1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmdebug.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/prio_tree.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 17 struct mempolicy; 18 struct anon_vma; 19 struct file_ra_state; 20 struct user_struct; 21 struct writeback_control; 22 23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 24 extern unsigned long max_mapnr; 25 #endif 26 27 extern unsigned long num_physpages; 28 extern void * high_memory; 29 extern int page_cluster; 30 31 #ifdef CONFIG_SYSCTL 32 extern int sysctl_legacy_va_layout; 33 #else 34 #define sysctl_legacy_va_layout 0 35 #endif 36 37 extern unsigned long mmap_min_addr; 38 39 #include <asm/page.h> 40 #include <asm/pgtable.h> 41 #include <asm/processor.h> 42 43 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 44 45 /* to align the pointer to the (next) page boundary */ 46 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 47 48 /* 49 * Linux kernel virtual memory manager primitives. 50 * The idea being to have a "virtual" mm in the same way 51 * we have a virtual fs - giving a cleaner interface to the 52 * mm details, and allowing different kinds of memory mappings 53 * (from shared memory to executable loading to arbitrary 54 * mmap() functions). 55 */ 56 57 extern struct kmem_cache *vm_area_cachep; 58 59 #ifndef CONFIG_MMU 60 extern struct rb_root nommu_region_tree; 61 extern struct rw_semaphore nommu_region_sem; 62 63 extern unsigned int kobjsize(const void *objp); 64 #endif 65 66 /* 67 * vm_flags in vm_area_struct, see mm_types.h. 68 */ 69 #define VM_READ 0x00000001 /* currently active flags */ 70 #define VM_WRITE 0x00000002 71 #define VM_EXEC 0x00000004 72 #define VM_SHARED 0x00000008 73 74 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 75 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 76 #define VM_MAYWRITE 0x00000020 77 #define VM_MAYEXEC 0x00000040 78 #define VM_MAYSHARE 0x00000080 79 80 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 81 #define VM_GROWSUP 0x00000200 82 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 83 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 84 85 #define VM_EXECUTABLE 0x00001000 86 #define VM_LOCKED 0x00002000 87 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 88 89 /* Used by sys_madvise() */ 90 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 91 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 92 93 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 94 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 95 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 96 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 97 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 98 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 99 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 100 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 101 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 102 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 103 104 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 105 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 106 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 107 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 108 109 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 110 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 111 #endif 112 113 #ifdef CONFIG_STACK_GROWSUP 114 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 115 #else 116 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117 #endif 118 119 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 120 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 121 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 122 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 123 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 124 125 /* 126 * special vmas that are non-mergable, non-mlock()able 127 */ 128 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 129 130 /* 131 * mapping from the currently active vm_flags protection bits (the 132 * low four bits) to a page protection mask.. 133 */ 134 extern pgprot_t protection_map[16]; 135 136 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 137 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 138 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 139 140 /* 141 * This interface is used by x86 PAT code to identify a pfn mapping that is 142 * linear over entire vma. This is to optimize PAT code that deals with 143 * marking the physical region with a particular prot. This is not for generic 144 * mm use. Note also that this check will not work if the pfn mapping is 145 * linear for a vma starting at physical address 0. In which case PAT code 146 * falls back to slow path of reserving physical range page by page. 147 */ 148 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 149 { 150 return (vma->vm_flags & VM_PFN_AT_MMAP); 151 } 152 153 static inline int is_pfn_mapping(struct vm_area_struct *vma) 154 { 155 return (vma->vm_flags & VM_PFNMAP); 156 } 157 158 /* 159 * vm_fault is filled by the the pagefault handler and passed to the vma's 160 * ->fault function. The vma's ->fault is responsible for returning a bitmask 161 * of VM_FAULT_xxx flags that give details about how the fault was handled. 162 * 163 * pgoff should be used in favour of virtual_address, if possible. If pgoff 164 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 165 * mapping support. 166 */ 167 struct vm_fault { 168 unsigned int flags; /* FAULT_FLAG_xxx flags */ 169 pgoff_t pgoff; /* Logical page offset based on vma */ 170 void __user *virtual_address; /* Faulting virtual address */ 171 172 struct page *page; /* ->fault handlers should return a 173 * page here, unless VM_FAULT_NOPAGE 174 * is set (which is also implied by 175 * VM_FAULT_ERROR). 176 */ 177 }; 178 179 /* 180 * These are the virtual MM functions - opening of an area, closing and 181 * unmapping it (needed to keep files on disk up-to-date etc), pointer 182 * to the functions called when a no-page or a wp-page exception occurs. 183 */ 184 struct vm_operations_struct { 185 void (*open)(struct vm_area_struct * area); 186 void (*close)(struct vm_area_struct * area); 187 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 188 189 /* notification that a previously read-only page is about to become 190 * writable, if an error is returned it will cause a SIGBUS */ 191 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 192 193 /* called by access_process_vm when get_user_pages() fails, typically 194 * for use by special VMAs that can switch between memory and hardware 195 */ 196 int (*access)(struct vm_area_struct *vma, unsigned long addr, 197 void *buf, int len, int write); 198 #ifdef CONFIG_NUMA 199 /* 200 * set_policy() op must add a reference to any non-NULL @new mempolicy 201 * to hold the policy upon return. Caller should pass NULL @new to 202 * remove a policy and fall back to surrounding context--i.e. do not 203 * install a MPOL_DEFAULT policy, nor the task or system default 204 * mempolicy. 205 */ 206 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 207 208 /* 209 * get_policy() op must add reference [mpol_get()] to any policy at 210 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 211 * in mm/mempolicy.c will do this automatically. 212 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 213 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 214 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 215 * must return NULL--i.e., do not "fallback" to task or system default 216 * policy. 217 */ 218 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 219 unsigned long addr); 220 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 221 const nodemask_t *to, unsigned long flags); 222 #endif 223 }; 224 225 struct mmu_gather; 226 struct inode; 227 228 #define page_private(page) ((page)->private) 229 #define set_page_private(page, v) ((page)->private = (v)) 230 231 /* 232 * FIXME: take this include out, include page-flags.h in 233 * files which need it (119 of them) 234 */ 235 #include <linux/page-flags.h> 236 237 /* 238 * Methods to modify the page usage count. 239 * 240 * What counts for a page usage: 241 * - cache mapping (page->mapping) 242 * - private data (page->private) 243 * - page mapped in a task's page tables, each mapping 244 * is counted separately 245 * 246 * Also, many kernel routines increase the page count before a critical 247 * routine so they can be sure the page doesn't go away from under them. 248 */ 249 250 /* 251 * Drop a ref, return true if the refcount fell to zero (the page has no users) 252 */ 253 static inline int put_page_testzero(struct page *page) 254 { 255 VM_BUG_ON(atomic_read(&page->_count) == 0); 256 return atomic_dec_and_test(&page->_count); 257 } 258 259 /* 260 * Try to grab a ref unless the page has a refcount of zero, return false if 261 * that is the case. 262 */ 263 static inline int get_page_unless_zero(struct page *page) 264 { 265 return atomic_inc_not_zero(&page->_count); 266 } 267 268 /* Support for virtually mapped pages */ 269 struct page *vmalloc_to_page(const void *addr); 270 unsigned long vmalloc_to_pfn(const void *addr); 271 272 /* 273 * Determine if an address is within the vmalloc range 274 * 275 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 276 * is no special casing required. 277 */ 278 static inline int is_vmalloc_addr(const void *x) 279 { 280 #ifdef CONFIG_MMU 281 unsigned long addr = (unsigned long)x; 282 283 return addr >= VMALLOC_START && addr < VMALLOC_END; 284 #else 285 return 0; 286 #endif 287 } 288 289 static inline struct page *compound_head(struct page *page) 290 { 291 if (unlikely(PageTail(page))) 292 return page->first_page; 293 return page; 294 } 295 296 static inline int page_count(struct page *page) 297 { 298 return atomic_read(&compound_head(page)->_count); 299 } 300 301 static inline void get_page(struct page *page) 302 { 303 page = compound_head(page); 304 VM_BUG_ON(atomic_read(&page->_count) == 0); 305 atomic_inc(&page->_count); 306 } 307 308 static inline struct page *virt_to_head_page(const void *x) 309 { 310 struct page *page = virt_to_page(x); 311 return compound_head(page); 312 } 313 314 /* 315 * Setup the page count before being freed into the page allocator for 316 * the first time (boot or memory hotplug) 317 */ 318 static inline void init_page_count(struct page *page) 319 { 320 atomic_set(&page->_count, 1); 321 } 322 323 void put_page(struct page *page); 324 void put_pages_list(struct list_head *pages); 325 326 void split_page(struct page *page, unsigned int order); 327 328 /* 329 * Compound pages have a destructor function. Provide a 330 * prototype for that function and accessor functions. 331 * These are _only_ valid on the head of a PG_compound page. 332 */ 333 typedef void compound_page_dtor(struct page *); 334 335 static inline void set_compound_page_dtor(struct page *page, 336 compound_page_dtor *dtor) 337 { 338 page[1].lru.next = (void *)dtor; 339 } 340 341 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 342 { 343 return (compound_page_dtor *)page[1].lru.next; 344 } 345 346 static inline int compound_order(struct page *page) 347 { 348 if (!PageHead(page)) 349 return 0; 350 return (unsigned long)page[1].lru.prev; 351 } 352 353 static inline void set_compound_order(struct page *page, unsigned long order) 354 { 355 page[1].lru.prev = (void *)order; 356 } 357 358 /* 359 * Multiple processes may "see" the same page. E.g. for untouched 360 * mappings of /dev/null, all processes see the same page full of 361 * zeroes, and text pages of executables and shared libraries have 362 * only one copy in memory, at most, normally. 363 * 364 * For the non-reserved pages, page_count(page) denotes a reference count. 365 * page_count() == 0 means the page is free. page->lru is then used for 366 * freelist management in the buddy allocator. 367 * page_count() > 0 means the page has been allocated. 368 * 369 * Pages are allocated by the slab allocator in order to provide memory 370 * to kmalloc and kmem_cache_alloc. In this case, the management of the 371 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 372 * unless a particular usage is carefully commented. (the responsibility of 373 * freeing the kmalloc memory is the caller's, of course). 374 * 375 * A page may be used by anyone else who does a __get_free_page(). 376 * In this case, page_count still tracks the references, and should only 377 * be used through the normal accessor functions. The top bits of page->flags 378 * and page->virtual store page management information, but all other fields 379 * are unused and could be used privately, carefully. The management of this 380 * page is the responsibility of the one who allocated it, and those who have 381 * subsequently been given references to it. 382 * 383 * The other pages (we may call them "pagecache pages") are completely 384 * managed by the Linux memory manager: I/O, buffers, swapping etc. 385 * The following discussion applies only to them. 386 * 387 * A pagecache page contains an opaque `private' member, which belongs to the 388 * page's address_space. Usually, this is the address of a circular list of 389 * the page's disk buffers. PG_private must be set to tell the VM to call 390 * into the filesystem to release these pages. 391 * 392 * A page may belong to an inode's memory mapping. In this case, page->mapping 393 * is the pointer to the inode, and page->index is the file offset of the page, 394 * in units of PAGE_CACHE_SIZE. 395 * 396 * If pagecache pages are not associated with an inode, they are said to be 397 * anonymous pages. These may become associated with the swapcache, and in that 398 * case PG_swapcache is set, and page->private is an offset into the swapcache. 399 * 400 * In either case (swapcache or inode backed), the pagecache itself holds one 401 * reference to the page. Setting PG_private should also increment the 402 * refcount. The each user mapping also has a reference to the page. 403 * 404 * The pagecache pages are stored in a per-mapping radix tree, which is 405 * rooted at mapping->page_tree, and indexed by offset. 406 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 407 * lists, we instead now tag pages as dirty/writeback in the radix tree. 408 * 409 * All pagecache pages may be subject to I/O: 410 * - inode pages may need to be read from disk, 411 * - inode pages which have been modified and are MAP_SHARED may need 412 * to be written back to the inode on disk, 413 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 414 * modified may need to be swapped out to swap space and (later) to be read 415 * back into memory. 416 */ 417 418 /* 419 * The zone field is never updated after free_area_init_core() 420 * sets it, so none of the operations on it need to be atomic. 421 */ 422 423 424 /* 425 * page->flags layout: 426 * 427 * There are three possibilities for how page->flags get 428 * laid out. The first is for the normal case, without 429 * sparsemem. The second is for sparsemem when there is 430 * plenty of space for node and section. The last is when 431 * we have run out of space and have to fall back to an 432 * alternate (slower) way of determining the node. 433 * 434 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 435 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 436 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 437 */ 438 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 439 #define SECTIONS_WIDTH SECTIONS_SHIFT 440 #else 441 #define SECTIONS_WIDTH 0 442 #endif 443 444 #define ZONES_WIDTH ZONES_SHIFT 445 446 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 447 #define NODES_WIDTH NODES_SHIFT 448 #else 449 #ifdef CONFIG_SPARSEMEM_VMEMMAP 450 #error "Vmemmap: No space for nodes field in page flags" 451 #endif 452 #define NODES_WIDTH 0 453 #endif 454 455 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 456 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 457 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 458 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 459 460 /* 461 * We are going to use the flags for the page to node mapping if its in 462 * there. This includes the case where there is no node, so it is implicit. 463 */ 464 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 465 #define NODE_NOT_IN_PAGE_FLAGS 466 #endif 467 468 #ifndef PFN_SECTION_SHIFT 469 #define PFN_SECTION_SHIFT 0 470 #endif 471 472 /* 473 * Define the bit shifts to access each section. For non-existant 474 * sections we define the shift as 0; that plus a 0 mask ensures 475 * the compiler will optimise away reference to them. 476 */ 477 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 478 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 479 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 480 481 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 482 #ifdef NODE_NOT_IN_PAGEFLAGS 483 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 484 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 485 SECTIONS_PGOFF : ZONES_PGOFF) 486 #else 487 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 488 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 489 NODES_PGOFF : ZONES_PGOFF) 490 #endif 491 492 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 493 494 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 495 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 496 #endif 497 498 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 499 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 500 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 501 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 502 503 static inline enum zone_type page_zonenum(struct page *page) 504 { 505 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 506 } 507 508 /* 509 * The identification function is only used by the buddy allocator for 510 * determining if two pages could be buddies. We are not really 511 * identifying a zone since we could be using a the section number 512 * id if we have not node id available in page flags. 513 * We guarantee only that it will return the same value for two 514 * combinable pages in a zone. 515 */ 516 static inline int page_zone_id(struct page *page) 517 { 518 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 519 } 520 521 static inline int zone_to_nid(struct zone *zone) 522 { 523 #ifdef CONFIG_NUMA 524 return zone->node; 525 #else 526 return 0; 527 #endif 528 } 529 530 #ifdef NODE_NOT_IN_PAGE_FLAGS 531 extern int page_to_nid(struct page *page); 532 #else 533 static inline int page_to_nid(struct page *page) 534 { 535 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 536 } 537 #endif 538 539 static inline struct zone *page_zone(struct page *page) 540 { 541 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 542 } 543 544 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 545 static inline unsigned long page_to_section(struct page *page) 546 { 547 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 548 } 549 #endif 550 551 static inline void set_page_zone(struct page *page, enum zone_type zone) 552 { 553 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 554 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 555 } 556 557 static inline void set_page_node(struct page *page, unsigned long node) 558 { 559 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 560 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 561 } 562 563 static inline void set_page_section(struct page *page, unsigned long section) 564 { 565 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 566 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 567 } 568 569 static inline void set_page_links(struct page *page, enum zone_type zone, 570 unsigned long node, unsigned long pfn) 571 { 572 set_page_zone(page, zone); 573 set_page_node(page, node); 574 set_page_section(page, pfn_to_section_nr(pfn)); 575 } 576 577 /* 578 * If a hint addr is less than mmap_min_addr change hint to be as 579 * low as possible but still greater than mmap_min_addr 580 */ 581 static inline unsigned long round_hint_to_min(unsigned long hint) 582 { 583 #ifdef CONFIG_SECURITY 584 hint &= PAGE_MASK; 585 if (((void *)hint != NULL) && 586 (hint < mmap_min_addr)) 587 return PAGE_ALIGN(mmap_min_addr); 588 #endif 589 return hint; 590 } 591 592 /* 593 * Some inline functions in vmstat.h depend on page_zone() 594 */ 595 #include <linux/vmstat.h> 596 597 static __always_inline void *lowmem_page_address(struct page *page) 598 { 599 return __va(page_to_pfn(page) << PAGE_SHIFT); 600 } 601 602 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 603 #define HASHED_PAGE_VIRTUAL 604 #endif 605 606 #if defined(WANT_PAGE_VIRTUAL) 607 #define page_address(page) ((page)->virtual) 608 #define set_page_address(page, address) \ 609 do { \ 610 (page)->virtual = (address); \ 611 } while(0) 612 #define page_address_init() do { } while(0) 613 #endif 614 615 #if defined(HASHED_PAGE_VIRTUAL) 616 void *page_address(struct page *page); 617 void set_page_address(struct page *page, void *virtual); 618 void page_address_init(void); 619 #endif 620 621 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 622 #define page_address(page) lowmem_page_address(page) 623 #define set_page_address(page, address) do { } while(0) 624 #define page_address_init() do { } while(0) 625 #endif 626 627 /* 628 * On an anonymous page mapped into a user virtual memory area, 629 * page->mapping points to its anon_vma, not to a struct address_space; 630 * with the PAGE_MAPPING_ANON bit set to distinguish it. 631 * 632 * Please note that, confusingly, "page_mapping" refers to the inode 633 * address_space which maps the page from disk; whereas "page_mapped" 634 * refers to user virtual address space into which the page is mapped. 635 */ 636 #define PAGE_MAPPING_ANON 1 637 638 extern struct address_space swapper_space; 639 static inline struct address_space *page_mapping(struct page *page) 640 { 641 struct address_space *mapping = page->mapping; 642 643 VM_BUG_ON(PageSlab(page)); 644 #ifdef CONFIG_SWAP 645 if (unlikely(PageSwapCache(page))) 646 mapping = &swapper_space; 647 else 648 #endif 649 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 650 mapping = NULL; 651 return mapping; 652 } 653 654 static inline int PageAnon(struct page *page) 655 { 656 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 657 } 658 659 /* 660 * Return the pagecache index of the passed page. Regular pagecache pages 661 * use ->index whereas swapcache pages use ->private 662 */ 663 static inline pgoff_t page_index(struct page *page) 664 { 665 if (unlikely(PageSwapCache(page))) 666 return page_private(page); 667 return page->index; 668 } 669 670 /* 671 * The atomic page->_mapcount, like _count, starts from -1: 672 * so that transitions both from it and to it can be tracked, 673 * using atomic_inc_and_test and atomic_add_negative(-1). 674 */ 675 static inline void reset_page_mapcount(struct page *page) 676 { 677 atomic_set(&(page)->_mapcount, -1); 678 } 679 680 static inline int page_mapcount(struct page *page) 681 { 682 return atomic_read(&(page)->_mapcount) + 1; 683 } 684 685 /* 686 * Return true if this page is mapped into pagetables. 687 */ 688 static inline int page_mapped(struct page *page) 689 { 690 return atomic_read(&(page)->_mapcount) >= 0; 691 } 692 693 /* 694 * Different kinds of faults, as returned by handle_mm_fault(). 695 * Used to decide whether a process gets delivered SIGBUS or 696 * just gets major/minor fault counters bumped up. 697 */ 698 699 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 700 701 #define VM_FAULT_OOM 0x0001 702 #define VM_FAULT_SIGBUS 0x0002 703 #define VM_FAULT_MAJOR 0x0004 704 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 705 706 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 707 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 708 709 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 710 711 /* 712 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 713 */ 714 extern void pagefault_out_of_memory(void); 715 716 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 717 718 extern void show_free_areas(void); 719 720 #ifdef CONFIG_SHMEM 721 extern int shmem_lock(struct file *file, int lock, struct user_struct *user); 722 #else 723 static inline int shmem_lock(struct file *file, int lock, 724 struct user_struct *user) 725 { 726 return 0; 727 } 728 #endif 729 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 730 731 int shmem_zero_setup(struct vm_area_struct *); 732 733 #ifndef CONFIG_MMU 734 extern unsigned long shmem_get_unmapped_area(struct file *file, 735 unsigned long addr, 736 unsigned long len, 737 unsigned long pgoff, 738 unsigned long flags); 739 #endif 740 741 extern int can_do_mlock(void); 742 extern int user_shm_lock(size_t, struct user_struct *); 743 extern void user_shm_unlock(size_t, struct user_struct *); 744 745 /* 746 * Parameter block passed down to zap_pte_range in exceptional cases. 747 */ 748 struct zap_details { 749 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 750 struct address_space *check_mapping; /* Check page->mapping if set */ 751 pgoff_t first_index; /* Lowest page->index to unmap */ 752 pgoff_t last_index; /* Highest page->index to unmap */ 753 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 754 unsigned long truncate_count; /* Compare vm_truncate_count */ 755 }; 756 757 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 758 pte_t pte); 759 760 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 761 unsigned long size); 762 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 763 unsigned long size, struct zap_details *); 764 unsigned long unmap_vmas(struct mmu_gather **tlb, 765 struct vm_area_struct *start_vma, unsigned long start_addr, 766 unsigned long end_addr, unsigned long *nr_accounted, 767 struct zap_details *); 768 769 /** 770 * mm_walk - callbacks for walk_page_range 771 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 772 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 773 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 774 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 775 * @pte_hole: if set, called for each hole at all levels 776 * 777 * (see walk_page_range for more details) 778 */ 779 struct mm_walk { 780 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 781 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 782 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 783 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 784 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 785 struct mm_struct *mm; 786 void *private; 787 }; 788 789 int walk_page_range(unsigned long addr, unsigned long end, 790 struct mm_walk *walk); 791 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 792 unsigned long end, unsigned long floor, unsigned long ceiling); 793 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 794 struct vm_area_struct *vma); 795 void unmap_mapping_range(struct address_space *mapping, 796 loff_t const holebegin, loff_t const holelen, int even_cows); 797 int follow_phys(struct vm_area_struct *vma, unsigned long address, 798 unsigned int flags, unsigned long *prot, resource_size_t *phys); 799 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 800 void *buf, int len, int write); 801 802 static inline void unmap_shared_mapping_range(struct address_space *mapping, 803 loff_t const holebegin, loff_t const holelen) 804 { 805 unmap_mapping_range(mapping, holebegin, holelen, 0); 806 } 807 808 extern int vmtruncate(struct inode * inode, loff_t offset); 809 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 810 811 #ifdef CONFIG_MMU 812 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 813 unsigned long address, int write_access); 814 #else 815 static inline int handle_mm_fault(struct mm_struct *mm, 816 struct vm_area_struct *vma, unsigned long address, 817 int write_access) 818 { 819 /* should never happen if there's no MMU */ 820 BUG(); 821 return VM_FAULT_SIGBUS; 822 } 823 #endif 824 825 extern int make_pages_present(unsigned long addr, unsigned long end); 826 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 827 828 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 829 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 830 831 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 832 extern void do_invalidatepage(struct page *page, unsigned long offset); 833 834 int __set_page_dirty_nobuffers(struct page *page); 835 int __set_page_dirty_no_writeback(struct page *page); 836 int redirty_page_for_writepage(struct writeback_control *wbc, 837 struct page *page); 838 void account_page_dirtied(struct page *page, struct address_space *mapping); 839 int set_page_dirty(struct page *page); 840 int set_page_dirty_lock(struct page *page); 841 int clear_page_dirty_for_io(struct page *page); 842 843 extern unsigned long move_page_tables(struct vm_area_struct *vma, 844 unsigned long old_addr, struct vm_area_struct *new_vma, 845 unsigned long new_addr, unsigned long len); 846 extern unsigned long do_mremap(unsigned long addr, 847 unsigned long old_len, unsigned long new_len, 848 unsigned long flags, unsigned long new_addr); 849 extern int mprotect_fixup(struct vm_area_struct *vma, 850 struct vm_area_struct **pprev, unsigned long start, 851 unsigned long end, unsigned long newflags); 852 853 /* 854 * get_user_pages_fast provides equivalent functionality to get_user_pages, 855 * operating on current and current->mm (force=0 and doesn't return any vmas). 856 * 857 * get_user_pages_fast may take mmap_sem and page tables, so no assumptions 858 * can be made about locking. get_user_pages_fast is to be implemented in a 859 * way that is advantageous (vs get_user_pages()) when the user memory area is 860 * already faulted in and present in ptes. However if the pages have to be 861 * faulted in, it may turn out to be slightly slower). 862 */ 863 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 864 struct page **pages); 865 866 /* 867 * A callback you can register to apply pressure to ageable caches. 868 * 869 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 870 * look through the least-recently-used 'nr_to_scan' entries and 871 * attempt to free them up. It should return the number of objects 872 * which remain in the cache. If it returns -1, it means it cannot do 873 * any scanning at this time (eg. there is a risk of deadlock). 874 * 875 * The 'gfpmask' refers to the allocation we are currently trying to 876 * fulfil. 877 * 878 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 879 * querying the cache size, so a fastpath for that case is appropriate. 880 */ 881 struct shrinker { 882 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 883 int seeks; /* seeks to recreate an obj */ 884 885 /* These are for internal use */ 886 struct list_head list; 887 long nr; /* objs pending delete */ 888 }; 889 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 890 extern void register_shrinker(struct shrinker *); 891 extern void unregister_shrinker(struct shrinker *); 892 893 int vma_wants_writenotify(struct vm_area_struct *vma); 894 895 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 896 897 #ifdef __PAGETABLE_PUD_FOLDED 898 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 899 unsigned long address) 900 { 901 return 0; 902 } 903 #else 904 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 905 #endif 906 907 #ifdef __PAGETABLE_PMD_FOLDED 908 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 909 unsigned long address) 910 { 911 return 0; 912 } 913 #else 914 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 915 #endif 916 917 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 918 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 919 920 /* 921 * The following ifdef needed to get the 4level-fixup.h header to work. 922 * Remove it when 4level-fixup.h has been removed. 923 */ 924 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 925 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 926 { 927 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 928 NULL: pud_offset(pgd, address); 929 } 930 931 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 932 { 933 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 934 NULL: pmd_offset(pud, address); 935 } 936 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 937 938 #if USE_SPLIT_PTLOCKS 939 /* 940 * We tuck a spinlock to guard each pagetable page into its struct page, 941 * at page->private, with BUILD_BUG_ON to make sure that this will not 942 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 943 * When freeing, reset page->mapping so free_pages_check won't complain. 944 */ 945 #define __pte_lockptr(page) &((page)->ptl) 946 #define pte_lock_init(_page) do { \ 947 spin_lock_init(__pte_lockptr(_page)); \ 948 } while (0) 949 #define pte_lock_deinit(page) ((page)->mapping = NULL) 950 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 951 #else /* !USE_SPLIT_PTLOCKS */ 952 /* 953 * We use mm->page_table_lock to guard all pagetable pages of the mm. 954 */ 955 #define pte_lock_init(page) do {} while (0) 956 #define pte_lock_deinit(page) do {} while (0) 957 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 958 #endif /* USE_SPLIT_PTLOCKS */ 959 960 static inline void pgtable_page_ctor(struct page *page) 961 { 962 pte_lock_init(page); 963 inc_zone_page_state(page, NR_PAGETABLE); 964 } 965 966 static inline void pgtable_page_dtor(struct page *page) 967 { 968 pte_lock_deinit(page); 969 dec_zone_page_state(page, NR_PAGETABLE); 970 } 971 972 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 973 ({ \ 974 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 975 pte_t *__pte = pte_offset_map(pmd, address); \ 976 *(ptlp) = __ptl; \ 977 spin_lock(__ptl); \ 978 __pte; \ 979 }) 980 981 #define pte_unmap_unlock(pte, ptl) do { \ 982 spin_unlock(ptl); \ 983 pte_unmap(pte); \ 984 } while (0) 985 986 #define pte_alloc_map(mm, pmd, address) \ 987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 988 NULL: pte_offset_map(pmd, address)) 989 990 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 992 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 993 994 #define pte_alloc_kernel(pmd, address) \ 995 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 996 NULL: pte_offset_kernel(pmd, address)) 997 998 extern void free_area_init(unsigned long * zones_size); 999 extern void free_area_init_node(int nid, unsigned long * zones_size, 1000 unsigned long zone_start_pfn, unsigned long *zholes_size); 1001 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1002 /* 1003 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1004 * zones, allocate the backing mem_map and account for memory holes in a more 1005 * architecture independent manner. This is a substitute for creating the 1006 * zone_sizes[] and zholes_size[] arrays and passing them to 1007 * free_area_init_node() 1008 * 1009 * An architecture is expected to register range of page frames backed by 1010 * physical memory with add_active_range() before calling 1011 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1012 * usage, an architecture is expected to do something like 1013 * 1014 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1015 * max_highmem_pfn}; 1016 * for_each_valid_physical_page_range() 1017 * add_active_range(node_id, start_pfn, end_pfn) 1018 * free_area_init_nodes(max_zone_pfns); 1019 * 1020 * If the architecture guarantees that there are no holes in the ranges 1021 * registered with add_active_range(), free_bootmem_active_regions() 1022 * will call free_bootmem_node() for each registered physical page range. 1023 * Similarly sparse_memory_present_with_active_regions() calls 1024 * memory_present() for each range when SPARSEMEM is enabled. 1025 * 1026 * See mm/page_alloc.c for more information on each function exposed by 1027 * CONFIG_ARCH_POPULATES_NODE_MAP 1028 */ 1029 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1030 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1031 unsigned long end_pfn); 1032 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1033 unsigned long end_pfn); 1034 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 1035 unsigned long end_pfn); 1036 extern void remove_all_active_ranges(void); 1037 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1038 unsigned long end_pfn); 1039 extern void get_pfn_range_for_nid(unsigned int nid, 1040 unsigned long *start_pfn, unsigned long *end_pfn); 1041 extern unsigned long find_min_pfn_with_active_regions(void); 1042 extern void free_bootmem_with_active_regions(int nid, 1043 unsigned long max_low_pfn); 1044 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1045 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1046 extern void sparse_memory_present_with_active_regions(int nid); 1047 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1048 1049 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1050 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1051 static inline int __early_pfn_to_nid(unsigned long pfn) 1052 { 1053 return 0; 1054 } 1055 #else 1056 /* please see mm/page_alloc.c */ 1057 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1058 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1059 /* there is a per-arch backend function. */ 1060 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1061 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1062 #endif 1063 1064 extern void set_dma_reserve(unsigned long new_dma_reserve); 1065 extern void memmap_init_zone(unsigned long, int, unsigned long, 1066 unsigned long, enum memmap_context); 1067 extern void setup_per_zone_pages_min(void); 1068 extern void mem_init(void); 1069 extern void __init mmap_init(void); 1070 extern void show_mem(void); 1071 extern void si_meminfo(struct sysinfo * val); 1072 extern void si_meminfo_node(struct sysinfo *val, int nid); 1073 extern int after_bootmem; 1074 1075 #ifdef CONFIG_NUMA 1076 extern void setup_per_cpu_pageset(void); 1077 #else 1078 static inline void setup_per_cpu_pageset(void) {} 1079 #endif 1080 1081 /* nommu.c */ 1082 extern atomic_long_t mmap_pages_allocated; 1083 1084 /* prio_tree.c */ 1085 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1086 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1087 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1088 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1089 struct prio_tree_iter *iter); 1090 1091 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1092 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1093 (vma = vma_prio_tree_next(vma, iter)); ) 1094 1095 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1096 struct list_head *list) 1097 { 1098 vma->shared.vm_set.parent = NULL; 1099 list_add_tail(&vma->shared.vm_set.list, list); 1100 } 1101 1102 /* mmap.c */ 1103 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1104 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1105 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1106 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1107 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1108 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1109 struct mempolicy *); 1110 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1111 extern int split_vma(struct mm_struct *, 1112 struct vm_area_struct *, unsigned long addr, int new_below); 1113 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1114 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1115 struct rb_node **, struct rb_node *); 1116 extern void unlink_file_vma(struct vm_area_struct *); 1117 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1118 unsigned long addr, unsigned long len, pgoff_t pgoff); 1119 extern void exit_mmap(struct mm_struct *); 1120 1121 extern int mm_take_all_locks(struct mm_struct *mm); 1122 extern void mm_drop_all_locks(struct mm_struct *mm); 1123 1124 #ifdef CONFIG_PROC_FS 1125 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1126 extern void added_exe_file_vma(struct mm_struct *mm); 1127 extern void removed_exe_file_vma(struct mm_struct *mm); 1128 #else 1129 static inline void added_exe_file_vma(struct mm_struct *mm) 1130 {} 1131 1132 static inline void removed_exe_file_vma(struct mm_struct *mm) 1133 {} 1134 #endif /* CONFIG_PROC_FS */ 1135 1136 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1137 extern int install_special_mapping(struct mm_struct *mm, 1138 unsigned long addr, unsigned long len, 1139 unsigned long flags, struct page **pages); 1140 1141 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1142 1143 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1144 unsigned long len, unsigned long prot, 1145 unsigned long flag, unsigned long pgoff); 1146 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1147 unsigned long len, unsigned long flags, 1148 unsigned int vm_flags, unsigned long pgoff); 1149 1150 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1151 unsigned long len, unsigned long prot, 1152 unsigned long flag, unsigned long offset) 1153 { 1154 unsigned long ret = -EINVAL; 1155 if ((offset + PAGE_ALIGN(len)) < offset) 1156 goto out; 1157 if (!(offset & ~PAGE_MASK)) 1158 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1159 out: 1160 return ret; 1161 } 1162 1163 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1164 1165 extern unsigned long do_brk(unsigned long, unsigned long); 1166 1167 /* filemap.c */ 1168 extern unsigned long page_unuse(struct page *); 1169 extern void truncate_inode_pages(struct address_space *, loff_t); 1170 extern void truncate_inode_pages_range(struct address_space *, 1171 loff_t lstart, loff_t lend); 1172 1173 /* generic vm_area_ops exported for stackable file systems */ 1174 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1175 1176 /* mm/page-writeback.c */ 1177 int write_one_page(struct page *page, int wait); 1178 void task_dirty_inc(struct task_struct *tsk); 1179 1180 /* readahead.c */ 1181 #define VM_MAX_READAHEAD 128 /* kbytes */ 1182 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1183 1184 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1185 pgoff_t offset, unsigned long nr_to_read); 1186 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1187 pgoff_t offset, unsigned long nr_to_read); 1188 1189 void page_cache_sync_readahead(struct address_space *mapping, 1190 struct file_ra_state *ra, 1191 struct file *filp, 1192 pgoff_t offset, 1193 unsigned long size); 1194 1195 void page_cache_async_readahead(struct address_space *mapping, 1196 struct file_ra_state *ra, 1197 struct file *filp, 1198 struct page *pg, 1199 pgoff_t offset, 1200 unsigned long size); 1201 1202 unsigned long max_sane_readahead(unsigned long nr); 1203 1204 /* Do stack extension */ 1205 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1206 #ifdef CONFIG_IA64 1207 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1208 #endif 1209 extern int expand_stack_downwards(struct vm_area_struct *vma, 1210 unsigned long address); 1211 1212 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1213 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1214 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1215 struct vm_area_struct **pprev); 1216 1217 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1218 NULL if none. Assume start_addr < end_addr. */ 1219 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1220 { 1221 struct vm_area_struct * vma = find_vma(mm,start_addr); 1222 1223 if (vma && end_addr <= vma->vm_start) 1224 vma = NULL; 1225 return vma; 1226 } 1227 1228 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1229 { 1230 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1231 } 1232 1233 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1234 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1235 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1236 unsigned long pfn, unsigned long size, pgprot_t); 1237 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1238 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1239 unsigned long pfn); 1240 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1241 unsigned long pfn); 1242 1243 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1244 unsigned int foll_flags); 1245 #define FOLL_WRITE 0x01 /* check pte is writable */ 1246 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1247 #define FOLL_GET 0x04 /* do get_page on page */ 1248 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1249 1250 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1251 void *data); 1252 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1253 unsigned long size, pte_fn_t fn, void *data); 1254 1255 #ifdef CONFIG_PROC_FS 1256 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1257 #else 1258 static inline void vm_stat_account(struct mm_struct *mm, 1259 unsigned long flags, struct file *file, long pages) 1260 { 1261 } 1262 #endif /* CONFIG_PROC_FS */ 1263 1264 #ifdef CONFIG_DEBUG_PAGEALLOC 1265 extern int debug_pagealloc_enabled; 1266 1267 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1268 1269 static inline void enable_debug_pagealloc(void) 1270 { 1271 debug_pagealloc_enabled = 1; 1272 } 1273 #ifdef CONFIG_HIBERNATION 1274 extern bool kernel_page_present(struct page *page); 1275 #endif /* CONFIG_HIBERNATION */ 1276 #else 1277 static inline void 1278 kernel_map_pages(struct page *page, int numpages, int enable) {} 1279 static inline void enable_debug_pagealloc(void) 1280 { 1281 } 1282 #ifdef CONFIG_HIBERNATION 1283 static inline bool kernel_page_present(struct page *page) { return true; } 1284 #endif /* CONFIG_HIBERNATION */ 1285 #endif 1286 1287 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1288 #ifdef __HAVE_ARCH_GATE_AREA 1289 int in_gate_area_no_task(unsigned long addr); 1290 int in_gate_area(struct task_struct *task, unsigned long addr); 1291 #else 1292 int in_gate_area_no_task(unsigned long addr); 1293 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1294 #endif /* __HAVE_ARCH_GATE_AREA */ 1295 1296 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1297 void __user *, size_t *, loff_t *); 1298 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1299 unsigned long lru_pages); 1300 1301 #ifndef CONFIG_MMU 1302 #define randomize_va_space 0 1303 #else 1304 extern int randomize_va_space; 1305 #endif 1306 1307 const char * arch_vma_name(struct vm_area_struct *vma); 1308 void print_vma_addr(char *prefix, unsigned long rip); 1309 1310 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1311 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1312 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1313 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1314 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1315 void *vmemmap_alloc_block(unsigned long size, int node); 1316 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1317 int vmemmap_populate_basepages(struct page *start_page, 1318 unsigned long pages, int node); 1319 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1320 void vmemmap_populate_print_last(void); 1321 1322 extern void *alloc_locked_buffer(size_t size); 1323 extern void free_locked_buffer(void *buffer, size_t size); 1324 extern void release_locked_buffer(void *buffer, size_t size); 1325 #endif /* __KERNEL__ */ 1326 #endif /* _LINUX_MM_H */ 1327