1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 struct folio_batch; 40 41 extern int sysctl_page_lock_unfairness; 42 43 void mm_core_init(void); 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 extern const int page_cluster_max; 81 82 #ifdef CONFIG_SYSCTL 83 extern int sysctl_legacy_va_layout; 84 #else 85 #define sysctl_legacy_va_layout 0 86 #endif 87 88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 89 extern const int mmap_rnd_bits_min; 90 extern int mmap_rnd_bits_max __ro_after_init; 91 extern int mmap_rnd_bits __read_mostly; 92 #endif 93 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 94 extern const int mmap_rnd_compat_bits_min; 95 extern const int mmap_rnd_compat_bits_max; 96 extern int mmap_rnd_compat_bits __read_mostly; 97 #endif 98 99 #include <asm/page.h> 100 #include <asm/processor.h> 101 102 #ifndef __pa_symbol 103 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 104 #endif 105 106 #ifndef page_to_virt 107 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 108 #endif 109 110 #ifndef lm_alias 111 #define lm_alias(x) __va(__pa_symbol(x)) 112 #endif 113 114 /* 115 * To prevent common memory management code establishing 116 * a zero page mapping on a read fault. 117 * This macro should be defined within <asm/pgtable.h>. 118 * s390 does this to prevent multiplexing of hardware bits 119 * related to the physical page in case of virtualization. 120 */ 121 #ifndef mm_forbids_zeropage 122 #define mm_forbids_zeropage(X) (0) 123 #endif 124 125 /* 126 * On some architectures it is expensive to call memset() for small sizes. 127 * If an architecture decides to implement their own version of 128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 129 * define their own version of this macro in <asm/pgtable.h> 130 */ 131 #if BITS_PER_LONG == 64 132 /* This function must be updated when the size of struct page grows above 96 133 * or reduces below 56. The idea that compiler optimizes out switch() 134 * statement, and only leaves move/store instructions. Also the compiler can 135 * combine write statements if they are both assignments and can be reordered, 136 * this can result in several of the writes here being dropped. 137 */ 138 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 139 static inline void __mm_zero_struct_page(struct page *page) 140 { 141 unsigned long *_pp = (void *)page; 142 143 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 144 BUILD_BUG_ON(sizeof(struct page) & 7); 145 BUILD_BUG_ON(sizeof(struct page) < 56); 146 BUILD_BUG_ON(sizeof(struct page) > 96); 147 148 switch (sizeof(struct page)) { 149 case 96: 150 _pp[11] = 0; 151 fallthrough; 152 case 88: 153 _pp[10] = 0; 154 fallthrough; 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173 } 174 #else 175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176 #endif 177 178 /* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194 #define MAPCOUNT_ELF_CORE_MARGIN (5) 195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197 extern int sysctl_max_map_count; 198 199 extern unsigned long sysctl_user_reserve_kbytes; 200 extern unsigned long sysctl_admin_reserve_kbytes; 201 202 extern int sysctl_overcommit_memory; 203 extern int sysctl_overcommit_ratio; 204 extern unsigned long sysctl_overcommit_kbytes; 205 206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216 #else 217 #define nth_page(page,n) ((page) + (n)) 218 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 219 #endif 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* to align the pointer to the (prev) page boundary */ 225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 226 227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 228 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 229 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331 #ifdef CONFIG_ARCH_HAS_PKEYS 332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337 #ifdef CONFIG_PPC 338 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339 #else 340 # define VM_PKEY_BIT4 0 341 #endif 342 #endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344 #ifdef CONFIG_X86_USER_SHADOW_STACK 345 /* 346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 347 * support core mm. 348 * 349 * These VMAs will get a single end guard page. This helps userspace protect 350 * itself from attacks. A single page is enough for current shadow stack archs 351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 352 * for more details on the guard size. 353 */ 354 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 355 #else 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* 395 * This flag is used to connect VFIO to arch specific KVM code. It 396 * indicates that the memory under this VMA is safe for use with any 397 * non-cachable memory type inside KVM. Some VFIO devices, on some 398 * platforms, are thought to be unsafe and can cause machine crashes 399 * if KVM does not lock down the memory type. 400 */ 401 #ifdef CONFIG_64BIT 402 #define VM_ALLOW_ANY_UNCACHED_BIT 39 403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 404 #else 405 #define VM_ALLOW_ANY_UNCACHED VM_NONE 406 #endif 407 408 /* Bits set in the VMA until the stack is in its final location */ 409 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 410 411 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 412 413 /* Common data flag combinations */ 414 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 415 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 416 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 417 VM_MAYWRITE | VM_MAYEXEC) 418 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 419 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 420 421 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 422 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 423 #endif 424 425 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 426 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 427 #endif 428 429 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 430 431 #ifdef CONFIG_STACK_GROWSUP 432 #define VM_STACK VM_GROWSUP 433 #define VM_STACK_EARLY VM_GROWSDOWN 434 #else 435 #define VM_STACK VM_GROWSDOWN 436 #define VM_STACK_EARLY 0 437 #endif 438 439 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 440 441 /* VMA basic access permission flags */ 442 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 443 444 445 /* 446 * Special vmas that are non-mergable, non-mlock()able. 447 */ 448 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 449 450 /* This mask prevents VMA from being scanned with khugepaged */ 451 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 452 453 /* This mask defines which mm->def_flags a process can inherit its parent */ 454 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 455 456 /* This mask represents all the VMA flag bits used by mlock */ 457 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 458 459 /* Arch-specific flags to clear when updating VM flags on protection change */ 460 #ifndef VM_ARCH_CLEAR 461 # define VM_ARCH_CLEAR VM_NONE 462 #endif 463 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 464 465 /* 466 * mapping from the currently active vm_flags protection bits (the 467 * low four bits) to a page protection mask.. 468 */ 469 470 /* 471 * The default fault flags that should be used by most of the 472 * arch-specific page fault handlers. 473 */ 474 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 475 FAULT_FLAG_KILLABLE | \ 476 FAULT_FLAG_INTERRUPTIBLE) 477 478 /** 479 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 480 * @flags: Fault flags. 481 * 482 * This is mostly used for places where we want to try to avoid taking 483 * the mmap_lock for too long a time when waiting for another condition 484 * to change, in which case we can try to be polite to release the 485 * mmap_lock in the first round to avoid potential starvation of other 486 * processes that would also want the mmap_lock. 487 * 488 * Return: true if the page fault allows retry and this is the first 489 * attempt of the fault handling; false otherwise. 490 */ 491 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 492 { 493 return (flags & FAULT_FLAG_ALLOW_RETRY) && 494 (!(flags & FAULT_FLAG_TRIED)); 495 } 496 497 #define FAULT_FLAG_TRACE \ 498 { FAULT_FLAG_WRITE, "WRITE" }, \ 499 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 500 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 501 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 502 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 503 { FAULT_FLAG_TRIED, "TRIED" }, \ 504 { FAULT_FLAG_USER, "USER" }, \ 505 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 506 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 507 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 508 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 509 510 /* 511 * vm_fault is filled by the pagefault handler and passed to the vma's 512 * ->fault function. The vma's ->fault is responsible for returning a bitmask 513 * of VM_FAULT_xxx flags that give details about how the fault was handled. 514 * 515 * MM layer fills up gfp_mask for page allocations but fault handler might 516 * alter it if its implementation requires a different allocation context. 517 * 518 * pgoff should be used in favour of virtual_address, if possible. 519 */ 520 struct vm_fault { 521 const struct { 522 struct vm_area_struct *vma; /* Target VMA */ 523 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 524 pgoff_t pgoff; /* Logical page offset based on vma */ 525 unsigned long address; /* Faulting virtual address - masked */ 526 unsigned long real_address; /* Faulting virtual address - unmasked */ 527 }; 528 enum fault_flag flags; /* FAULT_FLAG_xxx flags 529 * XXX: should really be 'const' */ 530 pmd_t *pmd; /* Pointer to pmd entry matching 531 * the 'address' */ 532 pud_t *pud; /* Pointer to pud entry matching 533 * the 'address' 534 */ 535 union { 536 pte_t orig_pte; /* Value of PTE at the time of fault */ 537 pmd_t orig_pmd; /* Value of PMD at the time of fault, 538 * used by PMD fault only. 539 */ 540 }; 541 542 struct page *cow_page; /* Page handler may use for COW fault */ 543 struct page *page; /* ->fault handlers should return a 544 * page here, unless VM_FAULT_NOPAGE 545 * is set (which is also implied by 546 * VM_FAULT_ERROR). 547 */ 548 /* These three entries are valid only while holding ptl lock */ 549 pte_t *pte; /* Pointer to pte entry matching 550 * the 'address'. NULL if the page 551 * table hasn't been allocated. 552 */ 553 spinlock_t *ptl; /* Page table lock. 554 * Protects pte page table if 'pte' 555 * is not NULL, otherwise pmd. 556 */ 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 558 * vm_ops->map_pages() sets up a page 559 * table from atomic context. 560 * do_fault_around() pre-allocates 561 * page table to avoid allocation from 562 * atomic context. 563 */ 564 }; 565 566 /* 567 * These are the virtual MM functions - opening of an area, closing and 568 * unmapping it (needed to keep files on disk up-to-date etc), pointer 569 * to the functions called when a no-page or a wp-page exception occurs. 570 */ 571 struct vm_operations_struct { 572 void (*open)(struct vm_area_struct * area); 573 /** 574 * @close: Called when the VMA is being removed from the MM. 575 * Context: User context. May sleep. Caller holds mmap_lock. 576 */ 577 void (*close)(struct vm_area_struct * area); 578 /* Called any time before splitting to check if it's allowed */ 579 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 580 int (*mremap)(struct vm_area_struct *area); 581 /* 582 * Called by mprotect() to make driver-specific permission 583 * checks before mprotect() is finalised. The VMA must not 584 * be modified. Returns 0 if mprotect() can proceed. 585 */ 586 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 587 unsigned long end, unsigned long newflags); 588 vm_fault_t (*fault)(struct vm_fault *vmf); 589 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 590 vm_fault_t (*map_pages)(struct vm_fault *vmf, 591 pgoff_t start_pgoff, pgoff_t end_pgoff); 592 unsigned long (*pagesize)(struct vm_area_struct * area); 593 594 /* notification that a previously read-only page is about to become 595 * writable, if an error is returned it will cause a SIGBUS */ 596 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 597 598 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 599 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 600 601 /* called by access_process_vm when get_user_pages() fails, typically 602 * for use by special VMAs. See also generic_access_phys() for a generic 603 * implementation useful for any iomem mapping. 604 */ 605 int (*access)(struct vm_area_struct *vma, unsigned long addr, 606 void *buf, int len, int write); 607 608 /* Called by the /proc/PID/maps code to ask the vma whether it 609 * has a special name. Returning non-NULL will also cause this 610 * vma to be dumped unconditionally. */ 611 const char *(*name)(struct vm_area_struct *vma); 612 613 #ifdef CONFIG_NUMA 614 /* 615 * set_policy() op must add a reference to any non-NULL @new mempolicy 616 * to hold the policy upon return. Caller should pass NULL @new to 617 * remove a policy and fall back to surrounding context--i.e. do not 618 * install a MPOL_DEFAULT policy, nor the task or system default 619 * mempolicy. 620 */ 621 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 622 623 /* 624 * get_policy() op must add reference [mpol_get()] to any policy at 625 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 626 * in mm/mempolicy.c will do this automatically. 627 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 628 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 629 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 630 * must return NULL--i.e., do not "fallback" to task or system default 631 * policy. 632 */ 633 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 634 unsigned long addr, pgoff_t *ilx); 635 #endif 636 /* 637 * Called by vm_normal_page() for special PTEs to find the 638 * page for @addr. This is useful if the default behavior 639 * (using pte_page()) would not find the correct page. 640 */ 641 struct page *(*find_special_page)(struct vm_area_struct *vma, 642 unsigned long addr); 643 }; 644 645 #ifdef CONFIG_NUMA_BALANCING 646 static inline void vma_numab_state_init(struct vm_area_struct *vma) 647 { 648 vma->numab_state = NULL; 649 } 650 static inline void vma_numab_state_free(struct vm_area_struct *vma) 651 { 652 kfree(vma->numab_state); 653 } 654 #else 655 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 656 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 657 #endif /* CONFIG_NUMA_BALANCING */ 658 659 #ifdef CONFIG_PER_VMA_LOCK 660 /* 661 * Try to read-lock a vma. The function is allowed to occasionally yield false 662 * locked result to avoid performance overhead, in which case we fall back to 663 * using mmap_lock. The function should never yield false unlocked result. 664 */ 665 static inline bool vma_start_read(struct vm_area_struct *vma) 666 { 667 /* 668 * Check before locking. A race might cause false locked result. 669 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 670 * ACQUIRE semantics, because this is just a lockless check whose result 671 * we don't rely on for anything - the mm_lock_seq read against which we 672 * need ordering is below. 673 */ 674 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 675 return false; 676 677 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 678 return false; 679 680 /* 681 * Overflow might produce false locked result. 682 * False unlocked result is impossible because we modify and check 683 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 684 * modification invalidates all existing locks. 685 * 686 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 687 * racing with vma_end_write_all(), we only start reading from the VMA 688 * after it has been unlocked. 689 * This pairs with RELEASE semantics in vma_end_write_all(). 690 */ 691 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 692 up_read(&vma->vm_lock->lock); 693 return false; 694 } 695 return true; 696 } 697 698 static inline void vma_end_read(struct vm_area_struct *vma) 699 { 700 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 701 up_read(&vma->vm_lock->lock); 702 rcu_read_unlock(); 703 } 704 705 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 706 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 707 { 708 mmap_assert_write_locked(vma->vm_mm); 709 710 /* 711 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 712 * mm->mm_lock_seq can't be concurrently modified. 713 */ 714 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 715 return (vma->vm_lock_seq == *mm_lock_seq); 716 } 717 718 /* 719 * Begin writing to a VMA. 720 * Exclude concurrent readers under the per-VMA lock until the currently 721 * write-locked mmap_lock is dropped or downgraded. 722 */ 723 static inline void vma_start_write(struct vm_area_struct *vma) 724 { 725 int mm_lock_seq; 726 727 if (__is_vma_write_locked(vma, &mm_lock_seq)) 728 return; 729 730 down_write(&vma->vm_lock->lock); 731 /* 732 * We should use WRITE_ONCE() here because we can have concurrent reads 733 * from the early lockless pessimistic check in vma_start_read(). 734 * We don't really care about the correctness of that early check, but 735 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 736 */ 737 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 738 up_write(&vma->vm_lock->lock); 739 } 740 741 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 742 { 743 int mm_lock_seq; 744 745 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 746 } 747 748 static inline void vma_assert_locked(struct vm_area_struct *vma) 749 { 750 if (!rwsem_is_locked(&vma->vm_lock->lock)) 751 vma_assert_write_locked(vma); 752 } 753 754 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 755 { 756 /* When detaching vma should be write-locked */ 757 if (detached) 758 vma_assert_write_locked(vma); 759 vma->detached = detached; 760 } 761 762 static inline void release_fault_lock(struct vm_fault *vmf) 763 { 764 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 765 vma_end_read(vmf->vma); 766 else 767 mmap_read_unlock(vmf->vma->vm_mm); 768 } 769 770 static inline void assert_fault_locked(struct vm_fault *vmf) 771 { 772 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 773 vma_assert_locked(vmf->vma); 774 else 775 mmap_assert_locked(vmf->vma->vm_mm); 776 } 777 778 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 779 unsigned long address); 780 781 #else /* CONFIG_PER_VMA_LOCK */ 782 783 static inline bool vma_start_read(struct vm_area_struct *vma) 784 { return false; } 785 static inline void vma_end_read(struct vm_area_struct *vma) {} 786 static inline void vma_start_write(struct vm_area_struct *vma) {} 787 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 788 { mmap_assert_write_locked(vma->vm_mm); } 789 static inline void vma_mark_detached(struct vm_area_struct *vma, 790 bool detached) {} 791 792 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 793 unsigned long address) 794 { 795 return NULL; 796 } 797 798 static inline void vma_assert_locked(struct vm_area_struct *vma) 799 { 800 mmap_assert_locked(vma->vm_mm); 801 } 802 803 static inline void release_fault_lock(struct vm_fault *vmf) 804 { 805 mmap_read_unlock(vmf->vma->vm_mm); 806 } 807 808 static inline void assert_fault_locked(struct vm_fault *vmf) 809 { 810 mmap_assert_locked(vmf->vma->vm_mm); 811 } 812 813 #endif /* CONFIG_PER_VMA_LOCK */ 814 815 extern const struct vm_operations_struct vma_dummy_vm_ops; 816 817 /* 818 * WARNING: vma_init does not initialize vma->vm_lock. 819 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 820 */ 821 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 822 { 823 memset(vma, 0, sizeof(*vma)); 824 vma->vm_mm = mm; 825 vma->vm_ops = &vma_dummy_vm_ops; 826 INIT_LIST_HEAD(&vma->anon_vma_chain); 827 vma_mark_detached(vma, false); 828 vma_numab_state_init(vma); 829 } 830 831 /* Use when VMA is not part of the VMA tree and needs no locking */ 832 static inline void vm_flags_init(struct vm_area_struct *vma, 833 vm_flags_t flags) 834 { 835 ACCESS_PRIVATE(vma, __vm_flags) = flags; 836 } 837 838 /* 839 * Use when VMA is part of the VMA tree and modifications need coordination 840 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 841 * it should be locked explicitly beforehand. 842 */ 843 static inline void vm_flags_reset(struct vm_area_struct *vma, 844 vm_flags_t flags) 845 { 846 vma_assert_write_locked(vma); 847 vm_flags_init(vma, flags); 848 } 849 850 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 851 vm_flags_t flags) 852 { 853 vma_assert_write_locked(vma); 854 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 855 } 856 857 static inline void vm_flags_set(struct vm_area_struct *vma, 858 vm_flags_t flags) 859 { 860 vma_start_write(vma); 861 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 862 } 863 864 static inline void vm_flags_clear(struct vm_area_struct *vma, 865 vm_flags_t flags) 866 { 867 vma_start_write(vma); 868 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 869 } 870 871 /* 872 * Use only if VMA is not part of the VMA tree or has no other users and 873 * therefore needs no locking. 874 */ 875 static inline void __vm_flags_mod(struct vm_area_struct *vma, 876 vm_flags_t set, vm_flags_t clear) 877 { 878 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 879 } 880 881 /* 882 * Use only when the order of set/clear operations is unimportant, otherwise 883 * use vm_flags_{set|clear} explicitly. 884 */ 885 static inline void vm_flags_mod(struct vm_area_struct *vma, 886 vm_flags_t set, vm_flags_t clear) 887 { 888 vma_start_write(vma); 889 __vm_flags_mod(vma, set, clear); 890 } 891 892 static inline void vma_set_anonymous(struct vm_area_struct *vma) 893 { 894 vma->vm_ops = NULL; 895 } 896 897 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 898 { 899 return !vma->vm_ops; 900 } 901 902 /* 903 * Indicate if the VMA is a heap for the given task; for 904 * /proc/PID/maps that is the heap of the main task. 905 */ 906 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 907 { 908 return vma->vm_start < vma->vm_mm->brk && 909 vma->vm_end > vma->vm_mm->start_brk; 910 } 911 912 /* 913 * Indicate if the VMA is a stack for the given task; for 914 * /proc/PID/maps that is the stack of the main task. 915 */ 916 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 917 { 918 /* 919 * We make no effort to guess what a given thread considers to be 920 * its "stack". It's not even well-defined for programs written 921 * languages like Go. 922 */ 923 return vma->vm_start <= vma->vm_mm->start_stack && 924 vma->vm_end >= vma->vm_mm->start_stack; 925 } 926 927 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 928 { 929 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 930 931 if (!maybe_stack) 932 return false; 933 934 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 935 VM_STACK_INCOMPLETE_SETUP) 936 return true; 937 938 return false; 939 } 940 941 static inline bool vma_is_foreign(struct vm_area_struct *vma) 942 { 943 if (!current->mm) 944 return true; 945 946 if (current->mm != vma->vm_mm) 947 return true; 948 949 return false; 950 } 951 952 static inline bool vma_is_accessible(struct vm_area_struct *vma) 953 { 954 return vma->vm_flags & VM_ACCESS_FLAGS; 955 } 956 957 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 958 { 959 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 960 (VM_SHARED | VM_MAYWRITE); 961 } 962 963 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 964 { 965 return is_shared_maywrite(vma->vm_flags); 966 } 967 968 static inline 969 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 970 { 971 return mas_find(&vmi->mas, max - 1); 972 } 973 974 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 975 { 976 /* 977 * Uses mas_find() to get the first VMA when the iterator starts. 978 * Calling mas_next() could skip the first entry. 979 */ 980 return mas_find(&vmi->mas, ULONG_MAX); 981 } 982 983 static inline 984 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 985 { 986 return mas_next_range(&vmi->mas, ULONG_MAX); 987 } 988 989 990 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 991 { 992 return mas_prev(&vmi->mas, 0); 993 } 994 995 static inline 996 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 997 { 998 return mas_prev_range(&vmi->mas, 0); 999 } 1000 1001 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1002 { 1003 return vmi->mas.index; 1004 } 1005 1006 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1007 { 1008 return vmi->mas.last + 1; 1009 } 1010 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1011 unsigned long count) 1012 { 1013 return mas_expected_entries(&vmi->mas, count); 1014 } 1015 1016 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1017 unsigned long start, unsigned long end, gfp_t gfp) 1018 { 1019 __mas_set_range(&vmi->mas, start, end - 1); 1020 mas_store_gfp(&vmi->mas, NULL, gfp); 1021 if (unlikely(mas_is_err(&vmi->mas))) 1022 return -ENOMEM; 1023 1024 return 0; 1025 } 1026 1027 /* Free any unused preallocations */ 1028 static inline void vma_iter_free(struct vma_iterator *vmi) 1029 { 1030 mas_destroy(&vmi->mas); 1031 } 1032 1033 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1034 struct vm_area_struct *vma) 1035 { 1036 vmi->mas.index = vma->vm_start; 1037 vmi->mas.last = vma->vm_end - 1; 1038 mas_store(&vmi->mas, vma); 1039 if (unlikely(mas_is_err(&vmi->mas))) 1040 return -ENOMEM; 1041 1042 return 0; 1043 } 1044 1045 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1046 { 1047 mas_pause(&vmi->mas); 1048 } 1049 1050 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1051 { 1052 mas_set(&vmi->mas, addr); 1053 } 1054 1055 #define for_each_vma(__vmi, __vma) \ 1056 while (((__vma) = vma_next(&(__vmi))) != NULL) 1057 1058 /* The MM code likes to work with exclusive end addresses */ 1059 #define for_each_vma_range(__vmi, __vma, __end) \ 1060 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1061 1062 #ifdef CONFIG_SHMEM 1063 /* 1064 * The vma_is_shmem is not inline because it is used only by slow 1065 * paths in userfault. 1066 */ 1067 bool vma_is_shmem(struct vm_area_struct *vma); 1068 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1069 #else 1070 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1071 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1072 #endif 1073 1074 int vma_is_stack_for_current(struct vm_area_struct *vma); 1075 1076 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1077 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1078 1079 struct mmu_gather; 1080 struct inode; 1081 1082 /* 1083 * compound_order() can be called without holding a reference, which means 1084 * that niceties like page_folio() don't work. These callers should be 1085 * prepared to handle wild return values. For example, PG_head may be 1086 * set before the order is initialised, or this may be a tail page. 1087 * See compaction.c for some good examples. 1088 */ 1089 static inline unsigned int compound_order(struct page *page) 1090 { 1091 struct folio *folio = (struct folio *)page; 1092 1093 if (!test_bit(PG_head, &folio->flags)) 1094 return 0; 1095 return folio->_flags_1 & 0xff; 1096 } 1097 1098 /** 1099 * folio_order - The allocation order of a folio. 1100 * @folio: The folio. 1101 * 1102 * A folio is composed of 2^order pages. See get_order() for the definition 1103 * of order. 1104 * 1105 * Return: The order of the folio. 1106 */ 1107 static inline unsigned int folio_order(struct folio *folio) 1108 { 1109 if (!folio_test_large(folio)) 1110 return 0; 1111 return folio->_flags_1 & 0xff; 1112 } 1113 1114 #include <linux/huge_mm.h> 1115 1116 /* 1117 * Methods to modify the page usage count. 1118 * 1119 * What counts for a page usage: 1120 * - cache mapping (page->mapping) 1121 * - private data (page->private) 1122 * - page mapped in a task's page tables, each mapping 1123 * is counted separately 1124 * 1125 * Also, many kernel routines increase the page count before a critical 1126 * routine so they can be sure the page doesn't go away from under them. 1127 */ 1128 1129 /* 1130 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1131 */ 1132 static inline int put_page_testzero(struct page *page) 1133 { 1134 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1135 return page_ref_dec_and_test(page); 1136 } 1137 1138 static inline int folio_put_testzero(struct folio *folio) 1139 { 1140 return put_page_testzero(&folio->page); 1141 } 1142 1143 /* 1144 * Try to grab a ref unless the page has a refcount of zero, return false if 1145 * that is the case. 1146 * This can be called when MMU is off so it must not access 1147 * any of the virtual mappings. 1148 */ 1149 static inline bool get_page_unless_zero(struct page *page) 1150 { 1151 return page_ref_add_unless(page, 1, 0); 1152 } 1153 1154 static inline struct folio *folio_get_nontail_page(struct page *page) 1155 { 1156 if (unlikely(!get_page_unless_zero(page))) 1157 return NULL; 1158 return (struct folio *)page; 1159 } 1160 1161 extern int page_is_ram(unsigned long pfn); 1162 1163 enum { 1164 REGION_INTERSECTS, 1165 REGION_DISJOINT, 1166 REGION_MIXED, 1167 }; 1168 1169 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1170 unsigned long desc); 1171 1172 /* Support for virtually mapped pages */ 1173 struct page *vmalloc_to_page(const void *addr); 1174 unsigned long vmalloc_to_pfn(const void *addr); 1175 1176 /* 1177 * Determine if an address is within the vmalloc range 1178 * 1179 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1180 * is no special casing required. 1181 */ 1182 #ifdef CONFIG_MMU 1183 extern bool is_vmalloc_addr(const void *x); 1184 extern int is_vmalloc_or_module_addr(const void *x); 1185 #else 1186 static inline bool is_vmalloc_addr(const void *x) 1187 { 1188 return false; 1189 } 1190 static inline int is_vmalloc_or_module_addr(const void *x) 1191 { 1192 return 0; 1193 } 1194 #endif 1195 1196 /* 1197 * How many times the entire folio is mapped as a single unit (eg by a 1198 * PMD or PUD entry). This is probably not what you want, except for 1199 * debugging purposes - it does not include PTE-mapped sub-pages; look 1200 * at folio_mapcount() or page_mapcount() instead. 1201 */ 1202 static inline int folio_entire_mapcount(struct folio *folio) 1203 { 1204 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1205 return atomic_read(&folio->_entire_mapcount) + 1; 1206 } 1207 1208 /* 1209 * The atomic page->_mapcount, starts from -1: so that transitions 1210 * both from it and to it can be tracked, using atomic_inc_and_test 1211 * and atomic_add_negative(-1). 1212 */ 1213 static inline void page_mapcount_reset(struct page *page) 1214 { 1215 atomic_set(&(page)->_mapcount, -1); 1216 } 1217 1218 /** 1219 * page_mapcount() - Number of times this precise page is mapped. 1220 * @page: The page. 1221 * 1222 * The number of times this page is mapped. If this page is part of 1223 * a large folio, it includes the number of times this page is mapped 1224 * as part of that folio. 1225 * 1226 * Will report 0 for pages which cannot be mapped into userspace, eg 1227 * slab, page tables and similar. 1228 */ 1229 static inline int page_mapcount(struct page *page) 1230 { 1231 int mapcount = atomic_read(&page->_mapcount) + 1; 1232 1233 /* Handle page_has_type() pages */ 1234 if (mapcount < 0) 1235 mapcount = 0; 1236 if (unlikely(PageCompound(page))) 1237 mapcount += folio_entire_mapcount(page_folio(page)); 1238 1239 return mapcount; 1240 } 1241 1242 int folio_total_mapcount(struct folio *folio); 1243 1244 /** 1245 * folio_mapcount() - Calculate the number of mappings of this folio. 1246 * @folio: The folio. 1247 * 1248 * A large folio tracks both how many times the entire folio is mapped, 1249 * and how many times each individual page in the folio is mapped. 1250 * This function calculates the total number of times the folio is 1251 * mapped. 1252 * 1253 * Return: The number of times this folio is mapped. 1254 */ 1255 static inline int folio_mapcount(struct folio *folio) 1256 { 1257 if (likely(!folio_test_large(folio))) 1258 return atomic_read(&folio->_mapcount) + 1; 1259 return folio_total_mapcount(folio); 1260 } 1261 1262 static inline bool folio_large_is_mapped(struct folio *folio) 1263 { 1264 /* 1265 * Reading _entire_mapcount below could be omitted if hugetlb 1266 * participated in incrementing nr_pages_mapped when compound mapped. 1267 */ 1268 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1269 atomic_read(&folio->_entire_mapcount) >= 0; 1270 } 1271 1272 /** 1273 * folio_mapped - Is this folio mapped into userspace? 1274 * @folio: The folio. 1275 * 1276 * Return: True if any page in this folio is referenced by user page tables. 1277 */ 1278 static inline bool folio_mapped(struct folio *folio) 1279 { 1280 if (likely(!folio_test_large(folio))) 1281 return atomic_read(&folio->_mapcount) >= 0; 1282 return folio_large_is_mapped(folio); 1283 } 1284 1285 /* 1286 * Return true if this page is mapped into pagetables. 1287 * For compound page it returns true if any sub-page of compound page is mapped, 1288 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1289 */ 1290 static inline bool page_mapped(struct page *page) 1291 { 1292 if (likely(!PageCompound(page))) 1293 return atomic_read(&page->_mapcount) >= 0; 1294 return folio_large_is_mapped(page_folio(page)); 1295 } 1296 1297 static inline struct page *virt_to_head_page(const void *x) 1298 { 1299 struct page *page = virt_to_page(x); 1300 1301 return compound_head(page); 1302 } 1303 1304 static inline struct folio *virt_to_folio(const void *x) 1305 { 1306 struct page *page = virt_to_page(x); 1307 1308 return page_folio(page); 1309 } 1310 1311 void __folio_put(struct folio *folio); 1312 1313 void put_pages_list(struct list_head *pages); 1314 1315 void split_page(struct page *page, unsigned int order); 1316 void folio_copy(struct folio *dst, struct folio *src); 1317 1318 unsigned long nr_free_buffer_pages(void); 1319 1320 void destroy_large_folio(struct folio *folio); 1321 1322 /* Returns the number of bytes in this potentially compound page. */ 1323 static inline unsigned long page_size(struct page *page) 1324 { 1325 return PAGE_SIZE << compound_order(page); 1326 } 1327 1328 /* Returns the number of bits needed for the number of bytes in a page */ 1329 static inline unsigned int page_shift(struct page *page) 1330 { 1331 return PAGE_SHIFT + compound_order(page); 1332 } 1333 1334 /** 1335 * thp_order - Order of a transparent huge page. 1336 * @page: Head page of a transparent huge page. 1337 */ 1338 static inline unsigned int thp_order(struct page *page) 1339 { 1340 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1341 return compound_order(page); 1342 } 1343 1344 /** 1345 * thp_size - Size of a transparent huge page. 1346 * @page: Head page of a transparent huge page. 1347 * 1348 * Return: Number of bytes in this page. 1349 */ 1350 static inline unsigned long thp_size(struct page *page) 1351 { 1352 return PAGE_SIZE << thp_order(page); 1353 } 1354 1355 #ifdef CONFIG_MMU 1356 /* 1357 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1358 * servicing faults for write access. In the normal case, do always want 1359 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1360 * that do not have writing enabled, when used by access_process_vm. 1361 */ 1362 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1363 { 1364 if (likely(vma->vm_flags & VM_WRITE)) 1365 pte = pte_mkwrite(pte, vma); 1366 return pte; 1367 } 1368 1369 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1370 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1371 struct page *page, unsigned int nr, unsigned long addr); 1372 1373 vm_fault_t finish_fault(struct vm_fault *vmf); 1374 #endif 1375 1376 /* 1377 * Multiple processes may "see" the same page. E.g. for untouched 1378 * mappings of /dev/null, all processes see the same page full of 1379 * zeroes, and text pages of executables and shared libraries have 1380 * only one copy in memory, at most, normally. 1381 * 1382 * For the non-reserved pages, page_count(page) denotes a reference count. 1383 * page_count() == 0 means the page is free. page->lru is then used for 1384 * freelist management in the buddy allocator. 1385 * page_count() > 0 means the page has been allocated. 1386 * 1387 * Pages are allocated by the slab allocator in order to provide memory 1388 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1389 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1390 * unless a particular usage is carefully commented. (the responsibility of 1391 * freeing the kmalloc memory is the caller's, of course). 1392 * 1393 * A page may be used by anyone else who does a __get_free_page(). 1394 * In this case, page_count still tracks the references, and should only 1395 * be used through the normal accessor functions. The top bits of page->flags 1396 * and page->virtual store page management information, but all other fields 1397 * are unused and could be used privately, carefully. The management of this 1398 * page is the responsibility of the one who allocated it, and those who have 1399 * subsequently been given references to it. 1400 * 1401 * The other pages (we may call them "pagecache pages") are completely 1402 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1403 * The following discussion applies only to them. 1404 * 1405 * A pagecache page contains an opaque `private' member, which belongs to the 1406 * page's address_space. Usually, this is the address of a circular list of 1407 * the page's disk buffers. PG_private must be set to tell the VM to call 1408 * into the filesystem to release these pages. 1409 * 1410 * A page may belong to an inode's memory mapping. In this case, page->mapping 1411 * is the pointer to the inode, and page->index is the file offset of the page, 1412 * in units of PAGE_SIZE. 1413 * 1414 * If pagecache pages are not associated with an inode, they are said to be 1415 * anonymous pages. These may become associated with the swapcache, and in that 1416 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1417 * 1418 * In either case (swapcache or inode backed), the pagecache itself holds one 1419 * reference to the page. Setting PG_private should also increment the 1420 * refcount. The each user mapping also has a reference to the page. 1421 * 1422 * The pagecache pages are stored in a per-mapping radix tree, which is 1423 * rooted at mapping->i_pages, and indexed by offset. 1424 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1425 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1426 * 1427 * All pagecache pages may be subject to I/O: 1428 * - inode pages may need to be read from disk, 1429 * - inode pages which have been modified and are MAP_SHARED may need 1430 * to be written back to the inode on disk, 1431 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1432 * modified may need to be swapped out to swap space and (later) to be read 1433 * back into memory. 1434 */ 1435 1436 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1437 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1438 1439 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1440 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1441 { 1442 if (!static_branch_unlikely(&devmap_managed_key)) 1443 return false; 1444 if (!is_zone_device_page(page)) 1445 return false; 1446 return __put_devmap_managed_page_refs(page, refs); 1447 } 1448 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1449 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1450 { 1451 return false; 1452 } 1453 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1454 1455 static inline bool put_devmap_managed_page(struct page *page) 1456 { 1457 return put_devmap_managed_page_refs(page, 1); 1458 } 1459 1460 /* 127: arbitrary random number, small enough to assemble well */ 1461 #define folio_ref_zero_or_close_to_overflow(folio) \ 1462 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1463 1464 /** 1465 * folio_get - Increment the reference count on a folio. 1466 * @folio: The folio. 1467 * 1468 * Context: May be called in any context, as long as you know that 1469 * you have a refcount on the folio. If you do not already have one, 1470 * folio_try_get() may be the right interface for you to use. 1471 */ 1472 static inline void folio_get(struct folio *folio) 1473 { 1474 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1475 folio_ref_inc(folio); 1476 } 1477 1478 static inline void get_page(struct page *page) 1479 { 1480 folio_get(page_folio(page)); 1481 } 1482 1483 static inline __must_check bool try_get_page(struct page *page) 1484 { 1485 page = compound_head(page); 1486 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1487 return false; 1488 page_ref_inc(page); 1489 return true; 1490 } 1491 1492 /** 1493 * folio_put - Decrement the reference count on a folio. 1494 * @folio: The folio. 1495 * 1496 * If the folio's reference count reaches zero, the memory will be 1497 * released back to the page allocator and may be used by another 1498 * allocation immediately. Do not access the memory or the struct folio 1499 * after calling folio_put() unless you can be sure that it wasn't the 1500 * last reference. 1501 * 1502 * Context: May be called in process or interrupt context, but not in NMI 1503 * context. May be called while holding a spinlock. 1504 */ 1505 static inline void folio_put(struct folio *folio) 1506 { 1507 if (folio_put_testzero(folio)) 1508 __folio_put(folio); 1509 } 1510 1511 /** 1512 * folio_put_refs - Reduce the reference count on a folio. 1513 * @folio: The folio. 1514 * @refs: The amount to subtract from the folio's reference count. 1515 * 1516 * If the folio's reference count reaches zero, the memory will be 1517 * released back to the page allocator and may be used by another 1518 * allocation immediately. Do not access the memory or the struct folio 1519 * after calling folio_put_refs() unless you can be sure that these weren't 1520 * the last references. 1521 * 1522 * Context: May be called in process or interrupt context, but not in NMI 1523 * context. May be called while holding a spinlock. 1524 */ 1525 static inline void folio_put_refs(struct folio *folio, int refs) 1526 { 1527 if (folio_ref_sub_and_test(folio, refs)) 1528 __folio_put(folio); 1529 } 1530 1531 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1532 1533 /* 1534 * union release_pages_arg - an array of pages or folios 1535 * 1536 * release_pages() releases a simple array of multiple pages, and 1537 * accepts various different forms of said page array: either 1538 * a regular old boring array of pages, an array of folios, or 1539 * an array of encoded page pointers. 1540 * 1541 * The transparent union syntax for this kind of "any of these 1542 * argument types" is all kinds of ugly, so look away. 1543 */ 1544 typedef union { 1545 struct page **pages; 1546 struct folio **folios; 1547 struct encoded_page **encoded_pages; 1548 } release_pages_arg __attribute__ ((__transparent_union__)); 1549 1550 void release_pages(release_pages_arg, int nr); 1551 1552 /** 1553 * folios_put - Decrement the reference count on an array of folios. 1554 * @folios: The folios. 1555 * 1556 * Like folio_put(), but for a batch of folios. This is more efficient 1557 * than writing the loop yourself as it will optimise the locks which need 1558 * to be taken if the folios are freed. The folios batch is returned 1559 * empty and ready to be reused for another batch; there is no need to 1560 * reinitialise it. 1561 * 1562 * Context: May be called in process or interrupt context, but not in NMI 1563 * context. May be called while holding a spinlock. 1564 */ 1565 static inline void folios_put(struct folio_batch *folios) 1566 { 1567 folios_put_refs(folios, NULL); 1568 } 1569 1570 static inline void put_page(struct page *page) 1571 { 1572 struct folio *folio = page_folio(page); 1573 1574 /* 1575 * For some devmap managed pages we need to catch refcount transition 1576 * from 2 to 1: 1577 */ 1578 if (put_devmap_managed_page(&folio->page)) 1579 return; 1580 folio_put(folio); 1581 } 1582 1583 /* 1584 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1585 * the page's refcount so that two separate items are tracked: the original page 1586 * reference count, and also a new count of how many pin_user_pages() calls were 1587 * made against the page. ("gup-pinned" is another term for the latter). 1588 * 1589 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1590 * distinct from normal pages. As such, the unpin_user_page() call (and its 1591 * variants) must be used in order to release gup-pinned pages. 1592 * 1593 * Choice of value: 1594 * 1595 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1596 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1597 * simpler, due to the fact that adding an even power of two to the page 1598 * refcount has the effect of using only the upper N bits, for the code that 1599 * counts up using the bias value. This means that the lower bits are left for 1600 * the exclusive use of the original code that increments and decrements by one 1601 * (or at least, by much smaller values than the bias value). 1602 * 1603 * Of course, once the lower bits overflow into the upper bits (and this is 1604 * OK, because subtraction recovers the original values), then visual inspection 1605 * no longer suffices to directly view the separate counts. However, for normal 1606 * applications that don't have huge page reference counts, this won't be an 1607 * issue. 1608 * 1609 * Locking: the lockless algorithm described in folio_try_get_rcu() 1610 * provides safe operation for get_user_pages(), page_mkclean() and 1611 * other calls that race to set up page table entries. 1612 */ 1613 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1614 1615 void unpin_user_page(struct page *page); 1616 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1617 bool make_dirty); 1618 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1619 bool make_dirty); 1620 void unpin_user_pages(struct page **pages, unsigned long npages); 1621 1622 static inline bool is_cow_mapping(vm_flags_t flags) 1623 { 1624 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1625 } 1626 1627 #ifndef CONFIG_MMU 1628 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1629 { 1630 /* 1631 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1632 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1633 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1634 * underlying memory if ptrace is active, so this is only possible if 1635 * ptrace does not apply. Note that there is no mprotect() to upgrade 1636 * write permissions later. 1637 */ 1638 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1639 } 1640 #endif 1641 1642 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1643 #define SECTION_IN_PAGE_FLAGS 1644 #endif 1645 1646 /* 1647 * The identification function is mainly used by the buddy allocator for 1648 * determining if two pages could be buddies. We are not really identifying 1649 * the zone since we could be using the section number id if we do not have 1650 * node id available in page flags. 1651 * We only guarantee that it will return the same value for two combinable 1652 * pages in a zone. 1653 */ 1654 static inline int page_zone_id(struct page *page) 1655 { 1656 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1657 } 1658 1659 #ifdef NODE_NOT_IN_PAGE_FLAGS 1660 int page_to_nid(const struct page *page); 1661 #else 1662 static inline int page_to_nid(const struct page *page) 1663 { 1664 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1665 } 1666 #endif 1667 1668 static inline int folio_nid(const struct folio *folio) 1669 { 1670 return page_to_nid(&folio->page); 1671 } 1672 1673 #ifdef CONFIG_NUMA_BALANCING 1674 /* page access time bits needs to hold at least 4 seconds */ 1675 #define PAGE_ACCESS_TIME_MIN_BITS 12 1676 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1677 #define PAGE_ACCESS_TIME_BUCKETS \ 1678 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1679 #else 1680 #define PAGE_ACCESS_TIME_BUCKETS 0 1681 #endif 1682 1683 #define PAGE_ACCESS_TIME_MASK \ 1684 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1685 1686 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1687 { 1688 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1689 } 1690 1691 static inline int cpupid_to_pid(int cpupid) 1692 { 1693 return cpupid & LAST__PID_MASK; 1694 } 1695 1696 static inline int cpupid_to_cpu(int cpupid) 1697 { 1698 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1699 } 1700 1701 static inline int cpupid_to_nid(int cpupid) 1702 { 1703 return cpu_to_node(cpupid_to_cpu(cpupid)); 1704 } 1705 1706 static inline bool cpupid_pid_unset(int cpupid) 1707 { 1708 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1709 } 1710 1711 static inline bool cpupid_cpu_unset(int cpupid) 1712 { 1713 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1714 } 1715 1716 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1717 { 1718 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1719 } 1720 1721 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1722 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1723 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1724 { 1725 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1726 } 1727 1728 static inline int folio_last_cpupid(struct folio *folio) 1729 { 1730 return folio->_last_cpupid; 1731 } 1732 static inline void page_cpupid_reset_last(struct page *page) 1733 { 1734 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1735 } 1736 #else 1737 static inline int folio_last_cpupid(struct folio *folio) 1738 { 1739 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1740 } 1741 1742 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1743 1744 static inline void page_cpupid_reset_last(struct page *page) 1745 { 1746 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1747 } 1748 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1749 1750 static inline int folio_xchg_access_time(struct folio *folio, int time) 1751 { 1752 int last_time; 1753 1754 last_time = folio_xchg_last_cpupid(folio, 1755 time >> PAGE_ACCESS_TIME_BUCKETS); 1756 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1757 } 1758 1759 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1760 { 1761 unsigned int pid_bit; 1762 1763 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1764 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1765 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1766 } 1767 } 1768 #else /* !CONFIG_NUMA_BALANCING */ 1769 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1770 { 1771 return folio_nid(folio); /* XXX */ 1772 } 1773 1774 static inline int folio_xchg_access_time(struct folio *folio, int time) 1775 { 1776 return 0; 1777 } 1778 1779 static inline int folio_last_cpupid(struct folio *folio) 1780 { 1781 return folio_nid(folio); /* XXX */ 1782 } 1783 1784 static inline int cpupid_to_nid(int cpupid) 1785 { 1786 return -1; 1787 } 1788 1789 static inline int cpupid_to_pid(int cpupid) 1790 { 1791 return -1; 1792 } 1793 1794 static inline int cpupid_to_cpu(int cpupid) 1795 { 1796 return -1; 1797 } 1798 1799 static inline int cpu_pid_to_cpupid(int nid, int pid) 1800 { 1801 return -1; 1802 } 1803 1804 static inline bool cpupid_pid_unset(int cpupid) 1805 { 1806 return true; 1807 } 1808 1809 static inline void page_cpupid_reset_last(struct page *page) 1810 { 1811 } 1812 1813 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1814 { 1815 return false; 1816 } 1817 1818 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1819 { 1820 } 1821 #endif /* CONFIG_NUMA_BALANCING */ 1822 1823 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1824 1825 /* 1826 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1827 * setting tags for all pages to native kernel tag value 0xff, as the default 1828 * value 0x00 maps to 0xff. 1829 */ 1830 1831 static inline u8 page_kasan_tag(const struct page *page) 1832 { 1833 u8 tag = KASAN_TAG_KERNEL; 1834 1835 if (kasan_enabled()) { 1836 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1837 tag ^= 0xff; 1838 } 1839 1840 return tag; 1841 } 1842 1843 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1844 { 1845 unsigned long old_flags, flags; 1846 1847 if (!kasan_enabled()) 1848 return; 1849 1850 tag ^= 0xff; 1851 old_flags = READ_ONCE(page->flags); 1852 do { 1853 flags = old_flags; 1854 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1855 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1856 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1857 } 1858 1859 static inline void page_kasan_tag_reset(struct page *page) 1860 { 1861 if (kasan_enabled()) 1862 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1863 } 1864 1865 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1866 1867 static inline u8 page_kasan_tag(const struct page *page) 1868 { 1869 return 0xff; 1870 } 1871 1872 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1873 static inline void page_kasan_tag_reset(struct page *page) { } 1874 1875 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1876 1877 static inline struct zone *page_zone(const struct page *page) 1878 { 1879 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1880 } 1881 1882 static inline pg_data_t *page_pgdat(const struct page *page) 1883 { 1884 return NODE_DATA(page_to_nid(page)); 1885 } 1886 1887 static inline struct zone *folio_zone(const struct folio *folio) 1888 { 1889 return page_zone(&folio->page); 1890 } 1891 1892 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1893 { 1894 return page_pgdat(&folio->page); 1895 } 1896 1897 #ifdef SECTION_IN_PAGE_FLAGS 1898 static inline void set_page_section(struct page *page, unsigned long section) 1899 { 1900 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1901 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1902 } 1903 1904 static inline unsigned long page_to_section(const struct page *page) 1905 { 1906 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1907 } 1908 #endif 1909 1910 /** 1911 * folio_pfn - Return the Page Frame Number of a folio. 1912 * @folio: The folio. 1913 * 1914 * A folio may contain multiple pages. The pages have consecutive 1915 * Page Frame Numbers. 1916 * 1917 * Return: The Page Frame Number of the first page in the folio. 1918 */ 1919 static inline unsigned long folio_pfn(struct folio *folio) 1920 { 1921 return page_to_pfn(&folio->page); 1922 } 1923 1924 static inline struct folio *pfn_folio(unsigned long pfn) 1925 { 1926 return page_folio(pfn_to_page(pfn)); 1927 } 1928 1929 /** 1930 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1931 * @folio: The folio. 1932 * 1933 * This function checks if a folio has been pinned via a call to 1934 * a function in the pin_user_pages() family. 1935 * 1936 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1937 * because it means "definitely not pinned for DMA", but true means "probably 1938 * pinned for DMA, but possibly a false positive due to having at least 1939 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1940 * 1941 * False positives are OK, because: a) it's unlikely for a folio to 1942 * get that many refcounts, and b) all the callers of this routine are 1943 * expected to be able to deal gracefully with a false positive. 1944 * 1945 * For large folios, the result will be exactly correct. That's because 1946 * we have more tracking data available: the _pincount field is used 1947 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1948 * 1949 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1950 * 1951 * Return: True, if it is likely that the page has been "dma-pinned". 1952 * False, if the page is definitely not dma-pinned. 1953 */ 1954 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1955 { 1956 if (folio_test_large(folio)) 1957 return atomic_read(&folio->_pincount) > 0; 1958 1959 /* 1960 * folio_ref_count() is signed. If that refcount overflows, then 1961 * folio_ref_count() returns a negative value, and callers will avoid 1962 * further incrementing the refcount. 1963 * 1964 * Here, for that overflow case, use the sign bit to count a little 1965 * bit higher via unsigned math, and thus still get an accurate result. 1966 */ 1967 return ((unsigned int)folio_ref_count(folio)) >= 1968 GUP_PIN_COUNTING_BIAS; 1969 } 1970 1971 static inline bool page_maybe_dma_pinned(struct page *page) 1972 { 1973 return folio_maybe_dma_pinned(page_folio(page)); 1974 } 1975 1976 /* 1977 * This should most likely only be called during fork() to see whether we 1978 * should break the cow immediately for an anon page on the src mm. 1979 * 1980 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1981 */ 1982 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1983 struct folio *folio) 1984 { 1985 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1986 1987 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1988 return false; 1989 1990 return folio_maybe_dma_pinned(folio); 1991 } 1992 1993 /** 1994 * is_zero_page - Query if a page is a zero page 1995 * @page: The page to query 1996 * 1997 * This returns true if @page is one of the permanent zero pages. 1998 */ 1999 static inline bool is_zero_page(const struct page *page) 2000 { 2001 return is_zero_pfn(page_to_pfn(page)); 2002 } 2003 2004 /** 2005 * is_zero_folio - Query if a folio is a zero page 2006 * @folio: The folio to query 2007 * 2008 * This returns true if @folio is one of the permanent zero pages. 2009 */ 2010 static inline bool is_zero_folio(const struct folio *folio) 2011 { 2012 return is_zero_page(&folio->page); 2013 } 2014 2015 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2016 #ifdef CONFIG_MIGRATION 2017 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2018 { 2019 #ifdef CONFIG_CMA 2020 int mt = folio_migratetype(folio); 2021 2022 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2023 return false; 2024 #endif 2025 /* The zero page can be "pinned" but gets special handling. */ 2026 if (is_zero_folio(folio)) 2027 return true; 2028 2029 /* Coherent device memory must always allow eviction. */ 2030 if (folio_is_device_coherent(folio)) 2031 return false; 2032 2033 /* Otherwise, non-movable zone folios can be pinned. */ 2034 return !folio_is_zone_movable(folio); 2035 2036 } 2037 #else 2038 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2039 { 2040 return true; 2041 } 2042 #endif 2043 2044 static inline void set_page_zone(struct page *page, enum zone_type zone) 2045 { 2046 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2047 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2048 } 2049 2050 static inline void set_page_node(struct page *page, unsigned long node) 2051 { 2052 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2053 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2054 } 2055 2056 static inline void set_page_links(struct page *page, enum zone_type zone, 2057 unsigned long node, unsigned long pfn) 2058 { 2059 set_page_zone(page, zone); 2060 set_page_node(page, node); 2061 #ifdef SECTION_IN_PAGE_FLAGS 2062 set_page_section(page, pfn_to_section_nr(pfn)); 2063 #endif 2064 } 2065 2066 /** 2067 * folio_nr_pages - The number of pages in the folio. 2068 * @folio: The folio. 2069 * 2070 * Return: A positive power of two. 2071 */ 2072 static inline long folio_nr_pages(struct folio *folio) 2073 { 2074 if (!folio_test_large(folio)) 2075 return 1; 2076 #ifdef CONFIG_64BIT 2077 return folio->_folio_nr_pages; 2078 #else 2079 return 1L << (folio->_flags_1 & 0xff); 2080 #endif 2081 } 2082 2083 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2084 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2085 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2086 #else 2087 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2088 #endif 2089 2090 /* 2091 * compound_nr() returns the number of pages in this potentially compound 2092 * page. compound_nr() can be called on a tail page, and is defined to 2093 * return 1 in that case. 2094 */ 2095 static inline unsigned long compound_nr(struct page *page) 2096 { 2097 struct folio *folio = (struct folio *)page; 2098 2099 if (!test_bit(PG_head, &folio->flags)) 2100 return 1; 2101 #ifdef CONFIG_64BIT 2102 return folio->_folio_nr_pages; 2103 #else 2104 return 1L << (folio->_flags_1 & 0xff); 2105 #endif 2106 } 2107 2108 /** 2109 * thp_nr_pages - The number of regular pages in this huge page. 2110 * @page: The head page of a huge page. 2111 */ 2112 static inline int thp_nr_pages(struct page *page) 2113 { 2114 return folio_nr_pages((struct folio *)page); 2115 } 2116 2117 /** 2118 * folio_next - Move to the next physical folio. 2119 * @folio: The folio we're currently operating on. 2120 * 2121 * If you have physically contiguous memory which may span more than 2122 * one folio (eg a &struct bio_vec), use this function to move from one 2123 * folio to the next. Do not use it if the memory is only virtually 2124 * contiguous as the folios are almost certainly not adjacent to each 2125 * other. This is the folio equivalent to writing ``page++``. 2126 * 2127 * Context: We assume that the folios are refcounted and/or locked at a 2128 * higher level and do not adjust the reference counts. 2129 * Return: The next struct folio. 2130 */ 2131 static inline struct folio *folio_next(struct folio *folio) 2132 { 2133 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2134 } 2135 2136 /** 2137 * folio_shift - The size of the memory described by this folio. 2138 * @folio: The folio. 2139 * 2140 * A folio represents a number of bytes which is a power-of-two in size. 2141 * This function tells you which power-of-two the folio is. See also 2142 * folio_size() and folio_order(). 2143 * 2144 * Context: The caller should have a reference on the folio to prevent 2145 * it from being split. It is not necessary for the folio to be locked. 2146 * Return: The base-2 logarithm of the size of this folio. 2147 */ 2148 static inline unsigned int folio_shift(struct folio *folio) 2149 { 2150 return PAGE_SHIFT + folio_order(folio); 2151 } 2152 2153 /** 2154 * folio_size - The number of bytes in a folio. 2155 * @folio: The folio. 2156 * 2157 * Context: The caller should have a reference on the folio to prevent 2158 * it from being split. It is not necessary for the folio to be locked. 2159 * Return: The number of bytes in this folio. 2160 */ 2161 static inline size_t folio_size(struct folio *folio) 2162 { 2163 return PAGE_SIZE << folio_order(folio); 2164 } 2165 2166 /** 2167 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2168 * @folio: The folio. 2169 * 2170 * folio_estimated_sharers() aims to serve as a function to efficiently 2171 * estimate the number of processes sharing a folio. This is done by 2172 * looking at the precise mapcount of the first subpage in the folio, and 2173 * assuming the other subpages are the same. This may not be true for large 2174 * folios. If you want exact mapcounts for exact calculations, look at 2175 * page_mapcount() or folio_total_mapcount(). 2176 * 2177 * Return: The estimated number of processes sharing a folio. 2178 */ 2179 static inline int folio_estimated_sharers(struct folio *folio) 2180 { 2181 return page_mapcount(folio_page(folio, 0)); 2182 } 2183 2184 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2185 static inline int arch_make_page_accessible(struct page *page) 2186 { 2187 return 0; 2188 } 2189 #endif 2190 2191 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2192 static inline int arch_make_folio_accessible(struct folio *folio) 2193 { 2194 int ret; 2195 long i, nr = folio_nr_pages(folio); 2196 2197 for (i = 0; i < nr; i++) { 2198 ret = arch_make_page_accessible(folio_page(folio, i)); 2199 if (ret) 2200 break; 2201 } 2202 2203 return ret; 2204 } 2205 #endif 2206 2207 /* 2208 * Some inline functions in vmstat.h depend on page_zone() 2209 */ 2210 #include <linux/vmstat.h> 2211 2212 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2213 #define HASHED_PAGE_VIRTUAL 2214 #endif 2215 2216 #if defined(WANT_PAGE_VIRTUAL) 2217 static inline void *page_address(const struct page *page) 2218 { 2219 return page->virtual; 2220 } 2221 static inline void set_page_address(struct page *page, void *address) 2222 { 2223 page->virtual = address; 2224 } 2225 #define page_address_init() do { } while(0) 2226 #endif 2227 2228 #if defined(HASHED_PAGE_VIRTUAL) 2229 void *page_address(const struct page *page); 2230 void set_page_address(struct page *page, void *virtual); 2231 void page_address_init(void); 2232 #endif 2233 2234 static __always_inline void *lowmem_page_address(const struct page *page) 2235 { 2236 return page_to_virt(page); 2237 } 2238 2239 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2240 #define page_address(page) lowmem_page_address(page) 2241 #define set_page_address(page, address) do { } while(0) 2242 #define page_address_init() do { } while(0) 2243 #endif 2244 2245 static inline void *folio_address(const struct folio *folio) 2246 { 2247 return page_address(&folio->page); 2248 } 2249 2250 extern pgoff_t __page_file_index(struct page *page); 2251 2252 /* 2253 * Return the pagecache index of the passed page. Regular pagecache pages 2254 * use ->index whereas swapcache pages use swp_offset(->private) 2255 */ 2256 static inline pgoff_t page_index(struct page *page) 2257 { 2258 if (unlikely(PageSwapCache(page))) 2259 return __page_file_index(page); 2260 return page->index; 2261 } 2262 2263 /* 2264 * Return true only if the page has been allocated with 2265 * ALLOC_NO_WATERMARKS and the low watermark was not 2266 * met implying that the system is under some pressure. 2267 */ 2268 static inline bool page_is_pfmemalloc(const struct page *page) 2269 { 2270 /* 2271 * lru.next has bit 1 set if the page is allocated from the 2272 * pfmemalloc reserves. Callers may simply overwrite it if 2273 * they do not need to preserve that information. 2274 */ 2275 return (uintptr_t)page->lru.next & BIT(1); 2276 } 2277 2278 /* 2279 * Return true only if the folio has been allocated with 2280 * ALLOC_NO_WATERMARKS and the low watermark was not 2281 * met implying that the system is under some pressure. 2282 */ 2283 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2284 { 2285 /* 2286 * lru.next has bit 1 set if the page is allocated from the 2287 * pfmemalloc reserves. Callers may simply overwrite it if 2288 * they do not need to preserve that information. 2289 */ 2290 return (uintptr_t)folio->lru.next & BIT(1); 2291 } 2292 2293 /* 2294 * Only to be called by the page allocator on a freshly allocated 2295 * page. 2296 */ 2297 static inline void set_page_pfmemalloc(struct page *page) 2298 { 2299 page->lru.next = (void *)BIT(1); 2300 } 2301 2302 static inline void clear_page_pfmemalloc(struct page *page) 2303 { 2304 page->lru.next = NULL; 2305 } 2306 2307 /* 2308 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2309 */ 2310 extern void pagefault_out_of_memory(void); 2311 2312 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2313 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2314 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2315 2316 /* 2317 * Parameter block passed down to zap_pte_range in exceptional cases. 2318 */ 2319 struct zap_details { 2320 struct folio *single_folio; /* Locked folio to be unmapped */ 2321 bool even_cows; /* Zap COWed private pages too? */ 2322 zap_flags_t zap_flags; /* Extra flags for zapping */ 2323 }; 2324 2325 /* 2326 * Whether to drop the pte markers, for example, the uffd-wp information for 2327 * file-backed memory. This should only be specified when we will completely 2328 * drop the page in the mm, either by truncation or unmapping of the vma. By 2329 * default, the flag is not set. 2330 */ 2331 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2332 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2333 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2334 2335 #ifdef CONFIG_SCHED_MM_CID 2336 void sched_mm_cid_before_execve(struct task_struct *t); 2337 void sched_mm_cid_after_execve(struct task_struct *t); 2338 void sched_mm_cid_fork(struct task_struct *t); 2339 void sched_mm_cid_exit_signals(struct task_struct *t); 2340 static inline int task_mm_cid(struct task_struct *t) 2341 { 2342 return t->mm_cid; 2343 } 2344 #else 2345 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2346 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2347 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2348 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2349 static inline int task_mm_cid(struct task_struct *t) 2350 { 2351 /* 2352 * Use the processor id as a fall-back when the mm cid feature is 2353 * disabled. This provides functional per-cpu data structure accesses 2354 * in user-space, althrough it won't provide the memory usage benefits. 2355 */ 2356 return raw_smp_processor_id(); 2357 } 2358 #endif 2359 2360 #ifdef CONFIG_MMU 2361 extern bool can_do_mlock(void); 2362 #else 2363 static inline bool can_do_mlock(void) { return false; } 2364 #endif 2365 extern int user_shm_lock(size_t, struct ucounts *); 2366 extern void user_shm_unlock(size_t, struct ucounts *); 2367 2368 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2369 pte_t pte); 2370 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2371 pte_t pte); 2372 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2373 unsigned long addr, pmd_t pmd); 2374 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2375 pmd_t pmd); 2376 2377 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2378 unsigned long size); 2379 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2380 unsigned long size, struct zap_details *details); 2381 static inline void zap_vma_pages(struct vm_area_struct *vma) 2382 { 2383 zap_page_range_single(vma, vma->vm_start, 2384 vma->vm_end - vma->vm_start, NULL); 2385 } 2386 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2387 struct vm_area_struct *start_vma, unsigned long start, 2388 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2389 2390 struct mmu_notifier_range; 2391 2392 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2393 unsigned long end, unsigned long floor, unsigned long ceiling); 2394 int 2395 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2396 int follow_pte(struct mm_struct *mm, unsigned long address, 2397 pte_t **ptepp, spinlock_t **ptlp); 2398 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2399 unsigned long *pfn); 2400 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2401 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2402 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2403 void *buf, int len, int write); 2404 2405 extern void truncate_pagecache(struct inode *inode, loff_t new); 2406 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2407 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2408 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2409 int generic_error_remove_folio(struct address_space *mapping, 2410 struct folio *folio); 2411 2412 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2413 unsigned long address, struct pt_regs *regs); 2414 2415 #ifdef CONFIG_MMU 2416 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2417 unsigned long address, unsigned int flags, 2418 struct pt_regs *regs); 2419 extern int fixup_user_fault(struct mm_struct *mm, 2420 unsigned long address, unsigned int fault_flags, 2421 bool *unlocked); 2422 void unmap_mapping_pages(struct address_space *mapping, 2423 pgoff_t start, pgoff_t nr, bool even_cows); 2424 void unmap_mapping_range(struct address_space *mapping, 2425 loff_t const holebegin, loff_t const holelen, int even_cows); 2426 #else 2427 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2428 unsigned long address, unsigned int flags, 2429 struct pt_regs *regs) 2430 { 2431 /* should never happen if there's no MMU */ 2432 BUG(); 2433 return VM_FAULT_SIGBUS; 2434 } 2435 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2436 unsigned int fault_flags, bool *unlocked) 2437 { 2438 /* should never happen if there's no MMU */ 2439 BUG(); 2440 return -EFAULT; 2441 } 2442 static inline void unmap_mapping_pages(struct address_space *mapping, 2443 pgoff_t start, pgoff_t nr, bool even_cows) { } 2444 static inline void unmap_mapping_range(struct address_space *mapping, 2445 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2446 #endif 2447 2448 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2449 loff_t const holebegin, loff_t const holelen) 2450 { 2451 unmap_mapping_range(mapping, holebegin, holelen, 0); 2452 } 2453 2454 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2455 unsigned long addr); 2456 2457 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2458 void *buf, int len, unsigned int gup_flags); 2459 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2460 void *buf, int len, unsigned int gup_flags); 2461 2462 long get_user_pages_remote(struct mm_struct *mm, 2463 unsigned long start, unsigned long nr_pages, 2464 unsigned int gup_flags, struct page **pages, 2465 int *locked); 2466 long pin_user_pages_remote(struct mm_struct *mm, 2467 unsigned long start, unsigned long nr_pages, 2468 unsigned int gup_flags, struct page **pages, 2469 int *locked); 2470 2471 /* 2472 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2473 */ 2474 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2475 unsigned long addr, 2476 int gup_flags, 2477 struct vm_area_struct **vmap) 2478 { 2479 struct page *page; 2480 struct vm_area_struct *vma; 2481 int got; 2482 2483 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2484 return ERR_PTR(-EINVAL); 2485 2486 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2487 2488 if (got < 0) 2489 return ERR_PTR(got); 2490 2491 vma = vma_lookup(mm, addr); 2492 if (WARN_ON_ONCE(!vma)) { 2493 put_page(page); 2494 return ERR_PTR(-EINVAL); 2495 } 2496 2497 *vmap = vma; 2498 return page; 2499 } 2500 2501 long get_user_pages(unsigned long start, unsigned long nr_pages, 2502 unsigned int gup_flags, struct page **pages); 2503 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2504 unsigned int gup_flags, struct page **pages); 2505 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2506 struct page **pages, unsigned int gup_flags); 2507 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2508 struct page **pages, unsigned int gup_flags); 2509 2510 int get_user_pages_fast(unsigned long start, int nr_pages, 2511 unsigned int gup_flags, struct page **pages); 2512 int pin_user_pages_fast(unsigned long start, int nr_pages, 2513 unsigned int gup_flags, struct page **pages); 2514 void folio_add_pin(struct folio *folio); 2515 2516 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2517 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2518 struct task_struct *task, bool bypass_rlim); 2519 2520 struct kvec; 2521 struct page *get_dump_page(unsigned long addr); 2522 2523 bool folio_mark_dirty(struct folio *folio); 2524 bool set_page_dirty(struct page *page); 2525 int set_page_dirty_lock(struct page *page); 2526 2527 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2528 2529 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2530 unsigned long old_addr, struct vm_area_struct *new_vma, 2531 unsigned long new_addr, unsigned long len, 2532 bool need_rmap_locks, bool for_stack); 2533 2534 /* 2535 * Flags used by change_protection(). For now we make it a bitmap so 2536 * that we can pass in multiple flags just like parameters. However 2537 * for now all the callers are only use one of the flags at the same 2538 * time. 2539 */ 2540 /* 2541 * Whether we should manually check if we can map individual PTEs writable, 2542 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2543 * PTEs automatically in a writable mapping. 2544 */ 2545 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2546 /* Whether this protection change is for NUMA hints */ 2547 #define MM_CP_PROT_NUMA (1UL << 1) 2548 /* Whether this change is for write protecting */ 2549 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2550 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2551 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2552 MM_CP_UFFD_WP_RESOLVE) 2553 2554 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2555 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2556 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2557 { 2558 /* 2559 * We want to check manually if we can change individual PTEs writable 2560 * if we can't do that automatically for all PTEs in a mapping. For 2561 * private mappings, that's always the case when we have write 2562 * permissions as we properly have to handle COW. 2563 */ 2564 if (vma->vm_flags & VM_SHARED) 2565 return vma_wants_writenotify(vma, vma->vm_page_prot); 2566 return !!(vma->vm_flags & VM_WRITE); 2567 2568 } 2569 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2570 pte_t pte); 2571 extern long change_protection(struct mmu_gather *tlb, 2572 struct vm_area_struct *vma, unsigned long start, 2573 unsigned long end, unsigned long cp_flags); 2574 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2575 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2576 unsigned long start, unsigned long end, unsigned long newflags); 2577 2578 /* 2579 * doesn't attempt to fault and will return short. 2580 */ 2581 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2582 unsigned int gup_flags, struct page **pages); 2583 2584 static inline bool get_user_page_fast_only(unsigned long addr, 2585 unsigned int gup_flags, struct page **pagep) 2586 { 2587 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2588 } 2589 /* 2590 * per-process(per-mm_struct) statistics. 2591 */ 2592 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2593 { 2594 return percpu_counter_read_positive(&mm->rss_stat[member]); 2595 } 2596 2597 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2598 2599 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2600 { 2601 percpu_counter_add(&mm->rss_stat[member], value); 2602 2603 mm_trace_rss_stat(mm, member); 2604 } 2605 2606 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2607 { 2608 percpu_counter_inc(&mm->rss_stat[member]); 2609 2610 mm_trace_rss_stat(mm, member); 2611 } 2612 2613 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2614 { 2615 percpu_counter_dec(&mm->rss_stat[member]); 2616 2617 mm_trace_rss_stat(mm, member); 2618 } 2619 2620 /* Optimized variant when folio is already known not to be anon */ 2621 static inline int mm_counter_file(struct folio *folio) 2622 { 2623 if (folio_test_swapbacked(folio)) 2624 return MM_SHMEMPAGES; 2625 return MM_FILEPAGES; 2626 } 2627 2628 static inline int mm_counter(struct folio *folio) 2629 { 2630 if (folio_test_anon(folio)) 2631 return MM_ANONPAGES; 2632 return mm_counter_file(folio); 2633 } 2634 2635 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2636 { 2637 return get_mm_counter(mm, MM_FILEPAGES) + 2638 get_mm_counter(mm, MM_ANONPAGES) + 2639 get_mm_counter(mm, MM_SHMEMPAGES); 2640 } 2641 2642 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2643 { 2644 return max(mm->hiwater_rss, get_mm_rss(mm)); 2645 } 2646 2647 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2648 { 2649 return max(mm->hiwater_vm, mm->total_vm); 2650 } 2651 2652 static inline void update_hiwater_rss(struct mm_struct *mm) 2653 { 2654 unsigned long _rss = get_mm_rss(mm); 2655 2656 if ((mm)->hiwater_rss < _rss) 2657 (mm)->hiwater_rss = _rss; 2658 } 2659 2660 static inline void update_hiwater_vm(struct mm_struct *mm) 2661 { 2662 if (mm->hiwater_vm < mm->total_vm) 2663 mm->hiwater_vm = mm->total_vm; 2664 } 2665 2666 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2667 { 2668 mm->hiwater_rss = get_mm_rss(mm); 2669 } 2670 2671 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2672 struct mm_struct *mm) 2673 { 2674 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2675 2676 if (*maxrss < hiwater_rss) 2677 *maxrss = hiwater_rss; 2678 } 2679 2680 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2681 static inline int pte_special(pte_t pte) 2682 { 2683 return 0; 2684 } 2685 2686 static inline pte_t pte_mkspecial(pte_t pte) 2687 { 2688 return pte; 2689 } 2690 #endif 2691 2692 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2693 static inline int pte_devmap(pte_t pte) 2694 { 2695 return 0; 2696 } 2697 #endif 2698 2699 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2700 spinlock_t **ptl); 2701 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2702 spinlock_t **ptl) 2703 { 2704 pte_t *ptep; 2705 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2706 return ptep; 2707 } 2708 2709 #ifdef __PAGETABLE_P4D_FOLDED 2710 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2711 unsigned long address) 2712 { 2713 return 0; 2714 } 2715 #else 2716 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2717 #endif 2718 2719 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2720 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2721 unsigned long address) 2722 { 2723 return 0; 2724 } 2725 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2726 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2727 2728 #else 2729 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2730 2731 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2732 { 2733 if (mm_pud_folded(mm)) 2734 return; 2735 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2736 } 2737 2738 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2739 { 2740 if (mm_pud_folded(mm)) 2741 return; 2742 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2743 } 2744 #endif 2745 2746 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2747 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2748 unsigned long address) 2749 { 2750 return 0; 2751 } 2752 2753 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2754 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2755 2756 #else 2757 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2758 2759 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2760 { 2761 if (mm_pmd_folded(mm)) 2762 return; 2763 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2764 } 2765 2766 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2767 { 2768 if (mm_pmd_folded(mm)) 2769 return; 2770 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2771 } 2772 #endif 2773 2774 #ifdef CONFIG_MMU 2775 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2776 { 2777 atomic_long_set(&mm->pgtables_bytes, 0); 2778 } 2779 2780 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2781 { 2782 return atomic_long_read(&mm->pgtables_bytes); 2783 } 2784 2785 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2786 { 2787 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2788 } 2789 2790 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2791 { 2792 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2793 } 2794 #else 2795 2796 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2797 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2798 { 2799 return 0; 2800 } 2801 2802 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2803 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2804 #endif 2805 2806 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2807 int __pte_alloc_kernel(pmd_t *pmd); 2808 2809 #if defined(CONFIG_MMU) 2810 2811 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2812 unsigned long address) 2813 { 2814 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2815 NULL : p4d_offset(pgd, address); 2816 } 2817 2818 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2819 unsigned long address) 2820 { 2821 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2822 NULL : pud_offset(p4d, address); 2823 } 2824 2825 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2826 { 2827 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2828 NULL: pmd_offset(pud, address); 2829 } 2830 #endif /* CONFIG_MMU */ 2831 2832 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2833 { 2834 return page_ptdesc(virt_to_page(x)); 2835 } 2836 2837 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2838 { 2839 return page_to_virt(ptdesc_page(pt)); 2840 } 2841 2842 static inline void *ptdesc_address(const struct ptdesc *pt) 2843 { 2844 return folio_address(ptdesc_folio(pt)); 2845 } 2846 2847 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2848 { 2849 return folio_test_reserved(ptdesc_folio(pt)); 2850 } 2851 2852 /** 2853 * pagetable_alloc - Allocate pagetables 2854 * @gfp: GFP flags 2855 * @order: desired pagetable order 2856 * 2857 * pagetable_alloc allocates memory for page tables as well as a page table 2858 * descriptor to describe that memory. 2859 * 2860 * Return: The ptdesc describing the allocated page tables. 2861 */ 2862 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order) 2863 { 2864 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2865 2866 return page_ptdesc(page); 2867 } 2868 2869 /** 2870 * pagetable_free - Free pagetables 2871 * @pt: The page table descriptor 2872 * 2873 * pagetable_free frees the memory of all page tables described by a page 2874 * table descriptor and the memory for the descriptor itself. 2875 */ 2876 static inline void pagetable_free(struct ptdesc *pt) 2877 { 2878 struct page *page = ptdesc_page(pt); 2879 2880 __free_pages(page, compound_order(page)); 2881 } 2882 2883 #if USE_SPLIT_PTE_PTLOCKS 2884 #if ALLOC_SPLIT_PTLOCKS 2885 void __init ptlock_cache_init(void); 2886 bool ptlock_alloc(struct ptdesc *ptdesc); 2887 void ptlock_free(struct ptdesc *ptdesc); 2888 2889 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2890 { 2891 return ptdesc->ptl; 2892 } 2893 #else /* ALLOC_SPLIT_PTLOCKS */ 2894 static inline void ptlock_cache_init(void) 2895 { 2896 } 2897 2898 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2899 { 2900 return true; 2901 } 2902 2903 static inline void ptlock_free(struct ptdesc *ptdesc) 2904 { 2905 } 2906 2907 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2908 { 2909 return &ptdesc->ptl; 2910 } 2911 #endif /* ALLOC_SPLIT_PTLOCKS */ 2912 2913 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2914 { 2915 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2916 } 2917 2918 static inline bool ptlock_init(struct ptdesc *ptdesc) 2919 { 2920 /* 2921 * prep_new_page() initialize page->private (and therefore page->ptl) 2922 * with 0. Make sure nobody took it in use in between. 2923 * 2924 * It can happen if arch try to use slab for page table allocation: 2925 * slab code uses page->slab_cache, which share storage with page->ptl. 2926 */ 2927 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2928 if (!ptlock_alloc(ptdesc)) 2929 return false; 2930 spin_lock_init(ptlock_ptr(ptdesc)); 2931 return true; 2932 } 2933 2934 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2935 /* 2936 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2937 */ 2938 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2939 { 2940 return &mm->page_table_lock; 2941 } 2942 static inline void ptlock_cache_init(void) {} 2943 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2944 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2945 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2946 2947 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2948 { 2949 struct folio *folio = ptdesc_folio(ptdesc); 2950 2951 if (!ptlock_init(ptdesc)) 2952 return false; 2953 __folio_set_pgtable(folio); 2954 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2955 return true; 2956 } 2957 2958 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2959 { 2960 struct folio *folio = ptdesc_folio(ptdesc); 2961 2962 ptlock_free(ptdesc); 2963 __folio_clear_pgtable(folio); 2964 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2965 } 2966 2967 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2968 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2969 { 2970 return __pte_offset_map(pmd, addr, NULL); 2971 } 2972 2973 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2974 unsigned long addr, spinlock_t **ptlp); 2975 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2976 unsigned long addr, spinlock_t **ptlp) 2977 { 2978 pte_t *pte; 2979 2980 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2981 return pte; 2982 } 2983 2984 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2985 unsigned long addr, spinlock_t **ptlp); 2986 2987 #define pte_unmap_unlock(pte, ptl) do { \ 2988 spin_unlock(ptl); \ 2989 pte_unmap(pte); \ 2990 } while (0) 2991 2992 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2993 2994 #define pte_alloc_map(mm, pmd, address) \ 2995 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2996 2997 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2998 (pte_alloc(mm, pmd) ? \ 2999 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3000 3001 #define pte_alloc_kernel(pmd, address) \ 3002 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3003 NULL: pte_offset_kernel(pmd, address)) 3004 3005 #if USE_SPLIT_PMD_PTLOCKS 3006 3007 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3008 { 3009 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3010 return virt_to_page((void *)((unsigned long) pmd & mask)); 3011 } 3012 3013 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3014 { 3015 return page_ptdesc(pmd_pgtable_page(pmd)); 3016 } 3017 3018 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3019 { 3020 return ptlock_ptr(pmd_ptdesc(pmd)); 3021 } 3022 3023 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3024 { 3025 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3026 ptdesc->pmd_huge_pte = NULL; 3027 #endif 3028 return ptlock_init(ptdesc); 3029 } 3030 3031 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3032 { 3033 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3034 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3035 #endif 3036 ptlock_free(ptdesc); 3037 } 3038 3039 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3040 3041 #else 3042 3043 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3044 { 3045 return &mm->page_table_lock; 3046 } 3047 3048 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3049 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3050 3051 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3052 3053 #endif 3054 3055 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3056 { 3057 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3058 spin_lock(ptl); 3059 return ptl; 3060 } 3061 3062 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3063 { 3064 struct folio *folio = ptdesc_folio(ptdesc); 3065 3066 if (!pmd_ptlock_init(ptdesc)) 3067 return false; 3068 __folio_set_pgtable(folio); 3069 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3070 return true; 3071 } 3072 3073 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3074 { 3075 struct folio *folio = ptdesc_folio(ptdesc); 3076 3077 pmd_ptlock_free(ptdesc); 3078 __folio_clear_pgtable(folio); 3079 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3080 } 3081 3082 /* 3083 * No scalability reason to split PUD locks yet, but follow the same pattern 3084 * as the PMD locks to make it easier if we decide to. The VM should not be 3085 * considered ready to switch to split PUD locks yet; there may be places 3086 * which need to be converted from page_table_lock. 3087 */ 3088 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3089 { 3090 return &mm->page_table_lock; 3091 } 3092 3093 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3094 { 3095 spinlock_t *ptl = pud_lockptr(mm, pud); 3096 3097 spin_lock(ptl); 3098 return ptl; 3099 } 3100 3101 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3102 { 3103 struct folio *folio = ptdesc_folio(ptdesc); 3104 3105 __folio_set_pgtable(folio); 3106 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3107 } 3108 3109 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3110 { 3111 struct folio *folio = ptdesc_folio(ptdesc); 3112 3113 __folio_clear_pgtable(folio); 3114 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3115 } 3116 3117 extern void __init pagecache_init(void); 3118 extern void free_initmem(void); 3119 3120 /* 3121 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3122 * into the buddy system. The freed pages will be poisoned with pattern 3123 * "poison" if it's within range [0, UCHAR_MAX]. 3124 * Return pages freed into the buddy system. 3125 */ 3126 extern unsigned long free_reserved_area(void *start, void *end, 3127 int poison, const char *s); 3128 3129 extern void adjust_managed_page_count(struct page *page, long count); 3130 3131 extern void reserve_bootmem_region(phys_addr_t start, 3132 phys_addr_t end, int nid); 3133 3134 /* Free the reserved page into the buddy system, so it gets managed. */ 3135 static inline void free_reserved_page(struct page *page) 3136 { 3137 ClearPageReserved(page); 3138 init_page_count(page); 3139 __free_page(page); 3140 adjust_managed_page_count(page, 1); 3141 } 3142 #define free_highmem_page(page) free_reserved_page(page) 3143 3144 static inline void mark_page_reserved(struct page *page) 3145 { 3146 SetPageReserved(page); 3147 adjust_managed_page_count(page, -1); 3148 } 3149 3150 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3151 { 3152 free_reserved_page(ptdesc_page(pt)); 3153 } 3154 3155 /* 3156 * Default method to free all the __init memory into the buddy system. 3157 * The freed pages will be poisoned with pattern "poison" if it's within 3158 * range [0, UCHAR_MAX]. 3159 * Return pages freed into the buddy system. 3160 */ 3161 static inline unsigned long free_initmem_default(int poison) 3162 { 3163 extern char __init_begin[], __init_end[]; 3164 3165 return free_reserved_area(&__init_begin, &__init_end, 3166 poison, "unused kernel image (initmem)"); 3167 } 3168 3169 static inline unsigned long get_num_physpages(void) 3170 { 3171 int nid; 3172 unsigned long phys_pages = 0; 3173 3174 for_each_online_node(nid) 3175 phys_pages += node_present_pages(nid); 3176 3177 return phys_pages; 3178 } 3179 3180 /* 3181 * Using memblock node mappings, an architecture may initialise its 3182 * zones, allocate the backing mem_map and account for memory holes in an 3183 * architecture independent manner. 3184 * 3185 * An architecture is expected to register range of page frames backed by 3186 * physical memory with memblock_add[_node]() before calling 3187 * free_area_init() passing in the PFN each zone ends at. At a basic 3188 * usage, an architecture is expected to do something like 3189 * 3190 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3191 * max_highmem_pfn}; 3192 * for_each_valid_physical_page_range() 3193 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3194 * free_area_init(max_zone_pfns); 3195 */ 3196 void free_area_init(unsigned long *max_zone_pfn); 3197 unsigned long node_map_pfn_alignment(void); 3198 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3199 unsigned long end_pfn); 3200 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3201 unsigned long end_pfn); 3202 extern void get_pfn_range_for_nid(unsigned int nid, 3203 unsigned long *start_pfn, unsigned long *end_pfn); 3204 3205 #ifndef CONFIG_NUMA 3206 static inline int early_pfn_to_nid(unsigned long pfn) 3207 { 3208 return 0; 3209 } 3210 #else 3211 /* please see mm/page_alloc.c */ 3212 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3213 #endif 3214 3215 extern void set_dma_reserve(unsigned long new_dma_reserve); 3216 extern void mem_init(void); 3217 extern void __init mmap_init(void); 3218 3219 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3220 static inline void show_mem(void) 3221 { 3222 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3223 } 3224 extern long si_mem_available(void); 3225 extern void si_meminfo(struct sysinfo * val); 3226 extern void si_meminfo_node(struct sysinfo *val, int nid); 3227 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3228 extern unsigned long arch_reserved_kernel_pages(void); 3229 #endif 3230 3231 extern __printf(3, 4) 3232 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3233 3234 extern void setup_per_cpu_pageset(void); 3235 3236 /* nommu.c */ 3237 extern atomic_long_t mmap_pages_allocated; 3238 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3239 3240 /* interval_tree.c */ 3241 void vma_interval_tree_insert(struct vm_area_struct *node, 3242 struct rb_root_cached *root); 3243 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3244 struct vm_area_struct *prev, 3245 struct rb_root_cached *root); 3246 void vma_interval_tree_remove(struct vm_area_struct *node, 3247 struct rb_root_cached *root); 3248 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3249 unsigned long start, unsigned long last); 3250 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3251 unsigned long start, unsigned long last); 3252 3253 #define vma_interval_tree_foreach(vma, root, start, last) \ 3254 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3255 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3256 3257 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3258 struct rb_root_cached *root); 3259 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3260 struct rb_root_cached *root); 3261 struct anon_vma_chain * 3262 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3263 unsigned long start, unsigned long last); 3264 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3265 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3266 #ifdef CONFIG_DEBUG_VM_RB 3267 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3268 #endif 3269 3270 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3271 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3272 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3273 3274 /* mmap.c */ 3275 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3276 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3277 unsigned long start, unsigned long end, pgoff_t pgoff, 3278 struct vm_area_struct *next); 3279 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3280 unsigned long start, unsigned long end, pgoff_t pgoff); 3281 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3282 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3283 extern void unlink_file_vma(struct vm_area_struct *); 3284 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3285 unsigned long addr, unsigned long len, pgoff_t pgoff, 3286 bool *need_rmap_locks); 3287 extern void exit_mmap(struct mm_struct *); 3288 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3289 struct vm_area_struct *prev, 3290 struct vm_area_struct *vma, 3291 unsigned long start, unsigned long end, 3292 unsigned long vm_flags, 3293 struct mempolicy *policy, 3294 struct vm_userfaultfd_ctx uffd_ctx, 3295 struct anon_vma_name *anon_name); 3296 3297 /* We are about to modify the VMA's flags. */ 3298 static inline struct vm_area_struct 3299 *vma_modify_flags(struct vma_iterator *vmi, 3300 struct vm_area_struct *prev, 3301 struct vm_area_struct *vma, 3302 unsigned long start, unsigned long end, 3303 unsigned long new_flags) 3304 { 3305 return vma_modify(vmi, prev, vma, start, end, new_flags, 3306 vma_policy(vma), vma->vm_userfaultfd_ctx, 3307 anon_vma_name(vma)); 3308 } 3309 3310 /* We are about to modify the VMA's flags and/or anon_name. */ 3311 static inline struct vm_area_struct 3312 *vma_modify_flags_name(struct vma_iterator *vmi, 3313 struct vm_area_struct *prev, 3314 struct vm_area_struct *vma, 3315 unsigned long start, 3316 unsigned long end, 3317 unsigned long new_flags, 3318 struct anon_vma_name *new_name) 3319 { 3320 return vma_modify(vmi, prev, vma, start, end, new_flags, 3321 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3322 } 3323 3324 /* We are about to modify the VMA's memory policy. */ 3325 static inline struct vm_area_struct 3326 *vma_modify_policy(struct vma_iterator *vmi, 3327 struct vm_area_struct *prev, 3328 struct vm_area_struct *vma, 3329 unsigned long start, unsigned long end, 3330 struct mempolicy *new_pol) 3331 { 3332 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3333 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3334 } 3335 3336 /* We are about to modify the VMA's flags and/or uffd context. */ 3337 static inline struct vm_area_struct 3338 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3339 struct vm_area_struct *prev, 3340 struct vm_area_struct *vma, 3341 unsigned long start, unsigned long end, 3342 unsigned long new_flags, 3343 struct vm_userfaultfd_ctx new_ctx) 3344 { 3345 return vma_modify(vmi, prev, vma, start, end, new_flags, 3346 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3347 } 3348 3349 static inline int check_data_rlimit(unsigned long rlim, 3350 unsigned long new, 3351 unsigned long start, 3352 unsigned long end_data, 3353 unsigned long start_data) 3354 { 3355 if (rlim < RLIM_INFINITY) { 3356 if (((new - start) + (end_data - start_data)) > rlim) 3357 return -ENOSPC; 3358 } 3359 3360 return 0; 3361 } 3362 3363 extern int mm_take_all_locks(struct mm_struct *mm); 3364 extern void mm_drop_all_locks(struct mm_struct *mm); 3365 3366 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3367 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3368 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3369 extern struct file *get_task_exe_file(struct task_struct *task); 3370 3371 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3372 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3373 3374 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3375 const struct vm_special_mapping *sm); 3376 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3377 unsigned long addr, unsigned long len, 3378 unsigned long flags, 3379 const struct vm_special_mapping *spec); 3380 /* This is an obsolete alternative to _install_special_mapping. */ 3381 extern int install_special_mapping(struct mm_struct *mm, 3382 unsigned long addr, unsigned long len, 3383 unsigned long flags, struct page **pages); 3384 3385 unsigned long randomize_stack_top(unsigned long stack_top); 3386 unsigned long randomize_page(unsigned long start, unsigned long range); 3387 3388 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3389 3390 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3391 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3392 struct list_head *uf); 3393 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3394 unsigned long len, unsigned long prot, unsigned long flags, 3395 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3396 struct list_head *uf); 3397 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3398 unsigned long start, size_t len, struct list_head *uf, 3399 bool unlock); 3400 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3401 struct list_head *uf); 3402 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3403 3404 #ifdef CONFIG_MMU 3405 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3406 unsigned long start, unsigned long end, 3407 struct list_head *uf, bool unlock); 3408 extern int __mm_populate(unsigned long addr, unsigned long len, 3409 int ignore_errors); 3410 static inline void mm_populate(unsigned long addr, unsigned long len) 3411 { 3412 /* Ignore errors */ 3413 (void) __mm_populate(addr, len, 1); 3414 } 3415 #else 3416 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3417 #endif 3418 3419 /* This takes the mm semaphore itself */ 3420 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3421 extern int vm_munmap(unsigned long, size_t); 3422 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3423 unsigned long, unsigned long, 3424 unsigned long, unsigned long); 3425 3426 struct vm_unmapped_area_info { 3427 #define VM_UNMAPPED_AREA_TOPDOWN 1 3428 unsigned long flags; 3429 unsigned long length; 3430 unsigned long low_limit; 3431 unsigned long high_limit; 3432 unsigned long align_mask; 3433 unsigned long align_offset; 3434 }; 3435 3436 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3437 3438 /* truncate.c */ 3439 extern void truncate_inode_pages(struct address_space *, loff_t); 3440 extern void truncate_inode_pages_range(struct address_space *, 3441 loff_t lstart, loff_t lend); 3442 extern void truncate_inode_pages_final(struct address_space *); 3443 3444 /* generic vm_area_ops exported for stackable file systems */ 3445 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3446 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3447 pgoff_t start_pgoff, pgoff_t end_pgoff); 3448 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3449 3450 extern unsigned long stack_guard_gap; 3451 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3452 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3453 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3454 3455 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3456 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3457 3458 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3459 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3460 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3461 struct vm_area_struct **pprev); 3462 3463 /* 3464 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3465 * NULL if none. Assume start_addr < end_addr. 3466 */ 3467 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3468 unsigned long start_addr, unsigned long end_addr); 3469 3470 /** 3471 * vma_lookup() - Find a VMA at a specific address 3472 * @mm: The process address space. 3473 * @addr: The user address. 3474 * 3475 * Return: The vm_area_struct at the given address, %NULL otherwise. 3476 */ 3477 static inline 3478 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3479 { 3480 return mtree_load(&mm->mm_mt, addr); 3481 } 3482 3483 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3484 { 3485 if (vma->vm_flags & VM_GROWSDOWN) 3486 return stack_guard_gap; 3487 3488 /* See reasoning around the VM_SHADOW_STACK definition */ 3489 if (vma->vm_flags & VM_SHADOW_STACK) 3490 return PAGE_SIZE; 3491 3492 return 0; 3493 } 3494 3495 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3496 { 3497 unsigned long gap = stack_guard_start_gap(vma); 3498 unsigned long vm_start = vma->vm_start; 3499 3500 vm_start -= gap; 3501 if (vm_start > vma->vm_start) 3502 vm_start = 0; 3503 return vm_start; 3504 } 3505 3506 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3507 { 3508 unsigned long vm_end = vma->vm_end; 3509 3510 if (vma->vm_flags & VM_GROWSUP) { 3511 vm_end += stack_guard_gap; 3512 if (vm_end < vma->vm_end) 3513 vm_end = -PAGE_SIZE; 3514 } 3515 return vm_end; 3516 } 3517 3518 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3519 { 3520 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3521 } 3522 3523 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3524 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3525 unsigned long vm_start, unsigned long vm_end) 3526 { 3527 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3528 3529 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3530 vma = NULL; 3531 3532 return vma; 3533 } 3534 3535 static inline bool range_in_vma(struct vm_area_struct *vma, 3536 unsigned long start, unsigned long end) 3537 { 3538 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3539 } 3540 3541 #ifdef CONFIG_MMU 3542 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3543 void vma_set_page_prot(struct vm_area_struct *vma); 3544 #else 3545 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3546 { 3547 return __pgprot(0); 3548 } 3549 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3550 { 3551 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3552 } 3553 #endif 3554 3555 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3556 3557 #ifdef CONFIG_NUMA_BALANCING 3558 unsigned long change_prot_numa(struct vm_area_struct *vma, 3559 unsigned long start, unsigned long end); 3560 #endif 3561 3562 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3563 unsigned long addr); 3564 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3565 unsigned long pfn, unsigned long size, pgprot_t); 3566 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3567 unsigned long pfn, unsigned long size, pgprot_t prot); 3568 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3569 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3570 struct page **pages, unsigned long *num); 3571 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3572 unsigned long num); 3573 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3574 unsigned long num); 3575 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3576 unsigned long pfn); 3577 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3578 unsigned long pfn, pgprot_t pgprot); 3579 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3580 pfn_t pfn); 3581 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3582 unsigned long addr, pfn_t pfn); 3583 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3584 3585 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3586 unsigned long addr, struct page *page) 3587 { 3588 int err = vm_insert_page(vma, addr, page); 3589 3590 if (err == -ENOMEM) 3591 return VM_FAULT_OOM; 3592 if (err < 0 && err != -EBUSY) 3593 return VM_FAULT_SIGBUS; 3594 3595 return VM_FAULT_NOPAGE; 3596 } 3597 3598 #ifndef io_remap_pfn_range 3599 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3600 unsigned long addr, unsigned long pfn, 3601 unsigned long size, pgprot_t prot) 3602 { 3603 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3604 } 3605 #endif 3606 3607 static inline vm_fault_t vmf_error(int err) 3608 { 3609 if (err == -ENOMEM) 3610 return VM_FAULT_OOM; 3611 else if (err == -EHWPOISON) 3612 return VM_FAULT_HWPOISON; 3613 return VM_FAULT_SIGBUS; 3614 } 3615 3616 /* 3617 * Convert errno to return value for ->page_mkwrite() calls. 3618 * 3619 * This should eventually be merged with vmf_error() above, but will need a 3620 * careful audit of all vmf_error() callers. 3621 */ 3622 static inline vm_fault_t vmf_fs_error(int err) 3623 { 3624 if (err == 0) 3625 return VM_FAULT_LOCKED; 3626 if (err == -EFAULT || err == -EAGAIN) 3627 return VM_FAULT_NOPAGE; 3628 if (err == -ENOMEM) 3629 return VM_FAULT_OOM; 3630 /* -ENOSPC, -EDQUOT, -EIO ... */ 3631 return VM_FAULT_SIGBUS; 3632 } 3633 3634 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3635 unsigned int foll_flags); 3636 3637 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3638 { 3639 if (vm_fault & VM_FAULT_OOM) 3640 return -ENOMEM; 3641 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3642 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3643 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3644 return -EFAULT; 3645 return 0; 3646 } 3647 3648 /* 3649 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3650 * a (NUMA hinting) fault is required. 3651 */ 3652 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3653 unsigned int flags) 3654 { 3655 /* 3656 * If callers don't want to honor NUMA hinting faults, no need to 3657 * determine if we would actually have to trigger a NUMA hinting fault. 3658 */ 3659 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3660 return true; 3661 3662 /* 3663 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3664 * 3665 * Requiring a fault here even for inaccessible VMAs would mean that 3666 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3667 * refuses to process NUMA hinting faults in inaccessible VMAs. 3668 */ 3669 return !vma_is_accessible(vma); 3670 } 3671 3672 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3673 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3674 unsigned long size, pte_fn_t fn, void *data); 3675 extern int apply_to_existing_page_range(struct mm_struct *mm, 3676 unsigned long address, unsigned long size, 3677 pte_fn_t fn, void *data); 3678 3679 #ifdef CONFIG_PAGE_POISONING 3680 extern void __kernel_poison_pages(struct page *page, int numpages); 3681 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3682 extern bool _page_poisoning_enabled_early; 3683 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3684 static inline bool page_poisoning_enabled(void) 3685 { 3686 return _page_poisoning_enabled_early; 3687 } 3688 /* 3689 * For use in fast paths after init_mem_debugging() has run, or when a 3690 * false negative result is not harmful when called too early. 3691 */ 3692 static inline bool page_poisoning_enabled_static(void) 3693 { 3694 return static_branch_unlikely(&_page_poisoning_enabled); 3695 } 3696 static inline void kernel_poison_pages(struct page *page, int numpages) 3697 { 3698 if (page_poisoning_enabled_static()) 3699 __kernel_poison_pages(page, numpages); 3700 } 3701 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3702 { 3703 if (page_poisoning_enabled_static()) 3704 __kernel_unpoison_pages(page, numpages); 3705 } 3706 #else 3707 static inline bool page_poisoning_enabled(void) { return false; } 3708 static inline bool page_poisoning_enabled_static(void) { return false; } 3709 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3710 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3711 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3712 #endif 3713 3714 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3715 static inline bool want_init_on_alloc(gfp_t flags) 3716 { 3717 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3718 &init_on_alloc)) 3719 return true; 3720 return flags & __GFP_ZERO; 3721 } 3722 3723 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3724 static inline bool want_init_on_free(void) 3725 { 3726 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3727 &init_on_free); 3728 } 3729 3730 extern bool _debug_pagealloc_enabled_early; 3731 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3732 3733 static inline bool debug_pagealloc_enabled(void) 3734 { 3735 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3736 _debug_pagealloc_enabled_early; 3737 } 3738 3739 /* 3740 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3741 * or when a false negative result is not harmful when called too early. 3742 */ 3743 static inline bool debug_pagealloc_enabled_static(void) 3744 { 3745 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3746 return false; 3747 3748 return static_branch_unlikely(&_debug_pagealloc_enabled); 3749 } 3750 3751 /* 3752 * To support DEBUG_PAGEALLOC architecture must ensure that 3753 * __kernel_map_pages() never fails 3754 */ 3755 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3756 #ifdef CONFIG_DEBUG_PAGEALLOC 3757 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3758 { 3759 if (debug_pagealloc_enabled_static()) 3760 __kernel_map_pages(page, numpages, 1); 3761 } 3762 3763 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3764 { 3765 if (debug_pagealloc_enabled_static()) 3766 __kernel_map_pages(page, numpages, 0); 3767 } 3768 3769 extern unsigned int _debug_guardpage_minorder; 3770 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3771 3772 static inline unsigned int debug_guardpage_minorder(void) 3773 { 3774 return _debug_guardpage_minorder; 3775 } 3776 3777 static inline bool debug_guardpage_enabled(void) 3778 { 3779 return static_branch_unlikely(&_debug_guardpage_enabled); 3780 } 3781 3782 static inline bool page_is_guard(struct page *page) 3783 { 3784 if (!debug_guardpage_enabled()) 3785 return false; 3786 3787 return PageGuard(page); 3788 } 3789 3790 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3791 int migratetype); 3792 static inline bool set_page_guard(struct zone *zone, struct page *page, 3793 unsigned int order, int migratetype) 3794 { 3795 if (!debug_guardpage_enabled()) 3796 return false; 3797 return __set_page_guard(zone, page, order, migratetype); 3798 } 3799 3800 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3801 int migratetype); 3802 static inline void clear_page_guard(struct zone *zone, struct page *page, 3803 unsigned int order, int migratetype) 3804 { 3805 if (!debug_guardpage_enabled()) 3806 return; 3807 __clear_page_guard(zone, page, order, migratetype); 3808 } 3809 3810 #else /* CONFIG_DEBUG_PAGEALLOC */ 3811 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3812 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3813 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3814 static inline bool debug_guardpage_enabled(void) { return false; } 3815 static inline bool page_is_guard(struct page *page) { return false; } 3816 static inline bool set_page_guard(struct zone *zone, struct page *page, 3817 unsigned int order, int migratetype) { return false; } 3818 static inline void clear_page_guard(struct zone *zone, struct page *page, 3819 unsigned int order, int migratetype) {} 3820 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3821 3822 #ifdef __HAVE_ARCH_GATE_AREA 3823 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3824 extern int in_gate_area_no_mm(unsigned long addr); 3825 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3826 #else 3827 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3828 { 3829 return NULL; 3830 } 3831 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3832 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3833 { 3834 return 0; 3835 } 3836 #endif /* __HAVE_ARCH_GATE_AREA */ 3837 3838 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3839 3840 #ifdef CONFIG_SYSCTL 3841 extern int sysctl_drop_caches; 3842 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3843 loff_t *); 3844 #endif 3845 3846 void drop_slab(void); 3847 3848 #ifndef CONFIG_MMU 3849 #define randomize_va_space 0 3850 #else 3851 extern int randomize_va_space; 3852 #endif 3853 3854 const char * arch_vma_name(struct vm_area_struct *vma); 3855 #ifdef CONFIG_MMU 3856 void print_vma_addr(char *prefix, unsigned long rip); 3857 #else 3858 static inline void print_vma_addr(char *prefix, unsigned long rip) 3859 { 3860 } 3861 #endif 3862 3863 void *sparse_buffer_alloc(unsigned long size); 3864 struct page * __populate_section_memmap(unsigned long pfn, 3865 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3866 struct dev_pagemap *pgmap); 3867 void pmd_init(void *addr); 3868 void pud_init(void *addr); 3869 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3870 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3871 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3872 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3873 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3874 struct vmem_altmap *altmap, struct page *reuse); 3875 void *vmemmap_alloc_block(unsigned long size, int node); 3876 struct vmem_altmap; 3877 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3878 struct vmem_altmap *altmap); 3879 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3880 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3881 unsigned long addr, unsigned long next); 3882 int vmemmap_check_pmd(pmd_t *pmd, int node, 3883 unsigned long addr, unsigned long next); 3884 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3885 int node, struct vmem_altmap *altmap); 3886 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3887 int node, struct vmem_altmap *altmap); 3888 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3889 struct vmem_altmap *altmap); 3890 void vmemmap_populate_print_last(void); 3891 #ifdef CONFIG_MEMORY_HOTPLUG 3892 void vmemmap_free(unsigned long start, unsigned long end, 3893 struct vmem_altmap *altmap); 3894 #endif 3895 3896 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3897 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3898 { 3899 /* number of pfns from base where pfn_to_page() is valid */ 3900 if (altmap) 3901 return altmap->reserve + altmap->free; 3902 return 0; 3903 } 3904 3905 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3906 unsigned long nr_pfns) 3907 { 3908 altmap->alloc -= nr_pfns; 3909 } 3910 #else 3911 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3912 { 3913 return 0; 3914 } 3915 3916 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3917 unsigned long nr_pfns) 3918 { 3919 } 3920 #endif 3921 3922 #define VMEMMAP_RESERVE_NR 2 3923 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3924 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3925 struct dev_pagemap *pgmap) 3926 { 3927 unsigned long nr_pages; 3928 unsigned long nr_vmemmap_pages; 3929 3930 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3931 return false; 3932 3933 nr_pages = pgmap_vmemmap_nr(pgmap); 3934 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3935 /* 3936 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3937 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3938 */ 3939 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3940 } 3941 /* 3942 * If we don't have an architecture override, use the generic rule 3943 */ 3944 #ifndef vmemmap_can_optimize 3945 #define vmemmap_can_optimize __vmemmap_can_optimize 3946 #endif 3947 3948 #else 3949 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3950 struct dev_pagemap *pgmap) 3951 { 3952 return false; 3953 } 3954 #endif 3955 3956 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3957 unsigned long nr_pages); 3958 3959 enum mf_flags { 3960 MF_COUNT_INCREASED = 1 << 0, 3961 MF_ACTION_REQUIRED = 1 << 1, 3962 MF_MUST_KILL = 1 << 2, 3963 MF_SOFT_OFFLINE = 1 << 3, 3964 MF_UNPOISON = 1 << 4, 3965 MF_SW_SIMULATED = 1 << 5, 3966 MF_NO_RETRY = 1 << 6, 3967 MF_MEM_PRE_REMOVE = 1 << 7, 3968 }; 3969 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3970 unsigned long count, int mf_flags); 3971 extern int memory_failure(unsigned long pfn, int flags); 3972 extern void memory_failure_queue_kick(int cpu); 3973 extern int unpoison_memory(unsigned long pfn); 3974 extern void shake_page(struct page *p); 3975 extern atomic_long_t num_poisoned_pages __read_mostly; 3976 extern int soft_offline_page(unsigned long pfn, int flags); 3977 #ifdef CONFIG_MEMORY_FAILURE 3978 /* 3979 * Sysfs entries for memory failure handling statistics. 3980 */ 3981 extern const struct attribute_group memory_failure_attr_group; 3982 extern void memory_failure_queue(unsigned long pfn, int flags); 3983 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3984 bool *migratable_cleared); 3985 void num_poisoned_pages_inc(unsigned long pfn); 3986 void num_poisoned_pages_sub(unsigned long pfn, long i); 3987 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3988 #else 3989 static inline void memory_failure_queue(unsigned long pfn, int flags) 3990 { 3991 } 3992 3993 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3994 bool *migratable_cleared) 3995 { 3996 return 0; 3997 } 3998 3999 static inline void num_poisoned_pages_inc(unsigned long pfn) 4000 { 4001 } 4002 4003 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4004 { 4005 } 4006 #endif 4007 4008 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 4009 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 4010 struct vm_area_struct *vma, struct list_head *to_kill, 4011 unsigned long ksm_addr); 4012 #endif 4013 4014 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4015 extern void memblk_nr_poison_inc(unsigned long pfn); 4016 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4017 #else 4018 static inline void memblk_nr_poison_inc(unsigned long pfn) 4019 { 4020 } 4021 4022 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4023 { 4024 } 4025 #endif 4026 4027 #ifndef arch_memory_failure 4028 static inline int arch_memory_failure(unsigned long pfn, int flags) 4029 { 4030 return -ENXIO; 4031 } 4032 #endif 4033 4034 #ifndef arch_is_platform_page 4035 static inline bool arch_is_platform_page(u64 paddr) 4036 { 4037 return false; 4038 } 4039 #endif 4040 4041 /* 4042 * Error handlers for various types of pages. 4043 */ 4044 enum mf_result { 4045 MF_IGNORED, /* Error: cannot be handled */ 4046 MF_FAILED, /* Error: handling failed */ 4047 MF_DELAYED, /* Will be handled later */ 4048 MF_RECOVERED, /* Successfully recovered */ 4049 }; 4050 4051 enum mf_action_page_type { 4052 MF_MSG_KERNEL, 4053 MF_MSG_KERNEL_HIGH_ORDER, 4054 MF_MSG_SLAB, 4055 MF_MSG_DIFFERENT_COMPOUND, 4056 MF_MSG_HUGE, 4057 MF_MSG_FREE_HUGE, 4058 MF_MSG_UNMAP_FAILED, 4059 MF_MSG_DIRTY_SWAPCACHE, 4060 MF_MSG_CLEAN_SWAPCACHE, 4061 MF_MSG_DIRTY_MLOCKED_LRU, 4062 MF_MSG_CLEAN_MLOCKED_LRU, 4063 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4064 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4065 MF_MSG_DIRTY_LRU, 4066 MF_MSG_CLEAN_LRU, 4067 MF_MSG_TRUNCATED_LRU, 4068 MF_MSG_BUDDY, 4069 MF_MSG_DAX, 4070 MF_MSG_UNSPLIT_THP, 4071 MF_MSG_UNKNOWN, 4072 }; 4073 4074 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4075 extern void clear_huge_page(struct page *page, 4076 unsigned long addr_hint, 4077 unsigned int pages_per_huge_page); 4078 int copy_user_large_folio(struct folio *dst, struct folio *src, 4079 unsigned long addr_hint, 4080 struct vm_area_struct *vma); 4081 long copy_folio_from_user(struct folio *dst_folio, 4082 const void __user *usr_src, 4083 bool allow_pagefault); 4084 4085 /** 4086 * vma_is_special_huge - Are transhuge page-table entries considered special? 4087 * @vma: Pointer to the struct vm_area_struct to consider 4088 * 4089 * Whether transhuge page-table entries are considered "special" following 4090 * the definition in vm_normal_page(). 4091 * 4092 * Return: true if transhuge page-table entries should be considered special, 4093 * false otherwise. 4094 */ 4095 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4096 { 4097 return vma_is_dax(vma) || (vma->vm_file && 4098 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4099 } 4100 4101 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4102 4103 #if MAX_NUMNODES > 1 4104 void __init setup_nr_node_ids(void); 4105 #else 4106 static inline void setup_nr_node_ids(void) {} 4107 #endif 4108 4109 extern int memcmp_pages(struct page *page1, struct page *page2); 4110 4111 static inline int pages_identical(struct page *page1, struct page *page2) 4112 { 4113 return !memcmp_pages(page1, page2); 4114 } 4115 4116 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4117 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4118 pgoff_t first_index, pgoff_t nr, 4119 pgoff_t bitmap_pgoff, 4120 unsigned long *bitmap, 4121 pgoff_t *start, 4122 pgoff_t *end); 4123 4124 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4125 pgoff_t first_index, pgoff_t nr); 4126 #endif 4127 4128 extern int sysctl_nr_trim_pages; 4129 4130 #ifdef CONFIG_PRINTK 4131 void mem_dump_obj(void *object); 4132 #else 4133 static inline void mem_dump_obj(void *object) {} 4134 #endif 4135 4136 /** 4137 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4138 * handle them. 4139 * @seals: the seals to check 4140 * @vma: the vma to operate on 4141 * 4142 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4143 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4144 */ 4145 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4146 { 4147 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4148 /* 4149 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4150 * write seals are active. 4151 */ 4152 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4153 return -EPERM; 4154 4155 /* 4156 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4157 * MAP_SHARED and read-only, take care to not allow mprotect to 4158 * revert protections on such mappings. Do this only for shared 4159 * mappings. For private mappings, don't need to mask 4160 * VM_MAYWRITE as we still want them to be COW-writable. 4161 */ 4162 if (vma->vm_flags & VM_SHARED) 4163 vm_flags_clear(vma, VM_MAYWRITE); 4164 } 4165 4166 return 0; 4167 } 4168 4169 #ifdef CONFIG_ANON_VMA_NAME 4170 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4171 unsigned long len_in, 4172 struct anon_vma_name *anon_name); 4173 #else 4174 static inline int 4175 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4176 unsigned long len_in, struct anon_vma_name *anon_name) { 4177 return 0; 4178 } 4179 #endif 4180 4181 #ifdef CONFIG_UNACCEPTED_MEMORY 4182 4183 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4184 void accept_memory(phys_addr_t start, phys_addr_t end); 4185 4186 #else 4187 4188 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4189 phys_addr_t end) 4190 { 4191 return false; 4192 } 4193 4194 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4195 { 4196 } 4197 4198 #endif 4199 4200 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4201 { 4202 phys_addr_t paddr = pfn << PAGE_SHIFT; 4203 4204 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4205 } 4206 4207 #endif /* _LINUX_MM_H */ 4208