1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct file_ra_state; 40 struct user_struct; 41 struct writeback_control; 42 struct bdi_writeback; 43 struct pt_regs; 44 45 extern int sysctl_page_lock_unfairness; 46 47 void init_mm_internals(void); 48 49 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 50 extern unsigned long max_mapnr; 51 52 static inline void set_max_mapnr(unsigned long limit) 53 { 54 max_mapnr = limit; 55 } 56 #else 57 static inline void set_max_mapnr(unsigned long limit) { } 58 #endif 59 60 extern atomic_long_t _totalram_pages; 61 static inline unsigned long totalram_pages(void) 62 { 63 return (unsigned long)atomic_long_read(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_inc(void) 67 { 68 atomic_long_inc(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_dec(void) 72 { 73 atomic_long_dec(&_totalram_pages); 74 } 75 76 static inline void totalram_pages_add(long count) 77 { 78 atomic_long_add(count, &_totalram_pages); 79 } 80 81 extern void * high_memory; 82 extern int page_cluster; 83 84 #ifdef CONFIG_SYSCTL 85 extern int sysctl_legacy_va_layout; 86 #else 87 #define sysctl_legacy_va_layout 0 88 #endif 89 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 91 extern const int mmap_rnd_bits_min; 92 extern const int mmap_rnd_bits_max; 93 extern int mmap_rnd_bits __read_mostly; 94 #endif 95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 96 extern const int mmap_rnd_compat_bits_min; 97 extern const int mmap_rnd_compat_bits_max; 98 extern int mmap_rnd_compat_bits __read_mostly; 99 #endif 100 101 #include <asm/page.h> 102 #include <asm/processor.h> 103 104 /* 105 * Architectures that support memory tagging (assigning tags to memory regions, 106 * embedding these tags into addresses that point to these memory regions, and 107 * checking that the memory and the pointer tags match on memory accesses) 108 * redefine this macro to strip tags from pointers. 109 * It's defined as noop for architectures that don't support memory tagging. 110 */ 111 #ifndef untagged_addr 112 #define untagged_addr(addr) (addr) 113 #endif 114 115 #ifndef __pa_symbol 116 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 117 #endif 118 119 #ifndef page_to_virt 120 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 121 #endif 122 123 #ifndef lm_alias 124 #define lm_alias(x) __va(__pa_symbol(x)) 125 #endif 126 127 /* 128 * To prevent common memory management code establishing 129 * a zero page mapping on a read fault. 130 * This macro should be defined within <asm/pgtable.h>. 131 * s390 does this to prevent multiplexing of hardware bits 132 * related to the physical page in case of virtualization. 133 */ 134 #ifndef mm_forbids_zeropage 135 #define mm_forbids_zeropage(X) (0) 136 #endif 137 138 /* 139 * On some architectures it is expensive to call memset() for small sizes. 140 * If an architecture decides to implement their own version of 141 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 142 * define their own version of this macro in <asm/pgtable.h> 143 */ 144 #if BITS_PER_LONG == 64 145 /* This function must be updated when the size of struct page grows above 80 146 * or reduces below 56. The idea that compiler optimizes out switch() 147 * statement, and only leaves move/store instructions. Also the compiler can 148 * combine write statements if they are both assignments and can be reordered, 149 * this can result in several of the writes here being dropped. 150 */ 151 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 152 static inline void __mm_zero_struct_page(struct page *page) 153 { 154 unsigned long *_pp = (void *)page; 155 156 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 157 BUILD_BUG_ON(sizeof(struct page) & 7); 158 BUILD_BUG_ON(sizeof(struct page) < 56); 159 BUILD_BUG_ON(sizeof(struct page) > 80); 160 161 switch (sizeof(struct page)) { 162 case 80: 163 _pp[9] = 0; 164 fallthrough; 165 case 72: 166 _pp[8] = 0; 167 fallthrough; 168 case 64: 169 _pp[7] = 0; 170 fallthrough; 171 case 56: 172 _pp[6] = 0; 173 _pp[5] = 0; 174 _pp[4] = 0; 175 _pp[3] = 0; 176 _pp[2] = 0; 177 _pp[1] = 0; 178 _pp[0] = 0; 179 } 180 } 181 #else 182 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 183 #endif 184 185 /* 186 * Default maximum number of active map areas, this limits the number of vmas 187 * per mm struct. Users can overwrite this number by sysctl but there is a 188 * problem. 189 * 190 * When a program's coredump is generated as ELF format, a section is created 191 * per a vma. In ELF, the number of sections is represented in unsigned short. 192 * This means the number of sections should be smaller than 65535 at coredump. 193 * Because the kernel adds some informative sections to a image of program at 194 * generating coredump, we need some margin. The number of extra sections is 195 * 1-3 now and depends on arch. We use "5" as safe margin, here. 196 * 197 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 198 * not a hard limit any more. Although some userspace tools can be surprised by 199 * that. 200 */ 201 #define MAPCOUNT_ELF_CORE_MARGIN (5) 202 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 203 204 extern int sysctl_max_map_count; 205 206 extern unsigned long sysctl_user_reserve_kbytes; 207 extern unsigned long sysctl_admin_reserve_kbytes; 208 209 extern int sysctl_overcommit_memory; 210 extern int sysctl_overcommit_ratio; 211 extern unsigned long sysctl_overcommit_kbytes; 212 213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 214 loff_t *); 215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 216 loff_t *); 217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 218 loff_t *); 219 /* 220 * Any attempt to mark this function as static leads to build failure 221 * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked() 222 * is referred to by BPF code. This must be visible for error injection. 223 */ 224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping, 225 pgoff_t index, gfp_t gfp, void **shadowp); 226 227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 229 #else 230 #define nth_page(page,n) ((page) + (n)) 231 #endif 232 233 /* to align the pointer to the (next) page boundary */ 234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 235 236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 237 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 238 239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 240 241 void setup_initial_init_mm(void *start_code, void *end_code, 242 void *end_data, void *brk); 243 244 /* 245 * Linux kernel virtual memory manager primitives. 246 * The idea being to have a "virtual" mm in the same way 247 * we have a virtual fs - giving a cleaner interface to the 248 * mm details, and allowing different kinds of memory mappings 249 * (from shared memory to executable loading to arbitrary 250 * mmap() functions). 251 */ 252 253 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 254 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 255 void vm_area_free(struct vm_area_struct *); 256 257 #ifndef CONFIG_MMU 258 extern struct rb_root nommu_region_tree; 259 extern struct rw_semaphore nommu_region_sem; 260 261 extern unsigned int kobjsize(const void *objp); 262 #endif 263 264 /* 265 * vm_flags in vm_area_struct, see mm_types.h. 266 * When changing, update also include/trace/events/mmflags.h 267 */ 268 #define VM_NONE 0x00000000 269 270 #define VM_READ 0x00000001 /* currently active flags */ 271 #define VM_WRITE 0x00000002 272 #define VM_EXEC 0x00000004 273 #define VM_SHARED 0x00000008 274 275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 276 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 277 #define VM_MAYWRITE 0x00000020 278 #define VM_MAYEXEC 0x00000040 279 #define VM_MAYSHARE 0x00000080 280 281 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 282 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 283 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 284 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329 #ifdef CONFIG_ARCH_HAS_PKEYS 330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #ifdef CONFIG_PPC 336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337 #else 338 # define VM_PKEY_BIT4 0 339 #endif 340 #endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342 #if defined(CONFIG_X86) 343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344 #elif defined(CONFIG_PPC) 345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346 #elif defined(CONFIG_PARISC) 347 # define VM_GROWSUP VM_ARCH_1 348 #elif defined(CONFIG_IA64) 349 # define VM_GROWSUP VM_ARCH_1 350 #elif defined(CONFIG_SPARC64) 351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352 # define VM_ARCH_CLEAR VM_SPARC_ADI 353 #elif defined(CONFIG_ARM64) 354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355 # define VM_ARCH_CLEAR VM_ARM64_BTI 356 #elif !defined(CONFIG_MMU) 357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358 #endif 359 360 #if defined(CONFIG_ARM64_MTE) 361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363 #else 364 # define VM_MTE VM_NONE 365 # define VM_MTE_ALLOWED VM_NONE 366 #endif 367 368 #ifndef VM_GROWSUP 369 # define VM_GROWSUP VM_NONE 370 #endif 371 372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373 # define VM_UFFD_MINOR_BIT 37 374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376 # define VM_UFFD_MINOR VM_NONE 377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379 /* Bits set in the VMA until the stack is in its final location */ 380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 381 382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384 /* Common data flag combinations */ 385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394 #endif 395 396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398 #endif 399 400 #ifdef CONFIG_STACK_GROWSUP 401 #define VM_STACK VM_GROWSUP 402 #else 403 #define VM_STACK VM_GROWSDOWN 404 #endif 405 406 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 407 408 /* VMA basic access permission flags */ 409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 410 411 412 /* 413 * Special vmas that are non-mergable, non-mlock()able. 414 */ 415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 416 417 /* This mask prevents VMA from being scanned with khugepaged */ 418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 419 420 /* This mask defines which mm->def_flags a process can inherit its parent */ 421 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 422 423 /* This mask is used to clear all the VMA flags used by mlock */ 424 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 425 426 /* Arch-specific flags to clear when updating VM flags on protection change */ 427 #ifndef VM_ARCH_CLEAR 428 # define VM_ARCH_CLEAR VM_NONE 429 #endif 430 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 431 432 /* 433 * mapping from the currently active vm_flags protection bits (the 434 * low four bits) to a page protection mask.. 435 */ 436 extern pgprot_t protection_map[16]; 437 438 /** 439 * enum fault_flag - Fault flag definitions. 440 * @FAULT_FLAG_WRITE: Fault was a write fault. 441 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 442 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 443 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 444 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 445 * @FAULT_FLAG_TRIED: The fault has been tried once. 446 * @FAULT_FLAG_USER: The fault originated in userspace. 447 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 448 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 449 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 450 * 451 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 452 * whether we would allow page faults to retry by specifying these two 453 * fault flags correctly. Currently there can be three legal combinations: 454 * 455 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 456 * this is the first try 457 * 458 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 459 * we've already tried at least once 460 * 461 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 462 * 463 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 464 * be used. Note that page faults can be allowed to retry for multiple times, 465 * in which case we'll have an initial fault with flags (a) then later on 466 * continuous faults with flags (b). We should always try to detect pending 467 * signals before a retry to make sure the continuous page faults can still be 468 * interrupted if necessary. 469 */ 470 enum fault_flag { 471 FAULT_FLAG_WRITE = 1 << 0, 472 FAULT_FLAG_MKWRITE = 1 << 1, 473 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 474 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 475 FAULT_FLAG_KILLABLE = 1 << 4, 476 FAULT_FLAG_TRIED = 1 << 5, 477 FAULT_FLAG_USER = 1 << 6, 478 FAULT_FLAG_REMOTE = 1 << 7, 479 FAULT_FLAG_INSTRUCTION = 1 << 8, 480 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 481 }; 482 483 /* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491 /** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505 { 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508 } 509 510 #define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 521 522 /* 523 * vm_fault is filled by the pagefault handler and passed to the vma's 524 * ->fault function. The vma's ->fault is responsible for returning a bitmask 525 * of VM_FAULT_xxx flags that give details about how the fault was handled. 526 * 527 * MM layer fills up gfp_mask for page allocations but fault handler might 528 * alter it if its implementation requires a different allocation context. 529 * 530 * pgoff should be used in favour of virtual_address, if possible. 531 */ 532 struct vm_fault { 533 const struct { 534 struct vm_area_struct *vma; /* Target VMA */ 535 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 536 pgoff_t pgoff; /* Logical page offset based on vma */ 537 unsigned long address; /* Faulting virtual address */ 538 }; 539 enum fault_flag flags; /* FAULT_FLAG_xxx flags 540 * XXX: should really be 'const' */ 541 pmd_t *pmd; /* Pointer to pmd entry matching 542 * the 'address' */ 543 pud_t *pud; /* Pointer to pud entry matching 544 * the 'address' 545 */ 546 union { 547 pte_t orig_pte; /* Value of PTE at the time of fault */ 548 pmd_t orig_pmd; /* Value of PMD at the time of fault, 549 * used by PMD fault only. 550 */ 551 }; 552 553 struct page *cow_page; /* Page handler may use for COW fault */ 554 struct page *page; /* ->fault handlers should return a 555 * page here, unless VM_FAULT_NOPAGE 556 * is set (which is also implied by 557 * VM_FAULT_ERROR). 558 */ 559 /* These three entries are valid only while holding ptl lock */ 560 pte_t *pte; /* Pointer to pte entry matching 561 * the 'address'. NULL if the page 562 * table hasn't been allocated. 563 */ 564 spinlock_t *ptl; /* Page table lock. 565 * Protects pte page table if 'pte' 566 * is not NULL, otherwise pmd. 567 */ 568 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 569 * vm_ops->map_pages() sets up a page 570 * table from atomic context. 571 * do_fault_around() pre-allocates 572 * page table to avoid allocation from 573 * atomic context. 574 */ 575 }; 576 577 /* page entry size for vm->huge_fault() */ 578 enum page_entry_size { 579 PE_SIZE_PTE = 0, 580 PE_SIZE_PMD, 581 PE_SIZE_PUD, 582 }; 583 584 /* 585 * These are the virtual MM functions - opening of an area, closing and 586 * unmapping it (needed to keep files on disk up-to-date etc), pointer 587 * to the functions called when a no-page or a wp-page exception occurs. 588 */ 589 struct vm_operations_struct { 590 void (*open)(struct vm_area_struct * area); 591 void (*close)(struct vm_area_struct * area); 592 /* Called any time before splitting to check if it's allowed */ 593 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 594 int (*mremap)(struct vm_area_struct *area); 595 /* 596 * Called by mprotect() to make driver-specific permission 597 * checks before mprotect() is finalised. The VMA must not 598 * be modified. Returns 0 if eprotect() can proceed. 599 */ 600 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 601 unsigned long end, unsigned long newflags); 602 vm_fault_t (*fault)(struct vm_fault *vmf); 603 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 604 enum page_entry_size pe_size); 605 vm_fault_t (*map_pages)(struct vm_fault *vmf, 606 pgoff_t start_pgoff, pgoff_t end_pgoff); 607 unsigned long (*pagesize)(struct vm_area_struct * area); 608 609 /* notification that a previously read-only page is about to become 610 * writable, if an error is returned it will cause a SIGBUS */ 611 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 612 613 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 614 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 615 616 /* called by access_process_vm when get_user_pages() fails, typically 617 * for use by special VMAs. See also generic_access_phys() for a generic 618 * implementation useful for any iomem mapping. 619 */ 620 int (*access)(struct vm_area_struct *vma, unsigned long addr, 621 void *buf, int len, int write); 622 623 /* Called by the /proc/PID/maps code to ask the vma whether it 624 * has a special name. Returning non-NULL will also cause this 625 * vma to be dumped unconditionally. */ 626 const char *(*name)(struct vm_area_struct *vma); 627 628 #ifdef CONFIG_NUMA 629 /* 630 * set_policy() op must add a reference to any non-NULL @new mempolicy 631 * to hold the policy upon return. Caller should pass NULL @new to 632 * remove a policy and fall back to surrounding context--i.e. do not 633 * install a MPOL_DEFAULT policy, nor the task or system default 634 * mempolicy. 635 */ 636 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 637 638 /* 639 * get_policy() op must add reference [mpol_get()] to any policy at 640 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 641 * in mm/mempolicy.c will do this automatically. 642 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 643 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 644 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 645 * must return NULL--i.e., do not "fallback" to task or system default 646 * policy. 647 */ 648 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 649 unsigned long addr); 650 #endif 651 /* 652 * Called by vm_normal_page() for special PTEs to find the 653 * page for @addr. This is useful if the default behavior 654 * (using pte_page()) would not find the correct page. 655 */ 656 struct page *(*find_special_page)(struct vm_area_struct *vma, 657 unsigned long addr); 658 }; 659 660 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 661 { 662 static const struct vm_operations_struct dummy_vm_ops = {}; 663 664 memset(vma, 0, sizeof(*vma)); 665 vma->vm_mm = mm; 666 vma->vm_ops = &dummy_vm_ops; 667 INIT_LIST_HEAD(&vma->anon_vma_chain); 668 } 669 670 static inline void vma_set_anonymous(struct vm_area_struct *vma) 671 { 672 vma->vm_ops = NULL; 673 } 674 675 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 676 { 677 return !vma->vm_ops; 678 } 679 680 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 681 { 682 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 683 684 if (!maybe_stack) 685 return false; 686 687 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 688 VM_STACK_INCOMPLETE_SETUP) 689 return true; 690 691 return false; 692 } 693 694 static inline bool vma_is_foreign(struct vm_area_struct *vma) 695 { 696 if (!current->mm) 697 return true; 698 699 if (current->mm != vma->vm_mm) 700 return true; 701 702 return false; 703 } 704 705 static inline bool vma_is_accessible(struct vm_area_struct *vma) 706 { 707 return vma->vm_flags & VM_ACCESS_FLAGS; 708 } 709 710 #ifdef CONFIG_SHMEM 711 /* 712 * The vma_is_shmem is not inline because it is used only by slow 713 * paths in userfault. 714 */ 715 bool vma_is_shmem(struct vm_area_struct *vma); 716 #else 717 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 718 #endif 719 720 int vma_is_stack_for_current(struct vm_area_struct *vma); 721 722 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 723 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 724 725 struct mmu_gather; 726 struct inode; 727 728 #include <linux/huge_mm.h> 729 730 /* 731 * Methods to modify the page usage count. 732 * 733 * What counts for a page usage: 734 * - cache mapping (page->mapping) 735 * - private data (page->private) 736 * - page mapped in a task's page tables, each mapping 737 * is counted separately 738 * 739 * Also, many kernel routines increase the page count before a critical 740 * routine so they can be sure the page doesn't go away from under them. 741 */ 742 743 /* 744 * Drop a ref, return true if the refcount fell to zero (the page has no users) 745 */ 746 static inline int put_page_testzero(struct page *page) 747 { 748 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 749 return page_ref_dec_and_test(page); 750 } 751 752 /* 753 * Try to grab a ref unless the page has a refcount of zero, return false if 754 * that is the case. 755 * This can be called when MMU is off so it must not access 756 * any of the virtual mappings. 757 */ 758 static inline int get_page_unless_zero(struct page *page) 759 { 760 return page_ref_add_unless(page, 1, 0); 761 } 762 763 extern int page_is_ram(unsigned long pfn); 764 765 enum { 766 REGION_INTERSECTS, 767 REGION_DISJOINT, 768 REGION_MIXED, 769 }; 770 771 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 772 unsigned long desc); 773 774 /* Support for virtually mapped pages */ 775 struct page *vmalloc_to_page(const void *addr); 776 unsigned long vmalloc_to_pfn(const void *addr); 777 778 /* 779 * Determine if an address is within the vmalloc range 780 * 781 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 782 * is no special casing required. 783 */ 784 785 #ifndef is_ioremap_addr 786 #define is_ioremap_addr(x) is_vmalloc_addr(x) 787 #endif 788 789 #ifdef CONFIG_MMU 790 extern bool is_vmalloc_addr(const void *x); 791 extern int is_vmalloc_or_module_addr(const void *x); 792 #else 793 static inline bool is_vmalloc_addr(const void *x) 794 { 795 return false; 796 } 797 static inline int is_vmalloc_or_module_addr(const void *x) 798 { 799 return 0; 800 } 801 #endif 802 803 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 804 static inline void *kvmalloc(size_t size, gfp_t flags) 805 { 806 return kvmalloc_node(size, flags, NUMA_NO_NODE); 807 } 808 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 809 { 810 return kvmalloc_node(size, flags | __GFP_ZERO, node); 811 } 812 static inline void *kvzalloc(size_t size, gfp_t flags) 813 { 814 return kvmalloc(size, flags | __GFP_ZERO); 815 } 816 817 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 818 { 819 size_t bytes; 820 821 if (unlikely(check_mul_overflow(n, size, &bytes))) 822 return NULL; 823 824 return kvmalloc(bytes, flags); 825 } 826 827 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 828 { 829 return kvmalloc_array(n, size, flags | __GFP_ZERO); 830 } 831 832 extern void *kvrealloc(const void *p, size_t oldsize, size_t newsize, 833 gfp_t flags); 834 extern void kvfree(const void *addr); 835 extern void kvfree_sensitive(const void *addr, size_t len); 836 837 static inline int head_compound_mapcount(struct page *head) 838 { 839 return atomic_read(compound_mapcount_ptr(head)) + 1; 840 } 841 842 /* 843 * Mapcount of compound page as a whole, does not include mapped sub-pages. 844 * 845 * Must be called only for compound pages or any their tail sub-pages. 846 */ 847 static inline int compound_mapcount(struct page *page) 848 { 849 VM_BUG_ON_PAGE(!PageCompound(page), page); 850 page = compound_head(page); 851 return head_compound_mapcount(page); 852 } 853 854 /* 855 * The atomic page->_mapcount, starts from -1: so that transitions 856 * both from it and to it can be tracked, using atomic_inc_and_test 857 * and atomic_add_negative(-1). 858 */ 859 static inline void page_mapcount_reset(struct page *page) 860 { 861 atomic_set(&(page)->_mapcount, -1); 862 } 863 864 int __page_mapcount(struct page *page); 865 866 /* 867 * Mapcount of 0-order page; when compound sub-page, includes 868 * compound_mapcount(). 869 * 870 * Result is undefined for pages which cannot be mapped into userspace. 871 * For example SLAB or special types of pages. See function page_has_type(). 872 * They use this place in struct page differently. 873 */ 874 static inline int page_mapcount(struct page *page) 875 { 876 if (unlikely(PageCompound(page))) 877 return __page_mapcount(page); 878 return atomic_read(&page->_mapcount) + 1; 879 } 880 881 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 882 int total_mapcount(struct page *page); 883 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 884 #else 885 static inline int total_mapcount(struct page *page) 886 { 887 return page_mapcount(page); 888 } 889 static inline int page_trans_huge_mapcount(struct page *page, 890 int *total_mapcount) 891 { 892 int mapcount = page_mapcount(page); 893 if (total_mapcount) 894 *total_mapcount = mapcount; 895 return mapcount; 896 } 897 #endif 898 899 static inline struct page *virt_to_head_page(const void *x) 900 { 901 struct page *page = virt_to_page(x); 902 903 return compound_head(page); 904 } 905 906 void __put_page(struct page *page); 907 908 void put_pages_list(struct list_head *pages); 909 910 void split_page(struct page *page, unsigned int order); 911 void copy_huge_page(struct page *dst, struct page *src); 912 913 /* 914 * Compound pages have a destructor function. Provide a 915 * prototype for that function and accessor functions. 916 * These are _only_ valid on the head of a compound page. 917 */ 918 typedef void compound_page_dtor(struct page *); 919 920 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 921 enum compound_dtor_id { 922 NULL_COMPOUND_DTOR, 923 COMPOUND_PAGE_DTOR, 924 #ifdef CONFIG_HUGETLB_PAGE 925 HUGETLB_PAGE_DTOR, 926 #endif 927 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 928 TRANSHUGE_PAGE_DTOR, 929 #endif 930 NR_COMPOUND_DTORS, 931 }; 932 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 933 934 static inline void set_compound_page_dtor(struct page *page, 935 enum compound_dtor_id compound_dtor) 936 { 937 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 938 page[1].compound_dtor = compound_dtor; 939 } 940 941 static inline void destroy_compound_page(struct page *page) 942 { 943 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 944 compound_page_dtors[page[1].compound_dtor](page); 945 } 946 947 static inline unsigned int compound_order(struct page *page) 948 { 949 if (!PageHead(page)) 950 return 0; 951 return page[1].compound_order; 952 } 953 954 static inline bool hpage_pincount_available(struct page *page) 955 { 956 /* 957 * Can the page->hpage_pinned_refcount field be used? That field is in 958 * the 3rd page of the compound page, so the smallest (2-page) compound 959 * pages cannot support it. 960 */ 961 page = compound_head(page); 962 return PageCompound(page) && compound_order(page) > 1; 963 } 964 965 static inline int head_compound_pincount(struct page *head) 966 { 967 return atomic_read(compound_pincount_ptr(head)); 968 } 969 970 static inline int compound_pincount(struct page *page) 971 { 972 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 973 page = compound_head(page); 974 return head_compound_pincount(page); 975 } 976 977 static inline void set_compound_order(struct page *page, unsigned int order) 978 { 979 page[1].compound_order = order; 980 page[1].compound_nr = 1U << order; 981 } 982 983 /* Returns the number of pages in this potentially compound page. */ 984 static inline unsigned long compound_nr(struct page *page) 985 { 986 if (!PageHead(page)) 987 return 1; 988 return page[1].compound_nr; 989 } 990 991 /* Returns the number of bytes in this potentially compound page. */ 992 static inline unsigned long page_size(struct page *page) 993 { 994 return PAGE_SIZE << compound_order(page); 995 } 996 997 /* Returns the number of bits needed for the number of bytes in a page */ 998 static inline unsigned int page_shift(struct page *page) 999 { 1000 return PAGE_SHIFT + compound_order(page); 1001 } 1002 1003 void free_compound_page(struct page *page); 1004 1005 #ifdef CONFIG_MMU 1006 /* 1007 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1008 * servicing faults for write access. In the normal case, do always want 1009 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1010 * that do not have writing enabled, when used by access_process_vm. 1011 */ 1012 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1013 { 1014 if (likely(vma->vm_flags & VM_WRITE)) 1015 pte = pte_mkwrite(pte); 1016 return pte; 1017 } 1018 1019 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1020 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1021 1022 vm_fault_t finish_fault(struct vm_fault *vmf); 1023 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1024 #endif 1025 1026 /* 1027 * Multiple processes may "see" the same page. E.g. for untouched 1028 * mappings of /dev/null, all processes see the same page full of 1029 * zeroes, and text pages of executables and shared libraries have 1030 * only one copy in memory, at most, normally. 1031 * 1032 * For the non-reserved pages, page_count(page) denotes a reference count. 1033 * page_count() == 0 means the page is free. page->lru is then used for 1034 * freelist management in the buddy allocator. 1035 * page_count() > 0 means the page has been allocated. 1036 * 1037 * Pages are allocated by the slab allocator in order to provide memory 1038 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1039 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1040 * unless a particular usage is carefully commented. (the responsibility of 1041 * freeing the kmalloc memory is the caller's, of course). 1042 * 1043 * A page may be used by anyone else who does a __get_free_page(). 1044 * In this case, page_count still tracks the references, and should only 1045 * be used through the normal accessor functions. The top bits of page->flags 1046 * and page->virtual store page management information, but all other fields 1047 * are unused and could be used privately, carefully. The management of this 1048 * page is the responsibility of the one who allocated it, and those who have 1049 * subsequently been given references to it. 1050 * 1051 * The other pages (we may call them "pagecache pages") are completely 1052 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1053 * The following discussion applies only to them. 1054 * 1055 * A pagecache page contains an opaque `private' member, which belongs to the 1056 * page's address_space. Usually, this is the address of a circular list of 1057 * the page's disk buffers. PG_private must be set to tell the VM to call 1058 * into the filesystem to release these pages. 1059 * 1060 * A page may belong to an inode's memory mapping. In this case, page->mapping 1061 * is the pointer to the inode, and page->index is the file offset of the page, 1062 * in units of PAGE_SIZE. 1063 * 1064 * If pagecache pages are not associated with an inode, they are said to be 1065 * anonymous pages. These may become associated with the swapcache, and in that 1066 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1067 * 1068 * In either case (swapcache or inode backed), the pagecache itself holds one 1069 * reference to the page. Setting PG_private should also increment the 1070 * refcount. The each user mapping also has a reference to the page. 1071 * 1072 * The pagecache pages are stored in a per-mapping radix tree, which is 1073 * rooted at mapping->i_pages, and indexed by offset. 1074 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1075 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1076 * 1077 * All pagecache pages may be subject to I/O: 1078 * - inode pages may need to be read from disk, 1079 * - inode pages which have been modified and are MAP_SHARED may need 1080 * to be written back to the inode on disk, 1081 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1082 * modified may need to be swapped out to swap space and (later) to be read 1083 * back into memory. 1084 */ 1085 1086 /* 1087 * The zone field is never updated after free_area_init_core() 1088 * sets it, so none of the operations on it need to be atomic. 1089 */ 1090 1091 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1092 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1093 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1094 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1095 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1096 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1097 1098 /* 1099 * Define the bit shifts to access each section. For non-existent 1100 * sections we define the shift as 0; that plus a 0 mask ensures 1101 * the compiler will optimise away reference to them. 1102 */ 1103 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1104 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1105 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1106 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1107 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1108 1109 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1110 #ifdef NODE_NOT_IN_PAGE_FLAGS 1111 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1112 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1113 SECTIONS_PGOFF : ZONES_PGOFF) 1114 #else 1115 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1116 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1117 NODES_PGOFF : ZONES_PGOFF) 1118 #endif 1119 1120 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1121 1122 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1123 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1124 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1125 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1126 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1127 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1128 1129 static inline enum zone_type page_zonenum(const struct page *page) 1130 { 1131 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1132 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1133 } 1134 1135 #ifdef CONFIG_ZONE_DEVICE 1136 static inline bool is_zone_device_page(const struct page *page) 1137 { 1138 return page_zonenum(page) == ZONE_DEVICE; 1139 } 1140 extern void memmap_init_zone_device(struct zone *, unsigned long, 1141 unsigned long, struct dev_pagemap *); 1142 #else 1143 static inline bool is_zone_device_page(const struct page *page) 1144 { 1145 return false; 1146 } 1147 #endif 1148 1149 static inline bool is_zone_movable_page(const struct page *page) 1150 { 1151 return page_zonenum(page) == ZONE_MOVABLE; 1152 } 1153 1154 #ifdef CONFIG_DEV_PAGEMAP_OPS 1155 void free_devmap_managed_page(struct page *page); 1156 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1157 1158 static inline bool page_is_devmap_managed(struct page *page) 1159 { 1160 if (!static_branch_unlikely(&devmap_managed_key)) 1161 return false; 1162 if (!is_zone_device_page(page)) 1163 return false; 1164 switch (page->pgmap->type) { 1165 case MEMORY_DEVICE_PRIVATE: 1166 case MEMORY_DEVICE_FS_DAX: 1167 return true; 1168 default: 1169 break; 1170 } 1171 return false; 1172 } 1173 1174 void put_devmap_managed_page(struct page *page); 1175 1176 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1177 static inline bool page_is_devmap_managed(struct page *page) 1178 { 1179 return false; 1180 } 1181 1182 static inline void put_devmap_managed_page(struct page *page) 1183 { 1184 } 1185 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1186 1187 static inline bool is_device_private_page(const struct page *page) 1188 { 1189 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1190 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1191 is_zone_device_page(page) && 1192 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1193 } 1194 1195 static inline bool is_pci_p2pdma_page(const struct page *page) 1196 { 1197 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1198 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1199 is_zone_device_page(page) && 1200 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1201 } 1202 1203 /* 127: arbitrary random number, small enough to assemble well */ 1204 #define page_ref_zero_or_close_to_overflow(page) \ 1205 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1206 1207 static inline void get_page(struct page *page) 1208 { 1209 page = compound_head(page); 1210 /* 1211 * Getting a normal page or the head of a compound page 1212 * requires to already have an elevated page->_refcount. 1213 */ 1214 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1215 page_ref_inc(page); 1216 } 1217 1218 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1219 struct page *try_grab_compound_head(struct page *page, int refs, 1220 unsigned int flags); 1221 1222 struct page *try_get_compound_head(struct page *page, int refs); 1223 1224 static inline void put_page(struct page *page) 1225 { 1226 page = compound_head(page); 1227 1228 /* 1229 * For devmap managed pages we need to catch refcount transition from 1230 * 2 to 1, when refcount reach one it means the page is free and we 1231 * need to inform the device driver through callback. See 1232 * include/linux/memremap.h and HMM for details. 1233 */ 1234 if (page_is_devmap_managed(page)) { 1235 put_devmap_managed_page(page); 1236 return; 1237 } 1238 1239 if (put_page_testzero(page)) 1240 __put_page(page); 1241 } 1242 1243 /* 1244 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1245 * the page's refcount so that two separate items are tracked: the original page 1246 * reference count, and also a new count of how many pin_user_pages() calls were 1247 * made against the page. ("gup-pinned" is another term for the latter). 1248 * 1249 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1250 * distinct from normal pages. As such, the unpin_user_page() call (and its 1251 * variants) must be used in order to release gup-pinned pages. 1252 * 1253 * Choice of value: 1254 * 1255 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1256 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1257 * simpler, due to the fact that adding an even power of two to the page 1258 * refcount has the effect of using only the upper N bits, for the code that 1259 * counts up using the bias value. This means that the lower bits are left for 1260 * the exclusive use of the original code that increments and decrements by one 1261 * (or at least, by much smaller values than the bias value). 1262 * 1263 * Of course, once the lower bits overflow into the upper bits (and this is 1264 * OK, because subtraction recovers the original values), then visual inspection 1265 * no longer suffices to directly view the separate counts. However, for normal 1266 * applications that don't have huge page reference counts, this won't be an 1267 * issue. 1268 * 1269 * Locking: the lockless algorithm described in page_cache_get_speculative() 1270 * and page_cache_gup_pin_speculative() provides safe operation for 1271 * get_user_pages and page_mkclean and other calls that race to set up page 1272 * table entries. 1273 */ 1274 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1275 1276 void unpin_user_page(struct page *page); 1277 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1278 bool make_dirty); 1279 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1280 bool make_dirty); 1281 void unpin_user_pages(struct page **pages, unsigned long npages); 1282 1283 /** 1284 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1285 * @page: The page. 1286 * 1287 * This function checks if a page has been pinned via a call to 1288 * a function in the pin_user_pages() family. 1289 * 1290 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1291 * because it means "definitely not pinned for DMA", but true means "probably 1292 * pinned for DMA, but possibly a false positive due to having at least 1293 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1294 * 1295 * False positives are OK, because: a) it's unlikely for a page to get that many 1296 * refcounts, and b) all the callers of this routine are expected to be able to 1297 * deal gracefully with a false positive. 1298 * 1299 * For huge pages, the result will be exactly correct. That's because we have 1300 * more tracking data available: the 3rd struct page in the compound page is 1301 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1302 * scheme). 1303 * 1304 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1305 * 1306 * Return: True, if it is likely that the page has been "dma-pinned". 1307 * False, if the page is definitely not dma-pinned. 1308 */ 1309 static inline bool page_maybe_dma_pinned(struct page *page) 1310 { 1311 if (hpage_pincount_available(page)) 1312 return compound_pincount(page) > 0; 1313 1314 /* 1315 * page_ref_count() is signed. If that refcount overflows, then 1316 * page_ref_count() returns a negative value, and callers will avoid 1317 * further incrementing the refcount. 1318 * 1319 * Here, for that overflow case, use the signed bit to count a little 1320 * bit higher via unsigned math, and thus still get an accurate result. 1321 */ 1322 return ((unsigned int)page_ref_count(compound_head(page))) >= 1323 GUP_PIN_COUNTING_BIAS; 1324 } 1325 1326 static inline bool is_cow_mapping(vm_flags_t flags) 1327 { 1328 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1329 } 1330 1331 /* 1332 * This should most likely only be called during fork() to see whether we 1333 * should break the cow immediately for a page on the src mm. 1334 */ 1335 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1336 struct page *page) 1337 { 1338 if (!is_cow_mapping(vma->vm_flags)) 1339 return false; 1340 1341 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1342 return false; 1343 1344 return page_maybe_dma_pinned(page); 1345 } 1346 1347 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1348 #define SECTION_IN_PAGE_FLAGS 1349 #endif 1350 1351 /* 1352 * The identification function is mainly used by the buddy allocator for 1353 * determining if two pages could be buddies. We are not really identifying 1354 * the zone since we could be using the section number id if we do not have 1355 * node id available in page flags. 1356 * We only guarantee that it will return the same value for two combinable 1357 * pages in a zone. 1358 */ 1359 static inline int page_zone_id(struct page *page) 1360 { 1361 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1362 } 1363 1364 #ifdef NODE_NOT_IN_PAGE_FLAGS 1365 extern int page_to_nid(const struct page *page); 1366 #else 1367 static inline int page_to_nid(const struct page *page) 1368 { 1369 struct page *p = (struct page *)page; 1370 1371 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1372 } 1373 #endif 1374 1375 #ifdef CONFIG_NUMA_BALANCING 1376 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1377 { 1378 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1379 } 1380 1381 static inline int cpupid_to_pid(int cpupid) 1382 { 1383 return cpupid & LAST__PID_MASK; 1384 } 1385 1386 static inline int cpupid_to_cpu(int cpupid) 1387 { 1388 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1389 } 1390 1391 static inline int cpupid_to_nid(int cpupid) 1392 { 1393 return cpu_to_node(cpupid_to_cpu(cpupid)); 1394 } 1395 1396 static inline bool cpupid_pid_unset(int cpupid) 1397 { 1398 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1399 } 1400 1401 static inline bool cpupid_cpu_unset(int cpupid) 1402 { 1403 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1404 } 1405 1406 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1407 { 1408 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1409 } 1410 1411 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1412 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1413 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1414 { 1415 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1416 } 1417 1418 static inline int page_cpupid_last(struct page *page) 1419 { 1420 return page->_last_cpupid; 1421 } 1422 static inline void page_cpupid_reset_last(struct page *page) 1423 { 1424 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1425 } 1426 #else 1427 static inline int page_cpupid_last(struct page *page) 1428 { 1429 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1430 } 1431 1432 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1433 1434 static inline void page_cpupid_reset_last(struct page *page) 1435 { 1436 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1437 } 1438 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1439 #else /* !CONFIG_NUMA_BALANCING */ 1440 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1441 { 1442 return page_to_nid(page); /* XXX */ 1443 } 1444 1445 static inline int page_cpupid_last(struct page *page) 1446 { 1447 return page_to_nid(page); /* XXX */ 1448 } 1449 1450 static inline int cpupid_to_nid(int cpupid) 1451 { 1452 return -1; 1453 } 1454 1455 static inline int cpupid_to_pid(int cpupid) 1456 { 1457 return -1; 1458 } 1459 1460 static inline int cpupid_to_cpu(int cpupid) 1461 { 1462 return -1; 1463 } 1464 1465 static inline int cpu_pid_to_cpupid(int nid, int pid) 1466 { 1467 return -1; 1468 } 1469 1470 static inline bool cpupid_pid_unset(int cpupid) 1471 { 1472 return true; 1473 } 1474 1475 static inline void page_cpupid_reset_last(struct page *page) 1476 { 1477 } 1478 1479 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1480 { 1481 return false; 1482 } 1483 #endif /* CONFIG_NUMA_BALANCING */ 1484 1485 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1486 1487 /* 1488 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1489 * setting tags for all pages to native kernel tag value 0xff, as the default 1490 * value 0x00 maps to 0xff. 1491 */ 1492 1493 static inline u8 page_kasan_tag(const struct page *page) 1494 { 1495 u8 tag = 0xff; 1496 1497 if (kasan_enabled()) { 1498 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1499 tag ^= 0xff; 1500 } 1501 1502 return tag; 1503 } 1504 1505 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1506 { 1507 if (kasan_enabled()) { 1508 tag ^= 0xff; 1509 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1510 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1511 } 1512 } 1513 1514 static inline void page_kasan_tag_reset(struct page *page) 1515 { 1516 if (kasan_enabled()) 1517 page_kasan_tag_set(page, 0xff); 1518 } 1519 1520 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1521 1522 static inline u8 page_kasan_tag(const struct page *page) 1523 { 1524 return 0xff; 1525 } 1526 1527 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1528 static inline void page_kasan_tag_reset(struct page *page) { } 1529 1530 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1531 1532 static inline struct zone *page_zone(const struct page *page) 1533 { 1534 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1535 } 1536 1537 static inline pg_data_t *page_pgdat(const struct page *page) 1538 { 1539 return NODE_DATA(page_to_nid(page)); 1540 } 1541 1542 #ifdef SECTION_IN_PAGE_FLAGS 1543 static inline void set_page_section(struct page *page, unsigned long section) 1544 { 1545 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1546 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1547 } 1548 1549 static inline unsigned long page_to_section(const struct page *page) 1550 { 1551 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1552 } 1553 #endif 1554 1555 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1556 #ifdef CONFIG_MIGRATION 1557 static inline bool is_pinnable_page(struct page *page) 1558 { 1559 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1560 is_zero_pfn(page_to_pfn(page)); 1561 } 1562 #else 1563 static inline bool is_pinnable_page(struct page *page) 1564 { 1565 return true; 1566 } 1567 #endif 1568 1569 static inline void set_page_zone(struct page *page, enum zone_type zone) 1570 { 1571 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1572 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1573 } 1574 1575 static inline void set_page_node(struct page *page, unsigned long node) 1576 { 1577 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1578 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1579 } 1580 1581 static inline void set_page_links(struct page *page, enum zone_type zone, 1582 unsigned long node, unsigned long pfn) 1583 { 1584 set_page_zone(page, zone); 1585 set_page_node(page, node); 1586 #ifdef SECTION_IN_PAGE_FLAGS 1587 set_page_section(page, pfn_to_section_nr(pfn)); 1588 #endif 1589 } 1590 1591 /* 1592 * Some inline functions in vmstat.h depend on page_zone() 1593 */ 1594 #include <linux/vmstat.h> 1595 1596 static __always_inline void *lowmem_page_address(const struct page *page) 1597 { 1598 return page_to_virt(page); 1599 } 1600 1601 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1602 #define HASHED_PAGE_VIRTUAL 1603 #endif 1604 1605 #if defined(WANT_PAGE_VIRTUAL) 1606 static inline void *page_address(const struct page *page) 1607 { 1608 return page->virtual; 1609 } 1610 static inline void set_page_address(struct page *page, void *address) 1611 { 1612 page->virtual = address; 1613 } 1614 #define page_address_init() do { } while(0) 1615 #endif 1616 1617 #if defined(HASHED_PAGE_VIRTUAL) 1618 void *page_address(const struct page *page); 1619 void set_page_address(struct page *page, void *virtual); 1620 void page_address_init(void); 1621 #endif 1622 1623 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1624 #define page_address(page) lowmem_page_address(page) 1625 #define set_page_address(page, address) do { } while(0) 1626 #define page_address_init() do { } while(0) 1627 #endif 1628 1629 extern void *page_rmapping(struct page *page); 1630 extern struct anon_vma *page_anon_vma(struct page *page); 1631 extern struct address_space *page_mapping(struct page *page); 1632 1633 extern struct address_space *__page_file_mapping(struct page *); 1634 1635 static inline 1636 struct address_space *page_file_mapping(struct page *page) 1637 { 1638 if (unlikely(PageSwapCache(page))) 1639 return __page_file_mapping(page); 1640 1641 return page->mapping; 1642 } 1643 1644 extern pgoff_t __page_file_index(struct page *page); 1645 1646 /* 1647 * Return the pagecache index of the passed page. Regular pagecache pages 1648 * use ->index whereas swapcache pages use swp_offset(->private) 1649 */ 1650 static inline pgoff_t page_index(struct page *page) 1651 { 1652 if (unlikely(PageSwapCache(page))) 1653 return __page_file_index(page); 1654 return page->index; 1655 } 1656 1657 bool page_mapped(struct page *page); 1658 struct address_space *page_mapping(struct page *page); 1659 1660 /* 1661 * Return true only if the page has been allocated with 1662 * ALLOC_NO_WATERMARKS and the low watermark was not 1663 * met implying that the system is under some pressure. 1664 */ 1665 static inline bool page_is_pfmemalloc(const struct page *page) 1666 { 1667 /* 1668 * lru.next has bit 1 set if the page is allocated from the 1669 * pfmemalloc reserves. Callers may simply overwrite it if 1670 * they do not need to preserve that information. 1671 */ 1672 return (uintptr_t)page->lru.next & BIT(1); 1673 } 1674 1675 /* 1676 * Only to be called by the page allocator on a freshly allocated 1677 * page. 1678 */ 1679 static inline void set_page_pfmemalloc(struct page *page) 1680 { 1681 page->lru.next = (void *)BIT(1); 1682 } 1683 1684 static inline void clear_page_pfmemalloc(struct page *page) 1685 { 1686 page->lru.next = NULL; 1687 } 1688 1689 /* 1690 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1691 */ 1692 extern void pagefault_out_of_memory(void); 1693 1694 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1695 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1696 1697 /* 1698 * Flags passed to show_mem() and show_free_areas() to suppress output in 1699 * various contexts. 1700 */ 1701 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1702 1703 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1704 1705 #ifdef CONFIG_MMU 1706 extern bool can_do_mlock(void); 1707 #else 1708 static inline bool can_do_mlock(void) { return false; } 1709 #endif 1710 extern int user_shm_lock(size_t, struct ucounts *); 1711 extern void user_shm_unlock(size_t, struct ucounts *); 1712 1713 /* 1714 * Parameter block passed down to zap_pte_range in exceptional cases. 1715 */ 1716 struct zap_details { 1717 struct address_space *check_mapping; /* Check page->mapping if set */ 1718 pgoff_t first_index; /* Lowest page->index to unmap */ 1719 pgoff_t last_index; /* Highest page->index to unmap */ 1720 struct page *single_page; /* Locked page to be unmapped */ 1721 }; 1722 1723 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1724 pte_t pte); 1725 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1726 pmd_t pmd); 1727 1728 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1729 unsigned long size); 1730 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1731 unsigned long size); 1732 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1733 unsigned long start, unsigned long end); 1734 1735 struct mmu_notifier_range; 1736 1737 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1738 unsigned long end, unsigned long floor, unsigned long ceiling); 1739 int 1740 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1741 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1742 struct mmu_notifier_range *range, pte_t **ptepp, 1743 pmd_t **pmdpp, spinlock_t **ptlp); 1744 int follow_pte(struct mm_struct *mm, unsigned long address, 1745 pte_t **ptepp, spinlock_t **ptlp); 1746 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1747 unsigned long *pfn); 1748 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1749 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1750 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1751 void *buf, int len, int write); 1752 1753 extern void truncate_pagecache(struct inode *inode, loff_t new); 1754 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1755 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1756 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1757 int truncate_inode_page(struct address_space *mapping, struct page *page); 1758 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1759 int invalidate_inode_page(struct page *page); 1760 1761 #ifdef CONFIG_MMU 1762 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1763 unsigned long address, unsigned int flags, 1764 struct pt_regs *regs); 1765 extern int fixup_user_fault(struct mm_struct *mm, 1766 unsigned long address, unsigned int fault_flags, 1767 bool *unlocked); 1768 void unmap_mapping_page(struct page *page); 1769 void unmap_mapping_pages(struct address_space *mapping, 1770 pgoff_t start, pgoff_t nr, bool even_cows); 1771 void unmap_mapping_range(struct address_space *mapping, 1772 loff_t const holebegin, loff_t const holelen, int even_cows); 1773 #else 1774 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1775 unsigned long address, unsigned int flags, 1776 struct pt_regs *regs) 1777 { 1778 /* should never happen if there's no MMU */ 1779 BUG(); 1780 return VM_FAULT_SIGBUS; 1781 } 1782 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1783 unsigned int fault_flags, bool *unlocked) 1784 { 1785 /* should never happen if there's no MMU */ 1786 BUG(); 1787 return -EFAULT; 1788 } 1789 static inline void unmap_mapping_page(struct page *page) { } 1790 static inline void unmap_mapping_pages(struct address_space *mapping, 1791 pgoff_t start, pgoff_t nr, bool even_cows) { } 1792 static inline void unmap_mapping_range(struct address_space *mapping, 1793 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1794 #endif 1795 1796 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1797 loff_t const holebegin, loff_t const holelen) 1798 { 1799 unmap_mapping_range(mapping, holebegin, holelen, 0); 1800 } 1801 1802 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1803 void *buf, int len, unsigned int gup_flags); 1804 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1805 void *buf, int len, unsigned int gup_flags); 1806 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1807 void *buf, int len, unsigned int gup_flags); 1808 1809 long get_user_pages_remote(struct mm_struct *mm, 1810 unsigned long start, unsigned long nr_pages, 1811 unsigned int gup_flags, struct page **pages, 1812 struct vm_area_struct **vmas, int *locked); 1813 long pin_user_pages_remote(struct mm_struct *mm, 1814 unsigned long start, unsigned long nr_pages, 1815 unsigned int gup_flags, struct page **pages, 1816 struct vm_area_struct **vmas, int *locked); 1817 long get_user_pages(unsigned long start, unsigned long nr_pages, 1818 unsigned int gup_flags, struct page **pages, 1819 struct vm_area_struct **vmas); 1820 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1821 unsigned int gup_flags, struct page **pages, 1822 struct vm_area_struct **vmas); 1823 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1824 unsigned int gup_flags, struct page **pages, int *locked); 1825 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1826 unsigned int gup_flags, struct page **pages, int *locked); 1827 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1828 struct page **pages, unsigned int gup_flags); 1829 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1830 struct page **pages, unsigned int gup_flags); 1831 1832 int get_user_pages_fast(unsigned long start, int nr_pages, 1833 unsigned int gup_flags, struct page **pages); 1834 int pin_user_pages_fast(unsigned long start, int nr_pages, 1835 unsigned int gup_flags, struct page **pages); 1836 1837 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1838 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1839 struct task_struct *task, bool bypass_rlim); 1840 1841 struct kvec; 1842 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1843 struct page **pages); 1844 struct page *get_dump_page(unsigned long addr); 1845 1846 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1847 extern void do_invalidatepage(struct page *page, unsigned int offset, 1848 unsigned int length); 1849 1850 int redirty_page_for_writepage(struct writeback_control *wbc, 1851 struct page *page); 1852 void account_page_cleaned(struct page *page, struct address_space *mapping, 1853 struct bdi_writeback *wb); 1854 int set_page_dirty(struct page *page); 1855 int set_page_dirty_lock(struct page *page); 1856 void __cancel_dirty_page(struct page *page); 1857 static inline void cancel_dirty_page(struct page *page) 1858 { 1859 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1860 if (PageDirty(page)) 1861 __cancel_dirty_page(page); 1862 } 1863 int clear_page_dirty_for_io(struct page *page); 1864 1865 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1866 1867 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1868 unsigned long old_addr, struct vm_area_struct *new_vma, 1869 unsigned long new_addr, unsigned long len, 1870 bool need_rmap_locks); 1871 1872 /* 1873 * Flags used by change_protection(). For now we make it a bitmap so 1874 * that we can pass in multiple flags just like parameters. However 1875 * for now all the callers are only use one of the flags at the same 1876 * time. 1877 */ 1878 /* Whether we should allow dirty bit accounting */ 1879 #define MM_CP_DIRTY_ACCT (1UL << 0) 1880 /* Whether this protection change is for NUMA hints */ 1881 #define MM_CP_PROT_NUMA (1UL << 1) 1882 /* Whether this change is for write protecting */ 1883 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1884 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1885 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1886 MM_CP_UFFD_WP_RESOLVE) 1887 1888 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1889 unsigned long end, pgprot_t newprot, 1890 unsigned long cp_flags); 1891 extern int mprotect_fixup(struct vm_area_struct *vma, 1892 struct vm_area_struct **pprev, unsigned long start, 1893 unsigned long end, unsigned long newflags); 1894 1895 /* 1896 * doesn't attempt to fault and will return short. 1897 */ 1898 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1899 unsigned int gup_flags, struct page **pages); 1900 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1901 unsigned int gup_flags, struct page **pages); 1902 1903 static inline bool get_user_page_fast_only(unsigned long addr, 1904 unsigned int gup_flags, struct page **pagep) 1905 { 1906 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1907 } 1908 /* 1909 * per-process(per-mm_struct) statistics. 1910 */ 1911 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1912 { 1913 long val = atomic_long_read(&mm->rss_stat.count[member]); 1914 1915 #ifdef SPLIT_RSS_COUNTING 1916 /* 1917 * counter is updated in asynchronous manner and may go to minus. 1918 * But it's never be expected number for users. 1919 */ 1920 if (val < 0) 1921 val = 0; 1922 #endif 1923 return (unsigned long)val; 1924 } 1925 1926 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1927 1928 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1929 { 1930 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1931 1932 mm_trace_rss_stat(mm, member, count); 1933 } 1934 1935 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1936 { 1937 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1938 1939 mm_trace_rss_stat(mm, member, count); 1940 } 1941 1942 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1943 { 1944 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1945 1946 mm_trace_rss_stat(mm, member, count); 1947 } 1948 1949 /* Optimized variant when page is already known not to be PageAnon */ 1950 static inline int mm_counter_file(struct page *page) 1951 { 1952 if (PageSwapBacked(page)) 1953 return MM_SHMEMPAGES; 1954 return MM_FILEPAGES; 1955 } 1956 1957 static inline int mm_counter(struct page *page) 1958 { 1959 if (PageAnon(page)) 1960 return MM_ANONPAGES; 1961 return mm_counter_file(page); 1962 } 1963 1964 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1965 { 1966 return get_mm_counter(mm, MM_FILEPAGES) + 1967 get_mm_counter(mm, MM_ANONPAGES) + 1968 get_mm_counter(mm, MM_SHMEMPAGES); 1969 } 1970 1971 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1972 { 1973 return max(mm->hiwater_rss, get_mm_rss(mm)); 1974 } 1975 1976 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1977 { 1978 return max(mm->hiwater_vm, mm->total_vm); 1979 } 1980 1981 static inline void update_hiwater_rss(struct mm_struct *mm) 1982 { 1983 unsigned long _rss = get_mm_rss(mm); 1984 1985 if ((mm)->hiwater_rss < _rss) 1986 (mm)->hiwater_rss = _rss; 1987 } 1988 1989 static inline void update_hiwater_vm(struct mm_struct *mm) 1990 { 1991 if (mm->hiwater_vm < mm->total_vm) 1992 mm->hiwater_vm = mm->total_vm; 1993 } 1994 1995 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1996 { 1997 mm->hiwater_rss = get_mm_rss(mm); 1998 } 1999 2000 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2001 struct mm_struct *mm) 2002 { 2003 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2004 2005 if (*maxrss < hiwater_rss) 2006 *maxrss = hiwater_rss; 2007 } 2008 2009 #if defined(SPLIT_RSS_COUNTING) 2010 void sync_mm_rss(struct mm_struct *mm); 2011 #else 2012 static inline void sync_mm_rss(struct mm_struct *mm) 2013 { 2014 } 2015 #endif 2016 2017 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2018 static inline int pte_special(pte_t pte) 2019 { 2020 return 0; 2021 } 2022 2023 static inline pte_t pte_mkspecial(pte_t pte) 2024 { 2025 return pte; 2026 } 2027 #endif 2028 2029 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2030 static inline int pte_devmap(pte_t pte) 2031 { 2032 return 0; 2033 } 2034 #endif 2035 2036 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2037 2038 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2039 spinlock_t **ptl); 2040 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2041 spinlock_t **ptl) 2042 { 2043 pte_t *ptep; 2044 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2045 return ptep; 2046 } 2047 2048 #ifdef __PAGETABLE_P4D_FOLDED 2049 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2050 unsigned long address) 2051 { 2052 return 0; 2053 } 2054 #else 2055 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2056 #endif 2057 2058 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2059 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2060 unsigned long address) 2061 { 2062 return 0; 2063 } 2064 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2065 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2066 2067 #else 2068 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2069 2070 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2071 { 2072 if (mm_pud_folded(mm)) 2073 return; 2074 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2075 } 2076 2077 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2078 { 2079 if (mm_pud_folded(mm)) 2080 return; 2081 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2082 } 2083 #endif 2084 2085 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2086 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2087 unsigned long address) 2088 { 2089 return 0; 2090 } 2091 2092 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2093 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2094 2095 #else 2096 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2097 2098 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2099 { 2100 if (mm_pmd_folded(mm)) 2101 return; 2102 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2103 } 2104 2105 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2106 { 2107 if (mm_pmd_folded(mm)) 2108 return; 2109 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2110 } 2111 #endif 2112 2113 #ifdef CONFIG_MMU 2114 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2115 { 2116 atomic_long_set(&mm->pgtables_bytes, 0); 2117 } 2118 2119 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2120 { 2121 return atomic_long_read(&mm->pgtables_bytes); 2122 } 2123 2124 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2125 { 2126 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2127 } 2128 2129 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2130 { 2131 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2132 } 2133 #else 2134 2135 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2136 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2137 { 2138 return 0; 2139 } 2140 2141 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2142 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2143 #endif 2144 2145 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2146 int __pte_alloc_kernel(pmd_t *pmd); 2147 2148 #if defined(CONFIG_MMU) 2149 2150 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2151 unsigned long address) 2152 { 2153 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2154 NULL : p4d_offset(pgd, address); 2155 } 2156 2157 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2158 unsigned long address) 2159 { 2160 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2161 NULL : pud_offset(p4d, address); 2162 } 2163 2164 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2165 { 2166 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2167 NULL: pmd_offset(pud, address); 2168 } 2169 #endif /* CONFIG_MMU */ 2170 2171 #if USE_SPLIT_PTE_PTLOCKS 2172 #if ALLOC_SPLIT_PTLOCKS 2173 void __init ptlock_cache_init(void); 2174 extern bool ptlock_alloc(struct page *page); 2175 extern void ptlock_free(struct page *page); 2176 2177 static inline spinlock_t *ptlock_ptr(struct page *page) 2178 { 2179 return page->ptl; 2180 } 2181 #else /* ALLOC_SPLIT_PTLOCKS */ 2182 static inline void ptlock_cache_init(void) 2183 { 2184 } 2185 2186 static inline bool ptlock_alloc(struct page *page) 2187 { 2188 return true; 2189 } 2190 2191 static inline void ptlock_free(struct page *page) 2192 { 2193 } 2194 2195 static inline spinlock_t *ptlock_ptr(struct page *page) 2196 { 2197 return &page->ptl; 2198 } 2199 #endif /* ALLOC_SPLIT_PTLOCKS */ 2200 2201 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2202 { 2203 return ptlock_ptr(pmd_page(*pmd)); 2204 } 2205 2206 static inline bool ptlock_init(struct page *page) 2207 { 2208 /* 2209 * prep_new_page() initialize page->private (and therefore page->ptl) 2210 * with 0. Make sure nobody took it in use in between. 2211 * 2212 * It can happen if arch try to use slab for page table allocation: 2213 * slab code uses page->slab_cache, which share storage with page->ptl. 2214 */ 2215 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2216 if (!ptlock_alloc(page)) 2217 return false; 2218 spin_lock_init(ptlock_ptr(page)); 2219 return true; 2220 } 2221 2222 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2223 /* 2224 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2225 */ 2226 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2227 { 2228 return &mm->page_table_lock; 2229 } 2230 static inline void ptlock_cache_init(void) {} 2231 static inline bool ptlock_init(struct page *page) { return true; } 2232 static inline void ptlock_free(struct page *page) {} 2233 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2234 2235 static inline void pgtable_init(void) 2236 { 2237 ptlock_cache_init(); 2238 pgtable_cache_init(); 2239 } 2240 2241 static inline bool pgtable_pte_page_ctor(struct page *page) 2242 { 2243 if (!ptlock_init(page)) 2244 return false; 2245 __SetPageTable(page); 2246 inc_lruvec_page_state(page, NR_PAGETABLE); 2247 return true; 2248 } 2249 2250 static inline void pgtable_pte_page_dtor(struct page *page) 2251 { 2252 ptlock_free(page); 2253 __ClearPageTable(page); 2254 dec_lruvec_page_state(page, NR_PAGETABLE); 2255 } 2256 2257 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2258 ({ \ 2259 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2260 pte_t *__pte = pte_offset_map(pmd, address); \ 2261 *(ptlp) = __ptl; \ 2262 spin_lock(__ptl); \ 2263 __pte; \ 2264 }) 2265 2266 #define pte_unmap_unlock(pte, ptl) do { \ 2267 spin_unlock(ptl); \ 2268 pte_unmap(pte); \ 2269 } while (0) 2270 2271 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2272 2273 #define pte_alloc_map(mm, pmd, address) \ 2274 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2275 2276 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2277 (pte_alloc(mm, pmd) ? \ 2278 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2279 2280 #define pte_alloc_kernel(pmd, address) \ 2281 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2282 NULL: pte_offset_kernel(pmd, address)) 2283 2284 #if USE_SPLIT_PMD_PTLOCKS 2285 2286 static struct page *pmd_to_page(pmd_t *pmd) 2287 { 2288 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2289 return virt_to_page((void *)((unsigned long) pmd & mask)); 2290 } 2291 2292 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2293 { 2294 return ptlock_ptr(pmd_to_page(pmd)); 2295 } 2296 2297 static inline bool pmd_ptlock_init(struct page *page) 2298 { 2299 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2300 page->pmd_huge_pte = NULL; 2301 #endif 2302 return ptlock_init(page); 2303 } 2304 2305 static inline void pmd_ptlock_free(struct page *page) 2306 { 2307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2308 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2309 #endif 2310 ptlock_free(page); 2311 } 2312 2313 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2314 2315 #else 2316 2317 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2318 { 2319 return &mm->page_table_lock; 2320 } 2321 2322 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2323 static inline void pmd_ptlock_free(struct page *page) {} 2324 2325 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2326 2327 #endif 2328 2329 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2330 { 2331 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2332 spin_lock(ptl); 2333 return ptl; 2334 } 2335 2336 static inline bool pgtable_pmd_page_ctor(struct page *page) 2337 { 2338 if (!pmd_ptlock_init(page)) 2339 return false; 2340 __SetPageTable(page); 2341 inc_lruvec_page_state(page, NR_PAGETABLE); 2342 return true; 2343 } 2344 2345 static inline void pgtable_pmd_page_dtor(struct page *page) 2346 { 2347 pmd_ptlock_free(page); 2348 __ClearPageTable(page); 2349 dec_lruvec_page_state(page, NR_PAGETABLE); 2350 } 2351 2352 /* 2353 * No scalability reason to split PUD locks yet, but follow the same pattern 2354 * as the PMD locks to make it easier if we decide to. The VM should not be 2355 * considered ready to switch to split PUD locks yet; there may be places 2356 * which need to be converted from page_table_lock. 2357 */ 2358 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2359 { 2360 return &mm->page_table_lock; 2361 } 2362 2363 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2364 { 2365 spinlock_t *ptl = pud_lockptr(mm, pud); 2366 2367 spin_lock(ptl); 2368 return ptl; 2369 } 2370 2371 extern void __init pagecache_init(void); 2372 extern void __init free_area_init_memoryless_node(int nid); 2373 extern void free_initmem(void); 2374 2375 /* 2376 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2377 * into the buddy system. The freed pages will be poisoned with pattern 2378 * "poison" if it's within range [0, UCHAR_MAX]. 2379 * Return pages freed into the buddy system. 2380 */ 2381 extern unsigned long free_reserved_area(void *start, void *end, 2382 int poison, const char *s); 2383 2384 extern void adjust_managed_page_count(struct page *page, long count); 2385 extern void mem_init_print_info(void); 2386 2387 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2388 2389 /* Free the reserved page into the buddy system, so it gets managed. */ 2390 static inline void free_reserved_page(struct page *page) 2391 { 2392 ClearPageReserved(page); 2393 init_page_count(page); 2394 __free_page(page); 2395 adjust_managed_page_count(page, 1); 2396 } 2397 #define free_highmem_page(page) free_reserved_page(page) 2398 2399 static inline void mark_page_reserved(struct page *page) 2400 { 2401 SetPageReserved(page); 2402 adjust_managed_page_count(page, -1); 2403 } 2404 2405 /* 2406 * Default method to free all the __init memory into the buddy system. 2407 * The freed pages will be poisoned with pattern "poison" if it's within 2408 * range [0, UCHAR_MAX]. 2409 * Return pages freed into the buddy system. 2410 */ 2411 static inline unsigned long free_initmem_default(int poison) 2412 { 2413 extern char __init_begin[], __init_end[]; 2414 2415 return free_reserved_area(&__init_begin, &__init_end, 2416 poison, "unused kernel image (initmem)"); 2417 } 2418 2419 static inline unsigned long get_num_physpages(void) 2420 { 2421 int nid; 2422 unsigned long phys_pages = 0; 2423 2424 for_each_online_node(nid) 2425 phys_pages += node_present_pages(nid); 2426 2427 return phys_pages; 2428 } 2429 2430 /* 2431 * Using memblock node mappings, an architecture may initialise its 2432 * zones, allocate the backing mem_map and account for memory holes in an 2433 * architecture independent manner. 2434 * 2435 * An architecture is expected to register range of page frames backed by 2436 * physical memory with memblock_add[_node]() before calling 2437 * free_area_init() passing in the PFN each zone ends at. At a basic 2438 * usage, an architecture is expected to do something like 2439 * 2440 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2441 * max_highmem_pfn}; 2442 * for_each_valid_physical_page_range() 2443 * memblock_add_node(base, size, nid) 2444 * free_area_init(max_zone_pfns); 2445 */ 2446 void free_area_init(unsigned long *max_zone_pfn); 2447 unsigned long node_map_pfn_alignment(void); 2448 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2449 unsigned long end_pfn); 2450 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2451 unsigned long end_pfn); 2452 extern void get_pfn_range_for_nid(unsigned int nid, 2453 unsigned long *start_pfn, unsigned long *end_pfn); 2454 extern unsigned long find_min_pfn_with_active_regions(void); 2455 2456 #ifndef CONFIG_NUMA 2457 static inline int early_pfn_to_nid(unsigned long pfn) 2458 { 2459 return 0; 2460 } 2461 #else 2462 /* please see mm/page_alloc.c */ 2463 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2464 #endif 2465 2466 extern void set_dma_reserve(unsigned long new_dma_reserve); 2467 extern void memmap_init_range(unsigned long, int, unsigned long, 2468 unsigned long, unsigned long, enum meminit_context, 2469 struct vmem_altmap *, int migratetype); 2470 extern void setup_per_zone_wmarks(void); 2471 extern int __meminit init_per_zone_wmark_min(void); 2472 extern void mem_init(void); 2473 extern void __init mmap_init(void); 2474 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2475 extern long si_mem_available(void); 2476 extern void si_meminfo(struct sysinfo * val); 2477 extern void si_meminfo_node(struct sysinfo *val, int nid); 2478 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2479 extern unsigned long arch_reserved_kernel_pages(void); 2480 #endif 2481 2482 extern __printf(3, 4) 2483 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2484 2485 extern void setup_per_cpu_pageset(void); 2486 2487 /* page_alloc.c */ 2488 extern int min_free_kbytes; 2489 extern int watermark_boost_factor; 2490 extern int watermark_scale_factor; 2491 extern bool arch_has_descending_max_zone_pfns(void); 2492 2493 /* nommu.c */ 2494 extern atomic_long_t mmap_pages_allocated; 2495 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2496 2497 /* interval_tree.c */ 2498 void vma_interval_tree_insert(struct vm_area_struct *node, 2499 struct rb_root_cached *root); 2500 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2501 struct vm_area_struct *prev, 2502 struct rb_root_cached *root); 2503 void vma_interval_tree_remove(struct vm_area_struct *node, 2504 struct rb_root_cached *root); 2505 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2506 unsigned long start, unsigned long last); 2507 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2508 unsigned long start, unsigned long last); 2509 2510 #define vma_interval_tree_foreach(vma, root, start, last) \ 2511 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2512 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2513 2514 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2515 struct rb_root_cached *root); 2516 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2517 struct rb_root_cached *root); 2518 struct anon_vma_chain * 2519 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2520 unsigned long start, unsigned long last); 2521 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2522 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2523 #ifdef CONFIG_DEBUG_VM_RB 2524 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2525 #endif 2526 2527 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2528 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2529 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2530 2531 /* mmap.c */ 2532 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2533 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2534 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2535 struct vm_area_struct *expand); 2536 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2537 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2538 { 2539 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2540 } 2541 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2542 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2543 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2544 struct mempolicy *, struct vm_userfaultfd_ctx); 2545 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2546 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2547 unsigned long addr, int new_below); 2548 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2549 unsigned long addr, int new_below); 2550 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2551 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2552 struct rb_node **, struct rb_node *); 2553 extern void unlink_file_vma(struct vm_area_struct *); 2554 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2555 unsigned long addr, unsigned long len, pgoff_t pgoff, 2556 bool *need_rmap_locks); 2557 extern void exit_mmap(struct mm_struct *); 2558 2559 static inline int check_data_rlimit(unsigned long rlim, 2560 unsigned long new, 2561 unsigned long start, 2562 unsigned long end_data, 2563 unsigned long start_data) 2564 { 2565 if (rlim < RLIM_INFINITY) { 2566 if (((new - start) + (end_data - start_data)) > rlim) 2567 return -ENOSPC; 2568 } 2569 2570 return 0; 2571 } 2572 2573 extern int mm_take_all_locks(struct mm_struct *mm); 2574 extern void mm_drop_all_locks(struct mm_struct *mm); 2575 2576 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2577 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2578 extern struct file *get_task_exe_file(struct task_struct *task); 2579 2580 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2581 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2582 2583 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2584 const struct vm_special_mapping *sm); 2585 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2586 unsigned long addr, unsigned long len, 2587 unsigned long flags, 2588 const struct vm_special_mapping *spec); 2589 /* This is an obsolete alternative to _install_special_mapping. */ 2590 extern int install_special_mapping(struct mm_struct *mm, 2591 unsigned long addr, unsigned long len, 2592 unsigned long flags, struct page **pages); 2593 2594 unsigned long randomize_stack_top(unsigned long stack_top); 2595 2596 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2597 2598 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2599 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2600 struct list_head *uf); 2601 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2602 unsigned long len, unsigned long prot, unsigned long flags, 2603 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2604 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2605 struct list_head *uf, bool downgrade); 2606 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2607 struct list_head *uf); 2608 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2609 2610 #ifdef CONFIG_MMU 2611 extern int __mm_populate(unsigned long addr, unsigned long len, 2612 int ignore_errors); 2613 static inline void mm_populate(unsigned long addr, unsigned long len) 2614 { 2615 /* Ignore errors */ 2616 (void) __mm_populate(addr, len, 1); 2617 } 2618 #else 2619 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2620 #endif 2621 2622 /* These take the mm semaphore themselves */ 2623 extern int __must_check vm_brk(unsigned long, unsigned long); 2624 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2625 extern int vm_munmap(unsigned long, size_t); 2626 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2627 unsigned long, unsigned long, 2628 unsigned long, unsigned long); 2629 2630 struct vm_unmapped_area_info { 2631 #define VM_UNMAPPED_AREA_TOPDOWN 1 2632 unsigned long flags; 2633 unsigned long length; 2634 unsigned long low_limit; 2635 unsigned long high_limit; 2636 unsigned long align_mask; 2637 unsigned long align_offset; 2638 }; 2639 2640 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2641 2642 /* truncate.c */ 2643 extern void truncate_inode_pages(struct address_space *, loff_t); 2644 extern void truncate_inode_pages_range(struct address_space *, 2645 loff_t lstart, loff_t lend); 2646 extern void truncate_inode_pages_final(struct address_space *); 2647 2648 /* generic vm_area_ops exported for stackable file systems */ 2649 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2650 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2651 pgoff_t start_pgoff, pgoff_t end_pgoff); 2652 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2653 2654 /* mm/page-writeback.c */ 2655 int __must_check write_one_page(struct page *page); 2656 void task_dirty_inc(struct task_struct *tsk); 2657 2658 extern unsigned long stack_guard_gap; 2659 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2660 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2661 2662 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2663 extern int expand_downwards(struct vm_area_struct *vma, 2664 unsigned long address); 2665 #if VM_GROWSUP 2666 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2667 #else 2668 #define expand_upwards(vma, address) (0) 2669 #endif 2670 2671 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2672 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2673 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2674 struct vm_area_struct **pprev); 2675 2676 /** 2677 * find_vma_intersection() - Look up the first VMA which intersects the interval 2678 * @mm: The process address space. 2679 * @start_addr: The inclusive start user address. 2680 * @end_addr: The exclusive end user address. 2681 * 2682 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2683 * start_addr < end_addr. 2684 */ 2685 static inline 2686 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2687 unsigned long start_addr, 2688 unsigned long end_addr) 2689 { 2690 struct vm_area_struct *vma = find_vma(mm, start_addr); 2691 2692 if (vma && end_addr <= vma->vm_start) 2693 vma = NULL; 2694 return vma; 2695 } 2696 2697 /** 2698 * vma_lookup() - Find a VMA at a specific address 2699 * @mm: The process address space. 2700 * @addr: The user address. 2701 * 2702 * Return: The vm_area_struct at the given address, %NULL otherwise. 2703 */ 2704 static inline 2705 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2706 { 2707 struct vm_area_struct *vma = find_vma(mm, addr); 2708 2709 if (vma && addr < vma->vm_start) 2710 vma = NULL; 2711 2712 return vma; 2713 } 2714 2715 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2716 { 2717 unsigned long vm_start = vma->vm_start; 2718 2719 if (vma->vm_flags & VM_GROWSDOWN) { 2720 vm_start -= stack_guard_gap; 2721 if (vm_start > vma->vm_start) 2722 vm_start = 0; 2723 } 2724 return vm_start; 2725 } 2726 2727 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2728 { 2729 unsigned long vm_end = vma->vm_end; 2730 2731 if (vma->vm_flags & VM_GROWSUP) { 2732 vm_end += stack_guard_gap; 2733 if (vm_end < vma->vm_end) 2734 vm_end = -PAGE_SIZE; 2735 } 2736 return vm_end; 2737 } 2738 2739 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2740 { 2741 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2742 } 2743 2744 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2745 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2746 unsigned long vm_start, unsigned long vm_end) 2747 { 2748 struct vm_area_struct *vma = find_vma(mm, vm_start); 2749 2750 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2751 vma = NULL; 2752 2753 return vma; 2754 } 2755 2756 static inline bool range_in_vma(struct vm_area_struct *vma, 2757 unsigned long start, unsigned long end) 2758 { 2759 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2760 } 2761 2762 #ifdef CONFIG_MMU 2763 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2764 void vma_set_page_prot(struct vm_area_struct *vma); 2765 #else 2766 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2767 { 2768 return __pgprot(0); 2769 } 2770 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2771 { 2772 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2773 } 2774 #endif 2775 2776 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2777 2778 #ifdef CONFIG_NUMA_BALANCING 2779 unsigned long change_prot_numa(struct vm_area_struct *vma, 2780 unsigned long start, unsigned long end); 2781 #endif 2782 2783 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2784 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2785 unsigned long pfn, unsigned long size, pgprot_t); 2786 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2787 unsigned long pfn, unsigned long size, pgprot_t prot); 2788 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2789 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2790 struct page **pages, unsigned long *num); 2791 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2792 unsigned long num); 2793 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2794 unsigned long num); 2795 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2796 unsigned long pfn); 2797 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2798 unsigned long pfn, pgprot_t pgprot); 2799 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2800 pfn_t pfn); 2801 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2802 pfn_t pfn, pgprot_t pgprot); 2803 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2804 unsigned long addr, pfn_t pfn); 2805 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2806 2807 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2808 unsigned long addr, struct page *page) 2809 { 2810 int err = vm_insert_page(vma, addr, page); 2811 2812 if (err == -ENOMEM) 2813 return VM_FAULT_OOM; 2814 if (err < 0 && err != -EBUSY) 2815 return VM_FAULT_SIGBUS; 2816 2817 return VM_FAULT_NOPAGE; 2818 } 2819 2820 #ifndef io_remap_pfn_range 2821 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2822 unsigned long addr, unsigned long pfn, 2823 unsigned long size, pgprot_t prot) 2824 { 2825 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2826 } 2827 #endif 2828 2829 static inline vm_fault_t vmf_error(int err) 2830 { 2831 if (err == -ENOMEM) 2832 return VM_FAULT_OOM; 2833 return VM_FAULT_SIGBUS; 2834 } 2835 2836 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2837 unsigned int foll_flags); 2838 2839 #define FOLL_WRITE 0x01 /* check pte is writable */ 2840 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2841 #define FOLL_GET 0x04 /* do get_page on page */ 2842 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2843 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2844 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2845 * and return without waiting upon it */ 2846 #define FOLL_POPULATE 0x40 /* fault in page */ 2847 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2848 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2849 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2850 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2851 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2852 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2853 #define FOLL_COW 0x4000 /* internal GUP flag */ 2854 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2855 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2856 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2857 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2858 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2859 2860 /* 2861 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2862 * other. Here is what they mean, and how to use them: 2863 * 2864 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2865 * period _often_ under userspace control. This is in contrast to 2866 * iov_iter_get_pages(), whose usages are transient. 2867 * 2868 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2869 * lifetime enforced by the filesystem and we need guarantees that longterm 2870 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2871 * the filesystem. Ideas for this coordination include revoking the longterm 2872 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2873 * added after the problem with filesystems was found FS DAX VMAs are 2874 * specifically failed. Filesystem pages are still subject to bugs and use of 2875 * FOLL_LONGTERM should be avoided on those pages. 2876 * 2877 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2878 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2879 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2880 * is due to an incompatibility with the FS DAX check and 2881 * FAULT_FLAG_ALLOW_RETRY. 2882 * 2883 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2884 * that region. And so, CMA attempts to migrate the page before pinning, when 2885 * FOLL_LONGTERM is specified. 2886 * 2887 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2888 * but an additional pin counting system) will be invoked. This is intended for 2889 * anything that gets a page reference and then touches page data (for example, 2890 * Direct IO). This lets the filesystem know that some non-file-system entity is 2891 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2892 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2893 * a call to unpin_user_page(). 2894 * 2895 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2896 * and separate refcounting mechanisms, however, and that means that each has 2897 * its own acquire and release mechanisms: 2898 * 2899 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2900 * 2901 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2902 * 2903 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2904 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2905 * calls applied to them, and that's perfectly OK. This is a constraint on the 2906 * callers, not on the pages.) 2907 * 2908 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2909 * directly by the caller. That's in order to help avoid mismatches when 2910 * releasing pages: get_user_pages*() pages must be released via put_page(), 2911 * while pin_user_pages*() pages must be released via unpin_user_page(). 2912 * 2913 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2914 */ 2915 2916 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2917 { 2918 if (vm_fault & VM_FAULT_OOM) 2919 return -ENOMEM; 2920 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2921 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2922 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2923 return -EFAULT; 2924 return 0; 2925 } 2926 2927 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2928 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2929 unsigned long size, pte_fn_t fn, void *data); 2930 extern int apply_to_existing_page_range(struct mm_struct *mm, 2931 unsigned long address, unsigned long size, 2932 pte_fn_t fn, void *data); 2933 2934 extern void init_mem_debugging_and_hardening(void); 2935 #ifdef CONFIG_PAGE_POISONING 2936 extern void __kernel_poison_pages(struct page *page, int numpages); 2937 extern void __kernel_unpoison_pages(struct page *page, int numpages); 2938 extern bool _page_poisoning_enabled_early; 2939 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 2940 static inline bool page_poisoning_enabled(void) 2941 { 2942 return _page_poisoning_enabled_early; 2943 } 2944 /* 2945 * For use in fast paths after init_mem_debugging() has run, or when a 2946 * false negative result is not harmful when called too early. 2947 */ 2948 static inline bool page_poisoning_enabled_static(void) 2949 { 2950 return static_branch_unlikely(&_page_poisoning_enabled); 2951 } 2952 static inline void kernel_poison_pages(struct page *page, int numpages) 2953 { 2954 if (page_poisoning_enabled_static()) 2955 __kernel_poison_pages(page, numpages); 2956 } 2957 static inline void kernel_unpoison_pages(struct page *page, int numpages) 2958 { 2959 if (page_poisoning_enabled_static()) 2960 __kernel_unpoison_pages(page, numpages); 2961 } 2962 #else 2963 static inline bool page_poisoning_enabled(void) { return false; } 2964 static inline bool page_poisoning_enabled_static(void) { return false; } 2965 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 2966 static inline void kernel_poison_pages(struct page *page, int numpages) { } 2967 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 2968 #endif 2969 2970 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 2971 static inline bool want_init_on_alloc(gfp_t flags) 2972 { 2973 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 2974 &init_on_alloc)) 2975 return true; 2976 return flags & __GFP_ZERO; 2977 } 2978 2979 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 2980 static inline bool want_init_on_free(void) 2981 { 2982 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 2983 &init_on_free); 2984 } 2985 2986 extern bool _debug_pagealloc_enabled_early; 2987 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2988 2989 static inline bool debug_pagealloc_enabled(void) 2990 { 2991 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2992 _debug_pagealloc_enabled_early; 2993 } 2994 2995 /* 2996 * For use in fast paths after init_debug_pagealloc() has run, or when a 2997 * false negative result is not harmful when called too early. 2998 */ 2999 static inline bool debug_pagealloc_enabled_static(void) 3000 { 3001 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3002 return false; 3003 3004 return static_branch_unlikely(&_debug_pagealloc_enabled); 3005 } 3006 3007 #ifdef CONFIG_DEBUG_PAGEALLOC 3008 /* 3009 * To support DEBUG_PAGEALLOC architecture must ensure that 3010 * __kernel_map_pages() never fails 3011 */ 3012 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3013 3014 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3015 { 3016 if (debug_pagealloc_enabled_static()) 3017 __kernel_map_pages(page, numpages, 1); 3018 } 3019 3020 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3021 { 3022 if (debug_pagealloc_enabled_static()) 3023 __kernel_map_pages(page, numpages, 0); 3024 } 3025 #else /* CONFIG_DEBUG_PAGEALLOC */ 3026 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3027 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3028 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3029 3030 #ifdef __HAVE_ARCH_GATE_AREA 3031 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3032 extern int in_gate_area_no_mm(unsigned long addr); 3033 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3034 #else 3035 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3036 { 3037 return NULL; 3038 } 3039 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3040 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3041 { 3042 return 0; 3043 } 3044 #endif /* __HAVE_ARCH_GATE_AREA */ 3045 3046 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3047 3048 #ifdef CONFIG_SYSCTL 3049 extern int sysctl_drop_caches; 3050 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3051 loff_t *); 3052 #endif 3053 3054 void drop_slab(void); 3055 void drop_slab_node(int nid); 3056 3057 #ifndef CONFIG_MMU 3058 #define randomize_va_space 0 3059 #else 3060 extern int randomize_va_space; 3061 #endif 3062 3063 const char * arch_vma_name(struct vm_area_struct *vma); 3064 #ifdef CONFIG_MMU 3065 void print_vma_addr(char *prefix, unsigned long rip); 3066 #else 3067 static inline void print_vma_addr(char *prefix, unsigned long rip) 3068 { 3069 } 3070 #endif 3071 3072 int vmemmap_remap_free(unsigned long start, unsigned long end, 3073 unsigned long reuse); 3074 int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3075 unsigned long reuse, gfp_t gfp_mask); 3076 3077 void *sparse_buffer_alloc(unsigned long size); 3078 struct page * __populate_section_memmap(unsigned long pfn, 3079 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3080 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3081 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3082 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3083 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3084 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3085 struct vmem_altmap *altmap); 3086 void *vmemmap_alloc_block(unsigned long size, int node); 3087 struct vmem_altmap; 3088 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3089 struct vmem_altmap *altmap); 3090 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3091 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3092 int node, struct vmem_altmap *altmap); 3093 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3094 struct vmem_altmap *altmap); 3095 void vmemmap_populate_print_last(void); 3096 #ifdef CONFIG_MEMORY_HOTPLUG 3097 void vmemmap_free(unsigned long start, unsigned long end, 3098 struct vmem_altmap *altmap); 3099 #endif 3100 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3101 unsigned long nr_pages); 3102 3103 enum mf_flags { 3104 MF_COUNT_INCREASED = 1 << 0, 3105 MF_ACTION_REQUIRED = 1 << 1, 3106 MF_MUST_KILL = 1 << 2, 3107 MF_SOFT_OFFLINE = 1 << 3, 3108 }; 3109 extern int memory_failure(unsigned long pfn, int flags); 3110 extern void memory_failure_queue(unsigned long pfn, int flags); 3111 extern void memory_failure_queue_kick(int cpu); 3112 extern int unpoison_memory(unsigned long pfn); 3113 extern int sysctl_memory_failure_early_kill; 3114 extern int sysctl_memory_failure_recovery; 3115 extern void shake_page(struct page *p); 3116 extern atomic_long_t num_poisoned_pages __read_mostly; 3117 extern int soft_offline_page(unsigned long pfn, int flags); 3118 3119 3120 /* 3121 * Error handlers for various types of pages. 3122 */ 3123 enum mf_result { 3124 MF_IGNORED, /* Error: cannot be handled */ 3125 MF_FAILED, /* Error: handling failed */ 3126 MF_DELAYED, /* Will be handled later */ 3127 MF_RECOVERED, /* Successfully recovered */ 3128 }; 3129 3130 enum mf_action_page_type { 3131 MF_MSG_KERNEL, 3132 MF_MSG_KERNEL_HIGH_ORDER, 3133 MF_MSG_SLAB, 3134 MF_MSG_DIFFERENT_COMPOUND, 3135 MF_MSG_POISONED_HUGE, 3136 MF_MSG_HUGE, 3137 MF_MSG_FREE_HUGE, 3138 MF_MSG_NON_PMD_HUGE, 3139 MF_MSG_UNMAP_FAILED, 3140 MF_MSG_DIRTY_SWAPCACHE, 3141 MF_MSG_CLEAN_SWAPCACHE, 3142 MF_MSG_DIRTY_MLOCKED_LRU, 3143 MF_MSG_CLEAN_MLOCKED_LRU, 3144 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3145 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3146 MF_MSG_DIRTY_LRU, 3147 MF_MSG_CLEAN_LRU, 3148 MF_MSG_TRUNCATED_LRU, 3149 MF_MSG_BUDDY, 3150 MF_MSG_BUDDY_2ND, 3151 MF_MSG_DAX, 3152 MF_MSG_UNSPLIT_THP, 3153 MF_MSG_UNKNOWN, 3154 }; 3155 3156 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3157 extern void clear_huge_page(struct page *page, 3158 unsigned long addr_hint, 3159 unsigned int pages_per_huge_page); 3160 extern void copy_user_huge_page(struct page *dst, struct page *src, 3161 unsigned long addr_hint, 3162 struct vm_area_struct *vma, 3163 unsigned int pages_per_huge_page); 3164 extern long copy_huge_page_from_user(struct page *dst_page, 3165 const void __user *usr_src, 3166 unsigned int pages_per_huge_page, 3167 bool allow_pagefault); 3168 3169 /** 3170 * vma_is_special_huge - Are transhuge page-table entries considered special? 3171 * @vma: Pointer to the struct vm_area_struct to consider 3172 * 3173 * Whether transhuge page-table entries are considered "special" following 3174 * the definition in vm_normal_page(). 3175 * 3176 * Return: true if transhuge page-table entries should be considered special, 3177 * false otherwise. 3178 */ 3179 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3180 { 3181 return vma_is_dax(vma) || (vma->vm_file && 3182 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3183 } 3184 3185 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3186 3187 #ifdef CONFIG_DEBUG_PAGEALLOC 3188 extern unsigned int _debug_guardpage_minorder; 3189 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3190 3191 static inline unsigned int debug_guardpage_minorder(void) 3192 { 3193 return _debug_guardpage_minorder; 3194 } 3195 3196 static inline bool debug_guardpage_enabled(void) 3197 { 3198 return static_branch_unlikely(&_debug_guardpage_enabled); 3199 } 3200 3201 static inline bool page_is_guard(struct page *page) 3202 { 3203 if (!debug_guardpage_enabled()) 3204 return false; 3205 3206 return PageGuard(page); 3207 } 3208 #else 3209 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3210 static inline bool debug_guardpage_enabled(void) { return false; } 3211 static inline bool page_is_guard(struct page *page) { return false; } 3212 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3213 3214 #if MAX_NUMNODES > 1 3215 void __init setup_nr_node_ids(void); 3216 #else 3217 static inline void setup_nr_node_ids(void) {} 3218 #endif 3219 3220 extern int memcmp_pages(struct page *page1, struct page *page2); 3221 3222 static inline int pages_identical(struct page *page1, struct page *page2) 3223 { 3224 return !memcmp_pages(page1, page2); 3225 } 3226 3227 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3228 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3229 pgoff_t first_index, pgoff_t nr, 3230 pgoff_t bitmap_pgoff, 3231 unsigned long *bitmap, 3232 pgoff_t *start, 3233 pgoff_t *end); 3234 3235 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3236 pgoff_t first_index, pgoff_t nr); 3237 #endif 3238 3239 extern int sysctl_nr_trim_pages; 3240 3241 #ifdef CONFIG_PRINTK 3242 void mem_dump_obj(void *object); 3243 #else 3244 static inline void mem_dump_obj(void *object) {} 3245 #endif 3246 3247 /** 3248 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3249 * @seals: the seals to check 3250 * @vma: the vma to operate on 3251 * 3252 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3253 * the vma flags. Return 0 if check pass, or <0 for errors. 3254 */ 3255 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3256 { 3257 if (seals & F_SEAL_FUTURE_WRITE) { 3258 /* 3259 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3260 * "future write" seal active. 3261 */ 3262 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3263 return -EPERM; 3264 3265 /* 3266 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3267 * MAP_SHARED and read-only, take care to not allow mprotect to 3268 * revert protections on such mappings. Do this only for shared 3269 * mappings. For private mappings, don't need to mask 3270 * VM_MAYWRITE as we still want them to be COW-writable. 3271 */ 3272 if (vma->vm_flags & VM_SHARED) 3273 vma->vm_flags &= ~(VM_MAYWRITE); 3274 } 3275 3276 return 0; 3277 } 3278 3279 #endif /* __KERNEL__ */ 3280 #endif /* _LINUX_MM_H */ 3281