1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/prio_tree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 22 struct mempolicy; 23 struct anon_vma; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 #endif 31 32 extern unsigned long num_physpages; 33 extern unsigned long totalram_pages; 34 extern void * high_memory; 35 extern int page_cluster; 36 37 #ifdef CONFIG_SYSCTL 38 extern int sysctl_legacy_va_layout; 39 #else 40 #define sysctl_legacy_va_layout 0 41 #endif 42 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/processor.h> 46 47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49 /* to align the pointer to the (next) page boundary */ 50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52 /* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61 extern struct kmem_cache *vm_area_cachep; 62 63 #ifndef CONFIG_MMU 64 extern struct rb_root nommu_region_tree; 65 extern struct rw_semaphore nommu_region_sem; 66 67 extern unsigned int kobjsize(const void *objp); 68 #endif 69 70 /* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73 #define VM_READ 0x00000001 /* currently active flags */ 74 #define VM_WRITE 0x00000002 75 #define VM_EXEC 0x00000004 76 #define VM_SHARED 0x00000008 77 78 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 79 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 80 #define VM_MAYWRITE 0x00000020 81 #define VM_MAYEXEC 0x00000040 82 #define VM_MAYSHARE 0x00000080 83 84 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 85 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 86 #define VM_GROWSUP 0x00000200 87 #else 88 #define VM_GROWSUP 0x00000000 89 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 90 #endif 91 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 92 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 93 94 #define VM_EXECUTABLE 0x00001000 95 #define VM_LOCKED 0x00002000 96 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 97 98 /* Used by sys_madvise() */ 99 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 100 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 101 102 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 103 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 104 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 105 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 106 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 107 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 108 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 109 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 110 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 111 #else 112 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 113 #endif 114 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 115 #define VM_NODUMP 0x04000000 /* Do not include in the core dump */ 116 117 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 118 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 119 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 120 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 121 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 122 123 /* Bits set in the VMA until the stack is in its final location */ 124 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 125 126 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 127 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 128 #endif 129 130 #ifdef CONFIG_STACK_GROWSUP 131 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 132 #else 133 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 134 #endif 135 136 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 137 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 138 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 139 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 140 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 141 142 /* 143 * Special vmas that are non-mergable, non-mlock()able. 144 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 145 */ 146 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 147 148 /* 149 * mapping from the currently active vm_flags protection bits (the 150 * low four bits) to a page protection mask.. 151 */ 152 extern pgprot_t protection_map[16]; 153 154 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 155 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 156 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 157 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 158 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 159 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 160 161 /* 162 * This interface is used by x86 PAT code to identify a pfn mapping that is 163 * linear over entire vma. This is to optimize PAT code that deals with 164 * marking the physical region with a particular prot. This is not for generic 165 * mm use. Note also that this check will not work if the pfn mapping is 166 * linear for a vma starting at physical address 0. In which case PAT code 167 * falls back to slow path of reserving physical range page by page. 168 */ 169 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 170 { 171 return !!(vma->vm_flags & VM_PFN_AT_MMAP); 172 } 173 174 static inline int is_pfn_mapping(struct vm_area_struct *vma) 175 { 176 return !!(vma->vm_flags & VM_PFNMAP); 177 } 178 179 /* 180 * vm_fault is filled by the the pagefault handler and passed to the vma's 181 * ->fault function. The vma's ->fault is responsible for returning a bitmask 182 * of VM_FAULT_xxx flags that give details about how the fault was handled. 183 * 184 * pgoff should be used in favour of virtual_address, if possible. If pgoff 185 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 186 * mapping support. 187 */ 188 struct vm_fault { 189 unsigned int flags; /* FAULT_FLAG_xxx flags */ 190 pgoff_t pgoff; /* Logical page offset based on vma */ 191 void __user *virtual_address; /* Faulting virtual address */ 192 193 struct page *page; /* ->fault handlers should return a 194 * page here, unless VM_FAULT_NOPAGE 195 * is set (which is also implied by 196 * VM_FAULT_ERROR). 197 */ 198 }; 199 200 /* 201 * These are the virtual MM functions - opening of an area, closing and 202 * unmapping it (needed to keep files on disk up-to-date etc), pointer 203 * to the functions called when a no-page or a wp-page exception occurs. 204 */ 205 struct vm_operations_struct { 206 void (*open)(struct vm_area_struct * area); 207 void (*close)(struct vm_area_struct * area); 208 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 209 210 /* notification that a previously read-only page is about to become 211 * writable, if an error is returned it will cause a SIGBUS */ 212 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 213 214 /* called by access_process_vm when get_user_pages() fails, typically 215 * for use by special VMAs that can switch between memory and hardware 216 */ 217 int (*access)(struct vm_area_struct *vma, unsigned long addr, 218 void *buf, int len, int write); 219 #ifdef CONFIG_NUMA 220 /* 221 * set_policy() op must add a reference to any non-NULL @new mempolicy 222 * to hold the policy upon return. Caller should pass NULL @new to 223 * remove a policy and fall back to surrounding context--i.e. do not 224 * install a MPOL_DEFAULT policy, nor the task or system default 225 * mempolicy. 226 */ 227 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 228 229 /* 230 * get_policy() op must add reference [mpol_get()] to any policy at 231 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 232 * in mm/mempolicy.c will do this automatically. 233 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 234 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 235 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 236 * must return NULL--i.e., do not "fallback" to task or system default 237 * policy. 238 */ 239 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 240 unsigned long addr); 241 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 242 const nodemask_t *to, unsigned long flags); 243 #endif 244 }; 245 246 struct mmu_gather; 247 struct inode; 248 249 #define page_private(page) ((page)->private) 250 #define set_page_private(page, v) ((page)->private = (v)) 251 252 /* 253 * FIXME: take this include out, include page-flags.h in 254 * files which need it (119 of them) 255 */ 256 #include <linux/page-flags.h> 257 #include <linux/huge_mm.h> 258 259 /* 260 * Methods to modify the page usage count. 261 * 262 * What counts for a page usage: 263 * - cache mapping (page->mapping) 264 * - private data (page->private) 265 * - page mapped in a task's page tables, each mapping 266 * is counted separately 267 * 268 * Also, many kernel routines increase the page count before a critical 269 * routine so they can be sure the page doesn't go away from under them. 270 */ 271 272 /* 273 * Drop a ref, return true if the refcount fell to zero (the page has no users) 274 */ 275 static inline int put_page_testzero(struct page *page) 276 { 277 VM_BUG_ON(atomic_read(&page->_count) == 0); 278 return atomic_dec_and_test(&page->_count); 279 } 280 281 /* 282 * Try to grab a ref unless the page has a refcount of zero, return false if 283 * that is the case. 284 */ 285 static inline int get_page_unless_zero(struct page *page) 286 { 287 return atomic_inc_not_zero(&page->_count); 288 } 289 290 extern int page_is_ram(unsigned long pfn); 291 292 /* Support for virtually mapped pages */ 293 struct page *vmalloc_to_page(const void *addr); 294 unsigned long vmalloc_to_pfn(const void *addr); 295 296 /* 297 * Determine if an address is within the vmalloc range 298 * 299 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 300 * is no special casing required. 301 */ 302 static inline int is_vmalloc_addr(const void *x) 303 { 304 #ifdef CONFIG_MMU 305 unsigned long addr = (unsigned long)x; 306 307 return addr >= VMALLOC_START && addr < VMALLOC_END; 308 #else 309 return 0; 310 #endif 311 } 312 #ifdef CONFIG_MMU 313 extern int is_vmalloc_or_module_addr(const void *x); 314 #else 315 static inline int is_vmalloc_or_module_addr(const void *x) 316 { 317 return 0; 318 } 319 #endif 320 321 static inline void compound_lock(struct page *page) 322 { 323 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 324 VM_BUG_ON(PageSlab(page)); 325 bit_spin_lock(PG_compound_lock, &page->flags); 326 #endif 327 } 328 329 static inline void compound_unlock(struct page *page) 330 { 331 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 332 VM_BUG_ON(PageSlab(page)); 333 bit_spin_unlock(PG_compound_lock, &page->flags); 334 #endif 335 } 336 337 static inline unsigned long compound_lock_irqsave(struct page *page) 338 { 339 unsigned long uninitialized_var(flags); 340 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 341 local_irq_save(flags); 342 compound_lock(page); 343 #endif 344 return flags; 345 } 346 347 static inline void compound_unlock_irqrestore(struct page *page, 348 unsigned long flags) 349 { 350 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 351 compound_unlock(page); 352 local_irq_restore(flags); 353 #endif 354 } 355 356 static inline struct page *compound_head(struct page *page) 357 { 358 if (unlikely(PageTail(page))) 359 return page->first_page; 360 return page; 361 } 362 363 /* 364 * The atomic page->_mapcount, starts from -1: so that transitions 365 * both from it and to it can be tracked, using atomic_inc_and_test 366 * and atomic_add_negative(-1). 367 */ 368 static inline void reset_page_mapcount(struct page *page) 369 { 370 atomic_set(&(page)->_mapcount, -1); 371 } 372 373 static inline int page_mapcount(struct page *page) 374 { 375 return atomic_read(&(page)->_mapcount) + 1; 376 } 377 378 static inline int page_count(struct page *page) 379 { 380 return atomic_read(&compound_head(page)->_count); 381 } 382 383 static inline void get_huge_page_tail(struct page *page) 384 { 385 /* 386 * __split_huge_page_refcount() cannot run 387 * from under us. 388 */ 389 VM_BUG_ON(page_mapcount(page) < 0); 390 VM_BUG_ON(atomic_read(&page->_count) != 0); 391 atomic_inc(&page->_mapcount); 392 } 393 394 extern bool __get_page_tail(struct page *page); 395 396 static inline void get_page(struct page *page) 397 { 398 if (unlikely(PageTail(page))) 399 if (likely(__get_page_tail(page))) 400 return; 401 /* 402 * Getting a normal page or the head of a compound page 403 * requires to already have an elevated page->_count. 404 */ 405 VM_BUG_ON(atomic_read(&page->_count) <= 0); 406 atomic_inc(&page->_count); 407 } 408 409 static inline struct page *virt_to_head_page(const void *x) 410 { 411 struct page *page = virt_to_page(x); 412 return compound_head(page); 413 } 414 415 /* 416 * Setup the page count before being freed into the page allocator for 417 * the first time (boot or memory hotplug) 418 */ 419 static inline void init_page_count(struct page *page) 420 { 421 atomic_set(&page->_count, 1); 422 } 423 424 /* 425 * PageBuddy() indicate that the page is free and in the buddy system 426 * (see mm/page_alloc.c). 427 * 428 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 429 * -2 so that an underflow of the page_mapcount() won't be mistaken 430 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 431 * efficiently by most CPU architectures. 432 */ 433 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 434 435 static inline int PageBuddy(struct page *page) 436 { 437 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 438 } 439 440 static inline void __SetPageBuddy(struct page *page) 441 { 442 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 443 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 444 } 445 446 static inline void __ClearPageBuddy(struct page *page) 447 { 448 VM_BUG_ON(!PageBuddy(page)); 449 atomic_set(&page->_mapcount, -1); 450 } 451 452 void put_page(struct page *page); 453 void put_pages_list(struct list_head *pages); 454 455 void split_page(struct page *page, unsigned int order); 456 int split_free_page(struct page *page); 457 458 /* 459 * Compound pages have a destructor function. Provide a 460 * prototype for that function and accessor functions. 461 * These are _only_ valid on the head of a PG_compound page. 462 */ 463 typedef void compound_page_dtor(struct page *); 464 465 static inline void set_compound_page_dtor(struct page *page, 466 compound_page_dtor *dtor) 467 { 468 page[1].lru.next = (void *)dtor; 469 } 470 471 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 472 { 473 return (compound_page_dtor *)page[1].lru.next; 474 } 475 476 static inline int compound_order(struct page *page) 477 { 478 if (!PageHead(page)) 479 return 0; 480 return (unsigned long)page[1].lru.prev; 481 } 482 483 static inline int compound_trans_order(struct page *page) 484 { 485 int order; 486 unsigned long flags; 487 488 if (!PageHead(page)) 489 return 0; 490 491 flags = compound_lock_irqsave(page); 492 order = compound_order(page); 493 compound_unlock_irqrestore(page, flags); 494 return order; 495 } 496 497 static inline void set_compound_order(struct page *page, unsigned long order) 498 { 499 page[1].lru.prev = (void *)order; 500 } 501 502 #ifdef CONFIG_MMU 503 /* 504 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 505 * servicing faults for write access. In the normal case, do always want 506 * pte_mkwrite. But get_user_pages can cause write faults for mappings 507 * that do not have writing enabled, when used by access_process_vm. 508 */ 509 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 510 { 511 if (likely(vma->vm_flags & VM_WRITE)) 512 pte = pte_mkwrite(pte); 513 return pte; 514 } 515 #endif 516 517 /* 518 * Multiple processes may "see" the same page. E.g. for untouched 519 * mappings of /dev/null, all processes see the same page full of 520 * zeroes, and text pages of executables and shared libraries have 521 * only one copy in memory, at most, normally. 522 * 523 * For the non-reserved pages, page_count(page) denotes a reference count. 524 * page_count() == 0 means the page is free. page->lru is then used for 525 * freelist management in the buddy allocator. 526 * page_count() > 0 means the page has been allocated. 527 * 528 * Pages are allocated by the slab allocator in order to provide memory 529 * to kmalloc and kmem_cache_alloc. In this case, the management of the 530 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 531 * unless a particular usage is carefully commented. (the responsibility of 532 * freeing the kmalloc memory is the caller's, of course). 533 * 534 * A page may be used by anyone else who does a __get_free_page(). 535 * In this case, page_count still tracks the references, and should only 536 * be used through the normal accessor functions. The top bits of page->flags 537 * and page->virtual store page management information, but all other fields 538 * are unused and could be used privately, carefully. The management of this 539 * page is the responsibility of the one who allocated it, and those who have 540 * subsequently been given references to it. 541 * 542 * The other pages (we may call them "pagecache pages") are completely 543 * managed by the Linux memory manager: I/O, buffers, swapping etc. 544 * The following discussion applies only to them. 545 * 546 * A pagecache page contains an opaque `private' member, which belongs to the 547 * page's address_space. Usually, this is the address of a circular list of 548 * the page's disk buffers. PG_private must be set to tell the VM to call 549 * into the filesystem to release these pages. 550 * 551 * A page may belong to an inode's memory mapping. In this case, page->mapping 552 * is the pointer to the inode, and page->index is the file offset of the page, 553 * in units of PAGE_CACHE_SIZE. 554 * 555 * If pagecache pages are not associated with an inode, they are said to be 556 * anonymous pages. These may become associated with the swapcache, and in that 557 * case PG_swapcache is set, and page->private is an offset into the swapcache. 558 * 559 * In either case (swapcache or inode backed), the pagecache itself holds one 560 * reference to the page. Setting PG_private should also increment the 561 * refcount. The each user mapping also has a reference to the page. 562 * 563 * The pagecache pages are stored in a per-mapping radix tree, which is 564 * rooted at mapping->page_tree, and indexed by offset. 565 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 566 * lists, we instead now tag pages as dirty/writeback in the radix tree. 567 * 568 * All pagecache pages may be subject to I/O: 569 * - inode pages may need to be read from disk, 570 * - inode pages which have been modified and are MAP_SHARED may need 571 * to be written back to the inode on disk, 572 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 573 * modified may need to be swapped out to swap space and (later) to be read 574 * back into memory. 575 */ 576 577 /* 578 * The zone field is never updated after free_area_init_core() 579 * sets it, so none of the operations on it need to be atomic. 580 */ 581 582 583 /* 584 * page->flags layout: 585 * 586 * There are three possibilities for how page->flags get 587 * laid out. The first is for the normal case, without 588 * sparsemem. The second is for sparsemem when there is 589 * plenty of space for node and section. The last is when 590 * we have run out of space and have to fall back to an 591 * alternate (slower) way of determining the node. 592 * 593 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 594 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 595 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 596 */ 597 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 598 #define SECTIONS_WIDTH SECTIONS_SHIFT 599 #else 600 #define SECTIONS_WIDTH 0 601 #endif 602 603 #define ZONES_WIDTH ZONES_SHIFT 604 605 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 606 #define NODES_WIDTH NODES_SHIFT 607 #else 608 #ifdef CONFIG_SPARSEMEM_VMEMMAP 609 #error "Vmemmap: No space for nodes field in page flags" 610 #endif 611 #define NODES_WIDTH 0 612 #endif 613 614 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 615 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 616 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 617 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 618 619 /* 620 * We are going to use the flags for the page to node mapping if its in 621 * there. This includes the case where there is no node, so it is implicit. 622 */ 623 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 624 #define NODE_NOT_IN_PAGE_FLAGS 625 #endif 626 627 /* 628 * Define the bit shifts to access each section. For non-existent 629 * sections we define the shift as 0; that plus a 0 mask ensures 630 * the compiler will optimise away reference to them. 631 */ 632 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 633 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 634 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 635 636 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 637 #ifdef NODE_NOT_IN_PAGE_FLAGS 638 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 639 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 640 SECTIONS_PGOFF : ZONES_PGOFF) 641 #else 642 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 643 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 644 NODES_PGOFF : ZONES_PGOFF) 645 #endif 646 647 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 648 649 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 650 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 651 #endif 652 653 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 654 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 655 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 656 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 657 658 static inline enum zone_type page_zonenum(const struct page *page) 659 { 660 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 661 } 662 663 /* 664 * The identification function is only used by the buddy allocator for 665 * determining if two pages could be buddies. We are not really 666 * identifying a zone since we could be using a the section number 667 * id if we have not node id available in page flags. 668 * We guarantee only that it will return the same value for two 669 * combinable pages in a zone. 670 */ 671 static inline int page_zone_id(struct page *page) 672 { 673 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 674 } 675 676 static inline int zone_to_nid(struct zone *zone) 677 { 678 #ifdef CONFIG_NUMA 679 return zone->node; 680 #else 681 return 0; 682 #endif 683 } 684 685 #ifdef NODE_NOT_IN_PAGE_FLAGS 686 extern int page_to_nid(const struct page *page); 687 #else 688 static inline int page_to_nid(const struct page *page) 689 { 690 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 691 } 692 #endif 693 694 static inline struct zone *page_zone(const struct page *page) 695 { 696 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 697 } 698 699 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 700 static inline void set_page_section(struct page *page, unsigned long section) 701 { 702 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 703 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 704 } 705 706 static inline unsigned long page_to_section(const struct page *page) 707 { 708 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 709 } 710 #endif 711 712 static inline void set_page_zone(struct page *page, enum zone_type zone) 713 { 714 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 715 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 716 } 717 718 static inline void set_page_node(struct page *page, unsigned long node) 719 { 720 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 721 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 722 } 723 724 static inline void set_page_links(struct page *page, enum zone_type zone, 725 unsigned long node, unsigned long pfn) 726 { 727 set_page_zone(page, zone); 728 set_page_node(page, node); 729 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 730 set_page_section(page, pfn_to_section_nr(pfn)); 731 #endif 732 } 733 734 /* 735 * Some inline functions in vmstat.h depend on page_zone() 736 */ 737 #include <linux/vmstat.h> 738 739 static __always_inline void *lowmem_page_address(const struct page *page) 740 { 741 return __va(PFN_PHYS(page_to_pfn(page))); 742 } 743 744 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 745 #define HASHED_PAGE_VIRTUAL 746 #endif 747 748 #if defined(WANT_PAGE_VIRTUAL) 749 #define page_address(page) ((page)->virtual) 750 #define set_page_address(page, address) \ 751 do { \ 752 (page)->virtual = (address); \ 753 } while(0) 754 #define page_address_init() do { } while(0) 755 #endif 756 757 #if defined(HASHED_PAGE_VIRTUAL) 758 void *page_address(const struct page *page); 759 void set_page_address(struct page *page, void *virtual); 760 void page_address_init(void); 761 #endif 762 763 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 764 #define page_address(page) lowmem_page_address(page) 765 #define set_page_address(page, address) do { } while(0) 766 #define page_address_init() do { } while(0) 767 #endif 768 769 /* 770 * On an anonymous page mapped into a user virtual memory area, 771 * page->mapping points to its anon_vma, not to a struct address_space; 772 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 773 * 774 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 775 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 776 * and then page->mapping points, not to an anon_vma, but to a private 777 * structure which KSM associates with that merged page. See ksm.h. 778 * 779 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 780 * 781 * Please note that, confusingly, "page_mapping" refers to the inode 782 * address_space which maps the page from disk; whereas "page_mapped" 783 * refers to user virtual address space into which the page is mapped. 784 */ 785 #define PAGE_MAPPING_ANON 1 786 #define PAGE_MAPPING_KSM 2 787 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 788 789 extern struct address_space swapper_space; 790 static inline struct address_space *page_mapping(struct page *page) 791 { 792 struct address_space *mapping = page->mapping; 793 794 VM_BUG_ON(PageSlab(page)); 795 if (unlikely(PageSwapCache(page))) 796 mapping = &swapper_space; 797 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 798 mapping = NULL; 799 return mapping; 800 } 801 802 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 803 static inline void *page_rmapping(struct page *page) 804 { 805 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 806 } 807 808 extern struct address_space *__page_file_mapping(struct page *); 809 810 static inline 811 struct address_space *page_file_mapping(struct page *page) 812 { 813 if (unlikely(PageSwapCache(page))) 814 return __page_file_mapping(page); 815 816 return page->mapping; 817 } 818 819 static inline int PageAnon(struct page *page) 820 { 821 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 822 } 823 824 /* 825 * Return the pagecache index of the passed page. Regular pagecache pages 826 * use ->index whereas swapcache pages use ->private 827 */ 828 static inline pgoff_t page_index(struct page *page) 829 { 830 if (unlikely(PageSwapCache(page))) 831 return page_private(page); 832 return page->index; 833 } 834 835 extern pgoff_t __page_file_index(struct page *page); 836 837 /* 838 * Return the file index of the page. Regular pagecache pages use ->index 839 * whereas swapcache pages use swp_offset(->private) 840 */ 841 static inline pgoff_t page_file_index(struct page *page) 842 { 843 if (unlikely(PageSwapCache(page))) 844 return __page_file_index(page); 845 846 return page->index; 847 } 848 849 /* 850 * Return true if this page is mapped into pagetables. 851 */ 852 static inline int page_mapped(struct page *page) 853 { 854 return atomic_read(&(page)->_mapcount) >= 0; 855 } 856 857 /* 858 * Different kinds of faults, as returned by handle_mm_fault(). 859 * Used to decide whether a process gets delivered SIGBUS or 860 * just gets major/minor fault counters bumped up. 861 */ 862 863 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 864 865 #define VM_FAULT_OOM 0x0001 866 #define VM_FAULT_SIGBUS 0x0002 867 #define VM_FAULT_MAJOR 0x0004 868 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 869 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 870 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 871 872 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 873 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 874 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 875 876 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 877 878 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 879 VM_FAULT_HWPOISON_LARGE) 880 881 /* Encode hstate index for a hwpoisoned large page */ 882 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 883 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 884 885 /* 886 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 887 */ 888 extern void pagefault_out_of_memory(void); 889 890 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 891 892 /* 893 * Flags passed to show_mem() and show_free_areas() to suppress output in 894 * various contexts. 895 */ 896 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 897 898 extern void show_free_areas(unsigned int flags); 899 extern bool skip_free_areas_node(unsigned int flags, int nid); 900 901 int shmem_zero_setup(struct vm_area_struct *); 902 903 extern int can_do_mlock(void); 904 extern int user_shm_lock(size_t, struct user_struct *); 905 extern void user_shm_unlock(size_t, struct user_struct *); 906 907 /* 908 * Parameter block passed down to zap_pte_range in exceptional cases. 909 */ 910 struct zap_details { 911 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 912 struct address_space *check_mapping; /* Check page->mapping if set */ 913 pgoff_t first_index; /* Lowest page->index to unmap */ 914 pgoff_t last_index; /* Highest page->index to unmap */ 915 }; 916 917 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 918 pte_t pte); 919 920 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 921 unsigned long size); 922 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 923 unsigned long size, struct zap_details *); 924 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 925 unsigned long start, unsigned long end); 926 927 /** 928 * mm_walk - callbacks for walk_page_range 929 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 930 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 931 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 932 * this handler is required to be able to handle 933 * pmd_trans_huge() pmds. They may simply choose to 934 * split_huge_page() instead of handling it explicitly. 935 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 936 * @pte_hole: if set, called for each hole at all levels 937 * @hugetlb_entry: if set, called for each hugetlb entry 938 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 939 * is used. 940 * 941 * (see walk_page_range for more details) 942 */ 943 struct mm_walk { 944 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 945 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 946 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 947 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 948 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 949 int (*hugetlb_entry)(pte_t *, unsigned long, 950 unsigned long, unsigned long, struct mm_walk *); 951 struct mm_struct *mm; 952 void *private; 953 }; 954 955 int walk_page_range(unsigned long addr, unsigned long end, 956 struct mm_walk *walk); 957 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 958 unsigned long end, unsigned long floor, unsigned long ceiling); 959 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 960 struct vm_area_struct *vma); 961 void unmap_mapping_range(struct address_space *mapping, 962 loff_t const holebegin, loff_t const holelen, int even_cows); 963 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 964 unsigned long *pfn); 965 int follow_phys(struct vm_area_struct *vma, unsigned long address, 966 unsigned int flags, unsigned long *prot, resource_size_t *phys); 967 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 968 void *buf, int len, int write); 969 970 static inline void unmap_shared_mapping_range(struct address_space *mapping, 971 loff_t const holebegin, loff_t const holelen) 972 { 973 unmap_mapping_range(mapping, holebegin, holelen, 0); 974 } 975 976 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 977 extern void truncate_setsize(struct inode *inode, loff_t newsize); 978 extern int vmtruncate(struct inode *inode, loff_t offset); 979 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 980 int truncate_inode_page(struct address_space *mapping, struct page *page); 981 int generic_error_remove_page(struct address_space *mapping, struct page *page); 982 int invalidate_inode_page(struct page *page); 983 984 #ifdef CONFIG_MMU 985 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 986 unsigned long address, unsigned int flags); 987 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 988 unsigned long address, unsigned int fault_flags); 989 #else 990 static inline int handle_mm_fault(struct mm_struct *mm, 991 struct vm_area_struct *vma, unsigned long address, 992 unsigned int flags) 993 { 994 /* should never happen if there's no MMU */ 995 BUG(); 996 return VM_FAULT_SIGBUS; 997 } 998 static inline int fixup_user_fault(struct task_struct *tsk, 999 struct mm_struct *mm, unsigned long address, 1000 unsigned int fault_flags) 1001 { 1002 /* should never happen if there's no MMU */ 1003 BUG(); 1004 return -EFAULT; 1005 } 1006 #endif 1007 1008 extern int make_pages_present(unsigned long addr, unsigned long end); 1009 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1010 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1011 void *buf, int len, int write); 1012 1013 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1014 unsigned long start, int len, unsigned int foll_flags, 1015 struct page **pages, struct vm_area_struct **vmas, 1016 int *nonblocking); 1017 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1018 unsigned long start, int nr_pages, int write, int force, 1019 struct page **pages, struct vm_area_struct **vmas); 1020 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1021 struct page **pages); 1022 struct kvec; 1023 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1024 struct page **pages); 1025 int get_kernel_page(unsigned long start, int write, struct page **pages); 1026 struct page *get_dump_page(unsigned long addr); 1027 1028 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1029 extern void do_invalidatepage(struct page *page, unsigned long offset); 1030 1031 int __set_page_dirty_nobuffers(struct page *page); 1032 int __set_page_dirty_no_writeback(struct page *page); 1033 int redirty_page_for_writepage(struct writeback_control *wbc, 1034 struct page *page); 1035 void account_page_dirtied(struct page *page, struct address_space *mapping); 1036 void account_page_writeback(struct page *page); 1037 int set_page_dirty(struct page *page); 1038 int set_page_dirty_lock(struct page *page); 1039 int clear_page_dirty_for_io(struct page *page); 1040 1041 /* Is the vma a continuation of the stack vma above it? */ 1042 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1043 { 1044 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1045 } 1046 1047 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1048 unsigned long addr) 1049 { 1050 return (vma->vm_flags & VM_GROWSDOWN) && 1051 (vma->vm_start == addr) && 1052 !vma_growsdown(vma->vm_prev, addr); 1053 } 1054 1055 /* Is the vma a continuation of the stack vma below it? */ 1056 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1057 { 1058 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1059 } 1060 1061 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1062 unsigned long addr) 1063 { 1064 return (vma->vm_flags & VM_GROWSUP) && 1065 (vma->vm_end == addr) && 1066 !vma_growsup(vma->vm_next, addr); 1067 } 1068 1069 extern pid_t 1070 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1071 1072 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1073 unsigned long old_addr, struct vm_area_struct *new_vma, 1074 unsigned long new_addr, unsigned long len); 1075 extern unsigned long do_mremap(unsigned long addr, 1076 unsigned long old_len, unsigned long new_len, 1077 unsigned long flags, unsigned long new_addr); 1078 extern int mprotect_fixup(struct vm_area_struct *vma, 1079 struct vm_area_struct **pprev, unsigned long start, 1080 unsigned long end, unsigned long newflags); 1081 1082 /* 1083 * doesn't attempt to fault and will return short. 1084 */ 1085 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1086 struct page **pages); 1087 /* 1088 * per-process(per-mm_struct) statistics. 1089 */ 1090 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1091 { 1092 long val = atomic_long_read(&mm->rss_stat.count[member]); 1093 1094 #ifdef SPLIT_RSS_COUNTING 1095 /* 1096 * counter is updated in asynchronous manner and may go to minus. 1097 * But it's never be expected number for users. 1098 */ 1099 if (val < 0) 1100 val = 0; 1101 #endif 1102 return (unsigned long)val; 1103 } 1104 1105 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1106 { 1107 atomic_long_add(value, &mm->rss_stat.count[member]); 1108 } 1109 1110 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1111 { 1112 atomic_long_inc(&mm->rss_stat.count[member]); 1113 } 1114 1115 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1116 { 1117 atomic_long_dec(&mm->rss_stat.count[member]); 1118 } 1119 1120 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1121 { 1122 return get_mm_counter(mm, MM_FILEPAGES) + 1123 get_mm_counter(mm, MM_ANONPAGES); 1124 } 1125 1126 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1127 { 1128 return max(mm->hiwater_rss, get_mm_rss(mm)); 1129 } 1130 1131 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1132 { 1133 return max(mm->hiwater_vm, mm->total_vm); 1134 } 1135 1136 static inline void update_hiwater_rss(struct mm_struct *mm) 1137 { 1138 unsigned long _rss = get_mm_rss(mm); 1139 1140 if ((mm)->hiwater_rss < _rss) 1141 (mm)->hiwater_rss = _rss; 1142 } 1143 1144 static inline void update_hiwater_vm(struct mm_struct *mm) 1145 { 1146 if (mm->hiwater_vm < mm->total_vm) 1147 mm->hiwater_vm = mm->total_vm; 1148 } 1149 1150 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1151 struct mm_struct *mm) 1152 { 1153 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1154 1155 if (*maxrss < hiwater_rss) 1156 *maxrss = hiwater_rss; 1157 } 1158 1159 #if defined(SPLIT_RSS_COUNTING) 1160 void sync_mm_rss(struct mm_struct *mm); 1161 #else 1162 static inline void sync_mm_rss(struct mm_struct *mm) 1163 { 1164 } 1165 #endif 1166 1167 int vma_wants_writenotify(struct vm_area_struct *vma); 1168 1169 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1170 spinlock_t **ptl); 1171 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1172 spinlock_t **ptl) 1173 { 1174 pte_t *ptep; 1175 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1176 return ptep; 1177 } 1178 1179 #ifdef __PAGETABLE_PUD_FOLDED 1180 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1181 unsigned long address) 1182 { 1183 return 0; 1184 } 1185 #else 1186 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1187 #endif 1188 1189 #ifdef __PAGETABLE_PMD_FOLDED 1190 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1191 unsigned long address) 1192 { 1193 return 0; 1194 } 1195 #else 1196 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1197 #endif 1198 1199 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1200 pmd_t *pmd, unsigned long address); 1201 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1202 1203 /* 1204 * The following ifdef needed to get the 4level-fixup.h header to work. 1205 * Remove it when 4level-fixup.h has been removed. 1206 */ 1207 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1208 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1209 { 1210 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1211 NULL: pud_offset(pgd, address); 1212 } 1213 1214 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1215 { 1216 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1217 NULL: pmd_offset(pud, address); 1218 } 1219 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1220 1221 #if USE_SPLIT_PTLOCKS 1222 /* 1223 * We tuck a spinlock to guard each pagetable page into its struct page, 1224 * at page->private, with BUILD_BUG_ON to make sure that this will not 1225 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1226 * When freeing, reset page->mapping so free_pages_check won't complain. 1227 */ 1228 #define __pte_lockptr(page) &((page)->ptl) 1229 #define pte_lock_init(_page) do { \ 1230 spin_lock_init(__pte_lockptr(_page)); \ 1231 } while (0) 1232 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1233 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1234 #else /* !USE_SPLIT_PTLOCKS */ 1235 /* 1236 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1237 */ 1238 #define pte_lock_init(page) do {} while (0) 1239 #define pte_lock_deinit(page) do {} while (0) 1240 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1241 #endif /* USE_SPLIT_PTLOCKS */ 1242 1243 static inline void pgtable_page_ctor(struct page *page) 1244 { 1245 pte_lock_init(page); 1246 inc_zone_page_state(page, NR_PAGETABLE); 1247 } 1248 1249 static inline void pgtable_page_dtor(struct page *page) 1250 { 1251 pte_lock_deinit(page); 1252 dec_zone_page_state(page, NR_PAGETABLE); 1253 } 1254 1255 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1256 ({ \ 1257 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1258 pte_t *__pte = pte_offset_map(pmd, address); \ 1259 *(ptlp) = __ptl; \ 1260 spin_lock(__ptl); \ 1261 __pte; \ 1262 }) 1263 1264 #define pte_unmap_unlock(pte, ptl) do { \ 1265 spin_unlock(ptl); \ 1266 pte_unmap(pte); \ 1267 } while (0) 1268 1269 #define pte_alloc_map(mm, vma, pmd, address) \ 1270 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1271 pmd, address))? \ 1272 NULL: pte_offset_map(pmd, address)) 1273 1274 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1275 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1276 pmd, address))? \ 1277 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1278 1279 #define pte_alloc_kernel(pmd, address) \ 1280 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1281 NULL: pte_offset_kernel(pmd, address)) 1282 1283 extern void free_area_init(unsigned long * zones_size); 1284 extern void free_area_init_node(int nid, unsigned long * zones_size, 1285 unsigned long zone_start_pfn, unsigned long *zholes_size); 1286 extern void free_initmem(void); 1287 1288 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1289 /* 1290 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1291 * zones, allocate the backing mem_map and account for memory holes in a more 1292 * architecture independent manner. This is a substitute for creating the 1293 * zone_sizes[] and zholes_size[] arrays and passing them to 1294 * free_area_init_node() 1295 * 1296 * An architecture is expected to register range of page frames backed by 1297 * physical memory with memblock_add[_node]() before calling 1298 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1299 * usage, an architecture is expected to do something like 1300 * 1301 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1302 * max_highmem_pfn}; 1303 * for_each_valid_physical_page_range() 1304 * memblock_add_node(base, size, nid) 1305 * free_area_init_nodes(max_zone_pfns); 1306 * 1307 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1308 * registered physical page range. Similarly 1309 * sparse_memory_present_with_active_regions() calls memory_present() for 1310 * each range when SPARSEMEM is enabled. 1311 * 1312 * See mm/page_alloc.c for more information on each function exposed by 1313 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1314 */ 1315 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1316 unsigned long node_map_pfn_alignment(void); 1317 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1318 unsigned long end_pfn); 1319 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1320 unsigned long end_pfn); 1321 extern void get_pfn_range_for_nid(unsigned int nid, 1322 unsigned long *start_pfn, unsigned long *end_pfn); 1323 extern unsigned long find_min_pfn_with_active_regions(void); 1324 extern void free_bootmem_with_active_regions(int nid, 1325 unsigned long max_low_pfn); 1326 extern void sparse_memory_present_with_active_regions(int nid); 1327 1328 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1329 1330 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1331 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1332 static inline int __early_pfn_to_nid(unsigned long pfn) 1333 { 1334 return 0; 1335 } 1336 #else 1337 /* please see mm/page_alloc.c */ 1338 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1339 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1340 /* there is a per-arch backend function. */ 1341 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1342 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1343 #endif 1344 1345 extern void set_dma_reserve(unsigned long new_dma_reserve); 1346 extern void memmap_init_zone(unsigned long, int, unsigned long, 1347 unsigned long, enum memmap_context); 1348 extern void setup_per_zone_wmarks(void); 1349 extern int __meminit init_per_zone_wmark_min(void); 1350 extern void mem_init(void); 1351 extern void __init mmap_init(void); 1352 extern void show_mem(unsigned int flags); 1353 extern void si_meminfo(struct sysinfo * val); 1354 extern void si_meminfo_node(struct sysinfo *val, int nid); 1355 extern int after_bootmem; 1356 1357 extern __printf(3, 4) 1358 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1359 1360 extern void setup_per_cpu_pageset(void); 1361 1362 extern void zone_pcp_update(struct zone *zone); 1363 extern void zone_pcp_reset(struct zone *zone); 1364 1365 /* nommu.c */ 1366 extern atomic_long_t mmap_pages_allocated; 1367 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1368 1369 /* prio_tree.c */ 1370 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1371 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1372 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1373 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1374 struct prio_tree_iter *iter); 1375 1376 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1377 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1378 (vma = vma_prio_tree_next(vma, iter)); ) 1379 1380 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1381 struct list_head *list) 1382 { 1383 vma->shared.vm_set.parent = NULL; 1384 list_add_tail(&vma->shared.vm_set.list, list); 1385 } 1386 1387 /* mmap.c */ 1388 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1389 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1390 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1391 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1392 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1393 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1394 struct mempolicy *); 1395 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1396 extern int split_vma(struct mm_struct *, 1397 struct vm_area_struct *, unsigned long addr, int new_below); 1398 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1399 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1400 struct rb_node **, struct rb_node *); 1401 extern void unlink_file_vma(struct vm_area_struct *); 1402 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1403 unsigned long addr, unsigned long len, pgoff_t pgoff); 1404 extern void exit_mmap(struct mm_struct *); 1405 1406 extern int mm_take_all_locks(struct mm_struct *mm); 1407 extern void mm_drop_all_locks(struct mm_struct *mm); 1408 1409 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1410 extern void added_exe_file_vma(struct mm_struct *mm); 1411 extern void removed_exe_file_vma(struct mm_struct *mm); 1412 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1413 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1414 1415 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1416 extern int install_special_mapping(struct mm_struct *mm, 1417 unsigned long addr, unsigned long len, 1418 unsigned long flags, struct page **pages); 1419 1420 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1421 1422 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1423 unsigned long len, unsigned long flags, 1424 vm_flags_t vm_flags, unsigned long pgoff); 1425 extern unsigned long do_mmap_pgoff(struct file *, unsigned long, 1426 unsigned long, unsigned long, 1427 unsigned long, unsigned long); 1428 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1429 1430 /* These take the mm semaphore themselves */ 1431 extern unsigned long vm_brk(unsigned long, unsigned long); 1432 extern int vm_munmap(unsigned long, size_t); 1433 extern unsigned long vm_mmap(struct file *, unsigned long, 1434 unsigned long, unsigned long, 1435 unsigned long, unsigned long); 1436 1437 /* truncate.c */ 1438 extern void truncate_inode_pages(struct address_space *, loff_t); 1439 extern void truncate_inode_pages_range(struct address_space *, 1440 loff_t lstart, loff_t lend); 1441 1442 /* generic vm_area_ops exported for stackable file systems */ 1443 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1444 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1445 1446 /* mm/page-writeback.c */ 1447 int write_one_page(struct page *page, int wait); 1448 void task_dirty_inc(struct task_struct *tsk); 1449 1450 /* readahead.c */ 1451 #define VM_MAX_READAHEAD 128 /* kbytes */ 1452 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1453 1454 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1455 pgoff_t offset, unsigned long nr_to_read); 1456 1457 void page_cache_sync_readahead(struct address_space *mapping, 1458 struct file_ra_state *ra, 1459 struct file *filp, 1460 pgoff_t offset, 1461 unsigned long size); 1462 1463 void page_cache_async_readahead(struct address_space *mapping, 1464 struct file_ra_state *ra, 1465 struct file *filp, 1466 struct page *pg, 1467 pgoff_t offset, 1468 unsigned long size); 1469 1470 unsigned long max_sane_readahead(unsigned long nr); 1471 unsigned long ra_submit(struct file_ra_state *ra, 1472 struct address_space *mapping, 1473 struct file *filp); 1474 1475 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1476 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1477 1478 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1479 extern int expand_downwards(struct vm_area_struct *vma, 1480 unsigned long address); 1481 #if VM_GROWSUP 1482 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1483 #else 1484 #define expand_upwards(vma, address) do { } while (0) 1485 #endif 1486 1487 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1488 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1489 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1490 struct vm_area_struct **pprev); 1491 1492 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1493 NULL if none. Assume start_addr < end_addr. */ 1494 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1495 { 1496 struct vm_area_struct * vma = find_vma(mm,start_addr); 1497 1498 if (vma && end_addr <= vma->vm_start) 1499 vma = NULL; 1500 return vma; 1501 } 1502 1503 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1504 { 1505 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1506 } 1507 1508 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1509 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1510 unsigned long vm_start, unsigned long vm_end) 1511 { 1512 struct vm_area_struct *vma = find_vma(mm, vm_start); 1513 1514 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1515 vma = NULL; 1516 1517 return vma; 1518 } 1519 1520 #ifdef CONFIG_MMU 1521 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1522 #else 1523 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1524 { 1525 return __pgprot(0); 1526 } 1527 #endif 1528 1529 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1530 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1531 unsigned long pfn, unsigned long size, pgprot_t); 1532 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1533 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1534 unsigned long pfn); 1535 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1536 unsigned long pfn); 1537 1538 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1539 unsigned int foll_flags); 1540 #define FOLL_WRITE 0x01 /* check pte is writable */ 1541 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1542 #define FOLL_GET 0x04 /* do get_page on page */ 1543 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1544 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1545 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1546 * and return without waiting upon it */ 1547 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1548 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1549 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1550 1551 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1552 void *data); 1553 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1554 unsigned long size, pte_fn_t fn, void *data); 1555 1556 #ifdef CONFIG_PROC_FS 1557 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1558 #else 1559 static inline void vm_stat_account(struct mm_struct *mm, 1560 unsigned long flags, struct file *file, long pages) 1561 { 1562 mm->total_vm += pages; 1563 } 1564 #endif /* CONFIG_PROC_FS */ 1565 1566 #ifdef CONFIG_DEBUG_PAGEALLOC 1567 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1568 #ifdef CONFIG_HIBERNATION 1569 extern bool kernel_page_present(struct page *page); 1570 #endif /* CONFIG_HIBERNATION */ 1571 #else 1572 static inline void 1573 kernel_map_pages(struct page *page, int numpages, int enable) {} 1574 #ifdef CONFIG_HIBERNATION 1575 static inline bool kernel_page_present(struct page *page) { return true; } 1576 #endif /* CONFIG_HIBERNATION */ 1577 #endif 1578 1579 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1580 #ifdef __HAVE_ARCH_GATE_AREA 1581 int in_gate_area_no_mm(unsigned long addr); 1582 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1583 #else 1584 int in_gate_area_no_mm(unsigned long addr); 1585 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1586 #endif /* __HAVE_ARCH_GATE_AREA */ 1587 1588 int drop_caches_sysctl_handler(struct ctl_table *, int, 1589 void __user *, size_t *, loff_t *); 1590 unsigned long shrink_slab(struct shrink_control *shrink, 1591 unsigned long nr_pages_scanned, 1592 unsigned long lru_pages); 1593 1594 #ifndef CONFIG_MMU 1595 #define randomize_va_space 0 1596 #else 1597 extern int randomize_va_space; 1598 #endif 1599 1600 const char * arch_vma_name(struct vm_area_struct *vma); 1601 void print_vma_addr(char *prefix, unsigned long rip); 1602 1603 void sparse_mem_maps_populate_node(struct page **map_map, 1604 unsigned long pnum_begin, 1605 unsigned long pnum_end, 1606 unsigned long map_count, 1607 int nodeid); 1608 1609 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1610 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1611 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1612 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1613 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1614 void *vmemmap_alloc_block(unsigned long size, int node); 1615 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1616 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1617 int vmemmap_populate_basepages(struct page *start_page, 1618 unsigned long pages, int node); 1619 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1620 void vmemmap_populate_print_last(void); 1621 1622 1623 enum mf_flags { 1624 MF_COUNT_INCREASED = 1 << 0, 1625 MF_ACTION_REQUIRED = 1 << 1, 1626 MF_MUST_KILL = 1 << 2, 1627 }; 1628 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1629 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1630 extern int unpoison_memory(unsigned long pfn); 1631 extern int sysctl_memory_failure_early_kill; 1632 extern int sysctl_memory_failure_recovery; 1633 extern void shake_page(struct page *p, int access); 1634 extern atomic_long_t mce_bad_pages; 1635 extern int soft_offline_page(struct page *page, int flags); 1636 1637 extern void dump_page(struct page *page); 1638 1639 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1640 extern void clear_huge_page(struct page *page, 1641 unsigned long addr, 1642 unsigned int pages_per_huge_page); 1643 extern void copy_user_huge_page(struct page *dst, struct page *src, 1644 unsigned long addr, struct vm_area_struct *vma, 1645 unsigned int pages_per_huge_page); 1646 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1647 1648 #ifdef CONFIG_DEBUG_PAGEALLOC 1649 extern unsigned int _debug_guardpage_minorder; 1650 1651 static inline unsigned int debug_guardpage_minorder(void) 1652 { 1653 return _debug_guardpage_minorder; 1654 } 1655 1656 static inline bool page_is_guard(struct page *page) 1657 { 1658 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1659 } 1660 #else 1661 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1662 static inline bool page_is_guard(struct page *page) { return false; } 1663 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1664 1665 #endif /* __KERNEL__ */ 1666 #endif /* _LINUX_MM_H */ 1667