xref: /linux-6.15/include/linux/mm.h (revision e80a48ba)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct user_struct;
37 struct pt_regs;
38 
39 extern int sysctl_page_lock_unfairness;
40 
41 void init_mm_internals(void);
42 
43 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45 
46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 	max_mapnr = limit;
49 }
50 #else
51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53 
54 extern atomic_long_t _totalram_pages;
55 static inline unsigned long totalram_pages(void)
56 {
57 	return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_inc(void)
61 {
62 	atomic_long_inc(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_dec(void)
66 {
67 	atomic_long_dec(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_add(long count)
71 {
72 	atomic_long_add(count, &_totalram_pages);
73 }
74 
75 extern void * high_memory;
76 extern int page_cluster;
77 extern const int page_cluster_max;
78 
79 #ifdef CONFIG_SYSCTL
80 extern int sysctl_legacy_va_layout;
81 #else
82 #define sysctl_legacy_va_layout 0
83 #endif
84 
85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86 extern const int mmap_rnd_bits_min;
87 extern const int mmap_rnd_bits_max;
88 extern int mmap_rnd_bits __read_mostly;
89 #endif
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91 extern const int mmap_rnd_compat_bits_min;
92 extern const int mmap_rnd_compat_bits_max;
93 extern int mmap_rnd_compat_bits __read_mostly;
94 #endif
95 
96 #include <asm/page.h>
97 #include <asm/processor.h>
98 
99 /*
100  * Architectures that support memory tagging (assigning tags to memory regions,
101  * embedding these tags into addresses that point to these memory regions, and
102  * checking that the memory and the pointer tags match on memory accesses)
103  * redefine this macro to strip tags from pointers.
104  * It's defined as noop for architectures that don't support memory tagging.
105  */
106 #ifndef untagged_addr
107 #define untagged_addr(addr) (addr)
108 #endif
109 
110 #ifndef __pa_symbol
111 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
112 #endif
113 
114 #ifndef page_to_virt
115 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
116 #endif
117 
118 #ifndef lm_alias
119 #define lm_alias(x)	__va(__pa_symbol(x))
120 #endif
121 
122 /*
123  * To prevent common memory management code establishing
124  * a zero page mapping on a read fault.
125  * This macro should be defined within <asm/pgtable.h>.
126  * s390 does this to prevent multiplexing of hardware bits
127  * related to the physical page in case of virtualization.
128  */
129 #ifndef mm_forbids_zeropage
130 #define mm_forbids_zeropage(X)	(0)
131 #endif
132 
133 /*
134  * On some architectures it is expensive to call memset() for small sizes.
135  * If an architecture decides to implement their own version of
136  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137  * define their own version of this macro in <asm/pgtable.h>
138  */
139 #if BITS_PER_LONG == 64
140 /* This function must be updated when the size of struct page grows above 80
141  * or reduces below 56. The idea that compiler optimizes out switch()
142  * statement, and only leaves move/store instructions. Also the compiler can
143  * combine write statements if they are both assignments and can be reordered,
144  * this can result in several of the writes here being dropped.
145  */
146 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147 static inline void __mm_zero_struct_page(struct page *page)
148 {
149 	unsigned long *_pp = (void *)page;
150 
151 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 	BUILD_BUG_ON(sizeof(struct page) & 7);
153 	BUILD_BUG_ON(sizeof(struct page) < 56);
154 	BUILD_BUG_ON(sizeof(struct page) > 80);
155 
156 	switch (sizeof(struct page)) {
157 	case 80:
158 		_pp[9] = 0;
159 		fallthrough;
160 	case 72:
161 		_pp[8] = 0;
162 		fallthrough;
163 	case 64:
164 		_pp[7] = 0;
165 		fallthrough;
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 
215 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
216 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
217 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
218 #else
219 #define nth_page(page,n) ((page) + (n))
220 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
221 #endif
222 
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 
226 /* to align the pointer to the (prev) page boundary */
227 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228 
229 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
230 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231 
232 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
233 static inline struct folio *lru_to_folio(struct list_head *head)
234 {
235 	return list_entry((head)->prev, struct folio, lru);
236 }
237 
238 void setup_initial_init_mm(void *start_code, void *end_code,
239 			   void *end_data, void *brk);
240 
241 /*
242  * Linux kernel virtual memory manager primitives.
243  * The idea being to have a "virtual" mm in the same way
244  * we have a virtual fs - giving a cleaner interface to the
245  * mm details, and allowing different kinds of memory mappings
246  * (from shared memory to executable loading to arbitrary
247  * mmap() functions).
248  */
249 
250 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
251 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252 void vm_area_free(struct vm_area_struct *);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
281 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
282 
283 #define VM_LOCKED	0x00002000
284 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
285 
286 					/* Used by sys_madvise() */
287 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
288 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
289 
290 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
291 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
292 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
293 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
294 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
295 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
296 #define VM_SYNC		0x00800000	/* Synchronous page faults */
297 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
298 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
299 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
300 
301 #ifdef CONFIG_MEM_SOFT_DIRTY
302 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
303 #else
304 # define VM_SOFTDIRTY	0
305 #endif
306 
307 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
308 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
309 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
310 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
311 
312 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
313 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
319 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
320 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
321 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
322 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
323 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
324 
325 #ifdef CONFIG_ARCH_HAS_PKEYS
326 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
327 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
328 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
329 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
330 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
331 #ifdef CONFIG_PPC
332 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
333 #else
334 # define VM_PKEY_BIT4  0
335 #endif
336 #endif /* CONFIG_ARCH_HAS_PKEYS */
337 
338 #if defined(CONFIG_X86)
339 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
340 #elif defined(CONFIG_PPC)
341 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
342 #elif defined(CONFIG_PARISC)
343 # define VM_GROWSUP	VM_ARCH_1
344 #elif defined(CONFIG_IA64)
345 # define VM_GROWSUP	VM_ARCH_1
346 #elif defined(CONFIG_SPARC64)
347 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
348 # define VM_ARCH_CLEAR	VM_SPARC_ADI
349 #elif defined(CONFIG_ARM64)
350 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
351 # define VM_ARCH_CLEAR	VM_ARM64_BTI
352 #elif !defined(CONFIG_MMU)
353 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
354 #endif
355 
356 #if defined(CONFIG_ARM64_MTE)
357 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
358 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
359 #else
360 # define VM_MTE		VM_NONE
361 # define VM_MTE_ALLOWED	VM_NONE
362 #endif
363 
364 #ifndef VM_GROWSUP
365 # define VM_GROWSUP	VM_NONE
366 #endif
367 
368 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
369 # define VM_UFFD_MINOR_BIT	37
370 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
371 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
372 # define VM_UFFD_MINOR		VM_NONE
373 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
374 
375 /* Bits set in the VMA until the stack is in its final location */
376 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
377 
378 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
379 
380 /* Common data flag combinations */
381 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
382 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
383 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
384 				 VM_MAYWRITE | VM_MAYEXEC)
385 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 
388 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
389 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
390 #endif
391 
392 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
394 #endif
395 
396 #ifdef CONFIG_STACK_GROWSUP
397 #define VM_STACK	VM_GROWSUP
398 #else
399 #define VM_STACK	VM_GROWSDOWN
400 #endif
401 
402 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
403 
404 /* VMA basic access permission flags */
405 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
406 
407 
408 /*
409  * Special vmas that are non-mergable, non-mlock()able.
410  */
411 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
412 
413 /* This mask prevents VMA from being scanned with khugepaged */
414 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
415 
416 /* This mask defines which mm->def_flags a process can inherit its parent */
417 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
418 
419 /* This mask is used to clear all the VMA flags used by mlock */
420 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
421 
422 /* Arch-specific flags to clear when updating VM flags on protection change */
423 #ifndef VM_ARCH_CLEAR
424 # define VM_ARCH_CLEAR	VM_NONE
425 #endif
426 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
427 
428 /*
429  * mapping from the currently active vm_flags protection bits (the
430  * low four bits) to a page protection mask..
431  */
432 
433 /*
434  * The default fault flags that should be used by most of the
435  * arch-specific page fault handlers.
436  */
437 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
438 			     FAULT_FLAG_KILLABLE | \
439 			     FAULT_FLAG_INTERRUPTIBLE)
440 
441 /**
442  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
443  * @flags: Fault flags.
444  *
445  * This is mostly used for places where we want to try to avoid taking
446  * the mmap_lock for too long a time when waiting for another condition
447  * to change, in which case we can try to be polite to release the
448  * mmap_lock in the first round to avoid potential starvation of other
449  * processes that would also want the mmap_lock.
450  *
451  * Return: true if the page fault allows retry and this is the first
452  * attempt of the fault handling; false otherwise.
453  */
454 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
455 {
456 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
457 	    (!(flags & FAULT_FLAG_TRIED));
458 }
459 
460 #define FAULT_FLAG_TRACE \
461 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
462 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
463 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
464 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
465 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
466 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
467 	{ FAULT_FLAG_USER,		"USER" }, \
468 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
469 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
470 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
471 
472 /*
473  * vm_fault is filled by the pagefault handler and passed to the vma's
474  * ->fault function. The vma's ->fault is responsible for returning a bitmask
475  * of VM_FAULT_xxx flags that give details about how the fault was handled.
476  *
477  * MM layer fills up gfp_mask for page allocations but fault handler might
478  * alter it if its implementation requires a different allocation context.
479  *
480  * pgoff should be used in favour of virtual_address, if possible.
481  */
482 struct vm_fault {
483 	const struct {
484 		struct vm_area_struct *vma;	/* Target VMA */
485 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
486 		pgoff_t pgoff;			/* Logical page offset based on vma */
487 		unsigned long address;		/* Faulting virtual address - masked */
488 		unsigned long real_address;	/* Faulting virtual address - unmasked */
489 	};
490 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
491 					 * XXX: should really be 'const' */
492 	pmd_t *pmd;			/* Pointer to pmd entry matching
493 					 * the 'address' */
494 	pud_t *pud;			/* Pointer to pud entry matching
495 					 * the 'address'
496 					 */
497 	union {
498 		pte_t orig_pte;		/* Value of PTE at the time of fault */
499 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
500 					 * used by PMD fault only.
501 					 */
502 	};
503 
504 	struct page *cow_page;		/* Page handler may use for COW fault */
505 	struct page *page;		/* ->fault handlers should return a
506 					 * page here, unless VM_FAULT_NOPAGE
507 					 * is set (which is also implied by
508 					 * VM_FAULT_ERROR).
509 					 */
510 	/* These three entries are valid only while holding ptl lock */
511 	pte_t *pte;			/* Pointer to pte entry matching
512 					 * the 'address'. NULL if the page
513 					 * table hasn't been allocated.
514 					 */
515 	spinlock_t *ptl;		/* Page table lock.
516 					 * Protects pte page table if 'pte'
517 					 * is not NULL, otherwise pmd.
518 					 */
519 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
520 					 * vm_ops->map_pages() sets up a page
521 					 * table from atomic context.
522 					 * do_fault_around() pre-allocates
523 					 * page table to avoid allocation from
524 					 * atomic context.
525 					 */
526 };
527 
528 /* page entry size for vm->huge_fault() */
529 enum page_entry_size {
530 	PE_SIZE_PTE = 0,
531 	PE_SIZE_PMD,
532 	PE_SIZE_PUD,
533 };
534 
535 /*
536  * These are the virtual MM functions - opening of an area, closing and
537  * unmapping it (needed to keep files on disk up-to-date etc), pointer
538  * to the functions called when a no-page or a wp-page exception occurs.
539  */
540 struct vm_operations_struct {
541 	void (*open)(struct vm_area_struct * area);
542 	/**
543 	 * @close: Called when the VMA is being removed from the MM.
544 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
545 	 */
546 	void (*close)(struct vm_area_struct * area);
547 	/* Called any time before splitting to check if it's allowed */
548 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
549 	int (*mremap)(struct vm_area_struct *area);
550 	/*
551 	 * Called by mprotect() to make driver-specific permission
552 	 * checks before mprotect() is finalised.   The VMA must not
553 	 * be modified.  Returns 0 if mprotect() can proceed.
554 	 */
555 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
556 			unsigned long end, unsigned long newflags);
557 	vm_fault_t (*fault)(struct vm_fault *vmf);
558 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
559 			enum page_entry_size pe_size);
560 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
561 			pgoff_t start_pgoff, pgoff_t end_pgoff);
562 	unsigned long (*pagesize)(struct vm_area_struct * area);
563 
564 	/* notification that a previously read-only page is about to become
565 	 * writable, if an error is returned it will cause a SIGBUS */
566 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
567 
568 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
569 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
570 
571 	/* called by access_process_vm when get_user_pages() fails, typically
572 	 * for use by special VMAs. See also generic_access_phys() for a generic
573 	 * implementation useful for any iomem mapping.
574 	 */
575 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
576 		      void *buf, int len, int write);
577 
578 	/* Called by the /proc/PID/maps code to ask the vma whether it
579 	 * has a special name.  Returning non-NULL will also cause this
580 	 * vma to be dumped unconditionally. */
581 	const char *(*name)(struct vm_area_struct *vma);
582 
583 #ifdef CONFIG_NUMA
584 	/*
585 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
586 	 * to hold the policy upon return.  Caller should pass NULL @new to
587 	 * remove a policy and fall back to surrounding context--i.e. do not
588 	 * install a MPOL_DEFAULT policy, nor the task or system default
589 	 * mempolicy.
590 	 */
591 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
592 
593 	/*
594 	 * get_policy() op must add reference [mpol_get()] to any policy at
595 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
596 	 * in mm/mempolicy.c will do this automatically.
597 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
598 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
599 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
600 	 * must return NULL--i.e., do not "fallback" to task or system default
601 	 * policy.
602 	 */
603 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
604 					unsigned long addr);
605 #endif
606 	/*
607 	 * Called by vm_normal_page() for special PTEs to find the
608 	 * page for @addr.  This is useful if the default behavior
609 	 * (using pte_page()) would not find the correct page.
610 	 */
611 	struct page *(*find_special_page)(struct vm_area_struct *vma,
612 					  unsigned long addr);
613 };
614 
615 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
616 {
617 	static const struct vm_operations_struct dummy_vm_ops = {};
618 
619 	memset(vma, 0, sizeof(*vma));
620 	vma->vm_mm = mm;
621 	vma->vm_ops = &dummy_vm_ops;
622 	INIT_LIST_HEAD(&vma->anon_vma_chain);
623 }
624 
625 static inline void vma_set_anonymous(struct vm_area_struct *vma)
626 {
627 	vma->vm_ops = NULL;
628 }
629 
630 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
631 {
632 	return !vma->vm_ops;
633 }
634 
635 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
636 {
637 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
638 
639 	if (!maybe_stack)
640 		return false;
641 
642 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
643 						VM_STACK_INCOMPLETE_SETUP)
644 		return true;
645 
646 	return false;
647 }
648 
649 static inline bool vma_is_foreign(struct vm_area_struct *vma)
650 {
651 	if (!current->mm)
652 		return true;
653 
654 	if (current->mm != vma->vm_mm)
655 		return true;
656 
657 	return false;
658 }
659 
660 static inline bool vma_is_accessible(struct vm_area_struct *vma)
661 {
662 	return vma->vm_flags & VM_ACCESS_FLAGS;
663 }
664 
665 static inline
666 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
667 {
668 	return mas_find(&vmi->mas, max);
669 }
670 
671 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
672 {
673 	/*
674 	 * Uses vma_find() to get the first VMA when the iterator starts.
675 	 * Calling mas_next() could skip the first entry.
676 	 */
677 	return vma_find(vmi, ULONG_MAX);
678 }
679 
680 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
681 {
682 	return mas_prev(&vmi->mas, 0);
683 }
684 
685 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
686 {
687 	return vmi->mas.index;
688 }
689 
690 #define for_each_vma(__vmi, __vma)					\
691 	while (((__vma) = vma_next(&(__vmi))) != NULL)
692 
693 /* The MM code likes to work with exclusive end addresses */
694 #define for_each_vma_range(__vmi, __vma, __end)				\
695 	while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
696 
697 #ifdef CONFIG_SHMEM
698 /*
699  * The vma_is_shmem is not inline because it is used only by slow
700  * paths in userfault.
701  */
702 bool vma_is_shmem(struct vm_area_struct *vma);
703 bool vma_is_anon_shmem(struct vm_area_struct *vma);
704 #else
705 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
706 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
707 #endif
708 
709 int vma_is_stack_for_current(struct vm_area_struct *vma);
710 
711 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
712 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
713 
714 struct mmu_gather;
715 struct inode;
716 
717 static inline unsigned int compound_order(struct page *page)
718 {
719 	if (!PageHead(page))
720 		return 0;
721 	return page[1].compound_order;
722 }
723 
724 /**
725  * folio_order - The allocation order of a folio.
726  * @folio: The folio.
727  *
728  * A folio is composed of 2^order pages.  See get_order() for the definition
729  * of order.
730  *
731  * Return: The order of the folio.
732  */
733 static inline unsigned int folio_order(struct folio *folio)
734 {
735 	if (!folio_test_large(folio))
736 		return 0;
737 	return folio->_folio_order;
738 }
739 
740 #include <linux/huge_mm.h>
741 
742 /*
743  * Methods to modify the page usage count.
744  *
745  * What counts for a page usage:
746  * - cache mapping   (page->mapping)
747  * - private data    (page->private)
748  * - page mapped in a task's page tables, each mapping
749  *   is counted separately
750  *
751  * Also, many kernel routines increase the page count before a critical
752  * routine so they can be sure the page doesn't go away from under them.
753  */
754 
755 /*
756  * Drop a ref, return true if the refcount fell to zero (the page has no users)
757  */
758 static inline int put_page_testzero(struct page *page)
759 {
760 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
761 	return page_ref_dec_and_test(page);
762 }
763 
764 static inline int folio_put_testzero(struct folio *folio)
765 {
766 	return put_page_testzero(&folio->page);
767 }
768 
769 /*
770  * Try to grab a ref unless the page has a refcount of zero, return false if
771  * that is the case.
772  * This can be called when MMU is off so it must not access
773  * any of the virtual mappings.
774  */
775 static inline bool get_page_unless_zero(struct page *page)
776 {
777 	return page_ref_add_unless(page, 1, 0);
778 }
779 
780 extern int page_is_ram(unsigned long pfn);
781 
782 enum {
783 	REGION_INTERSECTS,
784 	REGION_DISJOINT,
785 	REGION_MIXED,
786 };
787 
788 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
789 		      unsigned long desc);
790 
791 /* Support for virtually mapped pages */
792 struct page *vmalloc_to_page(const void *addr);
793 unsigned long vmalloc_to_pfn(const void *addr);
794 
795 /*
796  * Determine if an address is within the vmalloc range
797  *
798  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
799  * is no special casing required.
800  */
801 
802 #ifndef is_ioremap_addr
803 #define is_ioremap_addr(x) is_vmalloc_addr(x)
804 #endif
805 
806 #ifdef CONFIG_MMU
807 extern bool is_vmalloc_addr(const void *x);
808 extern int is_vmalloc_or_module_addr(const void *x);
809 #else
810 static inline bool is_vmalloc_addr(const void *x)
811 {
812 	return false;
813 }
814 static inline int is_vmalloc_or_module_addr(const void *x)
815 {
816 	return 0;
817 }
818 #endif
819 
820 /*
821  * How many times the entire folio is mapped as a single unit (eg by a
822  * PMD or PUD entry).  This is probably not what you want, except for
823  * debugging purposes - it does not include PTE-mapped sub-pages; look
824  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
825  */
826 static inline int folio_entire_mapcount(struct folio *folio)
827 {
828 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
829 	return atomic_read(folio_mapcount_ptr(folio)) + 1;
830 }
831 
832 /*
833  * Mapcount of compound page as a whole, does not include mapped sub-pages.
834  * Must be called only on head of compound page.
835  */
836 static inline int head_compound_mapcount(struct page *head)
837 {
838 	return atomic_read(compound_mapcount_ptr(head)) + 1;
839 }
840 
841 /*
842  * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
843  * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
844  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
845  * leaves subpages_mapcount at 0, but avoid surprise if it participates later.
846  */
847 #define COMPOUND_MAPPED	0x800000
848 #define SUBPAGES_MAPPED	(COMPOUND_MAPPED - 1)
849 
850 /*
851  * Number of sub-pages mapped by PTE, does not include compound mapcount.
852  * Must be called only on head of compound page.
853  */
854 static inline int head_subpages_mapcount(struct page *head)
855 {
856 	return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
857 }
858 
859 /*
860  * The atomic page->_mapcount, starts from -1: so that transitions
861  * both from it and to it can be tracked, using atomic_inc_and_test
862  * and atomic_add_negative(-1).
863  */
864 static inline void page_mapcount_reset(struct page *page)
865 {
866 	atomic_set(&(page)->_mapcount, -1);
867 }
868 
869 /*
870  * Mapcount of 0-order page; when compound sub-page, includes
871  * compound_mapcount of compound_head of page.
872  *
873  * Result is undefined for pages which cannot be mapped into userspace.
874  * For example SLAB or special types of pages. See function page_has_type().
875  * They use this place in struct page differently.
876  */
877 static inline int page_mapcount(struct page *page)
878 {
879 	int mapcount = atomic_read(&page->_mapcount) + 1;
880 
881 	if (likely(!PageCompound(page)))
882 		return mapcount;
883 	page = compound_head(page);
884 	return head_compound_mapcount(page) + mapcount;
885 }
886 
887 int total_compound_mapcount(struct page *head);
888 
889 /**
890  * folio_mapcount() - Calculate the number of mappings of this folio.
891  * @folio: The folio.
892  *
893  * A large folio tracks both how many times the entire folio is mapped,
894  * and how many times each individual page in the folio is mapped.
895  * This function calculates the total number of times the folio is
896  * mapped.
897  *
898  * Return: The number of times this folio is mapped.
899  */
900 static inline int folio_mapcount(struct folio *folio)
901 {
902 	if (likely(!folio_test_large(folio)))
903 		return atomic_read(&folio->_mapcount) + 1;
904 	return total_compound_mapcount(&folio->page);
905 }
906 
907 static inline int total_mapcount(struct page *page)
908 {
909 	if (likely(!PageCompound(page)))
910 		return atomic_read(&page->_mapcount) + 1;
911 	return total_compound_mapcount(compound_head(page));
912 }
913 
914 static inline bool folio_large_is_mapped(struct folio *folio)
915 {
916 	/*
917 	 * Reading folio_mapcount_ptr() below could be omitted if hugetlb
918 	 * participated in incrementing subpages_mapcount when compound mapped.
919 	 */
920 	return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
921 		atomic_read(folio_mapcount_ptr(folio)) >= 0;
922 }
923 
924 /**
925  * folio_mapped - Is this folio mapped into userspace?
926  * @folio: The folio.
927  *
928  * Return: True if any page in this folio is referenced by user page tables.
929  */
930 static inline bool folio_mapped(struct folio *folio)
931 {
932 	if (likely(!folio_test_large(folio)))
933 		return atomic_read(&folio->_mapcount) >= 0;
934 	return folio_large_is_mapped(folio);
935 }
936 
937 /*
938  * Return true if this page is mapped into pagetables.
939  * For compound page it returns true if any sub-page of compound page is mapped,
940  * even if this particular sub-page is not itself mapped by any PTE or PMD.
941  */
942 static inline bool page_mapped(struct page *page)
943 {
944 	if (likely(!PageCompound(page)))
945 		return atomic_read(&page->_mapcount) >= 0;
946 	return folio_large_is_mapped(page_folio(page));
947 }
948 
949 static inline struct page *virt_to_head_page(const void *x)
950 {
951 	struct page *page = virt_to_page(x);
952 
953 	return compound_head(page);
954 }
955 
956 static inline struct folio *virt_to_folio(const void *x)
957 {
958 	struct page *page = virt_to_page(x);
959 
960 	return page_folio(page);
961 }
962 
963 void __folio_put(struct folio *folio);
964 
965 void put_pages_list(struct list_head *pages);
966 
967 void split_page(struct page *page, unsigned int order);
968 void folio_copy(struct folio *dst, struct folio *src);
969 
970 unsigned long nr_free_buffer_pages(void);
971 
972 /*
973  * Compound pages have a destructor function.  Provide a
974  * prototype for that function and accessor functions.
975  * These are _only_ valid on the head of a compound page.
976  */
977 typedef void compound_page_dtor(struct page *);
978 
979 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
980 enum compound_dtor_id {
981 	NULL_COMPOUND_DTOR,
982 	COMPOUND_PAGE_DTOR,
983 #ifdef CONFIG_HUGETLB_PAGE
984 	HUGETLB_PAGE_DTOR,
985 #endif
986 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
987 	TRANSHUGE_PAGE_DTOR,
988 #endif
989 	NR_COMPOUND_DTORS,
990 };
991 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
992 
993 static inline void set_compound_page_dtor(struct page *page,
994 		enum compound_dtor_id compound_dtor)
995 {
996 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
997 	page[1].compound_dtor = compound_dtor;
998 }
999 
1000 static inline void folio_set_compound_dtor(struct folio *folio,
1001 		enum compound_dtor_id compound_dtor)
1002 {
1003 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1004 	folio->_folio_dtor = compound_dtor;
1005 }
1006 
1007 void destroy_large_folio(struct folio *folio);
1008 
1009 static inline int head_compound_pincount(struct page *head)
1010 {
1011 	return atomic_read(compound_pincount_ptr(head));
1012 }
1013 
1014 static inline void set_compound_order(struct page *page, unsigned int order)
1015 {
1016 	page[1].compound_order = order;
1017 #ifdef CONFIG_64BIT
1018 	page[1].compound_nr = 1U << order;
1019 #endif
1020 }
1021 
1022 /*
1023  * folio_set_compound_order is generally passed a non-zero order to
1024  * initialize a large folio.  However, hugetlb code abuses this by
1025  * passing in zero when 'dissolving' a large folio.
1026  */
1027 static inline void folio_set_compound_order(struct folio *folio,
1028 		unsigned int order)
1029 {
1030 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1031 
1032 	folio->_folio_order = order;
1033 #ifdef CONFIG_64BIT
1034 	folio->_folio_nr_pages = order ? 1U << order : 0;
1035 #endif
1036 }
1037 
1038 /* Returns the number of pages in this potentially compound page. */
1039 static inline unsigned long compound_nr(struct page *page)
1040 {
1041 	if (!PageHead(page))
1042 		return 1;
1043 #ifdef CONFIG_64BIT
1044 	return page[1].compound_nr;
1045 #else
1046 	return 1UL << compound_order(page);
1047 #endif
1048 }
1049 
1050 /* Returns the number of bytes in this potentially compound page. */
1051 static inline unsigned long page_size(struct page *page)
1052 {
1053 	return PAGE_SIZE << compound_order(page);
1054 }
1055 
1056 /* Returns the number of bits needed for the number of bytes in a page */
1057 static inline unsigned int page_shift(struct page *page)
1058 {
1059 	return PAGE_SHIFT + compound_order(page);
1060 }
1061 
1062 /**
1063  * thp_order - Order of a transparent huge page.
1064  * @page: Head page of a transparent huge page.
1065  */
1066 static inline unsigned int thp_order(struct page *page)
1067 {
1068 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1069 	return compound_order(page);
1070 }
1071 
1072 /**
1073  * thp_nr_pages - The number of regular pages in this huge page.
1074  * @page: The head page of a huge page.
1075  */
1076 static inline int thp_nr_pages(struct page *page)
1077 {
1078 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1079 	return compound_nr(page);
1080 }
1081 
1082 /**
1083  * thp_size - Size of a transparent huge page.
1084  * @page: Head page of a transparent huge page.
1085  *
1086  * Return: Number of bytes in this page.
1087  */
1088 static inline unsigned long thp_size(struct page *page)
1089 {
1090 	return PAGE_SIZE << thp_order(page);
1091 }
1092 
1093 void free_compound_page(struct page *page);
1094 
1095 #ifdef CONFIG_MMU
1096 /*
1097  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1098  * servicing faults for write access.  In the normal case, do always want
1099  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1100  * that do not have writing enabled, when used by access_process_vm.
1101  */
1102 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1103 {
1104 	if (likely(vma->vm_flags & VM_WRITE))
1105 		pte = pte_mkwrite(pte);
1106 	return pte;
1107 }
1108 
1109 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1110 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1111 
1112 vm_fault_t finish_fault(struct vm_fault *vmf);
1113 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1114 #endif
1115 
1116 /*
1117  * Multiple processes may "see" the same page. E.g. for untouched
1118  * mappings of /dev/null, all processes see the same page full of
1119  * zeroes, and text pages of executables and shared libraries have
1120  * only one copy in memory, at most, normally.
1121  *
1122  * For the non-reserved pages, page_count(page) denotes a reference count.
1123  *   page_count() == 0 means the page is free. page->lru is then used for
1124  *   freelist management in the buddy allocator.
1125  *   page_count() > 0  means the page has been allocated.
1126  *
1127  * Pages are allocated by the slab allocator in order to provide memory
1128  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1129  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1130  * unless a particular usage is carefully commented. (the responsibility of
1131  * freeing the kmalloc memory is the caller's, of course).
1132  *
1133  * A page may be used by anyone else who does a __get_free_page().
1134  * In this case, page_count still tracks the references, and should only
1135  * be used through the normal accessor functions. The top bits of page->flags
1136  * and page->virtual store page management information, but all other fields
1137  * are unused and could be used privately, carefully. The management of this
1138  * page is the responsibility of the one who allocated it, and those who have
1139  * subsequently been given references to it.
1140  *
1141  * The other pages (we may call them "pagecache pages") are completely
1142  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1143  * The following discussion applies only to them.
1144  *
1145  * A pagecache page contains an opaque `private' member, which belongs to the
1146  * page's address_space. Usually, this is the address of a circular list of
1147  * the page's disk buffers. PG_private must be set to tell the VM to call
1148  * into the filesystem to release these pages.
1149  *
1150  * A page may belong to an inode's memory mapping. In this case, page->mapping
1151  * is the pointer to the inode, and page->index is the file offset of the page,
1152  * in units of PAGE_SIZE.
1153  *
1154  * If pagecache pages are not associated with an inode, they are said to be
1155  * anonymous pages. These may become associated with the swapcache, and in that
1156  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1157  *
1158  * In either case (swapcache or inode backed), the pagecache itself holds one
1159  * reference to the page. Setting PG_private should also increment the
1160  * refcount. The each user mapping also has a reference to the page.
1161  *
1162  * The pagecache pages are stored in a per-mapping radix tree, which is
1163  * rooted at mapping->i_pages, and indexed by offset.
1164  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1165  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1166  *
1167  * All pagecache pages may be subject to I/O:
1168  * - inode pages may need to be read from disk,
1169  * - inode pages which have been modified and are MAP_SHARED may need
1170  *   to be written back to the inode on disk,
1171  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1172  *   modified may need to be swapped out to swap space and (later) to be read
1173  *   back into memory.
1174  */
1175 
1176 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1177 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1178 
1179 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1180 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1181 {
1182 	if (!static_branch_unlikely(&devmap_managed_key))
1183 		return false;
1184 	if (!is_zone_device_page(page))
1185 		return false;
1186 	return __put_devmap_managed_page_refs(page, refs);
1187 }
1188 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1189 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1190 {
1191 	return false;
1192 }
1193 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1194 
1195 static inline bool put_devmap_managed_page(struct page *page)
1196 {
1197 	return put_devmap_managed_page_refs(page, 1);
1198 }
1199 
1200 /* 127: arbitrary random number, small enough to assemble well */
1201 #define folio_ref_zero_or_close_to_overflow(folio) \
1202 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1203 
1204 /**
1205  * folio_get - Increment the reference count on a folio.
1206  * @folio: The folio.
1207  *
1208  * Context: May be called in any context, as long as you know that
1209  * you have a refcount on the folio.  If you do not already have one,
1210  * folio_try_get() may be the right interface for you to use.
1211  */
1212 static inline void folio_get(struct folio *folio)
1213 {
1214 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1215 	folio_ref_inc(folio);
1216 }
1217 
1218 static inline void get_page(struct page *page)
1219 {
1220 	folio_get(page_folio(page));
1221 }
1222 
1223 int __must_check try_grab_page(struct page *page, unsigned int flags);
1224 
1225 static inline __must_check bool try_get_page(struct page *page)
1226 {
1227 	page = compound_head(page);
1228 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1229 		return false;
1230 	page_ref_inc(page);
1231 	return true;
1232 }
1233 
1234 /**
1235  * folio_put - Decrement the reference count on a folio.
1236  * @folio: The folio.
1237  *
1238  * If the folio's reference count reaches zero, the memory will be
1239  * released back to the page allocator and may be used by another
1240  * allocation immediately.  Do not access the memory or the struct folio
1241  * after calling folio_put() unless you can be sure that it wasn't the
1242  * last reference.
1243  *
1244  * Context: May be called in process or interrupt context, but not in NMI
1245  * context.  May be called while holding a spinlock.
1246  */
1247 static inline void folio_put(struct folio *folio)
1248 {
1249 	if (folio_put_testzero(folio))
1250 		__folio_put(folio);
1251 }
1252 
1253 /**
1254  * folio_put_refs - Reduce the reference count on a folio.
1255  * @folio: The folio.
1256  * @refs: The amount to subtract from the folio's reference count.
1257  *
1258  * If the folio's reference count reaches zero, the memory will be
1259  * released back to the page allocator and may be used by another
1260  * allocation immediately.  Do not access the memory or the struct folio
1261  * after calling folio_put_refs() unless you can be sure that these weren't
1262  * the last references.
1263  *
1264  * Context: May be called in process or interrupt context, but not in NMI
1265  * context.  May be called while holding a spinlock.
1266  */
1267 static inline void folio_put_refs(struct folio *folio, int refs)
1268 {
1269 	if (folio_ref_sub_and_test(folio, refs))
1270 		__folio_put(folio);
1271 }
1272 
1273 /**
1274  * release_pages - release an array of pages or folios
1275  *
1276  * This just releases a simple array of multiple pages, and
1277  * accepts various different forms of said page array: either
1278  * a regular old boring array of pages, an array of folios, or
1279  * an array of encoded page pointers.
1280  *
1281  * The transparent union syntax for this kind of "any of these
1282  * argument types" is all kinds of ugly, so look away.
1283  */
1284 typedef union {
1285 	struct page **pages;
1286 	struct folio **folios;
1287 	struct encoded_page **encoded_pages;
1288 } release_pages_arg __attribute__ ((__transparent_union__));
1289 
1290 void release_pages(release_pages_arg, int nr);
1291 
1292 /**
1293  * folios_put - Decrement the reference count on an array of folios.
1294  * @folios: The folios.
1295  * @nr: How many folios there are.
1296  *
1297  * Like folio_put(), but for an array of folios.  This is more efficient
1298  * than writing the loop yourself as it will optimise the locks which
1299  * need to be taken if the folios are freed.
1300  *
1301  * Context: May be called in process or interrupt context, but not in NMI
1302  * context.  May be called while holding a spinlock.
1303  */
1304 static inline void folios_put(struct folio **folios, unsigned int nr)
1305 {
1306 	release_pages(folios, nr);
1307 }
1308 
1309 static inline void put_page(struct page *page)
1310 {
1311 	struct folio *folio = page_folio(page);
1312 
1313 	/*
1314 	 * For some devmap managed pages we need to catch refcount transition
1315 	 * from 2 to 1:
1316 	 */
1317 	if (put_devmap_managed_page(&folio->page))
1318 		return;
1319 	folio_put(folio);
1320 }
1321 
1322 /*
1323  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1324  * the page's refcount so that two separate items are tracked: the original page
1325  * reference count, and also a new count of how many pin_user_pages() calls were
1326  * made against the page. ("gup-pinned" is another term for the latter).
1327  *
1328  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1329  * distinct from normal pages. As such, the unpin_user_page() call (and its
1330  * variants) must be used in order to release gup-pinned pages.
1331  *
1332  * Choice of value:
1333  *
1334  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1335  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1336  * simpler, due to the fact that adding an even power of two to the page
1337  * refcount has the effect of using only the upper N bits, for the code that
1338  * counts up using the bias value. This means that the lower bits are left for
1339  * the exclusive use of the original code that increments and decrements by one
1340  * (or at least, by much smaller values than the bias value).
1341  *
1342  * Of course, once the lower bits overflow into the upper bits (and this is
1343  * OK, because subtraction recovers the original values), then visual inspection
1344  * no longer suffices to directly view the separate counts. However, for normal
1345  * applications that don't have huge page reference counts, this won't be an
1346  * issue.
1347  *
1348  * Locking: the lockless algorithm described in folio_try_get_rcu()
1349  * provides safe operation for get_user_pages(), page_mkclean() and
1350  * other calls that race to set up page table entries.
1351  */
1352 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1353 
1354 void unpin_user_page(struct page *page);
1355 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1356 				 bool make_dirty);
1357 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1358 				      bool make_dirty);
1359 void unpin_user_pages(struct page **pages, unsigned long npages);
1360 
1361 static inline bool is_cow_mapping(vm_flags_t flags)
1362 {
1363 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1364 }
1365 
1366 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1367 #define SECTION_IN_PAGE_FLAGS
1368 #endif
1369 
1370 /*
1371  * The identification function is mainly used by the buddy allocator for
1372  * determining if two pages could be buddies. We are not really identifying
1373  * the zone since we could be using the section number id if we do not have
1374  * node id available in page flags.
1375  * We only guarantee that it will return the same value for two combinable
1376  * pages in a zone.
1377  */
1378 static inline int page_zone_id(struct page *page)
1379 {
1380 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1381 }
1382 
1383 #ifdef NODE_NOT_IN_PAGE_FLAGS
1384 extern int page_to_nid(const struct page *page);
1385 #else
1386 static inline int page_to_nid(const struct page *page)
1387 {
1388 	struct page *p = (struct page *)page;
1389 
1390 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1391 }
1392 #endif
1393 
1394 static inline int folio_nid(const struct folio *folio)
1395 {
1396 	return page_to_nid(&folio->page);
1397 }
1398 
1399 #ifdef CONFIG_NUMA_BALANCING
1400 /* page access time bits needs to hold at least 4 seconds */
1401 #define PAGE_ACCESS_TIME_MIN_BITS	12
1402 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1403 #define PAGE_ACCESS_TIME_BUCKETS				\
1404 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1405 #else
1406 #define PAGE_ACCESS_TIME_BUCKETS	0
1407 #endif
1408 
1409 #define PAGE_ACCESS_TIME_MASK				\
1410 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1411 
1412 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1413 {
1414 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1415 }
1416 
1417 static inline int cpupid_to_pid(int cpupid)
1418 {
1419 	return cpupid & LAST__PID_MASK;
1420 }
1421 
1422 static inline int cpupid_to_cpu(int cpupid)
1423 {
1424 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1425 }
1426 
1427 static inline int cpupid_to_nid(int cpupid)
1428 {
1429 	return cpu_to_node(cpupid_to_cpu(cpupid));
1430 }
1431 
1432 static inline bool cpupid_pid_unset(int cpupid)
1433 {
1434 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1435 }
1436 
1437 static inline bool cpupid_cpu_unset(int cpupid)
1438 {
1439 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1440 }
1441 
1442 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1443 {
1444 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1445 }
1446 
1447 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1448 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1449 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1450 {
1451 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1452 }
1453 
1454 static inline int page_cpupid_last(struct page *page)
1455 {
1456 	return page->_last_cpupid;
1457 }
1458 static inline void page_cpupid_reset_last(struct page *page)
1459 {
1460 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1461 }
1462 #else
1463 static inline int page_cpupid_last(struct page *page)
1464 {
1465 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1466 }
1467 
1468 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1469 
1470 static inline void page_cpupid_reset_last(struct page *page)
1471 {
1472 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1473 }
1474 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1475 
1476 static inline int xchg_page_access_time(struct page *page, int time)
1477 {
1478 	int last_time;
1479 
1480 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1481 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1482 }
1483 #else /* !CONFIG_NUMA_BALANCING */
1484 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1485 {
1486 	return page_to_nid(page); /* XXX */
1487 }
1488 
1489 static inline int xchg_page_access_time(struct page *page, int time)
1490 {
1491 	return 0;
1492 }
1493 
1494 static inline int page_cpupid_last(struct page *page)
1495 {
1496 	return page_to_nid(page); /* XXX */
1497 }
1498 
1499 static inline int cpupid_to_nid(int cpupid)
1500 {
1501 	return -1;
1502 }
1503 
1504 static inline int cpupid_to_pid(int cpupid)
1505 {
1506 	return -1;
1507 }
1508 
1509 static inline int cpupid_to_cpu(int cpupid)
1510 {
1511 	return -1;
1512 }
1513 
1514 static inline int cpu_pid_to_cpupid(int nid, int pid)
1515 {
1516 	return -1;
1517 }
1518 
1519 static inline bool cpupid_pid_unset(int cpupid)
1520 {
1521 	return true;
1522 }
1523 
1524 static inline void page_cpupid_reset_last(struct page *page)
1525 {
1526 }
1527 
1528 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1529 {
1530 	return false;
1531 }
1532 #endif /* CONFIG_NUMA_BALANCING */
1533 
1534 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1535 
1536 /*
1537  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1538  * setting tags for all pages to native kernel tag value 0xff, as the default
1539  * value 0x00 maps to 0xff.
1540  */
1541 
1542 static inline u8 page_kasan_tag(const struct page *page)
1543 {
1544 	u8 tag = 0xff;
1545 
1546 	if (kasan_enabled()) {
1547 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1548 		tag ^= 0xff;
1549 	}
1550 
1551 	return tag;
1552 }
1553 
1554 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1555 {
1556 	unsigned long old_flags, flags;
1557 
1558 	if (!kasan_enabled())
1559 		return;
1560 
1561 	tag ^= 0xff;
1562 	old_flags = READ_ONCE(page->flags);
1563 	do {
1564 		flags = old_flags;
1565 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1566 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1567 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1568 }
1569 
1570 static inline void page_kasan_tag_reset(struct page *page)
1571 {
1572 	if (kasan_enabled())
1573 		page_kasan_tag_set(page, 0xff);
1574 }
1575 
1576 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1577 
1578 static inline u8 page_kasan_tag(const struct page *page)
1579 {
1580 	return 0xff;
1581 }
1582 
1583 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1584 static inline void page_kasan_tag_reset(struct page *page) { }
1585 
1586 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1587 
1588 static inline struct zone *page_zone(const struct page *page)
1589 {
1590 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1591 }
1592 
1593 static inline pg_data_t *page_pgdat(const struct page *page)
1594 {
1595 	return NODE_DATA(page_to_nid(page));
1596 }
1597 
1598 static inline struct zone *folio_zone(const struct folio *folio)
1599 {
1600 	return page_zone(&folio->page);
1601 }
1602 
1603 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1604 {
1605 	return page_pgdat(&folio->page);
1606 }
1607 
1608 #ifdef SECTION_IN_PAGE_FLAGS
1609 static inline void set_page_section(struct page *page, unsigned long section)
1610 {
1611 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1612 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1613 }
1614 
1615 static inline unsigned long page_to_section(const struct page *page)
1616 {
1617 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1618 }
1619 #endif
1620 
1621 /**
1622  * folio_pfn - Return the Page Frame Number of a folio.
1623  * @folio: The folio.
1624  *
1625  * A folio may contain multiple pages.  The pages have consecutive
1626  * Page Frame Numbers.
1627  *
1628  * Return: The Page Frame Number of the first page in the folio.
1629  */
1630 static inline unsigned long folio_pfn(struct folio *folio)
1631 {
1632 	return page_to_pfn(&folio->page);
1633 }
1634 
1635 static inline struct folio *pfn_folio(unsigned long pfn)
1636 {
1637 	return page_folio(pfn_to_page(pfn));
1638 }
1639 
1640 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1641 {
1642 	return &folio_page(folio, 1)->compound_pincount;
1643 }
1644 
1645 /**
1646  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1647  * @folio: The folio.
1648  *
1649  * This function checks if a folio has been pinned via a call to
1650  * a function in the pin_user_pages() family.
1651  *
1652  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1653  * because it means "definitely not pinned for DMA", but true means "probably
1654  * pinned for DMA, but possibly a false positive due to having at least
1655  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1656  *
1657  * False positives are OK, because: a) it's unlikely for a folio to
1658  * get that many refcounts, and b) all the callers of this routine are
1659  * expected to be able to deal gracefully with a false positive.
1660  *
1661  * For large folios, the result will be exactly correct. That's because
1662  * we have more tracking data available: the compound_pincount is used
1663  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1664  *
1665  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1666  *
1667  * Return: True, if it is likely that the page has been "dma-pinned".
1668  * False, if the page is definitely not dma-pinned.
1669  */
1670 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1671 {
1672 	if (folio_test_large(folio))
1673 		return atomic_read(folio_pincount_ptr(folio)) > 0;
1674 
1675 	/*
1676 	 * folio_ref_count() is signed. If that refcount overflows, then
1677 	 * folio_ref_count() returns a negative value, and callers will avoid
1678 	 * further incrementing the refcount.
1679 	 *
1680 	 * Here, for that overflow case, use the sign bit to count a little
1681 	 * bit higher via unsigned math, and thus still get an accurate result.
1682 	 */
1683 	return ((unsigned int)folio_ref_count(folio)) >=
1684 		GUP_PIN_COUNTING_BIAS;
1685 }
1686 
1687 static inline bool page_maybe_dma_pinned(struct page *page)
1688 {
1689 	return folio_maybe_dma_pinned(page_folio(page));
1690 }
1691 
1692 /*
1693  * This should most likely only be called during fork() to see whether we
1694  * should break the cow immediately for an anon page on the src mm.
1695  *
1696  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1697  */
1698 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1699 					  struct page *page)
1700 {
1701 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1702 
1703 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1704 		return false;
1705 
1706 	return page_maybe_dma_pinned(page);
1707 }
1708 
1709 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1710 #ifdef CONFIG_MIGRATION
1711 static inline bool is_longterm_pinnable_page(struct page *page)
1712 {
1713 #ifdef CONFIG_CMA
1714 	int mt = get_pageblock_migratetype(page);
1715 
1716 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1717 		return false;
1718 #endif
1719 	/* The zero page may always be pinned */
1720 	if (is_zero_pfn(page_to_pfn(page)))
1721 		return true;
1722 
1723 	/* Coherent device memory must always allow eviction. */
1724 	if (is_device_coherent_page(page))
1725 		return false;
1726 
1727 	/* Otherwise, non-movable zone pages can be pinned. */
1728 	return !is_zone_movable_page(page);
1729 }
1730 #else
1731 static inline bool is_longterm_pinnable_page(struct page *page)
1732 {
1733 	return true;
1734 }
1735 #endif
1736 
1737 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1738 {
1739 	return is_longterm_pinnable_page(&folio->page);
1740 }
1741 
1742 static inline void set_page_zone(struct page *page, enum zone_type zone)
1743 {
1744 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1745 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1746 }
1747 
1748 static inline void set_page_node(struct page *page, unsigned long node)
1749 {
1750 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1751 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1752 }
1753 
1754 static inline void set_page_links(struct page *page, enum zone_type zone,
1755 	unsigned long node, unsigned long pfn)
1756 {
1757 	set_page_zone(page, zone);
1758 	set_page_node(page, node);
1759 #ifdef SECTION_IN_PAGE_FLAGS
1760 	set_page_section(page, pfn_to_section_nr(pfn));
1761 #endif
1762 }
1763 
1764 /**
1765  * folio_nr_pages - The number of pages in the folio.
1766  * @folio: The folio.
1767  *
1768  * Return: A positive power of two.
1769  */
1770 static inline long folio_nr_pages(struct folio *folio)
1771 {
1772 	if (!folio_test_large(folio))
1773 		return 1;
1774 #ifdef CONFIG_64BIT
1775 	return folio->_folio_nr_pages;
1776 #else
1777 	return 1L << folio->_folio_order;
1778 #endif
1779 }
1780 
1781 /**
1782  * folio_next - Move to the next physical folio.
1783  * @folio: The folio we're currently operating on.
1784  *
1785  * If you have physically contiguous memory which may span more than
1786  * one folio (eg a &struct bio_vec), use this function to move from one
1787  * folio to the next.  Do not use it if the memory is only virtually
1788  * contiguous as the folios are almost certainly not adjacent to each
1789  * other.  This is the folio equivalent to writing ``page++``.
1790  *
1791  * Context: We assume that the folios are refcounted and/or locked at a
1792  * higher level and do not adjust the reference counts.
1793  * Return: The next struct folio.
1794  */
1795 static inline struct folio *folio_next(struct folio *folio)
1796 {
1797 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1798 }
1799 
1800 /**
1801  * folio_shift - The size of the memory described by this folio.
1802  * @folio: The folio.
1803  *
1804  * A folio represents a number of bytes which is a power-of-two in size.
1805  * This function tells you which power-of-two the folio is.  See also
1806  * folio_size() and folio_order().
1807  *
1808  * Context: The caller should have a reference on the folio to prevent
1809  * it from being split.  It is not necessary for the folio to be locked.
1810  * Return: The base-2 logarithm of the size of this folio.
1811  */
1812 static inline unsigned int folio_shift(struct folio *folio)
1813 {
1814 	return PAGE_SHIFT + folio_order(folio);
1815 }
1816 
1817 /**
1818  * folio_size - The number of bytes in a folio.
1819  * @folio: The folio.
1820  *
1821  * Context: The caller should have a reference on the folio to prevent
1822  * it from being split.  It is not necessary for the folio to be locked.
1823  * Return: The number of bytes in this folio.
1824  */
1825 static inline size_t folio_size(struct folio *folio)
1826 {
1827 	return PAGE_SIZE << folio_order(folio);
1828 }
1829 
1830 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1831 static inline int arch_make_page_accessible(struct page *page)
1832 {
1833 	return 0;
1834 }
1835 #endif
1836 
1837 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1838 static inline int arch_make_folio_accessible(struct folio *folio)
1839 {
1840 	int ret;
1841 	long i, nr = folio_nr_pages(folio);
1842 
1843 	for (i = 0; i < nr; i++) {
1844 		ret = arch_make_page_accessible(folio_page(folio, i));
1845 		if (ret)
1846 			break;
1847 	}
1848 
1849 	return ret;
1850 }
1851 #endif
1852 
1853 /*
1854  * Some inline functions in vmstat.h depend on page_zone()
1855  */
1856 #include <linux/vmstat.h>
1857 
1858 static __always_inline void *lowmem_page_address(const struct page *page)
1859 {
1860 	return page_to_virt(page);
1861 }
1862 
1863 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1864 #define HASHED_PAGE_VIRTUAL
1865 #endif
1866 
1867 #if defined(WANT_PAGE_VIRTUAL)
1868 static inline void *page_address(const struct page *page)
1869 {
1870 	return page->virtual;
1871 }
1872 static inline void set_page_address(struct page *page, void *address)
1873 {
1874 	page->virtual = address;
1875 }
1876 #define page_address_init()  do { } while(0)
1877 #endif
1878 
1879 #if defined(HASHED_PAGE_VIRTUAL)
1880 void *page_address(const struct page *page);
1881 void set_page_address(struct page *page, void *virtual);
1882 void page_address_init(void);
1883 #endif
1884 
1885 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1886 #define page_address(page) lowmem_page_address(page)
1887 #define set_page_address(page, address)  do { } while(0)
1888 #define page_address_init()  do { } while(0)
1889 #endif
1890 
1891 static inline void *folio_address(const struct folio *folio)
1892 {
1893 	return page_address(&folio->page);
1894 }
1895 
1896 extern void *page_rmapping(struct page *page);
1897 extern pgoff_t __page_file_index(struct page *page);
1898 
1899 /*
1900  * Return the pagecache index of the passed page.  Regular pagecache pages
1901  * use ->index whereas swapcache pages use swp_offset(->private)
1902  */
1903 static inline pgoff_t page_index(struct page *page)
1904 {
1905 	if (unlikely(PageSwapCache(page)))
1906 		return __page_file_index(page);
1907 	return page->index;
1908 }
1909 
1910 /*
1911  * Return true only if the page has been allocated with
1912  * ALLOC_NO_WATERMARKS and the low watermark was not
1913  * met implying that the system is under some pressure.
1914  */
1915 static inline bool page_is_pfmemalloc(const struct page *page)
1916 {
1917 	/*
1918 	 * lru.next has bit 1 set if the page is allocated from the
1919 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1920 	 * they do not need to preserve that information.
1921 	 */
1922 	return (uintptr_t)page->lru.next & BIT(1);
1923 }
1924 
1925 /*
1926  * Only to be called by the page allocator on a freshly allocated
1927  * page.
1928  */
1929 static inline void set_page_pfmemalloc(struct page *page)
1930 {
1931 	page->lru.next = (void *)BIT(1);
1932 }
1933 
1934 static inline void clear_page_pfmemalloc(struct page *page)
1935 {
1936 	page->lru.next = NULL;
1937 }
1938 
1939 /*
1940  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1941  */
1942 extern void pagefault_out_of_memory(void);
1943 
1944 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1945 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1946 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1947 
1948 /*
1949  * Flags passed to show_mem() and show_free_areas() to suppress output in
1950  * various contexts.
1951  */
1952 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1953 
1954 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1955 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1956 {
1957 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1958 }
1959 
1960 /*
1961  * Parameter block passed down to zap_pte_range in exceptional cases.
1962  */
1963 struct zap_details {
1964 	struct folio *single_folio;	/* Locked folio to be unmapped */
1965 	bool even_cows;			/* Zap COWed private pages too? */
1966 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1967 };
1968 
1969 /*
1970  * Whether to drop the pte markers, for example, the uffd-wp information for
1971  * file-backed memory.  This should only be specified when we will completely
1972  * drop the page in the mm, either by truncation or unmapping of the vma.  By
1973  * default, the flag is not set.
1974  */
1975 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
1976 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
1977 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
1978 
1979 #ifdef CONFIG_SCHED_MM_CID
1980 void sched_mm_cid_before_execve(struct task_struct *t);
1981 void sched_mm_cid_after_execve(struct task_struct *t);
1982 void sched_mm_cid_fork(struct task_struct *t);
1983 void sched_mm_cid_exit_signals(struct task_struct *t);
1984 static inline int task_mm_cid(struct task_struct *t)
1985 {
1986 	return t->mm_cid;
1987 }
1988 #else
1989 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
1990 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
1991 static inline void sched_mm_cid_fork(struct task_struct *t) { }
1992 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
1993 static inline int task_mm_cid(struct task_struct *t)
1994 {
1995 	/*
1996 	 * Use the processor id as a fall-back when the mm cid feature is
1997 	 * disabled. This provides functional per-cpu data structure accesses
1998 	 * in user-space, althrough it won't provide the memory usage benefits.
1999 	 */
2000 	return raw_smp_processor_id();
2001 }
2002 #endif
2003 
2004 #ifdef CONFIG_MMU
2005 extern bool can_do_mlock(void);
2006 #else
2007 static inline bool can_do_mlock(void) { return false; }
2008 #endif
2009 extern int user_shm_lock(size_t, struct ucounts *);
2010 extern void user_shm_unlock(size_t, struct ucounts *);
2011 
2012 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2013 			     pte_t pte);
2014 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2015 				pmd_t pmd);
2016 
2017 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2018 		  unsigned long size);
2019 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
2020 		    unsigned long size);
2021 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2022 			   unsigned long size, struct zap_details *details);
2023 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2024 		struct vm_area_struct *start_vma, unsigned long start,
2025 		unsigned long end);
2026 
2027 struct mmu_notifier_range;
2028 
2029 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2030 		unsigned long end, unsigned long floor, unsigned long ceiling);
2031 int
2032 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2033 int follow_pte(struct mm_struct *mm, unsigned long address,
2034 	       pte_t **ptepp, spinlock_t **ptlp);
2035 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2036 	unsigned long *pfn);
2037 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2038 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2039 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2040 			void *buf, int len, int write);
2041 
2042 extern void truncate_pagecache(struct inode *inode, loff_t new);
2043 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2044 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2045 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2046 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2047 
2048 #ifdef CONFIG_MMU
2049 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2050 				  unsigned long address, unsigned int flags,
2051 				  struct pt_regs *regs);
2052 extern int fixup_user_fault(struct mm_struct *mm,
2053 			    unsigned long address, unsigned int fault_flags,
2054 			    bool *unlocked);
2055 void unmap_mapping_pages(struct address_space *mapping,
2056 		pgoff_t start, pgoff_t nr, bool even_cows);
2057 void unmap_mapping_range(struct address_space *mapping,
2058 		loff_t const holebegin, loff_t const holelen, int even_cows);
2059 #else
2060 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2061 					 unsigned long address, unsigned int flags,
2062 					 struct pt_regs *regs)
2063 {
2064 	/* should never happen if there's no MMU */
2065 	BUG();
2066 	return VM_FAULT_SIGBUS;
2067 }
2068 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2069 		unsigned int fault_flags, bool *unlocked)
2070 {
2071 	/* should never happen if there's no MMU */
2072 	BUG();
2073 	return -EFAULT;
2074 }
2075 static inline void unmap_mapping_pages(struct address_space *mapping,
2076 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2077 static inline void unmap_mapping_range(struct address_space *mapping,
2078 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2079 #endif
2080 
2081 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2082 		loff_t const holebegin, loff_t const holelen)
2083 {
2084 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2085 }
2086 
2087 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2088 		void *buf, int len, unsigned int gup_flags);
2089 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2090 		void *buf, int len, unsigned int gup_flags);
2091 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2092 			      void *buf, int len, unsigned int gup_flags);
2093 
2094 long get_user_pages_remote(struct mm_struct *mm,
2095 			    unsigned long start, unsigned long nr_pages,
2096 			    unsigned int gup_flags, struct page **pages,
2097 			    struct vm_area_struct **vmas, int *locked);
2098 long pin_user_pages_remote(struct mm_struct *mm,
2099 			   unsigned long start, unsigned long nr_pages,
2100 			   unsigned int gup_flags, struct page **pages,
2101 			   struct vm_area_struct **vmas, int *locked);
2102 long get_user_pages(unsigned long start, unsigned long nr_pages,
2103 			    unsigned int gup_flags, struct page **pages,
2104 			    struct vm_area_struct **vmas);
2105 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2106 		    unsigned int gup_flags, struct page **pages,
2107 		    struct vm_area_struct **vmas);
2108 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2109 		    struct page **pages, unsigned int gup_flags);
2110 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2111 		    struct page **pages, unsigned int gup_flags);
2112 
2113 int get_user_pages_fast(unsigned long start, int nr_pages,
2114 			unsigned int gup_flags, struct page **pages);
2115 int pin_user_pages_fast(unsigned long start, int nr_pages,
2116 			unsigned int gup_flags, struct page **pages);
2117 
2118 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2119 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2120 			struct task_struct *task, bool bypass_rlim);
2121 
2122 struct kvec;
2123 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2124 			struct page **pages);
2125 struct page *get_dump_page(unsigned long addr);
2126 
2127 bool folio_mark_dirty(struct folio *folio);
2128 bool set_page_dirty(struct page *page);
2129 int set_page_dirty_lock(struct page *page);
2130 
2131 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2132 
2133 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2134 		unsigned long old_addr, struct vm_area_struct *new_vma,
2135 		unsigned long new_addr, unsigned long len,
2136 		bool need_rmap_locks);
2137 
2138 /*
2139  * Flags used by change_protection().  For now we make it a bitmap so
2140  * that we can pass in multiple flags just like parameters.  However
2141  * for now all the callers are only use one of the flags at the same
2142  * time.
2143  */
2144 /*
2145  * Whether we should manually check if we can map individual PTEs writable,
2146  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2147  * PTEs automatically in a writable mapping.
2148  */
2149 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2150 /* Whether this protection change is for NUMA hints */
2151 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2152 /* Whether this change is for write protecting */
2153 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2154 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2155 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2156 					    MM_CP_UFFD_WP_RESOLVE)
2157 
2158 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2159 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2160 {
2161 	/*
2162 	 * We want to check manually if we can change individual PTEs writable
2163 	 * if we can't do that automatically for all PTEs in a mapping. For
2164 	 * private mappings, that's always the case when we have write
2165 	 * permissions as we properly have to handle COW.
2166 	 */
2167 	if (vma->vm_flags & VM_SHARED)
2168 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2169 	return !!(vma->vm_flags & VM_WRITE);
2170 
2171 }
2172 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2173 			     pte_t pte);
2174 extern unsigned long change_protection(struct mmu_gather *tlb,
2175 			      struct vm_area_struct *vma, unsigned long start,
2176 			      unsigned long end, pgprot_t newprot,
2177 			      unsigned long cp_flags);
2178 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
2179 			  struct vm_area_struct **pprev, unsigned long start,
2180 			  unsigned long end, unsigned long newflags);
2181 
2182 /*
2183  * doesn't attempt to fault and will return short.
2184  */
2185 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2186 			     unsigned int gup_flags, struct page **pages);
2187 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2188 			     unsigned int gup_flags, struct page **pages);
2189 
2190 static inline bool get_user_page_fast_only(unsigned long addr,
2191 			unsigned int gup_flags, struct page **pagep)
2192 {
2193 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2194 }
2195 /*
2196  * per-process(per-mm_struct) statistics.
2197  */
2198 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2199 {
2200 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2201 }
2202 
2203 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2204 
2205 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2206 {
2207 	percpu_counter_add(&mm->rss_stat[member], value);
2208 
2209 	mm_trace_rss_stat(mm, member);
2210 }
2211 
2212 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2213 {
2214 	percpu_counter_inc(&mm->rss_stat[member]);
2215 
2216 	mm_trace_rss_stat(mm, member);
2217 }
2218 
2219 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2220 {
2221 	percpu_counter_dec(&mm->rss_stat[member]);
2222 
2223 	mm_trace_rss_stat(mm, member);
2224 }
2225 
2226 /* Optimized variant when page is already known not to be PageAnon */
2227 static inline int mm_counter_file(struct page *page)
2228 {
2229 	if (PageSwapBacked(page))
2230 		return MM_SHMEMPAGES;
2231 	return MM_FILEPAGES;
2232 }
2233 
2234 static inline int mm_counter(struct page *page)
2235 {
2236 	if (PageAnon(page))
2237 		return MM_ANONPAGES;
2238 	return mm_counter_file(page);
2239 }
2240 
2241 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2242 {
2243 	return get_mm_counter(mm, MM_FILEPAGES) +
2244 		get_mm_counter(mm, MM_ANONPAGES) +
2245 		get_mm_counter(mm, MM_SHMEMPAGES);
2246 }
2247 
2248 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2249 {
2250 	return max(mm->hiwater_rss, get_mm_rss(mm));
2251 }
2252 
2253 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2254 {
2255 	return max(mm->hiwater_vm, mm->total_vm);
2256 }
2257 
2258 static inline void update_hiwater_rss(struct mm_struct *mm)
2259 {
2260 	unsigned long _rss = get_mm_rss(mm);
2261 
2262 	if ((mm)->hiwater_rss < _rss)
2263 		(mm)->hiwater_rss = _rss;
2264 }
2265 
2266 static inline void update_hiwater_vm(struct mm_struct *mm)
2267 {
2268 	if (mm->hiwater_vm < mm->total_vm)
2269 		mm->hiwater_vm = mm->total_vm;
2270 }
2271 
2272 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2273 {
2274 	mm->hiwater_rss = get_mm_rss(mm);
2275 }
2276 
2277 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2278 					 struct mm_struct *mm)
2279 {
2280 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2281 
2282 	if (*maxrss < hiwater_rss)
2283 		*maxrss = hiwater_rss;
2284 }
2285 
2286 #if defined(SPLIT_RSS_COUNTING)
2287 void sync_mm_rss(struct mm_struct *mm);
2288 #else
2289 static inline void sync_mm_rss(struct mm_struct *mm)
2290 {
2291 }
2292 #endif
2293 
2294 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2295 static inline int pte_special(pte_t pte)
2296 {
2297 	return 0;
2298 }
2299 
2300 static inline pte_t pte_mkspecial(pte_t pte)
2301 {
2302 	return pte;
2303 }
2304 #endif
2305 
2306 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2307 static inline int pte_devmap(pte_t pte)
2308 {
2309 	return 0;
2310 }
2311 #endif
2312 
2313 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2314 			       spinlock_t **ptl);
2315 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2316 				    spinlock_t **ptl)
2317 {
2318 	pte_t *ptep;
2319 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2320 	return ptep;
2321 }
2322 
2323 #ifdef __PAGETABLE_P4D_FOLDED
2324 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2325 						unsigned long address)
2326 {
2327 	return 0;
2328 }
2329 #else
2330 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2331 #endif
2332 
2333 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2334 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2335 						unsigned long address)
2336 {
2337 	return 0;
2338 }
2339 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2340 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2341 
2342 #else
2343 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2344 
2345 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2346 {
2347 	if (mm_pud_folded(mm))
2348 		return;
2349 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2350 }
2351 
2352 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2353 {
2354 	if (mm_pud_folded(mm))
2355 		return;
2356 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2357 }
2358 #endif
2359 
2360 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2361 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2362 						unsigned long address)
2363 {
2364 	return 0;
2365 }
2366 
2367 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2368 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2369 
2370 #else
2371 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2372 
2373 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2374 {
2375 	if (mm_pmd_folded(mm))
2376 		return;
2377 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2378 }
2379 
2380 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2381 {
2382 	if (mm_pmd_folded(mm))
2383 		return;
2384 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2385 }
2386 #endif
2387 
2388 #ifdef CONFIG_MMU
2389 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2390 {
2391 	atomic_long_set(&mm->pgtables_bytes, 0);
2392 }
2393 
2394 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2395 {
2396 	return atomic_long_read(&mm->pgtables_bytes);
2397 }
2398 
2399 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2400 {
2401 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2402 }
2403 
2404 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2405 {
2406 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2407 }
2408 #else
2409 
2410 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2411 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2412 {
2413 	return 0;
2414 }
2415 
2416 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2417 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2418 #endif
2419 
2420 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2421 int __pte_alloc_kernel(pmd_t *pmd);
2422 
2423 #if defined(CONFIG_MMU)
2424 
2425 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2426 		unsigned long address)
2427 {
2428 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2429 		NULL : p4d_offset(pgd, address);
2430 }
2431 
2432 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2433 		unsigned long address)
2434 {
2435 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2436 		NULL : pud_offset(p4d, address);
2437 }
2438 
2439 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2440 {
2441 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2442 		NULL: pmd_offset(pud, address);
2443 }
2444 #endif /* CONFIG_MMU */
2445 
2446 #if USE_SPLIT_PTE_PTLOCKS
2447 #if ALLOC_SPLIT_PTLOCKS
2448 void __init ptlock_cache_init(void);
2449 extern bool ptlock_alloc(struct page *page);
2450 extern void ptlock_free(struct page *page);
2451 
2452 static inline spinlock_t *ptlock_ptr(struct page *page)
2453 {
2454 	return page->ptl;
2455 }
2456 #else /* ALLOC_SPLIT_PTLOCKS */
2457 static inline void ptlock_cache_init(void)
2458 {
2459 }
2460 
2461 static inline bool ptlock_alloc(struct page *page)
2462 {
2463 	return true;
2464 }
2465 
2466 static inline void ptlock_free(struct page *page)
2467 {
2468 }
2469 
2470 static inline spinlock_t *ptlock_ptr(struct page *page)
2471 {
2472 	return &page->ptl;
2473 }
2474 #endif /* ALLOC_SPLIT_PTLOCKS */
2475 
2476 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2477 {
2478 	return ptlock_ptr(pmd_page(*pmd));
2479 }
2480 
2481 static inline bool ptlock_init(struct page *page)
2482 {
2483 	/*
2484 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2485 	 * with 0. Make sure nobody took it in use in between.
2486 	 *
2487 	 * It can happen if arch try to use slab for page table allocation:
2488 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2489 	 */
2490 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2491 	if (!ptlock_alloc(page))
2492 		return false;
2493 	spin_lock_init(ptlock_ptr(page));
2494 	return true;
2495 }
2496 
2497 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2498 /*
2499  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2500  */
2501 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2502 {
2503 	return &mm->page_table_lock;
2504 }
2505 static inline void ptlock_cache_init(void) {}
2506 static inline bool ptlock_init(struct page *page) { return true; }
2507 static inline void ptlock_free(struct page *page) {}
2508 #endif /* USE_SPLIT_PTE_PTLOCKS */
2509 
2510 static inline void pgtable_init(void)
2511 {
2512 	ptlock_cache_init();
2513 	pgtable_cache_init();
2514 }
2515 
2516 static inline bool pgtable_pte_page_ctor(struct page *page)
2517 {
2518 	if (!ptlock_init(page))
2519 		return false;
2520 	__SetPageTable(page);
2521 	inc_lruvec_page_state(page, NR_PAGETABLE);
2522 	return true;
2523 }
2524 
2525 static inline void pgtable_pte_page_dtor(struct page *page)
2526 {
2527 	ptlock_free(page);
2528 	__ClearPageTable(page);
2529 	dec_lruvec_page_state(page, NR_PAGETABLE);
2530 }
2531 
2532 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2533 ({							\
2534 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2535 	pte_t *__pte = pte_offset_map(pmd, address);	\
2536 	*(ptlp) = __ptl;				\
2537 	spin_lock(__ptl);				\
2538 	__pte;						\
2539 })
2540 
2541 #define pte_unmap_unlock(pte, ptl)	do {		\
2542 	spin_unlock(ptl);				\
2543 	pte_unmap(pte);					\
2544 } while (0)
2545 
2546 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2547 
2548 #define pte_alloc_map(mm, pmd, address)			\
2549 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2550 
2551 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2552 	(pte_alloc(mm, pmd) ?			\
2553 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2554 
2555 #define pte_alloc_kernel(pmd, address)			\
2556 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2557 		NULL: pte_offset_kernel(pmd, address))
2558 
2559 #if USE_SPLIT_PMD_PTLOCKS
2560 
2561 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2562 {
2563 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2564 	return virt_to_page((void *)((unsigned long) pmd & mask));
2565 }
2566 
2567 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2568 {
2569 	return ptlock_ptr(pmd_pgtable_page(pmd));
2570 }
2571 
2572 static inline bool pmd_ptlock_init(struct page *page)
2573 {
2574 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2575 	page->pmd_huge_pte = NULL;
2576 #endif
2577 	return ptlock_init(page);
2578 }
2579 
2580 static inline void pmd_ptlock_free(struct page *page)
2581 {
2582 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2583 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2584 #endif
2585 	ptlock_free(page);
2586 }
2587 
2588 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2589 
2590 #else
2591 
2592 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2593 {
2594 	return &mm->page_table_lock;
2595 }
2596 
2597 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2598 static inline void pmd_ptlock_free(struct page *page) {}
2599 
2600 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2601 
2602 #endif
2603 
2604 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2605 {
2606 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2607 	spin_lock(ptl);
2608 	return ptl;
2609 }
2610 
2611 static inline bool pgtable_pmd_page_ctor(struct page *page)
2612 {
2613 	if (!pmd_ptlock_init(page))
2614 		return false;
2615 	__SetPageTable(page);
2616 	inc_lruvec_page_state(page, NR_PAGETABLE);
2617 	return true;
2618 }
2619 
2620 static inline void pgtable_pmd_page_dtor(struct page *page)
2621 {
2622 	pmd_ptlock_free(page);
2623 	__ClearPageTable(page);
2624 	dec_lruvec_page_state(page, NR_PAGETABLE);
2625 }
2626 
2627 /*
2628  * No scalability reason to split PUD locks yet, but follow the same pattern
2629  * as the PMD locks to make it easier if we decide to.  The VM should not be
2630  * considered ready to switch to split PUD locks yet; there may be places
2631  * which need to be converted from page_table_lock.
2632  */
2633 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2634 {
2635 	return &mm->page_table_lock;
2636 }
2637 
2638 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2639 {
2640 	spinlock_t *ptl = pud_lockptr(mm, pud);
2641 
2642 	spin_lock(ptl);
2643 	return ptl;
2644 }
2645 
2646 extern void __init pagecache_init(void);
2647 extern void free_initmem(void);
2648 
2649 /*
2650  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2651  * into the buddy system. The freed pages will be poisoned with pattern
2652  * "poison" if it's within range [0, UCHAR_MAX].
2653  * Return pages freed into the buddy system.
2654  */
2655 extern unsigned long free_reserved_area(void *start, void *end,
2656 					int poison, const char *s);
2657 
2658 extern void adjust_managed_page_count(struct page *page, long count);
2659 extern void mem_init_print_info(void);
2660 
2661 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2662 
2663 /* Free the reserved page into the buddy system, so it gets managed. */
2664 static inline void free_reserved_page(struct page *page)
2665 {
2666 	ClearPageReserved(page);
2667 	init_page_count(page);
2668 	__free_page(page);
2669 	adjust_managed_page_count(page, 1);
2670 }
2671 #define free_highmem_page(page) free_reserved_page(page)
2672 
2673 static inline void mark_page_reserved(struct page *page)
2674 {
2675 	SetPageReserved(page);
2676 	adjust_managed_page_count(page, -1);
2677 }
2678 
2679 /*
2680  * Default method to free all the __init memory into the buddy system.
2681  * The freed pages will be poisoned with pattern "poison" if it's within
2682  * range [0, UCHAR_MAX].
2683  * Return pages freed into the buddy system.
2684  */
2685 static inline unsigned long free_initmem_default(int poison)
2686 {
2687 	extern char __init_begin[], __init_end[];
2688 
2689 	return free_reserved_area(&__init_begin, &__init_end,
2690 				  poison, "unused kernel image (initmem)");
2691 }
2692 
2693 static inline unsigned long get_num_physpages(void)
2694 {
2695 	int nid;
2696 	unsigned long phys_pages = 0;
2697 
2698 	for_each_online_node(nid)
2699 		phys_pages += node_present_pages(nid);
2700 
2701 	return phys_pages;
2702 }
2703 
2704 /*
2705  * Using memblock node mappings, an architecture may initialise its
2706  * zones, allocate the backing mem_map and account for memory holes in an
2707  * architecture independent manner.
2708  *
2709  * An architecture is expected to register range of page frames backed by
2710  * physical memory with memblock_add[_node]() before calling
2711  * free_area_init() passing in the PFN each zone ends at. At a basic
2712  * usage, an architecture is expected to do something like
2713  *
2714  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2715  * 							 max_highmem_pfn};
2716  * for_each_valid_physical_page_range()
2717  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2718  * free_area_init(max_zone_pfns);
2719  */
2720 void free_area_init(unsigned long *max_zone_pfn);
2721 unsigned long node_map_pfn_alignment(void);
2722 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2723 						unsigned long end_pfn);
2724 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2725 						unsigned long end_pfn);
2726 extern void get_pfn_range_for_nid(unsigned int nid,
2727 			unsigned long *start_pfn, unsigned long *end_pfn);
2728 
2729 #ifndef CONFIG_NUMA
2730 static inline int early_pfn_to_nid(unsigned long pfn)
2731 {
2732 	return 0;
2733 }
2734 #else
2735 /* please see mm/page_alloc.c */
2736 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2737 #endif
2738 
2739 extern void set_dma_reserve(unsigned long new_dma_reserve);
2740 extern void memmap_init_range(unsigned long, int, unsigned long,
2741 		unsigned long, unsigned long, enum meminit_context,
2742 		struct vmem_altmap *, int migratetype);
2743 extern void setup_per_zone_wmarks(void);
2744 extern void calculate_min_free_kbytes(void);
2745 extern int __meminit init_per_zone_wmark_min(void);
2746 extern void mem_init(void);
2747 extern void __init mmap_init(void);
2748 
2749 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2750 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2751 {
2752 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2753 }
2754 extern long si_mem_available(void);
2755 extern void si_meminfo(struct sysinfo * val);
2756 extern void si_meminfo_node(struct sysinfo *val, int nid);
2757 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2758 extern unsigned long arch_reserved_kernel_pages(void);
2759 #endif
2760 
2761 extern __printf(3, 4)
2762 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2763 
2764 extern void setup_per_cpu_pageset(void);
2765 
2766 /* page_alloc.c */
2767 extern int min_free_kbytes;
2768 extern int watermark_boost_factor;
2769 extern int watermark_scale_factor;
2770 extern bool arch_has_descending_max_zone_pfns(void);
2771 
2772 /* nommu.c */
2773 extern atomic_long_t mmap_pages_allocated;
2774 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2775 
2776 /* interval_tree.c */
2777 void vma_interval_tree_insert(struct vm_area_struct *node,
2778 			      struct rb_root_cached *root);
2779 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2780 				    struct vm_area_struct *prev,
2781 				    struct rb_root_cached *root);
2782 void vma_interval_tree_remove(struct vm_area_struct *node,
2783 			      struct rb_root_cached *root);
2784 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2785 				unsigned long start, unsigned long last);
2786 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2787 				unsigned long start, unsigned long last);
2788 
2789 #define vma_interval_tree_foreach(vma, root, start, last)		\
2790 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2791 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2792 
2793 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2794 				   struct rb_root_cached *root);
2795 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2796 				   struct rb_root_cached *root);
2797 struct anon_vma_chain *
2798 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2799 				  unsigned long start, unsigned long last);
2800 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2801 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2802 #ifdef CONFIG_DEBUG_VM_RB
2803 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2804 #endif
2805 
2806 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2807 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2808 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2809 
2810 /* mmap.c */
2811 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2812 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2813 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2814 	struct vm_area_struct *expand);
2815 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2816 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2817 {
2818 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2819 }
2820 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2821 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2822 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2823 	struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2824 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2825 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2826 	unsigned long addr, int new_below);
2827 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2828 	unsigned long addr, int new_below);
2829 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2830 extern void unlink_file_vma(struct vm_area_struct *);
2831 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2832 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2833 	bool *need_rmap_locks);
2834 extern void exit_mmap(struct mm_struct *);
2835 
2836 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2837 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2838 
2839 static inline int check_data_rlimit(unsigned long rlim,
2840 				    unsigned long new,
2841 				    unsigned long start,
2842 				    unsigned long end_data,
2843 				    unsigned long start_data)
2844 {
2845 	if (rlim < RLIM_INFINITY) {
2846 		if (((new - start) + (end_data - start_data)) > rlim)
2847 			return -ENOSPC;
2848 	}
2849 
2850 	return 0;
2851 }
2852 
2853 extern int mm_take_all_locks(struct mm_struct *mm);
2854 extern void mm_drop_all_locks(struct mm_struct *mm);
2855 
2856 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2857 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2858 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2859 extern struct file *get_task_exe_file(struct task_struct *task);
2860 
2861 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2862 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2863 
2864 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2865 				   const struct vm_special_mapping *sm);
2866 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2867 				   unsigned long addr, unsigned long len,
2868 				   unsigned long flags,
2869 				   const struct vm_special_mapping *spec);
2870 /* This is an obsolete alternative to _install_special_mapping. */
2871 extern int install_special_mapping(struct mm_struct *mm,
2872 				   unsigned long addr, unsigned long len,
2873 				   unsigned long flags, struct page **pages);
2874 
2875 unsigned long randomize_stack_top(unsigned long stack_top);
2876 unsigned long randomize_page(unsigned long start, unsigned long range);
2877 
2878 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2879 
2880 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2881 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2882 	struct list_head *uf);
2883 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2884 	unsigned long len, unsigned long prot, unsigned long flags,
2885 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2886 extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2887 			 unsigned long start, size_t len, struct list_head *uf,
2888 			 bool downgrade);
2889 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2890 		     struct list_head *uf);
2891 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2892 
2893 #ifdef CONFIG_MMU
2894 extern int __mm_populate(unsigned long addr, unsigned long len,
2895 			 int ignore_errors);
2896 static inline void mm_populate(unsigned long addr, unsigned long len)
2897 {
2898 	/* Ignore errors */
2899 	(void) __mm_populate(addr, len, 1);
2900 }
2901 #else
2902 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2903 #endif
2904 
2905 /* These take the mm semaphore themselves */
2906 extern int __must_check vm_brk(unsigned long, unsigned long);
2907 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2908 extern int vm_munmap(unsigned long, size_t);
2909 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2910         unsigned long, unsigned long,
2911         unsigned long, unsigned long);
2912 
2913 struct vm_unmapped_area_info {
2914 #define VM_UNMAPPED_AREA_TOPDOWN 1
2915 	unsigned long flags;
2916 	unsigned long length;
2917 	unsigned long low_limit;
2918 	unsigned long high_limit;
2919 	unsigned long align_mask;
2920 	unsigned long align_offset;
2921 };
2922 
2923 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2924 
2925 /* truncate.c */
2926 extern void truncate_inode_pages(struct address_space *, loff_t);
2927 extern void truncate_inode_pages_range(struct address_space *,
2928 				       loff_t lstart, loff_t lend);
2929 extern void truncate_inode_pages_final(struct address_space *);
2930 
2931 /* generic vm_area_ops exported for stackable file systems */
2932 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2933 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2934 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2935 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2936 
2937 extern unsigned long stack_guard_gap;
2938 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2939 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2940 
2941 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2942 extern int expand_downwards(struct vm_area_struct *vma,
2943 		unsigned long address);
2944 #if VM_GROWSUP
2945 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2946 #else
2947   #define expand_upwards(vma, address) (0)
2948 #endif
2949 
2950 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2951 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2952 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2953 					     struct vm_area_struct **pprev);
2954 
2955 /*
2956  * Look up the first VMA which intersects the interval [start_addr, end_addr)
2957  * NULL if none.  Assume start_addr < end_addr.
2958  */
2959 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2960 			unsigned long start_addr, unsigned long end_addr);
2961 
2962 /**
2963  * vma_lookup() - Find a VMA at a specific address
2964  * @mm: The process address space.
2965  * @addr: The user address.
2966  *
2967  * Return: The vm_area_struct at the given address, %NULL otherwise.
2968  */
2969 static inline
2970 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2971 {
2972 	return mtree_load(&mm->mm_mt, addr);
2973 }
2974 
2975 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2976 {
2977 	unsigned long vm_start = vma->vm_start;
2978 
2979 	if (vma->vm_flags & VM_GROWSDOWN) {
2980 		vm_start -= stack_guard_gap;
2981 		if (vm_start > vma->vm_start)
2982 			vm_start = 0;
2983 	}
2984 	return vm_start;
2985 }
2986 
2987 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2988 {
2989 	unsigned long vm_end = vma->vm_end;
2990 
2991 	if (vma->vm_flags & VM_GROWSUP) {
2992 		vm_end += stack_guard_gap;
2993 		if (vm_end < vma->vm_end)
2994 			vm_end = -PAGE_SIZE;
2995 	}
2996 	return vm_end;
2997 }
2998 
2999 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3000 {
3001 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3002 }
3003 
3004 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3005 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3006 				unsigned long vm_start, unsigned long vm_end)
3007 {
3008 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3009 
3010 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3011 		vma = NULL;
3012 
3013 	return vma;
3014 }
3015 
3016 static inline bool range_in_vma(struct vm_area_struct *vma,
3017 				unsigned long start, unsigned long end)
3018 {
3019 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3020 }
3021 
3022 #ifdef CONFIG_MMU
3023 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3024 void vma_set_page_prot(struct vm_area_struct *vma);
3025 #else
3026 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3027 {
3028 	return __pgprot(0);
3029 }
3030 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3031 {
3032 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3033 }
3034 #endif
3035 
3036 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3037 
3038 #ifdef CONFIG_NUMA_BALANCING
3039 unsigned long change_prot_numa(struct vm_area_struct *vma,
3040 			unsigned long start, unsigned long end);
3041 #endif
3042 
3043 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3044 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3045 			unsigned long pfn, unsigned long size, pgprot_t);
3046 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3047 		unsigned long pfn, unsigned long size, pgprot_t prot);
3048 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3049 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3050 			struct page **pages, unsigned long *num);
3051 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3052 				unsigned long num);
3053 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3054 				unsigned long num);
3055 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3056 			unsigned long pfn);
3057 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3058 			unsigned long pfn, pgprot_t pgprot);
3059 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3060 			pfn_t pfn);
3061 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3062 			pfn_t pfn, pgprot_t pgprot);
3063 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3064 		unsigned long addr, pfn_t pfn);
3065 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3066 
3067 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3068 				unsigned long addr, struct page *page)
3069 {
3070 	int err = vm_insert_page(vma, addr, page);
3071 
3072 	if (err == -ENOMEM)
3073 		return VM_FAULT_OOM;
3074 	if (err < 0 && err != -EBUSY)
3075 		return VM_FAULT_SIGBUS;
3076 
3077 	return VM_FAULT_NOPAGE;
3078 }
3079 
3080 #ifndef io_remap_pfn_range
3081 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3082 				     unsigned long addr, unsigned long pfn,
3083 				     unsigned long size, pgprot_t prot)
3084 {
3085 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3086 }
3087 #endif
3088 
3089 static inline vm_fault_t vmf_error(int err)
3090 {
3091 	if (err == -ENOMEM)
3092 		return VM_FAULT_OOM;
3093 	return VM_FAULT_SIGBUS;
3094 }
3095 
3096 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3097 			 unsigned int foll_flags);
3098 
3099 #define FOLL_WRITE	0x01	/* check pte is writable */
3100 #define FOLL_TOUCH	0x02	/* mark page accessed */
3101 #define FOLL_GET	0x04	/* do get_page on page */
3102 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
3103 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
3104 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
3105 				 * and return without waiting upon it */
3106 #define FOLL_NOFAULT	0x80	/* do not fault in pages */
3107 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
3108 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
3109 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
3110 #define FOLL_ANON	0x8000	/* don't do file mappings */
3111 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
3112 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
3113 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
3114 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
3115 #define FOLL_PCI_P2PDMA	0x100000 /* allow returning PCI P2PDMA pages */
3116 #define FOLL_INTERRUPTIBLE  0x200000 /* allow interrupts from generic signals */
3117 
3118 /*
3119  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
3120  * other. Here is what they mean, and how to use them:
3121  *
3122  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
3123  * period _often_ under userspace control.  This is in contrast to
3124  * iov_iter_get_pages(), whose usages are transient.
3125  *
3126  * FIXME: For pages which are part of a filesystem, mappings are subject to the
3127  * lifetime enforced by the filesystem and we need guarantees that longterm
3128  * users like RDMA and V4L2 only establish mappings which coordinate usage with
3129  * the filesystem.  Ideas for this coordination include revoking the longterm
3130  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
3131  * added after the problem with filesystems was found FS DAX VMAs are
3132  * specifically failed.  Filesystem pages are still subject to bugs and use of
3133  * FOLL_LONGTERM should be avoided on those pages.
3134  *
3135  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3136  * Currently only get_user_pages() and get_user_pages_fast() support this flag
3137  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
3138  * is due to an incompatibility with the FS DAX check and
3139  * FAULT_FLAG_ALLOW_RETRY.
3140  *
3141  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3142  * that region.  And so, CMA attempts to migrate the page before pinning, when
3143  * FOLL_LONGTERM is specified.
3144  *
3145  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3146  * but an additional pin counting system) will be invoked. This is intended for
3147  * anything that gets a page reference and then touches page data (for example,
3148  * Direct IO). This lets the filesystem know that some non-file-system entity is
3149  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3150  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3151  * a call to unpin_user_page().
3152  *
3153  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3154  * and separate refcounting mechanisms, however, and that means that each has
3155  * its own acquire and release mechanisms:
3156  *
3157  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3158  *
3159  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3160  *
3161  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3162  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3163  * calls applied to them, and that's perfectly OK. This is a constraint on the
3164  * callers, not on the pages.)
3165  *
3166  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3167  * directly by the caller. That's in order to help avoid mismatches when
3168  * releasing pages: get_user_pages*() pages must be released via put_page(),
3169  * while pin_user_pages*() pages must be released via unpin_user_page().
3170  *
3171  * Please see Documentation/core-api/pin_user_pages.rst for more information.
3172  */
3173 
3174 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3175 {
3176 	if (vm_fault & VM_FAULT_OOM)
3177 		return -ENOMEM;
3178 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3179 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3180 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3181 		return -EFAULT;
3182 	return 0;
3183 }
3184 
3185 /*
3186  * Indicates for which pages that are write-protected in the page table,
3187  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3188  * GUP pin will remain consistent with the pages mapped into the page tables
3189  * of the MM.
3190  *
3191  * Temporary unmapping of PageAnonExclusive() pages or clearing of
3192  * PageAnonExclusive() has to protect against concurrent GUP:
3193  * * Ordinary GUP: Using the PT lock
3194  * * GUP-fast and fork(): mm->write_protect_seq
3195  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3196  *    page_try_share_anon_rmap()
3197  *
3198  * Must be called with the (sub)page that's actually referenced via the
3199  * page table entry, which might not necessarily be the head page for a
3200  * PTE-mapped THP.
3201  *
3202  * If the vma is NULL, we're coming from the GUP-fast path and might have
3203  * to fallback to the slow path just to lookup the vma.
3204  */
3205 static inline bool gup_must_unshare(struct vm_area_struct *vma,
3206 				    unsigned int flags, struct page *page)
3207 {
3208 	/*
3209 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
3210 	 * has to be writable -- and if it references (part of) an anonymous
3211 	 * folio, that part is required to be marked exclusive.
3212 	 */
3213 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3214 		return false;
3215 	/*
3216 	 * Note: PageAnon(page) is stable until the page is actually getting
3217 	 * freed.
3218 	 */
3219 	if (!PageAnon(page)) {
3220 		/*
3221 		 * We only care about R/O long-term pining: R/O short-term
3222 		 * pinning does not have the semantics to observe successive
3223 		 * changes through the process page tables.
3224 		 */
3225 		if (!(flags & FOLL_LONGTERM))
3226 			return false;
3227 
3228 		/* We really need the vma ... */
3229 		if (!vma)
3230 			return true;
3231 
3232 		/*
3233 		 * ... because we only care about writable private ("COW")
3234 		 * mappings where we have to break COW early.
3235 		 */
3236 		return is_cow_mapping(vma->vm_flags);
3237 	}
3238 
3239 	/* Paired with a memory barrier in page_try_share_anon_rmap(). */
3240 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3241 		smp_rmb();
3242 
3243 	/*
3244 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
3245 	 * cannot get pinned.
3246 	 */
3247 	return !PageAnonExclusive(page);
3248 }
3249 
3250 /*
3251  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3252  * a (NUMA hinting) fault is required.
3253  */
3254 static inline bool gup_can_follow_protnone(unsigned int flags)
3255 {
3256 	/*
3257 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3258 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3259 	 * application behaviour and we should avoid triggering NUMA hinting
3260 	 * faults.
3261 	 */
3262 	return flags & FOLL_FORCE;
3263 }
3264 
3265 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3266 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3267 			       unsigned long size, pte_fn_t fn, void *data);
3268 extern int apply_to_existing_page_range(struct mm_struct *mm,
3269 				   unsigned long address, unsigned long size,
3270 				   pte_fn_t fn, void *data);
3271 
3272 extern void __init init_mem_debugging_and_hardening(void);
3273 #ifdef CONFIG_PAGE_POISONING
3274 extern void __kernel_poison_pages(struct page *page, int numpages);
3275 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3276 extern bool _page_poisoning_enabled_early;
3277 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3278 static inline bool page_poisoning_enabled(void)
3279 {
3280 	return _page_poisoning_enabled_early;
3281 }
3282 /*
3283  * For use in fast paths after init_mem_debugging() has run, or when a
3284  * false negative result is not harmful when called too early.
3285  */
3286 static inline bool page_poisoning_enabled_static(void)
3287 {
3288 	return static_branch_unlikely(&_page_poisoning_enabled);
3289 }
3290 static inline void kernel_poison_pages(struct page *page, int numpages)
3291 {
3292 	if (page_poisoning_enabled_static())
3293 		__kernel_poison_pages(page, numpages);
3294 }
3295 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3296 {
3297 	if (page_poisoning_enabled_static())
3298 		__kernel_unpoison_pages(page, numpages);
3299 }
3300 #else
3301 static inline bool page_poisoning_enabled(void) { return false; }
3302 static inline bool page_poisoning_enabled_static(void) { return false; }
3303 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3304 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3305 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3306 #endif
3307 
3308 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3309 static inline bool want_init_on_alloc(gfp_t flags)
3310 {
3311 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3312 				&init_on_alloc))
3313 		return true;
3314 	return flags & __GFP_ZERO;
3315 }
3316 
3317 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3318 static inline bool want_init_on_free(void)
3319 {
3320 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3321 				   &init_on_free);
3322 }
3323 
3324 extern bool _debug_pagealloc_enabled_early;
3325 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3326 
3327 static inline bool debug_pagealloc_enabled(void)
3328 {
3329 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3330 		_debug_pagealloc_enabled_early;
3331 }
3332 
3333 /*
3334  * For use in fast paths after init_debug_pagealloc() has run, or when a
3335  * false negative result is not harmful when called too early.
3336  */
3337 static inline bool debug_pagealloc_enabled_static(void)
3338 {
3339 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3340 		return false;
3341 
3342 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3343 }
3344 
3345 #ifdef CONFIG_DEBUG_PAGEALLOC
3346 /*
3347  * To support DEBUG_PAGEALLOC architecture must ensure that
3348  * __kernel_map_pages() never fails
3349  */
3350 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3351 
3352 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3353 {
3354 	if (debug_pagealloc_enabled_static())
3355 		__kernel_map_pages(page, numpages, 1);
3356 }
3357 
3358 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3359 {
3360 	if (debug_pagealloc_enabled_static())
3361 		__kernel_map_pages(page, numpages, 0);
3362 }
3363 #else	/* CONFIG_DEBUG_PAGEALLOC */
3364 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3365 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3366 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3367 
3368 #ifdef __HAVE_ARCH_GATE_AREA
3369 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3370 extern int in_gate_area_no_mm(unsigned long addr);
3371 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3372 #else
3373 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3374 {
3375 	return NULL;
3376 }
3377 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3378 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3379 {
3380 	return 0;
3381 }
3382 #endif	/* __HAVE_ARCH_GATE_AREA */
3383 
3384 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3385 
3386 #ifdef CONFIG_SYSCTL
3387 extern int sysctl_drop_caches;
3388 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3389 		loff_t *);
3390 #endif
3391 
3392 void drop_slab(void);
3393 
3394 #ifndef CONFIG_MMU
3395 #define randomize_va_space 0
3396 #else
3397 extern int randomize_va_space;
3398 #endif
3399 
3400 const char * arch_vma_name(struct vm_area_struct *vma);
3401 #ifdef CONFIG_MMU
3402 void print_vma_addr(char *prefix, unsigned long rip);
3403 #else
3404 static inline void print_vma_addr(char *prefix, unsigned long rip)
3405 {
3406 }
3407 #endif
3408 
3409 void *sparse_buffer_alloc(unsigned long size);
3410 struct page * __populate_section_memmap(unsigned long pfn,
3411 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3412 		struct dev_pagemap *pgmap);
3413 void pmd_init(void *addr);
3414 void pud_init(void *addr);
3415 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3416 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3417 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3418 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3419 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3420 			    struct vmem_altmap *altmap, struct page *reuse);
3421 void *vmemmap_alloc_block(unsigned long size, int node);
3422 struct vmem_altmap;
3423 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3424 			      struct vmem_altmap *altmap);
3425 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3426 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3427 		     unsigned long addr, unsigned long next);
3428 int vmemmap_check_pmd(pmd_t *pmd, int node,
3429 		      unsigned long addr, unsigned long next);
3430 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3431 			       int node, struct vmem_altmap *altmap);
3432 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3433 			       int node, struct vmem_altmap *altmap);
3434 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3435 		struct vmem_altmap *altmap);
3436 void vmemmap_populate_print_last(void);
3437 #ifdef CONFIG_MEMORY_HOTPLUG
3438 void vmemmap_free(unsigned long start, unsigned long end,
3439 		struct vmem_altmap *altmap);
3440 #endif
3441 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3442 				  unsigned long nr_pages);
3443 
3444 enum mf_flags {
3445 	MF_COUNT_INCREASED = 1 << 0,
3446 	MF_ACTION_REQUIRED = 1 << 1,
3447 	MF_MUST_KILL = 1 << 2,
3448 	MF_SOFT_OFFLINE = 1 << 3,
3449 	MF_UNPOISON = 1 << 4,
3450 	MF_SW_SIMULATED = 1 << 5,
3451 	MF_NO_RETRY = 1 << 6,
3452 };
3453 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3454 		      unsigned long count, int mf_flags);
3455 extern int memory_failure(unsigned long pfn, int flags);
3456 extern void memory_failure_queue_kick(int cpu);
3457 extern int unpoison_memory(unsigned long pfn);
3458 extern int sysctl_memory_failure_early_kill;
3459 extern int sysctl_memory_failure_recovery;
3460 extern void shake_page(struct page *p);
3461 extern atomic_long_t num_poisoned_pages __read_mostly;
3462 extern int soft_offline_page(unsigned long pfn, int flags);
3463 #ifdef CONFIG_MEMORY_FAILURE
3464 extern void memory_failure_queue(unsigned long pfn, int flags);
3465 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3466 					bool *migratable_cleared);
3467 void num_poisoned_pages_inc(unsigned long pfn);
3468 void num_poisoned_pages_sub(unsigned long pfn, long i);
3469 #else
3470 static inline void memory_failure_queue(unsigned long pfn, int flags)
3471 {
3472 }
3473 
3474 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3475 					bool *migratable_cleared)
3476 {
3477 	return 0;
3478 }
3479 
3480 static inline void num_poisoned_pages_inc(unsigned long pfn)
3481 {
3482 }
3483 
3484 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3485 {
3486 }
3487 #endif
3488 
3489 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3490 extern void memblk_nr_poison_inc(unsigned long pfn);
3491 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3492 #else
3493 static inline void memblk_nr_poison_inc(unsigned long pfn)
3494 {
3495 }
3496 
3497 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3498 {
3499 }
3500 #endif
3501 
3502 #ifndef arch_memory_failure
3503 static inline int arch_memory_failure(unsigned long pfn, int flags)
3504 {
3505 	return -ENXIO;
3506 }
3507 #endif
3508 
3509 #ifndef arch_is_platform_page
3510 static inline bool arch_is_platform_page(u64 paddr)
3511 {
3512 	return false;
3513 }
3514 #endif
3515 
3516 /*
3517  * Error handlers for various types of pages.
3518  */
3519 enum mf_result {
3520 	MF_IGNORED,	/* Error: cannot be handled */
3521 	MF_FAILED,	/* Error: handling failed */
3522 	MF_DELAYED,	/* Will be handled later */
3523 	MF_RECOVERED,	/* Successfully recovered */
3524 };
3525 
3526 enum mf_action_page_type {
3527 	MF_MSG_KERNEL,
3528 	MF_MSG_KERNEL_HIGH_ORDER,
3529 	MF_MSG_SLAB,
3530 	MF_MSG_DIFFERENT_COMPOUND,
3531 	MF_MSG_HUGE,
3532 	MF_MSG_FREE_HUGE,
3533 	MF_MSG_UNMAP_FAILED,
3534 	MF_MSG_DIRTY_SWAPCACHE,
3535 	MF_MSG_CLEAN_SWAPCACHE,
3536 	MF_MSG_DIRTY_MLOCKED_LRU,
3537 	MF_MSG_CLEAN_MLOCKED_LRU,
3538 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3539 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3540 	MF_MSG_DIRTY_LRU,
3541 	MF_MSG_CLEAN_LRU,
3542 	MF_MSG_TRUNCATED_LRU,
3543 	MF_MSG_BUDDY,
3544 	MF_MSG_DAX,
3545 	MF_MSG_UNSPLIT_THP,
3546 	MF_MSG_UNKNOWN,
3547 };
3548 
3549 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3550 extern void clear_huge_page(struct page *page,
3551 			    unsigned long addr_hint,
3552 			    unsigned int pages_per_huge_page);
3553 extern void copy_user_huge_page(struct page *dst, struct page *src,
3554 				unsigned long addr_hint,
3555 				struct vm_area_struct *vma,
3556 				unsigned int pages_per_huge_page);
3557 extern long copy_huge_page_from_user(struct page *dst_page,
3558 				const void __user *usr_src,
3559 				unsigned int pages_per_huge_page,
3560 				bool allow_pagefault);
3561 
3562 /**
3563  * vma_is_special_huge - Are transhuge page-table entries considered special?
3564  * @vma: Pointer to the struct vm_area_struct to consider
3565  *
3566  * Whether transhuge page-table entries are considered "special" following
3567  * the definition in vm_normal_page().
3568  *
3569  * Return: true if transhuge page-table entries should be considered special,
3570  * false otherwise.
3571  */
3572 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3573 {
3574 	return vma_is_dax(vma) || (vma->vm_file &&
3575 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3576 }
3577 
3578 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3579 
3580 #ifdef CONFIG_DEBUG_PAGEALLOC
3581 extern unsigned int _debug_guardpage_minorder;
3582 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3583 
3584 static inline unsigned int debug_guardpage_minorder(void)
3585 {
3586 	return _debug_guardpage_minorder;
3587 }
3588 
3589 static inline bool debug_guardpage_enabled(void)
3590 {
3591 	return static_branch_unlikely(&_debug_guardpage_enabled);
3592 }
3593 
3594 static inline bool page_is_guard(struct page *page)
3595 {
3596 	if (!debug_guardpage_enabled())
3597 		return false;
3598 
3599 	return PageGuard(page);
3600 }
3601 #else
3602 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3603 static inline bool debug_guardpage_enabled(void) { return false; }
3604 static inline bool page_is_guard(struct page *page) { return false; }
3605 #endif /* CONFIG_DEBUG_PAGEALLOC */
3606 
3607 #if MAX_NUMNODES > 1
3608 void __init setup_nr_node_ids(void);
3609 #else
3610 static inline void setup_nr_node_ids(void) {}
3611 #endif
3612 
3613 extern int memcmp_pages(struct page *page1, struct page *page2);
3614 
3615 static inline int pages_identical(struct page *page1, struct page *page2)
3616 {
3617 	return !memcmp_pages(page1, page2);
3618 }
3619 
3620 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3621 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3622 						pgoff_t first_index, pgoff_t nr,
3623 						pgoff_t bitmap_pgoff,
3624 						unsigned long *bitmap,
3625 						pgoff_t *start,
3626 						pgoff_t *end);
3627 
3628 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3629 				      pgoff_t first_index, pgoff_t nr);
3630 #endif
3631 
3632 extern int sysctl_nr_trim_pages;
3633 
3634 #ifdef CONFIG_PRINTK
3635 void mem_dump_obj(void *object);
3636 #else
3637 static inline void mem_dump_obj(void *object) {}
3638 #endif
3639 
3640 /**
3641  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3642  * @seals: the seals to check
3643  * @vma: the vma to operate on
3644  *
3645  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3646  * the vma flags.  Return 0 if check pass, or <0 for errors.
3647  */
3648 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3649 {
3650 	if (seals & F_SEAL_FUTURE_WRITE) {
3651 		/*
3652 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3653 		 * "future write" seal active.
3654 		 */
3655 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3656 			return -EPERM;
3657 
3658 		/*
3659 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3660 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3661 		 * revert protections on such mappings. Do this only for shared
3662 		 * mappings. For private mappings, don't need to mask
3663 		 * VM_MAYWRITE as we still want them to be COW-writable.
3664 		 */
3665 		if (vma->vm_flags & VM_SHARED)
3666 			vma->vm_flags &= ~(VM_MAYWRITE);
3667 	}
3668 
3669 	return 0;
3670 }
3671 
3672 #ifdef CONFIG_ANON_VMA_NAME
3673 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3674 			  unsigned long len_in,
3675 			  struct anon_vma_name *anon_name);
3676 #else
3677 static inline int
3678 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3679 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3680 	return 0;
3681 }
3682 #endif
3683 
3684 #endif /* _LINUX_MM_H */
3685