page[1].lru.next;
325 }
326 
327 static inline int compound_order(struct page *page)
328 {
329 	if (!PageHead(page))
330 		return 0;
331 	return (unsigned long)page[1].lru.prev;
332 }
333 
334 static inline void set_compound_order(struct page *page, unsigned long order)
335 {
336 	page[1].lru.prev = (void *)order;
337 }
338 
339 /*
340  * Multiple processes may "see" the same page. E.g. for untouched
341  * mappings of /dev/null, all processes see the same page full of
342  * zeroes, and text pages of executables and shared libraries have
343  * only one copy in memory, at most, normally.
344  *
345  * For the non-reserved pages, page_count(page) denotes a reference count.
346  *   page_count() == 0 means the page is free. page->lru is then used for
347  *   freelist management in the buddy allocator.
348  *   page_count() > 0  means the page has been allocated.
349  *
350  * Pages are allocated by the slab allocator in order to provide memory
351  * to kmalloc and kmem_cache_alloc. In this case, the management of the
352  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
353  * unless a particular usage is carefully commented. (the responsibility of
354  * freeing the kmalloc memory is the caller's, of course).
355  *
356  * A page may be used by anyone else who does a __get_free_page().
357  * In this case, page_count still tracks the references, and should only
358  * be used through the normal accessor functions. The top bits of page->flags
359  * and page->virtual store page management information, but all other fields
360  * are unused and could be used privately, carefully. The management of this
361  * page is the responsibility of the one who allocated it, and those who have
362  * subsequently been given references to it.
363  *
364  * The other pages (we may call them "pagecache pages") are completely
365  * managed by the Linux memory manager: I/O, buffers, swapping etc.
366  * The following discussion applies only to them.
367  *
368  * A pagecache page contains an opaque `private' member, which belongs to the
369  * page's address_space. Usually, this is the address of a circular list of
370  * the page's disk buffers. PG_private must be set to tell the VM to call
371  * into the filesystem to release these pages.
372  *
373  * A page may belong to an inode's memory mapping. In this case, page->mapping
374  * is the pointer to the inode, and page->index is the file offset of the page,
375  * in units of PAGE_CACHE_SIZE.
376  *
377  * If pagecache pages are not associated with an inode, they are said to be
378  * anonymous pages. These may become associated with the swapcache, and in that
379  * case PG_swapcache is set, and page->private is an offset into the swapcache.
380  *
381  * In either case (swapcache or inode backed), the pagecache itself holds one
382  * reference to the page. Setting PG_private should also increment the
383  * refcount. The each user mapping also has a reference to the page.
384  *
385  * The pagecache pages are stored in a per-mapping radix tree, which is
386  * rooted at mapping->page_tree, and indexed by offset.
387  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
388  * lists, we instead now tag pages as dirty/writeback in the radix tree.
389  *
390  * All pagecache pages may be subject to I/O:
391  * - inode pages may need to be read from disk,
392  * - inode pages which have been modified and are MAP_SHARED may need
393  *   to be written back to the inode on disk,
394  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
395  *   modified may need to be swapped out to swap space and (later) to be read
396  *   back into memory.
397  */
398 
399 /*
400  * The zone field is never updated after free_area_init_core()
401  * sets it, so none of the operations on it need to be atomic.
402  */
403 
404 
405 /*
406  * page->flags layout:
407  *
408  * There are three possibilities for how page->flags get
409  * laid out.  The first is for the normal case, without
410  * sparsemem.  The second is for sparsemem when there is
411  * plenty of space for node and section.  The last is when
412  * we have run out of space and have to fall back to an
413  * alternate (slower) way of determining the node.
414  *
415  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
416  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
417  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
418  */
419 #ifdef CONFIG_SPARSEMEM
420 #define SECTIONS_WIDTH		SECTIONS_SHIFT
421 #else
422 #define SECTIONS_WIDTH		0
423 #endif
424 
425 #define ZONES_WIDTH		ZONES_SHIFT
426 
427 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
428 #define NODES_WIDTH		NODES_SHIFT
429 #else
430 #define NODES_WIDTH		0
431 #endif
432 
433 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
434 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
435 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
436 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
437 
438 /*
439  * We are going to use the flags for the page to node mapping if its in
440  * there.  This includes the case where there is no node, so it is implicit.
441  */
442 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
443 #define NODE_NOT_IN_PAGE_FLAGS
444 #endif
445 
446 #ifndef PFN_SECTION_SHIFT
447 #define PFN_SECTION_SHIFT 0
448 #endif
449 
450 /*
451  * Define the bit shifts to access each section.  For non-existant
452  * sections we define the shift as 0; that plus a 0 mask ensures
453  * the compiler will optimise away reference to them.
454  */
455 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
456 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
457 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
458 
459 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
460 #ifdef NODE_NOT_IN_PAGEFLAGS
461 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
462 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
463 						SECTIONS_PGOFF : ZONES_PGOFF)
464 #else
465 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
466 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
467 						NODES_PGOFF : ZONES_PGOFF)
468 #endif
469 
470 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
471 
472 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
473 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
474 #endif
475 
476 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
477 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
478 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
479 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
480 
481 static inline enum zone_type page_zonenum(struct page *page)
482 {
483 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
484 }
485 
486 /*
487  * The identification function is only used by the buddy allocator for
488  * determining if two pages could be buddies. We are not really
489  * identifying a zone since we could be using a the section number
490  * id if we have not node id available in page flags.
491  * We guarantee only that it will return the same value for two
492  * combinable pages in a zone.
493  */
494 static inline int page_zone_id(struct page *page)
495 {
496 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
497 }
498 
499 static inline int zone_to_nid(struct zone *zone)
500 {
501 #ifdef CONFIG_NUMA
502 	return zone->node;
503 #else
504 	return 0;
505 #endif
506 }
507 
508 #ifdef NODE_NOT_IN_PAGE_FLAGS
509 extern int page_to_nid(struct page *page);
510 #else
511 static inline int page_to_nid(struct page *page)
512 {
513 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
514 }
515 #endif
516 
517 static inline struct zone *page_zone(struct page *page)
518 {
519 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
520 }
521 
522 static inline unsigned long page_to_section(struct page *page)
523 {
524 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
525 }
526 
527 static inline void set_page_zone(struct page *page, enum zone_type zone)
528 {
529 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
530 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
531 }
532 
533 static inline void set_page_node(struct page *page, unsigned long node)
534 {
535 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
536 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
537 }
538 
539 static inline void set_page_section(struct page *page, unsigned long section)
540 {
541 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
542 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
543 }
544 
545 static inline void set_page_links(struct page *page, enum zone_type zone,
546 	unsigned long node, unsigned long pfn)
547 {
548 	set_page_zone(page, zone);
549 	set_page_node(page, node);
550 	set_page_section(page, pfn_to_section_nr(pfn));
551 }
552 
553 /*
554  * Some inline functions in vmstat.h depend on page_zone()
555  */
556 #include <linux/vmstat.h>
557 
558 static __always_inline void *lowmem_page_address(struct page *page)
559 {
560 	return __va(page_to_pfn(page) << PAGE_SHIFT);
561 }
562 
563 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
564 #define HASHED_PAGE_VIRTUAL
565 #endif
566 
567 #if defined(WANT_PAGE_VIRTUAL)
568 #define page_address(page) ((page)->virtual)
569 #define set_page_address(page, address)			\
570 	do {						\
571 		(page)->virtual = (address);		\
572 	} while(0)
573 #define page_address_init()  do { } while(0)
574 #endif
575 
576 #if defined(HASHED_PAGE_VIRTUAL)
577 void *page_address(struct page *page);
578 void set_page_address(struct page *page, void *virtual);
579 void page_address_init(void);
580 #endif
581 
582 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
583 #define page_address(page) lowmem_page_address(page)
584 #define set_page_address(page, address)  do { } while(0)
585 #define page_address_init()  do { } while(0)
586 #endif
587 
588 /*
589  * On an anonymous page mapped into a user virtual memory area,
590  * page->mapping points to its anon_vma, not to a struct address_space;
591  * with the PAGE_MAPPING_ANON bit set to distinguish it.
592  *
593  * Please note that, confusingly, "page_mapping" refers to the inode
594  * address_space which maps the page from disk; whereas "page_mapped"
595  * refers to user virtual address space into which the page is mapped.
596  */
597 #define PAGE_MAPPING_ANON	1
598 
599 extern struct address_space swapper_space;
600 static inline struct address_space *page_mapping(struct page *page)
601 {
602 	struct address_space *mapping = page->mapping;
603 
604 	if (unlikely(PageSwapCache(page)))
605 		mapping = &swapper_space;
606 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
607 		mapping = NULL;
608 	return mapping;
609 }
610 
611 static inline int PageAnon(struct page *page)
612 {
613 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
614 }
615 
616 /*
617  * Return the pagecache index of the passed page.  Regular pagecache pages
618  * use ->index whereas swapcache pages use ->private
619  */
620 static inline pgoff_t page_index(struct page *page)
621 {
622 	if (unlikely(PageSwapCache(page)))
623 		return page_private(page);
624 	return page->index;
625 }
626 
627 /*
628  * The atomic page->_mapcount, like _count, starts from -1:
629  * so that transitions both from it and to it can be tracked,
630  * using atomic_inc_and_test and atomic_add_negative(-1).
631  */
632 static inline void reset_page_mapcount(struct page *page)
633 {
634 	atomic_set(&(page)->_mapcount, -1);
635 }
636 
637 static inline int page_mapcount(struct page *page)
638 {
639 	return atomic_read(&(page)->_mapcount) + 1;
640 }
641 
642 /*
643  * Return true if this page is mapped into pagetables.
644  */
645 static inline int page_mapped(struct page *page)
646 {
647 	return atomic_read(&(page)->_mapcount) >= 0;
648 }
649 
650 /*
651  * Error return values for the *_nopage functions
652  */
653 #define NOPAGE_SIGBUS	(NULL)
654 #define NOPAGE_OOM	((struct page *) (-1))
655 #define NOPAGE_REFAULT	((struct page *) (-2))	/* Return to userspace, rerun */
656 
657 /*
658  * Error return values for the *_nopfn functions
659  */
660 #define NOPFN_SIGBUS	((unsigned long) -1)
661 #define NOPFN_OOM	((unsigned long) -2)
662 #define NOPFN_REFAULT	((unsigned long) -3)
663 
664 /*
665  * Different kinds of faults, as returned by handle_mm_fault().
666  * Used to decide whether a process gets delivered SIGBUS or
667  * just gets major/minor fault counters bumped up.
668  */
669 #define VM_FAULT_OOM	0x00
670 #define VM_FAULT_SIGBUS	0x01
671 #define VM_FAULT_MINOR	0x02
672 #define VM_FAULT_MAJOR	0x03
673 
674 /*
675  * Special case for get_user_pages.
676  * Must be in a distinct bit from the above VM_FAULT_ flags.
677  */
678 #define VM_FAULT_WRITE	0x10
679 
680 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
681 
682 extern void show_free_areas(void);
683 
684 #ifdef CONFIG_SHMEM
685 int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new);
686 struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
687 					unsigned long addr);
688 int shmem_lock(struct file *file, int lock, struct user_struct *user);
689 #else
690 static inline int shmem_lock(struct file *file, int lock,
691 			     struct user_struct *user)
692 {
693 	return 0;
694 }
695 
696 static inline int shmem_set_policy(struct vm_area_struct *vma,
697 				   struct mempolicy *new)
698 {
699 	return 0;
700 }
701 
702 static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
703 						 unsigned long addr)
704 {
705 	return NULL;
706 }
707 #endif
708 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
709 
710 int shmem_zero_setup(struct vm_area_struct *);
711 
712 #ifndef CONFIG_MMU
713 extern unsigned long shmem_get_unmapped_area(struct file *file,
714 					     unsigned long addr,
715 					     unsigned long len,
716 					     unsigned long pgoff,
717 					     unsigned long flags);
718 #endif
719 
720 static inline int can_do_mlock(void)
721 {
722 	if (capable(CAP_IPC_LOCK))
723 		return 1;
724 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0)
725 		return 1;
726 	return 0;
727 }
728 extern int user_shm_lock(size_t, struct user_struct *);
729 extern void user_shm_unlock(size_t, struct user_struct *);
730 
731 /*
732  * Parameter block passed down to zap_pte_range in exceptional cases.
733  */
734 struct zap_details {
735 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
736 	struct address_space *check_mapping;	/* Check page->mapping if set */
737 	pgoff_t	first_index;			/* Lowest page->index to unmap */
738 	pgoff_t last_index;			/* Highest page->index to unmap */
739 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
740 	unsigned long truncate_count;		/* Compare vm_truncate_count */
741 };
742 
743 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
744 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
745 		unsigned long size, struct zap_details *);
746 unsigned long unmap_vmas(struct mmu_gather **tlb,
747 		struct vm_area_struct *start_vma, unsigned long start_addr,
748 		unsigned long end_addr, unsigned long *nr_accounted,
749 		struct zap_details *);
750 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
751 		unsigned long end, unsigned long floor, unsigned long ceiling);
752 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
753 		unsigned long floor, unsigned long ceiling);
754 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
755 			struct vm_area_struct *vma);
756 int zeromap_page_range(struct vm_area_struct *vma, unsigned long from,
757 			unsigned long size, pgprot_t prot);
758 void unmap_mapping_range(struct address_space *mapping,
759 		loff_t const holebegin, loff_t const holelen, int even_cows);
760 
761 static inline void unmap_shared_mapping_range(struct address_space *mapping,
762 		loff_t const holebegin, loff_t const holelen)
763 {
764 	unmap_mapping_range(mapping, holebegin, holelen, 0);
765 }
766 
767 extern int vmtruncate(struct inode * inode, loff_t offset);
768 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
769 extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot);
770 extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot);
771 
772 #ifdef CONFIG_MMU
773 extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma,
774 			unsigned long address, int write_access);
775 
776 static inline int handle_mm_fault(struct mm_struct *mm,
777 			struct vm_area_struct *vma, unsigned long address,
778 			int write_access)
779 {
780 	return __handle_mm_fault(mm, vma, address, write_access) &
781 				(~VM_FAULT_WRITE);
782 }
783 #else
784 static inline int handle_mm_fault(struct mm_struct *mm,
785 			struct vm_area_struct *vma, unsigned long address,
786 			int write_access)
787 {
788 	/* should never happen if there's no MMU */
789 	BUG();
790 	return VM_FAULT_SIGBUS;
791 }
792 #endif
793 
794 extern int make_pages_present(unsigned long addr, unsigned long end);
795 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
796 void install_arg_page(struct vm_area_struct *, struct page *, unsigned long);
797 
798 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
799 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
800 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
801 
802 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
803 extern void do_invalidatepage(struct page *page, unsigned long offset);
804 
805 int __set_page_dirty_nobuffers(struct page *page);
806 int __set_page_dirty_no_writeback(struct page *page);
807 int redirty_page_for_writepage(struct writeback_control *wbc,
808 				struct page *page);
809 int FASTCALL(set_page_dirty(struct page *page));
810 int set_page_dirty_lock(struct page *page);
811 int clear_page_dirty_for_io(struct page *page);
812 
813 extern unsigned long do_mremap(unsigned long addr,
814 			       unsigned long old_len, unsigned long new_len,
815 			       unsigned long flags, unsigned long new_addr);
816 
817 /*
818  * Prototype to add a shrinker callback for ageable caches.
819  *
820  * These functions are passed a count `nr_to_scan' and a gfpmask.  They should
821  * scan `nr_to_scan' objects, attempting to free them.
822  *
823  * The callback must return the number of objects which remain in the cache.
824  *
825  * The callback will be passed nr_to_scan == 0 when the VM is querying the
826  * cache size, so a fastpath for that case is appropriate.
827  */
828 typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask);
829 
830 /*
831  * Add an aging callback.  The int is the number of 'seeks' it takes
832  * to recreate one of the objects that these functions age.
833  */
834 
835 #define DEFAULT_SEEKS 2
836 struct shrinker;
837 extern struct shrinker *set_shrinker(int, shrinker_t);
838 extern void remove_shrinker(struct shrinker *shrinker);
839 
840 /*
841  * Some shared mappigns will want the pages marked read-only
842  * to track write events. If so, we'll downgrade vm_page_prot
843  * to the private version (using protection_map[] without the
844  * VM_SHARED bit).
845  */
846 static inline int vma_wants_writenotify(struct vm_area_struct *vma)
847 {
848 	unsigned int vm_flags = vma->vm_flags;
849 
850 	/* If it was private or non-writable, the write bit is already clear */
851 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
852 		return 0;
853 
854 	/* The backer wishes to know when pages are first written to? */
855 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
856 		return 1;
857 
858 	/* The open routine did something to the protections already? */
859 	if (pgprot_val(vma->vm_page_prot) !=
860 	    pgprot_val(protection_map[vm_flags &
861 		    (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]))
862 		return 0;
863 
864 	/* Specialty mapping? */
865 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
866 		return 0;
867 
868 	/* Can the mapping track the dirty pages? */
869 	return vma->vm_file && vma->vm_file->f_mapping &&
870 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
871 }
872 
873 extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl));
874 
875 #ifdef __PAGETABLE_PUD_FOLDED
876 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
877 						unsigned long address)
878 {
879 	return 0;
880 }
881 #else
882 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
883 #endif
884 
885 #ifdef __PAGETABLE_PMD_FOLDED
886 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
887 						unsigned long address)
888 {
889 	return 0;
890 }
891 #else
892 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
893 #endif
894 
895 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
896 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
897 
898 /*
899  * The following ifdef needed to get the 4level-fixup.h header to work.
900  * Remove it when 4level-fixup.h has been removed.
901  */
902 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
903 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
904 {
905 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
906 		NULL: pud_offset(pgd, address);
907 }
908 
909 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
910 {
911 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
912 		NULL: pmd_offset(pud, address);
913 }
914 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
915 
916 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
917 /*
918  * We tuck a spinlock to guard each pagetable page into its struct page,
919  * at page->private, with BUILD_BUG_ON to make sure that this will not
920  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
921  * When freeing, reset page->mapping so free_pages_check won't complain.
922  */
923 #define __pte_lockptr(page)	&((page)->ptl)
924 #define pte_lock_init(_page)	do {					\
925 	spin_lock_init(__pte_lockptr(_page));				\
926 } while (0)
927 #define pte_lock_deinit(page)	((page)->mapping = NULL)
928 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
929 #else
930 /*
931  * We use mm->page_table_lock to guard all pagetable pages of the mm.
932  */
933 #define pte_lock_init(page)	do {} while (0)
934 #define pte_lock_deinit(page)	do {} while (0)
935 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
936 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
937 
938 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
939 ({							\
940 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
941 	pte_t *__pte = pte_offset_map(pmd, address);	\
942 	*(ptlp) = __ptl;				\
943 	spin_lock(__ptl);				\
944 	__pte;						\
945 })
946 
947 #define pte_unmap_unlock(pte, ptl)	do {		\
948 	spin_unlock(ptl);				\
949 	pte_unmap(pte);					\
950 } while (0)
951 
952 #define pte_alloc_map(mm, pmd, address)			\
953 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
954 		NULL: pte_offset_map(pmd, address))
955 
956 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
957 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
958 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
959 
960 #define pte_alloc_kernel(pmd, address)			\
961 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
962 		NULL: pte_offset_kernel(pmd, address))
963 
964 extern void free_area_init(unsigned long * zones_size);
965 extern void free_area_init_node(int nid, pg_data_t *pgdat,
966 	unsigned long * zones_size, unsigned long zone_start_pfn,
967 	unsigned long *zholes_size);
968 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
969 /*
970  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
971  * zones, allocate the backing mem_map and account for memory holes in a more
972  * architecture independent manner. This is a substitute for creating the
973  * zone_sizes[] and zholes_size[] arrays and passing them to
974  * free_area_init_node()
975  *
976  * An architecture is expected to register range of page frames backed by
977  * physical memory with add_active_range() before calling
978  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
979  * usage, an architecture is expected to do something like
980  *
981  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
982  * 							 max_highmem_pfn};
983  * for_each_valid_physical_page_range()
984  * 	add_active_range(node_id, start_pfn, end_pfn)
985  * free_area_init_nodes(max_zone_pfns);
986  *
987  * If the architecture guarantees that there are no holes in the ranges
988  * registered with add_active_range(), free_bootmem_active_regions()
989  * will call free_bootmem_node() for each registered physical page range.
990  * Similarly sparse_memory_present_with_active_regions() calls
991  * memory_present() for each range when SPARSEMEM is enabled.
992  *
993  * See mm/page_alloc.c for more information on each function exposed by
994  * CONFIG_ARCH_POPULATES_NODE_MAP
995  */
996 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
997 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
998 					unsigned long end_pfn);
999 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
1000 						unsigned long new_end_pfn);
1001 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
1002 					unsigned long end_pfn);
1003 extern void remove_all_active_ranges(void);
1004 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1005 						unsigned long end_pfn);
1006 extern void get_pfn_range_for_nid(unsigned int nid,
1007 			unsigned long *start_pfn, unsigned long *end_pfn);
1008 extern unsigned long find_min_pfn_with_active_regions(void);
1009 extern unsigned long find_max_pfn_with_active_regions(void);
1010 extern void free_bootmem_with_active_regions(int nid,
1011 						unsigned long max_low_pfn);
1012 extern void sparse_memory_present_with_active_regions(int nid);
1013 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1014 extern int early_pfn_to_nid(unsigned long pfn);
1015 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1016 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1017 extern void set_dma_reserve(unsigned long new_dma_reserve);
1018 extern void memmap_init_zone(unsigned long, int, unsigned long,
1019 				unsigned long, enum memmap_context);
1020 extern void setup_per_zone_pages_min(void);
1021 extern void mem_init(void);
1022 extern void show_mem(void);
1023 extern void si_meminfo(struct sysinfo * val);
1024 extern void si_meminfo_node(struct sysinfo *val, int nid);
1025 
1026 #ifdef CONFIG_NUMA
1027 extern void setup_per_cpu_pageset(void);
1028 #else
1029 static inline void setup_per_cpu_pageset(void) {}
1030 #endif
1031 
1032 /* prio_tree.c */
1033 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1034 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1035 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1036 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1037 	struct prio_tree_iter *iter);
1038 
1039 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1040 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1041 		(vma = vma_prio_tree_next(vma, iter)); )
1042 
1043 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1044 					struct list_head *list)
1045 {
1046 	vma->shared.vm_set.parent = NULL;
1047 	list_add_tail(&vma->shared.vm_set.list, list);
1048 }
1049 
1050 /* mmap.c */
1051 extern int __vm_enough_memory(long pages, int cap_sys_admin);
1052 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1053 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1054 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1055 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1056 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1057 	struct mempolicy *);
1058 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1059 extern int split_vma(struct mm_struct *,
1060 	struct vm_area_struct *, unsigned long addr, int new_below);
1061 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1062 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1063 	struct rb_node **, struct rb_node *);
1064 extern void unlink_file_vma(struct vm_area_struct *);
1065 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1066 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1067 extern void exit_mmap(struct mm_struct *);
1068 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1069 extern int install_special_mapping(struct mm_struct *mm,
1070 				   unsigned long addr, unsigned long len,
1071 				   unsigned long flags, struct page **pages);
1072 
1073 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1074 
1075 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1076 	unsigned long len, unsigned long prot,
1077 	unsigned long flag, unsigned long pgoff);
1078 
1079 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1080 	unsigned long len, unsigned long prot,
1081 	unsigned long flag, unsigned long offset)
1082 {
1083 	unsigned long ret = -EINVAL;
1084 	if ((offset + PAGE_ALIGN(len)) < offset)
1085 		goto out;
1086 	if (!(offset & ~PAGE_MASK))
1087 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1088 out:
1089 	return ret;
1090 }
1091 
1092 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1093 
1094 extern unsigned long do_brk(unsigned long, unsigned long);
1095 
1096 /* filemap.c */
1097 extern unsigned long page_unuse(struct page *);
1098 extern void truncate_inode_pages(struct address_space *, loff_t);
1099 extern void truncate_inode_pages_range(struct address_space *,
1100 				       loff_t lstart, loff_t lend);
1101 
1102 /* generic vm_area_ops exported for stackable file systems */
1103 extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *);
1104 extern int filemap_populate(struct vm_area_struct *, unsigned long,
1105 		unsigned long, pgprot_t, unsigned long, int);
1106 
1107 /* mm/page-writeback.c */
1108 int write_one_page(struct page *page, int wait);
1109 
1110 /* readahead.c */
1111 #define VM_MAX_READAHEAD	128	/* kbytes */
1112 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1113 #define VM_MAX_CACHE_HIT    	256	/* max pages in a row in cache before
1114 					 * turning readahead off */
1115 
1116 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1117 			pgoff_t offset, unsigned long nr_to_read);
1118 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1119 			pgoff_t offset, unsigned long nr_to_read);
1120 unsigned long page_cache_readahead(struct address_space *mapping,
1121 			  struct file_ra_state *ra,
1122 			  struct file *filp,
1123 			  pgoff_t offset,
1124 			  unsigned long size);
1125 void handle_ra_miss(struct address_space *mapping,
1126 		    struct file_ra_state *ra, pgoff_t offset);
1127 unsigned long max_sane_readahead(unsigned long nr);
1128 
1129 /* Do stack extension */
1130 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1131 #ifdef CONFIG_IA64
1132 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1133 #endif
1134 
1135 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1136 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1137 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1138 					     struct vm_area_struct **pprev);
1139 
1140 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1141    NULL if none.  Assume start_addr < end_addr. */
1142 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1143 {
1144 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1145 
1146 	if (vma && end_addr <= vma->vm_start)
1147 		vma = NULL;
1148 	return vma;
1149 }
1150 
1151 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1152 {
1153 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1154 }
1155 
1156 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1157 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1158 struct page *vmalloc_to_page(void *addr);
1159 unsigned long vmalloc_to_pfn(void *addr);
1160 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1161 			unsigned long pfn, unsigned long size, pgprot_t);
1162 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1163 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1164 			unsigned long pfn);
1165 
1166 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1167 			unsigned int foll_flags);
1168 #define FOLL_WRITE	0x01	/* check pte is writable */
1169 #define FOLL_TOUCH	0x02	/* mark page accessed */
1170 #define FOLL_GET	0x04	/* do get_page on page */
1171 #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */
1172 
1173 typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr,
1174 			void *data);
1175 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1176 			       unsigned long size, pte_fn_t fn, void *data);
1177 
1178 #ifdef CONFIG_PROC_FS
1179 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1180 #else
1181 static inline void vm_stat_account(struct mm_struct *mm,
1182 			unsigned long flags, struct file *file, long pages)
1183 {
1184 }
1185 #endif /* CONFIG_PROC_FS */
1186 
1187 #ifndef CONFIG_DEBUG_PAGEALLOC
1188 static inline void
1189 kernel_map_pages(struct page *page, int numpages, int enable) {}
1190 #endif
1191 
1192 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1193 #ifdef	__HAVE_ARCH_GATE_AREA
1194 int in_gate_area_no_task(unsigned long addr);
1195 int in_gate_area(struct task_struct *task, unsigned long addr);
1196 #else
1197 int in_gate_area_no_task(unsigned long addr);
1198 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1199 #endif	/* __HAVE_ARCH_GATE_AREA */
1200 
1201 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1202 					void __user *, size_t *, loff_t *);
1203 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1204 			unsigned long lru_pages);
1205 void drop_pagecache(void);
1206 void drop_slab(void);
1207 
1208 #ifndef CONFIG_MMU
1209 #define randomize_va_space 0
1210 #else
1211 extern int randomize_va_space;
1212 #endif
1213 
1214 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma);
1215 
1216 #endif /* __KERNEL__ */
1217 #endif /* _LINUX_MM_H */
1218