1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct user_struct; 40 struct pt_regs; 41 struct folio_batch; 42 43 void mm_core_init(void); 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 80 #ifdef CONFIG_SYSCTL 81 extern int sysctl_legacy_va_layout; 82 #else 83 #define sysctl_legacy_va_layout 0 84 #endif 85 86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 87 extern const int mmap_rnd_bits_min; 88 extern int mmap_rnd_bits_max __ro_after_init; 89 extern int mmap_rnd_bits __read_mostly; 90 #endif 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 92 extern const int mmap_rnd_compat_bits_min; 93 extern const int mmap_rnd_compat_bits_max; 94 extern int mmap_rnd_compat_bits __read_mostly; 95 #endif 96 97 #ifndef DIRECT_MAP_PHYSMEM_END 98 # ifdef MAX_PHYSMEM_BITS 99 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 100 # else 101 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 102 # endif 103 #endif 104 105 #include <asm/page.h> 106 #include <asm/processor.h> 107 108 #ifndef __pa_symbol 109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110 #endif 111 112 #ifndef page_to_virt 113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114 #endif 115 116 #ifndef lm_alias 117 #define lm_alias(x) __va(__pa_symbol(x)) 118 #endif 119 120 /* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127 #ifndef mm_forbids_zeropage 128 #define mm_forbids_zeropage(X) (0) 129 #endif 130 131 /* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137 #if BITS_PER_LONG == 64 138 /* This function must be updated when the size of struct page grows above 96 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statements if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145 static inline void __mm_zero_struct_page(struct page *page) 146 { 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 96); 153 154 switch (sizeof(struct page)) { 155 case 96: 156 _pp[11] = 0; 157 fallthrough; 158 case 88: 159 _pp[10] = 0; 160 fallthrough; 161 case 80: 162 _pp[9] = 0; 163 fallthrough; 164 case 72: 165 _pp[8] = 0; 166 fallthrough; 167 case 64: 168 _pp[7] = 0; 169 fallthrough; 170 case 56: 171 _pp[6] = 0; 172 _pp[5] = 0; 173 _pp[4] = 0; 174 _pp[3] = 0; 175 _pp[2] = 0; 176 _pp[1] = 0; 177 _pp[0] = 0; 178 } 179 } 180 #else 181 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 182 #endif 183 184 /* 185 * Default maximum number of active map areas, this limits the number of vmas 186 * per mm struct. Users can overwrite this number by sysctl but there is a 187 * problem. 188 * 189 * When a program's coredump is generated as ELF format, a section is created 190 * per a vma. In ELF, the number of sections is represented in unsigned short. 191 * This means the number of sections should be smaller than 65535 at coredump. 192 * Because the kernel adds some informative sections to a image of program at 193 * generating coredump, we need some margin. The number of extra sections is 194 * 1-3 now and depends on arch. We use "5" as safe margin, here. 195 * 196 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 197 * not a hard limit any more. Although some userspace tools can be surprised by 198 * that. 199 */ 200 #define MAPCOUNT_ELF_CORE_MARGIN (5) 201 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 202 203 extern int sysctl_max_map_count; 204 205 extern unsigned long sysctl_user_reserve_kbytes; 206 extern unsigned long sysctl_admin_reserve_kbytes; 207 208 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 209 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 210 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 211 #else 212 #define nth_page(page,n) ((page) + (n)) 213 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 214 #endif 215 216 /* to align the pointer to the (next) page boundary */ 217 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 218 219 /* to align the pointer to the (prev) page boundary */ 220 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 221 222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 223 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 224 225 static inline struct folio *lru_to_folio(struct list_head *head) 226 { 227 return list_entry((head)->prev, struct folio, lru); 228 } 229 230 void setup_initial_init_mm(void *start_code, void *end_code, 231 void *end_data, void *brk); 232 233 /* 234 * Linux kernel virtual memory manager primitives. 235 * The idea being to have a "virtual" mm in the same way 236 * we have a virtual fs - giving a cleaner interface to the 237 * mm details, and allowing different kinds of memory mappings 238 * (from shared memory to executable loading to arbitrary 239 * mmap() functions). 240 */ 241 242 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 243 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 244 void vm_area_free(struct vm_area_struct *); 245 /* Use only if VMA has no other users */ 246 void __vm_area_free(struct vm_area_struct *vma); 247 248 #ifndef CONFIG_MMU 249 extern struct rb_root nommu_region_tree; 250 extern struct rw_semaphore nommu_region_sem; 251 252 extern unsigned int kobjsize(const void *objp); 253 #endif 254 255 /* 256 * vm_flags in vm_area_struct, see mm_types.h. 257 * When changing, update also include/trace/events/mmflags.h 258 */ 259 #define VM_NONE 0x00000000 260 261 #define VM_READ 0x00000001 /* currently active flags */ 262 #define VM_WRITE 0x00000002 263 #define VM_EXEC 0x00000004 264 #define VM_SHARED 0x00000008 265 266 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 267 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 268 #define VM_MAYWRITE 0x00000020 269 #define VM_MAYEXEC 0x00000040 270 #define VM_MAYSHARE 0x00000080 271 272 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 273 #ifdef CONFIG_MMU 274 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 275 #else /* CONFIG_MMU */ 276 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 277 #define VM_UFFD_MISSING 0 278 #endif /* CONFIG_MMU */ 279 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 280 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 281 282 #define VM_LOCKED 0x00002000 283 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 284 285 /* Used by sys_madvise() */ 286 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 287 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 288 289 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 290 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 291 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 292 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 293 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 294 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 295 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 296 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 297 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 298 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 299 300 #ifdef CONFIG_MEM_SOFT_DIRTY 301 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 302 #else 303 # define VM_SOFTDIRTY 0 304 #endif 305 306 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 307 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 308 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 309 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 310 311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 312 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 314 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 315 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 316 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 317 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 320 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 321 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 322 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 323 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 324 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 325 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 326 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 327 328 #ifdef CONFIG_ARCH_HAS_PKEYS 329 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 330 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 331 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 332 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 333 #if CONFIG_ARCH_PKEY_BITS > 3 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #else 336 # define VM_PKEY_BIT3 0 337 #endif 338 #if CONFIG_ARCH_PKEY_BITS > 4 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #endif 357 358 #if defined(CONFIG_ARM64_GCS) 359 /* 360 * arm64's Guarded Control Stack implements similar functionality and 361 * has similar constraints to shadow stacks. 362 */ 363 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 364 #endif 365 366 #ifndef VM_SHADOW_STACK 367 # define VM_SHADOW_STACK VM_NONE 368 #endif 369 370 #if defined(CONFIG_X86) 371 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 372 #elif defined(CONFIG_PPC64) 373 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 374 #elif defined(CONFIG_PARISC) 375 # define VM_GROWSUP VM_ARCH_1 376 #elif defined(CONFIG_SPARC64) 377 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 378 # define VM_ARCH_CLEAR VM_SPARC_ADI 379 #elif defined(CONFIG_ARM64) 380 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 381 # define VM_ARCH_CLEAR VM_ARM64_BTI 382 #elif !defined(CONFIG_MMU) 383 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 384 #endif 385 386 #if defined(CONFIG_ARM64_MTE) 387 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 388 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 389 #else 390 # define VM_MTE VM_NONE 391 # define VM_MTE_ALLOWED VM_NONE 392 #endif 393 394 #ifndef VM_GROWSUP 395 # define VM_GROWSUP VM_NONE 396 #endif 397 398 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 399 # define VM_UFFD_MINOR_BIT 38 400 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 401 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 402 # define VM_UFFD_MINOR VM_NONE 403 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 404 405 /* 406 * This flag is used to connect VFIO to arch specific KVM code. It 407 * indicates that the memory under this VMA is safe for use with any 408 * non-cachable memory type inside KVM. Some VFIO devices, on some 409 * platforms, are thought to be unsafe and can cause machine crashes 410 * if KVM does not lock down the memory type. 411 */ 412 #ifdef CONFIG_64BIT 413 #define VM_ALLOW_ANY_UNCACHED_BIT 39 414 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 415 #else 416 #define VM_ALLOW_ANY_UNCACHED VM_NONE 417 #endif 418 419 #ifdef CONFIG_64BIT 420 #define VM_DROPPABLE_BIT 40 421 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 422 #elif defined(CONFIG_PPC32) 423 #define VM_DROPPABLE VM_ARCH_1 424 #else 425 #define VM_DROPPABLE VM_NONE 426 #endif 427 428 #ifdef CONFIG_64BIT 429 /* VM is sealed, in vm_flags */ 430 #define VM_SEALED _BITUL(63) 431 #endif 432 433 /* Bits set in the VMA until the stack is in its final location */ 434 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 435 436 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 437 438 /* Common data flag combinations */ 439 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 440 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 441 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 442 VM_MAYWRITE | VM_MAYEXEC) 443 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 444 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 445 446 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 447 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 448 #endif 449 450 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 451 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 452 #endif 453 454 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 455 456 #ifdef CONFIG_STACK_GROWSUP 457 #define VM_STACK VM_GROWSUP 458 #define VM_STACK_EARLY VM_GROWSDOWN 459 #else 460 #define VM_STACK VM_GROWSDOWN 461 #define VM_STACK_EARLY 0 462 #endif 463 464 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 465 466 /* VMA basic access permission flags */ 467 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 468 469 470 /* 471 * Special vmas that are non-mergable, non-mlock()able. 472 */ 473 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 474 475 /* This mask prevents VMA from being scanned with khugepaged */ 476 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 477 478 /* This mask defines which mm->def_flags a process can inherit its parent */ 479 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 480 481 /* This mask represents all the VMA flag bits used by mlock */ 482 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 483 484 /* Arch-specific flags to clear when updating VM flags on protection change */ 485 #ifndef VM_ARCH_CLEAR 486 # define VM_ARCH_CLEAR VM_NONE 487 #endif 488 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 489 490 /* 491 * mapping from the currently active vm_flags protection bits (the 492 * low four bits) to a page protection mask.. 493 */ 494 495 /* 496 * The default fault flags that should be used by most of the 497 * arch-specific page fault handlers. 498 */ 499 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 500 FAULT_FLAG_KILLABLE | \ 501 FAULT_FLAG_INTERRUPTIBLE) 502 503 /** 504 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 505 * @flags: Fault flags. 506 * 507 * This is mostly used for places where we want to try to avoid taking 508 * the mmap_lock for too long a time when waiting for another condition 509 * to change, in which case we can try to be polite to release the 510 * mmap_lock in the first round to avoid potential starvation of other 511 * processes that would also want the mmap_lock. 512 * 513 * Return: true if the page fault allows retry and this is the first 514 * attempt of the fault handling; false otherwise. 515 */ 516 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 517 { 518 return (flags & FAULT_FLAG_ALLOW_RETRY) && 519 (!(flags & FAULT_FLAG_TRIED)); 520 } 521 522 #define FAULT_FLAG_TRACE \ 523 { FAULT_FLAG_WRITE, "WRITE" }, \ 524 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 525 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 526 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 527 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 528 { FAULT_FLAG_TRIED, "TRIED" }, \ 529 { FAULT_FLAG_USER, "USER" }, \ 530 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 531 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 532 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 533 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 534 535 /* 536 * vm_fault is filled by the pagefault handler and passed to the vma's 537 * ->fault function. The vma's ->fault is responsible for returning a bitmask 538 * of VM_FAULT_xxx flags that give details about how the fault was handled. 539 * 540 * MM layer fills up gfp_mask for page allocations but fault handler might 541 * alter it if its implementation requires a different allocation context. 542 * 543 * pgoff should be used in favour of virtual_address, if possible. 544 */ 545 struct vm_fault { 546 const struct { 547 struct vm_area_struct *vma; /* Target VMA */ 548 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 549 pgoff_t pgoff; /* Logical page offset based on vma */ 550 unsigned long address; /* Faulting virtual address - masked */ 551 unsigned long real_address; /* Faulting virtual address - unmasked */ 552 }; 553 enum fault_flag flags; /* FAULT_FLAG_xxx flags 554 * XXX: should really be 'const' */ 555 pmd_t *pmd; /* Pointer to pmd entry matching 556 * the 'address' */ 557 pud_t *pud; /* Pointer to pud entry matching 558 * the 'address' 559 */ 560 union { 561 pte_t orig_pte; /* Value of PTE at the time of fault */ 562 pmd_t orig_pmd; /* Value of PMD at the time of fault, 563 * used by PMD fault only. 564 */ 565 }; 566 567 struct page *cow_page; /* Page handler may use for COW fault */ 568 struct page *page; /* ->fault handlers should return a 569 * page here, unless VM_FAULT_NOPAGE 570 * is set (which is also implied by 571 * VM_FAULT_ERROR). 572 */ 573 /* These three entries are valid only while holding ptl lock */ 574 pte_t *pte; /* Pointer to pte entry matching 575 * the 'address'. NULL if the page 576 * table hasn't been allocated. 577 */ 578 spinlock_t *ptl; /* Page table lock. 579 * Protects pte page table if 'pte' 580 * is not NULL, otherwise pmd. 581 */ 582 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 583 * vm_ops->map_pages() sets up a page 584 * table from atomic context. 585 * do_fault_around() pre-allocates 586 * page table to avoid allocation from 587 * atomic context. 588 */ 589 }; 590 591 /* 592 * These are the virtual MM functions - opening of an area, closing and 593 * unmapping it (needed to keep files on disk up-to-date etc), pointer 594 * to the functions called when a no-page or a wp-page exception occurs. 595 */ 596 struct vm_operations_struct { 597 void (*open)(struct vm_area_struct * area); 598 /** 599 * @close: Called when the VMA is being removed from the MM. 600 * Context: User context. May sleep. Caller holds mmap_lock. 601 */ 602 void (*close)(struct vm_area_struct * area); 603 /* Called any time before splitting to check if it's allowed */ 604 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 605 int (*mremap)(struct vm_area_struct *area); 606 /* 607 * Called by mprotect() to make driver-specific permission 608 * checks before mprotect() is finalised. The VMA must not 609 * be modified. Returns 0 if mprotect() can proceed. 610 */ 611 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 612 unsigned long end, unsigned long newflags); 613 vm_fault_t (*fault)(struct vm_fault *vmf); 614 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 615 vm_fault_t (*map_pages)(struct vm_fault *vmf, 616 pgoff_t start_pgoff, pgoff_t end_pgoff); 617 unsigned long (*pagesize)(struct vm_area_struct * area); 618 619 /* notification that a previously read-only page is about to become 620 * writable, if an error is returned it will cause a SIGBUS */ 621 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 622 623 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 624 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 625 626 /* called by access_process_vm when get_user_pages() fails, typically 627 * for use by special VMAs. See also generic_access_phys() for a generic 628 * implementation useful for any iomem mapping. 629 */ 630 int (*access)(struct vm_area_struct *vma, unsigned long addr, 631 void *buf, int len, int write); 632 633 /* Called by the /proc/PID/maps code to ask the vma whether it 634 * has a special name. Returning non-NULL will also cause this 635 * vma to be dumped unconditionally. */ 636 const char *(*name)(struct vm_area_struct *vma); 637 638 #ifdef CONFIG_NUMA 639 /* 640 * set_policy() op must add a reference to any non-NULL @new mempolicy 641 * to hold the policy upon return. Caller should pass NULL @new to 642 * remove a policy and fall back to surrounding context--i.e. do not 643 * install a MPOL_DEFAULT policy, nor the task or system default 644 * mempolicy. 645 */ 646 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 647 648 /* 649 * get_policy() op must add reference [mpol_get()] to any policy at 650 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 651 * in mm/mempolicy.c will do this automatically. 652 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 653 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 654 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 655 * must return NULL--i.e., do not "fallback" to task or system default 656 * policy. 657 */ 658 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 659 unsigned long addr, pgoff_t *ilx); 660 #endif 661 /* 662 * Called by vm_normal_page() for special PTEs to find the 663 * page for @addr. This is useful if the default behavior 664 * (using pte_page()) would not find the correct page. 665 */ 666 struct page *(*find_special_page)(struct vm_area_struct *vma, 667 unsigned long addr); 668 }; 669 670 #ifdef CONFIG_NUMA_BALANCING 671 static inline void vma_numab_state_init(struct vm_area_struct *vma) 672 { 673 vma->numab_state = NULL; 674 } 675 static inline void vma_numab_state_free(struct vm_area_struct *vma) 676 { 677 kfree(vma->numab_state); 678 } 679 #else 680 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 681 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 682 #endif /* CONFIG_NUMA_BALANCING */ 683 684 #ifdef CONFIG_PER_VMA_LOCK 685 /* 686 * Try to read-lock a vma. The function is allowed to occasionally yield false 687 * locked result to avoid performance overhead, in which case we fall back to 688 * using mmap_lock. The function should never yield false unlocked result. 689 */ 690 static inline bool vma_start_read(struct vm_area_struct *vma) 691 { 692 /* 693 * Check before locking. A race might cause false locked result. 694 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 695 * ACQUIRE semantics, because this is just a lockless check whose result 696 * we don't rely on for anything - the mm_lock_seq read against which we 697 * need ordering is below. 698 */ 699 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq.sequence)) 700 return false; 701 702 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 703 return false; 704 705 /* 706 * Overflow might produce false locked result. 707 * False unlocked result is impossible because we modify and check 708 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 709 * modification invalidates all existing locks. 710 * 711 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 712 * racing with vma_end_write_all(), we only start reading from the VMA 713 * after it has been unlocked. 714 * This pairs with RELEASE semantics in vma_end_write_all(). 715 */ 716 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&vma->vm_mm->mm_lock_seq))) { 717 up_read(&vma->vm_lock->lock); 718 return false; 719 } 720 return true; 721 } 722 723 static inline void vma_end_read(struct vm_area_struct *vma) 724 { 725 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 726 up_read(&vma->vm_lock->lock); 727 rcu_read_unlock(); 728 } 729 730 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 731 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 732 { 733 mmap_assert_write_locked(vma->vm_mm); 734 735 /* 736 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 737 * mm->mm_lock_seq can't be concurrently modified. 738 */ 739 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 740 return (vma->vm_lock_seq == *mm_lock_seq); 741 } 742 743 /* 744 * Begin writing to a VMA. 745 * Exclude concurrent readers under the per-VMA lock until the currently 746 * write-locked mmap_lock is dropped or downgraded. 747 */ 748 static inline void vma_start_write(struct vm_area_struct *vma) 749 { 750 unsigned int mm_lock_seq; 751 752 if (__is_vma_write_locked(vma, &mm_lock_seq)) 753 return; 754 755 down_write(&vma->vm_lock->lock); 756 /* 757 * We should use WRITE_ONCE() here because we can have concurrent reads 758 * from the early lockless pessimistic check in vma_start_read(). 759 * We don't really care about the correctness of that early check, but 760 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 761 */ 762 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 763 up_write(&vma->vm_lock->lock); 764 } 765 766 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 767 { 768 unsigned int mm_lock_seq; 769 770 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 771 } 772 773 static inline void vma_assert_locked(struct vm_area_struct *vma) 774 { 775 if (!rwsem_is_locked(&vma->vm_lock->lock)) 776 vma_assert_write_locked(vma); 777 } 778 779 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 780 { 781 /* When detaching vma should be write-locked */ 782 if (detached) 783 vma_assert_write_locked(vma); 784 vma->detached = detached; 785 } 786 787 static inline void release_fault_lock(struct vm_fault *vmf) 788 { 789 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 790 vma_end_read(vmf->vma); 791 else 792 mmap_read_unlock(vmf->vma->vm_mm); 793 } 794 795 static inline void assert_fault_locked(struct vm_fault *vmf) 796 { 797 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 798 vma_assert_locked(vmf->vma); 799 else 800 mmap_assert_locked(vmf->vma->vm_mm); 801 } 802 803 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 804 unsigned long address); 805 806 #else /* CONFIG_PER_VMA_LOCK */ 807 808 static inline bool vma_start_read(struct vm_area_struct *vma) 809 { return false; } 810 static inline void vma_end_read(struct vm_area_struct *vma) {} 811 static inline void vma_start_write(struct vm_area_struct *vma) {} 812 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 813 { mmap_assert_write_locked(vma->vm_mm); } 814 static inline void vma_mark_detached(struct vm_area_struct *vma, 815 bool detached) {} 816 817 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 818 unsigned long address) 819 { 820 return NULL; 821 } 822 823 static inline void vma_assert_locked(struct vm_area_struct *vma) 824 { 825 mmap_assert_locked(vma->vm_mm); 826 } 827 828 static inline void release_fault_lock(struct vm_fault *vmf) 829 { 830 mmap_read_unlock(vmf->vma->vm_mm); 831 } 832 833 static inline void assert_fault_locked(struct vm_fault *vmf) 834 { 835 mmap_assert_locked(vmf->vma->vm_mm); 836 } 837 838 #endif /* CONFIG_PER_VMA_LOCK */ 839 840 extern const struct vm_operations_struct vma_dummy_vm_ops; 841 842 /* 843 * WARNING: vma_init does not initialize vma->vm_lock. 844 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 845 */ 846 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 847 { 848 memset(vma, 0, sizeof(*vma)); 849 vma->vm_mm = mm; 850 vma->vm_ops = &vma_dummy_vm_ops; 851 INIT_LIST_HEAD(&vma->anon_vma_chain); 852 vma_mark_detached(vma, false); 853 vma_numab_state_init(vma); 854 } 855 856 /* Use when VMA is not part of the VMA tree and needs no locking */ 857 static inline void vm_flags_init(struct vm_area_struct *vma, 858 vm_flags_t flags) 859 { 860 ACCESS_PRIVATE(vma, __vm_flags) = flags; 861 } 862 863 /* 864 * Use when VMA is part of the VMA tree and modifications need coordination 865 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 866 * it should be locked explicitly beforehand. 867 */ 868 static inline void vm_flags_reset(struct vm_area_struct *vma, 869 vm_flags_t flags) 870 { 871 vma_assert_write_locked(vma); 872 vm_flags_init(vma, flags); 873 } 874 875 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 876 vm_flags_t flags) 877 { 878 vma_assert_write_locked(vma); 879 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 880 } 881 882 static inline void vm_flags_set(struct vm_area_struct *vma, 883 vm_flags_t flags) 884 { 885 vma_start_write(vma); 886 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 887 } 888 889 static inline void vm_flags_clear(struct vm_area_struct *vma, 890 vm_flags_t flags) 891 { 892 vma_start_write(vma); 893 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 894 } 895 896 /* 897 * Use only if VMA is not part of the VMA tree or has no other users and 898 * therefore needs no locking. 899 */ 900 static inline void __vm_flags_mod(struct vm_area_struct *vma, 901 vm_flags_t set, vm_flags_t clear) 902 { 903 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 904 } 905 906 /* 907 * Use only when the order of set/clear operations is unimportant, otherwise 908 * use vm_flags_{set|clear} explicitly. 909 */ 910 static inline void vm_flags_mod(struct vm_area_struct *vma, 911 vm_flags_t set, vm_flags_t clear) 912 { 913 vma_start_write(vma); 914 __vm_flags_mod(vma, set, clear); 915 } 916 917 static inline void vma_set_anonymous(struct vm_area_struct *vma) 918 { 919 vma->vm_ops = NULL; 920 } 921 922 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 923 { 924 return !vma->vm_ops; 925 } 926 927 /* 928 * Indicate if the VMA is a heap for the given task; for 929 * /proc/PID/maps that is the heap of the main task. 930 */ 931 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 932 { 933 return vma->vm_start < vma->vm_mm->brk && 934 vma->vm_end > vma->vm_mm->start_brk; 935 } 936 937 /* 938 * Indicate if the VMA is a stack for the given task; for 939 * /proc/PID/maps that is the stack of the main task. 940 */ 941 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 942 { 943 /* 944 * We make no effort to guess what a given thread considers to be 945 * its "stack". It's not even well-defined for programs written 946 * languages like Go. 947 */ 948 return vma->vm_start <= vma->vm_mm->start_stack && 949 vma->vm_end >= vma->vm_mm->start_stack; 950 } 951 952 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 953 { 954 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 955 956 if (!maybe_stack) 957 return false; 958 959 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 960 VM_STACK_INCOMPLETE_SETUP) 961 return true; 962 963 return false; 964 } 965 966 static inline bool vma_is_foreign(struct vm_area_struct *vma) 967 { 968 if (!current->mm) 969 return true; 970 971 if (current->mm != vma->vm_mm) 972 return true; 973 974 return false; 975 } 976 977 static inline bool vma_is_accessible(struct vm_area_struct *vma) 978 { 979 return vma->vm_flags & VM_ACCESS_FLAGS; 980 } 981 982 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 983 { 984 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 985 (VM_SHARED | VM_MAYWRITE); 986 } 987 988 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 989 { 990 return is_shared_maywrite(vma->vm_flags); 991 } 992 993 static inline 994 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 995 { 996 return mas_find(&vmi->mas, max - 1); 997 } 998 999 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1000 { 1001 /* 1002 * Uses mas_find() to get the first VMA when the iterator starts. 1003 * Calling mas_next() could skip the first entry. 1004 */ 1005 return mas_find(&vmi->mas, ULONG_MAX); 1006 } 1007 1008 static inline 1009 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1010 { 1011 return mas_next_range(&vmi->mas, ULONG_MAX); 1012 } 1013 1014 1015 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1016 { 1017 return mas_prev(&vmi->mas, 0); 1018 } 1019 1020 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1021 unsigned long start, unsigned long end, gfp_t gfp) 1022 { 1023 __mas_set_range(&vmi->mas, start, end - 1); 1024 mas_store_gfp(&vmi->mas, NULL, gfp); 1025 if (unlikely(mas_is_err(&vmi->mas))) 1026 return -ENOMEM; 1027 1028 return 0; 1029 } 1030 1031 /* Free any unused preallocations */ 1032 static inline void vma_iter_free(struct vma_iterator *vmi) 1033 { 1034 mas_destroy(&vmi->mas); 1035 } 1036 1037 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1038 struct vm_area_struct *vma) 1039 { 1040 vmi->mas.index = vma->vm_start; 1041 vmi->mas.last = vma->vm_end - 1; 1042 mas_store(&vmi->mas, vma); 1043 if (unlikely(mas_is_err(&vmi->mas))) 1044 return -ENOMEM; 1045 1046 return 0; 1047 } 1048 1049 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1050 { 1051 mas_pause(&vmi->mas); 1052 } 1053 1054 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1055 { 1056 mas_set(&vmi->mas, addr); 1057 } 1058 1059 #define for_each_vma(__vmi, __vma) \ 1060 while (((__vma) = vma_next(&(__vmi))) != NULL) 1061 1062 /* The MM code likes to work with exclusive end addresses */ 1063 #define for_each_vma_range(__vmi, __vma, __end) \ 1064 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1065 1066 #ifdef CONFIG_SHMEM 1067 /* 1068 * The vma_is_shmem is not inline because it is used only by slow 1069 * paths in userfault. 1070 */ 1071 bool vma_is_shmem(struct vm_area_struct *vma); 1072 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1073 #else 1074 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1075 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1076 #endif 1077 1078 int vma_is_stack_for_current(struct vm_area_struct *vma); 1079 1080 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1081 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1082 1083 struct mmu_gather; 1084 struct inode; 1085 1086 /* 1087 * compound_order() can be called without holding a reference, which means 1088 * that niceties like page_folio() don't work. These callers should be 1089 * prepared to handle wild return values. For example, PG_head may be 1090 * set before the order is initialised, or this may be a tail page. 1091 * See compaction.c for some good examples. 1092 */ 1093 static inline unsigned int compound_order(struct page *page) 1094 { 1095 struct folio *folio = (struct folio *)page; 1096 1097 if (!test_bit(PG_head, &folio->flags)) 1098 return 0; 1099 return folio->_flags_1 & 0xff; 1100 } 1101 1102 /** 1103 * folio_order - The allocation order of a folio. 1104 * @folio: The folio. 1105 * 1106 * A folio is composed of 2^order pages. See get_order() for the definition 1107 * of order. 1108 * 1109 * Return: The order of the folio. 1110 */ 1111 static inline unsigned int folio_order(const struct folio *folio) 1112 { 1113 if (!folio_test_large(folio)) 1114 return 0; 1115 return folio->_flags_1 & 0xff; 1116 } 1117 1118 #include <linux/huge_mm.h> 1119 1120 /* 1121 * Methods to modify the page usage count. 1122 * 1123 * What counts for a page usage: 1124 * - cache mapping (page->mapping) 1125 * - private data (page->private) 1126 * - page mapped in a task's page tables, each mapping 1127 * is counted separately 1128 * 1129 * Also, many kernel routines increase the page count before a critical 1130 * routine so they can be sure the page doesn't go away from under them. 1131 */ 1132 1133 /* 1134 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1135 */ 1136 static inline int put_page_testzero(struct page *page) 1137 { 1138 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1139 return page_ref_dec_and_test(page); 1140 } 1141 1142 static inline int folio_put_testzero(struct folio *folio) 1143 { 1144 return put_page_testzero(&folio->page); 1145 } 1146 1147 /* 1148 * Try to grab a ref unless the page has a refcount of zero, return false if 1149 * that is the case. 1150 * This can be called when MMU is off so it must not access 1151 * any of the virtual mappings. 1152 */ 1153 static inline bool get_page_unless_zero(struct page *page) 1154 { 1155 return page_ref_add_unless(page, 1, 0); 1156 } 1157 1158 static inline struct folio *folio_get_nontail_page(struct page *page) 1159 { 1160 if (unlikely(!get_page_unless_zero(page))) 1161 return NULL; 1162 return (struct folio *)page; 1163 } 1164 1165 extern int page_is_ram(unsigned long pfn); 1166 1167 enum { 1168 REGION_INTERSECTS, 1169 REGION_DISJOINT, 1170 REGION_MIXED, 1171 }; 1172 1173 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1174 unsigned long desc); 1175 1176 /* Support for virtually mapped pages */ 1177 struct page *vmalloc_to_page(const void *addr); 1178 unsigned long vmalloc_to_pfn(const void *addr); 1179 1180 /* 1181 * Determine if an address is within the vmalloc range 1182 * 1183 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1184 * is no special casing required. 1185 */ 1186 #ifdef CONFIG_MMU 1187 extern bool is_vmalloc_addr(const void *x); 1188 extern int is_vmalloc_or_module_addr(const void *x); 1189 #else 1190 static inline bool is_vmalloc_addr(const void *x) 1191 { 1192 return false; 1193 } 1194 static inline int is_vmalloc_or_module_addr(const void *x) 1195 { 1196 return 0; 1197 } 1198 #endif 1199 1200 /* 1201 * How many times the entire folio is mapped as a single unit (eg by a 1202 * PMD or PUD entry). This is probably not what you want, except for 1203 * debugging purposes or implementation of other core folio_*() primitives. 1204 */ 1205 static inline int folio_entire_mapcount(const struct folio *folio) 1206 { 1207 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1208 return atomic_read(&folio->_entire_mapcount) + 1; 1209 } 1210 1211 static inline int folio_large_mapcount(const struct folio *folio) 1212 { 1213 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1214 return atomic_read(&folio->_large_mapcount) + 1; 1215 } 1216 1217 /** 1218 * folio_mapcount() - Number of mappings of this folio. 1219 * @folio: The folio. 1220 * 1221 * The folio mapcount corresponds to the number of present user page table 1222 * entries that reference any part of a folio. Each such present user page 1223 * table entry must be paired with exactly on folio reference. 1224 * 1225 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1226 * exactly once. 1227 * 1228 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1229 * references the entire folio counts exactly once, even when such special 1230 * page table entries are comprised of multiple ordinary page table entries. 1231 * 1232 * Will report 0 for pages which cannot be mapped into userspace, such as 1233 * slab, page tables and similar. 1234 * 1235 * Return: The number of times this folio is mapped. 1236 */ 1237 static inline int folio_mapcount(const struct folio *folio) 1238 { 1239 int mapcount; 1240 1241 if (likely(!folio_test_large(folio))) { 1242 mapcount = atomic_read(&folio->_mapcount) + 1; 1243 if (page_mapcount_is_type(mapcount)) 1244 mapcount = 0; 1245 return mapcount; 1246 } 1247 return folio_large_mapcount(folio); 1248 } 1249 1250 /** 1251 * folio_mapped - Is this folio mapped into userspace? 1252 * @folio: The folio. 1253 * 1254 * Return: True if any page in this folio is referenced by user page tables. 1255 */ 1256 static inline bool folio_mapped(const struct folio *folio) 1257 { 1258 return folio_mapcount(folio) >= 1; 1259 } 1260 1261 /* 1262 * Return true if this page is mapped into pagetables. 1263 * For compound page it returns true if any sub-page of compound page is mapped, 1264 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1265 */ 1266 static inline bool page_mapped(const struct page *page) 1267 { 1268 return folio_mapped(page_folio(page)); 1269 } 1270 1271 static inline struct page *virt_to_head_page(const void *x) 1272 { 1273 struct page *page = virt_to_page(x); 1274 1275 return compound_head(page); 1276 } 1277 1278 static inline struct folio *virt_to_folio(const void *x) 1279 { 1280 struct page *page = virt_to_page(x); 1281 1282 return page_folio(page); 1283 } 1284 1285 void __folio_put(struct folio *folio); 1286 1287 void split_page(struct page *page, unsigned int order); 1288 void folio_copy(struct folio *dst, struct folio *src); 1289 int folio_mc_copy(struct folio *dst, struct folio *src); 1290 1291 unsigned long nr_free_buffer_pages(void); 1292 1293 /* Returns the number of bytes in this potentially compound page. */ 1294 static inline unsigned long page_size(struct page *page) 1295 { 1296 return PAGE_SIZE << compound_order(page); 1297 } 1298 1299 /* Returns the number of bits needed for the number of bytes in a page */ 1300 static inline unsigned int page_shift(struct page *page) 1301 { 1302 return PAGE_SHIFT + compound_order(page); 1303 } 1304 1305 /** 1306 * thp_order - Order of a transparent huge page. 1307 * @page: Head page of a transparent huge page. 1308 */ 1309 static inline unsigned int thp_order(struct page *page) 1310 { 1311 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1312 return compound_order(page); 1313 } 1314 1315 /** 1316 * thp_size - Size of a transparent huge page. 1317 * @page: Head page of a transparent huge page. 1318 * 1319 * Return: Number of bytes in this page. 1320 */ 1321 static inline unsigned long thp_size(struct page *page) 1322 { 1323 return PAGE_SIZE << thp_order(page); 1324 } 1325 1326 #ifdef CONFIG_MMU 1327 /* 1328 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1329 * servicing faults for write access. In the normal case, do always want 1330 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1331 * that do not have writing enabled, when used by access_process_vm. 1332 */ 1333 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1334 { 1335 if (likely(vma->vm_flags & VM_WRITE)) 1336 pte = pte_mkwrite(pte, vma); 1337 return pte; 1338 } 1339 1340 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1341 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1342 struct page *page, unsigned int nr, unsigned long addr); 1343 1344 vm_fault_t finish_fault(struct vm_fault *vmf); 1345 #endif 1346 1347 /* 1348 * Multiple processes may "see" the same page. E.g. for untouched 1349 * mappings of /dev/null, all processes see the same page full of 1350 * zeroes, and text pages of executables and shared libraries have 1351 * only one copy in memory, at most, normally. 1352 * 1353 * For the non-reserved pages, page_count(page) denotes a reference count. 1354 * page_count() == 0 means the page is free. page->lru is then used for 1355 * freelist management in the buddy allocator. 1356 * page_count() > 0 means the page has been allocated. 1357 * 1358 * Pages are allocated by the slab allocator in order to provide memory 1359 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1360 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1361 * unless a particular usage is carefully commented. (the responsibility of 1362 * freeing the kmalloc memory is the caller's, of course). 1363 * 1364 * A page may be used by anyone else who does a __get_free_page(). 1365 * In this case, page_count still tracks the references, and should only 1366 * be used through the normal accessor functions. The top bits of page->flags 1367 * and page->virtual store page management information, but all other fields 1368 * are unused and could be used privately, carefully. The management of this 1369 * page is the responsibility of the one who allocated it, and those who have 1370 * subsequently been given references to it. 1371 * 1372 * The other pages (we may call them "pagecache pages") are completely 1373 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1374 * The following discussion applies only to them. 1375 * 1376 * A pagecache page contains an opaque `private' member, which belongs to the 1377 * page's address_space. Usually, this is the address of a circular list of 1378 * the page's disk buffers. PG_private must be set to tell the VM to call 1379 * into the filesystem to release these pages. 1380 * 1381 * A page may belong to an inode's memory mapping. In this case, page->mapping 1382 * is the pointer to the inode, and page->index is the file offset of the page, 1383 * in units of PAGE_SIZE. 1384 * 1385 * If pagecache pages are not associated with an inode, they are said to be 1386 * anonymous pages. These may become associated with the swapcache, and in that 1387 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1388 * 1389 * In either case (swapcache or inode backed), the pagecache itself holds one 1390 * reference to the page. Setting PG_private should also increment the 1391 * refcount. The each user mapping also has a reference to the page. 1392 * 1393 * The pagecache pages are stored in a per-mapping radix tree, which is 1394 * rooted at mapping->i_pages, and indexed by offset. 1395 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1396 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1397 * 1398 * All pagecache pages may be subject to I/O: 1399 * - inode pages may need to be read from disk, 1400 * - inode pages which have been modified and are MAP_SHARED may need 1401 * to be written back to the inode on disk, 1402 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1403 * modified may need to be swapped out to swap space and (later) to be read 1404 * back into memory. 1405 */ 1406 1407 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1408 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1409 1410 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1411 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1412 { 1413 if (!static_branch_unlikely(&devmap_managed_key)) 1414 return false; 1415 if (!folio_is_zone_device(folio)) 1416 return false; 1417 return __put_devmap_managed_folio_refs(folio, refs); 1418 } 1419 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1420 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1421 { 1422 return false; 1423 } 1424 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1425 1426 /* 127: arbitrary random number, small enough to assemble well */ 1427 #define folio_ref_zero_or_close_to_overflow(folio) \ 1428 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1429 1430 /** 1431 * folio_get - Increment the reference count on a folio. 1432 * @folio: The folio. 1433 * 1434 * Context: May be called in any context, as long as you know that 1435 * you have a refcount on the folio. If you do not already have one, 1436 * folio_try_get() may be the right interface for you to use. 1437 */ 1438 static inline void folio_get(struct folio *folio) 1439 { 1440 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1441 folio_ref_inc(folio); 1442 } 1443 1444 static inline void get_page(struct page *page) 1445 { 1446 struct folio *folio = page_folio(page); 1447 if (WARN_ON_ONCE(folio_test_slab(folio))) 1448 return; 1449 folio_get(folio); 1450 } 1451 1452 static inline __must_check bool try_get_page(struct page *page) 1453 { 1454 page = compound_head(page); 1455 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1456 return false; 1457 page_ref_inc(page); 1458 return true; 1459 } 1460 1461 /** 1462 * folio_put - Decrement the reference count on a folio. 1463 * @folio: The folio. 1464 * 1465 * If the folio's reference count reaches zero, the memory will be 1466 * released back to the page allocator and may be used by another 1467 * allocation immediately. Do not access the memory or the struct folio 1468 * after calling folio_put() unless you can be sure that it wasn't the 1469 * last reference. 1470 * 1471 * Context: May be called in process or interrupt context, but not in NMI 1472 * context. May be called while holding a spinlock. 1473 */ 1474 static inline void folio_put(struct folio *folio) 1475 { 1476 if (folio_put_testzero(folio)) 1477 __folio_put(folio); 1478 } 1479 1480 /** 1481 * folio_put_refs - Reduce the reference count on a folio. 1482 * @folio: The folio. 1483 * @refs: The amount to subtract from the folio's reference count. 1484 * 1485 * If the folio's reference count reaches zero, the memory will be 1486 * released back to the page allocator and may be used by another 1487 * allocation immediately. Do not access the memory or the struct folio 1488 * after calling folio_put_refs() unless you can be sure that these weren't 1489 * the last references. 1490 * 1491 * Context: May be called in process or interrupt context, but not in NMI 1492 * context. May be called while holding a spinlock. 1493 */ 1494 static inline void folio_put_refs(struct folio *folio, int refs) 1495 { 1496 if (folio_ref_sub_and_test(folio, refs)) 1497 __folio_put(folio); 1498 } 1499 1500 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1501 1502 /* 1503 * union release_pages_arg - an array of pages or folios 1504 * 1505 * release_pages() releases a simple array of multiple pages, and 1506 * accepts various different forms of said page array: either 1507 * a regular old boring array of pages, an array of folios, or 1508 * an array of encoded page pointers. 1509 * 1510 * The transparent union syntax for this kind of "any of these 1511 * argument types" is all kinds of ugly, so look away. 1512 */ 1513 typedef union { 1514 struct page **pages; 1515 struct folio **folios; 1516 struct encoded_page **encoded_pages; 1517 } release_pages_arg __attribute__ ((__transparent_union__)); 1518 1519 void release_pages(release_pages_arg, int nr); 1520 1521 /** 1522 * folios_put - Decrement the reference count on an array of folios. 1523 * @folios: The folios. 1524 * 1525 * Like folio_put(), but for a batch of folios. This is more efficient 1526 * than writing the loop yourself as it will optimise the locks which need 1527 * to be taken if the folios are freed. The folios batch is returned 1528 * empty and ready to be reused for another batch; there is no need to 1529 * reinitialise it. 1530 * 1531 * Context: May be called in process or interrupt context, but not in NMI 1532 * context. May be called while holding a spinlock. 1533 */ 1534 static inline void folios_put(struct folio_batch *folios) 1535 { 1536 folios_put_refs(folios, NULL); 1537 } 1538 1539 static inline void put_page(struct page *page) 1540 { 1541 struct folio *folio = page_folio(page); 1542 1543 if (folio_test_slab(folio)) 1544 return; 1545 1546 /* 1547 * For some devmap managed pages we need to catch refcount transition 1548 * from 2 to 1: 1549 */ 1550 if (put_devmap_managed_folio_refs(folio, 1)) 1551 return; 1552 folio_put(folio); 1553 } 1554 1555 /* 1556 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1557 * the page's refcount so that two separate items are tracked: the original page 1558 * reference count, and also a new count of how many pin_user_pages() calls were 1559 * made against the page. ("gup-pinned" is another term for the latter). 1560 * 1561 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1562 * distinct from normal pages. As such, the unpin_user_page() call (and its 1563 * variants) must be used in order to release gup-pinned pages. 1564 * 1565 * Choice of value: 1566 * 1567 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1568 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1569 * simpler, due to the fact that adding an even power of two to the page 1570 * refcount has the effect of using only the upper N bits, for the code that 1571 * counts up using the bias value. This means that the lower bits are left for 1572 * the exclusive use of the original code that increments and decrements by one 1573 * (or at least, by much smaller values than the bias value). 1574 * 1575 * Of course, once the lower bits overflow into the upper bits (and this is 1576 * OK, because subtraction recovers the original values), then visual inspection 1577 * no longer suffices to directly view the separate counts. However, for normal 1578 * applications that don't have huge page reference counts, this won't be an 1579 * issue. 1580 * 1581 * Locking: the lockless algorithm described in folio_try_get_rcu() 1582 * provides safe operation for get_user_pages(), folio_mkclean() and 1583 * other calls that race to set up page table entries. 1584 */ 1585 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1586 1587 void unpin_user_page(struct page *page); 1588 void unpin_folio(struct folio *folio); 1589 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1590 bool make_dirty); 1591 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1592 bool make_dirty); 1593 void unpin_user_pages(struct page **pages, unsigned long npages); 1594 void unpin_user_folio(struct folio *folio, unsigned long npages); 1595 void unpin_folios(struct folio **folios, unsigned long nfolios); 1596 1597 static inline bool is_cow_mapping(vm_flags_t flags) 1598 { 1599 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1600 } 1601 1602 #ifndef CONFIG_MMU 1603 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1604 { 1605 /* 1606 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1607 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1608 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1609 * underlying memory if ptrace is active, so this is only possible if 1610 * ptrace does not apply. Note that there is no mprotect() to upgrade 1611 * write permissions later. 1612 */ 1613 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1614 } 1615 #endif 1616 1617 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1618 #define SECTION_IN_PAGE_FLAGS 1619 #endif 1620 1621 /* 1622 * The identification function is mainly used by the buddy allocator for 1623 * determining if two pages could be buddies. We are not really identifying 1624 * the zone since we could be using the section number id if we do not have 1625 * node id available in page flags. 1626 * We only guarantee that it will return the same value for two combinable 1627 * pages in a zone. 1628 */ 1629 static inline int page_zone_id(struct page *page) 1630 { 1631 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1632 } 1633 1634 #ifdef NODE_NOT_IN_PAGE_FLAGS 1635 int page_to_nid(const struct page *page); 1636 #else 1637 static inline int page_to_nid(const struct page *page) 1638 { 1639 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1640 } 1641 #endif 1642 1643 static inline int folio_nid(const struct folio *folio) 1644 { 1645 return page_to_nid(&folio->page); 1646 } 1647 1648 #ifdef CONFIG_NUMA_BALANCING 1649 /* page access time bits needs to hold at least 4 seconds */ 1650 #define PAGE_ACCESS_TIME_MIN_BITS 12 1651 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1652 #define PAGE_ACCESS_TIME_BUCKETS \ 1653 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1654 #else 1655 #define PAGE_ACCESS_TIME_BUCKETS 0 1656 #endif 1657 1658 #define PAGE_ACCESS_TIME_MASK \ 1659 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1660 1661 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1662 { 1663 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1664 } 1665 1666 static inline int cpupid_to_pid(int cpupid) 1667 { 1668 return cpupid & LAST__PID_MASK; 1669 } 1670 1671 static inline int cpupid_to_cpu(int cpupid) 1672 { 1673 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1674 } 1675 1676 static inline int cpupid_to_nid(int cpupid) 1677 { 1678 return cpu_to_node(cpupid_to_cpu(cpupid)); 1679 } 1680 1681 static inline bool cpupid_pid_unset(int cpupid) 1682 { 1683 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1684 } 1685 1686 static inline bool cpupid_cpu_unset(int cpupid) 1687 { 1688 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1689 } 1690 1691 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1692 { 1693 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1694 } 1695 1696 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1697 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1698 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1699 { 1700 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1701 } 1702 1703 static inline int folio_last_cpupid(struct folio *folio) 1704 { 1705 return folio->_last_cpupid; 1706 } 1707 static inline void page_cpupid_reset_last(struct page *page) 1708 { 1709 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1710 } 1711 #else 1712 static inline int folio_last_cpupid(struct folio *folio) 1713 { 1714 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1715 } 1716 1717 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1718 1719 static inline void page_cpupid_reset_last(struct page *page) 1720 { 1721 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1722 } 1723 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1724 1725 static inline int folio_xchg_access_time(struct folio *folio, int time) 1726 { 1727 int last_time; 1728 1729 last_time = folio_xchg_last_cpupid(folio, 1730 time >> PAGE_ACCESS_TIME_BUCKETS); 1731 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1732 } 1733 1734 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1735 { 1736 unsigned int pid_bit; 1737 1738 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1739 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1740 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1741 } 1742 } 1743 1744 bool folio_use_access_time(struct folio *folio); 1745 #else /* !CONFIG_NUMA_BALANCING */ 1746 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1747 { 1748 return folio_nid(folio); /* XXX */ 1749 } 1750 1751 static inline int folio_xchg_access_time(struct folio *folio, int time) 1752 { 1753 return 0; 1754 } 1755 1756 static inline int folio_last_cpupid(struct folio *folio) 1757 { 1758 return folio_nid(folio); /* XXX */ 1759 } 1760 1761 static inline int cpupid_to_nid(int cpupid) 1762 { 1763 return -1; 1764 } 1765 1766 static inline int cpupid_to_pid(int cpupid) 1767 { 1768 return -1; 1769 } 1770 1771 static inline int cpupid_to_cpu(int cpupid) 1772 { 1773 return -1; 1774 } 1775 1776 static inline int cpu_pid_to_cpupid(int nid, int pid) 1777 { 1778 return -1; 1779 } 1780 1781 static inline bool cpupid_pid_unset(int cpupid) 1782 { 1783 return true; 1784 } 1785 1786 static inline void page_cpupid_reset_last(struct page *page) 1787 { 1788 } 1789 1790 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1791 { 1792 return false; 1793 } 1794 1795 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1796 { 1797 } 1798 static inline bool folio_use_access_time(struct folio *folio) 1799 { 1800 return false; 1801 } 1802 #endif /* CONFIG_NUMA_BALANCING */ 1803 1804 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1805 1806 /* 1807 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1808 * setting tags for all pages to native kernel tag value 0xff, as the default 1809 * value 0x00 maps to 0xff. 1810 */ 1811 1812 static inline u8 page_kasan_tag(const struct page *page) 1813 { 1814 u8 tag = KASAN_TAG_KERNEL; 1815 1816 if (kasan_enabled()) { 1817 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1818 tag ^= 0xff; 1819 } 1820 1821 return tag; 1822 } 1823 1824 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1825 { 1826 unsigned long old_flags, flags; 1827 1828 if (!kasan_enabled()) 1829 return; 1830 1831 tag ^= 0xff; 1832 old_flags = READ_ONCE(page->flags); 1833 do { 1834 flags = old_flags; 1835 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1836 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1837 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1838 } 1839 1840 static inline void page_kasan_tag_reset(struct page *page) 1841 { 1842 if (kasan_enabled()) 1843 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1844 } 1845 1846 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1847 1848 static inline u8 page_kasan_tag(const struct page *page) 1849 { 1850 return 0xff; 1851 } 1852 1853 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1854 static inline void page_kasan_tag_reset(struct page *page) { } 1855 1856 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1857 1858 static inline struct zone *page_zone(const struct page *page) 1859 { 1860 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1861 } 1862 1863 static inline pg_data_t *page_pgdat(const struct page *page) 1864 { 1865 return NODE_DATA(page_to_nid(page)); 1866 } 1867 1868 static inline struct zone *folio_zone(const struct folio *folio) 1869 { 1870 return page_zone(&folio->page); 1871 } 1872 1873 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1874 { 1875 return page_pgdat(&folio->page); 1876 } 1877 1878 #ifdef SECTION_IN_PAGE_FLAGS 1879 static inline void set_page_section(struct page *page, unsigned long section) 1880 { 1881 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1882 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1883 } 1884 1885 static inline unsigned long page_to_section(const struct page *page) 1886 { 1887 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1888 } 1889 #endif 1890 1891 /** 1892 * folio_pfn - Return the Page Frame Number of a folio. 1893 * @folio: The folio. 1894 * 1895 * A folio may contain multiple pages. The pages have consecutive 1896 * Page Frame Numbers. 1897 * 1898 * Return: The Page Frame Number of the first page in the folio. 1899 */ 1900 static inline unsigned long folio_pfn(const struct folio *folio) 1901 { 1902 return page_to_pfn(&folio->page); 1903 } 1904 1905 static inline struct folio *pfn_folio(unsigned long pfn) 1906 { 1907 return page_folio(pfn_to_page(pfn)); 1908 } 1909 1910 /** 1911 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1912 * @folio: The folio. 1913 * 1914 * This function checks if a folio has been pinned via a call to 1915 * a function in the pin_user_pages() family. 1916 * 1917 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1918 * because it means "definitely not pinned for DMA", but true means "probably 1919 * pinned for DMA, but possibly a false positive due to having at least 1920 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1921 * 1922 * False positives are OK, because: a) it's unlikely for a folio to 1923 * get that many refcounts, and b) all the callers of this routine are 1924 * expected to be able to deal gracefully with a false positive. 1925 * 1926 * For large folios, the result will be exactly correct. That's because 1927 * we have more tracking data available: the _pincount field is used 1928 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1929 * 1930 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1931 * 1932 * Return: True, if it is likely that the folio has been "dma-pinned". 1933 * False, if the folio is definitely not dma-pinned. 1934 */ 1935 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1936 { 1937 if (folio_test_large(folio)) 1938 return atomic_read(&folio->_pincount) > 0; 1939 1940 /* 1941 * folio_ref_count() is signed. If that refcount overflows, then 1942 * folio_ref_count() returns a negative value, and callers will avoid 1943 * further incrementing the refcount. 1944 * 1945 * Here, for that overflow case, use the sign bit to count a little 1946 * bit higher via unsigned math, and thus still get an accurate result. 1947 */ 1948 return ((unsigned int)folio_ref_count(folio)) >= 1949 GUP_PIN_COUNTING_BIAS; 1950 } 1951 1952 /* 1953 * This should most likely only be called during fork() to see whether we 1954 * should break the cow immediately for an anon page on the src mm. 1955 * 1956 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1957 */ 1958 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1959 struct folio *folio) 1960 { 1961 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1962 1963 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1964 return false; 1965 1966 return folio_maybe_dma_pinned(folio); 1967 } 1968 1969 /** 1970 * is_zero_page - Query if a page is a zero page 1971 * @page: The page to query 1972 * 1973 * This returns true if @page is one of the permanent zero pages. 1974 */ 1975 static inline bool is_zero_page(const struct page *page) 1976 { 1977 return is_zero_pfn(page_to_pfn(page)); 1978 } 1979 1980 /** 1981 * is_zero_folio - Query if a folio is a zero page 1982 * @folio: The folio to query 1983 * 1984 * This returns true if @folio is one of the permanent zero pages. 1985 */ 1986 static inline bool is_zero_folio(const struct folio *folio) 1987 { 1988 return is_zero_page(&folio->page); 1989 } 1990 1991 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1992 #ifdef CONFIG_MIGRATION 1993 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1994 { 1995 #ifdef CONFIG_CMA 1996 int mt = folio_migratetype(folio); 1997 1998 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1999 return false; 2000 #endif 2001 /* The zero page can be "pinned" but gets special handling. */ 2002 if (is_zero_folio(folio)) 2003 return true; 2004 2005 /* Coherent device memory must always allow eviction. */ 2006 if (folio_is_device_coherent(folio)) 2007 return false; 2008 2009 /* Otherwise, non-movable zone folios can be pinned. */ 2010 return !folio_is_zone_movable(folio); 2011 2012 } 2013 #else 2014 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2015 { 2016 return true; 2017 } 2018 #endif 2019 2020 static inline void set_page_zone(struct page *page, enum zone_type zone) 2021 { 2022 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2023 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2024 } 2025 2026 static inline void set_page_node(struct page *page, unsigned long node) 2027 { 2028 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2029 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2030 } 2031 2032 static inline void set_page_links(struct page *page, enum zone_type zone, 2033 unsigned long node, unsigned long pfn) 2034 { 2035 set_page_zone(page, zone); 2036 set_page_node(page, node); 2037 #ifdef SECTION_IN_PAGE_FLAGS 2038 set_page_section(page, pfn_to_section_nr(pfn)); 2039 #endif 2040 } 2041 2042 /** 2043 * folio_nr_pages - The number of pages in the folio. 2044 * @folio: The folio. 2045 * 2046 * Return: A positive power of two. 2047 */ 2048 static inline long folio_nr_pages(const struct folio *folio) 2049 { 2050 if (!folio_test_large(folio)) 2051 return 1; 2052 #ifdef CONFIG_64BIT 2053 return folio->_folio_nr_pages; 2054 #else 2055 return 1L << (folio->_flags_1 & 0xff); 2056 #endif 2057 } 2058 2059 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2060 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2061 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2062 #else 2063 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2064 #endif 2065 2066 /* 2067 * compound_nr() returns the number of pages in this potentially compound 2068 * page. compound_nr() can be called on a tail page, and is defined to 2069 * return 1 in that case. 2070 */ 2071 static inline unsigned long compound_nr(struct page *page) 2072 { 2073 struct folio *folio = (struct folio *)page; 2074 2075 if (!test_bit(PG_head, &folio->flags)) 2076 return 1; 2077 #ifdef CONFIG_64BIT 2078 return folio->_folio_nr_pages; 2079 #else 2080 return 1L << (folio->_flags_1 & 0xff); 2081 #endif 2082 } 2083 2084 /** 2085 * thp_nr_pages - The number of regular pages in this huge page. 2086 * @page: The head page of a huge page. 2087 */ 2088 static inline int thp_nr_pages(struct page *page) 2089 { 2090 return folio_nr_pages((struct folio *)page); 2091 } 2092 2093 /** 2094 * folio_next - Move to the next physical folio. 2095 * @folio: The folio we're currently operating on. 2096 * 2097 * If you have physically contiguous memory which may span more than 2098 * one folio (eg a &struct bio_vec), use this function to move from one 2099 * folio to the next. Do not use it if the memory is only virtually 2100 * contiguous as the folios are almost certainly not adjacent to each 2101 * other. This is the folio equivalent to writing ``page++``. 2102 * 2103 * Context: We assume that the folios are refcounted and/or locked at a 2104 * higher level and do not adjust the reference counts. 2105 * Return: The next struct folio. 2106 */ 2107 static inline struct folio *folio_next(struct folio *folio) 2108 { 2109 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2110 } 2111 2112 /** 2113 * folio_shift - The size of the memory described by this folio. 2114 * @folio: The folio. 2115 * 2116 * A folio represents a number of bytes which is a power-of-two in size. 2117 * This function tells you which power-of-two the folio is. See also 2118 * folio_size() and folio_order(). 2119 * 2120 * Context: The caller should have a reference on the folio to prevent 2121 * it from being split. It is not necessary for the folio to be locked. 2122 * Return: The base-2 logarithm of the size of this folio. 2123 */ 2124 static inline unsigned int folio_shift(const struct folio *folio) 2125 { 2126 return PAGE_SHIFT + folio_order(folio); 2127 } 2128 2129 /** 2130 * folio_size - The number of bytes in a folio. 2131 * @folio: The folio. 2132 * 2133 * Context: The caller should have a reference on the folio to prevent 2134 * it from being split. It is not necessary for the folio to be locked. 2135 * Return: The number of bytes in this folio. 2136 */ 2137 static inline size_t folio_size(const struct folio *folio) 2138 { 2139 return PAGE_SIZE << folio_order(folio); 2140 } 2141 2142 /** 2143 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2144 * tables of more than one MM 2145 * @folio: The folio. 2146 * 2147 * This function checks if the folio is currently mapped into more than one 2148 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2149 * ("mapped exclusively"). 2150 * 2151 * For KSM folios, this function also returns "mapped shared" when a folio is 2152 * mapped multiple times into the same MM, because the individual page mappings 2153 * are independent. 2154 * 2155 * As precise information is not easily available for all folios, this function 2156 * estimates the number of MMs ("sharers") that are currently mapping a folio 2157 * using the number of times the first page of the folio is currently mapped 2158 * into page tables. 2159 * 2160 * For small anonymous folios and anonymous hugetlb folios, the return 2161 * value will be exactly correct: non-KSM folios can only be mapped at most once 2162 * into an MM, and they cannot be partially mapped. KSM folios are 2163 * considered shared even if mapped multiple times into the same MM. 2164 * 2165 * For other folios, the result can be fuzzy: 2166 * #. For partially-mappable large folios (THP), the return value can wrongly 2167 * indicate "mapped exclusively" (false negative) when the folio is 2168 * only partially mapped into at least one MM. 2169 * #. For pagecache folios (including hugetlb), the return value can wrongly 2170 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2171 * cover the same file range. 2172 * 2173 * Further, this function only considers current page table mappings that 2174 * are tracked using the folio mapcount(s). 2175 * 2176 * This function does not consider: 2177 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2178 * pagecache, temporary unmapping for migration). 2179 * #. If the folio is mapped differently (VM_PFNMAP). 2180 * #. If hugetlb page table sharing applies. Callers might want to check 2181 * hugetlb_pmd_shared(). 2182 * 2183 * Return: Whether the folio is estimated to be mapped into more than one MM. 2184 */ 2185 static inline bool folio_likely_mapped_shared(struct folio *folio) 2186 { 2187 int mapcount = folio_mapcount(folio); 2188 2189 /* Only partially-mappable folios require more care. */ 2190 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2191 return mapcount > 1; 2192 2193 /* A single mapping implies "mapped exclusively". */ 2194 if (mapcount <= 1) 2195 return false; 2196 2197 /* If any page is mapped more than once we treat it "mapped shared". */ 2198 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2199 return true; 2200 2201 /* Let's guess based on the first subpage. */ 2202 return atomic_read(&folio->_mapcount) > 0; 2203 } 2204 2205 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2206 static inline int arch_make_folio_accessible(struct folio *folio) 2207 { 2208 return 0; 2209 } 2210 #endif 2211 2212 /* 2213 * Some inline functions in vmstat.h depend on page_zone() 2214 */ 2215 #include <linux/vmstat.h> 2216 2217 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2218 #define HASHED_PAGE_VIRTUAL 2219 #endif 2220 2221 #if defined(WANT_PAGE_VIRTUAL) 2222 static inline void *page_address(const struct page *page) 2223 { 2224 return page->virtual; 2225 } 2226 static inline void set_page_address(struct page *page, void *address) 2227 { 2228 page->virtual = address; 2229 } 2230 #define page_address_init() do { } while(0) 2231 #endif 2232 2233 #if defined(HASHED_PAGE_VIRTUAL) 2234 void *page_address(const struct page *page); 2235 void set_page_address(struct page *page, void *virtual); 2236 void page_address_init(void); 2237 #endif 2238 2239 static __always_inline void *lowmem_page_address(const struct page *page) 2240 { 2241 return page_to_virt(page); 2242 } 2243 2244 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2245 #define page_address(page) lowmem_page_address(page) 2246 #define set_page_address(page, address) do { } while(0) 2247 #define page_address_init() do { } while(0) 2248 #endif 2249 2250 static inline void *folio_address(const struct folio *folio) 2251 { 2252 return page_address(&folio->page); 2253 } 2254 2255 /* 2256 * Return true only if the page has been allocated with 2257 * ALLOC_NO_WATERMARKS and the low watermark was not 2258 * met implying that the system is under some pressure. 2259 */ 2260 static inline bool page_is_pfmemalloc(const struct page *page) 2261 { 2262 /* 2263 * lru.next has bit 1 set if the page is allocated from the 2264 * pfmemalloc reserves. Callers may simply overwrite it if 2265 * they do not need to preserve that information. 2266 */ 2267 return (uintptr_t)page->lru.next & BIT(1); 2268 } 2269 2270 /* 2271 * Return true only if the folio has been allocated with 2272 * ALLOC_NO_WATERMARKS and the low watermark was not 2273 * met implying that the system is under some pressure. 2274 */ 2275 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2276 { 2277 /* 2278 * lru.next has bit 1 set if the page is allocated from the 2279 * pfmemalloc reserves. Callers may simply overwrite it if 2280 * they do not need to preserve that information. 2281 */ 2282 return (uintptr_t)folio->lru.next & BIT(1); 2283 } 2284 2285 /* 2286 * Only to be called by the page allocator on a freshly allocated 2287 * page. 2288 */ 2289 static inline void set_page_pfmemalloc(struct page *page) 2290 { 2291 page->lru.next = (void *)BIT(1); 2292 } 2293 2294 static inline void clear_page_pfmemalloc(struct page *page) 2295 { 2296 page->lru.next = NULL; 2297 } 2298 2299 /* 2300 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2301 */ 2302 extern void pagefault_out_of_memory(void); 2303 2304 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2305 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2306 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2307 2308 /* 2309 * Parameter block passed down to zap_pte_range in exceptional cases. 2310 */ 2311 struct zap_details { 2312 struct folio *single_folio; /* Locked folio to be unmapped */ 2313 bool even_cows; /* Zap COWed private pages too? */ 2314 bool reclaim_pt; /* Need reclaim page tables? */ 2315 zap_flags_t zap_flags; /* Extra flags for zapping */ 2316 }; 2317 2318 /* 2319 * Whether to drop the pte markers, for example, the uffd-wp information for 2320 * file-backed memory. This should only be specified when we will completely 2321 * drop the page in the mm, either by truncation or unmapping of the vma. By 2322 * default, the flag is not set. 2323 */ 2324 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2325 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2326 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2327 2328 #ifdef CONFIG_SCHED_MM_CID 2329 void sched_mm_cid_before_execve(struct task_struct *t); 2330 void sched_mm_cid_after_execve(struct task_struct *t); 2331 void sched_mm_cid_fork(struct task_struct *t); 2332 void sched_mm_cid_exit_signals(struct task_struct *t); 2333 static inline int task_mm_cid(struct task_struct *t) 2334 { 2335 return t->mm_cid; 2336 } 2337 #else 2338 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2339 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2340 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2341 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2342 static inline int task_mm_cid(struct task_struct *t) 2343 { 2344 /* 2345 * Use the processor id as a fall-back when the mm cid feature is 2346 * disabled. This provides functional per-cpu data structure accesses 2347 * in user-space, althrough it won't provide the memory usage benefits. 2348 */ 2349 return raw_smp_processor_id(); 2350 } 2351 #endif 2352 2353 #ifdef CONFIG_MMU 2354 extern bool can_do_mlock(void); 2355 #else 2356 static inline bool can_do_mlock(void) { return false; } 2357 #endif 2358 extern int user_shm_lock(size_t, struct ucounts *); 2359 extern void user_shm_unlock(size_t, struct ucounts *); 2360 2361 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2362 pte_t pte); 2363 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2364 pte_t pte); 2365 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2366 unsigned long addr, pmd_t pmd); 2367 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2368 pmd_t pmd); 2369 2370 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2371 unsigned long size); 2372 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2373 unsigned long size, struct zap_details *details); 2374 static inline void zap_vma_pages(struct vm_area_struct *vma) 2375 { 2376 zap_page_range_single(vma, vma->vm_start, 2377 vma->vm_end - vma->vm_start, NULL); 2378 } 2379 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2380 struct vm_area_struct *start_vma, unsigned long start, 2381 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2382 2383 struct mmu_notifier_range; 2384 2385 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2386 unsigned long end, unsigned long floor, unsigned long ceiling); 2387 int 2388 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2389 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2390 void *buf, int len, int write); 2391 2392 struct follow_pfnmap_args { 2393 /** 2394 * Inputs: 2395 * @vma: Pointer to @vm_area_struct struct 2396 * @address: the virtual address to walk 2397 */ 2398 struct vm_area_struct *vma; 2399 unsigned long address; 2400 /** 2401 * Internals: 2402 * 2403 * The caller shouldn't touch any of these. 2404 */ 2405 spinlock_t *lock; 2406 pte_t *ptep; 2407 /** 2408 * Outputs: 2409 * 2410 * @pfn: the PFN of the address 2411 * @pgprot: the pgprot_t of the mapping 2412 * @writable: whether the mapping is writable 2413 * @special: whether the mapping is a special mapping (real PFN maps) 2414 */ 2415 unsigned long pfn; 2416 pgprot_t pgprot; 2417 bool writable; 2418 bool special; 2419 }; 2420 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2421 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2422 2423 extern void truncate_pagecache(struct inode *inode, loff_t new); 2424 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2425 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2426 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2427 int generic_error_remove_folio(struct address_space *mapping, 2428 struct folio *folio); 2429 2430 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2431 unsigned long address, struct pt_regs *regs); 2432 2433 #ifdef CONFIG_MMU 2434 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2435 unsigned long address, unsigned int flags, 2436 struct pt_regs *regs); 2437 extern int fixup_user_fault(struct mm_struct *mm, 2438 unsigned long address, unsigned int fault_flags, 2439 bool *unlocked); 2440 void unmap_mapping_pages(struct address_space *mapping, 2441 pgoff_t start, pgoff_t nr, bool even_cows); 2442 void unmap_mapping_range(struct address_space *mapping, 2443 loff_t const holebegin, loff_t const holelen, int even_cows); 2444 #else 2445 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2446 unsigned long address, unsigned int flags, 2447 struct pt_regs *regs) 2448 { 2449 /* should never happen if there's no MMU */ 2450 BUG(); 2451 return VM_FAULT_SIGBUS; 2452 } 2453 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2454 unsigned int fault_flags, bool *unlocked) 2455 { 2456 /* should never happen if there's no MMU */ 2457 BUG(); 2458 return -EFAULT; 2459 } 2460 static inline void unmap_mapping_pages(struct address_space *mapping, 2461 pgoff_t start, pgoff_t nr, bool even_cows) { } 2462 static inline void unmap_mapping_range(struct address_space *mapping, 2463 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2464 #endif 2465 2466 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2467 loff_t const holebegin, loff_t const holelen) 2468 { 2469 unmap_mapping_range(mapping, holebegin, holelen, 0); 2470 } 2471 2472 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2473 unsigned long addr); 2474 2475 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2476 void *buf, int len, unsigned int gup_flags); 2477 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2478 void *buf, int len, unsigned int gup_flags); 2479 2480 #ifdef CONFIG_BPF_SYSCALL 2481 extern int copy_remote_vm_str(struct task_struct *tsk, unsigned long addr, 2482 void *buf, int len, unsigned int gup_flags); 2483 #endif 2484 2485 long get_user_pages_remote(struct mm_struct *mm, 2486 unsigned long start, unsigned long nr_pages, 2487 unsigned int gup_flags, struct page **pages, 2488 int *locked); 2489 long pin_user_pages_remote(struct mm_struct *mm, 2490 unsigned long start, unsigned long nr_pages, 2491 unsigned int gup_flags, struct page **pages, 2492 int *locked); 2493 2494 /* 2495 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2496 */ 2497 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2498 unsigned long addr, 2499 int gup_flags, 2500 struct vm_area_struct **vmap) 2501 { 2502 struct page *page; 2503 struct vm_area_struct *vma; 2504 int got; 2505 2506 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2507 return ERR_PTR(-EINVAL); 2508 2509 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2510 2511 if (got < 0) 2512 return ERR_PTR(got); 2513 2514 vma = vma_lookup(mm, addr); 2515 if (WARN_ON_ONCE(!vma)) { 2516 put_page(page); 2517 return ERR_PTR(-EINVAL); 2518 } 2519 2520 *vmap = vma; 2521 return page; 2522 } 2523 2524 long get_user_pages(unsigned long start, unsigned long nr_pages, 2525 unsigned int gup_flags, struct page **pages); 2526 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2527 unsigned int gup_flags, struct page **pages); 2528 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2529 struct page **pages, unsigned int gup_flags); 2530 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2531 struct page **pages, unsigned int gup_flags); 2532 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2533 struct folio **folios, unsigned int max_folios, 2534 pgoff_t *offset); 2535 int folio_add_pins(struct folio *folio, unsigned int pins); 2536 2537 int get_user_pages_fast(unsigned long start, int nr_pages, 2538 unsigned int gup_flags, struct page **pages); 2539 int pin_user_pages_fast(unsigned long start, int nr_pages, 2540 unsigned int gup_flags, struct page **pages); 2541 void folio_add_pin(struct folio *folio); 2542 2543 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2544 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2545 struct task_struct *task, bool bypass_rlim); 2546 2547 struct kvec; 2548 struct page *get_dump_page(unsigned long addr, int *locked); 2549 2550 bool folio_mark_dirty(struct folio *folio); 2551 bool folio_mark_dirty_lock(struct folio *folio); 2552 bool set_page_dirty(struct page *page); 2553 int set_page_dirty_lock(struct page *page); 2554 2555 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2556 2557 /* 2558 * Flags used by change_protection(). For now we make it a bitmap so 2559 * that we can pass in multiple flags just like parameters. However 2560 * for now all the callers are only use one of the flags at the same 2561 * time. 2562 */ 2563 /* 2564 * Whether we should manually check if we can map individual PTEs writable, 2565 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2566 * PTEs automatically in a writable mapping. 2567 */ 2568 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2569 /* Whether this protection change is for NUMA hints */ 2570 #define MM_CP_PROT_NUMA (1UL << 1) 2571 /* Whether this change is for write protecting */ 2572 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2573 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2574 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2575 MM_CP_UFFD_WP_RESOLVE) 2576 2577 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2578 pte_t pte); 2579 extern long change_protection(struct mmu_gather *tlb, 2580 struct vm_area_struct *vma, unsigned long start, 2581 unsigned long end, unsigned long cp_flags); 2582 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2583 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2584 unsigned long start, unsigned long end, unsigned long newflags); 2585 2586 /* 2587 * doesn't attempt to fault and will return short. 2588 */ 2589 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2590 unsigned int gup_flags, struct page **pages); 2591 2592 static inline bool get_user_page_fast_only(unsigned long addr, 2593 unsigned int gup_flags, struct page **pagep) 2594 { 2595 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2596 } 2597 /* 2598 * per-process(per-mm_struct) statistics. 2599 */ 2600 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2601 { 2602 return percpu_counter_read_positive(&mm->rss_stat[member]); 2603 } 2604 2605 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2606 2607 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2608 { 2609 percpu_counter_add(&mm->rss_stat[member], value); 2610 2611 mm_trace_rss_stat(mm, member); 2612 } 2613 2614 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2615 { 2616 percpu_counter_inc(&mm->rss_stat[member]); 2617 2618 mm_trace_rss_stat(mm, member); 2619 } 2620 2621 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2622 { 2623 percpu_counter_dec(&mm->rss_stat[member]); 2624 2625 mm_trace_rss_stat(mm, member); 2626 } 2627 2628 /* Optimized variant when folio is already known not to be anon */ 2629 static inline int mm_counter_file(struct folio *folio) 2630 { 2631 if (folio_test_swapbacked(folio)) 2632 return MM_SHMEMPAGES; 2633 return MM_FILEPAGES; 2634 } 2635 2636 static inline int mm_counter(struct folio *folio) 2637 { 2638 if (folio_test_anon(folio)) 2639 return MM_ANONPAGES; 2640 return mm_counter_file(folio); 2641 } 2642 2643 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2644 { 2645 return get_mm_counter(mm, MM_FILEPAGES) + 2646 get_mm_counter(mm, MM_ANONPAGES) + 2647 get_mm_counter(mm, MM_SHMEMPAGES); 2648 } 2649 2650 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2651 { 2652 return max(mm->hiwater_rss, get_mm_rss(mm)); 2653 } 2654 2655 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2656 { 2657 return max(mm->hiwater_vm, mm->total_vm); 2658 } 2659 2660 static inline void update_hiwater_rss(struct mm_struct *mm) 2661 { 2662 unsigned long _rss = get_mm_rss(mm); 2663 2664 if ((mm)->hiwater_rss < _rss) 2665 (mm)->hiwater_rss = _rss; 2666 } 2667 2668 static inline void update_hiwater_vm(struct mm_struct *mm) 2669 { 2670 if (mm->hiwater_vm < mm->total_vm) 2671 mm->hiwater_vm = mm->total_vm; 2672 } 2673 2674 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2675 { 2676 mm->hiwater_rss = get_mm_rss(mm); 2677 } 2678 2679 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2680 struct mm_struct *mm) 2681 { 2682 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2683 2684 if (*maxrss < hiwater_rss) 2685 *maxrss = hiwater_rss; 2686 } 2687 2688 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2689 static inline int pte_special(pte_t pte) 2690 { 2691 return 0; 2692 } 2693 2694 static inline pte_t pte_mkspecial(pte_t pte) 2695 { 2696 return pte; 2697 } 2698 #endif 2699 2700 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2701 static inline bool pmd_special(pmd_t pmd) 2702 { 2703 return false; 2704 } 2705 2706 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2707 { 2708 return pmd; 2709 } 2710 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2711 2712 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2713 static inline bool pud_special(pud_t pud) 2714 { 2715 return false; 2716 } 2717 2718 static inline pud_t pud_mkspecial(pud_t pud) 2719 { 2720 return pud; 2721 } 2722 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2723 2724 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2725 static inline int pte_devmap(pte_t pte) 2726 { 2727 return 0; 2728 } 2729 #endif 2730 2731 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2732 spinlock_t **ptl); 2733 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2734 spinlock_t **ptl) 2735 { 2736 pte_t *ptep; 2737 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2738 return ptep; 2739 } 2740 2741 #ifdef __PAGETABLE_P4D_FOLDED 2742 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2743 unsigned long address) 2744 { 2745 return 0; 2746 } 2747 #else 2748 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2749 #endif 2750 2751 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2752 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2753 unsigned long address) 2754 { 2755 return 0; 2756 } 2757 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2758 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2759 2760 #else 2761 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2762 2763 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2764 { 2765 if (mm_pud_folded(mm)) 2766 return; 2767 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2768 } 2769 2770 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2771 { 2772 if (mm_pud_folded(mm)) 2773 return; 2774 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2775 } 2776 #endif 2777 2778 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2779 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2780 unsigned long address) 2781 { 2782 return 0; 2783 } 2784 2785 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2786 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2787 2788 #else 2789 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2790 2791 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2792 { 2793 if (mm_pmd_folded(mm)) 2794 return; 2795 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2796 } 2797 2798 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2799 { 2800 if (mm_pmd_folded(mm)) 2801 return; 2802 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2803 } 2804 #endif 2805 2806 #ifdef CONFIG_MMU 2807 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2808 { 2809 atomic_long_set(&mm->pgtables_bytes, 0); 2810 } 2811 2812 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2813 { 2814 return atomic_long_read(&mm->pgtables_bytes); 2815 } 2816 2817 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2818 { 2819 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2820 } 2821 2822 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2823 { 2824 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2825 } 2826 #else 2827 2828 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2829 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2830 { 2831 return 0; 2832 } 2833 2834 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2835 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2836 #endif 2837 2838 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2839 int __pte_alloc_kernel(pmd_t *pmd); 2840 2841 #if defined(CONFIG_MMU) 2842 2843 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2844 unsigned long address) 2845 { 2846 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2847 NULL : p4d_offset(pgd, address); 2848 } 2849 2850 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2851 unsigned long address) 2852 { 2853 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2854 NULL : pud_offset(p4d, address); 2855 } 2856 2857 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2858 { 2859 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2860 NULL: pmd_offset(pud, address); 2861 } 2862 #endif /* CONFIG_MMU */ 2863 2864 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2865 { 2866 return page_ptdesc(virt_to_page(x)); 2867 } 2868 2869 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2870 { 2871 return page_to_virt(ptdesc_page(pt)); 2872 } 2873 2874 static inline void *ptdesc_address(const struct ptdesc *pt) 2875 { 2876 return folio_address(ptdesc_folio(pt)); 2877 } 2878 2879 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2880 { 2881 return folio_test_reserved(ptdesc_folio(pt)); 2882 } 2883 2884 /** 2885 * pagetable_alloc - Allocate pagetables 2886 * @gfp: GFP flags 2887 * @order: desired pagetable order 2888 * 2889 * pagetable_alloc allocates memory for page tables as well as a page table 2890 * descriptor to describe that memory. 2891 * 2892 * Return: The ptdesc describing the allocated page tables. 2893 */ 2894 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2895 { 2896 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2897 2898 return page_ptdesc(page); 2899 } 2900 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2901 2902 /** 2903 * pagetable_free - Free pagetables 2904 * @pt: The page table descriptor 2905 * 2906 * pagetable_free frees the memory of all page tables described by a page 2907 * table descriptor and the memory for the descriptor itself. 2908 */ 2909 static inline void pagetable_free(struct ptdesc *pt) 2910 { 2911 struct page *page = ptdesc_page(pt); 2912 2913 __free_pages(page, compound_order(page)); 2914 } 2915 2916 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2917 #if ALLOC_SPLIT_PTLOCKS 2918 void __init ptlock_cache_init(void); 2919 bool ptlock_alloc(struct ptdesc *ptdesc); 2920 void ptlock_free(struct ptdesc *ptdesc); 2921 2922 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2923 { 2924 return ptdesc->ptl; 2925 } 2926 #else /* ALLOC_SPLIT_PTLOCKS */ 2927 static inline void ptlock_cache_init(void) 2928 { 2929 } 2930 2931 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2932 { 2933 return true; 2934 } 2935 2936 static inline void ptlock_free(struct ptdesc *ptdesc) 2937 { 2938 } 2939 2940 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2941 { 2942 return &ptdesc->ptl; 2943 } 2944 #endif /* ALLOC_SPLIT_PTLOCKS */ 2945 2946 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2947 { 2948 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2949 } 2950 2951 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2952 { 2953 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2954 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2955 return ptlock_ptr(virt_to_ptdesc(pte)); 2956 } 2957 2958 static inline bool ptlock_init(struct ptdesc *ptdesc) 2959 { 2960 /* 2961 * prep_new_page() initialize page->private (and therefore page->ptl) 2962 * with 0. Make sure nobody took it in use in between. 2963 * 2964 * It can happen if arch try to use slab for page table allocation: 2965 * slab code uses page->slab_cache, which share storage with page->ptl. 2966 */ 2967 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2968 if (!ptlock_alloc(ptdesc)) 2969 return false; 2970 spin_lock_init(ptlock_ptr(ptdesc)); 2971 return true; 2972 } 2973 2974 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2975 /* 2976 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2977 */ 2978 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2979 { 2980 return &mm->page_table_lock; 2981 } 2982 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2983 { 2984 return &mm->page_table_lock; 2985 } 2986 static inline void ptlock_cache_init(void) {} 2987 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2988 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2989 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2990 2991 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 2992 { 2993 struct folio *folio = ptdesc_folio(ptdesc); 2994 2995 __folio_set_pgtable(folio); 2996 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2997 } 2998 2999 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3000 { 3001 struct folio *folio = ptdesc_folio(ptdesc); 3002 3003 ptlock_free(ptdesc); 3004 __folio_clear_pgtable(folio); 3005 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3006 } 3007 3008 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3009 { 3010 pagetable_dtor(ptdesc); 3011 pagetable_free(ptdesc); 3012 } 3013 3014 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3015 { 3016 if (!ptlock_init(ptdesc)) 3017 return false; 3018 __pagetable_ctor(ptdesc); 3019 return true; 3020 } 3021 3022 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3023 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3024 pmd_t *pmdvalp) 3025 { 3026 pte_t *pte; 3027 3028 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3029 return pte; 3030 } 3031 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3032 { 3033 return __pte_offset_map(pmd, addr, NULL); 3034 } 3035 3036 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3037 unsigned long addr, spinlock_t **ptlp); 3038 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3039 unsigned long addr, spinlock_t **ptlp) 3040 { 3041 pte_t *pte; 3042 3043 __cond_lock(RCU, __cond_lock(*ptlp, 3044 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3045 return pte; 3046 } 3047 3048 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3049 unsigned long addr, spinlock_t **ptlp); 3050 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3051 unsigned long addr, pmd_t *pmdvalp, 3052 spinlock_t **ptlp); 3053 3054 #define pte_unmap_unlock(pte, ptl) do { \ 3055 spin_unlock(ptl); \ 3056 pte_unmap(pte); \ 3057 } while (0) 3058 3059 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3060 3061 #define pte_alloc_map(mm, pmd, address) \ 3062 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3063 3064 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3065 (pte_alloc(mm, pmd) ? \ 3066 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3067 3068 #define pte_alloc_kernel(pmd, address) \ 3069 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3070 NULL: pte_offset_kernel(pmd, address)) 3071 3072 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3073 3074 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3075 { 3076 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3077 return virt_to_page((void *)((unsigned long) pmd & mask)); 3078 } 3079 3080 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3081 { 3082 return page_ptdesc(pmd_pgtable_page(pmd)); 3083 } 3084 3085 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3086 { 3087 return ptlock_ptr(pmd_ptdesc(pmd)); 3088 } 3089 3090 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3091 { 3092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3093 ptdesc->pmd_huge_pte = NULL; 3094 #endif 3095 return ptlock_init(ptdesc); 3096 } 3097 3098 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3099 3100 #else 3101 3102 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3103 { 3104 return &mm->page_table_lock; 3105 } 3106 3107 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3108 3109 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3110 3111 #endif 3112 3113 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3114 { 3115 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3116 spin_lock(ptl); 3117 return ptl; 3118 } 3119 3120 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3121 { 3122 if (!pmd_ptlock_init(ptdesc)) 3123 return false; 3124 ptdesc_pmd_pts_init(ptdesc); 3125 __pagetable_ctor(ptdesc); 3126 return true; 3127 } 3128 3129 /* 3130 * No scalability reason to split PUD locks yet, but follow the same pattern 3131 * as the PMD locks to make it easier if we decide to. The VM should not be 3132 * considered ready to switch to split PUD locks yet; there may be places 3133 * which need to be converted from page_table_lock. 3134 */ 3135 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3136 { 3137 return &mm->page_table_lock; 3138 } 3139 3140 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3141 { 3142 spinlock_t *ptl = pud_lockptr(mm, pud); 3143 3144 spin_lock(ptl); 3145 return ptl; 3146 } 3147 3148 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3149 { 3150 __pagetable_ctor(ptdesc); 3151 } 3152 3153 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3154 { 3155 __pagetable_ctor(ptdesc); 3156 } 3157 3158 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3159 { 3160 __pagetable_ctor(ptdesc); 3161 } 3162 3163 extern void __init pagecache_init(void); 3164 extern void free_initmem(void); 3165 3166 /* 3167 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3168 * into the buddy system. The freed pages will be poisoned with pattern 3169 * "poison" if it's within range [0, UCHAR_MAX]. 3170 * Return pages freed into the buddy system. 3171 */ 3172 extern unsigned long free_reserved_area(void *start, void *end, 3173 int poison, const char *s); 3174 3175 extern void adjust_managed_page_count(struct page *page, long count); 3176 3177 extern void reserve_bootmem_region(phys_addr_t start, 3178 phys_addr_t end, int nid); 3179 3180 /* Free the reserved page into the buddy system, so it gets managed. */ 3181 void free_reserved_page(struct page *page); 3182 #define free_highmem_page(page) free_reserved_page(page) 3183 3184 static inline void mark_page_reserved(struct page *page) 3185 { 3186 SetPageReserved(page); 3187 adjust_managed_page_count(page, -1); 3188 } 3189 3190 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3191 { 3192 free_reserved_page(ptdesc_page(pt)); 3193 } 3194 3195 /* 3196 * Default method to free all the __init memory into the buddy system. 3197 * The freed pages will be poisoned with pattern "poison" if it's within 3198 * range [0, UCHAR_MAX]. 3199 * Return pages freed into the buddy system. 3200 */ 3201 static inline unsigned long free_initmem_default(int poison) 3202 { 3203 extern char __init_begin[], __init_end[]; 3204 3205 return free_reserved_area(&__init_begin, &__init_end, 3206 poison, "unused kernel image (initmem)"); 3207 } 3208 3209 static inline unsigned long get_num_physpages(void) 3210 { 3211 int nid; 3212 unsigned long phys_pages = 0; 3213 3214 for_each_online_node(nid) 3215 phys_pages += node_present_pages(nid); 3216 3217 return phys_pages; 3218 } 3219 3220 /* 3221 * Using memblock node mappings, an architecture may initialise its 3222 * zones, allocate the backing mem_map and account for memory holes in an 3223 * architecture independent manner. 3224 * 3225 * An architecture is expected to register range of page frames backed by 3226 * physical memory with memblock_add[_node]() before calling 3227 * free_area_init() passing in the PFN each zone ends at. At a basic 3228 * usage, an architecture is expected to do something like 3229 * 3230 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3231 * max_highmem_pfn}; 3232 * for_each_valid_physical_page_range() 3233 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3234 * free_area_init(max_zone_pfns); 3235 */ 3236 void free_area_init(unsigned long *max_zone_pfn); 3237 unsigned long node_map_pfn_alignment(void); 3238 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3239 unsigned long end_pfn); 3240 extern void get_pfn_range_for_nid(unsigned int nid, 3241 unsigned long *start_pfn, unsigned long *end_pfn); 3242 3243 #ifndef CONFIG_NUMA 3244 static inline int early_pfn_to_nid(unsigned long pfn) 3245 { 3246 return 0; 3247 } 3248 #else 3249 /* please see mm/page_alloc.c */ 3250 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3251 #endif 3252 3253 extern void mem_init(void); 3254 extern void __init mmap_init(void); 3255 3256 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3257 static inline void show_mem(void) 3258 { 3259 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3260 } 3261 extern long si_mem_available(void); 3262 extern void si_meminfo(struct sysinfo * val); 3263 extern void si_meminfo_node(struct sysinfo *val, int nid); 3264 3265 extern __printf(3, 4) 3266 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3267 3268 extern void setup_per_cpu_pageset(void); 3269 3270 /* nommu.c */ 3271 extern atomic_long_t mmap_pages_allocated; 3272 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3273 3274 /* interval_tree.c */ 3275 void vma_interval_tree_insert(struct vm_area_struct *node, 3276 struct rb_root_cached *root); 3277 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3278 struct vm_area_struct *prev, 3279 struct rb_root_cached *root); 3280 void vma_interval_tree_remove(struct vm_area_struct *node, 3281 struct rb_root_cached *root); 3282 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3283 unsigned long start, unsigned long last); 3284 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3285 unsigned long start, unsigned long last); 3286 3287 #define vma_interval_tree_foreach(vma, root, start, last) \ 3288 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3289 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3290 3291 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3292 struct rb_root_cached *root); 3293 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3294 struct rb_root_cached *root); 3295 struct anon_vma_chain * 3296 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3297 unsigned long start, unsigned long last); 3298 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3299 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3300 #ifdef CONFIG_DEBUG_VM_RB 3301 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3302 #endif 3303 3304 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3305 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3306 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3307 3308 /* mmap.c */ 3309 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3310 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3311 extern void exit_mmap(struct mm_struct *); 3312 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3313 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3314 unsigned long addr, bool write); 3315 3316 static inline int check_data_rlimit(unsigned long rlim, 3317 unsigned long new, 3318 unsigned long start, 3319 unsigned long end_data, 3320 unsigned long start_data) 3321 { 3322 if (rlim < RLIM_INFINITY) { 3323 if (((new - start) + (end_data - start_data)) > rlim) 3324 return -ENOSPC; 3325 } 3326 3327 return 0; 3328 } 3329 3330 extern int mm_take_all_locks(struct mm_struct *mm); 3331 extern void mm_drop_all_locks(struct mm_struct *mm); 3332 3333 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3334 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3335 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3336 extern struct file *get_task_exe_file(struct task_struct *task); 3337 3338 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3339 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3340 3341 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3342 const struct vm_special_mapping *sm); 3343 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3344 unsigned long addr, unsigned long len, 3345 unsigned long flags, 3346 const struct vm_special_mapping *spec); 3347 3348 unsigned long randomize_stack_top(unsigned long stack_top); 3349 unsigned long randomize_page(unsigned long start, unsigned long range); 3350 3351 unsigned long 3352 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3353 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3354 3355 static inline unsigned long 3356 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3357 unsigned long pgoff, unsigned long flags) 3358 { 3359 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3360 } 3361 3362 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3363 unsigned long len, unsigned long prot, unsigned long flags, 3364 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3365 struct list_head *uf); 3366 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3367 unsigned long start, size_t len, struct list_head *uf, 3368 bool unlock); 3369 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3370 struct mm_struct *mm, unsigned long start, 3371 unsigned long end, struct list_head *uf, bool unlock); 3372 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3373 struct list_head *uf); 3374 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3375 3376 #ifdef CONFIG_MMU 3377 extern int __mm_populate(unsigned long addr, unsigned long len, 3378 int ignore_errors); 3379 static inline void mm_populate(unsigned long addr, unsigned long len) 3380 { 3381 /* Ignore errors */ 3382 (void) __mm_populate(addr, len, 1); 3383 } 3384 #else 3385 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3386 #endif 3387 3388 /* This takes the mm semaphore itself */ 3389 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3390 extern int vm_munmap(unsigned long, size_t); 3391 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3392 unsigned long, unsigned long, 3393 unsigned long, unsigned long); 3394 3395 struct vm_unmapped_area_info { 3396 #define VM_UNMAPPED_AREA_TOPDOWN 1 3397 unsigned long flags; 3398 unsigned long length; 3399 unsigned long low_limit; 3400 unsigned long high_limit; 3401 unsigned long align_mask; 3402 unsigned long align_offset; 3403 unsigned long start_gap; 3404 }; 3405 3406 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3407 3408 /* truncate.c */ 3409 extern void truncate_inode_pages(struct address_space *, loff_t); 3410 extern void truncate_inode_pages_range(struct address_space *, 3411 loff_t lstart, loff_t lend); 3412 extern void truncate_inode_pages_final(struct address_space *); 3413 3414 /* generic vm_area_ops exported for stackable file systems */ 3415 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3416 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3417 pgoff_t start_pgoff, pgoff_t end_pgoff); 3418 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3419 3420 extern unsigned long stack_guard_gap; 3421 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3422 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3423 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3424 3425 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3426 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3427 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3428 struct vm_area_struct **pprev); 3429 3430 /* 3431 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3432 * NULL if none. Assume start_addr < end_addr. 3433 */ 3434 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3435 unsigned long start_addr, unsigned long end_addr); 3436 3437 /** 3438 * vma_lookup() - Find a VMA at a specific address 3439 * @mm: The process address space. 3440 * @addr: The user address. 3441 * 3442 * Return: The vm_area_struct at the given address, %NULL otherwise. 3443 */ 3444 static inline 3445 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3446 { 3447 return mtree_load(&mm->mm_mt, addr); 3448 } 3449 3450 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3451 { 3452 if (vma->vm_flags & VM_GROWSDOWN) 3453 return stack_guard_gap; 3454 3455 /* See reasoning around the VM_SHADOW_STACK definition */ 3456 if (vma->vm_flags & VM_SHADOW_STACK) 3457 return PAGE_SIZE; 3458 3459 return 0; 3460 } 3461 3462 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3463 { 3464 unsigned long gap = stack_guard_start_gap(vma); 3465 unsigned long vm_start = vma->vm_start; 3466 3467 vm_start -= gap; 3468 if (vm_start > vma->vm_start) 3469 vm_start = 0; 3470 return vm_start; 3471 } 3472 3473 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3474 { 3475 unsigned long vm_end = vma->vm_end; 3476 3477 if (vma->vm_flags & VM_GROWSUP) { 3478 vm_end += stack_guard_gap; 3479 if (vm_end < vma->vm_end) 3480 vm_end = -PAGE_SIZE; 3481 } 3482 return vm_end; 3483 } 3484 3485 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3486 { 3487 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3488 } 3489 3490 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3491 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3492 unsigned long vm_start, unsigned long vm_end) 3493 { 3494 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3495 3496 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3497 vma = NULL; 3498 3499 return vma; 3500 } 3501 3502 static inline bool range_in_vma(struct vm_area_struct *vma, 3503 unsigned long start, unsigned long end) 3504 { 3505 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3506 } 3507 3508 #ifdef CONFIG_MMU 3509 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3510 void vma_set_page_prot(struct vm_area_struct *vma); 3511 #else 3512 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3513 { 3514 return __pgprot(0); 3515 } 3516 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3517 { 3518 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3519 } 3520 #endif 3521 3522 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3523 3524 #ifdef CONFIG_NUMA_BALANCING 3525 unsigned long change_prot_numa(struct vm_area_struct *vma, 3526 unsigned long start, unsigned long end); 3527 #endif 3528 3529 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3530 unsigned long addr); 3531 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3532 unsigned long pfn, unsigned long size, pgprot_t); 3533 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3534 unsigned long pfn, unsigned long size, pgprot_t prot); 3535 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3536 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3537 struct page **pages, unsigned long *num); 3538 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3539 unsigned long num); 3540 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3541 unsigned long num); 3542 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3543 unsigned long pfn); 3544 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3545 unsigned long pfn, pgprot_t pgprot); 3546 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3547 pfn_t pfn); 3548 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3549 unsigned long addr, pfn_t pfn); 3550 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3551 3552 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3553 unsigned long addr, struct page *page) 3554 { 3555 int err = vm_insert_page(vma, addr, page); 3556 3557 if (err == -ENOMEM) 3558 return VM_FAULT_OOM; 3559 if (err < 0 && err != -EBUSY) 3560 return VM_FAULT_SIGBUS; 3561 3562 return VM_FAULT_NOPAGE; 3563 } 3564 3565 #ifndef io_remap_pfn_range 3566 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3567 unsigned long addr, unsigned long pfn, 3568 unsigned long size, pgprot_t prot) 3569 { 3570 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3571 } 3572 #endif 3573 3574 static inline vm_fault_t vmf_error(int err) 3575 { 3576 if (err == -ENOMEM) 3577 return VM_FAULT_OOM; 3578 else if (err == -EHWPOISON) 3579 return VM_FAULT_HWPOISON; 3580 return VM_FAULT_SIGBUS; 3581 } 3582 3583 /* 3584 * Convert errno to return value for ->page_mkwrite() calls. 3585 * 3586 * This should eventually be merged with vmf_error() above, but will need a 3587 * careful audit of all vmf_error() callers. 3588 */ 3589 static inline vm_fault_t vmf_fs_error(int err) 3590 { 3591 if (err == 0) 3592 return VM_FAULT_LOCKED; 3593 if (err == -EFAULT || err == -EAGAIN) 3594 return VM_FAULT_NOPAGE; 3595 if (err == -ENOMEM) 3596 return VM_FAULT_OOM; 3597 /* -ENOSPC, -EDQUOT, -EIO ... */ 3598 return VM_FAULT_SIGBUS; 3599 } 3600 3601 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3602 { 3603 if (vm_fault & VM_FAULT_OOM) 3604 return -ENOMEM; 3605 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3606 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3607 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3608 return -EFAULT; 3609 return 0; 3610 } 3611 3612 /* 3613 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3614 * a (NUMA hinting) fault is required. 3615 */ 3616 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3617 unsigned int flags) 3618 { 3619 /* 3620 * If callers don't want to honor NUMA hinting faults, no need to 3621 * determine if we would actually have to trigger a NUMA hinting fault. 3622 */ 3623 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3624 return true; 3625 3626 /* 3627 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3628 * 3629 * Requiring a fault here even for inaccessible VMAs would mean that 3630 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3631 * refuses to process NUMA hinting faults in inaccessible VMAs. 3632 */ 3633 return !vma_is_accessible(vma); 3634 } 3635 3636 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3637 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3638 unsigned long size, pte_fn_t fn, void *data); 3639 extern int apply_to_existing_page_range(struct mm_struct *mm, 3640 unsigned long address, unsigned long size, 3641 pte_fn_t fn, void *data); 3642 3643 #ifdef CONFIG_PAGE_POISONING 3644 extern void __kernel_poison_pages(struct page *page, int numpages); 3645 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3646 extern bool _page_poisoning_enabled_early; 3647 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3648 static inline bool page_poisoning_enabled(void) 3649 { 3650 return _page_poisoning_enabled_early; 3651 } 3652 /* 3653 * For use in fast paths after init_mem_debugging() has run, or when a 3654 * false negative result is not harmful when called too early. 3655 */ 3656 static inline bool page_poisoning_enabled_static(void) 3657 { 3658 return static_branch_unlikely(&_page_poisoning_enabled); 3659 } 3660 static inline void kernel_poison_pages(struct page *page, int numpages) 3661 { 3662 if (page_poisoning_enabled_static()) 3663 __kernel_poison_pages(page, numpages); 3664 } 3665 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3666 { 3667 if (page_poisoning_enabled_static()) 3668 __kernel_unpoison_pages(page, numpages); 3669 } 3670 #else 3671 static inline bool page_poisoning_enabled(void) { return false; } 3672 static inline bool page_poisoning_enabled_static(void) { return false; } 3673 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3674 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3675 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3676 #endif 3677 3678 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3679 static inline bool want_init_on_alloc(gfp_t flags) 3680 { 3681 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3682 &init_on_alloc)) 3683 return true; 3684 return flags & __GFP_ZERO; 3685 } 3686 3687 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3688 static inline bool want_init_on_free(void) 3689 { 3690 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3691 &init_on_free); 3692 } 3693 3694 extern bool _debug_pagealloc_enabled_early; 3695 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3696 3697 static inline bool debug_pagealloc_enabled(void) 3698 { 3699 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3700 _debug_pagealloc_enabled_early; 3701 } 3702 3703 /* 3704 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3705 * or when a false negative result is not harmful when called too early. 3706 */ 3707 static inline bool debug_pagealloc_enabled_static(void) 3708 { 3709 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3710 return false; 3711 3712 return static_branch_unlikely(&_debug_pagealloc_enabled); 3713 } 3714 3715 /* 3716 * To support DEBUG_PAGEALLOC architecture must ensure that 3717 * __kernel_map_pages() never fails 3718 */ 3719 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3720 #ifdef CONFIG_DEBUG_PAGEALLOC 3721 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3722 { 3723 if (debug_pagealloc_enabled_static()) 3724 __kernel_map_pages(page, numpages, 1); 3725 } 3726 3727 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3728 { 3729 if (debug_pagealloc_enabled_static()) 3730 __kernel_map_pages(page, numpages, 0); 3731 } 3732 3733 extern unsigned int _debug_guardpage_minorder; 3734 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3735 3736 static inline unsigned int debug_guardpage_minorder(void) 3737 { 3738 return _debug_guardpage_minorder; 3739 } 3740 3741 static inline bool debug_guardpage_enabled(void) 3742 { 3743 return static_branch_unlikely(&_debug_guardpage_enabled); 3744 } 3745 3746 static inline bool page_is_guard(struct page *page) 3747 { 3748 if (!debug_guardpage_enabled()) 3749 return false; 3750 3751 return PageGuard(page); 3752 } 3753 3754 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3755 static inline bool set_page_guard(struct zone *zone, struct page *page, 3756 unsigned int order) 3757 { 3758 if (!debug_guardpage_enabled()) 3759 return false; 3760 return __set_page_guard(zone, page, order); 3761 } 3762 3763 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3764 static inline void clear_page_guard(struct zone *zone, struct page *page, 3765 unsigned int order) 3766 { 3767 if (!debug_guardpage_enabled()) 3768 return; 3769 __clear_page_guard(zone, page, order); 3770 } 3771 3772 #else /* CONFIG_DEBUG_PAGEALLOC */ 3773 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3774 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3775 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3776 static inline bool debug_guardpage_enabled(void) { return false; } 3777 static inline bool page_is_guard(struct page *page) { return false; } 3778 static inline bool set_page_guard(struct zone *zone, struct page *page, 3779 unsigned int order) { return false; } 3780 static inline void clear_page_guard(struct zone *zone, struct page *page, 3781 unsigned int order) {} 3782 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3783 3784 #ifdef __HAVE_ARCH_GATE_AREA 3785 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3786 extern int in_gate_area_no_mm(unsigned long addr); 3787 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3788 #else 3789 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3790 { 3791 return NULL; 3792 } 3793 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3794 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3795 { 3796 return 0; 3797 } 3798 #endif /* __HAVE_ARCH_GATE_AREA */ 3799 3800 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3801 3802 void drop_slab(void); 3803 3804 #ifndef CONFIG_MMU 3805 #define randomize_va_space 0 3806 #else 3807 extern int randomize_va_space; 3808 #endif 3809 3810 const char * arch_vma_name(struct vm_area_struct *vma); 3811 #ifdef CONFIG_MMU 3812 void print_vma_addr(char *prefix, unsigned long rip); 3813 #else 3814 static inline void print_vma_addr(char *prefix, unsigned long rip) 3815 { 3816 } 3817 #endif 3818 3819 void *sparse_buffer_alloc(unsigned long size); 3820 struct page * __populate_section_memmap(unsigned long pfn, 3821 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3822 struct dev_pagemap *pgmap); 3823 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3824 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3825 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3826 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3827 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3828 struct vmem_altmap *altmap, struct page *reuse); 3829 void *vmemmap_alloc_block(unsigned long size, int node); 3830 struct vmem_altmap; 3831 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3832 struct vmem_altmap *altmap); 3833 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3834 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3835 unsigned long addr, unsigned long next); 3836 int vmemmap_check_pmd(pmd_t *pmd, int node, 3837 unsigned long addr, unsigned long next); 3838 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3839 int node, struct vmem_altmap *altmap); 3840 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3841 int node, struct vmem_altmap *altmap); 3842 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3843 struct vmem_altmap *altmap); 3844 void vmemmap_populate_print_last(void); 3845 #ifdef CONFIG_MEMORY_HOTPLUG 3846 void vmemmap_free(unsigned long start, unsigned long end, 3847 struct vmem_altmap *altmap); 3848 #endif 3849 3850 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3851 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3852 { 3853 /* number of pfns from base where pfn_to_page() is valid */ 3854 if (altmap) 3855 return altmap->reserve + altmap->free; 3856 return 0; 3857 } 3858 3859 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3860 unsigned long nr_pfns) 3861 { 3862 altmap->alloc -= nr_pfns; 3863 } 3864 #else 3865 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3866 { 3867 return 0; 3868 } 3869 3870 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3871 unsigned long nr_pfns) 3872 { 3873 } 3874 #endif 3875 3876 #define VMEMMAP_RESERVE_NR 2 3877 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3878 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3879 struct dev_pagemap *pgmap) 3880 { 3881 unsigned long nr_pages; 3882 unsigned long nr_vmemmap_pages; 3883 3884 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3885 return false; 3886 3887 nr_pages = pgmap_vmemmap_nr(pgmap); 3888 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3889 /* 3890 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3891 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3892 */ 3893 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3894 } 3895 /* 3896 * If we don't have an architecture override, use the generic rule 3897 */ 3898 #ifndef vmemmap_can_optimize 3899 #define vmemmap_can_optimize __vmemmap_can_optimize 3900 #endif 3901 3902 #else 3903 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3904 struct dev_pagemap *pgmap) 3905 { 3906 return false; 3907 } 3908 #endif 3909 3910 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3911 unsigned long nr_pages); 3912 3913 enum mf_flags { 3914 MF_COUNT_INCREASED = 1 << 0, 3915 MF_ACTION_REQUIRED = 1 << 1, 3916 MF_MUST_KILL = 1 << 2, 3917 MF_SOFT_OFFLINE = 1 << 3, 3918 MF_UNPOISON = 1 << 4, 3919 MF_SW_SIMULATED = 1 << 5, 3920 MF_NO_RETRY = 1 << 6, 3921 MF_MEM_PRE_REMOVE = 1 << 7, 3922 }; 3923 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3924 unsigned long count, int mf_flags); 3925 extern int memory_failure(unsigned long pfn, int flags); 3926 extern void memory_failure_queue_kick(int cpu); 3927 extern int unpoison_memory(unsigned long pfn); 3928 extern atomic_long_t num_poisoned_pages __read_mostly; 3929 extern int soft_offline_page(unsigned long pfn, int flags); 3930 #ifdef CONFIG_MEMORY_FAILURE 3931 /* 3932 * Sysfs entries for memory failure handling statistics. 3933 */ 3934 extern const struct attribute_group memory_failure_attr_group; 3935 extern void memory_failure_queue(unsigned long pfn, int flags); 3936 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3937 bool *migratable_cleared); 3938 void num_poisoned_pages_inc(unsigned long pfn); 3939 void num_poisoned_pages_sub(unsigned long pfn, long i); 3940 #else 3941 static inline void memory_failure_queue(unsigned long pfn, int flags) 3942 { 3943 } 3944 3945 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3946 bool *migratable_cleared) 3947 { 3948 return 0; 3949 } 3950 3951 static inline void num_poisoned_pages_inc(unsigned long pfn) 3952 { 3953 } 3954 3955 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3956 { 3957 } 3958 #endif 3959 3960 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3961 extern void memblk_nr_poison_inc(unsigned long pfn); 3962 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3963 #else 3964 static inline void memblk_nr_poison_inc(unsigned long pfn) 3965 { 3966 } 3967 3968 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3969 { 3970 } 3971 #endif 3972 3973 #ifndef arch_memory_failure 3974 static inline int arch_memory_failure(unsigned long pfn, int flags) 3975 { 3976 return -ENXIO; 3977 } 3978 #endif 3979 3980 #ifndef arch_is_platform_page 3981 static inline bool arch_is_platform_page(u64 paddr) 3982 { 3983 return false; 3984 } 3985 #endif 3986 3987 /* 3988 * Error handlers for various types of pages. 3989 */ 3990 enum mf_result { 3991 MF_IGNORED, /* Error: cannot be handled */ 3992 MF_FAILED, /* Error: handling failed */ 3993 MF_DELAYED, /* Will be handled later */ 3994 MF_RECOVERED, /* Successfully recovered */ 3995 }; 3996 3997 enum mf_action_page_type { 3998 MF_MSG_KERNEL, 3999 MF_MSG_KERNEL_HIGH_ORDER, 4000 MF_MSG_DIFFERENT_COMPOUND, 4001 MF_MSG_HUGE, 4002 MF_MSG_FREE_HUGE, 4003 MF_MSG_GET_HWPOISON, 4004 MF_MSG_UNMAP_FAILED, 4005 MF_MSG_DIRTY_SWAPCACHE, 4006 MF_MSG_CLEAN_SWAPCACHE, 4007 MF_MSG_DIRTY_MLOCKED_LRU, 4008 MF_MSG_CLEAN_MLOCKED_LRU, 4009 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4010 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4011 MF_MSG_DIRTY_LRU, 4012 MF_MSG_CLEAN_LRU, 4013 MF_MSG_TRUNCATED_LRU, 4014 MF_MSG_BUDDY, 4015 MF_MSG_DAX, 4016 MF_MSG_UNSPLIT_THP, 4017 MF_MSG_ALREADY_POISONED, 4018 MF_MSG_UNKNOWN, 4019 }; 4020 4021 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4022 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4023 int copy_user_large_folio(struct folio *dst, struct folio *src, 4024 unsigned long addr_hint, 4025 struct vm_area_struct *vma); 4026 long copy_folio_from_user(struct folio *dst_folio, 4027 const void __user *usr_src, 4028 bool allow_pagefault); 4029 4030 /** 4031 * vma_is_special_huge - Are transhuge page-table entries considered special? 4032 * @vma: Pointer to the struct vm_area_struct to consider 4033 * 4034 * Whether transhuge page-table entries are considered "special" following 4035 * the definition in vm_normal_page(). 4036 * 4037 * Return: true if transhuge page-table entries should be considered special, 4038 * false otherwise. 4039 */ 4040 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4041 { 4042 return vma_is_dax(vma) || (vma->vm_file && 4043 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4044 } 4045 4046 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4047 4048 #if MAX_NUMNODES > 1 4049 void __init setup_nr_node_ids(void); 4050 #else 4051 static inline void setup_nr_node_ids(void) {} 4052 #endif 4053 4054 extern int memcmp_pages(struct page *page1, struct page *page2); 4055 4056 static inline int pages_identical(struct page *page1, struct page *page2) 4057 { 4058 return !memcmp_pages(page1, page2); 4059 } 4060 4061 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4062 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4063 pgoff_t first_index, pgoff_t nr, 4064 pgoff_t bitmap_pgoff, 4065 unsigned long *bitmap, 4066 pgoff_t *start, 4067 pgoff_t *end); 4068 4069 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4070 pgoff_t first_index, pgoff_t nr); 4071 #endif 4072 4073 #ifdef CONFIG_ANON_VMA_NAME 4074 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4075 unsigned long len_in, 4076 struct anon_vma_name *anon_name); 4077 #else 4078 static inline int 4079 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4080 unsigned long len_in, struct anon_vma_name *anon_name) { 4081 return 0; 4082 } 4083 #endif 4084 4085 #ifdef CONFIG_UNACCEPTED_MEMORY 4086 4087 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4088 void accept_memory(phys_addr_t start, unsigned long size); 4089 4090 #else 4091 4092 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4093 unsigned long size) 4094 { 4095 return false; 4096 } 4097 4098 static inline void accept_memory(phys_addr_t start, unsigned long size) 4099 { 4100 } 4101 4102 #endif 4103 4104 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4105 { 4106 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4107 } 4108 4109 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4110 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4111 4112 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4113 int reserve_mem_release_by_name(const char *name); 4114 4115 #ifdef CONFIG_64BIT 4116 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4117 #else 4118 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4119 { 4120 /* noop on 32 bit */ 4121 return 0; 4122 } 4123 #endif 4124 4125 /* 4126 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4127 * be zeroed or not. 4128 */ 4129 static inline bool user_alloc_needs_zeroing(void) 4130 { 4131 /* 4132 * for user folios, arch with cache aliasing requires cache flush and 4133 * arc changes folio->flags to make icache coherent with dcache, so 4134 * always return false to make caller use 4135 * clear_user_page()/clear_user_highpage(). 4136 */ 4137 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4138 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4139 &init_on_alloc); 4140 } 4141 4142 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4143 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4144 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4145 4146 #endif /* _LINUX_MM_H */ 4147