1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/range.h> 16 #include <linux/pfn.h> 17 #include <linux/bit_spinlock.h> 18 19 struct mempolicy; 20 struct anon_vma; 21 struct file_ra_state; 22 struct user_struct; 23 struct writeback_control; 24 25 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 26 extern unsigned long max_mapnr; 27 #endif 28 29 extern unsigned long num_physpages; 30 extern unsigned long totalram_pages; 31 extern void * high_memory; 32 extern int page_cluster; 33 34 #ifdef CONFIG_SYSCTL 35 extern int sysctl_legacy_va_layout; 36 #else 37 #define sysctl_legacy_va_layout 0 38 #endif 39 40 #include <asm/page.h> 41 #include <asm/pgtable.h> 42 #include <asm/processor.h> 43 44 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 45 46 /* to align the pointer to the (next) page boundary */ 47 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 48 49 /* 50 * Linux kernel virtual memory manager primitives. 51 * The idea being to have a "virtual" mm in the same way 52 * we have a virtual fs - giving a cleaner interface to the 53 * mm details, and allowing different kinds of memory mappings 54 * (from shared memory to executable loading to arbitrary 55 * mmap() functions). 56 */ 57 58 extern struct kmem_cache *vm_area_cachep; 59 60 #ifndef CONFIG_MMU 61 extern struct rb_root nommu_region_tree; 62 extern struct rw_semaphore nommu_region_sem; 63 64 extern unsigned int kobjsize(const void *objp); 65 #endif 66 67 /* 68 * vm_flags in vm_area_struct, see mm_types.h. 69 */ 70 #define VM_READ 0x00000001 /* currently active flags */ 71 #define VM_WRITE 0x00000002 72 #define VM_EXEC 0x00000004 73 #define VM_SHARED 0x00000008 74 75 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 76 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 77 #define VM_MAYWRITE 0x00000020 78 #define VM_MAYEXEC 0x00000040 79 #define VM_MAYSHARE 0x00000080 80 81 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 82 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64) 83 #define VM_GROWSUP 0x00000200 84 #else 85 #define VM_GROWSUP 0x00000000 86 #define VM_NOHUGEPAGE 0x00000200 /* MADV_NOHUGEPAGE marked this vma */ 87 #endif 88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91 #define VM_EXECUTABLE 0x00001000 92 #define VM_LOCKED 0x00002000 93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 104 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 105 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 106 #ifndef CONFIG_TRANSPARENT_HUGEPAGE 107 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 108 #else 109 #define VM_HUGEPAGE 0x01000000 /* MADV_HUGEPAGE marked this vma */ 110 #endif 111 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 112 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 113 114 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 115 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 116 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */ 117 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */ 118 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 119 120 /* Bits set in the VMA until the stack is in its final location */ 121 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 122 123 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 124 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 125 #endif 126 127 #ifdef CONFIG_STACK_GROWSUP 128 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 129 #else 130 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 131 #endif 132 133 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 134 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 135 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 136 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 137 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 138 139 /* 140 * special vmas that are non-mergable, non-mlock()able 141 */ 142 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP) 143 144 /* 145 * mapping from the currently active vm_flags protection bits (the 146 * low four bits) to a page protection mask.. 147 */ 148 extern pgprot_t protection_map[16]; 149 150 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 151 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 152 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 153 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 154 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 155 156 /* 157 * This interface is used by x86 PAT code to identify a pfn mapping that is 158 * linear over entire vma. This is to optimize PAT code that deals with 159 * marking the physical region with a particular prot. This is not for generic 160 * mm use. Note also that this check will not work if the pfn mapping is 161 * linear for a vma starting at physical address 0. In which case PAT code 162 * falls back to slow path of reserving physical range page by page. 163 */ 164 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma) 165 { 166 return (vma->vm_flags & VM_PFN_AT_MMAP); 167 } 168 169 static inline int is_pfn_mapping(struct vm_area_struct *vma) 170 { 171 return (vma->vm_flags & VM_PFNMAP); 172 } 173 174 /* 175 * vm_fault is filled by the the pagefault handler and passed to the vma's 176 * ->fault function. The vma's ->fault is responsible for returning a bitmask 177 * of VM_FAULT_xxx flags that give details about how the fault was handled. 178 * 179 * pgoff should be used in favour of virtual_address, if possible. If pgoff 180 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 181 * mapping support. 182 */ 183 struct vm_fault { 184 unsigned int flags; /* FAULT_FLAG_xxx flags */ 185 pgoff_t pgoff; /* Logical page offset based on vma */ 186 void __user *virtual_address; /* Faulting virtual address */ 187 188 struct page *page; /* ->fault handlers should return a 189 * page here, unless VM_FAULT_NOPAGE 190 * is set (which is also implied by 191 * VM_FAULT_ERROR). 192 */ 193 }; 194 195 /* 196 * These are the virtual MM functions - opening of an area, closing and 197 * unmapping it (needed to keep files on disk up-to-date etc), pointer 198 * to the functions called when a no-page or a wp-page exception occurs. 199 */ 200 struct vm_operations_struct { 201 void (*open)(struct vm_area_struct * area); 202 void (*close)(struct vm_area_struct * area); 203 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 204 205 /* notification that a previously read-only page is about to become 206 * writable, if an error is returned it will cause a SIGBUS */ 207 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 208 209 /* called by access_process_vm when get_user_pages() fails, typically 210 * for use by special VMAs that can switch between memory and hardware 211 */ 212 int (*access)(struct vm_area_struct *vma, unsigned long addr, 213 void *buf, int len, int write); 214 #ifdef CONFIG_NUMA 215 /* 216 * set_policy() op must add a reference to any non-NULL @new mempolicy 217 * to hold the policy upon return. Caller should pass NULL @new to 218 * remove a policy and fall back to surrounding context--i.e. do not 219 * install a MPOL_DEFAULT policy, nor the task or system default 220 * mempolicy. 221 */ 222 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 223 224 /* 225 * get_policy() op must add reference [mpol_get()] to any policy at 226 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 227 * in mm/mempolicy.c will do this automatically. 228 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 229 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 230 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 231 * must return NULL--i.e., do not "fallback" to task or system default 232 * policy. 233 */ 234 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 235 unsigned long addr); 236 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 237 const nodemask_t *to, unsigned long flags); 238 #endif 239 }; 240 241 struct mmu_gather; 242 struct inode; 243 244 #define page_private(page) ((page)->private) 245 #define set_page_private(page, v) ((page)->private = (v)) 246 247 /* 248 * FIXME: take this include out, include page-flags.h in 249 * files which need it (119 of them) 250 */ 251 #include <linux/page-flags.h> 252 #include <linux/huge_mm.h> 253 254 /* 255 * Methods to modify the page usage count. 256 * 257 * What counts for a page usage: 258 * - cache mapping (page->mapping) 259 * - private data (page->private) 260 * - page mapped in a task's page tables, each mapping 261 * is counted separately 262 * 263 * Also, many kernel routines increase the page count before a critical 264 * routine so they can be sure the page doesn't go away from under them. 265 */ 266 267 /* 268 * Drop a ref, return true if the refcount fell to zero (the page has no users) 269 */ 270 static inline int put_page_testzero(struct page *page) 271 { 272 VM_BUG_ON(atomic_read(&page->_count) == 0); 273 return atomic_dec_and_test(&page->_count); 274 } 275 276 /* 277 * Try to grab a ref unless the page has a refcount of zero, return false if 278 * that is the case. 279 */ 280 static inline int get_page_unless_zero(struct page *page) 281 { 282 return atomic_inc_not_zero(&page->_count); 283 } 284 285 extern int page_is_ram(unsigned long pfn); 286 287 /* Support for virtually mapped pages */ 288 struct page *vmalloc_to_page(const void *addr); 289 unsigned long vmalloc_to_pfn(const void *addr); 290 291 /* 292 * Determine if an address is within the vmalloc range 293 * 294 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 295 * is no special casing required. 296 */ 297 static inline int is_vmalloc_addr(const void *x) 298 { 299 #ifdef CONFIG_MMU 300 unsigned long addr = (unsigned long)x; 301 302 return addr >= VMALLOC_START && addr < VMALLOC_END; 303 #else 304 return 0; 305 #endif 306 } 307 #ifdef CONFIG_MMU 308 extern int is_vmalloc_or_module_addr(const void *x); 309 #else 310 static inline int is_vmalloc_or_module_addr(const void *x) 311 { 312 return 0; 313 } 314 #endif 315 316 static inline void compound_lock(struct page *page) 317 { 318 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 319 bit_spin_lock(PG_compound_lock, &page->flags); 320 #endif 321 } 322 323 static inline void compound_unlock(struct page *page) 324 { 325 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 326 bit_spin_unlock(PG_compound_lock, &page->flags); 327 #endif 328 } 329 330 static inline unsigned long compound_lock_irqsave(struct page *page) 331 { 332 unsigned long uninitialized_var(flags); 333 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 334 local_irq_save(flags); 335 compound_lock(page); 336 #endif 337 return flags; 338 } 339 340 static inline void compound_unlock_irqrestore(struct page *page, 341 unsigned long flags) 342 { 343 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 344 compound_unlock(page); 345 local_irq_restore(flags); 346 #endif 347 } 348 349 static inline struct page *compound_head(struct page *page) 350 { 351 if (unlikely(PageTail(page))) 352 return page->first_page; 353 return page; 354 } 355 356 static inline int page_count(struct page *page) 357 { 358 return atomic_read(&compound_head(page)->_count); 359 } 360 361 static inline void get_page(struct page *page) 362 { 363 /* 364 * Getting a normal page or the head of a compound page 365 * requires to already have an elevated page->_count. Only if 366 * we're getting a tail page, the elevated page->_count is 367 * required only in the head page, so for tail pages the 368 * bugcheck only verifies that the page->_count isn't 369 * negative. 370 */ 371 VM_BUG_ON(atomic_read(&page->_count) < !PageTail(page)); 372 atomic_inc(&page->_count); 373 /* 374 * Getting a tail page will elevate both the head and tail 375 * page->_count(s). 376 */ 377 if (unlikely(PageTail(page))) { 378 /* 379 * This is safe only because 380 * __split_huge_page_refcount can't run under 381 * get_page(). 382 */ 383 VM_BUG_ON(atomic_read(&page->first_page->_count) <= 0); 384 atomic_inc(&page->first_page->_count); 385 } 386 } 387 388 static inline struct page *virt_to_head_page(const void *x) 389 { 390 struct page *page = virt_to_page(x); 391 return compound_head(page); 392 } 393 394 /* 395 * Setup the page count before being freed into the page allocator for 396 * the first time (boot or memory hotplug) 397 */ 398 static inline void init_page_count(struct page *page) 399 { 400 atomic_set(&page->_count, 1); 401 } 402 403 /* 404 * PageBuddy() indicate that the page is free and in the buddy system 405 * (see mm/page_alloc.c). 406 * 407 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 408 * -2 so that an underflow of the page_mapcount() won't be mistaken 409 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 410 * efficiently by most CPU architectures. 411 */ 412 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 413 414 static inline int PageBuddy(struct page *page) 415 { 416 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 417 } 418 419 static inline void __SetPageBuddy(struct page *page) 420 { 421 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 422 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 423 } 424 425 static inline void __ClearPageBuddy(struct page *page) 426 { 427 VM_BUG_ON(!PageBuddy(page)); 428 atomic_set(&page->_mapcount, -1); 429 } 430 431 void put_page(struct page *page); 432 void put_pages_list(struct list_head *pages); 433 434 void split_page(struct page *page, unsigned int order); 435 int split_free_page(struct page *page); 436 437 /* 438 * Compound pages have a destructor function. Provide a 439 * prototype for that function and accessor functions. 440 * These are _only_ valid on the head of a PG_compound page. 441 */ 442 typedef void compound_page_dtor(struct page *); 443 444 static inline void set_compound_page_dtor(struct page *page, 445 compound_page_dtor *dtor) 446 { 447 page[1].lru.next = (void *)dtor; 448 } 449 450 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 451 { 452 return (compound_page_dtor *)page[1].lru.next; 453 } 454 455 static inline int compound_order(struct page *page) 456 { 457 if (!PageHead(page)) 458 return 0; 459 return (unsigned long)page[1].lru.prev; 460 } 461 462 static inline int compound_trans_order(struct page *page) 463 { 464 int order; 465 unsigned long flags; 466 467 if (!PageHead(page)) 468 return 0; 469 470 flags = compound_lock_irqsave(page); 471 order = compound_order(page); 472 compound_unlock_irqrestore(page, flags); 473 return order; 474 } 475 476 static inline void set_compound_order(struct page *page, unsigned long order) 477 { 478 page[1].lru.prev = (void *)order; 479 } 480 481 #ifdef CONFIG_MMU 482 /* 483 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 484 * servicing faults for write access. In the normal case, do always want 485 * pte_mkwrite. But get_user_pages can cause write faults for mappings 486 * that do not have writing enabled, when used by access_process_vm. 487 */ 488 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 489 { 490 if (likely(vma->vm_flags & VM_WRITE)) 491 pte = pte_mkwrite(pte); 492 return pte; 493 } 494 #endif 495 496 /* 497 * Multiple processes may "see" the same page. E.g. for untouched 498 * mappings of /dev/null, all processes see the same page full of 499 * zeroes, and text pages of executables and shared libraries have 500 * only one copy in memory, at most, normally. 501 * 502 * For the non-reserved pages, page_count(page) denotes a reference count. 503 * page_count() == 0 means the page is free. page->lru is then used for 504 * freelist management in the buddy allocator. 505 * page_count() > 0 means the page has been allocated. 506 * 507 * Pages are allocated by the slab allocator in order to provide memory 508 * to kmalloc and kmem_cache_alloc. In this case, the management of the 509 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 510 * unless a particular usage is carefully commented. (the responsibility of 511 * freeing the kmalloc memory is the caller's, of course). 512 * 513 * A page may be used by anyone else who does a __get_free_page(). 514 * In this case, page_count still tracks the references, and should only 515 * be used through the normal accessor functions. The top bits of page->flags 516 * and page->virtual store page management information, but all other fields 517 * are unused and could be used privately, carefully. The management of this 518 * page is the responsibility of the one who allocated it, and those who have 519 * subsequently been given references to it. 520 * 521 * The other pages (we may call them "pagecache pages") are completely 522 * managed by the Linux memory manager: I/O, buffers, swapping etc. 523 * The following discussion applies only to them. 524 * 525 * A pagecache page contains an opaque `private' member, which belongs to the 526 * page's address_space. Usually, this is the address of a circular list of 527 * the page's disk buffers. PG_private must be set to tell the VM to call 528 * into the filesystem to release these pages. 529 * 530 * A page may belong to an inode's memory mapping. In this case, page->mapping 531 * is the pointer to the inode, and page->index is the file offset of the page, 532 * in units of PAGE_CACHE_SIZE. 533 * 534 * If pagecache pages are not associated with an inode, they are said to be 535 * anonymous pages. These may become associated with the swapcache, and in that 536 * case PG_swapcache is set, and page->private is an offset into the swapcache. 537 * 538 * In either case (swapcache or inode backed), the pagecache itself holds one 539 * reference to the page. Setting PG_private should also increment the 540 * refcount. The each user mapping also has a reference to the page. 541 * 542 * The pagecache pages are stored in a per-mapping radix tree, which is 543 * rooted at mapping->page_tree, and indexed by offset. 544 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 545 * lists, we instead now tag pages as dirty/writeback in the radix tree. 546 * 547 * All pagecache pages may be subject to I/O: 548 * - inode pages may need to be read from disk, 549 * - inode pages which have been modified and are MAP_SHARED may need 550 * to be written back to the inode on disk, 551 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 552 * modified may need to be swapped out to swap space and (later) to be read 553 * back into memory. 554 */ 555 556 /* 557 * The zone field is never updated after free_area_init_core() 558 * sets it, so none of the operations on it need to be atomic. 559 */ 560 561 562 /* 563 * page->flags layout: 564 * 565 * There are three possibilities for how page->flags get 566 * laid out. The first is for the normal case, without 567 * sparsemem. The second is for sparsemem when there is 568 * plenty of space for node and section. The last is when 569 * we have run out of space and have to fall back to an 570 * alternate (slower) way of determining the node. 571 * 572 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 573 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 574 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 575 */ 576 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 577 #define SECTIONS_WIDTH SECTIONS_SHIFT 578 #else 579 #define SECTIONS_WIDTH 0 580 #endif 581 582 #define ZONES_WIDTH ZONES_SHIFT 583 584 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 585 #define NODES_WIDTH NODES_SHIFT 586 #else 587 #ifdef CONFIG_SPARSEMEM_VMEMMAP 588 #error "Vmemmap: No space for nodes field in page flags" 589 #endif 590 #define NODES_WIDTH 0 591 #endif 592 593 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 594 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 595 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 596 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 597 598 /* 599 * We are going to use the flags for the page to node mapping if its in 600 * there. This includes the case where there is no node, so it is implicit. 601 */ 602 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 603 #define NODE_NOT_IN_PAGE_FLAGS 604 #endif 605 606 #ifndef PFN_SECTION_SHIFT 607 #define PFN_SECTION_SHIFT 0 608 #endif 609 610 /* 611 * Define the bit shifts to access each section. For non-existent 612 * sections we define the shift as 0; that plus a 0 mask ensures 613 * the compiler will optimise away reference to them. 614 */ 615 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 616 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 617 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 618 619 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 620 #ifdef NODE_NOT_IN_PAGE_FLAGS 621 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 622 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 623 SECTIONS_PGOFF : ZONES_PGOFF) 624 #else 625 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 626 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 627 NODES_PGOFF : ZONES_PGOFF) 628 #endif 629 630 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 631 632 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 633 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 634 #endif 635 636 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 637 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 638 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 639 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 640 641 static inline enum zone_type page_zonenum(struct page *page) 642 { 643 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 644 } 645 646 /* 647 * The identification function is only used by the buddy allocator for 648 * determining if two pages could be buddies. We are not really 649 * identifying a zone since we could be using a the section number 650 * id if we have not node id available in page flags. 651 * We guarantee only that it will return the same value for two 652 * combinable pages in a zone. 653 */ 654 static inline int page_zone_id(struct page *page) 655 { 656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 657 } 658 659 static inline int zone_to_nid(struct zone *zone) 660 { 661 #ifdef CONFIG_NUMA 662 return zone->node; 663 #else 664 return 0; 665 #endif 666 } 667 668 #ifdef NODE_NOT_IN_PAGE_FLAGS 669 extern int page_to_nid(struct page *page); 670 #else 671 static inline int page_to_nid(struct page *page) 672 { 673 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 674 } 675 #endif 676 677 static inline struct zone *page_zone(struct page *page) 678 { 679 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 680 } 681 682 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 683 static inline unsigned long page_to_section(struct page *page) 684 { 685 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 686 } 687 #endif 688 689 static inline void set_page_zone(struct page *page, enum zone_type zone) 690 { 691 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 692 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 693 } 694 695 static inline void set_page_node(struct page *page, unsigned long node) 696 { 697 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 698 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 699 } 700 701 static inline void set_page_section(struct page *page, unsigned long section) 702 { 703 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 704 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 705 } 706 707 static inline void set_page_links(struct page *page, enum zone_type zone, 708 unsigned long node, unsigned long pfn) 709 { 710 set_page_zone(page, zone); 711 set_page_node(page, node); 712 set_page_section(page, pfn_to_section_nr(pfn)); 713 } 714 715 /* 716 * Some inline functions in vmstat.h depend on page_zone() 717 */ 718 #include <linux/vmstat.h> 719 720 static __always_inline void *lowmem_page_address(struct page *page) 721 { 722 return __va(PFN_PHYS(page_to_pfn(page))); 723 } 724 725 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 726 #define HASHED_PAGE_VIRTUAL 727 #endif 728 729 #if defined(WANT_PAGE_VIRTUAL) 730 #define page_address(page) ((page)->virtual) 731 #define set_page_address(page, address) \ 732 do { \ 733 (page)->virtual = (address); \ 734 } while(0) 735 #define page_address_init() do { } while(0) 736 #endif 737 738 #if defined(HASHED_PAGE_VIRTUAL) 739 void *page_address(struct page *page); 740 void set_page_address(struct page *page, void *virtual); 741 void page_address_init(void); 742 #endif 743 744 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 745 #define page_address(page) lowmem_page_address(page) 746 #define set_page_address(page, address) do { } while(0) 747 #define page_address_init() do { } while(0) 748 #endif 749 750 /* 751 * On an anonymous page mapped into a user virtual memory area, 752 * page->mapping points to its anon_vma, not to a struct address_space; 753 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 754 * 755 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 756 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 757 * and then page->mapping points, not to an anon_vma, but to a private 758 * structure which KSM associates with that merged page. See ksm.h. 759 * 760 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 761 * 762 * Please note that, confusingly, "page_mapping" refers to the inode 763 * address_space which maps the page from disk; whereas "page_mapped" 764 * refers to user virtual address space into which the page is mapped. 765 */ 766 #define PAGE_MAPPING_ANON 1 767 #define PAGE_MAPPING_KSM 2 768 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 769 770 extern struct address_space swapper_space; 771 static inline struct address_space *page_mapping(struct page *page) 772 { 773 struct address_space *mapping = page->mapping; 774 775 VM_BUG_ON(PageSlab(page)); 776 if (unlikely(PageSwapCache(page))) 777 mapping = &swapper_space; 778 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 779 mapping = NULL; 780 return mapping; 781 } 782 783 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 784 static inline void *page_rmapping(struct page *page) 785 { 786 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 787 } 788 789 static inline int PageAnon(struct page *page) 790 { 791 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 792 } 793 794 /* 795 * Return the pagecache index of the passed page. Regular pagecache pages 796 * use ->index whereas swapcache pages use ->private 797 */ 798 static inline pgoff_t page_index(struct page *page) 799 { 800 if (unlikely(PageSwapCache(page))) 801 return page_private(page); 802 return page->index; 803 } 804 805 /* 806 * The atomic page->_mapcount, like _count, starts from -1: 807 * so that transitions both from it and to it can be tracked, 808 * using atomic_inc_and_test and atomic_add_negative(-1). 809 */ 810 static inline void reset_page_mapcount(struct page *page) 811 { 812 atomic_set(&(page)->_mapcount, -1); 813 } 814 815 static inline int page_mapcount(struct page *page) 816 { 817 return atomic_read(&(page)->_mapcount) + 1; 818 } 819 820 /* 821 * Return true if this page is mapped into pagetables. 822 */ 823 static inline int page_mapped(struct page *page) 824 { 825 return atomic_read(&(page)->_mapcount) >= 0; 826 } 827 828 /* 829 * Different kinds of faults, as returned by handle_mm_fault(). 830 * Used to decide whether a process gets delivered SIGBUS or 831 * just gets major/minor fault counters bumped up. 832 */ 833 834 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 835 836 #define VM_FAULT_OOM 0x0001 837 #define VM_FAULT_SIGBUS 0x0002 838 #define VM_FAULT_MAJOR 0x0004 839 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 840 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 841 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 842 843 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 844 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 845 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 846 847 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 848 849 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 850 VM_FAULT_HWPOISON_LARGE) 851 852 /* Encode hstate index for a hwpoisoned large page */ 853 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 854 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 855 856 /* 857 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 858 */ 859 extern void pagefault_out_of_memory(void); 860 861 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 862 863 /* 864 * Flags passed to show_mem() and __show_free_areas() to suppress output in 865 * various contexts. 866 */ 867 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 868 869 extern void show_free_areas(void); 870 extern void __show_free_areas(unsigned int flags); 871 872 int shmem_lock(struct file *file, int lock, struct user_struct *user); 873 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags); 874 int shmem_zero_setup(struct vm_area_struct *); 875 876 #ifndef CONFIG_MMU 877 extern unsigned long shmem_get_unmapped_area(struct file *file, 878 unsigned long addr, 879 unsigned long len, 880 unsigned long pgoff, 881 unsigned long flags); 882 #endif 883 884 extern int can_do_mlock(void); 885 extern int user_shm_lock(size_t, struct user_struct *); 886 extern void user_shm_unlock(size_t, struct user_struct *); 887 888 /* 889 * Parameter block passed down to zap_pte_range in exceptional cases. 890 */ 891 struct zap_details { 892 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 893 struct address_space *check_mapping; /* Check page->mapping if set */ 894 pgoff_t first_index; /* Lowest page->index to unmap */ 895 pgoff_t last_index; /* Highest page->index to unmap */ 896 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 897 unsigned long truncate_count; /* Compare vm_truncate_count */ 898 }; 899 900 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 901 pte_t pte); 902 903 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 904 unsigned long size); 905 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 906 unsigned long size, struct zap_details *); 907 unsigned long unmap_vmas(struct mmu_gather **tlb, 908 struct vm_area_struct *start_vma, unsigned long start_addr, 909 unsigned long end_addr, unsigned long *nr_accounted, 910 struct zap_details *); 911 912 /** 913 * mm_walk - callbacks for walk_page_range 914 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 915 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 916 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 917 * this handler is required to be able to handle 918 * pmd_trans_huge() pmds. They may simply choose to 919 * split_huge_page() instead of handling it explicitly. 920 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 921 * @pte_hole: if set, called for each hole at all levels 922 * @hugetlb_entry: if set, called for each hugetlb entry 923 * 924 * (see walk_page_range for more details) 925 */ 926 struct mm_walk { 927 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 928 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 929 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 930 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 931 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 932 int (*hugetlb_entry)(pte_t *, unsigned long, 933 unsigned long, unsigned long, struct mm_walk *); 934 struct mm_struct *mm; 935 void *private; 936 }; 937 938 int walk_page_range(unsigned long addr, unsigned long end, 939 struct mm_walk *walk); 940 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 941 unsigned long end, unsigned long floor, unsigned long ceiling); 942 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 943 struct vm_area_struct *vma); 944 void unmap_mapping_range(struct address_space *mapping, 945 loff_t const holebegin, loff_t const holelen, int even_cows); 946 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 947 unsigned long *pfn); 948 int follow_phys(struct vm_area_struct *vma, unsigned long address, 949 unsigned int flags, unsigned long *prot, resource_size_t *phys); 950 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 951 void *buf, int len, int write); 952 953 static inline void unmap_shared_mapping_range(struct address_space *mapping, 954 loff_t const holebegin, loff_t const holelen) 955 { 956 unmap_mapping_range(mapping, holebegin, holelen, 0); 957 } 958 959 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 960 extern void truncate_setsize(struct inode *inode, loff_t newsize); 961 extern int vmtruncate(struct inode *inode, loff_t offset); 962 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end); 963 964 int truncate_inode_page(struct address_space *mapping, struct page *page); 965 int generic_error_remove_page(struct address_space *mapping, struct page *page); 966 967 int invalidate_inode_page(struct page *page); 968 969 #ifdef CONFIG_MMU 970 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 971 unsigned long address, unsigned int flags); 972 #else 973 static inline int handle_mm_fault(struct mm_struct *mm, 974 struct vm_area_struct *vma, unsigned long address, 975 unsigned int flags) 976 { 977 /* should never happen if there's no MMU */ 978 BUG(); 979 return VM_FAULT_SIGBUS; 980 } 981 #endif 982 983 extern int make_pages_present(unsigned long addr, unsigned long end); 984 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 985 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 986 void *buf, int len, int write); 987 988 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 989 unsigned long start, int len, unsigned int foll_flags, 990 struct page **pages, struct vm_area_struct **vmas, 991 int *nonblocking); 992 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 993 unsigned long start, int nr_pages, int write, int force, 994 struct page **pages, struct vm_area_struct **vmas); 995 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 996 struct page **pages); 997 struct page *get_dump_page(unsigned long addr); 998 999 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1000 extern void do_invalidatepage(struct page *page, unsigned long offset); 1001 1002 int __set_page_dirty_nobuffers(struct page *page); 1003 int __set_page_dirty_no_writeback(struct page *page); 1004 int redirty_page_for_writepage(struct writeback_control *wbc, 1005 struct page *page); 1006 void account_page_dirtied(struct page *page, struct address_space *mapping); 1007 void account_page_writeback(struct page *page); 1008 int set_page_dirty(struct page *page); 1009 int set_page_dirty_lock(struct page *page); 1010 int clear_page_dirty_for_io(struct page *page); 1011 1012 /* Is the vma a continuation of the stack vma above it? */ 1013 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr) 1014 { 1015 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1016 } 1017 1018 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1019 unsigned long old_addr, struct vm_area_struct *new_vma, 1020 unsigned long new_addr, unsigned long len); 1021 extern unsigned long do_mremap(unsigned long addr, 1022 unsigned long old_len, unsigned long new_len, 1023 unsigned long flags, unsigned long new_addr); 1024 extern int mprotect_fixup(struct vm_area_struct *vma, 1025 struct vm_area_struct **pprev, unsigned long start, 1026 unsigned long end, unsigned long newflags); 1027 1028 /* 1029 * doesn't attempt to fault and will return short. 1030 */ 1031 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1032 struct page **pages); 1033 /* 1034 * per-process(per-mm_struct) statistics. 1035 */ 1036 #if defined(SPLIT_RSS_COUNTING) 1037 /* 1038 * The mm counters are not protected by its page_table_lock, 1039 * so must be incremented atomically. 1040 */ 1041 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1042 { 1043 atomic_long_set(&mm->rss_stat.count[member], value); 1044 } 1045 1046 unsigned long get_mm_counter(struct mm_struct *mm, int member); 1047 1048 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1049 { 1050 atomic_long_add(value, &mm->rss_stat.count[member]); 1051 } 1052 1053 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1054 { 1055 atomic_long_inc(&mm->rss_stat.count[member]); 1056 } 1057 1058 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1059 { 1060 atomic_long_dec(&mm->rss_stat.count[member]); 1061 } 1062 1063 #else /* !USE_SPLIT_PTLOCKS */ 1064 /* 1065 * The mm counters are protected by its page_table_lock, 1066 * so can be incremented directly. 1067 */ 1068 static inline void set_mm_counter(struct mm_struct *mm, int member, long value) 1069 { 1070 mm->rss_stat.count[member] = value; 1071 } 1072 1073 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1074 { 1075 return mm->rss_stat.count[member]; 1076 } 1077 1078 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1079 { 1080 mm->rss_stat.count[member] += value; 1081 } 1082 1083 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1084 { 1085 mm->rss_stat.count[member]++; 1086 } 1087 1088 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1089 { 1090 mm->rss_stat.count[member]--; 1091 } 1092 1093 #endif /* !USE_SPLIT_PTLOCKS */ 1094 1095 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1096 { 1097 return get_mm_counter(mm, MM_FILEPAGES) + 1098 get_mm_counter(mm, MM_ANONPAGES); 1099 } 1100 1101 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1102 { 1103 return max(mm->hiwater_rss, get_mm_rss(mm)); 1104 } 1105 1106 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1107 { 1108 return max(mm->hiwater_vm, mm->total_vm); 1109 } 1110 1111 static inline void update_hiwater_rss(struct mm_struct *mm) 1112 { 1113 unsigned long _rss = get_mm_rss(mm); 1114 1115 if ((mm)->hiwater_rss < _rss) 1116 (mm)->hiwater_rss = _rss; 1117 } 1118 1119 static inline void update_hiwater_vm(struct mm_struct *mm) 1120 { 1121 if (mm->hiwater_vm < mm->total_vm) 1122 mm->hiwater_vm = mm->total_vm; 1123 } 1124 1125 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1126 struct mm_struct *mm) 1127 { 1128 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1129 1130 if (*maxrss < hiwater_rss) 1131 *maxrss = hiwater_rss; 1132 } 1133 1134 #if defined(SPLIT_RSS_COUNTING) 1135 void sync_mm_rss(struct task_struct *task, struct mm_struct *mm); 1136 #else 1137 static inline void sync_mm_rss(struct task_struct *task, struct mm_struct *mm) 1138 { 1139 } 1140 #endif 1141 1142 /* 1143 * A callback you can register to apply pressure to ageable caches. 1144 * 1145 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 1146 * look through the least-recently-used 'nr_to_scan' entries and 1147 * attempt to free them up. It should return the number of objects 1148 * which remain in the cache. If it returns -1, it means it cannot do 1149 * any scanning at this time (eg. there is a risk of deadlock). 1150 * 1151 * The 'gfpmask' refers to the allocation we are currently trying to 1152 * fulfil. 1153 * 1154 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 1155 * querying the cache size, so a fastpath for that case is appropriate. 1156 */ 1157 struct shrinker { 1158 int (*shrink)(struct shrinker *, int nr_to_scan, gfp_t gfp_mask); 1159 int seeks; /* seeks to recreate an obj */ 1160 1161 /* These are for internal use */ 1162 struct list_head list; 1163 long nr; /* objs pending delete */ 1164 }; 1165 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 1166 extern void register_shrinker(struct shrinker *); 1167 extern void unregister_shrinker(struct shrinker *); 1168 1169 int vma_wants_writenotify(struct vm_area_struct *vma); 1170 1171 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1172 spinlock_t **ptl); 1173 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1174 spinlock_t **ptl) 1175 { 1176 pte_t *ptep; 1177 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1178 return ptep; 1179 } 1180 1181 #ifdef __PAGETABLE_PUD_FOLDED 1182 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1183 unsigned long address) 1184 { 1185 return 0; 1186 } 1187 #else 1188 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1189 #endif 1190 1191 #ifdef __PAGETABLE_PMD_FOLDED 1192 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1193 unsigned long address) 1194 { 1195 return 0; 1196 } 1197 #else 1198 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1199 #endif 1200 1201 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1202 pmd_t *pmd, unsigned long address); 1203 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1204 1205 /* 1206 * The following ifdef needed to get the 4level-fixup.h header to work. 1207 * Remove it when 4level-fixup.h has been removed. 1208 */ 1209 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1210 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1211 { 1212 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1213 NULL: pud_offset(pgd, address); 1214 } 1215 1216 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1217 { 1218 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1219 NULL: pmd_offset(pud, address); 1220 } 1221 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1222 1223 #if USE_SPLIT_PTLOCKS 1224 /* 1225 * We tuck a spinlock to guard each pagetable page into its struct page, 1226 * at page->private, with BUILD_BUG_ON to make sure that this will not 1227 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1228 * When freeing, reset page->mapping so free_pages_check won't complain. 1229 */ 1230 #define __pte_lockptr(page) &((page)->ptl) 1231 #define pte_lock_init(_page) do { \ 1232 spin_lock_init(__pte_lockptr(_page)); \ 1233 } while (0) 1234 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1235 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1236 #else /* !USE_SPLIT_PTLOCKS */ 1237 /* 1238 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1239 */ 1240 #define pte_lock_init(page) do {} while (0) 1241 #define pte_lock_deinit(page) do {} while (0) 1242 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1243 #endif /* USE_SPLIT_PTLOCKS */ 1244 1245 static inline void pgtable_page_ctor(struct page *page) 1246 { 1247 pte_lock_init(page); 1248 inc_zone_page_state(page, NR_PAGETABLE); 1249 } 1250 1251 static inline void pgtable_page_dtor(struct page *page) 1252 { 1253 pte_lock_deinit(page); 1254 dec_zone_page_state(page, NR_PAGETABLE); 1255 } 1256 1257 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1258 ({ \ 1259 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1260 pte_t *__pte = pte_offset_map(pmd, address); \ 1261 *(ptlp) = __ptl; \ 1262 spin_lock(__ptl); \ 1263 __pte; \ 1264 }) 1265 1266 #define pte_unmap_unlock(pte, ptl) do { \ 1267 spin_unlock(ptl); \ 1268 pte_unmap(pte); \ 1269 } while (0) 1270 1271 #define pte_alloc_map(mm, vma, pmd, address) \ 1272 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1273 pmd, address))? \ 1274 NULL: pte_offset_map(pmd, address)) 1275 1276 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1277 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1278 pmd, address))? \ 1279 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1280 1281 #define pte_alloc_kernel(pmd, address) \ 1282 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1283 NULL: pte_offset_kernel(pmd, address)) 1284 1285 extern void free_area_init(unsigned long * zones_size); 1286 extern void free_area_init_node(int nid, unsigned long * zones_size, 1287 unsigned long zone_start_pfn, unsigned long *zholes_size); 1288 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 1289 /* 1290 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 1291 * zones, allocate the backing mem_map and account for memory holes in a more 1292 * architecture independent manner. This is a substitute for creating the 1293 * zone_sizes[] and zholes_size[] arrays and passing them to 1294 * free_area_init_node() 1295 * 1296 * An architecture is expected to register range of page frames backed by 1297 * physical memory with add_active_range() before calling 1298 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1299 * usage, an architecture is expected to do something like 1300 * 1301 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1302 * max_highmem_pfn}; 1303 * for_each_valid_physical_page_range() 1304 * add_active_range(node_id, start_pfn, end_pfn) 1305 * free_area_init_nodes(max_zone_pfns); 1306 * 1307 * If the architecture guarantees that there are no holes in the ranges 1308 * registered with add_active_range(), free_bootmem_active_regions() 1309 * will call free_bootmem_node() for each registered physical page range. 1310 * Similarly sparse_memory_present_with_active_regions() calls 1311 * memory_present() for each range when SPARSEMEM is enabled. 1312 * 1313 * See mm/page_alloc.c for more information on each function exposed by 1314 * CONFIG_ARCH_POPULATES_NODE_MAP 1315 */ 1316 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1317 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 1318 unsigned long end_pfn); 1319 extern void remove_active_range(unsigned int nid, unsigned long start_pfn, 1320 unsigned long end_pfn); 1321 extern void remove_all_active_ranges(void); 1322 void sort_node_map(void); 1323 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1324 unsigned long end_pfn); 1325 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1326 unsigned long end_pfn); 1327 extern void get_pfn_range_for_nid(unsigned int nid, 1328 unsigned long *start_pfn, unsigned long *end_pfn); 1329 extern unsigned long find_min_pfn_with_active_regions(void); 1330 extern void free_bootmem_with_active_regions(int nid, 1331 unsigned long max_low_pfn); 1332 int add_from_early_node_map(struct range *range, int az, 1333 int nr_range, int nid); 1334 u64 __init find_memory_core_early(int nid, u64 size, u64 align, 1335 u64 goal, u64 limit); 1336 typedef int (*work_fn_t)(unsigned long, unsigned long, void *); 1337 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data); 1338 extern void sparse_memory_present_with_active_regions(int nid); 1339 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 1340 1341 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \ 1342 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1343 static inline int __early_pfn_to_nid(unsigned long pfn) 1344 { 1345 return 0; 1346 } 1347 #else 1348 /* please see mm/page_alloc.c */ 1349 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1350 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1351 /* there is a per-arch backend function. */ 1352 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1353 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1354 #endif 1355 1356 extern void set_dma_reserve(unsigned long new_dma_reserve); 1357 extern void memmap_init_zone(unsigned long, int, unsigned long, 1358 unsigned long, enum memmap_context); 1359 extern void setup_per_zone_wmarks(void); 1360 extern void calculate_zone_inactive_ratio(struct zone *zone); 1361 extern void mem_init(void); 1362 extern void __init mmap_init(void); 1363 extern void show_mem(unsigned int flags); 1364 extern void si_meminfo(struct sysinfo * val); 1365 extern void si_meminfo_node(struct sysinfo *val, int nid); 1366 extern int after_bootmem; 1367 1368 extern void setup_per_cpu_pageset(void); 1369 1370 extern void zone_pcp_update(struct zone *zone); 1371 1372 /* nommu.c */ 1373 extern atomic_long_t mmap_pages_allocated; 1374 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1375 1376 /* prio_tree.c */ 1377 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1378 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1379 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1380 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1381 struct prio_tree_iter *iter); 1382 1383 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1384 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1385 (vma = vma_prio_tree_next(vma, iter)); ) 1386 1387 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1388 struct list_head *list) 1389 { 1390 vma->shared.vm_set.parent = NULL; 1391 list_add_tail(&vma->shared.vm_set.list, list); 1392 } 1393 1394 /* mmap.c */ 1395 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1396 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1397 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1398 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1399 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1400 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1401 struct mempolicy *); 1402 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1403 extern int split_vma(struct mm_struct *, 1404 struct vm_area_struct *, unsigned long addr, int new_below); 1405 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1406 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1407 struct rb_node **, struct rb_node *); 1408 extern void unlink_file_vma(struct vm_area_struct *); 1409 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1410 unsigned long addr, unsigned long len, pgoff_t pgoff); 1411 extern void exit_mmap(struct mm_struct *); 1412 1413 extern int mm_take_all_locks(struct mm_struct *mm); 1414 extern void mm_drop_all_locks(struct mm_struct *mm); 1415 1416 #ifdef CONFIG_PROC_FS 1417 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */ 1418 extern void added_exe_file_vma(struct mm_struct *mm); 1419 extern void removed_exe_file_vma(struct mm_struct *mm); 1420 #else 1421 static inline void added_exe_file_vma(struct mm_struct *mm) 1422 {} 1423 1424 static inline void removed_exe_file_vma(struct mm_struct *mm) 1425 {} 1426 #endif /* CONFIG_PROC_FS */ 1427 1428 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1429 extern int install_special_mapping(struct mm_struct *mm, 1430 unsigned long addr, unsigned long len, 1431 unsigned long flags, struct page **pages); 1432 1433 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1434 1435 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1436 unsigned long len, unsigned long prot, 1437 unsigned long flag, unsigned long pgoff); 1438 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1439 unsigned long len, unsigned long flags, 1440 unsigned int vm_flags, unsigned long pgoff); 1441 1442 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1443 unsigned long len, unsigned long prot, 1444 unsigned long flag, unsigned long offset) 1445 { 1446 unsigned long ret = -EINVAL; 1447 if ((offset + PAGE_ALIGN(len)) < offset) 1448 goto out; 1449 if (!(offset & ~PAGE_MASK)) 1450 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1451 out: 1452 return ret; 1453 } 1454 1455 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1456 1457 extern unsigned long do_brk(unsigned long, unsigned long); 1458 1459 /* filemap.c */ 1460 extern unsigned long page_unuse(struct page *); 1461 extern void truncate_inode_pages(struct address_space *, loff_t); 1462 extern void truncate_inode_pages_range(struct address_space *, 1463 loff_t lstart, loff_t lend); 1464 1465 /* generic vm_area_ops exported for stackable file systems */ 1466 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1467 1468 /* mm/page-writeback.c */ 1469 int write_one_page(struct page *page, int wait); 1470 void task_dirty_inc(struct task_struct *tsk); 1471 1472 /* readahead.c */ 1473 #define VM_MAX_READAHEAD 128 /* kbytes */ 1474 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1475 1476 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1477 pgoff_t offset, unsigned long nr_to_read); 1478 1479 void page_cache_sync_readahead(struct address_space *mapping, 1480 struct file_ra_state *ra, 1481 struct file *filp, 1482 pgoff_t offset, 1483 unsigned long size); 1484 1485 void page_cache_async_readahead(struct address_space *mapping, 1486 struct file_ra_state *ra, 1487 struct file *filp, 1488 struct page *pg, 1489 pgoff_t offset, 1490 unsigned long size); 1491 1492 unsigned long max_sane_readahead(unsigned long nr); 1493 unsigned long ra_submit(struct file_ra_state *ra, 1494 struct address_space *mapping, 1495 struct file *filp); 1496 1497 /* Do stack extension */ 1498 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1499 #if VM_GROWSUP 1500 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1501 #else 1502 #define expand_upwards(vma, address) do { } while (0) 1503 #endif 1504 extern int expand_stack_downwards(struct vm_area_struct *vma, 1505 unsigned long address); 1506 1507 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1508 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1509 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1510 struct vm_area_struct **pprev); 1511 1512 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1513 NULL if none. Assume start_addr < end_addr. */ 1514 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1515 { 1516 struct vm_area_struct * vma = find_vma(mm,start_addr); 1517 1518 if (vma && end_addr <= vma->vm_start) 1519 vma = NULL; 1520 return vma; 1521 } 1522 1523 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1524 { 1525 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1526 } 1527 1528 #ifdef CONFIG_MMU 1529 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1530 #else 1531 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1532 { 1533 return __pgprot(0); 1534 } 1535 #endif 1536 1537 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1538 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1539 unsigned long pfn, unsigned long size, pgprot_t); 1540 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1541 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1542 unsigned long pfn); 1543 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1544 unsigned long pfn); 1545 1546 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1547 unsigned int foll_flags); 1548 #define FOLL_WRITE 0x01 /* check pte is writable */ 1549 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1550 #define FOLL_GET 0x04 /* do get_page on page */ 1551 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1552 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1553 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1554 * and return without waiting upon it */ 1555 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1556 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1557 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1558 1559 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1560 void *data); 1561 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1562 unsigned long size, pte_fn_t fn, void *data); 1563 1564 #ifdef CONFIG_PROC_FS 1565 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1566 #else 1567 static inline void vm_stat_account(struct mm_struct *mm, 1568 unsigned long flags, struct file *file, long pages) 1569 { 1570 } 1571 #endif /* CONFIG_PROC_FS */ 1572 1573 #ifdef CONFIG_DEBUG_PAGEALLOC 1574 extern int debug_pagealloc_enabled; 1575 1576 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1577 1578 static inline void enable_debug_pagealloc(void) 1579 { 1580 debug_pagealloc_enabled = 1; 1581 } 1582 #ifdef CONFIG_HIBERNATION 1583 extern bool kernel_page_present(struct page *page); 1584 #endif /* CONFIG_HIBERNATION */ 1585 #else 1586 static inline void 1587 kernel_map_pages(struct page *page, int numpages, int enable) {} 1588 static inline void enable_debug_pagealloc(void) 1589 { 1590 } 1591 #ifdef CONFIG_HIBERNATION 1592 static inline bool kernel_page_present(struct page *page) { return true; } 1593 #endif /* CONFIG_HIBERNATION */ 1594 #endif 1595 1596 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1597 #ifdef __HAVE_ARCH_GATE_AREA 1598 int in_gate_area_no_mm(unsigned long addr); 1599 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1600 #else 1601 int in_gate_area_no_mm(unsigned long addr); 1602 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1603 #endif /* __HAVE_ARCH_GATE_AREA */ 1604 1605 int drop_caches_sysctl_handler(struct ctl_table *, int, 1606 void __user *, size_t *, loff_t *); 1607 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1608 unsigned long lru_pages); 1609 1610 #ifndef CONFIG_MMU 1611 #define randomize_va_space 0 1612 #else 1613 extern int randomize_va_space; 1614 #endif 1615 1616 const char * arch_vma_name(struct vm_area_struct *vma); 1617 void print_vma_addr(char *prefix, unsigned long rip); 1618 1619 void sparse_mem_maps_populate_node(struct page **map_map, 1620 unsigned long pnum_begin, 1621 unsigned long pnum_end, 1622 unsigned long map_count, 1623 int nodeid); 1624 1625 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1626 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1627 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1628 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1629 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1630 void *vmemmap_alloc_block(unsigned long size, int node); 1631 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1632 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1633 int vmemmap_populate_basepages(struct page *start_page, 1634 unsigned long pages, int node); 1635 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1636 void vmemmap_populate_print_last(void); 1637 1638 1639 enum mf_flags { 1640 MF_COUNT_INCREASED = 1 << 0, 1641 }; 1642 extern void memory_failure(unsigned long pfn, int trapno); 1643 extern int __memory_failure(unsigned long pfn, int trapno, int flags); 1644 extern int unpoison_memory(unsigned long pfn); 1645 extern int sysctl_memory_failure_early_kill; 1646 extern int sysctl_memory_failure_recovery; 1647 extern void shake_page(struct page *p, int access); 1648 extern atomic_long_t mce_bad_pages; 1649 extern int soft_offline_page(struct page *page, int flags); 1650 1651 extern void dump_page(struct page *page); 1652 1653 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1654 extern void clear_huge_page(struct page *page, 1655 unsigned long addr, 1656 unsigned int pages_per_huge_page); 1657 extern void copy_user_huge_page(struct page *dst, struct page *src, 1658 unsigned long addr, struct vm_area_struct *vma, 1659 unsigned int pages_per_huge_page); 1660 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1661 1662 #endif /* __KERNEL__ */ 1663 #endif /* _LINUX_MM_H */ 1664