1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 #ifdef CONFIG_64BIT 410 #define VM_DROPPABLE_BIT 40 411 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 412 #else 413 #define VM_DROPPABLE VM_NONE 414 #endif 415 416 #ifdef CONFIG_64BIT 417 /* VM is sealed, in vm_flags */ 418 #define VM_SEALED _BITUL(63) 419 #endif 420 421 /* Bits set in the VMA until the stack is in its final location */ 422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 423 424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 425 426 /* Common data flag combinations */ 427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 430 VM_MAYWRITE | VM_MAYEXEC) 431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 433 434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 436 #endif 437 438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 440 #endif 441 442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 443 444 #ifdef CONFIG_STACK_GROWSUP 445 #define VM_STACK VM_GROWSUP 446 #define VM_STACK_EARLY VM_GROWSDOWN 447 #else 448 #define VM_STACK VM_GROWSDOWN 449 #define VM_STACK_EARLY 0 450 #endif 451 452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 453 454 /* VMA basic access permission flags */ 455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 456 457 458 /* 459 * Special vmas that are non-mergable, non-mlock()able. 460 */ 461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 462 463 /* This mask prevents VMA from being scanned with khugepaged */ 464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 465 466 /* This mask defines which mm->def_flags a process can inherit its parent */ 467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 468 469 /* This mask represents all the VMA flag bits used by mlock */ 470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 471 472 /* Arch-specific flags to clear when updating VM flags on protection change */ 473 #ifndef VM_ARCH_CLEAR 474 # define VM_ARCH_CLEAR VM_NONE 475 #endif 476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 477 478 /* 479 * mapping from the currently active vm_flags protection bits (the 480 * low four bits) to a page protection mask.. 481 */ 482 483 /* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491 /** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505 { 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508 } 509 510 #define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 522 523 /* 524 * vm_fault is filled by the pagefault handler and passed to the vma's 525 * ->fault function. The vma's ->fault is responsible for returning a bitmask 526 * of VM_FAULT_xxx flags that give details about how the fault was handled. 527 * 528 * MM layer fills up gfp_mask for page allocations but fault handler might 529 * alter it if its implementation requires a different allocation context. 530 * 531 * pgoff should be used in favour of virtual_address, if possible. 532 */ 533 struct vm_fault { 534 const struct { 535 struct vm_area_struct *vma; /* Target VMA */ 536 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 537 pgoff_t pgoff; /* Logical page offset based on vma */ 538 unsigned long address; /* Faulting virtual address - masked */ 539 unsigned long real_address; /* Faulting virtual address - unmasked */ 540 }; 541 enum fault_flag flags; /* FAULT_FLAG_xxx flags 542 * XXX: should really be 'const' */ 543 pmd_t *pmd; /* Pointer to pmd entry matching 544 * the 'address' */ 545 pud_t *pud; /* Pointer to pud entry matching 546 * the 'address' 547 */ 548 union { 549 pte_t orig_pte; /* Value of PTE at the time of fault */ 550 pmd_t orig_pmd; /* Value of PMD at the time of fault, 551 * used by PMD fault only. 552 */ 553 }; 554 555 struct page *cow_page; /* Page handler may use for COW fault */ 556 struct page *page; /* ->fault handlers should return a 557 * page here, unless VM_FAULT_NOPAGE 558 * is set (which is also implied by 559 * VM_FAULT_ERROR). 560 */ 561 /* These three entries are valid only while holding ptl lock */ 562 pte_t *pte; /* Pointer to pte entry matching 563 * the 'address'. NULL if the page 564 * table hasn't been allocated. 565 */ 566 spinlock_t *ptl; /* Page table lock. 567 * Protects pte page table if 'pte' 568 * is not NULL, otherwise pmd. 569 */ 570 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 571 * vm_ops->map_pages() sets up a page 572 * table from atomic context. 573 * do_fault_around() pre-allocates 574 * page table to avoid allocation from 575 * atomic context. 576 */ 577 }; 578 579 /* 580 * These are the virtual MM functions - opening of an area, closing and 581 * unmapping it (needed to keep files on disk up-to-date etc), pointer 582 * to the functions called when a no-page or a wp-page exception occurs. 583 */ 584 struct vm_operations_struct { 585 void (*open)(struct vm_area_struct * area); 586 /** 587 * @close: Called when the VMA is being removed from the MM. 588 * Context: User context. May sleep. Caller holds mmap_lock. 589 */ 590 void (*close)(struct vm_area_struct * area); 591 /* Called any time before splitting to check if it's allowed */ 592 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 593 int (*mremap)(struct vm_area_struct *area); 594 /* 595 * Called by mprotect() to make driver-specific permission 596 * checks before mprotect() is finalised. The VMA must not 597 * be modified. Returns 0 if mprotect() can proceed. 598 */ 599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 600 unsigned long end, unsigned long newflags); 601 vm_fault_t (*fault)(struct vm_fault *vmf); 602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 603 vm_fault_t (*map_pages)(struct vm_fault *vmf, 604 pgoff_t start_pgoff, pgoff_t end_pgoff); 605 unsigned long (*pagesize)(struct vm_area_struct * area); 606 607 /* notification that a previously read-only page is about to become 608 * writable, if an error is returned it will cause a SIGBUS */ 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 610 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 613 614 /* called by access_process_vm when get_user_pages() fails, typically 615 * for use by special VMAs. See also generic_access_phys() for a generic 616 * implementation useful for any iomem mapping. 617 */ 618 int (*access)(struct vm_area_struct *vma, unsigned long addr, 619 void *buf, int len, int write); 620 621 /* Called by the /proc/PID/maps code to ask the vma whether it 622 * has a special name. Returning non-NULL will also cause this 623 * vma to be dumped unconditionally. */ 624 const char *(*name)(struct vm_area_struct *vma); 625 626 #ifdef CONFIG_NUMA 627 /* 628 * set_policy() op must add a reference to any non-NULL @new mempolicy 629 * to hold the policy upon return. Caller should pass NULL @new to 630 * remove a policy and fall back to surrounding context--i.e. do not 631 * install a MPOL_DEFAULT policy, nor the task or system default 632 * mempolicy. 633 */ 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 635 636 /* 637 * get_policy() op must add reference [mpol_get()] to any policy at 638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 639 * in mm/mempolicy.c will do this automatically. 640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 643 * must return NULL--i.e., do not "fallback" to task or system default 644 * policy. 645 */ 646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 647 unsigned long addr, pgoff_t *ilx); 648 #endif 649 /* 650 * Called by vm_normal_page() for special PTEs to find the 651 * page for @addr. This is useful if the default behavior 652 * (using pte_page()) would not find the correct page. 653 */ 654 struct page *(*find_special_page)(struct vm_area_struct *vma, 655 unsigned long addr); 656 }; 657 658 #ifdef CONFIG_NUMA_BALANCING 659 static inline void vma_numab_state_init(struct vm_area_struct *vma) 660 { 661 vma->numab_state = NULL; 662 } 663 static inline void vma_numab_state_free(struct vm_area_struct *vma) 664 { 665 kfree(vma->numab_state); 666 } 667 #else 668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 670 #endif /* CONFIG_NUMA_BALANCING */ 671 672 #ifdef CONFIG_PER_VMA_LOCK 673 /* 674 * Try to read-lock a vma. The function is allowed to occasionally yield false 675 * locked result to avoid performance overhead, in which case we fall back to 676 * using mmap_lock. The function should never yield false unlocked result. 677 */ 678 static inline bool vma_start_read(struct vm_area_struct *vma) 679 { 680 /* 681 * Check before locking. A race might cause false locked result. 682 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 683 * ACQUIRE semantics, because this is just a lockless check whose result 684 * we don't rely on for anything - the mm_lock_seq read against which we 685 * need ordering is below. 686 */ 687 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 688 return false; 689 690 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 691 return false; 692 693 /* 694 * Overflow might produce false locked result. 695 * False unlocked result is impossible because we modify and check 696 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 697 * modification invalidates all existing locks. 698 * 699 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 700 * racing with vma_end_write_all(), we only start reading from the VMA 701 * after it has been unlocked. 702 * This pairs with RELEASE semantics in vma_end_write_all(). 703 */ 704 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 705 up_read(&vma->vm_lock->lock); 706 return false; 707 } 708 return true; 709 } 710 711 static inline void vma_end_read(struct vm_area_struct *vma) 712 { 713 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 714 up_read(&vma->vm_lock->lock); 715 rcu_read_unlock(); 716 } 717 718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 720 { 721 mmap_assert_write_locked(vma->vm_mm); 722 723 /* 724 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 725 * mm->mm_lock_seq can't be concurrently modified. 726 */ 727 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 728 return (vma->vm_lock_seq == *mm_lock_seq); 729 } 730 731 /* 732 * Begin writing to a VMA. 733 * Exclude concurrent readers under the per-VMA lock until the currently 734 * write-locked mmap_lock is dropped or downgraded. 735 */ 736 static inline void vma_start_write(struct vm_area_struct *vma) 737 { 738 int mm_lock_seq; 739 740 if (__is_vma_write_locked(vma, &mm_lock_seq)) 741 return; 742 743 down_write(&vma->vm_lock->lock); 744 /* 745 * We should use WRITE_ONCE() here because we can have concurrent reads 746 * from the early lockless pessimistic check in vma_start_read(). 747 * We don't really care about the correctness of that early check, but 748 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 749 */ 750 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 751 up_write(&vma->vm_lock->lock); 752 } 753 754 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 755 { 756 int mm_lock_seq; 757 758 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 759 } 760 761 static inline void vma_assert_locked(struct vm_area_struct *vma) 762 { 763 if (!rwsem_is_locked(&vma->vm_lock->lock)) 764 vma_assert_write_locked(vma); 765 } 766 767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 768 { 769 /* When detaching vma should be write-locked */ 770 if (detached) 771 vma_assert_write_locked(vma); 772 vma->detached = detached; 773 } 774 775 static inline void release_fault_lock(struct vm_fault *vmf) 776 { 777 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 778 vma_end_read(vmf->vma); 779 else 780 mmap_read_unlock(vmf->vma->vm_mm); 781 } 782 783 static inline void assert_fault_locked(struct vm_fault *vmf) 784 { 785 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 786 vma_assert_locked(vmf->vma); 787 else 788 mmap_assert_locked(vmf->vma->vm_mm); 789 } 790 791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 792 unsigned long address); 793 794 #else /* CONFIG_PER_VMA_LOCK */ 795 796 static inline bool vma_start_read(struct vm_area_struct *vma) 797 { return false; } 798 static inline void vma_end_read(struct vm_area_struct *vma) {} 799 static inline void vma_start_write(struct vm_area_struct *vma) {} 800 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 801 { mmap_assert_write_locked(vma->vm_mm); } 802 static inline void vma_mark_detached(struct vm_area_struct *vma, 803 bool detached) {} 804 805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 806 unsigned long address) 807 { 808 return NULL; 809 } 810 811 static inline void vma_assert_locked(struct vm_area_struct *vma) 812 { 813 mmap_assert_locked(vma->vm_mm); 814 } 815 816 static inline void release_fault_lock(struct vm_fault *vmf) 817 { 818 mmap_read_unlock(vmf->vma->vm_mm); 819 } 820 821 static inline void assert_fault_locked(struct vm_fault *vmf) 822 { 823 mmap_assert_locked(vmf->vma->vm_mm); 824 } 825 826 #endif /* CONFIG_PER_VMA_LOCK */ 827 828 extern const struct vm_operations_struct vma_dummy_vm_ops; 829 830 /* 831 * WARNING: vma_init does not initialize vma->vm_lock. 832 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 833 */ 834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 835 { 836 memset(vma, 0, sizeof(*vma)); 837 vma->vm_mm = mm; 838 vma->vm_ops = &vma_dummy_vm_ops; 839 INIT_LIST_HEAD(&vma->anon_vma_chain); 840 vma_mark_detached(vma, false); 841 vma_numab_state_init(vma); 842 } 843 844 /* Use when VMA is not part of the VMA tree and needs no locking */ 845 static inline void vm_flags_init(struct vm_area_struct *vma, 846 vm_flags_t flags) 847 { 848 ACCESS_PRIVATE(vma, __vm_flags) = flags; 849 } 850 851 /* 852 * Use when VMA is part of the VMA tree and modifications need coordination 853 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 854 * it should be locked explicitly beforehand. 855 */ 856 static inline void vm_flags_reset(struct vm_area_struct *vma, 857 vm_flags_t flags) 858 { 859 vma_assert_write_locked(vma); 860 vm_flags_init(vma, flags); 861 } 862 863 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 864 vm_flags_t flags) 865 { 866 vma_assert_write_locked(vma); 867 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 868 } 869 870 static inline void vm_flags_set(struct vm_area_struct *vma, 871 vm_flags_t flags) 872 { 873 vma_start_write(vma); 874 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 875 } 876 877 static inline void vm_flags_clear(struct vm_area_struct *vma, 878 vm_flags_t flags) 879 { 880 vma_start_write(vma); 881 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 882 } 883 884 /* 885 * Use only if VMA is not part of the VMA tree or has no other users and 886 * therefore needs no locking. 887 */ 888 static inline void __vm_flags_mod(struct vm_area_struct *vma, 889 vm_flags_t set, vm_flags_t clear) 890 { 891 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 892 } 893 894 /* 895 * Use only when the order of set/clear operations is unimportant, otherwise 896 * use vm_flags_{set|clear} explicitly. 897 */ 898 static inline void vm_flags_mod(struct vm_area_struct *vma, 899 vm_flags_t set, vm_flags_t clear) 900 { 901 vma_start_write(vma); 902 __vm_flags_mod(vma, set, clear); 903 } 904 905 static inline void vma_set_anonymous(struct vm_area_struct *vma) 906 { 907 vma->vm_ops = NULL; 908 } 909 910 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 911 { 912 return !vma->vm_ops; 913 } 914 915 /* 916 * Indicate if the VMA is a heap for the given task; for 917 * /proc/PID/maps that is the heap of the main task. 918 */ 919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 920 { 921 return vma->vm_start < vma->vm_mm->brk && 922 vma->vm_end > vma->vm_mm->start_brk; 923 } 924 925 /* 926 * Indicate if the VMA is a stack for the given task; for 927 * /proc/PID/maps that is the stack of the main task. 928 */ 929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 930 { 931 /* 932 * We make no effort to guess what a given thread considers to be 933 * its "stack". It's not even well-defined for programs written 934 * languages like Go. 935 */ 936 return vma->vm_start <= vma->vm_mm->start_stack && 937 vma->vm_end >= vma->vm_mm->start_stack; 938 } 939 940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 941 { 942 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 943 944 if (!maybe_stack) 945 return false; 946 947 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 948 VM_STACK_INCOMPLETE_SETUP) 949 return true; 950 951 return false; 952 } 953 954 static inline bool vma_is_foreign(struct vm_area_struct *vma) 955 { 956 if (!current->mm) 957 return true; 958 959 if (current->mm != vma->vm_mm) 960 return true; 961 962 return false; 963 } 964 965 static inline bool vma_is_accessible(struct vm_area_struct *vma) 966 { 967 return vma->vm_flags & VM_ACCESS_FLAGS; 968 } 969 970 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 971 { 972 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 973 (VM_SHARED | VM_MAYWRITE); 974 } 975 976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 977 { 978 return is_shared_maywrite(vma->vm_flags); 979 } 980 981 static inline 982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 983 { 984 return mas_find(&vmi->mas, max - 1); 985 } 986 987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 988 { 989 /* 990 * Uses mas_find() to get the first VMA when the iterator starts. 991 * Calling mas_next() could skip the first entry. 992 */ 993 return mas_find(&vmi->mas, ULONG_MAX); 994 } 995 996 static inline 997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 998 { 999 return mas_next_range(&vmi->mas, ULONG_MAX); 1000 } 1001 1002 1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1004 { 1005 return mas_prev(&vmi->mas, 0); 1006 } 1007 1008 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1009 unsigned long start, unsigned long end, gfp_t gfp) 1010 { 1011 __mas_set_range(&vmi->mas, start, end - 1); 1012 mas_store_gfp(&vmi->mas, NULL, gfp); 1013 if (unlikely(mas_is_err(&vmi->mas))) 1014 return -ENOMEM; 1015 1016 return 0; 1017 } 1018 1019 /* Free any unused preallocations */ 1020 static inline void vma_iter_free(struct vma_iterator *vmi) 1021 { 1022 mas_destroy(&vmi->mas); 1023 } 1024 1025 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1026 struct vm_area_struct *vma) 1027 { 1028 vmi->mas.index = vma->vm_start; 1029 vmi->mas.last = vma->vm_end - 1; 1030 mas_store(&vmi->mas, vma); 1031 if (unlikely(mas_is_err(&vmi->mas))) 1032 return -ENOMEM; 1033 1034 return 0; 1035 } 1036 1037 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1038 { 1039 mas_pause(&vmi->mas); 1040 } 1041 1042 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1043 { 1044 mas_set(&vmi->mas, addr); 1045 } 1046 1047 #define for_each_vma(__vmi, __vma) \ 1048 while (((__vma) = vma_next(&(__vmi))) != NULL) 1049 1050 /* The MM code likes to work with exclusive end addresses */ 1051 #define for_each_vma_range(__vmi, __vma, __end) \ 1052 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1053 1054 #ifdef CONFIG_SHMEM 1055 /* 1056 * The vma_is_shmem is not inline because it is used only by slow 1057 * paths in userfault. 1058 */ 1059 bool vma_is_shmem(struct vm_area_struct *vma); 1060 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1061 #else 1062 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1063 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1064 #endif 1065 1066 int vma_is_stack_for_current(struct vm_area_struct *vma); 1067 1068 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1069 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1070 1071 struct mmu_gather; 1072 struct inode; 1073 1074 /* 1075 * compound_order() can be called without holding a reference, which means 1076 * that niceties like page_folio() don't work. These callers should be 1077 * prepared to handle wild return values. For example, PG_head may be 1078 * set before the order is initialised, or this may be a tail page. 1079 * See compaction.c for some good examples. 1080 */ 1081 static inline unsigned int compound_order(struct page *page) 1082 { 1083 struct folio *folio = (struct folio *)page; 1084 1085 if (!test_bit(PG_head, &folio->flags)) 1086 return 0; 1087 return folio->_flags_1 & 0xff; 1088 } 1089 1090 /** 1091 * folio_order - The allocation order of a folio. 1092 * @folio: The folio. 1093 * 1094 * A folio is composed of 2^order pages. See get_order() for the definition 1095 * of order. 1096 * 1097 * Return: The order of the folio. 1098 */ 1099 static inline unsigned int folio_order(const struct folio *folio) 1100 { 1101 if (!folio_test_large(folio)) 1102 return 0; 1103 return folio->_flags_1 & 0xff; 1104 } 1105 1106 #include <linux/huge_mm.h> 1107 1108 /* 1109 * Methods to modify the page usage count. 1110 * 1111 * What counts for a page usage: 1112 * - cache mapping (page->mapping) 1113 * - private data (page->private) 1114 * - page mapped in a task's page tables, each mapping 1115 * is counted separately 1116 * 1117 * Also, many kernel routines increase the page count before a critical 1118 * routine so they can be sure the page doesn't go away from under them. 1119 */ 1120 1121 /* 1122 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1123 */ 1124 static inline int put_page_testzero(struct page *page) 1125 { 1126 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1127 return page_ref_dec_and_test(page); 1128 } 1129 1130 static inline int folio_put_testzero(struct folio *folio) 1131 { 1132 return put_page_testzero(&folio->page); 1133 } 1134 1135 /* 1136 * Try to grab a ref unless the page has a refcount of zero, return false if 1137 * that is the case. 1138 * This can be called when MMU is off so it must not access 1139 * any of the virtual mappings. 1140 */ 1141 static inline bool get_page_unless_zero(struct page *page) 1142 { 1143 return page_ref_add_unless(page, 1, 0); 1144 } 1145 1146 static inline struct folio *folio_get_nontail_page(struct page *page) 1147 { 1148 if (unlikely(!get_page_unless_zero(page))) 1149 return NULL; 1150 return (struct folio *)page; 1151 } 1152 1153 extern int page_is_ram(unsigned long pfn); 1154 1155 enum { 1156 REGION_INTERSECTS, 1157 REGION_DISJOINT, 1158 REGION_MIXED, 1159 }; 1160 1161 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1162 unsigned long desc); 1163 1164 /* Support for virtually mapped pages */ 1165 struct page *vmalloc_to_page(const void *addr); 1166 unsigned long vmalloc_to_pfn(const void *addr); 1167 1168 /* 1169 * Determine if an address is within the vmalloc range 1170 * 1171 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1172 * is no special casing required. 1173 */ 1174 #ifdef CONFIG_MMU 1175 extern bool is_vmalloc_addr(const void *x); 1176 extern int is_vmalloc_or_module_addr(const void *x); 1177 #else 1178 static inline bool is_vmalloc_addr(const void *x) 1179 { 1180 return false; 1181 } 1182 static inline int is_vmalloc_or_module_addr(const void *x) 1183 { 1184 return 0; 1185 } 1186 #endif 1187 1188 /* 1189 * How many times the entire folio is mapped as a single unit (eg by a 1190 * PMD or PUD entry). This is probably not what you want, except for 1191 * debugging purposes or implementation of other core folio_*() primitives. 1192 */ 1193 static inline int folio_entire_mapcount(const struct folio *folio) 1194 { 1195 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1196 return atomic_read(&folio->_entire_mapcount) + 1; 1197 } 1198 1199 static inline int folio_large_mapcount(const struct folio *folio) 1200 { 1201 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1202 return atomic_read(&folio->_large_mapcount) + 1; 1203 } 1204 1205 /** 1206 * folio_mapcount() - Number of mappings of this folio. 1207 * @folio: The folio. 1208 * 1209 * The folio mapcount corresponds to the number of present user page table 1210 * entries that reference any part of a folio. Each such present user page 1211 * table entry must be paired with exactly on folio reference. 1212 * 1213 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1214 * exactly once. 1215 * 1216 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1217 * references the entire folio counts exactly once, even when such special 1218 * page table entries are comprised of multiple ordinary page table entries. 1219 * 1220 * Will report 0 for pages which cannot be mapped into userspace, such as 1221 * slab, page tables and similar. 1222 * 1223 * Return: The number of times this folio is mapped. 1224 */ 1225 static inline int folio_mapcount(const struct folio *folio) 1226 { 1227 int mapcount; 1228 1229 if (likely(!folio_test_large(folio))) { 1230 mapcount = atomic_read(&folio->_mapcount) + 1; 1231 if (page_mapcount_is_type(mapcount)) 1232 mapcount = 0; 1233 return mapcount; 1234 } 1235 return folio_large_mapcount(folio); 1236 } 1237 1238 /** 1239 * folio_mapped - Is this folio mapped into userspace? 1240 * @folio: The folio. 1241 * 1242 * Return: True if any page in this folio is referenced by user page tables. 1243 */ 1244 static inline bool folio_mapped(const struct folio *folio) 1245 { 1246 return folio_mapcount(folio) >= 1; 1247 } 1248 1249 /* 1250 * Return true if this page is mapped into pagetables. 1251 * For compound page it returns true if any sub-page of compound page is mapped, 1252 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1253 */ 1254 static inline bool page_mapped(const struct page *page) 1255 { 1256 return folio_mapped(page_folio(page)); 1257 } 1258 1259 static inline struct page *virt_to_head_page(const void *x) 1260 { 1261 struct page *page = virt_to_page(x); 1262 1263 return compound_head(page); 1264 } 1265 1266 static inline struct folio *virt_to_folio(const void *x) 1267 { 1268 struct page *page = virt_to_page(x); 1269 1270 return page_folio(page); 1271 } 1272 1273 void __folio_put(struct folio *folio); 1274 1275 void put_pages_list(struct list_head *pages); 1276 1277 void split_page(struct page *page, unsigned int order); 1278 void folio_copy(struct folio *dst, struct folio *src); 1279 int folio_mc_copy(struct folio *dst, struct folio *src); 1280 1281 unsigned long nr_free_buffer_pages(void); 1282 1283 /* Returns the number of bytes in this potentially compound page. */ 1284 static inline unsigned long page_size(struct page *page) 1285 { 1286 return PAGE_SIZE << compound_order(page); 1287 } 1288 1289 /* Returns the number of bits needed for the number of bytes in a page */ 1290 static inline unsigned int page_shift(struct page *page) 1291 { 1292 return PAGE_SHIFT + compound_order(page); 1293 } 1294 1295 /** 1296 * thp_order - Order of a transparent huge page. 1297 * @page: Head page of a transparent huge page. 1298 */ 1299 static inline unsigned int thp_order(struct page *page) 1300 { 1301 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1302 return compound_order(page); 1303 } 1304 1305 /** 1306 * thp_size - Size of a transparent huge page. 1307 * @page: Head page of a transparent huge page. 1308 * 1309 * Return: Number of bytes in this page. 1310 */ 1311 static inline unsigned long thp_size(struct page *page) 1312 { 1313 return PAGE_SIZE << thp_order(page); 1314 } 1315 1316 #ifdef CONFIG_MMU 1317 /* 1318 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1319 * servicing faults for write access. In the normal case, do always want 1320 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1321 * that do not have writing enabled, when used by access_process_vm. 1322 */ 1323 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1324 { 1325 if (likely(vma->vm_flags & VM_WRITE)) 1326 pte = pte_mkwrite(pte, vma); 1327 return pte; 1328 } 1329 1330 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1331 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1332 struct page *page, unsigned int nr, unsigned long addr); 1333 1334 vm_fault_t finish_fault(struct vm_fault *vmf); 1335 #endif 1336 1337 /* 1338 * Multiple processes may "see" the same page. E.g. for untouched 1339 * mappings of /dev/null, all processes see the same page full of 1340 * zeroes, and text pages of executables and shared libraries have 1341 * only one copy in memory, at most, normally. 1342 * 1343 * For the non-reserved pages, page_count(page) denotes a reference count. 1344 * page_count() == 0 means the page is free. page->lru is then used for 1345 * freelist management in the buddy allocator. 1346 * page_count() > 0 means the page has been allocated. 1347 * 1348 * Pages are allocated by the slab allocator in order to provide memory 1349 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1350 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1351 * unless a particular usage is carefully commented. (the responsibility of 1352 * freeing the kmalloc memory is the caller's, of course). 1353 * 1354 * A page may be used by anyone else who does a __get_free_page(). 1355 * In this case, page_count still tracks the references, and should only 1356 * be used through the normal accessor functions. The top bits of page->flags 1357 * and page->virtual store page management information, but all other fields 1358 * are unused and could be used privately, carefully. The management of this 1359 * page is the responsibility of the one who allocated it, and those who have 1360 * subsequently been given references to it. 1361 * 1362 * The other pages (we may call them "pagecache pages") are completely 1363 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1364 * The following discussion applies only to them. 1365 * 1366 * A pagecache page contains an opaque `private' member, which belongs to the 1367 * page's address_space. Usually, this is the address of a circular list of 1368 * the page's disk buffers. PG_private must be set to tell the VM to call 1369 * into the filesystem to release these pages. 1370 * 1371 * A page may belong to an inode's memory mapping. In this case, page->mapping 1372 * is the pointer to the inode, and page->index is the file offset of the page, 1373 * in units of PAGE_SIZE. 1374 * 1375 * If pagecache pages are not associated with an inode, they are said to be 1376 * anonymous pages. These may become associated with the swapcache, and in that 1377 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1378 * 1379 * In either case (swapcache or inode backed), the pagecache itself holds one 1380 * reference to the page. Setting PG_private should also increment the 1381 * refcount. The each user mapping also has a reference to the page. 1382 * 1383 * The pagecache pages are stored in a per-mapping radix tree, which is 1384 * rooted at mapping->i_pages, and indexed by offset. 1385 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1386 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1387 * 1388 * All pagecache pages may be subject to I/O: 1389 * - inode pages may need to be read from disk, 1390 * - inode pages which have been modified and are MAP_SHARED may need 1391 * to be written back to the inode on disk, 1392 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1393 * modified may need to be swapped out to swap space and (later) to be read 1394 * back into memory. 1395 */ 1396 1397 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1398 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1399 1400 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1401 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1402 { 1403 if (!static_branch_unlikely(&devmap_managed_key)) 1404 return false; 1405 if (!folio_is_zone_device(folio)) 1406 return false; 1407 return __put_devmap_managed_folio_refs(folio, refs); 1408 } 1409 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1410 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1411 { 1412 return false; 1413 } 1414 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1415 1416 /* 127: arbitrary random number, small enough to assemble well */ 1417 #define folio_ref_zero_or_close_to_overflow(folio) \ 1418 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1419 1420 /** 1421 * folio_get - Increment the reference count on a folio. 1422 * @folio: The folio. 1423 * 1424 * Context: May be called in any context, as long as you know that 1425 * you have a refcount on the folio. If you do not already have one, 1426 * folio_try_get() may be the right interface for you to use. 1427 */ 1428 static inline void folio_get(struct folio *folio) 1429 { 1430 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1431 folio_ref_inc(folio); 1432 } 1433 1434 static inline void get_page(struct page *page) 1435 { 1436 folio_get(page_folio(page)); 1437 } 1438 1439 static inline __must_check bool try_get_page(struct page *page) 1440 { 1441 page = compound_head(page); 1442 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1443 return false; 1444 page_ref_inc(page); 1445 return true; 1446 } 1447 1448 /** 1449 * folio_put - Decrement the reference count on a folio. 1450 * @folio: The folio. 1451 * 1452 * If the folio's reference count reaches zero, the memory will be 1453 * released back to the page allocator and may be used by another 1454 * allocation immediately. Do not access the memory or the struct folio 1455 * after calling folio_put() unless you can be sure that it wasn't the 1456 * last reference. 1457 * 1458 * Context: May be called in process or interrupt context, but not in NMI 1459 * context. May be called while holding a spinlock. 1460 */ 1461 static inline void folio_put(struct folio *folio) 1462 { 1463 if (folio_put_testzero(folio)) 1464 __folio_put(folio); 1465 } 1466 1467 /** 1468 * folio_put_refs - Reduce the reference count on a folio. 1469 * @folio: The folio. 1470 * @refs: The amount to subtract from the folio's reference count. 1471 * 1472 * If the folio's reference count reaches zero, the memory will be 1473 * released back to the page allocator and may be used by another 1474 * allocation immediately. Do not access the memory or the struct folio 1475 * after calling folio_put_refs() unless you can be sure that these weren't 1476 * the last references. 1477 * 1478 * Context: May be called in process or interrupt context, but not in NMI 1479 * context. May be called while holding a spinlock. 1480 */ 1481 static inline void folio_put_refs(struct folio *folio, int refs) 1482 { 1483 if (folio_ref_sub_and_test(folio, refs)) 1484 __folio_put(folio); 1485 } 1486 1487 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1488 1489 /* 1490 * union release_pages_arg - an array of pages or folios 1491 * 1492 * release_pages() releases a simple array of multiple pages, and 1493 * accepts various different forms of said page array: either 1494 * a regular old boring array of pages, an array of folios, or 1495 * an array of encoded page pointers. 1496 * 1497 * The transparent union syntax for this kind of "any of these 1498 * argument types" is all kinds of ugly, so look away. 1499 */ 1500 typedef union { 1501 struct page **pages; 1502 struct folio **folios; 1503 struct encoded_page **encoded_pages; 1504 } release_pages_arg __attribute__ ((__transparent_union__)); 1505 1506 void release_pages(release_pages_arg, int nr); 1507 1508 /** 1509 * folios_put - Decrement the reference count on an array of folios. 1510 * @folios: The folios. 1511 * 1512 * Like folio_put(), but for a batch of folios. This is more efficient 1513 * than writing the loop yourself as it will optimise the locks which need 1514 * to be taken if the folios are freed. The folios batch is returned 1515 * empty and ready to be reused for another batch; there is no need to 1516 * reinitialise it. 1517 * 1518 * Context: May be called in process or interrupt context, but not in NMI 1519 * context. May be called while holding a spinlock. 1520 */ 1521 static inline void folios_put(struct folio_batch *folios) 1522 { 1523 folios_put_refs(folios, NULL); 1524 } 1525 1526 static inline void put_page(struct page *page) 1527 { 1528 struct folio *folio = page_folio(page); 1529 1530 /* 1531 * For some devmap managed pages we need to catch refcount transition 1532 * from 2 to 1: 1533 */ 1534 if (put_devmap_managed_folio_refs(folio, 1)) 1535 return; 1536 folio_put(folio); 1537 } 1538 1539 /* 1540 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1541 * the page's refcount so that two separate items are tracked: the original page 1542 * reference count, and also a new count of how many pin_user_pages() calls were 1543 * made against the page. ("gup-pinned" is another term for the latter). 1544 * 1545 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1546 * distinct from normal pages. As such, the unpin_user_page() call (and its 1547 * variants) must be used in order to release gup-pinned pages. 1548 * 1549 * Choice of value: 1550 * 1551 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1552 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1553 * simpler, due to the fact that adding an even power of two to the page 1554 * refcount has the effect of using only the upper N bits, for the code that 1555 * counts up using the bias value. This means that the lower bits are left for 1556 * the exclusive use of the original code that increments and decrements by one 1557 * (or at least, by much smaller values than the bias value). 1558 * 1559 * Of course, once the lower bits overflow into the upper bits (and this is 1560 * OK, because subtraction recovers the original values), then visual inspection 1561 * no longer suffices to directly view the separate counts. However, for normal 1562 * applications that don't have huge page reference counts, this won't be an 1563 * issue. 1564 * 1565 * Locking: the lockless algorithm described in folio_try_get_rcu() 1566 * provides safe operation for get_user_pages(), folio_mkclean() and 1567 * other calls that race to set up page table entries. 1568 */ 1569 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1570 1571 void unpin_user_page(struct page *page); 1572 void unpin_folio(struct folio *folio); 1573 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1574 bool make_dirty); 1575 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1576 bool make_dirty); 1577 void unpin_user_pages(struct page **pages, unsigned long npages); 1578 void unpin_folios(struct folio **folios, unsigned long nfolios); 1579 1580 static inline bool is_cow_mapping(vm_flags_t flags) 1581 { 1582 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1583 } 1584 1585 #ifndef CONFIG_MMU 1586 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1587 { 1588 /* 1589 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1590 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1591 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1592 * underlying memory if ptrace is active, so this is only possible if 1593 * ptrace does not apply. Note that there is no mprotect() to upgrade 1594 * write permissions later. 1595 */ 1596 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1597 } 1598 #endif 1599 1600 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1601 #define SECTION_IN_PAGE_FLAGS 1602 #endif 1603 1604 /* 1605 * The identification function is mainly used by the buddy allocator for 1606 * determining if two pages could be buddies. We are not really identifying 1607 * the zone since we could be using the section number id if we do not have 1608 * node id available in page flags. 1609 * We only guarantee that it will return the same value for two combinable 1610 * pages in a zone. 1611 */ 1612 static inline int page_zone_id(struct page *page) 1613 { 1614 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1615 } 1616 1617 #ifdef NODE_NOT_IN_PAGE_FLAGS 1618 int page_to_nid(const struct page *page); 1619 #else 1620 static inline int page_to_nid(const struct page *page) 1621 { 1622 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1623 } 1624 #endif 1625 1626 static inline int folio_nid(const struct folio *folio) 1627 { 1628 return page_to_nid(&folio->page); 1629 } 1630 1631 #ifdef CONFIG_NUMA_BALANCING 1632 /* page access time bits needs to hold at least 4 seconds */ 1633 #define PAGE_ACCESS_TIME_MIN_BITS 12 1634 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1635 #define PAGE_ACCESS_TIME_BUCKETS \ 1636 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1637 #else 1638 #define PAGE_ACCESS_TIME_BUCKETS 0 1639 #endif 1640 1641 #define PAGE_ACCESS_TIME_MASK \ 1642 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1643 1644 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1645 { 1646 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1647 } 1648 1649 static inline int cpupid_to_pid(int cpupid) 1650 { 1651 return cpupid & LAST__PID_MASK; 1652 } 1653 1654 static inline int cpupid_to_cpu(int cpupid) 1655 { 1656 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1657 } 1658 1659 static inline int cpupid_to_nid(int cpupid) 1660 { 1661 return cpu_to_node(cpupid_to_cpu(cpupid)); 1662 } 1663 1664 static inline bool cpupid_pid_unset(int cpupid) 1665 { 1666 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1667 } 1668 1669 static inline bool cpupid_cpu_unset(int cpupid) 1670 { 1671 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1672 } 1673 1674 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1675 { 1676 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1677 } 1678 1679 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1680 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1681 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1682 { 1683 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1684 } 1685 1686 static inline int folio_last_cpupid(struct folio *folio) 1687 { 1688 return folio->_last_cpupid; 1689 } 1690 static inline void page_cpupid_reset_last(struct page *page) 1691 { 1692 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1693 } 1694 #else 1695 static inline int folio_last_cpupid(struct folio *folio) 1696 { 1697 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1698 } 1699 1700 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1701 1702 static inline void page_cpupid_reset_last(struct page *page) 1703 { 1704 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1705 } 1706 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1707 1708 static inline int folio_xchg_access_time(struct folio *folio, int time) 1709 { 1710 int last_time; 1711 1712 last_time = folio_xchg_last_cpupid(folio, 1713 time >> PAGE_ACCESS_TIME_BUCKETS); 1714 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1715 } 1716 1717 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1718 { 1719 unsigned int pid_bit; 1720 1721 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1722 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1723 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1724 } 1725 } 1726 1727 bool folio_use_access_time(struct folio *folio); 1728 #else /* !CONFIG_NUMA_BALANCING */ 1729 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1730 { 1731 return folio_nid(folio); /* XXX */ 1732 } 1733 1734 static inline int folio_xchg_access_time(struct folio *folio, int time) 1735 { 1736 return 0; 1737 } 1738 1739 static inline int folio_last_cpupid(struct folio *folio) 1740 { 1741 return folio_nid(folio); /* XXX */ 1742 } 1743 1744 static inline int cpupid_to_nid(int cpupid) 1745 { 1746 return -1; 1747 } 1748 1749 static inline int cpupid_to_pid(int cpupid) 1750 { 1751 return -1; 1752 } 1753 1754 static inline int cpupid_to_cpu(int cpupid) 1755 { 1756 return -1; 1757 } 1758 1759 static inline int cpu_pid_to_cpupid(int nid, int pid) 1760 { 1761 return -1; 1762 } 1763 1764 static inline bool cpupid_pid_unset(int cpupid) 1765 { 1766 return true; 1767 } 1768 1769 static inline void page_cpupid_reset_last(struct page *page) 1770 { 1771 } 1772 1773 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1774 { 1775 return false; 1776 } 1777 1778 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1779 { 1780 } 1781 static inline bool folio_use_access_time(struct folio *folio) 1782 { 1783 return false; 1784 } 1785 #endif /* CONFIG_NUMA_BALANCING */ 1786 1787 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1788 1789 /* 1790 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1791 * setting tags for all pages to native kernel tag value 0xff, as the default 1792 * value 0x00 maps to 0xff. 1793 */ 1794 1795 static inline u8 page_kasan_tag(const struct page *page) 1796 { 1797 u8 tag = KASAN_TAG_KERNEL; 1798 1799 if (kasan_enabled()) { 1800 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1801 tag ^= 0xff; 1802 } 1803 1804 return tag; 1805 } 1806 1807 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1808 { 1809 unsigned long old_flags, flags; 1810 1811 if (!kasan_enabled()) 1812 return; 1813 1814 tag ^= 0xff; 1815 old_flags = READ_ONCE(page->flags); 1816 do { 1817 flags = old_flags; 1818 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1819 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1820 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1821 } 1822 1823 static inline void page_kasan_tag_reset(struct page *page) 1824 { 1825 if (kasan_enabled()) 1826 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1827 } 1828 1829 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1830 1831 static inline u8 page_kasan_tag(const struct page *page) 1832 { 1833 return 0xff; 1834 } 1835 1836 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1837 static inline void page_kasan_tag_reset(struct page *page) { } 1838 1839 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1840 1841 static inline struct zone *page_zone(const struct page *page) 1842 { 1843 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1844 } 1845 1846 static inline pg_data_t *page_pgdat(const struct page *page) 1847 { 1848 return NODE_DATA(page_to_nid(page)); 1849 } 1850 1851 static inline struct zone *folio_zone(const struct folio *folio) 1852 { 1853 return page_zone(&folio->page); 1854 } 1855 1856 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1857 { 1858 return page_pgdat(&folio->page); 1859 } 1860 1861 #ifdef SECTION_IN_PAGE_FLAGS 1862 static inline void set_page_section(struct page *page, unsigned long section) 1863 { 1864 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1865 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1866 } 1867 1868 static inline unsigned long page_to_section(const struct page *page) 1869 { 1870 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1871 } 1872 #endif 1873 1874 /** 1875 * folio_pfn - Return the Page Frame Number of a folio. 1876 * @folio: The folio. 1877 * 1878 * A folio may contain multiple pages. The pages have consecutive 1879 * Page Frame Numbers. 1880 * 1881 * Return: The Page Frame Number of the first page in the folio. 1882 */ 1883 static inline unsigned long folio_pfn(struct folio *folio) 1884 { 1885 return page_to_pfn(&folio->page); 1886 } 1887 1888 static inline struct folio *pfn_folio(unsigned long pfn) 1889 { 1890 return page_folio(pfn_to_page(pfn)); 1891 } 1892 1893 /** 1894 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1895 * @folio: The folio. 1896 * 1897 * This function checks if a folio has been pinned via a call to 1898 * a function in the pin_user_pages() family. 1899 * 1900 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1901 * because it means "definitely not pinned for DMA", but true means "probably 1902 * pinned for DMA, but possibly a false positive due to having at least 1903 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1904 * 1905 * False positives are OK, because: a) it's unlikely for a folio to 1906 * get that many refcounts, and b) all the callers of this routine are 1907 * expected to be able to deal gracefully with a false positive. 1908 * 1909 * For large folios, the result will be exactly correct. That's because 1910 * we have more tracking data available: the _pincount field is used 1911 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1912 * 1913 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1914 * 1915 * Return: True, if it is likely that the folio has been "dma-pinned". 1916 * False, if the folio is definitely not dma-pinned. 1917 */ 1918 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1919 { 1920 if (folio_test_large(folio)) 1921 return atomic_read(&folio->_pincount) > 0; 1922 1923 /* 1924 * folio_ref_count() is signed. If that refcount overflows, then 1925 * folio_ref_count() returns a negative value, and callers will avoid 1926 * further incrementing the refcount. 1927 * 1928 * Here, for that overflow case, use the sign bit to count a little 1929 * bit higher via unsigned math, and thus still get an accurate result. 1930 */ 1931 return ((unsigned int)folio_ref_count(folio)) >= 1932 GUP_PIN_COUNTING_BIAS; 1933 } 1934 1935 /* 1936 * This should most likely only be called during fork() to see whether we 1937 * should break the cow immediately for an anon page on the src mm. 1938 * 1939 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1940 */ 1941 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1942 struct folio *folio) 1943 { 1944 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1945 1946 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1947 return false; 1948 1949 return folio_maybe_dma_pinned(folio); 1950 } 1951 1952 /** 1953 * is_zero_page - Query if a page is a zero page 1954 * @page: The page to query 1955 * 1956 * This returns true if @page is one of the permanent zero pages. 1957 */ 1958 static inline bool is_zero_page(const struct page *page) 1959 { 1960 return is_zero_pfn(page_to_pfn(page)); 1961 } 1962 1963 /** 1964 * is_zero_folio - Query if a folio is a zero page 1965 * @folio: The folio to query 1966 * 1967 * This returns true if @folio is one of the permanent zero pages. 1968 */ 1969 static inline bool is_zero_folio(const struct folio *folio) 1970 { 1971 return is_zero_page(&folio->page); 1972 } 1973 1974 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1975 #ifdef CONFIG_MIGRATION 1976 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1977 { 1978 #ifdef CONFIG_CMA 1979 int mt = folio_migratetype(folio); 1980 1981 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1982 return false; 1983 #endif 1984 /* The zero page can be "pinned" but gets special handling. */ 1985 if (is_zero_folio(folio)) 1986 return true; 1987 1988 /* Coherent device memory must always allow eviction. */ 1989 if (folio_is_device_coherent(folio)) 1990 return false; 1991 1992 /* Otherwise, non-movable zone folios can be pinned. */ 1993 return !folio_is_zone_movable(folio); 1994 1995 } 1996 #else 1997 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1998 { 1999 return true; 2000 } 2001 #endif 2002 2003 static inline void set_page_zone(struct page *page, enum zone_type zone) 2004 { 2005 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2006 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2007 } 2008 2009 static inline void set_page_node(struct page *page, unsigned long node) 2010 { 2011 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2012 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2013 } 2014 2015 static inline void set_page_links(struct page *page, enum zone_type zone, 2016 unsigned long node, unsigned long pfn) 2017 { 2018 set_page_zone(page, zone); 2019 set_page_node(page, node); 2020 #ifdef SECTION_IN_PAGE_FLAGS 2021 set_page_section(page, pfn_to_section_nr(pfn)); 2022 #endif 2023 } 2024 2025 /** 2026 * folio_nr_pages - The number of pages in the folio. 2027 * @folio: The folio. 2028 * 2029 * Return: A positive power of two. 2030 */ 2031 static inline long folio_nr_pages(const struct folio *folio) 2032 { 2033 if (!folio_test_large(folio)) 2034 return 1; 2035 #ifdef CONFIG_64BIT 2036 return folio->_folio_nr_pages; 2037 #else 2038 return 1L << (folio->_flags_1 & 0xff); 2039 #endif 2040 } 2041 2042 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2043 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2044 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2045 #else 2046 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2047 #endif 2048 2049 /* 2050 * compound_nr() returns the number of pages in this potentially compound 2051 * page. compound_nr() can be called on a tail page, and is defined to 2052 * return 1 in that case. 2053 */ 2054 static inline unsigned long compound_nr(struct page *page) 2055 { 2056 struct folio *folio = (struct folio *)page; 2057 2058 if (!test_bit(PG_head, &folio->flags)) 2059 return 1; 2060 #ifdef CONFIG_64BIT 2061 return folio->_folio_nr_pages; 2062 #else 2063 return 1L << (folio->_flags_1 & 0xff); 2064 #endif 2065 } 2066 2067 /** 2068 * thp_nr_pages - The number of regular pages in this huge page. 2069 * @page: The head page of a huge page. 2070 */ 2071 static inline int thp_nr_pages(struct page *page) 2072 { 2073 return folio_nr_pages((struct folio *)page); 2074 } 2075 2076 /** 2077 * folio_next - Move to the next physical folio. 2078 * @folio: The folio we're currently operating on. 2079 * 2080 * If you have physically contiguous memory which may span more than 2081 * one folio (eg a &struct bio_vec), use this function to move from one 2082 * folio to the next. Do not use it if the memory is only virtually 2083 * contiguous as the folios are almost certainly not adjacent to each 2084 * other. This is the folio equivalent to writing ``page++``. 2085 * 2086 * Context: We assume that the folios are refcounted and/or locked at a 2087 * higher level and do not adjust the reference counts. 2088 * Return: The next struct folio. 2089 */ 2090 static inline struct folio *folio_next(struct folio *folio) 2091 { 2092 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2093 } 2094 2095 /** 2096 * folio_shift - The size of the memory described by this folio. 2097 * @folio: The folio. 2098 * 2099 * A folio represents a number of bytes which is a power-of-two in size. 2100 * This function tells you which power-of-two the folio is. See also 2101 * folio_size() and folio_order(). 2102 * 2103 * Context: The caller should have a reference on the folio to prevent 2104 * it from being split. It is not necessary for the folio to be locked. 2105 * Return: The base-2 logarithm of the size of this folio. 2106 */ 2107 static inline unsigned int folio_shift(const struct folio *folio) 2108 { 2109 return PAGE_SHIFT + folio_order(folio); 2110 } 2111 2112 /** 2113 * folio_size - The number of bytes in a folio. 2114 * @folio: The folio. 2115 * 2116 * Context: The caller should have a reference on the folio to prevent 2117 * it from being split. It is not necessary for the folio to be locked. 2118 * Return: The number of bytes in this folio. 2119 */ 2120 static inline size_t folio_size(const struct folio *folio) 2121 { 2122 return PAGE_SIZE << folio_order(folio); 2123 } 2124 2125 /** 2126 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2127 * tables of more than one MM 2128 * @folio: The folio. 2129 * 2130 * This function checks if the folio is currently mapped into more than one 2131 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2132 * ("mapped exclusively"). 2133 * 2134 * For KSM folios, this function also returns "mapped shared" when a folio is 2135 * mapped multiple times into the same MM, because the individual page mappings 2136 * are independent. 2137 * 2138 * As precise information is not easily available for all folios, this function 2139 * estimates the number of MMs ("sharers") that are currently mapping a folio 2140 * using the number of times the first page of the folio is currently mapped 2141 * into page tables. 2142 * 2143 * For small anonymous folios and anonymous hugetlb folios, the return 2144 * value will be exactly correct: non-KSM folios can only be mapped at most once 2145 * into an MM, and they cannot be partially mapped. KSM folios are 2146 * considered shared even if mapped multiple times into the same MM. 2147 * 2148 * For other folios, the result can be fuzzy: 2149 * #. For partially-mappable large folios (THP), the return value can wrongly 2150 * indicate "mapped exclusively" (false negative) when the folio is 2151 * only partially mapped into at least one MM. 2152 * #. For pagecache folios (including hugetlb), the return value can wrongly 2153 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2154 * cover the same file range. 2155 * 2156 * Further, this function only considers current page table mappings that 2157 * are tracked using the folio mapcount(s). 2158 * 2159 * This function does not consider: 2160 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2161 * pagecache, temporary unmapping for migration). 2162 * #. If the folio is mapped differently (VM_PFNMAP). 2163 * #. If hugetlb page table sharing applies. Callers might want to check 2164 * hugetlb_pmd_shared(). 2165 * 2166 * Return: Whether the folio is estimated to be mapped into more than one MM. 2167 */ 2168 static inline bool folio_likely_mapped_shared(struct folio *folio) 2169 { 2170 int mapcount = folio_mapcount(folio); 2171 2172 /* Only partially-mappable folios require more care. */ 2173 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2174 return mapcount > 1; 2175 2176 /* A single mapping implies "mapped exclusively". */ 2177 if (mapcount <= 1) 2178 return false; 2179 2180 /* If any page is mapped more than once we treat it "mapped shared". */ 2181 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2182 return true; 2183 2184 /* Let's guess based on the first subpage. */ 2185 return atomic_read(&folio->_mapcount) > 0; 2186 } 2187 2188 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2189 static inline int arch_make_folio_accessible(struct folio *folio) 2190 { 2191 return 0; 2192 } 2193 #endif 2194 2195 /* 2196 * Some inline functions in vmstat.h depend on page_zone() 2197 */ 2198 #include <linux/vmstat.h> 2199 2200 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2201 #define HASHED_PAGE_VIRTUAL 2202 #endif 2203 2204 #if defined(WANT_PAGE_VIRTUAL) 2205 static inline void *page_address(const struct page *page) 2206 { 2207 return page->virtual; 2208 } 2209 static inline void set_page_address(struct page *page, void *address) 2210 { 2211 page->virtual = address; 2212 } 2213 #define page_address_init() do { } while(0) 2214 #endif 2215 2216 #if defined(HASHED_PAGE_VIRTUAL) 2217 void *page_address(const struct page *page); 2218 void set_page_address(struct page *page, void *virtual); 2219 void page_address_init(void); 2220 #endif 2221 2222 static __always_inline void *lowmem_page_address(const struct page *page) 2223 { 2224 return page_to_virt(page); 2225 } 2226 2227 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2228 #define page_address(page) lowmem_page_address(page) 2229 #define set_page_address(page, address) do { } while(0) 2230 #define page_address_init() do { } while(0) 2231 #endif 2232 2233 static inline void *folio_address(const struct folio *folio) 2234 { 2235 return page_address(&folio->page); 2236 } 2237 2238 /* 2239 * Return true only if the page has been allocated with 2240 * ALLOC_NO_WATERMARKS and the low watermark was not 2241 * met implying that the system is under some pressure. 2242 */ 2243 static inline bool page_is_pfmemalloc(const struct page *page) 2244 { 2245 /* 2246 * lru.next has bit 1 set if the page is allocated from the 2247 * pfmemalloc reserves. Callers may simply overwrite it if 2248 * they do not need to preserve that information. 2249 */ 2250 return (uintptr_t)page->lru.next & BIT(1); 2251 } 2252 2253 /* 2254 * Return true only if the folio has been allocated with 2255 * ALLOC_NO_WATERMARKS and the low watermark was not 2256 * met implying that the system is under some pressure. 2257 */ 2258 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2259 { 2260 /* 2261 * lru.next has bit 1 set if the page is allocated from the 2262 * pfmemalloc reserves. Callers may simply overwrite it if 2263 * they do not need to preserve that information. 2264 */ 2265 return (uintptr_t)folio->lru.next & BIT(1); 2266 } 2267 2268 /* 2269 * Only to be called by the page allocator on a freshly allocated 2270 * page. 2271 */ 2272 static inline void set_page_pfmemalloc(struct page *page) 2273 { 2274 page->lru.next = (void *)BIT(1); 2275 } 2276 2277 static inline void clear_page_pfmemalloc(struct page *page) 2278 { 2279 page->lru.next = NULL; 2280 } 2281 2282 /* 2283 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2284 */ 2285 extern void pagefault_out_of_memory(void); 2286 2287 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2288 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2289 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2290 2291 /* 2292 * Parameter block passed down to zap_pte_range in exceptional cases. 2293 */ 2294 struct zap_details { 2295 struct folio *single_folio; /* Locked folio to be unmapped */ 2296 bool even_cows; /* Zap COWed private pages too? */ 2297 zap_flags_t zap_flags; /* Extra flags for zapping */ 2298 }; 2299 2300 /* 2301 * Whether to drop the pte markers, for example, the uffd-wp information for 2302 * file-backed memory. This should only be specified when we will completely 2303 * drop the page in the mm, either by truncation or unmapping of the vma. By 2304 * default, the flag is not set. 2305 */ 2306 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2307 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2308 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2309 2310 #ifdef CONFIG_SCHED_MM_CID 2311 void sched_mm_cid_before_execve(struct task_struct *t); 2312 void sched_mm_cid_after_execve(struct task_struct *t); 2313 void sched_mm_cid_fork(struct task_struct *t); 2314 void sched_mm_cid_exit_signals(struct task_struct *t); 2315 static inline int task_mm_cid(struct task_struct *t) 2316 { 2317 return t->mm_cid; 2318 } 2319 #else 2320 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2321 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2322 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2323 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2324 static inline int task_mm_cid(struct task_struct *t) 2325 { 2326 /* 2327 * Use the processor id as a fall-back when the mm cid feature is 2328 * disabled. This provides functional per-cpu data structure accesses 2329 * in user-space, althrough it won't provide the memory usage benefits. 2330 */ 2331 return raw_smp_processor_id(); 2332 } 2333 #endif 2334 2335 #ifdef CONFIG_MMU 2336 extern bool can_do_mlock(void); 2337 #else 2338 static inline bool can_do_mlock(void) { return false; } 2339 #endif 2340 extern int user_shm_lock(size_t, struct ucounts *); 2341 extern void user_shm_unlock(size_t, struct ucounts *); 2342 2343 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2344 pte_t pte); 2345 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2346 pte_t pte); 2347 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2348 unsigned long addr, pmd_t pmd); 2349 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2350 pmd_t pmd); 2351 2352 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2353 unsigned long size); 2354 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2355 unsigned long size, struct zap_details *details); 2356 static inline void zap_vma_pages(struct vm_area_struct *vma) 2357 { 2358 zap_page_range_single(vma, vma->vm_start, 2359 vma->vm_end - vma->vm_start, NULL); 2360 } 2361 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2362 struct vm_area_struct *start_vma, unsigned long start, 2363 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2364 2365 struct mmu_notifier_range; 2366 2367 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2368 unsigned long end, unsigned long floor, unsigned long ceiling); 2369 int 2370 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2371 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2372 pte_t **ptepp, spinlock_t **ptlp); 2373 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2374 void *buf, int len, int write); 2375 2376 struct follow_pfnmap_args { 2377 /** 2378 * Inputs: 2379 * @vma: Pointer to @vm_area_struct struct 2380 * @address: the virtual address to walk 2381 */ 2382 struct vm_area_struct *vma; 2383 unsigned long address; 2384 /** 2385 * Internals: 2386 * 2387 * The caller shouldn't touch any of these. 2388 */ 2389 spinlock_t *lock; 2390 pte_t *ptep; 2391 /** 2392 * Outputs: 2393 * 2394 * @pfn: the PFN of the address 2395 * @pgprot: the pgprot_t of the mapping 2396 * @writable: whether the mapping is writable 2397 * @special: whether the mapping is a special mapping (real PFN maps) 2398 */ 2399 unsigned long pfn; 2400 pgprot_t pgprot; 2401 bool writable; 2402 bool special; 2403 }; 2404 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2405 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2406 2407 extern void truncate_pagecache(struct inode *inode, loff_t new); 2408 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2409 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2410 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2411 int generic_error_remove_folio(struct address_space *mapping, 2412 struct folio *folio); 2413 2414 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2415 unsigned long address, struct pt_regs *regs); 2416 2417 #ifdef CONFIG_MMU 2418 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2419 unsigned long address, unsigned int flags, 2420 struct pt_regs *regs); 2421 extern int fixup_user_fault(struct mm_struct *mm, 2422 unsigned long address, unsigned int fault_flags, 2423 bool *unlocked); 2424 void unmap_mapping_pages(struct address_space *mapping, 2425 pgoff_t start, pgoff_t nr, bool even_cows); 2426 void unmap_mapping_range(struct address_space *mapping, 2427 loff_t const holebegin, loff_t const holelen, int even_cows); 2428 #else 2429 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2430 unsigned long address, unsigned int flags, 2431 struct pt_regs *regs) 2432 { 2433 /* should never happen if there's no MMU */ 2434 BUG(); 2435 return VM_FAULT_SIGBUS; 2436 } 2437 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2438 unsigned int fault_flags, bool *unlocked) 2439 { 2440 /* should never happen if there's no MMU */ 2441 BUG(); 2442 return -EFAULT; 2443 } 2444 static inline void unmap_mapping_pages(struct address_space *mapping, 2445 pgoff_t start, pgoff_t nr, bool even_cows) { } 2446 static inline void unmap_mapping_range(struct address_space *mapping, 2447 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2448 #endif 2449 2450 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2451 loff_t const holebegin, loff_t const holelen) 2452 { 2453 unmap_mapping_range(mapping, holebegin, holelen, 0); 2454 } 2455 2456 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2457 unsigned long addr); 2458 2459 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2460 void *buf, int len, unsigned int gup_flags); 2461 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2462 void *buf, int len, unsigned int gup_flags); 2463 2464 long get_user_pages_remote(struct mm_struct *mm, 2465 unsigned long start, unsigned long nr_pages, 2466 unsigned int gup_flags, struct page **pages, 2467 int *locked); 2468 long pin_user_pages_remote(struct mm_struct *mm, 2469 unsigned long start, unsigned long nr_pages, 2470 unsigned int gup_flags, struct page **pages, 2471 int *locked); 2472 2473 /* 2474 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2475 */ 2476 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2477 unsigned long addr, 2478 int gup_flags, 2479 struct vm_area_struct **vmap) 2480 { 2481 struct page *page; 2482 struct vm_area_struct *vma; 2483 int got; 2484 2485 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2486 return ERR_PTR(-EINVAL); 2487 2488 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2489 2490 if (got < 0) 2491 return ERR_PTR(got); 2492 2493 vma = vma_lookup(mm, addr); 2494 if (WARN_ON_ONCE(!vma)) { 2495 put_page(page); 2496 return ERR_PTR(-EINVAL); 2497 } 2498 2499 *vmap = vma; 2500 return page; 2501 } 2502 2503 long get_user_pages(unsigned long start, unsigned long nr_pages, 2504 unsigned int gup_flags, struct page **pages); 2505 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2506 unsigned int gup_flags, struct page **pages); 2507 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2508 struct page **pages, unsigned int gup_flags); 2509 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2510 struct page **pages, unsigned int gup_flags); 2511 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2512 struct folio **folios, unsigned int max_folios, 2513 pgoff_t *offset); 2514 2515 int get_user_pages_fast(unsigned long start, int nr_pages, 2516 unsigned int gup_flags, struct page **pages); 2517 int pin_user_pages_fast(unsigned long start, int nr_pages, 2518 unsigned int gup_flags, struct page **pages); 2519 void folio_add_pin(struct folio *folio); 2520 2521 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2522 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2523 struct task_struct *task, bool bypass_rlim); 2524 2525 struct kvec; 2526 struct page *get_dump_page(unsigned long addr); 2527 2528 bool folio_mark_dirty(struct folio *folio); 2529 bool set_page_dirty(struct page *page); 2530 int set_page_dirty_lock(struct page *page); 2531 2532 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2533 2534 /* 2535 * Flags used by change_protection(). For now we make it a bitmap so 2536 * that we can pass in multiple flags just like parameters. However 2537 * for now all the callers are only use one of the flags at the same 2538 * time. 2539 */ 2540 /* 2541 * Whether we should manually check if we can map individual PTEs writable, 2542 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2543 * PTEs automatically in a writable mapping. 2544 */ 2545 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2546 /* Whether this protection change is for NUMA hints */ 2547 #define MM_CP_PROT_NUMA (1UL << 1) 2548 /* Whether this change is for write protecting */ 2549 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2550 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2551 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2552 MM_CP_UFFD_WP_RESOLVE) 2553 2554 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2555 pte_t pte); 2556 extern long change_protection(struct mmu_gather *tlb, 2557 struct vm_area_struct *vma, unsigned long start, 2558 unsigned long end, unsigned long cp_flags); 2559 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2560 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2561 unsigned long start, unsigned long end, unsigned long newflags); 2562 2563 /* 2564 * doesn't attempt to fault and will return short. 2565 */ 2566 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2567 unsigned int gup_flags, struct page **pages); 2568 2569 static inline bool get_user_page_fast_only(unsigned long addr, 2570 unsigned int gup_flags, struct page **pagep) 2571 { 2572 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2573 } 2574 /* 2575 * per-process(per-mm_struct) statistics. 2576 */ 2577 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2578 { 2579 return percpu_counter_read_positive(&mm->rss_stat[member]); 2580 } 2581 2582 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2583 2584 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2585 { 2586 percpu_counter_add(&mm->rss_stat[member], value); 2587 2588 mm_trace_rss_stat(mm, member); 2589 } 2590 2591 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2592 { 2593 percpu_counter_inc(&mm->rss_stat[member]); 2594 2595 mm_trace_rss_stat(mm, member); 2596 } 2597 2598 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2599 { 2600 percpu_counter_dec(&mm->rss_stat[member]); 2601 2602 mm_trace_rss_stat(mm, member); 2603 } 2604 2605 /* Optimized variant when folio is already known not to be anon */ 2606 static inline int mm_counter_file(struct folio *folio) 2607 { 2608 if (folio_test_swapbacked(folio)) 2609 return MM_SHMEMPAGES; 2610 return MM_FILEPAGES; 2611 } 2612 2613 static inline int mm_counter(struct folio *folio) 2614 { 2615 if (folio_test_anon(folio)) 2616 return MM_ANONPAGES; 2617 return mm_counter_file(folio); 2618 } 2619 2620 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2621 { 2622 return get_mm_counter(mm, MM_FILEPAGES) + 2623 get_mm_counter(mm, MM_ANONPAGES) + 2624 get_mm_counter(mm, MM_SHMEMPAGES); 2625 } 2626 2627 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2628 { 2629 return max(mm->hiwater_rss, get_mm_rss(mm)); 2630 } 2631 2632 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2633 { 2634 return max(mm->hiwater_vm, mm->total_vm); 2635 } 2636 2637 static inline void update_hiwater_rss(struct mm_struct *mm) 2638 { 2639 unsigned long _rss = get_mm_rss(mm); 2640 2641 if ((mm)->hiwater_rss < _rss) 2642 (mm)->hiwater_rss = _rss; 2643 } 2644 2645 static inline void update_hiwater_vm(struct mm_struct *mm) 2646 { 2647 if (mm->hiwater_vm < mm->total_vm) 2648 mm->hiwater_vm = mm->total_vm; 2649 } 2650 2651 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2652 { 2653 mm->hiwater_rss = get_mm_rss(mm); 2654 } 2655 2656 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2657 struct mm_struct *mm) 2658 { 2659 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2660 2661 if (*maxrss < hiwater_rss) 2662 *maxrss = hiwater_rss; 2663 } 2664 2665 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2666 static inline int pte_special(pte_t pte) 2667 { 2668 return 0; 2669 } 2670 2671 static inline pte_t pte_mkspecial(pte_t pte) 2672 { 2673 return pte; 2674 } 2675 #endif 2676 2677 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2678 static inline bool pmd_special(pmd_t pmd) 2679 { 2680 return false; 2681 } 2682 2683 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2684 { 2685 return pmd; 2686 } 2687 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2688 2689 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2690 static inline bool pud_special(pud_t pud) 2691 { 2692 return false; 2693 } 2694 2695 static inline pud_t pud_mkspecial(pud_t pud) 2696 { 2697 return pud; 2698 } 2699 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2700 2701 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2702 static inline int pte_devmap(pte_t pte) 2703 { 2704 return 0; 2705 } 2706 #endif 2707 2708 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2709 spinlock_t **ptl); 2710 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2711 spinlock_t **ptl) 2712 { 2713 pte_t *ptep; 2714 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2715 return ptep; 2716 } 2717 2718 #ifdef __PAGETABLE_P4D_FOLDED 2719 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2720 unsigned long address) 2721 { 2722 return 0; 2723 } 2724 #else 2725 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2726 #endif 2727 2728 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2729 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2730 unsigned long address) 2731 { 2732 return 0; 2733 } 2734 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2735 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2736 2737 #else 2738 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2739 2740 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2741 { 2742 if (mm_pud_folded(mm)) 2743 return; 2744 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2745 } 2746 2747 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2748 { 2749 if (mm_pud_folded(mm)) 2750 return; 2751 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2752 } 2753 #endif 2754 2755 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2756 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2757 unsigned long address) 2758 { 2759 return 0; 2760 } 2761 2762 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2763 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2764 2765 #else 2766 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2767 2768 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2769 { 2770 if (mm_pmd_folded(mm)) 2771 return; 2772 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2773 } 2774 2775 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2776 { 2777 if (mm_pmd_folded(mm)) 2778 return; 2779 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2780 } 2781 #endif 2782 2783 #ifdef CONFIG_MMU 2784 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2785 { 2786 atomic_long_set(&mm->pgtables_bytes, 0); 2787 } 2788 2789 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2790 { 2791 return atomic_long_read(&mm->pgtables_bytes); 2792 } 2793 2794 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2795 { 2796 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2797 } 2798 2799 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2800 { 2801 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2802 } 2803 #else 2804 2805 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2806 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2807 { 2808 return 0; 2809 } 2810 2811 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2812 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2813 #endif 2814 2815 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2816 int __pte_alloc_kernel(pmd_t *pmd); 2817 2818 #if defined(CONFIG_MMU) 2819 2820 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2821 unsigned long address) 2822 { 2823 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2824 NULL : p4d_offset(pgd, address); 2825 } 2826 2827 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2828 unsigned long address) 2829 { 2830 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2831 NULL : pud_offset(p4d, address); 2832 } 2833 2834 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2835 { 2836 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2837 NULL: pmd_offset(pud, address); 2838 } 2839 #endif /* CONFIG_MMU */ 2840 2841 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2842 { 2843 return page_ptdesc(virt_to_page(x)); 2844 } 2845 2846 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2847 { 2848 return page_to_virt(ptdesc_page(pt)); 2849 } 2850 2851 static inline void *ptdesc_address(const struct ptdesc *pt) 2852 { 2853 return folio_address(ptdesc_folio(pt)); 2854 } 2855 2856 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2857 { 2858 return folio_test_reserved(ptdesc_folio(pt)); 2859 } 2860 2861 /** 2862 * pagetable_alloc - Allocate pagetables 2863 * @gfp: GFP flags 2864 * @order: desired pagetable order 2865 * 2866 * pagetable_alloc allocates memory for page tables as well as a page table 2867 * descriptor to describe that memory. 2868 * 2869 * Return: The ptdesc describing the allocated page tables. 2870 */ 2871 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2872 { 2873 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2874 2875 return page_ptdesc(page); 2876 } 2877 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2878 2879 /** 2880 * pagetable_free - Free pagetables 2881 * @pt: The page table descriptor 2882 * 2883 * pagetable_free frees the memory of all page tables described by a page 2884 * table descriptor and the memory for the descriptor itself. 2885 */ 2886 static inline void pagetable_free(struct ptdesc *pt) 2887 { 2888 struct page *page = ptdesc_page(pt); 2889 2890 __free_pages(page, compound_order(page)); 2891 } 2892 2893 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 2894 #if ALLOC_SPLIT_PTLOCKS 2895 void __init ptlock_cache_init(void); 2896 bool ptlock_alloc(struct ptdesc *ptdesc); 2897 void ptlock_free(struct ptdesc *ptdesc); 2898 2899 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2900 { 2901 return ptdesc->ptl; 2902 } 2903 #else /* ALLOC_SPLIT_PTLOCKS */ 2904 static inline void ptlock_cache_init(void) 2905 { 2906 } 2907 2908 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2909 { 2910 return true; 2911 } 2912 2913 static inline void ptlock_free(struct ptdesc *ptdesc) 2914 { 2915 } 2916 2917 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2918 { 2919 return &ptdesc->ptl; 2920 } 2921 #endif /* ALLOC_SPLIT_PTLOCKS */ 2922 2923 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2924 { 2925 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2926 } 2927 2928 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2929 { 2930 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2931 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2932 return ptlock_ptr(virt_to_ptdesc(pte)); 2933 } 2934 2935 static inline bool ptlock_init(struct ptdesc *ptdesc) 2936 { 2937 /* 2938 * prep_new_page() initialize page->private (and therefore page->ptl) 2939 * with 0. Make sure nobody took it in use in between. 2940 * 2941 * It can happen if arch try to use slab for page table allocation: 2942 * slab code uses page->slab_cache, which share storage with page->ptl. 2943 */ 2944 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2945 if (!ptlock_alloc(ptdesc)) 2946 return false; 2947 spin_lock_init(ptlock_ptr(ptdesc)); 2948 return true; 2949 } 2950 2951 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2952 /* 2953 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2954 */ 2955 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2956 { 2957 return &mm->page_table_lock; 2958 } 2959 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2960 { 2961 return &mm->page_table_lock; 2962 } 2963 static inline void ptlock_cache_init(void) {} 2964 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2965 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2966 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 2967 2968 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2969 { 2970 struct folio *folio = ptdesc_folio(ptdesc); 2971 2972 if (!ptlock_init(ptdesc)) 2973 return false; 2974 __folio_set_pgtable(folio); 2975 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2976 return true; 2977 } 2978 2979 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2980 { 2981 struct folio *folio = ptdesc_folio(ptdesc); 2982 2983 ptlock_free(ptdesc); 2984 __folio_clear_pgtable(folio); 2985 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2986 } 2987 2988 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2989 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2990 { 2991 return __pte_offset_map(pmd, addr, NULL); 2992 } 2993 2994 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2995 unsigned long addr, spinlock_t **ptlp); 2996 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2997 unsigned long addr, spinlock_t **ptlp) 2998 { 2999 pte_t *pte; 3000 3001 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3002 return pte; 3003 } 3004 3005 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3006 unsigned long addr, spinlock_t **ptlp); 3007 3008 #define pte_unmap_unlock(pte, ptl) do { \ 3009 spin_unlock(ptl); \ 3010 pte_unmap(pte); \ 3011 } while (0) 3012 3013 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3014 3015 #define pte_alloc_map(mm, pmd, address) \ 3016 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3017 3018 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3019 (pte_alloc(mm, pmd) ? \ 3020 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3021 3022 #define pte_alloc_kernel(pmd, address) \ 3023 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3024 NULL: pte_offset_kernel(pmd, address)) 3025 3026 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3027 3028 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3029 { 3030 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3031 return virt_to_page((void *)((unsigned long) pmd & mask)); 3032 } 3033 3034 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3035 { 3036 return page_ptdesc(pmd_pgtable_page(pmd)); 3037 } 3038 3039 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3040 { 3041 return ptlock_ptr(pmd_ptdesc(pmd)); 3042 } 3043 3044 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3045 { 3046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3047 ptdesc->pmd_huge_pte = NULL; 3048 #endif 3049 return ptlock_init(ptdesc); 3050 } 3051 3052 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3053 { 3054 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3055 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3056 #endif 3057 ptlock_free(ptdesc); 3058 } 3059 3060 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3061 3062 #else 3063 3064 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3065 { 3066 return &mm->page_table_lock; 3067 } 3068 3069 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3070 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3071 3072 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3073 3074 #endif 3075 3076 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3077 { 3078 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3079 spin_lock(ptl); 3080 return ptl; 3081 } 3082 3083 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3084 { 3085 struct folio *folio = ptdesc_folio(ptdesc); 3086 3087 if (!pmd_ptlock_init(ptdesc)) 3088 return false; 3089 __folio_set_pgtable(folio); 3090 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3091 return true; 3092 } 3093 3094 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3095 { 3096 struct folio *folio = ptdesc_folio(ptdesc); 3097 3098 pmd_ptlock_free(ptdesc); 3099 __folio_clear_pgtable(folio); 3100 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3101 } 3102 3103 /* 3104 * No scalability reason to split PUD locks yet, but follow the same pattern 3105 * as the PMD locks to make it easier if we decide to. The VM should not be 3106 * considered ready to switch to split PUD locks yet; there may be places 3107 * which need to be converted from page_table_lock. 3108 */ 3109 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3110 { 3111 return &mm->page_table_lock; 3112 } 3113 3114 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3115 { 3116 spinlock_t *ptl = pud_lockptr(mm, pud); 3117 3118 spin_lock(ptl); 3119 return ptl; 3120 } 3121 3122 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3123 { 3124 struct folio *folio = ptdesc_folio(ptdesc); 3125 3126 __folio_set_pgtable(folio); 3127 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3128 } 3129 3130 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3131 { 3132 struct folio *folio = ptdesc_folio(ptdesc); 3133 3134 __folio_clear_pgtable(folio); 3135 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3136 } 3137 3138 extern void __init pagecache_init(void); 3139 extern void free_initmem(void); 3140 3141 /* 3142 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3143 * into the buddy system. The freed pages will be poisoned with pattern 3144 * "poison" if it's within range [0, UCHAR_MAX]. 3145 * Return pages freed into the buddy system. 3146 */ 3147 extern unsigned long free_reserved_area(void *start, void *end, 3148 int poison, const char *s); 3149 3150 extern void adjust_managed_page_count(struct page *page, long count); 3151 3152 extern void reserve_bootmem_region(phys_addr_t start, 3153 phys_addr_t end, int nid); 3154 3155 /* Free the reserved page into the buddy system, so it gets managed. */ 3156 void free_reserved_page(struct page *page); 3157 #define free_highmem_page(page) free_reserved_page(page) 3158 3159 static inline void mark_page_reserved(struct page *page) 3160 { 3161 SetPageReserved(page); 3162 adjust_managed_page_count(page, -1); 3163 } 3164 3165 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3166 { 3167 free_reserved_page(ptdesc_page(pt)); 3168 } 3169 3170 /* 3171 * Default method to free all the __init memory into the buddy system. 3172 * The freed pages will be poisoned with pattern "poison" if it's within 3173 * range [0, UCHAR_MAX]. 3174 * Return pages freed into the buddy system. 3175 */ 3176 static inline unsigned long free_initmem_default(int poison) 3177 { 3178 extern char __init_begin[], __init_end[]; 3179 3180 return free_reserved_area(&__init_begin, &__init_end, 3181 poison, "unused kernel image (initmem)"); 3182 } 3183 3184 static inline unsigned long get_num_physpages(void) 3185 { 3186 int nid; 3187 unsigned long phys_pages = 0; 3188 3189 for_each_online_node(nid) 3190 phys_pages += node_present_pages(nid); 3191 3192 return phys_pages; 3193 } 3194 3195 /* 3196 * Using memblock node mappings, an architecture may initialise its 3197 * zones, allocate the backing mem_map and account for memory holes in an 3198 * architecture independent manner. 3199 * 3200 * An architecture is expected to register range of page frames backed by 3201 * physical memory with memblock_add[_node]() before calling 3202 * free_area_init() passing in the PFN each zone ends at. At a basic 3203 * usage, an architecture is expected to do something like 3204 * 3205 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3206 * max_highmem_pfn}; 3207 * for_each_valid_physical_page_range() 3208 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3209 * free_area_init(max_zone_pfns); 3210 */ 3211 void free_area_init(unsigned long *max_zone_pfn); 3212 unsigned long node_map_pfn_alignment(void); 3213 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3214 unsigned long end_pfn); 3215 extern void get_pfn_range_for_nid(unsigned int nid, 3216 unsigned long *start_pfn, unsigned long *end_pfn); 3217 3218 #ifndef CONFIG_NUMA 3219 static inline int early_pfn_to_nid(unsigned long pfn) 3220 { 3221 return 0; 3222 } 3223 #else 3224 /* please see mm/page_alloc.c */ 3225 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3226 #endif 3227 3228 extern void mem_init(void); 3229 extern void __init mmap_init(void); 3230 3231 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3232 static inline void show_mem(void) 3233 { 3234 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3235 } 3236 extern long si_mem_available(void); 3237 extern void si_meminfo(struct sysinfo * val); 3238 extern void si_meminfo_node(struct sysinfo *val, int nid); 3239 3240 extern __printf(3, 4) 3241 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3242 3243 extern void setup_per_cpu_pageset(void); 3244 3245 /* nommu.c */ 3246 extern atomic_long_t mmap_pages_allocated; 3247 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3248 3249 /* interval_tree.c */ 3250 void vma_interval_tree_insert(struct vm_area_struct *node, 3251 struct rb_root_cached *root); 3252 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3253 struct vm_area_struct *prev, 3254 struct rb_root_cached *root); 3255 void vma_interval_tree_remove(struct vm_area_struct *node, 3256 struct rb_root_cached *root); 3257 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3258 unsigned long start, unsigned long last); 3259 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3260 unsigned long start, unsigned long last); 3261 3262 #define vma_interval_tree_foreach(vma, root, start, last) \ 3263 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3264 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3265 3266 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3267 struct rb_root_cached *root); 3268 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3269 struct rb_root_cached *root); 3270 struct anon_vma_chain * 3271 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3272 unsigned long start, unsigned long last); 3273 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3274 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3275 #ifdef CONFIG_DEBUG_VM_RB 3276 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3277 #endif 3278 3279 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3280 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3281 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3282 3283 /* mmap.c */ 3284 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3285 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3286 extern void exit_mmap(struct mm_struct *); 3287 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3288 3289 static inline int check_data_rlimit(unsigned long rlim, 3290 unsigned long new, 3291 unsigned long start, 3292 unsigned long end_data, 3293 unsigned long start_data) 3294 { 3295 if (rlim < RLIM_INFINITY) { 3296 if (((new - start) + (end_data - start_data)) > rlim) 3297 return -ENOSPC; 3298 } 3299 3300 return 0; 3301 } 3302 3303 extern int mm_take_all_locks(struct mm_struct *mm); 3304 extern void mm_drop_all_locks(struct mm_struct *mm); 3305 3306 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3307 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3308 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3309 extern struct file *get_task_exe_file(struct task_struct *task); 3310 3311 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3312 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3313 3314 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3315 const struct vm_special_mapping *sm); 3316 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3317 unsigned long addr, unsigned long len, 3318 unsigned long flags, 3319 const struct vm_special_mapping *spec); 3320 3321 unsigned long randomize_stack_top(unsigned long stack_top); 3322 unsigned long randomize_page(unsigned long start, unsigned long range); 3323 3324 unsigned long 3325 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3326 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3327 3328 static inline unsigned long 3329 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3330 unsigned long pgoff, unsigned long flags) 3331 { 3332 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3333 } 3334 3335 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3336 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3337 struct list_head *uf); 3338 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3339 unsigned long len, unsigned long prot, unsigned long flags, 3340 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3341 struct list_head *uf); 3342 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3343 unsigned long start, size_t len, struct list_head *uf, 3344 bool unlock); 3345 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3346 struct mm_struct *mm, unsigned long start, 3347 unsigned long end, struct list_head *uf, bool unlock); 3348 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3349 struct list_head *uf); 3350 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3351 3352 #ifdef CONFIG_MMU 3353 extern int __mm_populate(unsigned long addr, unsigned long len, 3354 int ignore_errors); 3355 static inline void mm_populate(unsigned long addr, unsigned long len) 3356 { 3357 /* Ignore errors */ 3358 (void) __mm_populate(addr, len, 1); 3359 } 3360 #else 3361 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3362 #endif 3363 3364 /* This takes the mm semaphore itself */ 3365 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3366 extern int vm_munmap(unsigned long, size_t); 3367 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3368 unsigned long, unsigned long, 3369 unsigned long, unsigned long); 3370 3371 struct vm_unmapped_area_info { 3372 #define VM_UNMAPPED_AREA_TOPDOWN 1 3373 unsigned long flags; 3374 unsigned long length; 3375 unsigned long low_limit; 3376 unsigned long high_limit; 3377 unsigned long align_mask; 3378 unsigned long align_offset; 3379 unsigned long start_gap; 3380 }; 3381 3382 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3383 3384 /* truncate.c */ 3385 extern void truncate_inode_pages(struct address_space *, loff_t); 3386 extern void truncate_inode_pages_range(struct address_space *, 3387 loff_t lstart, loff_t lend); 3388 extern void truncate_inode_pages_final(struct address_space *); 3389 3390 /* generic vm_area_ops exported for stackable file systems */ 3391 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3392 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3393 pgoff_t start_pgoff, pgoff_t end_pgoff); 3394 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3395 3396 extern unsigned long stack_guard_gap; 3397 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3398 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3399 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3400 3401 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3402 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3403 3404 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3405 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3406 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3407 struct vm_area_struct **pprev); 3408 3409 /* 3410 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3411 * NULL if none. Assume start_addr < end_addr. 3412 */ 3413 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3414 unsigned long start_addr, unsigned long end_addr); 3415 3416 /** 3417 * vma_lookup() - Find a VMA at a specific address 3418 * @mm: The process address space. 3419 * @addr: The user address. 3420 * 3421 * Return: The vm_area_struct at the given address, %NULL otherwise. 3422 */ 3423 static inline 3424 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3425 { 3426 return mtree_load(&mm->mm_mt, addr); 3427 } 3428 3429 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3430 { 3431 if (vma->vm_flags & VM_GROWSDOWN) 3432 return stack_guard_gap; 3433 3434 /* See reasoning around the VM_SHADOW_STACK definition */ 3435 if (vma->vm_flags & VM_SHADOW_STACK) 3436 return PAGE_SIZE; 3437 3438 return 0; 3439 } 3440 3441 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3442 { 3443 unsigned long gap = stack_guard_start_gap(vma); 3444 unsigned long vm_start = vma->vm_start; 3445 3446 vm_start -= gap; 3447 if (vm_start > vma->vm_start) 3448 vm_start = 0; 3449 return vm_start; 3450 } 3451 3452 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3453 { 3454 unsigned long vm_end = vma->vm_end; 3455 3456 if (vma->vm_flags & VM_GROWSUP) { 3457 vm_end += stack_guard_gap; 3458 if (vm_end < vma->vm_end) 3459 vm_end = -PAGE_SIZE; 3460 } 3461 return vm_end; 3462 } 3463 3464 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3465 { 3466 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3467 } 3468 3469 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3470 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3471 unsigned long vm_start, unsigned long vm_end) 3472 { 3473 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3474 3475 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3476 vma = NULL; 3477 3478 return vma; 3479 } 3480 3481 static inline bool range_in_vma(struct vm_area_struct *vma, 3482 unsigned long start, unsigned long end) 3483 { 3484 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3485 } 3486 3487 #ifdef CONFIG_MMU 3488 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3489 void vma_set_page_prot(struct vm_area_struct *vma); 3490 #else 3491 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3492 { 3493 return __pgprot(0); 3494 } 3495 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3496 { 3497 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3498 } 3499 #endif 3500 3501 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3502 3503 #ifdef CONFIG_NUMA_BALANCING 3504 unsigned long change_prot_numa(struct vm_area_struct *vma, 3505 unsigned long start, unsigned long end); 3506 #endif 3507 3508 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3509 unsigned long addr); 3510 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3511 unsigned long pfn, unsigned long size, pgprot_t); 3512 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3513 unsigned long pfn, unsigned long size, pgprot_t prot); 3514 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3515 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3516 struct page **pages, unsigned long *num); 3517 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3518 unsigned long num); 3519 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3520 unsigned long num); 3521 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3522 unsigned long pfn); 3523 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3524 unsigned long pfn, pgprot_t pgprot); 3525 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3526 pfn_t pfn); 3527 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3528 unsigned long addr, pfn_t pfn); 3529 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3530 3531 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3532 unsigned long addr, struct page *page) 3533 { 3534 int err = vm_insert_page(vma, addr, page); 3535 3536 if (err == -ENOMEM) 3537 return VM_FAULT_OOM; 3538 if (err < 0 && err != -EBUSY) 3539 return VM_FAULT_SIGBUS; 3540 3541 return VM_FAULT_NOPAGE; 3542 } 3543 3544 #ifndef io_remap_pfn_range 3545 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3546 unsigned long addr, unsigned long pfn, 3547 unsigned long size, pgprot_t prot) 3548 { 3549 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3550 } 3551 #endif 3552 3553 static inline vm_fault_t vmf_error(int err) 3554 { 3555 if (err == -ENOMEM) 3556 return VM_FAULT_OOM; 3557 else if (err == -EHWPOISON) 3558 return VM_FAULT_HWPOISON; 3559 return VM_FAULT_SIGBUS; 3560 } 3561 3562 /* 3563 * Convert errno to return value for ->page_mkwrite() calls. 3564 * 3565 * This should eventually be merged with vmf_error() above, but will need a 3566 * careful audit of all vmf_error() callers. 3567 */ 3568 static inline vm_fault_t vmf_fs_error(int err) 3569 { 3570 if (err == 0) 3571 return VM_FAULT_LOCKED; 3572 if (err == -EFAULT || err == -EAGAIN) 3573 return VM_FAULT_NOPAGE; 3574 if (err == -ENOMEM) 3575 return VM_FAULT_OOM; 3576 /* -ENOSPC, -EDQUOT, -EIO ... */ 3577 return VM_FAULT_SIGBUS; 3578 } 3579 3580 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3581 { 3582 if (vm_fault & VM_FAULT_OOM) 3583 return -ENOMEM; 3584 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3585 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3586 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3587 return -EFAULT; 3588 return 0; 3589 } 3590 3591 /* 3592 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3593 * a (NUMA hinting) fault is required. 3594 */ 3595 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3596 unsigned int flags) 3597 { 3598 /* 3599 * If callers don't want to honor NUMA hinting faults, no need to 3600 * determine if we would actually have to trigger a NUMA hinting fault. 3601 */ 3602 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3603 return true; 3604 3605 /* 3606 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3607 * 3608 * Requiring a fault here even for inaccessible VMAs would mean that 3609 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3610 * refuses to process NUMA hinting faults in inaccessible VMAs. 3611 */ 3612 return !vma_is_accessible(vma); 3613 } 3614 3615 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3616 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3617 unsigned long size, pte_fn_t fn, void *data); 3618 extern int apply_to_existing_page_range(struct mm_struct *mm, 3619 unsigned long address, unsigned long size, 3620 pte_fn_t fn, void *data); 3621 3622 #ifdef CONFIG_PAGE_POISONING 3623 extern void __kernel_poison_pages(struct page *page, int numpages); 3624 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3625 extern bool _page_poisoning_enabled_early; 3626 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3627 static inline bool page_poisoning_enabled(void) 3628 { 3629 return _page_poisoning_enabled_early; 3630 } 3631 /* 3632 * For use in fast paths after init_mem_debugging() has run, or when a 3633 * false negative result is not harmful when called too early. 3634 */ 3635 static inline bool page_poisoning_enabled_static(void) 3636 { 3637 return static_branch_unlikely(&_page_poisoning_enabled); 3638 } 3639 static inline void kernel_poison_pages(struct page *page, int numpages) 3640 { 3641 if (page_poisoning_enabled_static()) 3642 __kernel_poison_pages(page, numpages); 3643 } 3644 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3645 { 3646 if (page_poisoning_enabled_static()) 3647 __kernel_unpoison_pages(page, numpages); 3648 } 3649 #else 3650 static inline bool page_poisoning_enabled(void) { return false; } 3651 static inline bool page_poisoning_enabled_static(void) { return false; } 3652 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3653 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3654 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3655 #endif 3656 3657 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3658 static inline bool want_init_on_alloc(gfp_t flags) 3659 { 3660 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3661 &init_on_alloc)) 3662 return true; 3663 return flags & __GFP_ZERO; 3664 } 3665 3666 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3667 static inline bool want_init_on_free(void) 3668 { 3669 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3670 &init_on_free); 3671 } 3672 3673 extern bool _debug_pagealloc_enabled_early; 3674 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3675 3676 static inline bool debug_pagealloc_enabled(void) 3677 { 3678 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3679 _debug_pagealloc_enabled_early; 3680 } 3681 3682 /* 3683 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3684 * or when a false negative result is not harmful when called too early. 3685 */ 3686 static inline bool debug_pagealloc_enabled_static(void) 3687 { 3688 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3689 return false; 3690 3691 return static_branch_unlikely(&_debug_pagealloc_enabled); 3692 } 3693 3694 /* 3695 * To support DEBUG_PAGEALLOC architecture must ensure that 3696 * __kernel_map_pages() never fails 3697 */ 3698 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3699 #ifdef CONFIG_DEBUG_PAGEALLOC 3700 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3701 { 3702 if (debug_pagealloc_enabled_static()) 3703 __kernel_map_pages(page, numpages, 1); 3704 } 3705 3706 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3707 { 3708 if (debug_pagealloc_enabled_static()) 3709 __kernel_map_pages(page, numpages, 0); 3710 } 3711 3712 extern unsigned int _debug_guardpage_minorder; 3713 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3714 3715 static inline unsigned int debug_guardpage_minorder(void) 3716 { 3717 return _debug_guardpage_minorder; 3718 } 3719 3720 static inline bool debug_guardpage_enabled(void) 3721 { 3722 return static_branch_unlikely(&_debug_guardpage_enabled); 3723 } 3724 3725 static inline bool page_is_guard(struct page *page) 3726 { 3727 if (!debug_guardpage_enabled()) 3728 return false; 3729 3730 return PageGuard(page); 3731 } 3732 3733 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3734 static inline bool set_page_guard(struct zone *zone, struct page *page, 3735 unsigned int order) 3736 { 3737 if (!debug_guardpage_enabled()) 3738 return false; 3739 return __set_page_guard(zone, page, order); 3740 } 3741 3742 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3743 static inline void clear_page_guard(struct zone *zone, struct page *page, 3744 unsigned int order) 3745 { 3746 if (!debug_guardpage_enabled()) 3747 return; 3748 __clear_page_guard(zone, page, order); 3749 } 3750 3751 #else /* CONFIG_DEBUG_PAGEALLOC */ 3752 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3753 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3754 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3755 static inline bool debug_guardpage_enabled(void) { return false; } 3756 static inline bool page_is_guard(struct page *page) { return false; } 3757 static inline bool set_page_guard(struct zone *zone, struct page *page, 3758 unsigned int order) { return false; } 3759 static inline void clear_page_guard(struct zone *zone, struct page *page, 3760 unsigned int order) {} 3761 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3762 3763 #ifdef __HAVE_ARCH_GATE_AREA 3764 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3765 extern int in_gate_area_no_mm(unsigned long addr); 3766 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3767 #else 3768 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3769 { 3770 return NULL; 3771 } 3772 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3773 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3774 { 3775 return 0; 3776 } 3777 #endif /* __HAVE_ARCH_GATE_AREA */ 3778 3779 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3780 3781 #ifdef CONFIG_SYSCTL 3782 extern int sysctl_drop_caches; 3783 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3784 loff_t *); 3785 #endif 3786 3787 void drop_slab(void); 3788 3789 #ifndef CONFIG_MMU 3790 #define randomize_va_space 0 3791 #else 3792 extern int randomize_va_space; 3793 #endif 3794 3795 const char * arch_vma_name(struct vm_area_struct *vma); 3796 #ifdef CONFIG_MMU 3797 void print_vma_addr(char *prefix, unsigned long rip); 3798 #else 3799 static inline void print_vma_addr(char *prefix, unsigned long rip) 3800 { 3801 } 3802 #endif 3803 3804 void *sparse_buffer_alloc(unsigned long size); 3805 struct page * __populate_section_memmap(unsigned long pfn, 3806 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3807 struct dev_pagemap *pgmap); 3808 void pmd_init(void *addr); 3809 void pud_init(void *addr); 3810 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3811 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3812 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3813 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3814 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3815 struct vmem_altmap *altmap, struct page *reuse); 3816 void *vmemmap_alloc_block(unsigned long size, int node); 3817 struct vmem_altmap; 3818 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3819 struct vmem_altmap *altmap); 3820 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3821 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3822 unsigned long addr, unsigned long next); 3823 int vmemmap_check_pmd(pmd_t *pmd, int node, 3824 unsigned long addr, unsigned long next); 3825 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3826 int node, struct vmem_altmap *altmap); 3827 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3828 int node, struct vmem_altmap *altmap); 3829 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3830 struct vmem_altmap *altmap); 3831 void vmemmap_populate_print_last(void); 3832 #ifdef CONFIG_MEMORY_HOTPLUG 3833 void vmemmap_free(unsigned long start, unsigned long end, 3834 struct vmem_altmap *altmap); 3835 #endif 3836 3837 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3838 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3839 { 3840 /* number of pfns from base where pfn_to_page() is valid */ 3841 if (altmap) 3842 return altmap->reserve + altmap->free; 3843 return 0; 3844 } 3845 3846 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3847 unsigned long nr_pfns) 3848 { 3849 altmap->alloc -= nr_pfns; 3850 } 3851 #else 3852 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3853 { 3854 return 0; 3855 } 3856 3857 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3858 unsigned long nr_pfns) 3859 { 3860 } 3861 #endif 3862 3863 #define VMEMMAP_RESERVE_NR 2 3864 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3865 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3866 struct dev_pagemap *pgmap) 3867 { 3868 unsigned long nr_pages; 3869 unsigned long nr_vmemmap_pages; 3870 3871 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3872 return false; 3873 3874 nr_pages = pgmap_vmemmap_nr(pgmap); 3875 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3876 /* 3877 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3878 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3879 */ 3880 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3881 } 3882 /* 3883 * If we don't have an architecture override, use the generic rule 3884 */ 3885 #ifndef vmemmap_can_optimize 3886 #define vmemmap_can_optimize __vmemmap_can_optimize 3887 #endif 3888 3889 #else 3890 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3891 struct dev_pagemap *pgmap) 3892 { 3893 return false; 3894 } 3895 #endif 3896 3897 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3898 unsigned long nr_pages); 3899 3900 enum mf_flags { 3901 MF_COUNT_INCREASED = 1 << 0, 3902 MF_ACTION_REQUIRED = 1 << 1, 3903 MF_MUST_KILL = 1 << 2, 3904 MF_SOFT_OFFLINE = 1 << 3, 3905 MF_UNPOISON = 1 << 4, 3906 MF_SW_SIMULATED = 1 << 5, 3907 MF_NO_RETRY = 1 << 6, 3908 MF_MEM_PRE_REMOVE = 1 << 7, 3909 }; 3910 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3911 unsigned long count, int mf_flags); 3912 extern int memory_failure(unsigned long pfn, int flags); 3913 extern void memory_failure_queue_kick(int cpu); 3914 extern int unpoison_memory(unsigned long pfn); 3915 extern atomic_long_t num_poisoned_pages __read_mostly; 3916 extern int soft_offline_page(unsigned long pfn, int flags); 3917 #ifdef CONFIG_MEMORY_FAILURE 3918 /* 3919 * Sysfs entries for memory failure handling statistics. 3920 */ 3921 extern const struct attribute_group memory_failure_attr_group; 3922 extern void memory_failure_queue(unsigned long pfn, int flags); 3923 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3924 bool *migratable_cleared); 3925 void num_poisoned_pages_inc(unsigned long pfn); 3926 void num_poisoned_pages_sub(unsigned long pfn, long i); 3927 #else 3928 static inline void memory_failure_queue(unsigned long pfn, int flags) 3929 { 3930 } 3931 3932 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3933 bool *migratable_cleared) 3934 { 3935 return 0; 3936 } 3937 3938 static inline void num_poisoned_pages_inc(unsigned long pfn) 3939 { 3940 } 3941 3942 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3943 { 3944 } 3945 #endif 3946 3947 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3948 extern void memblk_nr_poison_inc(unsigned long pfn); 3949 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3950 #else 3951 static inline void memblk_nr_poison_inc(unsigned long pfn) 3952 { 3953 } 3954 3955 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3956 { 3957 } 3958 #endif 3959 3960 #ifndef arch_memory_failure 3961 static inline int arch_memory_failure(unsigned long pfn, int flags) 3962 { 3963 return -ENXIO; 3964 } 3965 #endif 3966 3967 #ifndef arch_is_platform_page 3968 static inline bool arch_is_platform_page(u64 paddr) 3969 { 3970 return false; 3971 } 3972 #endif 3973 3974 /* 3975 * Error handlers for various types of pages. 3976 */ 3977 enum mf_result { 3978 MF_IGNORED, /* Error: cannot be handled */ 3979 MF_FAILED, /* Error: handling failed */ 3980 MF_DELAYED, /* Will be handled later */ 3981 MF_RECOVERED, /* Successfully recovered */ 3982 }; 3983 3984 enum mf_action_page_type { 3985 MF_MSG_KERNEL, 3986 MF_MSG_KERNEL_HIGH_ORDER, 3987 MF_MSG_DIFFERENT_COMPOUND, 3988 MF_MSG_HUGE, 3989 MF_MSG_FREE_HUGE, 3990 MF_MSG_GET_HWPOISON, 3991 MF_MSG_UNMAP_FAILED, 3992 MF_MSG_DIRTY_SWAPCACHE, 3993 MF_MSG_CLEAN_SWAPCACHE, 3994 MF_MSG_DIRTY_MLOCKED_LRU, 3995 MF_MSG_CLEAN_MLOCKED_LRU, 3996 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3997 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3998 MF_MSG_DIRTY_LRU, 3999 MF_MSG_CLEAN_LRU, 4000 MF_MSG_TRUNCATED_LRU, 4001 MF_MSG_BUDDY, 4002 MF_MSG_DAX, 4003 MF_MSG_UNSPLIT_THP, 4004 MF_MSG_ALREADY_POISONED, 4005 MF_MSG_UNKNOWN, 4006 }; 4007 4008 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4009 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4010 int copy_user_large_folio(struct folio *dst, struct folio *src, 4011 unsigned long addr_hint, 4012 struct vm_area_struct *vma); 4013 long copy_folio_from_user(struct folio *dst_folio, 4014 const void __user *usr_src, 4015 bool allow_pagefault); 4016 4017 /** 4018 * vma_is_special_huge - Are transhuge page-table entries considered special? 4019 * @vma: Pointer to the struct vm_area_struct to consider 4020 * 4021 * Whether transhuge page-table entries are considered "special" following 4022 * the definition in vm_normal_page(). 4023 * 4024 * Return: true if transhuge page-table entries should be considered special, 4025 * false otherwise. 4026 */ 4027 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4028 { 4029 return vma_is_dax(vma) || (vma->vm_file && 4030 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4031 } 4032 4033 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4034 4035 #if MAX_NUMNODES > 1 4036 void __init setup_nr_node_ids(void); 4037 #else 4038 static inline void setup_nr_node_ids(void) {} 4039 #endif 4040 4041 extern int memcmp_pages(struct page *page1, struct page *page2); 4042 4043 static inline int pages_identical(struct page *page1, struct page *page2) 4044 { 4045 return !memcmp_pages(page1, page2); 4046 } 4047 4048 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4049 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4050 pgoff_t first_index, pgoff_t nr, 4051 pgoff_t bitmap_pgoff, 4052 unsigned long *bitmap, 4053 pgoff_t *start, 4054 pgoff_t *end); 4055 4056 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4057 pgoff_t first_index, pgoff_t nr); 4058 #endif 4059 4060 extern int sysctl_nr_trim_pages; 4061 4062 #ifdef CONFIG_PRINTK 4063 void mem_dump_obj(void *object); 4064 #else 4065 static inline void mem_dump_obj(void *object) {} 4066 #endif 4067 4068 /** 4069 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4070 * handle them. 4071 * @seals: the seals to check 4072 * @vma: the vma to operate on 4073 * 4074 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4075 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4076 */ 4077 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4078 { 4079 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4080 /* 4081 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4082 * write seals are active. 4083 */ 4084 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4085 return -EPERM; 4086 4087 /* 4088 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4089 * MAP_SHARED and read-only, take care to not allow mprotect to 4090 * revert protections on such mappings. Do this only for shared 4091 * mappings. For private mappings, don't need to mask 4092 * VM_MAYWRITE as we still want them to be COW-writable. 4093 */ 4094 if (vma->vm_flags & VM_SHARED) 4095 vm_flags_clear(vma, VM_MAYWRITE); 4096 } 4097 4098 return 0; 4099 } 4100 4101 #ifdef CONFIG_ANON_VMA_NAME 4102 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4103 unsigned long len_in, 4104 struct anon_vma_name *anon_name); 4105 #else 4106 static inline int 4107 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4108 unsigned long len_in, struct anon_vma_name *anon_name) { 4109 return 0; 4110 } 4111 #endif 4112 4113 #ifdef CONFIG_UNACCEPTED_MEMORY 4114 4115 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4116 void accept_memory(phys_addr_t start, unsigned long size); 4117 4118 #else 4119 4120 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4121 unsigned long size) 4122 { 4123 return false; 4124 } 4125 4126 static inline void accept_memory(phys_addr_t start, unsigned long size) 4127 { 4128 } 4129 4130 #endif 4131 4132 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4133 { 4134 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4135 } 4136 4137 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4138 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4139 4140 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4141 4142 #ifdef CONFIG_MEM_ALLOC_PROFILING 4143 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4144 { 4145 int i; 4146 struct alloc_tag *tag; 4147 unsigned int nr_pages = 1 << new_order; 4148 4149 if (!mem_alloc_profiling_enabled()) 4150 return; 4151 4152 tag = pgalloc_tag_get(&folio->page); 4153 if (!tag) 4154 return; 4155 4156 for (i = nr_pages; i < (1 << old_order); i += nr_pages) { 4157 union codetag_ref *ref = get_page_tag_ref(folio_page(folio, i)); 4158 4159 if (ref) { 4160 /* Set new reference to point to the original tag */ 4161 alloc_tag_ref_set(ref, tag); 4162 put_page_tag_ref(ref); 4163 } 4164 } 4165 } 4166 4167 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4168 { 4169 struct alloc_tag *tag; 4170 union codetag_ref *ref; 4171 4172 tag = pgalloc_tag_get(&old->page); 4173 if (!tag) 4174 return; 4175 4176 ref = get_page_tag_ref(&new->page); 4177 if (!ref) 4178 return; 4179 4180 /* Clear the old ref to the original allocation tag. */ 4181 clear_page_tag_ref(&old->page); 4182 /* Decrement the counters of the tag on get_new_folio. */ 4183 alloc_tag_sub(ref, folio_nr_pages(new)); 4184 4185 __alloc_tag_ref_set(ref, tag); 4186 4187 put_page_tag_ref(ref); 4188 } 4189 #else /* !CONFIG_MEM_ALLOC_PROFILING */ 4190 static inline void pgalloc_tag_split(struct folio *folio, int old_order, int new_order) 4191 { 4192 } 4193 4194 static inline void pgalloc_tag_copy(struct folio *new, struct folio *old) 4195 { 4196 } 4197 #endif /* CONFIG_MEM_ALLOC_PROFILING */ 4198 4199 #endif /* _LINUX_MM_H */ 4200