xref: /linux-6.15/include/linux/mm.h (revision e6bc784c)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 #ifdef CONFIG_64BIT
410 #define VM_DROPPABLE_BIT	40
411 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
412 #else
413 #define VM_DROPPABLE		VM_NONE
414 #endif
415 
416 #ifdef CONFIG_64BIT
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED	_BITUL(63)
419 #endif
420 
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423 
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425 
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
428 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
430 				 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
432 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433 
434 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
436 #endif
437 
438 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440 #endif
441 
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443 
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK	VM_GROWSUP
446 #define VM_STACK_EARLY	VM_GROWSDOWN
447 #else
448 #define VM_STACK	VM_GROWSDOWN
449 #define VM_STACK_EARLY	0
450 #endif
451 
452 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453 
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456 
457 
458 /*
459  * Special vmas that are non-mergable, non-mlock()able.
460  */
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462 
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465 
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
468 
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
471 
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR	VM_NONE
475 #endif
476 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477 
478 /*
479  * mapping from the currently active vm_flags protection bits (the
480  * low four bits) to a page protection mask..
481  */
482 
483 /*
484  * The default fault flags that should be used by most of the
485  * arch-specific page fault handlers.
486  */
487 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
488 			     FAULT_FLAG_KILLABLE | \
489 			     FAULT_FLAG_INTERRUPTIBLE)
490 
491 /**
492  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493  * @flags: Fault flags.
494  *
495  * This is mostly used for places where we want to try to avoid taking
496  * the mmap_lock for too long a time when waiting for another condition
497  * to change, in which case we can try to be polite to release the
498  * mmap_lock in the first round to avoid potential starvation of other
499  * processes that would also want the mmap_lock.
500  *
501  * Return: true if the page fault allows retry and this is the first
502  * attempt of the fault handling; false otherwise.
503  */
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 	    (!(flags & FAULT_FLAG_TRIED));
508 }
509 
510 #define FAULT_FLAG_TRACE \
511 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
512 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
513 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
514 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
515 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
516 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
517 	{ FAULT_FLAG_USER,		"USER" }, \
518 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
519 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
520 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
521 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
522 
523 /*
524  * vm_fault is filled by the pagefault handler and passed to the vma's
525  * ->fault function. The vma's ->fault is responsible for returning a bitmask
526  * of VM_FAULT_xxx flags that give details about how the fault was handled.
527  *
528  * MM layer fills up gfp_mask for page allocations but fault handler might
529  * alter it if its implementation requires a different allocation context.
530  *
531  * pgoff should be used in favour of virtual_address, if possible.
532  */
533 struct vm_fault {
534 	const struct {
535 		struct vm_area_struct *vma;	/* Target VMA */
536 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
537 		pgoff_t pgoff;			/* Logical page offset based on vma */
538 		unsigned long address;		/* Faulting virtual address - masked */
539 		unsigned long real_address;	/* Faulting virtual address - unmasked */
540 	};
541 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
542 					 * XXX: should really be 'const' */
543 	pmd_t *pmd;			/* Pointer to pmd entry matching
544 					 * the 'address' */
545 	pud_t *pud;			/* Pointer to pud entry matching
546 					 * the 'address'
547 					 */
548 	union {
549 		pte_t orig_pte;		/* Value of PTE at the time of fault */
550 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
551 					 * used by PMD fault only.
552 					 */
553 	};
554 
555 	struct page *cow_page;		/* Page handler may use for COW fault */
556 	struct page *page;		/* ->fault handlers should return a
557 					 * page here, unless VM_FAULT_NOPAGE
558 					 * is set (which is also implied by
559 					 * VM_FAULT_ERROR).
560 					 */
561 	/* These three entries are valid only while holding ptl lock */
562 	pte_t *pte;			/* Pointer to pte entry matching
563 					 * the 'address'. NULL if the page
564 					 * table hasn't been allocated.
565 					 */
566 	spinlock_t *ptl;		/* Page table lock.
567 					 * Protects pte page table if 'pte'
568 					 * is not NULL, otherwise pmd.
569 					 */
570 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
571 					 * vm_ops->map_pages() sets up a page
572 					 * table from atomic context.
573 					 * do_fault_around() pre-allocates
574 					 * page table to avoid allocation from
575 					 * atomic context.
576 					 */
577 };
578 
579 /*
580  * These are the virtual MM functions - opening of an area, closing and
581  * unmapping it (needed to keep files on disk up-to-date etc), pointer
582  * to the functions called when a no-page or a wp-page exception occurs.
583  */
584 struct vm_operations_struct {
585 	void (*open)(struct vm_area_struct * area);
586 	/**
587 	 * @close: Called when the VMA is being removed from the MM.
588 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
589 	 */
590 	void (*close)(struct vm_area_struct * area);
591 	/* Called any time before splitting to check if it's allowed */
592 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 	int (*mremap)(struct vm_area_struct *area);
594 	/*
595 	 * Called by mprotect() to make driver-specific permission
596 	 * checks before mprotect() is finalised.   The VMA must not
597 	 * be modified.  Returns 0 if mprotect() can proceed.
598 	 */
599 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 			unsigned long end, unsigned long newflags);
601 	vm_fault_t (*fault)(struct vm_fault *vmf);
602 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr, pgoff_t *ilx);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 #ifdef CONFIG_NUMA_BALANCING
659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
660 {
661 	vma->numab_state = NULL;
662 }
663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
664 {
665 	kfree(vma->numab_state);
666 }
667 #else
668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
671 
672 #ifdef CONFIG_PER_VMA_LOCK
673 /*
674  * Try to read-lock a vma. The function is allowed to occasionally yield false
675  * locked result to avoid performance overhead, in which case we fall back to
676  * using mmap_lock. The function should never yield false unlocked result.
677  */
678 static inline bool vma_start_read(struct vm_area_struct *vma)
679 {
680 	/*
681 	 * Check before locking. A race might cause false locked result.
682 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
683 	 * ACQUIRE semantics, because this is just a lockless check whose result
684 	 * we don't rely on for anything - the mm_lock_seq read against which we
685 	 * need ordering is below.
686 	 */
687 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
688 		return false;
689 
690 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
691 		return false;
692 
693 	/*
694 	 * Overflow might produce false locked result.
695 	 * False unlocked result is impossible because we modify and check
696 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
697 	 * modification invalidates all existing locks.
698 	 *
699 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
700 	 * racing with vma_end_write_all(), we only start reading from the VMA
701 	 * after it has been unlocked.
702 	 * This pairs with RELEASE semantics in vma_end_write_all().
703 	 */
704 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
705 		up_read(&vma->vm_lock->lock);
706 		return false;
707 	}
708 	return true;
709 }
710 
711 static inline void vma_end_read(struct vm_area_struct *vma)
712 {
713 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
714 	up_read(&vma->vm_lock->lock);
715 	rcu_read_unlock();
716 }
717 
718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
720 {
721 	mmap_assert_write_locked(vma->vm_mm);
722 
723 	/*
724 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
725 	 * mm->mm_lock_seq can't be concurrently modified.
726 	 */
727 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
728 	return (vma->vm_lock_seq == *mm_lock_seq);
729 }
730 
731 /*
732  * Begin writing to a VMA.
733  * Exclude concurrent readers under the per-VMA lock until the currently
734  * write-locked mmap_lock is dropped or downgraded.
735  */
736 static inline void vma_start_write(struct vm_area_struct *vma)
737 {
738 	int mm_lock_seq;
739 
740 	if (__is_vma_write_locked(vma, &mm_lock_seq))
741 		return;
742 
743 	down_write(&vma->vm_lock->lock);
744 	/*
745 	 * We should use WRITE_ONCE() here because we can have concurrent reads
746 	 * from the early lockless pessimistic check in vma_start_read().
747 	 * We don't really care about the correctness of that early check, but
748 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
749 	 */
750 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
751 	up_write(&vma->vm_lock->lock);
752 }
753 
754 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
755 {
756 	int mm_lock_seq;
757 
758 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
759 }
760 
761 static inline void vma_assert_locked(struct vm_area_struct *vma)
762 {
763 	if (!rwsem_is_locked(&vma->vm_lock->lock))
764 		vma_assert_write_locked(vma);
765 }
766 
767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
768 {
769 	/* When detaching vma should be write-locked */
770 	if (detached)
771 		vma_assert_write_locked(vma);
772 	vma->detached = detached;
773 }
774 
775 static inline void release_fault_lock(struct vm_fault *vmf)
776 {
777 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
778 		vma_end_read(vmf->vma);
779 	else
780 		mmap_read_unlock(vmf->vma->vm_mm);
781 }
782 
783 static inline void assert_fault_locked(struct vm_fault *vmf)
784 {
785 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
786 		vma_assert_locked(vmf->vma);
787 	else
788 		mmap_assert_locked(vmf->vma->vm_mm);
789 }
790 
791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
792 					  unsigned long address);
793 
794 #else /* CONFIG_PER_VMA_LOCK */
795 
796 static inline bool vma_start_read(struct vm_area_struct *vma)
797 		{ return false; }
798 static inline void vma_end_read(struct vm_area_struct *vma) {}
799 static inline void vma_start_write(struct vm_area_struct *vma) {}
800 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
801 		{ mmap_assert_write_locked(vma->vm_mm); }
802 static inline void vma_mark_detached(struct vm_area_struct *vma,
803 				     bool detached) {}
804 
805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 		unsigned long address)
807 {
808 	return NULL;
809 }
810 
811 static inline void vma_assert_locked(struct vm_area_struct *vma)
812 {
813 	mmap_assert_locked(vma->vm_mm);
814 }
815 
816 static inline void release_fault_lock(struct vm_fault *vmf)
817 {
818 	mmap_read_unlock(vmf->vma->vm_mm);
819 }
820 
821 static inline void assert_fault_locked(struct vm_fault *vmf)
822 {
823 	mmap_assert_locked(vmf->vma->vm_mm);
824 }
825 
826 #endif /* CONFIG_PER_VMA_LOCK */
827 
828 extern const struct vm_operations_struct vma_dummy_vm_ops;
829 
830 /*
831  * WARNING: vma_init does not initialize vma->vm_lock.
832  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
833  */
834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
835 {
836 	memset(vma, 0, sizeof(*vma));
837 	vma->vm_mm = mm;
838 	vma->vm_ops = &vma_dummy_vm_ops;
839 	INIT_LIST_HEAD(&vma->anon_vma_chain);
840 	vma_mark_detached(vma, false);
841 	vma_numab_state_init(vma);
842 }
843 
844 /* Use when VMA is not part of the VMA tree and needs no locking */
845 static inline void vm_flags_init(struct vm_area_struct *vma,
846 				 vm_flags_t flags)
847 {
848 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
849 }
850 
851 /*
852  * Use when VMA is part of the VMA tree and modifications need coordination
853  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
854  * it should be locked explicitly beforehand.
855  */
856 static inline void vm_flags_reset(struct vm_area_struct *vma,
857 				  vm_flags_t flags)
858 {
859 	vma_assert_write_locked(vma);
860 	vm_flags_init(vma, flags);
861 }
862 
863 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
864 				       vm_flags_t flags)
865 {
866 	vma_assert_write_locked(vma);
867 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
868 }
869 
870 static inline void vm_flags_set(struct vm_area_struct *vma,
871 				vm_flags_t flags)
872 {
873 	vma_start_write(vma);
874 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
875 }
876 
877 static inline void vm_flags_clear(struct vm_area_struct *vma,
878 				  vm_flags_t flags)
879 {
880 	vma_start_write(vma);
881 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
882 }
883 
884 /*
885  * Use only if VMA is not part of the VMA tree or has no other users and
886  * therefore needs no locking.
887  */
888 static inline void __vm_flags_mod(struct vm_area_struct *vma,
889 				  vm_flags_t set, vm_flags_t clear)
890 {
891 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
892 }
893 
894 /*
895  * Use only when the order of set/clear operations is unimportant, otherwise
896  * use vm_flags_{set|clear} explicitly.
897  */
898 static inline void vm_flags_mod(struct vm_area_struct *vma,
899 				vm_flags_t set, vm_flags_t clear)
900 {
901 	vma_start_write(vma);
902 	__vm_flags_mod(vma, set, clear);
903 }
904 
905 static inline void vma_set_anonymous(struct vm_area_struct *vma)
906 {
907 	vma->vm_ops = NULL;
908 }
909 
910 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
911 {
912 	return !vma->vm_ops;
913 }
914 
915 /*
916  * Indicate if the VMA is a heap for the given task; for
917  * /proc/PID/maps that is the heap of the main task.
918  */
919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
920 {
921 	return vma->vm_start < vma->vm_mm->brk &&
922 		vma->vm_end > vma->vm_mm->start_brk;
923 }
924 
925 /*
926  * Indicate if the VMA is a stack for the given task; for
927  * /proc/PID/maps that is the stack of the main task.
928  */
929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
930 {
931 	/*
932 	 * We make no effort to guess what a given thread considers to be
933 	 * its "stack".  It's not even well-defined for programs written
934 	 * languages like Go.
935 	 */
936 	return vma->vm_start <= vma->vm_mm->start_stack &&
937 		vma->vm_end >= vma->vm_mm->start_stack;
938 }
939 
940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
941 {
942 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
943 
944 	if (!maybe_stack)
945 		return false;
946 
947 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
948 						VM_STACK_INCOMPLETE_SETUP)
949 		return true;
950 
951 	return false;
952 }
953 
954 static inline bool vma_is_foreign(struct vm_area_struct *vma)
955 {
956 	if (!current->mm)
957 		return true;
958 
959 	if (current->mm != vma->vm_mm)
960 		return true;
961 
962 	return false;
963 }
964 
965 static inline bool vma_is_accessible(struct vm_area_struct *vma)
966 {
967 	return vma->vm_flags & VM_ACCESS_FLAGS;
968 }
969 
970 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
971 {
972 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
973 		(VM_SHARED | VM_MAYWRITE);
974 }
975 
976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
977 {
978 	return is_shared_maywrite(vma->vm_flags);
979 }
980 
981 static inline
982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
983 {
984 	return mas_find(&vmi->mas, max - 1);
985 }
986 
987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
988 {
989 	/*
990 	 * Uses mas_find() to get the first VMA when the iterator starts.
991 	 * Calling mas_next() could skip the first entry.
992 	 */
993 	return mas_find(&vmi->mas, ULONG_MAX);
994 }
995 
996 static inline
997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
998 {
999 	return mas_next_range(&vmi->mas, ULONG_MAX);
1000 }
1001 
1002 
1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1004 {
1005 	return mas_prev(&vmi->mas, 0);
1006 }
1007 
1008 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1009 			unsigned long start, unsigned long end, gfp_t gfp)
1010 {
1011 	__mas_set_range(&vmi->mas, start, end - 1);
1012 	mas_store_gfp(&vmi->mas, NULL, gfp);
1013 	if (unlikely(mas_is_err(&vmi->mas)))
1014 		return -ENOMEM;
1015 
1016 	return 0;
1017 }
1018 
1019 /* Free any unused preallocations */
1020 static inline void vma_iter_free(struct vma_iterator *vmi)
1021 {
1022 	mas_destroy(&vmi->mas);
1023 }
1024 
1025 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1026 				      struct vm_area_struct *vma)
1027 {
1028 	vmi->mas.index = vma->vm_start;
1029 	vmi->mas.last = vma->vm_end - 1;
1030 	mas_store(&vmi->mas, vma);
1031 	if (unlikely(mas_is_err(&vmi->mas)))
1032 		return -ENOMEM;
1033 
1034 	return 0;
1035 }
1036 
1037 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1038 {
1039 	mas_pause(&vmi->mas);
1040 }
1041 
1042 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1043 {
1044 	mas_set(&vmi->mas, addr);
1045 }
1046 
1047 #define for_each_vma(__vmi, __vma)					\
1048 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1049 
1050 /* The MM code likes to work with exclusive end addresses */
1051 #define for_each_vma_range(__vmi, __vma, __end)				\
1052 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1053 
1054 #ifdef CONFIG_SHMEM
1055 /*
1056  * The vma_is_shmem is not inline because it is used only by slow
1057  * paths in userfault.
1058  */
1059 bool vma_is_shmem(struct vm_area_struct *vma);
1060 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1061 #else
1062 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1063 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1064 #endif
1065 
1066 int vma_is_stack_for_current(struct vm_area_struct *vma);
1067 
1068 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1069 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1070 
1071 struct mmu_gather;
1072 struct inode;
1073 
1074 /*
1075  * compound_order() can be called without holding a reference, which means
1076  * that niceties like page_folio() don't work.  These callers should be
1077  * prepared to handle wild return values.  For example, PG_head may be
1078  * set before the order is initialised, or this may be a tail page.
1079  * See compaction.c for some good examples.
1080  */
1081 static inline unsigned int compound_order(struct page *page)
1082 {
1083 	struct folio *folio = (struct folio *)page;
1084 
1085 	if (!test_bit(PG_head, &folio->flags))
1086 		return 0;
1087 	return folio->_flags_1 & 0xff;
1088 }
1089 
1090 /**
1091  * folio_order - The allocation order of a folio.
1092  * @folio: The folio.
1093  *
1094  * A folio is composed of 2^order pages.  See get_order() for the definition
1095  * of order.
1096  *
1097  * Return: The order of the folio.
1098  */
1099 static inline unsigned int folio_order(const struct folio *folio)
1100 {
1101 	if (!folio_test_large(folio))
1102 		return 0;
1103 	return folio->_flags_1 & 0xff;
1104 }
1105 
1106 #include <linux/huge_mm.h>
1107 
1108 /*
1109  * Methods to modify the page usage count.
1110  *
1111  * What counts for a page usage:
1112  * - cache mapping   (page->mapping)
1113  * - private data    (page->private)
1114  * - page mapped in a task's page tables, each mapping
1115  *   is counted separately
1116  *
1117  * Also, many kernel routines increase the page count before a critical
1118  * routine so they can be sure the page doesn't go away from under them.
1119  */
1120 
1121 /*
1122  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1123  */
1124 static inline int put_page_testzero(struct page *page)
1125 {
1126 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1127 	return page_ref_dec_and_test(page);
1128 }
1129 
1130 static inline int folio_put_testzero(struct folio *folio)
1131 {
1132 	return put_page_testzero(&folio->page);
1133 }
1134 
1135 /*
1136  * Try to grab a ref unless the page has a refcount of zero, return false if
1137  * that is the case.
1138  * This can be called when MMU is off so it must not access
1139  * any of the virtual mappings.
1140  */
1141 static inline bool get_page_unless_zero(struct page *page)
1142 {
1143 	return page_ref_add_unless(page, 1, 0);
1144 }
1145 
1146 static inline struct folio *folio_get_nontail_page(struct page *page)
1147 {
1148 	if (unlikely(!get_page_unless_zero(page)))
1149 		return NULL;
1150 	return (struct folio *)page;
1151 }
1152 
1153 extern int page_is_ram(unsigned long pfn);
1154 
1155 enum {
1156 	REGION_INTERSECTS,
1157 	REGION_DISJOINT,
1158 	REGION_MIXED,
1159 };
1160 
1161 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1162 		      unsigned long desc);
1163 
1164 /* Support for virtually mapped pages */
1165 struct page *vmalloc_to_page(const void *addr);
1166 unsigned long vmalloc_to_pfn(const void *addr);
1167 
1168 /*
1169  * Determine if an address is within the vmalloc range
1170  *
1171  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1172  * is no special casing required.
1173  */
1174 #ifdef CONFIG_MMU
1175 extern bool is_vmalloc_addr(const void *x);
1176 extern int is_vmalloc_or_module_addr(const void *x);
1177 #else
1178 static inline bool is_vmalloc_addr(const void *x)
1179 {
1180 	return false;
1181 }
1182 static inline int is_vmalloc_or_module_addr(const void *x)
1183 {
1184 	return 0;
1185 }
1186 #endif
1187 
1188 /*
1189  * How many times the entire folio is mapped as a single unit (eg by a
1190  * PMD or PUD entry).  This is probably not what you want, except for
1191  * debugging purposes or implementation of other core folio_*() primitives.
1192  */
1193 static inline int folio_entire_mapcount(const struct folio *folio)
1194 {
1195 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1196 	return atomic_read(&folio->_entire_mapcount) + 1;
1197 }
1198 
1199 static inline int folio_large_mapcount(const struct folio *folio)
1200 {
1201 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1202 	return atomic_read(&folio->_large_mapcount) + 1;
1203 }
1204 
1205 /**
1206  * folio_mapcount() - Number of mappings of this folio.
1207  * @folio: The folio.
1208  *
1209  * The folio mapcount corresponds to the number of present user page table
1210  * entries that reference any part of a folio. Each such present user page
1211  * table entry must be paired with exactly on folio reference.
1212  *
1213  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1214  * exactly once.
1215  *
1216  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1217  * references the entire folio counts exactly once, even when such special
1218  * page table entries are comprised of multiple ordinary page table entries.
1219  *
1220  * Will report 0 for pages which cannot be mapped into userspace, such as
1221  * slab, page tables and similar.
1222  *
1223  * Return: The number of times this folio is mapped.
1224  */
1225 static inline int folio_mapcount(const struct folio *folio)
1226 {
1227 	int mapcount;
1228 
1229 	if (likely(!folio_test_large(folio))) {
1230 		mapcount = atomic_read(&folio->_mapcount) + 1;
1231 		if (page_mapcount_is_type(mapcount))
1232 			mapcount = 0;
1233 		return mapcount;
1234 	}
1235 	return folio_large_mapcount(folio);
1236 }
1237 
1238 /**
1239  * folio_mapped - Is this folio mapped into userspace?
1240  * @folio: The folio.
1241  *
1242  * Return: True if any page in this folio is referenced by user page tables.
1243  */
1244 static inline bool folio_mapped(const struct folio *folio)
1245 {
1246 	return folio_mapcount(folio) >= 1;
1247 }
1248 
1249 /*
1250  * Return true if this page is mapped into pagetables.
1251  * For compound page it returns true if any sub-page of compound page is mapped,
1252  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1253  */
1254 static inline bool page_mapped(const struct page *page)
1255 {
1256 	return folio_mapped(page_folio(page));
1257 }
1258 
1259 static inline struct page *virt_to_head_page(const void *x)
1260 {
1261 	struct page *page = virt_to_page(x);
1262 
1263 	return compound_head(page);
1264 }
1265 
1266 static inline struct folio *virt_to_folio(const void *x)
1267 {
1268 	struct page *page = virt_to_page(x);
1269 
1270 	return page_folio(page);
1271 }
1272 
1273 void __folio_put(struct folio *folio);
1274 
1275 void put_pages_list(struct list_head *pages);
1276 
1277 void split_page(struct page *page, unsigned int order);
1278 void folio_copy(struct folio *dst, struct folio *src);
1279 int folio_mc_copy(struct folio *dst, struct folio *src);
1280 
1281 unsigned long nr_free_buffer_pages(void);
1282 
1283 /* Returns the number of bytes in this potentially compound page. */
1284 static inline unsigned long page_size(struct page *page)
1285 {
1286 	return PAGE_SIZE << compound_order(page);
1287 }
1288 
1289 /* Returns the number of bits needed for the number of bytes in a page */
1290 static inline unsigned int page_shift(struct page *page)
1291 {
1292 	return PAGE_SHIFT + compound_order(page);
1293 }
1294 
1295 /**
1296  * thp_order - Order of a transparent huge page.
1297  * @page: Head page of a transparent huge page.
1298  */
1299 static inline unsigned int thp_order(struct page *page)
1300 {
1301 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1302 	return compound_order(page);
1303 }
1304 
1305 /**
1306  * thp_size - Size of a transparent huge page.
1307  * @page: Head page of a transparent huge page.
1308  *
1309  * Return: Number of bytes in this page.
1310  */
1311 static inline unsigned long thp_size(struct page *page)
1312 {
1313 	return PAGE_SIZE << thp_order(page);
1314 }
1315 
1316 #ifdef CONFIG_MMU
1317 /*
1318  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1319  * servicing faults for write access.  In the normal case, do always want
1320  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1321  * that do not have writing enabled, when used by access_process_vm.
1322  */
1323 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1324 {
1325 	if (likely(vma->vm_flags & VM_WRITE))
1326 		pte = pte_mkwrite(pte, vma);
1327 	return pte;
1328 }
1329 
1330 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1331 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1332 		struct page *page, unsigned int nr, unsigned long addr);
1333 
1334 vm_fault_t finish_fault(struct vm_fault *vmf);
1335 #endif
1336 
1337 /*
1338  * Multiple processes may "see" the same page. E.g. for untouched
1339  * mappings of /dev/null, all processes see the same page full of
1340  * zeroes, and text pages of executables and shared libraries have
1341  * only one copy in memory, at most, normally.
1342  *
1343  * For the non-reserved pages, page_count(page) denotes a reference count.
1344  *   page_count() == 0 means the page is free. page->lru is then used for
1345  *   freelist management in the buddy allocator.
1346  *   page_count() > 0  means the page has been allocated.
1347  *
1348  * Pages are allocated by the slab allocator in order to provide memory
1349  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1350  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1351  * unless a particular usage is carefully commented. (the responsibility of
1352  * freeing the kmalloc memory is the caller's, of course).
1353  *
1354  * A page may be used by anyone else who does a __get_free_page().
1355  * In this case, page_count still tracks the references, and should only
1356  * be used through the normal accessor functions. The top bits of page->flags
1357  * and page->virtual store page management information, but all other fields
1358  * are unused and could be used privately, carefully. The management of this
1359  * page is the responsibility of the one who allocated it, and those who have
1360  * subsequently been given references to it.
1361  *
1362  * The other pages (we may call them "pagecache pages") are completely
1363  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1364  * The following discussion applies only to them.
1365  *
1366  * A pagecache page contains an opaque `private' member, which belongs to the
1367  * page's address_space. Usually, this is the address of a circular list of
1368  * the page's disk buffers. PG_private must be set to tell the VM to call
1369  * into the filesystem to release these pages.
1370  *
1371  * A page may belong to an inode's memory mapping. In this case, page->mapping
1372  * is the pointer to the inode, and page->index is the file offset of the page,
1373  * in units of PAGE_SIZE.
1374  *
1375  * If pagecache pages are not associated with an inode, they are said to be
1376  * anonymous pages. These may become associated with the swapcache, and in that
1377  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1378  *
1379  * In either case (swapcache or inode backed), the pagecache itself holds one
1380  * reference to the page. Setting PG_private should also increment the
1381  * refcount. The each user mapping also has a reference to the page.
1382  *
1383  * The pagecache pages are stored in a per-mapping radix tree, which is
1384  * rooted at mapping->i_pages, and indexed by offset.
1385  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1386  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1387  *
1388  * All pagecache pages may be subject to I/O:
1389  * - inode pages may need to be read from disk,
1390  * - inode pages which have been modified and are MAP_SHARED may need
1391  *   to be written back to the inode on disk,
1392  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1393  *   modified may need to be swapped out to swap space and (later) to be read
1394  *   back into memory.
1395  */
1396 
1397 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1398 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1399 
1400 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1401 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1402 {
1403 	if (!static_branch_unlikely(&devmap_managed_key))
1404 		return false;
1405 	if (!folio_is_zone_device(folio))
1406 		return false;
1407 	return __put_devmap_managed_folio_refs(folio, refs);
1408 }
1409 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1410 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1411 {
1412 	return false;
1413 }
1414 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1415 
1416 /* 127: arbitrary random number, small enough to assemble well */
1417 #define folio_ref_zero_or_close_to_overflow(folio) \
1418 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1419 
1420 /**
1421  * folio_get - Increment the reference count on a folio.
1422  * @folio: The folio.
1423  *
1424  * Context: May be called in any context, as long as you know that
1425  * you have a refcount on the folio.  If you do not already have one,
1426  * folio_try_get() may be the right interface for you to use.
1427  */
1428 static inline void folio_get(struct folio *folio)
1429 {
1430 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1431 	folio_ref_inc(folio);
1432 }
1433 
1434 static inline void get_page(struct page *page)
1435 {
1436 	folio_get(page_folio(page));
1437 }
1438 
1439 static inline __must_check bool try_get_page(struct page *page)
1440 {
1441 	page = compound_head(page);
1442 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1443 		return false;
1444 	page_ref_inc(page);
1445 	return true;
1446 }
1447 
1448 /**
1449  * folio_put - Decrement the reference count on a folio.
1450  * @folio: The folio.
1451  *
1452  * If the folio's reference count reaches zero, the memory will be
1453  * released back to the page allocator and may be used by another
1454  * allocation immediately.  Do not access the memory or the struct folio
1455  * after calling folio_put() unless you can be sure that it wasn't the
1456  * last reference.
1457  *
1458  * Context: May be called in process or interrupt context, but not in NMI
1459  * context.  May be called while holding a spinlock.
1460  */
1461 static inline void folio_put(struct folio *folio)
1462 {
1463 	if (folio_put_testzero(folio))
1464 		__folio_put(folio);
1465 }
1466 
1467 /**
1468  * folio_put_refs - Reduce the reference count on a folio.
1469  * @folio: The folio.
1470  * @refs: The amount to subtract from the folio's reference count.
1471  *
1472  * If the folio's reference count reaches zero, the memory will be
1473  * released back to the page allocator and may be used by another
1474  * allocation immediately.  Do not access the memory or the struct folio
1475  * after calling folio_put_refs() unless you can be sure that these weren't
1476  * the last references.
1477  *
1478  * Context: May be called in process or interrupt context, but not in NMI
1479  * context.  May be called while holding a spinlock.
1480  */
1481 static inline void folio_put_refs(struct folio *folio, int refs)
1482 {
1483 	if (folio_ref_sub_and_test(folio, refs))
1484 		__folio_put(folio);
1485 }
1486 
1487 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1488 
1489 /*
1490  * union release_pages_arg - an array of pages or folios
1491  *
1492  * release_pages() releases a simple array of multiple pages, and
1493  * accepts various different forms of said page array: either
1494  * a regular old boring array of pages, an array of folios, or
1495  * an array of encoded page pointers.
1496  *
1497  * The transparent union syntax for this kind of "any of these
1498  * argument types" is all kinds of ugly, so look away.
1499  */
1500 typedef union {
1501 	struct page **pages;
1502 	struct folio **folios;
1503 	struct encoded_page **encoded_pages;
1504 } release_pages_arg __attribute__ ((__transparent_union__));
1505 
1506 void release_pages(release_pages_arg, int nr);
1507 
1508 /**
1509  * folios_put - Decrement the reference count on an array of folios.
1510  * @folios: The folios.
1511  *
1512  * Like folio_put(), but for a batch of folios.  This is more efficient
1513  * than writing the loop yourself as it will optimise the locks which need
1514  * to be taken if the folios are freed.  The folios batch is returned
1515  * empty and ready to be reused for another batch; there is no need to
1516  * reinitialise it.
1517  *
1518  * Context: May be called in process or interrupt context, but not in NMI
1519  * context.  May be called while holding a spinlock.
1520  */
1521 static inline void folios_put(struct folio_batch *folios)
1522 {
1523 	folios_put_refs(folios, NULL);
1524 }
1525 
1526 static inline void put_page(struct page *page)
1527 {
1528 	struct folio *folio = page_folio(page);
1529 
1530 	/*
1531 	 * For some devmap managed pages we need to catch refcount transition
1532 	 * from 2 to 1:
1533 	 */
1534 	if (put_devmap_managed_folio_refs(folio, 1))
1535 		return;
1536 	folio_put(folio);
1537 }
1538 
1539 /*
1540  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1541  * the page's refcount so that two separate items are tracked: the original page
1542  * reference count, and also a new count of how many pin_user_pages() calls were
1543  * made against the page. ("gup-pinned" is another term for the latter).
1544  *
1545  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1546  * distinct from normal pages. As such, the unpin_user_page() call (and its
1547  * variants) must be used in order to release gup-pinned pages.
1548  *
1549  * Choice of value:
1550  *
1551  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1552  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1553  * simpler, due to the fact that adding an even power of two to the page
1554  * refcount has the effect of using only the upper N bits, for the code that
1555  * counts up using the bias value. This means that the lower bits are left for
1556  * the exclusive use of the original code that increments and decrements by one
1557  * (or at least, by much smaller values than the bias value).
1558  *
1559  * Of course, once the lower bits overflow into the upper bits (and this is
1560  * OK, because subtraction recovers the original values), then visual inspection
1561  * no longer suffices to directly view the separate counts. However, for normal
1562  * applications that don't have huge page reference counts, this won't be an
1563  * issue.
1564  *
1565  * Locking: the lockless algorithm described in folio_try_get_rcu()
1566  * provides safe operation for get_user_pages(), folio_mkclean() and
1567  * other calls that race to set up page table entries.
1568  */
1569 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1570 
1571 void unpin_user_page(struct page *page);
1572 void unpin_folio(struct folio *folio);
1573 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1574 				 bool make_dirty);
1575 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1576 				      bool make_dirty);
1577 void unpin_user_pages(struct page **pages, unsigned long npages);
1578 void unpin_folios(struct folio **folios, unsigned long nfolios);
1579 
1580 static inline bool is_cow_mapping(vm_flags_t flags)
1581 {
1582 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1583 }
1584 
1585 #ifndef CONFIG_MMU
1586 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1587 {
1588 	/*
1589 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1590 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1591 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1592 	 * underlying memory if ptrace is active, so this is only possible if
1593 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1594 	 * write permissions later.
1595 	 */
1596 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1597 }
1598 #endif
1599 
1600 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1601 #define SECTION_IN_PAGE_FLAGS
1602 #endif
1603 
1604 /*
1605  * The identification function is mainly used by the buddy allocator for
1606  * determining if two pages could be buddies. We are not really identifying
1607  * the zone since we could be using the section number id if we do not have
1608  * node id available in page flags.
1609  * We only guarantee that it will return the same value for two combinable
1610  * pages in a zone.
1611  */
1612 static inline int page_zone_id(struct page *page)
1613 {
1614 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1615 }
1616 
1617 #ifdef NODE_NOT_IN_PAGE_FLAGS
1618 int page_to_nid(const struct page *page);
1619 #else
1620 static inline int page_to_nid(const struct page *page)
1621 {
1622 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1623 }
1624 #endif
1625 
1626 static inline int folio_nid(const struct folio *folio)
1627 {
1628 	return page_to_nid(&folio->page);
1629 }
1630 
1631 #ifdef CONFIG_NUMA_BALANCING
1632 /* page access time bits needs to hold at least 4 seconds */
1633 #define PAGE_ACCESS_TIME_MIN_BITS	12
1634 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1635 #define PAGE_ACCESS_TIME_BUCKETS				\
1636 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1637 #else
1638 #define PAGE_ACCESS_TIME_BUCKETS	0
1639 #endif
1640 
1641 #define PAGE_ACCESS_TIME_MASK				\
1642 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1643 
1644 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1645 {
1646 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1647 }
1648 
1649 static inline int cpupid_to_pid(int cpupid)
1650 {
1651 	return cpupid & LAST__PID_MASK;
1652 }
1653 
1654 static inline int cpupid_to_cpu(int cpupid)
1655 {
1656 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1657 }
1658 
1659 static inline int cpupid_to_nid(int cpupid)
1660 {
1661 	return cpu_to_node(cpupid_to_cpu(cpupid));
1662 }
1663 
1664 static inline bool cpupid_pid_unset(int cpupid)
1665 {
1666 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1667 }
1668 
1669 static inline bool cpupid_cpu_unset(int cpupid)
1670 {
1671 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1672 }
1673 
1674 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1675 {
1676 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1677 }
1678 
1679 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1680 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1681 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1682 {
1683 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1684 }
1685 
1686 static inline int folio_last_cpupid(struct folio *folio)
1687 {
1688 	return folio->_last_cpupid;
1689 }
1690 static inline void page_cpupid_reset_last(struct page *page)
1691 {
1692 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1693 }
1694 #else
1695 static inline int folio_last_cpupid(struct folio *folio)
1696 {
1697 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1698 }
1699 
1700 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1701 
1702 static inline void page_cpupid_reset_last(struct page *page)
1703 {
1704 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1705 }
1706 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1707 
1708 static inline int folio_xchg_access_time(struct folio *folio, int time)
1709 {
1710 	int last_time;
1711 
1712 	last_time = folio_xchg_last_cpupid(folio,
1713 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1714 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1715 }
1716 
1717 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1718 {
1719 	unsigned int pid_bit;
1720 
1721 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1722 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1723 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1724 	}
1725 }
1726 
1727 bool folio_use_access_time(struct folio *folio);
1728 #else /* !CONFIG_NUMA_BALANCING */
1729 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1730 {
1731 	return folio_nid(folio); /* XXX */
1732 }
1733 
1734 static inline int folio_xchg_access_time(struct folio *folio, int time)
1735 {
1736 	return 0;
1737 }
1738 
1739 static inline int folio_last_cpupid(struct folio *folio)
1740 {
1741 	return folio_nid(folio); /* XXX */
1742 }
1743 
1744 static inline int cpupid_to_nid(int cpupid)
1745 {
1746 	return -1;
1747 }
1748 
1749 static inline int cpupid_to_pid(int cpupid)
1750 {
1751 	return -1;
1752 }
1753 
1754 static inline int cpupid_to_cpu(int cpupid)
1755 {
1756 	return -1;
1757 }
1758 
1759 static inline int cpu_pid_to_cpupid(int nid, int pid)
1760 {
1761 	return -1;
1762 }
1763 
1764 static inline bool cpupid_pid_unset(int cpupid)
1765 {
1766 	return true;
1767 }
1768 
1769 static inline void page_cpupid_reset_last(struct page *page)
1770 {
1771 }
1772 
1773 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1774 {
1775 	return false;
1776 }
1777 
1778 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1779 {
1780 }
1781 static inline bool folio_use_access_time(struct folio *folio)
1782 {
1783 	return false;
1784 }
1785 #endif /* CONFIG_NUMA_BALANCING */
1786 
1787 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1788 
1789 /*
1790  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1791  * setting tags for all pages to native kernel tag value 0xff, as the default
1792  * value 0x00 maps to 0xff.
1793  */
1794 
1795 static inline u8 page_kasan_tag(const struct page *page)
1796 {
1797 	u8 tag = KASAN_TAG_KERNEL;
1798 
1799 	if (kasan_enabled()) {
1800 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1801 		tag ^= 0xff;
1802 	}
1803 
1804 	return tag;
1805 }
1806 
1807 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1808 {
1809 	unsigned long old_flags, flags;
1810 
1811 	if (!kasan_enabled())
1812 		return;
1813 
1814 	tag ^= 0xff;
1815 	old_flags = READ_ONCE(page->flags);
1816 	do {
1817 		flags = old_flags;
1818 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1819 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1820 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1821 }
1822 
1823 static inline void page_kasan_tag_reset(struct page *page)
1824 {
1825 	if (kasan_enabled())
1826 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1827 }
1828 
1829 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1830 
1831 static inline u8 page_kasan_tag(const struct page *page)
1832 {
1833 	return 0xff;
1834 }
1835 
1836 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1837 static inline void page_kasan_tag_reset(struct page *page) { }
1838 
1839 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1840 
1841 static inline struct zone *page_zone(const struct page *page)
1842 {
1843 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1844 }
1845 
1846 static inline pg_data_t *page_pgdat(const struct page *page)
1847 {
1848 	return NODE_DATA(page_to_nid(page));
1849 }
1850 
1851 static inline struct zone *folio_zone(const struct folio *folio)
1852 {
1853 	return page_zone(&folio->page);
1854 }
1855 
1856 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1857 {
1858 	return page_pgdat(&folio->page);
1859 }
1860 
1861 #ifdef SECTION_IN_PAGE_FLAGS
1862 static inline void set_page_section(struct page *page, unsigned long section)
1863 {
1864 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1865 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1866 }
1867 
1868 static inline unsigned long page_to_section(const struct page *page)
1869 {
1870 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1871 }
1872 #endif
1873 
1874 /**
1875  * folio_pfn - Return the Page Frame Number of a folio.
1876  * @folio: The folio.
1877  *
1878  * A folio may contain multiple pages.  The pages have consecutive
1879  * Page Frame Numbers.
1880  *
1881  * Return: The Page Frame Number of the first page in the folio.
1882  */
1883 static inline unsigned long folio_pfn(struct folio *folio)
1884 {
1885 	return page_to_pfn(&folio->page);
1886 }
1887 
1888 static inline struct folio *pfn_folio(unsigned long pfn)
1889 {
1890 	return page_folio(pfn_to_page(pfn));
1891 }
1892 
1893 /**
1894  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1895  * @folio: The folio.
1896  *
1897  * This function checks if a folio has been pinned via a call to
1898  * a function in the pin_user_pages() family.
1899  *
1900  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1901  * because it means "definitely not pinned for DMA", but true means "probably
1902  * pinned for DMA, but possibly a false positive due to having at least
1903  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1904  *
1905  * False positives are OK, because: a) it's unlikely for a folio to
1906  * get that many refcounts, and b) all the callers of this routine are
1907  * expected to be able to deal gracefully with a false positive.
1908  *
1909  * For large folios, the result will be exactly correct. That's because
1910  * we have more tracking data available: the _pincount field is used
1911  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1912  *
1913  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1914  *
1915  * Return: True, if it is likely that the folio has been "dma-pinned".
1916  * False, if the folio is definitely not dma-pinned.
1917  */
1918 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1919 {
1920 	if (folio_test_large(folio))
1921 		return atomic_read(&folio->_pincount) > 0;
1922 
1923 	/*
1924 	 * folio_ref_count() is signed. If that refcount overflows, then
1925 	 * folio_ref_count() returns a negative value, and callers will avoid
1926 	 * further incrementing the refcount.
1927 	 *
1928 	 * Here, for that overflow case, use the sign bit to count a little
1929 	 * bit higher via unsigned math, and thus still get an accurate result.
1930 	 */
1931 	return ((unsigned int)folio_ref_count(folio)) >=
1932 		GUP_PIN_COUNTING_BIAS;
1933 }
1934 
1935 /*
1936  * This should most likely only be called during fork() to see whether we
1937  * should break the cow immediately for an anon page on the src mm.
1938  *
1939  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1940  */
1941 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1942 					  struct folio *folio)
1943 {
1944 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1945 
1946 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1947 		return false;
1948 
1949 	return folio_maybe_dma_pinned(folio);
1950 }
1951 
1952 /**
1953  * is_zero_page - Query if a page is a zero page
1954  * @page: The page to query
1955  *
1956  * This returns true if @page is one of the permanent zero pages.
1957  */
1958 static inline bool is_zero_page(const struct page *page)
1959 {
1960 	return is_zero_pfn(page_to_pfn(page));
1961 }
1962 
1963 /**
1964  * is_zero_folio - Query if a folio is a zero page
1965  * @folio: The folio to query
1966  *
1967  * This returns true if @folio is one of the permanent zero pages.
1968  */
1969 static inline bool is_zero_folio(const struct folio *folio)
1970 {
1971 	return is_zero_page(&folio->page);
1972 }
1973 
1974 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1975 #ifdef CONFIG_MIGRATION
1976 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1977 {
1978 #ifdef CONFIG_CMA
1979 	int mt = folio_migratetype(folio);
1980 
1981 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1982 		return false;
1983 #endif
1984 	/* The zero page can be "pinned" but gets special handling. */
1985 	if (is_zero_folio(folio))
1986 		return true;
1987 
1988 	/* Coherent device memory must always allow eviction. */
1989 	if (folio_is_device_coherent(folio))
1990 		return false;
1991 
1992 	/* Otherwise, non-movable zone folios can be pinned. */
1993 	return !folio_is_zone_movable(folio);
1994 
1995 }
1996 #else
1997 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1998 {
1999 	return true;
2000 }
2001 #endif
2002 
2003 static inline void set_page_zone(struct page *page, enum zone_type zone)
2004 {
2005 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2006 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2007 }
2008 
2009 static inline void set_page_node(struct page *page, unsigned long node)
2010 {
2011 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2012 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2013 }
2014 
2015 static inline void set_page_links(struct page *page, enum zone_type zone,
2016 	unsigned long node, unsigned long pfn)
2017 {
2018 	set_page_zone(page, zone);
2019 	set_page_node(page, node);
2020 #ifdef SECTION_IN_PAGE_FLAGS
2021 	set_page_section(page, pfn_to_section_nr(pfn));
2022 #endif
2023 }
2024 
2025 /**
2026  * folio_nr_pages - The number of pages in the folio.
2027  * @folio: The folio.
2028  *
2029  * Return: A positive power of two.
2030  */
2031 static inline long folio_nr_pages(const struct folio *folio)
2032 {
2033 	if (!folio_test_large(folio))
2034 		return 1;
2035 #ifdef CONFIG_64BIT
2036 	return folio->_folio_nr_pages;
2037 #else
2038 	return 1L << (folio->_flags_1 & 0xff);
2039 #endif
2040 }
2041 
2042 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2043 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2044 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2045 #else
2046 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2047 #endif
2048 
2049 /*
2050  * compound_nr() returns the number of pages in this potentially compound
2051  * page.  compound_nr() can be called on a tail page, and is defined to
2052  * return 1 in that case.
2053  */
2054 static inline unsigned long compound_nr(struct page *page)
2055 {
2056 	struct folio *folio = (struct folio *)page;
2057 
2058 	if (!test_bit(PG_head, &folio->flags))
2059 		return 1;
2060 #ifdef CONFIG_64BIT
2061 	return folio->_folio_nr_pages;
2062 #else
2063 	return 1L << (folio->_flags_1 & 0xff);
2064 #endif
2065 }
2066 
2067 /**
2068  * thp_nr_pages - The number of regular pages in this huge page.
2069  * @page: The head page of a huge page.
2070  */
2071 static inline int thp_nr_pages(struct page *page)
2072 {
2073 	return folio_nr_pages((struct folio *)page);
2074 }
2075 
2076 /**
2077  * folio_next - Move to the next physical folio.
2078  * @folio: The folio we're currently operating on.
2079  *
2080  * If you have physically contiguous memory which may span more than
2081  * one folio (eg a &struct bio_vec), use this function to move from one
2082  * folio to the next.  Do not use it if the memory is only virtually
2083  * contiguous as the folios are almost certainly not adjacent to each
2084  * other.  This is the folio equivalent to writing ``page++``.
2085  *
2086  * Context: We assume that the folios are refcounted and/or locked at a
2087  * higher level and do not adjust the reference counts.
2088  * Return: The next struct folio.
2089  */
2090 static inline struct folio *folio_next(struct folio *folio)
2091 {
2092 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2093 }
2094 
2095 /**
2096  * folio_shift - The size of the memory described by this folio.
2097  * @folio: The folio.
2098  *
2099  * A folio represents a number of bytes which is a power-of-two in size.
2100  * This function tells you which power-of-two the folio is.  See also
2101  * folio_size() and folio_order().
2102  *
2103  * Context: The caller should have a reference on the folio to prevent
2104  * it from being split.  It is not necessary for the folio to be locked.
2105  * Return: The base-2 logarithm of the size of this folio.
2106  */
2107 static inline unsigned int folio_shift(const struct folio *folio)
2108 {
2109 	return PAGE_SHIFT + folio_order(folio);
2110 }
2111 
2112 /**
2113  * folio_size - The number of bytes in a folio.
2114  * @folio: The folio.
2115  *
2116  * Context: The caller should have a reference on the folio to prevent
2117  * it from being split.  It is not necessary for the folio to be locked.
2118  * Return: The number of bytes in this folio.
2119  */
2120 static inline size_t folio_size(const struct folio *folio)
2121 {
2122 	return PAGE_SIZE << folio_order(folio);
2123 }
2124 
2125 /**
2126  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2127  *				tables of more than one MM
2128  * @folio: The folio.
2129  *
2130  * This function checks if the folio is currently mapped into more than one
2131  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2132  * ("mapped exclusively").
2133  *
2134  * For KSM folios, this function also returns "mapped shared" when a folio is
2135  * mapped multiple times into the same MM, because the individual page mappings
2136  * are independent.
2137  *
2138  * As precise information is not easily available for all folios, this function
2139  * estimates the number of MMs ("sharers") that are currently mapping a folio
2140  * using the number of times the first page of the folio is currently mapped
2141  * into page tables.
2142  *
2143  * For small anonymous folios and anonymous hugetlb folios, the return
2144  * value will be exactly correct: non-KSM folios can only be mapped at most once
2145  * into an MM, and they cannot be partially mapped. KSM folios are
2146  * considered shared even if mapped multiple times into the same MM.
2147  *
2148  * For other folios, the result can be fuzzy:
2149  *    #. For partially-mappable large folios (THP), the return value can wrongly
2150  *       indicate "mapped exclusively" (false negative) when the folio is
2151  *       only partially mapped into at least one MM.
2152  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2153  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2154  *       cover the same file range.
2155  *
2156  * Further, this function only considers current page table mappings that
2157  * are tracked using the folio mapcount(s).
2158  *
2159  * This function does not consider:
2160  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2161  *       pagecache, temporary unmapping for migration).
2162  *    #. If the folio is mapped differently (VM_PFNMAP).
2163  *    #. If hugetlb page table sharing applies. Callers might want to check
2164  *       hugetlb_pmd_shared().
2165  *
2166  * Return: Whether the folio is estimated to be mapped into more than one MM.
2167  */
2168 static inline bool folio_likely_mapped_shared(struct folio *folio)
2169 {
2170 	int mapcount = folio_mapcount(folio);
2171 
2172 	/* Only partially-mappable folios require more care. */
2173 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2174 		return mapcount > 1;
2175 
2176 	/* A single mapping implies "mapped exclusively". */
2177 	if (mapcount <= 1)
2178 		return false;
2179 
2180 	/* If any page is mapped more than once we treat it "mapped shared". */
2181 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2182 		return true;
2183 
2184 	/* Let's guess based on the first subpage. */
2185 	return atomic_read(&folio->_mapcount) > 0;
2186 }
2187 
2188 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2189 static inline int arch_make_folio_accessible(struct folio *folio)
2190 {
2191 	return 0;
2192 }
2193 #endif
2194 
2195 /*
2196  * Some inline functions in vmstat.h depend on page_zone()
2197  */
2198 #include <linux/vmstat.h>
2199 
2200 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2201 #define HASHED_PAGE_VIRTUAL
2202 #endif
2203 
2204 #if defined(WANT_PAGE_VIRTUAL)
2205 static inline void *page_address(const struct page *page)
2206 {
2207 	return page->virtual;
2208 }
2209 static inline void set_page_address(struct page *page, void *address)
2210 {
2211 	page->virtual = address;
2212 }
2213 #define page_address_init()  do { } while(0)
2214 #endif
2215 
2216 #if defined(HASHED_PAGE_VIRTUAL)
2217 void *page_address(const struct page *page);
2218 void set_page_address(struct page *page, void *virtual);
2219 void page_address_init(void);
2220 #endif
2221 
2222 static __always_inline void *lowmem_page_address(const struct page *page)
2223 {
2224 	return page_to_virt(page);
2225 }
2226 
2227 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2228 #define page_address(page) lowmem_page_address(page)
2229 #define set_page_address(page, address)  do { } while(0)
2230 #define page_address_init()  do { } while(0)
2231 #endif
2232 
2233 static inline void *folio_address(const struct folio *folio)
2234 {
2235 	return page_address(&folio->page);
2236 }
2237 
2238 /*
2239  * Return true only if the page has been allocated with
2240  * ALLOC_NO_WATERMARKS and the low watermark was not
2241  * met implying that the system is under some pressure.
2242  */
2243 static inline bool page_is_pfmemalloc(const struct page *page)
2244 {
2245 	/*
2246 	 * lru.next has bit 1 set if the page is allocated from the
2247 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2248 	 * they do not need to preserve that information.
2249 	 */
2250 	return (uintptr_t)page->lru.next & BIT(1);
2251 }
2252 
2253 /*
2254  * Return true only if the folio has been allocated with
2255  * ALLOC_NO_WATERMARKS and the low watermark was not
2256  * met implying that the system is under some pressure.
2257  */
2258 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2259 {
2260 	/*
2261 	 * lru.next has bit 1 set if the page is allocated from the
2262 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2263 	 * they do not need to preserve that information.
2264 	 */
2265 	return (uintptr_t)folio->lru.next & BIT(1);
2266 }
2267 
2268 /*
2269  * Only to be called by the page allocator on a freshly allocated
2270  * page.
2271  */
2272 static inline void set_page_pfmemalloc(struct page *page)
2273 {
2274 	page->lru.next = (void *)BIT(1);
2275 }
2276 
2277 static inline void clear_page_pfmemalloc(struct page *page)
2278 {
2279 	page->lru.next = NULL;
2280 }
2281 
2282 /*
2283  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2284  */
2285 extern void pagefault_out_of_memory(void);
2286 
2287 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2288 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2289 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2290 
2291 /*
2292  * Parameter block passed down to zap_pte_range in exceptional cases.
2293  */
2294 struct zap_details {
2295 	struct folio *single_folio;	/* Locked folio to be unmapped */
2296 	bool even_cows;			/* Zap COWed private pages too? */
2297 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2298 };
2299 
2300 /*
2301  * Whether to drop the pte markers, for example, the uffd-wp information for
2302  * file-backed memory.  This should only be specified when we will completely
2303  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2304  * default, the flag is not set.
2305  */
2306 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2307 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2308 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2309 
2310 #ifdef CONFIG_SCHED_MM_CID
2311 void sched_mm_cid_before_execve(struct task_struct *t);
2312 void sched_mm_cid_after_execve(struct task_struct *t);
2313 void sched_mm_cid_fork(struct task_struct *t);
2314 void sched_mm_cid_exit_signals(struct task_struct *t);
2315 static inline int task_mm_cid(struct task_struct *t)
2316 {
2317 	return t->mm_cid;
2318 }
2319 #else
2320 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2321 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2322 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2323 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2324 static inline int task_mm_cid(struct task_struct *t)
2325 {
2326 	/*
2327 	 * Use the processor id as a fall-back when the mm cid feature is
2328 	 * disabled. This provides functional per-cpu data structure accesses
2329 	 * in user-space, althrough it won't provide the memory usage benefits.
2330 	 */
2331 	return raw_smp_processor_id();
2332 }
2333 #endif
2334 
2335 #ifdef CONFIG_MMU
2336 extern bool can_do_mlock(void);
2337 #else
2338 static inline bool can_do_mlock(void) { return false; }
2339 #endif
2340 extern int user_shm_lock(size_t, struct ucounts *);
2341 extern void user_shm_unlock(size_t, struct ucounts *);
2342 
2343 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2344 			     pte_t pte);
2345 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2346 			     pte_t pte);
2347 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2348 				  unsigned long addr, pmd_t pmd);
2349 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2350 				pmd_t pmd);
2351 
2352 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2353 		  unsigned long size);
2354 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2355 			   unsigned long size, struct zap_details *details);
2356 static inline void zap_vma_pages(struct vm_area_struct *vma)
2357 {
2358 	zap_page_range_single(vma, vma->vm_start,
2359 			      vma->vm_end - vma->vm_start, NULL);
2360 }
2361 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2362 		struct vm_area_struct *start_vma, unsigned long start,
2363 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2364 
2365 struct mmu_notifier_range;
2366 
2367 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2368 		unsigned long end, unsigned long floor, unsigned long ceiling);
2369 int
2370 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2371 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2372 	       pte_t **ptepp, spinlock_t **ptlp);
2373 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2374 			void *buf, int len, int write);
2375 
2376 struct follow_pfnmap_args {
2377 	/**
2378 	 * Inputs:
2379 	 * @vma: Pointer to @vm_area_struct struct
2380 	 * @address: the virtual address to walk
2381 	 */
2382 	struct vm_area_struct *vma;
2383 	unsigned long address;
2384 	/**
2385 	 * Internals:
2386 	 *
2387 	 * The caller shouldn't touch any of these.
2388 	 */
2389 	spinlock_t *lock;
2390 	pte_t *ptep;
2391 	/**
2392 	 * Outputs:
2393 	 *
2394 	 * @pfn: the PFN of the address
2395 	 * @pgprot: the pgprot_t of the mapping
2396 	 * @writable: whether the mapping is writable
2397 	 * @special: whether the mapping is a special mapping (real PFN maps)
2398 	 */
2399 	unsigned long pfn;
2400 	pgprot_t pgprot;
2401 	bool writable;
2402 	bool special;
2403 };
2404 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2405 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2406 
2407 extern void truncate_pagecache(struct inode *inode, loff_t new);
2408 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2409 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2410 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2411 int generic_error_remove_folio(struct address_space *mapping,
2412 		struct folio *folio);
2413 
2414 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2415 		unsigned long address, struct pt_regs *regs);
2416 
2417 #ifdef CONFIG_MMU
2418 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2419 				  unsigned long address, unsigned int flags,
2420 				  struct pt_regs *regs);
2421 extern int fixup_user_fault(struct mm_struct *mm,
2422 			    unsigned long address, unsigned int fault_flags,
2423 			    bool *unlocked);
2424 void unmap_mapping_pages(struct address_space *mapping,
2425 		pgoff_t start, pgoff_t nr, bool even_cows);
2426 void unmap_mapping_range(struct address_space *mapping,
2427 		loff_t const holebegin, loff_t const holelen, int even_cows);
2428 #else
2429 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2430 					 unsigned long address, unsigned int flags,
2431 					 struct pt_regs *regs)
2432 {
2433 	/* should never happen if there's no MMU */
2434 	BUG();
2435 	return VM_FAULT_SIGBUS;
2436 }
2437 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2438 		unsigned int fault_flags, bool *unlocked)
2439 {
2440 	/* should never happen if there's no MMU */
2441 	BUG();
2442 	return -EFAULT;
2443 }
2444 static inline void unmap_mapping_pages(struct address_space *mapping,
2445 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2446 static inline void unmap_mapping_range(struct address_space *mapping,
2447 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2448 #endif
2449 
2450 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2451 		loff_t const holebegin, loff_t const holelen)
2452 {
2453 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2454 }
2455 
2456 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2457 						unsigned long addr);
2458 
2459 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2460 		void *buf, int len, unsigned int gup_flags);
2461 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2462 		void *buf, int len, unsigned int gup_flags);
2463 
2464 long get_user_pages_remote(struct mm_struct *mm,
2465 			   unsigned long start, unsigned long nr_pages,
2466 			   unsigned int gup_flags, struct page **pages,
2467 			   int *locked);
2468 long pin_user_pages_remote(struct mm_struct *mm,
2469 			   unsigned long start, unsigned long nr_pages,
2470 			   unsigned int gup_flags, struct page **pages,
2471 			   int *locked);
2472 
2473 /*
2474  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2475  */
2476 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2477 						    unsigned long addr,
2478 						    int gup_flags,
2479 						    struct vm_area_struct **vmap)
2480 {
2481 	struct page *page;
2482 	struct vm_area_struct *vma;
2483 	int got;
2484 
2485 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2486 		return ERR_PTR(-EINVAL);
2487 
2488 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2489 
2490 	if (got < 0)
2491 		return ERR_PTR(got);
2492 
2493 	vma = vma_lookup(mm, addr);
2494 	if (WARN_ON_ONCE(!vma)) {
2495 		put_page(page);
2496 		return ERR_PTR(-EINVAL);
2497 	}
2498 
2499 	*vmap = vma;
2500 	return page;
2501 }
2502 
2503 long get_user_pages(unsigned long start, unsigned long nr_pages,
2504 		    unsigned int gup_flags, struct page **pages);
2505 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2506 		    unsigned int gup_flags, struct page **pages);
2507 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2508 		    struct page **pages, unsigned int gup_flags);
2509 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2510 		    struct page **pages, unsigned int gup_flags);
2511 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2512 		      struct folio **folios, unsigned int max_folios,
2513 		      pgoff_t *offset);
2514 
2515 int get_user_pages_fast(unsigned long start, int nr_pages,
2516 			unsigned int gup_flags, struct page **pages);
2517 int pin_user_pages_fast(unsigned long start, int nr_pages,
2518 			unsigned int gup_flags, struct page **pages);
2519 void folio_add_pin(struct folio *folio);
2520 
2521 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2522 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2523 			struct task_struct *task, bool bypass_rlim);
2524 
2525 struct kvec;
2526 struct page *get_dump_page(unsigned long addr);
2527 
2528 bool folio_mark_dirty(struct folio *folio);
2529 bool set_page_dirty(struct page *page);
2530 int set_page_dirty_lock(struct page *page);
2531 
2532 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2533 
2534 /*
2535  * Flags used by change_protection().  For now we make it a bitmap so
2536  * that we can pass in multiple flags just like parameters.  However
2537  * for now all the callers are only use one of the flags at the same
2538  * time.
2539  */
2540 /*
2541  * Whether we should manually check if we can map individual PTEs writable,
2542  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2543  * PTEs automatically in a writable mapping.
2544  */
2545 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2546 /* Whether this protection change is for NUMA hints */
2547 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2548 /* Whether this change is for write protecting */
2549 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2550 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2551 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2552 					    MM_CP_UFFD_WP_RESOLVE)
2553 
2554 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2555 			     pte_t pte);
2556 extern long change_protection(struct mmu_gather *tlb,
2557 			      struct vm_area_struct *vma, unsigned long start,
2558 			      unsigned long end, unsigned long cp_flags);
2559 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2560 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2561 	  unsigned long start, unsigned long end, unsigned long newflags);
2562 
2563 /*
2564  * doesn't attempt to fault and will return short.
2565  */
2566 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2567 			     unsigned int gup_flags, struct page **pages);
2568 
2569 static inline bool get_user_page_fast_only(unsigned long addr,
2570 			unsigned int gup_flags, struct page **pagep)
2571 {
2572 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2573 }
2574 /*
2575  * per-process(per-mm_struct) statistics.
2576  */
2577 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2578 {
2579 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2580 }
2581 
2582 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2583 
2584 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2585 {
2586 	percpu_counter_add(&mm->rss_stat[member], value);
2587 
2588 	mm_trace_rss_stat(mm, member);
2589 }
2590 
2591 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2592 {
2593 	percpu_counter_inc(&mm->rss_stat[member]);
2594 
2595 	mm_trace_rss_stat(mm, member);
2596 }
2597 
2598 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2599 {
2600 	percpu_counter_dec(&mm->rss_stat[member]);
2601 
2602 	mm_trace_rss_stat(mm, member);
2603 }
2604 
2605 /* Optimized variant when folio is already known not to be anon */
2606 static inline int mm_counter_file(struct folio *folio)
2607 {
2608 	if (folio_test_swapbacked(folio))
2609 		return MM_SHMEMPAGES;
2610 	return MM_FILEPAGES;
2611 }
2612 
2613 static inline int mm_counter(struct folio *folio)
2614 {
2615 	if (folio_test_anon(folio))
2616 		return MM_ANONPAGES;
2617 	return mm_counter_file(folio);
2618 }
2619 
2620 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2621 {
2622 	return get_mm_counter(mm, MM_FILEPAGES) +
2623 		get_mm_counter(mm, MM_ANONPAGES) +
2624 		get_mm_counter(mm, MM_SHMEMPAGES);
2625 }
2626 
2627 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2628 {
2629 	return max(mm->hiwater_rss, get_mm_rss(mm));
2630 }
2631 
2632 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2633 {
2634 	return max(mm->hiwater_vm, mm->total_vm);
2635 }
2636 
2637 static inline void update_hiwater_rss(struct mm_struct *mm)
2638 {
2639 	unsigned long _rss = get_mm_rss(mm);
2640 
2641 	if ((mm)->hiwater_rss < _rss)
2642 		(mm)->hiwater_rss = _rss;
2643 }
2644 
2645 static inline void update_hiwater_vm(struct mm_struct *mm)
2646 {
2647 	if (mm->hiwater_vm < mm->total_vm)
2648 		mm->hiwater_vm = mm->total_vm;
2649 }
2650 
2651 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2652 {
2653 	mm->hiwater_rss = get_mm_rss(mm);
2654 }
2655 
2656 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2657 					 struct mm_struct *mm)
2658 {
2659 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2660 
2661 	if (*maxrss < hiwater_rss)
2662 		*maxrss = hiwater_rss;
2663 }
2664 
2665 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2666 static inline int pte_special(pte_t pte)
2667 {
2668 	return 0;
2669 }
2670 
2671 static inline pte_t pte_mkspecial(pte_t pte)
2672 {
2673 	return pte;
2674 }
2675 #endif
2676 
2677 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2678 static inline bool pmd_special(pmd_t pmd)
2679 {
2680 	return false;
2681 }
2682 
2683 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2684 {
2685 	return pmd;
2686 }
2687 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2688 
2689 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2690 static inline bool pud_special(pud_t pud)
2691 {
2692 	return false;
2693 }
2694 
2695 static inline pud_t pud_mkspecial(pud_t pud)
2696 {
2697 	return pud;
2698 }
2699 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2700 
2701 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2702 static inline int pte_devmap(pte_t pte)
2703 {
2704 	return 0;
2705 }
2706 #endif
2707 
2708 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2709 			       spinlock_t **ptl);
2710 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2711 				    spinlock_t **ptl)
2712 {
2713 	pte_t *ptep;
2714 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2715 	return ptep;
2716 }
2717 
2718 #ifdef __PAGETABLE_P4D_FOLDED
2719 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2720 						unsigned long address)
2721 {
2722 	return 0;
2723 }
2724 #else
2725 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2726 #endif
2727 
2728 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2729 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2730 						unsigned long address)
2731 {
2732 	return 0;
2733 }
2734 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2735 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2736 
2737 #else
2738 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2739 
2740 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2741 {
2742 	if (mm_pud_folded(mm))
2743 		return;
2744 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2745 }
2746 
2747 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2748 {
2749 	if (mm_pud_folded(mm))
2750 		return;
2751 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2752 }
2753 #endif
2754 
2755 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2756 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2757 						unsigned long address)
2758 {
2759 	return 0;
2760 }
2761 
2762 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2763 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2764 
2765 #else
2766 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2767 
2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2769 {
2770 	if (mm_pmd_folded(mm))
2771 		return;
2772 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2773 }
2774 
2775 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2776 {
2777 	if (mm_pmd_folded(mm))
2778 		return;
2779 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2780 }
2781 #endif
2782 
2783 #ifdef CONFIG_MMU
2784 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2785 {
2786 	atomic_long_set(&mm->pgtables_bytes, 0);
2787 }
2788 
2789 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2790 {
2791 	return atomic_long_read(&mm->pgtables_bytes);
2792 }
2793 
2794 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2795 {
2796 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2797 }
2798 
2799 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2800 {
2801 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2802 }
2803 #else
2804 
2805 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2806 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2807 {
2808 	return 0;
2809 }
2810 
2811 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2812 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2813 #endif
2814 
2815 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2816 int __pte_alloc_kernel(pmd_t *pmd);
2817 
2818 #if defined(CONFIG_MMU)
2819 
2820 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2821 		unsigned long address)
2822 {
2823 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2824 		NULL : p4d_offset(pgd, address);
2825 }
2826 
2827 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2828 		unsigned long address)
2829 {
2830 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2831 		NULL : pud_offset(p4d, address);
2832 }
2833 
2834 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2835 {
2836 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2837 		NULL: pmd_offset(pud, address);
2838 }
2839 #endif /* CONFIG_MMU */
2840 
2841 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2842 {
2843 	return page_ptdesc(virt_to_page(x));
2844 }
2845 
2846 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2847 {
2848 	return page_to_virt(ptdesc_page(pt));
2849 }
2850 
2851 static inline void *ptdesc_address(const struct ptdesc *pt)
2852 {
2853 	return folio_address(ptdesc_folio(pt));
2854 }
2855 
2856 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2857 {
2858 	return folio_test_reserved(ptdesc_folio(pt));
2859 }
2860 
2861 /**
2862  * pagetable_alloc - Allocate pagetables
2863  * @gfp:    GFP flags
2864  * @order:  desired pagetable order
2865  *
2866  * pagetable_alloc allocates memory for page tables as well as a page table
2867  * descriptor to describe that memory.
2868  *
2869  * Return: The ptdesc describing the allocated page tables.
2870  */
2871 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2872 {
2873 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2874 
2875 	return page_ptdesc(page);
2876 }
2877 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2878 
2879 /**
2880  * pagetable_free - Free pagetables
2881  * @pt:	The page table descriptor
2882  *
2883  * pagetable_free frees the memory of all page tables described by a page
2884  * table descriptor and the memory for the descriptor itself.
2885  */
2886 static inline void pagetable_free(struct ptdesc *pt)
2887 {
2888 	struct page *page = ptdesc_page(pt);
2889 
2890 	__free_pages(page, compound_order(page));
2891 }
2892 
2893 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
2894 #if ALLOC_SPLIT_PTLOCKS
2895 void __init ptlock_cache_init(void);
2896 bool ptlock_alloc(struct ptdesc *ptdesc);
2897 void ptlock_free(struct ptdesc *ptdesc);
2898 
2899 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2900 {
2901 	return ptdesc->ptl;
2902 }
2903 #else /* ALLOC_SPLIT_PTLOCKS */
2904 static inline void ptlock_cache_init(void)
2905 {
2906 }
2907 
2908 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2909 {
2910 	return true;
2911 }
2912 
2913 static inline void ptlock_free(struct ptdesc *ptdesc)
2914 {
2915 }
2916 
2917 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2918 {
2919 	return &ptdesc->ptl;
2920 }
2921 #endif /* ALLOC_SPLIT_PTLOCKS */
2922 
2923 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2924 {
2925 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2926 }
2927 
2928 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2929 {
2930 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
2931 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
2932 	return ptlock_ptr(virt_to_ptdesc(pte));
2933 }
2934 
2935 static inline bool ptlock_init(struct ptdesc *ptdesc)
2936 {
2937 	/*
2938 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2939 	 * with 0. Make sure nobody took it in use in between.
2940 	 *
2941 	 * It can happen if arch try to use slab for page table allocation:
2942 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2943 	 */
2944 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2945 	if (!ptlock_alloc(ptdesc))
2946 		return false;
2947 	spin_lock_init(ptlock_ptr(ptdesc));
2948 	return true;
2949 }
2950 
2951 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2952 /*
2953  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2954  */
2955 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2956 {
2957 	return &mm->page_table_lock;
2958 }
2959 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
2960 {
2961 	return &mm->page_table_lock;
2962 }
2963 static inline void ptlock_cache_init(void) {}
2964 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2965 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2966 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
2967 
2968 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2969 {
2970 	struct folio *folio = ptdesc_folio(ptdesc);
2971 
2972 	if (!ptlock_init(ptdesc))
2973 		return false;
2974 	__folio_set_pgtable(folio);
2975 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2976 	return true;
2977 }
2978 
2979 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2980 {
2981 	struct folio *folio = ptdesc_folio(ptdesc);
2982 
2983 	ptlock_free(ptdesc);
2984 	__folio_clear_pgtable(folio);
2985 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2986 }
2987 
2988 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2989 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2990 {
2991 	return __pte_offset_map(pmd, addr, NULL);
2992 }
2993 
2994 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2995 			unsigned long addr, spinlock_t **ptlp);
2996 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2997 			unsigned long addr, spinlock_t **ptlp)
2998 {
2999 	pte_t *pte;
3000 
3001 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3002 	return pte;
3003 }
3004 
3005 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3006 			unsigned long addr, spinlock_t **ptlp);
3007 
3008 #define pte_unmap_unlock(pte, ptl)	do {		\
3009 	spin_unlock(ptl);				\
3010 	pte_unmap(pte);					\
3011 } while (0)
3012 
3013 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3014 
3015 #define pte_alloc_map(mm, pmd, address)			\
3016 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3017 
3018 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3019 	(pte_alloc(mm, pmd) ?			\
3020 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3021 
3022 #define pte_alloc_kernel(pmd, address)			\
3023 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3024 		NULL: pte_offset_kernel(pmd, address))
3025 
3026 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3027 
3028 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3029 {
3030 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3031 	return virt_to_page((void *)((unsigned long) pmd & mask));
3032 }
3033 
3034 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3035 {
3036 	return page_ptdesc(pmd_pgtable_page(pmd));
3037 }
3038 
3039 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3040 {
3041 	return ptlock_ptr(pmd_ptdesc(pmd));
3042 }
3043 
3044 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3045 {
3046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3047 	ptdesc->pmd_huge_pte = NULL;
3048 #endif
3049 	return ptlock_init(ptdesc);
3050 }
3051 
3052 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3053 {
3054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3055 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3056 #endif
3057 	ptlock_free(ptdesc);
3058 }
3059 
3060 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3061 
3062 #else
3063 
3064 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3065 {
3066 	return &mm->page_table_lock;
3067 }
3068 
3069 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3070 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3071 
3072 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3073 
3074 #endif
3075 
3076 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3077 {
3078 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3079 	spin_lock(ptl);
3080 	return ptl;
3081 }
3082 
3083 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3084 {
3085 	struct folio *folio = ptdesc_folio(ptdesc);
3086 
3087 	if (!pmd_ptlock_init(ptdesc))
3088 		return false;
3089 	__folio_set_pgtable(folio);
3090 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3091 	return true;
3092 }
3093 
3094 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3095 {
3096 	struct folio *folio = ptdesc_folio(ptdesc);
3097 
3098 	pmd_ptlock_free(ptdesc);
3099 	__folio_clear_pgtable(folio);
3100 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3101 }
3102 
3103 /*
3104  * No scalability reason to split PUD locks yet, but follow the same pattern
3105  * as the PMD locks to make it easier if we decide to.  The VM should not be
3106  * considered ready to switch to split PUD locks yet; there may be places
3107  * which need to be converted from page_table_lock.
3108  */
3109 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3110 {
3111 	return &mm->page_table_lock;
3112 }
3113 
3114 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3115 {
3116 	spinlock_t *ptl = pud_lockptr(mm, pud);
3117 
3118 	spin_lock(ptl);
3119 	return ptl;
3120 }
3121 
3122 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3123 {
3124 	struct folio *folio = ptdesc_folio(ptdesc);
3125 
3126 	__folio_set_pgtable(folio);
3127 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3128 }
3129 
3130 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3131 {
3132 	struct folio *folio = ptdesc_folio(ptdesc);
3133 
3134 	__folio_clear_pgtable(folio);
3135 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3136 }
3137 
3138 extern void __init pagecache_init(void);
3139 extern void free_initmem(void);
3140 
3141 /*
3142  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3143  * into the buddy system. The freed pages will be poisoned with pattern
3144  * "poison" if it's within range [0, UCHAR_MAX].
3145  * Return pages freed into the buddy system.
3146  */
3147 extern unsigned long free_reserved_area(void *start, void *end,
3148 					int poison, const char *s);
3149 
3150 extern void adjust_managed_page_count(struct page *page, long count);
3151 
3152 extern void reserve_bootmem_region(phys_addr_t start,
3153 				   phys_addr_t end, int nid);
3154 
3155 /* Free the reserved page into the buddy system, so it gets managed. */
3156 void free_reserved_page(struct page *page);
3157 #define free_highmem_page(page) free_reserved_page(page)
3158 
3159 static inline void mark_page_reserved(struct page *page)
3160 {
3161 	SetPageReserved(page);
3162 	adjust_managed_page_count(page, -1);
3163 }
3164 
3165 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3166 {
3167 	free_reserved_page(ptdesc_page(pt));
3168 }
3169 
3170 /*
3171  * Default method to free all the __init memory into the buddy system.
3172  * The freed pages will be poisoned with pattern "poison" if it's within
3173  * range [0, UCHAR_MAX].
3174  * Return pages freed into the buddy system.
3175  */
3176 static inline unsigned long free_initmem_default(int poison)
3177 {
3178 	extern char __init_begin[], __init_end[];
3179 
3180 	return free_reserved_area(&__init_begin, &__init_end,
3181 				  poison, "unused kernel image (initmem)");
3182 }
3183 
3184 static inline unsigned long get_num_physpages(void)
3185 {
3186 	int nid;
3187 	unsigned long phys_pages = 0;
3188 
3189 	for_each_online_node(nid)
3190 		phys_pages += node_present_pages(nid);
3191 
3192 	return phys_pages;
3193 }
3194 
3195 /*
3196  * Using memblock node mappings, an architecture may initialise its
3197  * zones, allocate the backing mem_map and account for memory holes in an
3198  * architecture independent manner.
3199  *
3200  * An architecture is expected to register range of page frames backed by
3201  * physical memory with memblock_add[_node]() before calling
3202  * free_area_init() passing in the PFN each zone ends at. At a basic
3203  * usage, an architecture is expected to do something like
3204  *
3205  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3206  * 							 max_highmem_pfn};
3207  * for_each_valid_physical_page_range()
3208  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3209  * free_area_init(max_zone_pfns);
3210  */
3211 void free_area_init(unsigned long *max_zone_pfn);
3212 unsigned long node_map_pfn_alignment(void);
3213 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3214 						unsigned long end_pfn);
3215 extern void get_pfn_range_for_nid(unsigned int nid,
3216 			unsigned long *start_pfn, unsigned long *end_pfn);
3217 
3218 #ifndef CONFIG_NUMA
3219 static inline int early_pfn_to_nid(unsigned long pfn)
3220 {
3221 	return 0;
3222 }
3223 #else
3224 /* please see mm/page_alloc.c */
3225 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3226 #endif
3227 
3228 extern void mem_init(void);
3229 extern void __init mmap_init(void);
3230 
3231 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3232 static inline void show_mem(void)
3233 {
3234 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3235 }
3236 extern long si_mem_available(void);
3237 extern void si_meminfo(struct sysinfo * val);
3238 extern void si_meminfo_node(struct sysinfo *val, int nid);
3239 
3240 extern __printf(3, 4)
3241 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3242 
3243 extern void setup_per_cpu_pageset(void);
3244 
3245 /* nommu.c */
3246 extern atomic_long_t mmap_pages_allocated;
3247 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3248 
3249 /* interval_tree.c */
3250 void vma_interval_tree_insert(struct vm_area_struct *node,
3251 			      struct rb_root_cached *root);
3252 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3253 				    struct vm_area_struct *prev,
3254 				    struct rb_root_cached *root);
3255 void vma_interval_tree_remove(struct vm_area_struct *node,
3256 			      struct rb_root_cached *root);
3257 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3258 				unsigned long start, unsigned long last);
3259 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3260 				unsigned long start, unsigned long last);
3261 
3262 #define vma_interval_tree_foreach(vma, root, start, last)		\
3263 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3264 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3265 
3266 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3267 				   struct rb_root_cached *root);
3268 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3269 				   struct rb_root_cached *root);
3270 struct anon_vma_chain *
3271 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3272 				  unsigned long start, unsigned long last);
3273 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3274 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3275 #ifdef CONFIG_DEBUG_VM_RB
3276 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3277 #endif
3278 
3279 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3280 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3281 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3282 
3283 /* mmap.c */
3284 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3285 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3286 extern void exit_mmap(struct mm_struct *);
3287 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3288 
3289 static inline int check_data_rlimit(unsigned long rlim,
3290 				    unsigned long new,
3291 				    unsigned long start,
3292 				    unsigned long end_data,
3293 				    unsigned long start_data)
3294 {
3295 	if (rlim < RLIM_INFINITY) {
3296 		if (((new - start) + (end_data - start_data)) > rlim)
3297 			return -ENOSPC;
3298 	}
3299 
3300 	return 0;
3301 }
3302 
3303 extern int mm_take_all_locks(struct mm_struct *mm);
3304 extern void mm_drop_all_locks(struct mm_struct *mm);
3305 
3306 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3307 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3308 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3309 extern struct file *get_task_exe_file(struct task_struct *task);
3310 
3311 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3312 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3313 
3314 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3315 				   const struct vm_special_mapping *sm);
3316 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3317 				   unsigned long addr, unsigned long len,
3318 				   unsigned long flags,
3319 				   const struct vm_special_mapping *spec);
3320 
3321 unsigned long randomize_stack_top(unsigned long stack_top);
3322 unsigned long randomize_page(unsigned long start, unsigned long range);
3323 
3324 unsigned long
3325 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3326 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3327 
3328 static inline unsigned long
3329 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3330 		  unsigned long pgoff, unsigned long flags)
3331 {
3332 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3333 }
3334 
3335 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3336 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3337 	struct list_head *uf);
3338 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3339 	unsigned long len, unsigned long prot, unsigned long flags,
3340 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3341 	struct list_head *uf);
3342 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3343 			 unsigned long start, size_t len, struct list_head *uf,
3344 			 bool unlock);
3345 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3346 		    struct mm_struct *mm, unsigned long start,
3347 		    unsigned long end, struct list_head *uf, bool unlock);
3348 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3349 		     struct list_head *uf);
3350 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3351 
3352 #ifdef CONFIG_MMU
3353 extern int __mm_populate(unsigned long addr, unsigned long len,
3354 			 int ignore_errors);
3355 static inline void mm_populate(unsigned long addr, unsigned long len)
3356 {
3357 	/* Ignore errors */
3358 	(void) __mm_populate(addr, len, 1);
3359 }
3360 #else
3361 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3362 #endif
3363 
3364 /* This takes the mm semaphore itself */
3365 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3366 extern int vm_munmap(unsigned long, size_t);
3367 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3368         unsigned long, unsigned long,
3369         unsigned long, unsigned long);
3370 
3371 struct vm_unmapped_area_info {
3372 #define VM_UNMAPPED_AREA_TOPDOWN 1
3373 	unsigned long flags;
3374 	unsigned long length;
3375 	unsigned long low_limit;
3376 	unsigned long high_limit;
3377 	unsigned long align_mask;
3378 	unsigned long align_offset;
3379 	unsigned long start_gap;
3380 };
3381 
3382 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3383 
3384 /* truncate.c */
3385 extern void truncate_inode_pages(struct address_space *, loff_t);
3386 extern void truncate_inode_pages_range(struct address_space *,
3387 				       loff_t lstart, loff_t lend);
3388 extern void truncate_inode_pages_final(struct address_space *);
3389 
3390 /* generic vm_area_ops exported for stackable file systems */
3391 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3392 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3393 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3394 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3395 
3396 extern unsigned long stack_guard_gap;
3397 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3398 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3399 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3400 
3401 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3402 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3403 
3404 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3405 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3406 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3407 					     struct vm_area_struct **pprev);
3408 
3409 /*
3410  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3411  * NULL if none.  Assume start_addr < end_addr.
3412  */
3413 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3414 			unsigned long start_addr, unsigned long end_addr);
3415 
3416 /**
3417  * vma_lookup() - Find a VMA at a specific address
3418  * @mm: The process address space.
3419  * @addr: The user address.
3420  *
3421  * Return: The vm_area_struct at the given address, %NULL otherwise.
3422  */
3423 static inline
3424 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3425 {
3426 	return mtree_load(&mm->mm_mt, addr);
3427 }
3428 
3429 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3430 {
3431 	if (vma->vm_flags & VM_GROWSDOWN)
3432 		return stack_guard_gap;
3433 
3434 	/* See reasoning around the VM_SHADOW_STACK definition */
3435 	if (vma->vm_flags & VM_SHADOW_STACK)
3436 		return PAGE_SIZE;
3437 
3438 	return 0;
3439 }
3440 
3441 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3442 {
3443 	unsigned long gap = stack_guard_start_gap(vma);
3444 	unsigned long vm_start = vma->vm_start;
3445 
3446 	vm_start -= gap;
3447 	if (vm_start > vma->vm_start)
3448 		vm_start = 0;
3449 	return vm_start;
3450 }
3451 
3452 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3453 {
3454 	unsigned long vm_end = vma->vm_end;
3455 
3456 	if (vma->vm_flags & VM_GROWSUP) {
3457 		vm_end += stack_guard_gap;
3458 		if (vm_end < vma->vm_end)
3459 			vm_end = -PAGE_SIZE;
3460 	}
3461 	return vm_end;
3462 }
3463 
3464 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3465 {
3466 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3467 }
3468 
3469 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3470 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3471 				unsigned long vm_start, unsigned long vm_end)
3472 {
3473 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3474 
3475 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3476 		vma = NULL;
3477 
3478 	return vma;
3479 }
3480 
3481 static inline bool range_in_vma(struct vm_area_struct *vma,
3482 				unsigned long start, unsigned long end)
3483 {
3484 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3485 }
3486 
3487 #ifdef CONFIG_MMU
3488 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3489 void vma_set_page_prot(struct vm_area_struct *vma);
3490 #else
3491 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3492 {
3493 	return __pgprot(0);
3494 }
3495 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3496 {
3497 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3498 }
3499 #endif
3500 
3501 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3502 
3503 #ifdef CONFIG_NUMA_BALANCING
3504 unsigned long change_prot_numa(struct vm_area_struct *vma,
3505 			unsigned long start, unsigned long end);
3506 #endif
3507 
3508 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3509 		unsigned long addr);
3510 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3511 			unsigned long pfn, unsigned long size, pgprot_t);
3512 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3513 		unsigned long pfn, unsigned long size, pgprot_t prot);
3514 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3515 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3516 			struct page **pages, unsigned long *num);
3517 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3518 				unsigned long num);
3519 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3520 				unsigned long num);
3521 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3522 			unsigned long pfn);
3523 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3524 			unsigned long pfn, pgprot_t pgprot);
3525 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3526 			pfn_t pfn);
3527 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3528 		unsigned long addr, pfn_t pfn);
3529 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3530 
3531 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3532 				unsigned long addr, struct page *page)
3533 {
3534 	int err = vm_insert_page(vma, addr, page);
3535 
3536 	if (err == -ENOMEM)
3537 		return VM_FAULT_OOM;
3538 	if (err < 0 && err != -EBUSY)
3539 		return VM_FAULT_SIGBUS;
3540 
3541 	return VM_FAULT_NOPAGE;
3542 }
3543 
3544 #ifndef io_remap_pfn_range
3545 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3546 				     unsigned long addr, unsigned long pfn,
3547 				     unsigned long size, pgprot_t prot)
3548 {
3549 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3550 }
3551 #endif
3552 
3553 static inline vm_fault_t vmf_error(int err)
3554 {
3555 	if (err == -ENOMEM)
3556 		return VM_FAULT_OOM;
3557 	else if (err == -EHWPOISON)
3558 		return VM_FAULT_HWPOISON;
3559 	return VM_FAULT_SIGBUS;
3560 }
3561 
3562 /*
3563  * Convert errno to return value for ->page_mkwrite() calls.
3564  *
3565  * This should eventually be merged with vmf_error() above, but will need a
3566  * careful audit of all vmf_error() callers.
3567  */
3568 static inline vm_fault_t vmf_fs_error(int err)
3569 {
3570 	if (err == 0)
3571 		return VM_FAULT_LOCKED;
3572 	if (err == -EFAULT || err == -EAGAIN)
3573 		return VM_FAULT_NOPAGE;
3574 	if (err == -ENOMEM)
3575 		return VM_FAULT_OOM;
3576 	/* -ENOSPC, -EDQUOT, -EIO ... */
3577 	return VM_FAULT_SIGBUS;
3578 }
3579 
3580 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3581 {
3582 	if (vm_fault & VM_FAULT_OOM)
3583 		return -ENOMEM;
3584 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3585 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3586 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3587 		return -EFAULT;
3588 	return 0;
3589 }
3590 
3591 /*
3592  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3593  * a (NUMA hinting) fault is required.
3594  */
3595 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3596 					   unsigned int flags)
3597 {
3598 	/*
3599 	 * If callers don't want to honor NUMA hinting faults, no need to
3600 	 * determine if we would actually have to trigger a NUMA hinting fault.
3601 	 */
3602 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3603 		return true;
3604 
3605 	/*
3606 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3607 	 *
3608 	 * Requiring a fault here even for inaccessible VMAs would mean that
3609 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3610 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3611 	 */
3612 	return !vma_is_accessible(vma);
3613 }
3614 
3615 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3616 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3617 			       unsigned long size, pte_fn_t fn, void *data);
3618 extern int apply_to_existing_page_range(struct mm_struct *mm,
3619 				   unsigned long address, unsigned long size,
3620 				   pte_fn_t fn, void *data);
3621 
3622 #ifdef CONFIG_PAGE_POISONING
3623 extern void __kernel_poison_pages(struct page *page, int numpages);
3624 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3625 extern bool _page_poisoning_enabled_early;
3626 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3627 static inline bool page_poisoning_enabled(void)
3628 {
3629 	return _page_poisoning_enabled_early;
3630 }
3631 /*
3632  * For use in fast paths after init_mem_debugging() has run, or when a
3633  * false negative result is not harmful when called too early.
3634  */
3635 static inline bool page_poisoning_enabled_static(void)
3636 {
3637 	return static_branch_unlikely(&_page_poisoning_enabled);
3638 }
3639 static inline void kernel_poison_pages(struct page *page, int numpages)
3640 {
3641 	if (page_poisoning_enabled_static())
3642 		__kernel_poison_pages(page, numpages);
3643 }
3644 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3645 {
3646 	if (page_poisoning_enabled_static())
3647 		__kernel_unpoison_pages(page, numpages);
3648 }
3649 #else
3650 static inline bool page_poisoning_enabled(void) { return false; }
3651 static inline bool page_poisoning_enabled_static(void) { return false; }
3652 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3653 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3654 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3655 #endif
3656 
3657 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3658 static inline bool want_init_on_alloc(gfp_t flags)
3659 {
3660 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3661 				&init_on_alloc))
3662 		return true;
3663 	return flags & __GFP_ZERO;
3664 }
3665 
3666 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3667 static inline bool want_init_on_free(void)
3668 {
3669 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3670 				   &init_on_free);
3671 }
3672 
3673 extern bool _debug_pagealloc_enabled_early;
3674 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3675 
3676 static inline bool debug_pagealloc_enabled(void)
3677 {
3678 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3679 		_debug_pagealloc_enabled_early;
3680 }
3681 
3682 /*
3683  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3684  * or when a false negative result is not harmful when called too early.
3685  */
3686 static inline bool debug_pagealloc_enabled_static(void)
3687 {
3688 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3689 		return false;
3690 
3691 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3692 }
3693 
3694 /*
3695  * To support DEBUG_PAGEALLOC architecture must ensure that
3696  * __kernel_map_pages() never fails
3697  */
3698 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3699 #ifdef CONFIG_DEBUG_PAGEALLOC
3700 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3701 {
3702 	if (debug_pagealloc_enabled_static())
3703 		__kernel_map_pages(page, numpages, 1);
3704 }
3705 
3706 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3707 {
3708 	if (debug_pagealloc_enabled_static())
3709 		__kernel_map_pages(page, numpages, 0);
3710 }
3711 
3712 extern unsigned int _debug_guardpage_minorder;
3713 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3714 
3715 static inline unsigned int debug_guardpage_minorder(void)
3716 {
3717 	return _debug_guardpage_minorder;
3718 }
3719 
3720 static inline bool debug_guardpage_enabled(void)
3721 {
3722 	return static_branch_unlikely(&_debug_guardpage_enabled);
3723 }
3724 
3725 static inline bool page_is_guard(struct page *page)
3726 {
3727 	if (!debug_guardpage_enabled())
3728 		return false;
3729 
3730 	return PageGuard(page);
3731 }
3732 
3733 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3734 static inline bool set_page_guard(struct zone *zone, struct page *page,
3735 				  unsigned int order)
3736 {
3737 	if (!debug_guardpage_enabled())
3738 		return false;
3739 	return __set_page_guard(zone, page, order);
3740 }
3741 
3742 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3743 static inline void clear_page_guard(struct zone *zone, struct page *page,
3744 				    unsigned int order)
3745 {
3746 	if (!debug_guardpage_enabled())
3747 		return;
3748 	__clear_page_guard(zone, page, order);
3749 }
3750 
3751 #else	/* CONFIG_DEBUG_PAGEALLOC */
3752 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3753 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3754 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3755 static inline bool debug_guardpage_enabled(void) { return false; }
3756 static inline bool page_is_guard(struct page *page) { return false; }
3757 static inline bool set_page_guard(struct zone *zone, struct page *page,
3758 			unsigned int order) { return false; }
3759 static inline void clear_page_guard(struct zone *zone, struct page *page,
3760 				unsigned int order) {}
3761 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3762 
3763 #ifdef __HAVE_ARCH_GATE_AREA
3764 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3765 extern int in_gate_area_no_mm(unsigned long addr);
3766 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3767 #else
3768 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3769 {
3770 	return NULL;
3771 }
3772 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3773 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3774 {
3775 	return 0;
3776 }
3777 #endif	/* __HAVE_ARCH_GATE_AREA */
3778 
3779 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3780 
3781 #ifdef CONFIG_SYSCTL
3782 extern int sysctl_drop_caches;
3783 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3784 		loff_t *);
3785 #endif
3786 
3787 void drop_slab(void);
3788 
3789 #ifndef CONFIG_MMU
3790 #define randomize_va_space 0
3791 #else
3792 extern int randomize_va_space;
3793 #endif
3794 
3795 const char * arch_vma_name(struct vm_area_struct *vma);
3796 #ifdef CONFIG_MMU
3797 void print_vma_addr(char *prefix, unsigned long rip);
3798 #else
3799 static inline void print_vma_addr(char *prefix, unsigned long rip)
3800 {
3801 }
3802 #endif
3803 
3804 void *sparse_buffer_alloc(unsigned long size);
3805 struct page * __populate_section_memmap(unsigned long pfn,
3806 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3807 		struct dev_pagemap *pgmap);
3808 void pmd_init(void *addr);
3809 void pud_init(void *addr);
3810 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3811 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3812 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3813 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3814 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3815 			    struct vmem_altmap *altmap, struct page *reuse);
3816 void *vmemmap_alloc_block(unsigned long size, int node);
3817 struct vmem_altmap;
3818 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3819 			      struct vmem_altmap *altmap);
3820 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3821 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3822 		     unsigned long addr, unsigned long next);
3823 int vmemmap_check_pmd(pmd_t *pmd, int node,
3824 		      unsigned long addr, unsigned long next);
3825 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3826 			       int node, struct vmem_altmap *altmap);
3827 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3828 			       int node, struct vmem_altmap *altmap);
3829 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3830 		struct vmem_altmap *altmap);
3831 void vmemmap_populate_print_last(void);
3832 #ifdef CONFIG_MEMORY_HOTPLUG
3833 void vmemmap_free(unsigned long start, unsigned long end,
3834 		struct vmem_altmap *altmap);
3835 #endif
3836 
3837 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3838 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3839 {
3840 	/* number of pfns from base where pfn_to_page() is valid */
3841 	if (altmap)
3842 		return altmap->reserve + altmap->free;
3843 	return 0;
3844 }
3845 
3846 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3847 				    unsigned long nr_pfns)
3848 {
3849 	altmap->alloc -= nr_pfns;
3850 }
3851 #else
3852 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3853 {
3854 	return 0;
3855 }
3856 
3857 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3858 				    unsigned long nr_pfns)
3859 {
3860 }
3861 #endif
3862 
3863 #define VMEMMAP_RESERVE_NR	2
3864 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3865 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3866 					  struct dev_pagemap *pgmap)
3867 {
3868 	unsigned long nr_pages;
3869 	unsigned long nr_vmemmap_pages;
3870 
3871 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3872 		return false;
3873 
3874 	nr_pages = pgmap_vmemmap_nr(pgmap);
3875 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3876 	/*
3877 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3878 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3879 	 */
3880 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3881 }
3882 /*
3883  * If we don't have an architecture override, use the generic rule
3884  */
3885 #ifndef vmemmap_can_optimize
3886 #define vmemmap_can_optimize __vmemmap_can_optimize
3887 #endif
3888 
3889 #else
3890 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3891 					   struct dev_pagemap *pgmap)
3892 {
3893 	return false;
3894 }
3895 #endif
3896 
3897 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3898 				  unsigned long nr_pages);
3899 
3900 enum mf_flags {
3901 	MF_COUNT_INCREASED = 1 << 0,
3902 	MF_ACTION_REQUIRED = 1 << 1,
3903 	MF_MUST_KILL = 1 << 2,
3904 	MF_SOFT_OFFLINE = 1 << 3,
3905 	MF_UNPOISON = 1 << 4,
3906 	MF_SW_SIMULATED = 1 << 5,
3907 	MF_NO_RETRY = 1 << 6,
3908 	MF_MEM_PRE_REMOVE = 1 << 7,
3909 };
3910 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3911 		      unsigned long count, int mf_flags);
3912 extern int memory_failure(unsigned long pfn, int flags);
3913 extern void memory_failure_queue_kick(int cpu);
3914 extern int unpoison_memory(unsigned long pfn);
3915 extern atomic_long_t num_poisoned_pages __read_mostly;
3916 extern int soft_offline_page(unsigned long pfn, int flags);
3917 #ifdef CONFIG_MEMORY_FAILURE
3918 /*
3919  * Sysfs entries for memory failure handling statistics.
3920  */
3921 extern const struct attribute_group memory_failure_attr_group;
3922 extern void memory_failure_queue(unsigned long pfn, int flags);
3923 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3924 					bool *migratable_cleared);
3925 void num_poisoned_pages_inc(unsigned long pfn);
3926 void num_poisoned_pages_sub(unsigned long pfn, long i);
3927 #else
3928 static inline void memory_failure_queue(unsigned long pfn, int flags)
3929 {
3930 }
3931 
3932 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3933 					bool *migratable_cleared)
3934 {
3935 	return 0;
3936 }
3937 
3938 static inline void num_poisoned_pages_inc(unsigned long pfn)
3939 {
3940 }
3941 
3942 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3943 {
3944 }
3945 #endif
3946 
3947 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3948 extern void memblk_nr_poison_inc(unsigned long pfn);
3949 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3950 #else
3951 static inline void memblk_nr_poison_inc(unsigned long pfn)
3952 {
3953 }
3954 
3955 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3956 {
3957 }
3958 #endif
3959 
3960 #ifndef arch_memory_failure
3961 static inline int arch_memory_failure(unsigned long pfn, int flags)
3962 {
3963 	return -ENXIO;
3964 }
3965 #endif
3966 
3967 #ifndef arch_is_platform_page
3968 static inline bool arch_is_platform_page(u64 paddr)
3969 {
3970 	return false;
3971 }
3972 #endif
3973 
3974 /*
3975  * Error handlers for various types of pages.
3976  */
3977 enum mf_result {
3978 	MF_IGNORED,	/* Error: cannot be handled */
3979 	MF_FAILED,	/* Error: handling failed */
3980 	MF_DELAYED,	/* Will be handled later */
3981 	MF_RECOVERED,	/* Successfully recovered */
3982 };
3983 
3984 enum mf_action_page_type {
3985 	MF_MSG_KERNEL,
3986 	MF_MSG_KERNEL_HIGH_ORDER,
3987 	MF_MSG_DIFFERENT_COMPOUND,
3988 	MF_MSG_HUGE,
3989 	MF_MSG_FREE_HUGE,
3990 	MF_MSG_GET_HWPOISON,
3991 	MF_MSG_UNMAP_FAILED,
3992 	MF_MSG_DIRTY_SWAPCACHE,
3993 	MF_MSG_CLEAN_SWAPCACHE,
3994 	MF_MSG_DIRTY_MLOCKED_LRU,
3995 	MF_MSG_CLEAN_MLOCKED_LRU,
3996 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3997 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3998 	MF_MSG_DIRTY_LRU,
3999 	MF_MSG_CLEAN_LRU,
4000 	MF_MSG_TRUNCATED_LRU,
4001 	MF_MSG_BUDDY,
4002 	MF_MSG_DAX,
4003 	MF_MSG_UNSPLIT_THP,
4004 	MF_MSG_ALREADY_POISONED,
4005 	MF_MSG_UNKNOWN,
4006 };
4007 
4008 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4009 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4010 int copy_user_large_folio(struct folio *dst, struct folio *src,
4011 			  unsigned long addr_hint,
4012 			  struct vm_area_struct *vma);
4013 long copy_folio_from_user(struct folio *dst_folio,
4014 			   const void __user *usr_src,
4015 			   bool allow_pagefault);
4016 
4017 /**
4018  * vma_is_special_huge - Are transhuge page-table entries considered special?
4019  * @vma: Pointer to the struct vm_area_struct to consider
4020  *
4021  * Whether transhuge page-table entries are considered "special" following
4022  * the definition in vm_normal_page().
4023  *
4024  * Return: true if transhuge page-table entries should be considered special,
4025  * false otherwise.
4026  */
4027 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4028 {
4029 	return vma_is_dax(vma) || (vma->vm_file &&
4030 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4031 }
4032 
4033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4034 
4035 #if MAX_NUMNODES > 1
4036 void __init setup_nr_node_ids(void);
4037 #else
4038 static inline void setup_nr_node_ids(void) {}
4039 #endif
4040 
4041 extern int memcmp_pages(struct page *page1, struct page *page2);
4042 
4043 static inline int pages_identical(struct page *page1, struct page *page2)
4044 {
4045 	return !memcmp_pages(page1, page2);
4046 }
4047 
4048 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4049 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4050 						pgoff_t first_index, pgoff_t nr,
4051 						pgoff_t bitmap_pgoff,
4052 						unsigned long *bitmap,
4053 						pgoff_t *start,
4054 						pgoff_t *end);
4055 
4056 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4057 				      pgoff_t first_index, pgoff_t nr);
4058 #endif
4059 
4060 extern int sysctl_nr_trim_pages;
4061 
4062 #ifdef CONFIG_PRINTK
4063 void mem_dump_obj(void *object);
4064 #else
4065 static inline void mem_dump_obj(void *object) {}
4066 #endif
4067 
4068 /**
4069  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4070  *                    handle them.
4071  * @seals: the seals to check
4072  * @vma: the vma to operate on
4073  *
4074  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4075  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4076  */
4077 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4078 {
4079 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4080 		/*
4081 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4082 		 * write seals are active.
4083 		 */
4084 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4085 			return -EPERM;
4086 
4087 		/*
4088 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4089 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4090 		 * revert protections on such mappings. Do this only for shared
4091 		 * mappings. For private mappings, don't need to mask
4092 		 * VM_MAYWRITE as we still want them to be COW-writable.
4093 		 */
4094 		if (vma->vm_flags & VM_SHARED)
4095 			vm_flags_clear(vma, VM_MAYWRITE);
4096 	}
4097 
4098 	return 0;
4099 }
4100 
4101 #ifdef CONFIG_ANON_VMA_NAME
4102 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4103 			  unsigned long len_in,
4104 			  struct anon_vma_name *anon_name);
4105 #else
4106 static inline int
4107 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4108 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4109 	return 0;
4110 }
4111 #endif
4112 
4113 #ifdef CONFIG_UNACCEPTED_MEMORY
4114 
4115 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4116 void accept_memory(phys_addr_t start, unsigned long size);
4117 
4118 #else
4119 
4120 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4121 						    unsigned long size)
4122 {
4123 	return false;
4124 }
4125 
4126 static inline void accept_memory(phys_addr_t start, unsigned long size)
4127 {
4128 }
4129 
4130 #endif
4131 
4132 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4133 {
4134 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4135 }
4136 
4137 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4138 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4139 
4140 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4141 
4142 #ifdef CONFIG_MEM_ALLOC_PROFILING
4143 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4144 {
4145 	int i;
4146 	struct alloc_tag *tag;
4147 	unsigned int nr_pages = 1 << new_order;
4148 
4149 	if (!mem_alloc_profiling_enabled())
4150 		return;
4151 
4152 	tag = pgalloc_tag_get(&folio->page);
4153 	if (!tag)
4154 		return;
4155 
4156 	for (i = nr_pages; i < (1 << old_order); i += nr_pages) {
4157 		union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i));
4158 
4159 		if (ref) {
4160 			/* Set new reference to point to the original tag */
4161 			alloc_tag_ref_set(ref, tag);
4162 			put_page_tag_ref(ref);
4163 		}
4164 	}
4165 }
4166 
4167 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4168 {
4169 	struct alloc_tag *tag;
4170 	union codetag_ref *ref;
4171 
4172 	tag = pgalloc_tag_get(&old->page);
4173 	if (!tag)
4174 		return;
4175 
4176 	ref = get_page_tag_ref(&new->page);
4177 	if (!ref)
4178 		return;
4179 
4180 	/* Clear the old ref to the original allocation tag. */
4181 	clear_page_tag_ref(&old->page);
4182 	/* Decrement the counters of the tag on get_new_folio. */
4183 	alloc_tag_sub(ref, folio_nr_pages(new));
4184 
4185 	__alloc_tag_ref_set(ref, tag);
4186 
4187 	put_page_tag_ref(ref);
4188 }
4189 #else /* !CONFIG_MEM_ALLOC_PROFILING */
4190 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order)
4191 {
4192 }
4193 
4194 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old)
4195 {
4196 }
4197 #endif /* CONFIG_MEM_ALLOC_PROFILING */
4198 
4199 #endif /* _LINUX_MM_H */
4200