1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 #include <linux/cacheinfo.h> 35 #include <linux/rcuwait.h> 36 37 struct mempolicy; 38 struct anon_vma; 39 struct anon_vma_chain; 40 struct user_struct; 41 struct pt_regs; 42 struct folio_batch; 43 44 extern int sysctl_page_lock_unfairness; 45 46 void mm_core_init(void); 47 void init_mm_internals(void); 48 49 extern atomic_long_t _totalram_pages; 50 static inline unsigned long totalram_pages(void) 51 { 52 return (unsigned long)atomic_long_read(&_totalram_pages); 53 } 54 55 static inline void totalram_pages_inc(void) 56 { 57 atomic_long_inc(&_totalram_pages); 58 } 59 60 static inline void totalram_pages_dec(void) 61 { 62 atomic_long_dec(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_add(long count) 66 { 67 atomic_long_add(count, &_totalram_pages); 68 } 69 70 extern void * high_memory; 71 extern int page_cluster; 72 extern const int page_cluster_max; 73 74 #ifdef CONFIG_SYSCTL 75 extern int sysctl_legacy_va_layout; 76 #else 77 #define sysctl_legacy_va_layout 0 78 #endif 79 80 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 81 extern const int mmap_rnd_bits_min; 82 extern int mmap_rnd_bits_max __ro_after_init; 83 extern int mmap_rnd_bits __read_mostly; 84 #endif 85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 86 extern const int mmap_rnd_compat_bits_min; 87 extern const int mmap_rnd_compat_bits_max; 88 extern int mmap_rnd_compat_bits __read_mostly; 89 #endif 90 91 #ifndef DIRECT_MAP_PHYSMEM_END 92 # ifdef MAX_PHYSMEM_BITS 93 # define DIRECT_MAP_PHYSMEM_END ((1ULL << MAX_PHYSMEM_BITS) - 1) 94 # else 95 # define DIRECT_MAP_PHYSMEM_END (((phys_addr_t)-1)&~(1ULL<<63)) 96 # endif 97 #endif 98 99 #include <asm/page.h> 100 #include <asm/processor.h> 101 102 #ifndef __pa_symbol 103 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 104 #endif 105 106 #ifndef page_to_virt 107 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 108 #endif 109 110 #ifndef lm_alias 111 #define lm_alias(x) __va(__pa_symbol(x)) 112 #endif 113 114 /* 115 * To prevent common memory management code establishing 116 * a zero page mapping on a read fault. 117 * This macro should be defined within <asm/pgtable.h>. 118 * s390 does this to prevent multiplexing of hardware bits 119 * related to the physical page in case of virtualization. 120 */ 121 #ifndef mm_forbids_zeropage 122 #define mm_forbids_zeropage(X) (0) 123 #endif 124 125 /* 126 * On some architectures it is expensive to call memset() for small sizes. 127 * If an architecture decides to implement their own version of 128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 129 * define their own version of this macro in <asm/pgtable.h> 130 */ 131 #if BITS_PER_LONG == 64 132 /* This function must be updated when the size of struct page grows above 96 133 * or reduces below 56. The idea that compiler optimizes out switch() 134 * statement, and only leaves move/store instructions. Also the compiler can 135 * combine write statements if they are both assignments and can be reordered, 136 * this can result in several of the writes here being dropped. 137 */ 138 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 139 static inline void __mm_zero_struct_page(struct page *page) 140 { 141 unsigned long *_pp = (void *)page; 142 143 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 144 BUILD_BUG_ON(sizeof(struct page) & 7); 145 BUILD_BUG_ON(sizeof(struct page) < 56); 146 BUILD_BUG_ON(sizeof(struct page) > 96); 147 148 switch (sizeof(struct page)) { 149 case 96: 150 _pp[11] = 0; 151 fallthrough; 152 case 88: 153 _pp[10] = 0; 154 fallthrough; 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173 } 174 #else 175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176 #endif 177 178 /* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194 #define MAPCOUNT_ELF_CORE_MARGIN (5) 195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197 extern int sysctl_max_map_count; 198 199 extern unsigned long sysctl_user_reserve_kbytes; 200 extern unsigned long sysctl_admin_reserve_kbytes; 201 202 extern int sysctl_overcommit_memory; 203 extern int sysctl_overcommit_ratio; 204 extern unsigned long sysctl_overcommit_kbytes; 205 206 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216 #else 217 #define nth_page(page,n) ((page) + (n)) 218 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 219 #endif 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* to align the pointer to the (prev) page boundary */ 225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 226 227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 228 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 229 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 251 #ifndef CONFIG_MMU 252 extern struct rb_root nommu_region_tree; 253 extern struct rw_semaphore nommu_region_sem; 254 255 extern unsigned int kobjsize(const void *objp); 256 #endif 257 258 /* 259 * vm_flags in vm_area_struct, see mm_types.h. 260 * When changing, update also include/trace/events/mmflags.h 261 */ 262 #define VM_NONE 0x00000000 263 264 #define VM_READ 0x00000001 /* currently active flags */ 265 #define VM_WRITE 0x00000002 266 #define VM_EXEC 0x00000004 267 #define VM_SHARED 0x00000008 268 269 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 270 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 271 #define VM_MAYWRITE 0x00000020 272 #define VM_MAYEXEC 0x00000040 273 #define VM_MAYSHARE 0x00000080 274 275 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 276 #ifdef CONFIG_MMU 277 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 278 #else /* CONFIG_MMU */ 279 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 280 #define VM_UFFD_MISSING 0 281 #endif /* CONFIG_MMU */ 282 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 283 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 284 285 #define VM_LOCKED 0x00002000 286 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 287 288 /* Used by sys_madvise() */ 289 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 290 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 291 292 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 293 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 294 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 295 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 296 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 297 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 298 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 299 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 300 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 301 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 302 303 #ifdef CONFIG_MEM_SOFT_DIRTY 304 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 305 #else 306 # define VM_SOFTDIRTY 0 307 #endif 308 309 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 310 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 311 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 312 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 313 314 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 315 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 316 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 317 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_6 38 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 328 #define VM_HIGH_ARCH_6 BIT(VM_HIGH_ARCH_BIT_6) 329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331 #ifdef CONFIG_ARCH_HAS_PKEYS 332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 334 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 335 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336 #if CONFIG_ARCH_PKEY_BITS > 3 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #else 339 # define VM_PKEY_BIT3 0 340 #endif 341 #if CONFIG_ARCH_PKEY_BITS > 4 342 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 343 #else 344 # define VM_PKEY_BIT4 0 345 #endif 346 #endif /* CONFIG_ARCH_HAS_PKEYS */ 347 348 #ifdef CONFIG_X86_USER_SHADOW_STACK 349 /* 350 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 351 * support core mm. 352 * 353 * These VMAs will get a single end guard page. This helps userspace protect 354 * itself from attacks. A single page is enough for current shadow stack archs 355 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 356 * for more details on the guard size. 357 */ 358 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 359 #endif 360 361 #if defined(CONFIG_ARM64_GCS) 362 /* 363 * arm64's Guarded Control Stack implements similar functionality and 364 * has similar constraints to shadow stacks. 365 */ 366 # define VM_SHADOW_STACK VM_HIGH_ARCH_6 367 #endif 368 369 #ifndef VM_SHADOW_STACK 370 # define VM_SHADOW_STACK VM_NONE 371 #endif 372 373 #if defined(CONFIG_X86) 374 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 375 #elif defined(CONFIG_PPC64) 376 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 377 #elif defined(CONFIG_PARISC) 378 # define VM_GROWSUP VM_ARCH_1 379 #elif defined(CONFIG_SPARC64) 380 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 381 # define VM_ARCH_CLEAR VM_SPARC_ADI 382 #elif defined(CONFIG_ARM64) 383 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 384 # define VM_ARCH_CLEAR VM_ARM64_BTI 385 #elif !defined(CONFIG_MMU) 386 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 387 #endif 388 389 #if defined(CONFIG_ARM64_MTE) 390 # define VM_MTE VM_HIGH_ARCH_4 /* Use Tagged memory for access control */ 391 # define VM_MTE_ALLOWED VM_HIGH_ARCH_5 /* Tagged memory permitted */ 392 #else 393 # define VM_MTE VM_NONE 394 # define VM_MTE_ALLOWED VM_NONE 395 #endif 396 397 #ifndef VM_GROWSUP 398 # define VM_GROWSUP VM_NONE 399 #endif 400 401 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 402 # define VM_UFFD_MINOR_BIT 38 403 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 404 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 405 # define VM_UFFD_MINOR VM_NONE 406 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 407 408 /* 409 * This flag is used to connect VFIO to arch specific KVM code. It 410 * indicates that the memory under this VMA is safe for use with any 411 * non-cachable memory type inside KVM. Some VFIO devices, on some 412 * platforms, are thought to be unsafe and can cause machine crashes 413 * if KVM does not lock down the memory type. 414 */ 415 #ifdef CONFIG_64BIT 416 #define VM_ALLOW_ANY_UNCACHED_BIT 39 417 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 418 #else 419 #define VM_ALLOW_ANY_UNCACHED VM_NONE 420 #endif 421 422 #ifdef CONFIG_64BIT 423 #define VM_DROPPABLE_BIT 40 424 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 425 #elif defined(CONFIG_PPC32) 426 #define VM_DROPPABLE VM_ARCH_1 427 #else 428 #define VM_DROPPABLE VM_NONE 429 #endif 430 431 #ifdef CONFIG_64BIT 432 /* VM is sealed, in vm_flags */ 433 #define VM_SEALED _BITUL(63) 434 #endif 435 436 /* Bits set in the VMA until the stack is in its final location */ 437 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 438 439 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 440 441 /* Common data flag combinations */ 442 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 443 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 444 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 445 VM_MAYWRITE | VM_MAYEXEC) 446 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 447 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 448 449 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 450 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 451 #endif 452 453 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 454 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 455 #endif 456 457 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 458 459 #ifdef CONFIG_STACK_GROWSUP 460 #define VM_STACK VM_GROWSUP 461 #define VM_STACK_EARLY VM_GROWSDOWN 462 #else 463 #define VM_STACK VM_GROWSDOWN 464 #define VM_STACK_EARLY 0 465 #endif 466 467 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 468 469 /* VMA basic access permission flags */ 470 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 471 472 473 /* 474 * Special vmas that are non-mergable, non-mlock()able. 475 */ 476 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 477 478 /* This mask prevents VMA from being scanned with khugepaged */ 479 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 480 481 /* This mask defines which mm->def_flags a process can inherit its parent */ 482 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 483 484 /* This mask represents all the VMA flag bits used by mlock */ 485 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 486 487 /* Arch-specific flags to clear when updating VM flags on protection change */ 488 #ifndef VM_ARCH_CLEAR 489 # define VM_ARCH_CLEAR VM_NONE 490 #endif 491 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 492 493 /* 494 * mapping from the currently active vm_flags protection bits (the 495 * low four bits) to a page protection mask.. 496 */ 497 498 /* 499 * The default fault flags that should be used by most of the 500 * arch-specific page fault handlers. 501 */ 502 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 503 FAULT_FLAG_KILLABLE | \ 504 FAULT_FLAG_INTERRUPTIBLE) 505 506 /** 507 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 508 * @flags: Fault flags. 509 * 510 * This is mostly used for places where we want to try to avoid taking 511 * the mmap_lock for too long a time when waiting for another condition 512 * to change, in which case we can try to be polite to release the 513 * mmap_lock in the first round to avoid potential starvation of other 514 * processes that would also want the mmap_lock. 515 * 516 * Return: true if the page fault allows retry and this is the first 517 * attempt of the fault handling; false otherwise. 518 */ 519 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 520 { 521 return (flags & FAULT_FLAG_ALLOW_RETRY) && 522 (!(flags & FAULT_FLAG_TRIED)); 523 } 524 525 #define FAULT_FLAG_TRACE \ 526 { FAULT_FLAG_WRITE, "WRITE" }, \ 527 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 528 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 529 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 530 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 531 { FAULT_FLAG_TRIED, "TRIED" }, \ 532 { FAULT_FLAG_USER, "USER" }, \ 533 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 534 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 535 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 536 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 537 538 /* 539 * vm_fault is filled by the pagefault handler and passed to the vma's 540 * ->fault function. The vma's ->fault is responsible for returning a bitmask 541 * of VM_FAULT_xxx flags that give details about how the fault was handled. 542 * 543 * MM layer fills up gfp_mask for page allocations but fault handler might 544 * alter it if its implementation requires a different allocation context. 545 * 546 * pgoff should be used in favour of virtual_address, if possible. 547 */ 548 struct vm_fault { 549 const struct { 550 struct vm_area_struct *vma; /* Target VMA */ 551 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 552 pgoff_t pgoff; /* Logical page offset based on vma */ 553 unsigned long address; /* Faulting virtual address - masked */ 554 unsigned long real_address; /* Faulting virtual address - unmasked */ 555 }; 556 enum fault_flag flags; /* FAULT_FLAG_xxx flags 557 * XXX: should really be 'const' */ 558 pmd_t *pmd; /* Pointer to pmd entry matching 559 * the 'address' */ 560 pud_t *pud; /* Pointer to pud entry matching 561 * the 'address' 562 */ 563 union { 564 pte_t orig_pte; /* Value of PTE at the time of fault */ 565 pmd_t orig_pmd; /* Value of PMD at the time of fault, 566 * used by PMD fault only. 567 */ 568 }; 569 570 struct page *cow_page; /* Page handler may use for COW fault */ 571 struct page *page; /* ->fault handlers should return a 572 * page here, unless VM_FAULT_NOPAGE 573 * is set (which is also implied by 574 * VM_FAULT_ERROR). 575 */ 576 /* These three entries are valid only while holding ptl lock */ 577 pte_t *pte; /* Pointer to pte entry matching 578 * the 'address'. NULL if the page 579 * table hasn't been allocated. 580 */ 581 spinlock_t *ptl; /* Page table lock. 582 * Protects pte page table if 'pte' 583 * is not NULL, otherwise pmd. 584 */ 585 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 586 * vm_ops->map_pages() sets up a page 587 * table from atomic context. 588 * do_fault_around() pre-allocates 589 * page table to avoid allocation from 590 * atomic context. 591 */ 592 }; 593 594 /* 595 * These are the virtual MM functions - opening of an area, closing and 596 * unmapping it (needed to keep files on disk up-to-date etc), pointer 597 * to the functions called when a no-page or a wp-page exception occurs. 598 */ 599 struct vm_operations_struct { 600 void (*open)(struct vm_area_struct * area); 601 /** 602 * @close: Called when the VMA is being removed from the MM. 603 * Context: User context. May sleep. Caller holds mmap_lock. 604 */ 605 void (*close)(struct vm_area_struct * area); 606 /* Called any time before splitting to check if it's allowed */ 607 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 608 int (*mremap)(struct vm_area_struct *area); 609 /* 610 * Called by mprotect() to make driver-specific permission 611 * checks before mprotect() is finalised. The VMA must not 612 * be modified. Returns 0 if mprotect() can proceed. 613 */ 614 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 615 unsigned long end, unsigned long newflags); 616 vm_fault_t (*fault)(struct vm_fault *vmf); 617 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 618 vm_fault_t (*map_pages)(struct vm_fault *vmf, 619 pgoff_t start_pgoff, pgoff_t end_pgoff); 620 unsigned long (*pagesize)(struct vm_area_struct * area); 621 622 /* notification that a previously read-only page is about to become 623 * writable, if an error is returned it will cause a SIGBUS */ 624 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 625 626 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 627 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 628 629 /* called by access_process_vm when get_user_pages() fails, typically 630 * for use by special VMAs. See also generic_access_phys() for a generic 631 * implementation useful for any iomem mapping. 632 */ 633 int (*access)(struct vm_area_struct *vma, unsigned long addr, 634 void *buf, int len, int write); 635 636 /* Called by the /proc/PID/maps code to ask the vma whether it 637 * has a special name. Returning non-NULL will also cause this 638 * vma to be dumped unconditionally. */ 639 const char *(*name)(struct vm_area_struct *vma); 640 641 #ifdef CONFIG_NUMA 642 /* 643 * set_policy() op must add a reference to any non-NULL @new mempolicy 644 * to hold the policy upon return. Caller should pass NULL @new to 645 * remove a policy and fall back to surrounding context--i.e. do not 646 * install a MPOL_DEFAULT policy, nor the task or system default 647 * mempolicy. 648 */ 649 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 650 651 /* 652 * get_policy() op must add reference [mpol_get()] to any policy at 653 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 654 * in mm/mempolicy.c will do this automatically. 655 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 656 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 657 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 658 * must return NULL--i.e., do not "fallback" to task or system default 659 * policy. 660 */ 661 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 662 unsigned long addr, pgoff_t *ilx); 663 #endif 664 /* 665 * Called by vm_normal_page() for special PTEs to find the 666 * page for @addr. This is useful if the default behavior 667 * (using pte_page()) would not find the correct page. 668 */ 669 struct page *(*find_special_page)(struct vm_area_struct *vma, 670 unsigned long addr); 671 }; 672 673 #ifdef CONFIG_NUMA_BALANCING 674 static inline void vma_numab_state_init(struct vm_area_struct *vma) 675 { 676 vma->numab_state = NULL; 677 } 678 static inline void vma_numab_state_free(struct vm_area_struct *vma) 679 { 680 kfree(vma->numab_state); 681 } 682 #else 683 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 684 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 685 #endif /* CONFIG_NUMA_BALANCING */ 686 687 #ifdef CONFIG_PER_VMA_LOCK 688 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) 689 { 690 #ifdef CONFIG_DEBUG_LOCK_ALLOC 691 static struct lock_class_key lockdep_key; 692 693 lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0); 694 #endif 695 if (reset_refcnt) 696 refcount_set(&vma->vm_refcnt, 0); 697 vma->vm_lock_seq = UINT_MAX; 698 } 699 700 static inline bool is_vma_writer_only(int refcnt) 701 { 702 /* 703 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma 704 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on 705 * a detached vma happens only in vma_mark_detached() and is a rare 706 * case, therefore most of the time there will be no unnecessary wakeup. 707 */ 708 return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1; 709 } 710 711 static inline void vma_refcount_put(struct vm_area_struct *vma) 712 { 713 /* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */ 714 struct mm_struct *mm = vma->vm_mm; 715 int oldcnt; 716 717 rwsem_release(&vma->vmlock_dep_map, _RET_IP_); 718 if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) { 719 720 if (is_vma_writer_only(oldcnt - 1)) 721 rcuwait_wake_up(&mm->vma_writer_wait); 722 } 723 } 724 725 /* 726 * Try to read-lock a vma. The function is allowed to occasionally yield false 727 * locked result to avoid performance overhead, in which case we fall back to 728 * using mmap_lock. The function should never yield false unlocked result. 729 * False locked result is possible if mm_lock_seq overflows or if vma gets 730 * reused and attached to a different mm before we lock it. 731 * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got 732 * detached. 733 */ 734 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 735 struct vm_area_struct *vma) 736 { 737 int oldcnt; 738 739 /* 740 * Check before locking. A race might cause false locked result. 741 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 742 * ACQUIRE semantics, because this is just a lockless check whose result 743 * we don't rely on for anything - the mm_lock_seq read against which we 744 * need ordering is below. 745 */ 746 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence)) 747 return NULL; 748 749 /* 750 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire() 751 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET. 752 * Acquire fence is required here to avoid reordering against later 753 * vm_lock_seq check and checks inside lock_vma_under_rcu(). 754 */ 755 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 756 VMA_REF_LIMIT))) { 757 /* return EAGAIN if vma got detached from under us */ 758 return oldcnt ? NULL : ERR_PTR(-EAGAIN); 759 } 760 761 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 762 /* 763 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result. 764 * False unlocked result is impossible because we modify and check 765 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq 766 * modification invalidates all existing locks. 767 * 768 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 769 * racing with vma_end_write_all(), we only start reading from the VMA 770 * after it has been unlocked. 771 * This pairs with RELEASE semantics in vma_end_write_all(). 772 */ 773 if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) { 774 vma_refcount_put(vma); 775 return NULL; 776 } 777 778 return vma; 779 } 780 781 /* 782 * Use only while holding mmap read lock which guarantees that locking will not 783 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 784 * not be used in such cases because it might fail due to mm_lock_seq overflow. 785 * This functionality is used to obtain vma read lock and drop the mmap read lock. 786 */ 787 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass) 788 { 789 int oldcnt; 790 791 mmap_assert_locked(vma->vm_mm); 792 if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt, 793 VMA_REF_LIMIT))) 794 return false; 795 796 rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_); 797 return true; 798 } 799 800 /* 801 * Use only while holding mmap read lock which guarantees that locking will not 802 * fail (nobody can concurrently write-lock the vma). vma_start_read() should 803 * not be used in such cases because it might fail due to mm_lock_seq overflow. 804 * This functionality is used to obtain vma read lock and drop the mmap read lock. 805 */ 806 static inline bool vma_start_read_locked(struct vm_area_struct *vma) 807 { 808 return vma_start_read_locked_nested(vma, 0); 809 } 810 811 static inline void vma_end_read(struct vm_area_struct *vma) 812 { 813 vma_refcount_put(vma); 814 } 815 816 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 817 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq) 818 { 819 mmap_assert_write_locked(vma->vm_mm); 820 821 /* 822 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 823 * mm->mm_lock_seq can't be concurrently modified. 824 */ 825 *mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence; 826 return (vma->vm_lock_seq == *mm_lock_seq); 827 } 828 829 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq); 830 831 /* 832 * Begin writing to a VMA. 833 * Exclude concurrent readers under the per-VMA lock until the currently 834 * write-locked mmap_lock is dropped or downgraded. 835 */ 836 static inline void vma_start_write(struct vm_area_struct *vma) 837 { 838 unsigned int mm_lock_seq; 839 840 if (__is_vma_write_locked(vma, &mm_lock_seq)) 841 return; 842 843 __vma_start_write(vma, mm_lock_seq); 844 } 845 846 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 847 { 848 unsigned int mm_lock_seq; 849 850 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 851 } 852 853 static inline void vma_assert_locked(struct vm_area_struct *vma) 854 { 855 unsigned int mm_lock_seq; 856 857 VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 && 858 !__is_vma_write_locked(vma, &mm_lock_seq), vma); 859 } 860 861 /* 862 * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these 863 * assertions should be made either under mmap_write_lock or when the object 864 * has been isolated under mmap_write_lock, ensuring no competing writers. 865 */ 866 static inline void vma_assert_attached(struct vm_area_struct *vma) 867 { 868 WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt)); 869 } 870 871 static inline void vma_assert_detached(struct vm_area_struct *vma) 872 { 873 WARN_ON_ONCE(refcount_read(&vma->vm_refcnt)); 874 } 875 876 static inline void vma_mark_attached(struct vm_area_struct *vma) 877 { 878 vma_assert_write_locked(vma); 879 vma_assert_detached(vma); 880 refcount_set_release(&vma->vm_refcnt, 1); 881 } 882 883 void vma_mark_detached(struct vm_area_struct *vma); 884 885 static inline void release_fault_lock(struct vm_fault *vmf) 886 { 887 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 888 vma_end_read(vmf->vma); 889 else 890 mmap_read_unlock(vmf->vma->vm_mm); 891 } 892 893 static inline void assert_fault_locked(struct vm_fault *vmf) 894 { 895 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 896 vma_assert_locked(vmf->vma); 897 else 898 mmap_assert_locked(vmf->vma->vm_mm); 899 } 900 901 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 902 unsigned long address); 903 904 #else /* CONFIG_PER_VMA_LOCK */ 905 906 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {} 907 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm, 908 struct vm_area_struct *vma) 909 { return NULL; } 910 static inline void vma_end_read(struct vm_area_struct *vma) {} 911 static inline void vma_start_write(struct vm_area_struct *vma) {} 912 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 913 { mmap_assert_write_locked(vma->vm_mm); } 914 static inline void vma_assert_attached(struct vm_area_struct *vma) {} 915 static inline void vma_assert_detached(struct vm_area_struct *vma) {} 916 static inline void vma_mark_attached(struct vm_area_struct *vma) {} 917 static inline void vma_mark_detached(struct vm_area_struct *vma) {} 918 919 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 920 unsigned long address) 921 { 922 return NULL; 923 } 924 925 static inline void vma_assert_locked(struct vm_area_struct *vma) 926 { 927 mmap_assert_locked(vma->vm_mm); 928 } 929 930 static inline void release_fault_lock(struct vm_fault *vmf) 931 { 932 mmap_read_unlock(vmf->vma->vm_mm); 933 } 934 935 static inline void assert_fault_locked(struct vm_fault *vmf) 936 { 937 mmap_assert_locked(vmf->vma->vm_mm); 938 } 939 940 #endif /* CONFIG_PER_VMA_LOCK */ 941 942 extern const struct vm_operations_struct vma_dummy_vm_ops; 943 944 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 945 { 946 memset(vma, 0, sizeof(*vma)); 947 vma->vm_mm = mm; 948 vma->vm_ops = &vma_dummy_vm_ops; 949 INIT_LIST_HEAD(&vma->anon_vma_chain); 950 vma_lock_init(vma, false); 951 } 952 953 /* Use when VMA is not part of the VMA tree and needs no locking */ 954 static inline void vm_flags_init(struct vm_area_struct *vma, 955 vm_flags_t flags) 956 { 957 ACCESS_PRIVATE(vma, __vm_flags) = flags; 958 } 959 960 /* 961 * Use when VMA is part of the VMA tree and modifications need coordination 962 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 963 * it should be locked explicitly beforehand. 964 */ 965 static inline void vm_flags_reset(struct vm_area_struct *vma, 966 vm_flags_t flags) 967 { 968 vma_assert_write_locked(vma); 969 vm_flags_init(vma, flags); 970 } 971 972 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 973 vm_flags_t flags) 974 { 975 vma_assert_write_locked(vma); 976 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 977 } 978 979 static inline void vm_flags_set(struct vm_area_struct *vma, 980 vm_flags_t flags) 981 { 982 vma_start_write(vma); 983 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 984 } 985 986 static inline void vm_flags_clear(struct vm_area_struct *vma, 987 vm_flags_t flags) 988 { 989 vma_start_write(vma); 990 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 991 } 992 993 /* 994 * Use only if VMA is not part of the VMA tree or has no other users and 995 * therefore needs no locking. 996 */ 997 static inline void __vm_flags_mod(struct vm_area_struct *vma, 998 vm_flags_t set, vm_flags_t clear) 999 { 1000 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 1001 } 1002 1003 /* 1004 * Use only when the order of set/clear operations is unimportant, otherwise 1005 * use vm_flags_{set|clear} explicitly. 1006 */ 1007 static inline void vm_flags_mod(struct vm_area_struct *vma, 1008 vm_flags_t set, vm_flags_t clear) 1009 { 1010 vma_start_write(vma); 1011 __vm_flags_mod(vma, set, clear); 1012 } 1013 1014 static inline void vma_set_anonymous(struct vm_area_struct *vma) 1015 { 1016 vma->vm_ops = NULL; 1017 } 1018 1019 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1020 { 1021 return !vma->vm_ops; 1022 } 1023 1024 /* 1025 * Indicate if the VMA is a heap for the given task; for 1026 * /proc/PID/maps that is the heap of the main task. 1027 */ 1028 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 1029 { 1030 return vma->vm_start < vma->vm_mm->brk && 1031 vma->vm_end > vma->vm_mm->start_brk; 1032 } 1033 1034 /* 1035 * Indicate if the VMA is a stack for the given task; for 1036 * /proc/PID/maps that is the stack of the main task. 1037 */ 1038 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 1039 { 1040 /* 1041 * We make no effort to guess what a given thread considers to be 1042 * its "stack". It's not even well-defined for programs written 1043 * languages like Go. 1044 */ 1045 return vma->vm_start <= vma->vm_mm->start_stack && 1046 vma->vm_end >= vma->vm_mm->start_stack; 1047 } 1048 1049 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 1050 { 1051 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 1052 1053 if (!maybe_stack) 1054 return false; 1055 1056 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 1057 VM_STACK_INCOMPLETE_SETUP) 1058 return true; 1059 1060 return false; 1061 } 1062 1063 static inline bool vma_is_foreign(struct vm_area_struct *vma) 1064 { 1065 if (!current->mm) 1066 return true; 1067 1068 if (current->mm != vma->vm_mm) 1069 return true; 1070 1071 return false; 1072 } 1073 1074 static inline bool vma_is_accessible(struct vm_area_struct *vma) 1075 { 1076 return vma->vm_flags & VM_ACCESS_FLAGS; 1077 } 1078 1079 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 1080 { 1081 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 1082 (VM_SHARED | VM_MAYWRITE); 1083 } 1084 1085 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 1086 { 1087 return is_shared_maywrite(vma->vm_flags); 1088 } 1089 1090 static inline 1091 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 1092 { 1093 return mas_find(&vmi->mas, max - 1); 1094 } 1095 1096 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 1097 { 1098 /* 1099 * Uses mas_find() to get the first VMA when the iterator starts. 1100 * Calling mas_next() could skip the first entry. 1101 */ 1102 return mas_find(&vmi->mas, ULONG_MAX); 1103 } 1104 1105 static inline 1106 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 1107 { 1108 return mas_next_range(&vmi->mas, ULONG_MAX); 1109 } 1110 1111 1112 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1113 { 1114 return mas_prev(&vmi->mas, 0); 1115 } 1116 1117 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1118 unsigned long start, unsigned long end, gfp_t gfp) 1119 { 1120 __mas_set_range(&vmi->mas, start, end - 1); 1121 mas_store_gfp(&vmi->mas, NULL, gfp); 1122 if (unlikely(mas_is_err(&vmi->mas))) 1123 return -ENOMEM; 1124 1125 return 0; 1126 } 1127 1128 /* Free any unused preallocations */ 1129 static inline void vma_iter_free(struct vma_iterator *vmi) 1130 { 1131 mas_destroy(&vmi->mas); 1132 } 1133 1134 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1135 struct vm_area_struct *vma) 1136 { 1137 vmi->mas.index = vma->vm_start; 1138 vmi->mas.last = vma->vm_end - 1; 1139 mas_store(&vmi->mas, vma); 1140 if (unlikely(mas_is_err(&vmi->mas))) 1141 return -ENOMEM; 1142 1143 vma_mark_attached(vma); 1144 return 0; 1145 } 1146 1147 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1148 { 1149 mas_pause(&vmi->mas); 1150 } 1151 1152 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1153 { 1154 mas_set(&vmi->mas, addr); 1155 } 1156 1157 #define for_each_vma(__vmi, __vma) \ 1158 while (((__vma) = vma_next(&(__vmi))) != NULL) 1159 1160 /* The MM code likes to work with exclusive end addresses */ 1161 #define for_each_vma_range(__vmi, __vma, __end) \ 1162 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1163 1164 #ifdef CONFIG_SHMEM 1165 /* 1166 * The vma_is_shmem is not inline because it is used only by slow 1167 * paths in userfault. 1168 */ 1169 bool vma_is_shmem(struct vm_area_struct *vma); 1170 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1171 #else 1172 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1173 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1174 #endif 1175 1176 int vma_is_stack_for_current(struct vm_area_struct *vma); 1177 1178 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1179 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1180 1181 struct mmu_gather; 1182 struct inode; 1183 1184 extern void prep_compound_page(struct page *page, unsigned int order); 1185 1186 static inline unsigned int folio_large_order(const struct folio *folio) 1187 { 1188 return folio->_flags_1 & 0xff; 1189 } 1190 1191 #ifdef NR_PAGES_IN_LARGE_FOLIO 1192 static inline long folio_large_nr_pages(const struct folio *folio) 1193 { 1194 return folio->_nr_pages; 1195 } 1196 #else 1197 static inline long folio_large_nr_pages(const struct folio *folio) 1198 { 1199 return 1L << folio_large_order(folio); 1200 } 1201 #endif 1202 1203 /* 1204 * compound_order() can be called without holding a reference, which means 1205 * that niceties like page_folio() don't work. These callers should be 1206 * prepared to handle wild return values. For example, PG_head may be 1207 * set before the order is initialised, or this may be a tail page. 1208 * See compaction.c for some good examples. 1209 */ 1210 static inline unsigned int compound_order(struct page *page) 1211 { 1212 struct folio *folio = (struct folio *)page; 1213 1214 if (!test_bit(PG_head, &folio->flags)) 1215 return 0; 1216 return folio_large_order(folio); 1217 } 1218 1219 /** 1220 * folio_order - The allocation order of a folio. 1221 * @folio: The folio. 1222 * 1223 * A folio is composed of 2^order pages. See get_order() for the definition 1224 * of order. 1225 * 1226 * Return: The order of the folio. 1227 */ 1228 static inline unsigned int folio_order(const struct folio *folio) 1229 { 1230 if (!folio_test_large(folio)) 1231 return 0; 1232 return folio_large_order(folio); 1233 } 1234 1235 #include <linux/huge_mm.h> 1236 1237 /* 1238 * Methods to modify the page usage count. 1239 * 1240 * What counts for a page usage: 1241 * - cache mapping (page->mapping) 1242 * - private data (page->private) 1243 * - page mapped in a task's page tables, each mapping 1244 * is counted separately 1245 * 1246 * Also, many kernel routines increase the page count before a critical 1247 * routine so they can be sure the page doesn't go away from under them. 1248 */ 1249 1250 /* 1251 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1252 */ 1253 static inline int put_page_testzero(struct page *page) 1254 { 1255 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1256 return page_ref_dec_and_test(page); 1257 } 1258 1259 static inline int folio_put_testzero(struct folio *folio) 1260 { 1261 return put_page_testzero(&folio->page); 1262 } 1263 1264 /* 1265 * Try to grab a ref unless the page has a refcount of zero, return false if 1266 * that is the case. 1267 * This can be called when MMU is off so it must not access 1268 * any of the virtual mappings. 1269 */ 1270 static inline bool get_page_unless_zero(struct page *page) 1271 { 1272 return page_ref_add_unless(page, 1, 0); 1273 } 1274 1275 static inline struct folio *folio_get_nontail_page(struct page *page) 1276 { 1277 if (unlikely(!get_page_unless_zero(page))) 1278 return NULL; 1279 return (struct folio *)page; 1280 } 1281 1282 extern int page_is_ram(unsigned long pfn); 1283 1284 enum { 1285 REGION_INTERSECTS, 1286 REGION_DISJOINT, 1287 REGION_MIXED, 1288 }; 1289 1290 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1291 unsigned long desc); 1292 1293 /* Support for virtually mapped pages */ 1294 struct page *vmalloc_to_page(const void *addr); 1295 unsigned long vmalloc_to_pfn(const void *addr); 1296 1297 /* 1298 * Determine if an address is within the vmalloc range 1299 * 1300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1301 * is no special casing required. 1302 */ 1303 #ifdef CONFIG_MMU 1304 extern bool is_vmalloc_addr(const void *x); 1305 extern int is_vmalloc_or_module_addr(const void *x); 1306 #else 1307 static inline bool is_vmalloc_addr(const void *x) 1308 { 1309 return false; 1310 } 1311 static inline int is_vmalloc_or_module_addr(const void *x) 1312 { 1313 return 0; 1314 } 1315 #endif 1316 1317 /* 1318 * How many times the entire folio is mapped as a single unit (eg by a 1319 * PMD or PUD entry). This is probably not what you want, except for 1320 * debugging purposes or implementation of other core folio_*() primitives. 1321 */ 1322 static inline int folio_entire_mapcount(const struct folio *folio) 1323 { 1324 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1325 if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1)) 1326 return 0; 1327 return atomic_read(&folio->_entire_mapcount) + 1; 1328 } 1329 1330 static inline int folio_large_mapcount(const struct folio *folio) 1331 { 1332 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1333 return atomic_read(&folio->_large_mapcount) + 1; 1334 } 1335 1336 /** 1337 * folio_mapcount() - Number of mappings of this folio. 1338 * @folio: The folio. 1339 * 1340 * The folio mapcount corresponds to the number of present user page table 1341 * entries that reference any part of a folio. Each such present user page 1342 * table entry must be paired with exactly on folio reference. 1343 * 1344 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1345 * exactly once. 1346 * 1347 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1348 * references the entire folio counts exactly once, even when such special 1349 * page table entries are comprised of multiple ordinary page table entries. 1350 * 1351 * Will report 0 for pages which cannot be mapped into userspace, such as 1352 * slab, page tables and similar. 1353 * 1354 * Return: The number of times this folio is mapped. 1355 */ 1356 static inline int folio_mapcount(const struct folio *folio) 1357 { 1358 int mapcount; 1359 1360 if (likely(!folio_test_large(folio))) { 1361 mapcount = atomic_read(&folio->_mapcount) + 1; 1362 if (page_mapcount_is_type(mapcount)) 1363 mapcount = 0; 1364 return mapcount; 1365 } 1366 return folio_large_mapcount(folio); 1367 } 1368 1369 /** 1370 * folio_mapped - Is this folio mapped into userspace? 1371 * @folio: The folio. 1372 * 1373 * Return: True if any page in this folio is referenced by user page tables. 1374 */ 1375 static inline bool folio_mapped(const struct folio *folio) 1376 { 1377 return folio_mapcount(folio) >= 1; 1378 } 1379 1380 /* 1381 * Return true if this page is mapped into pagetables. 1382 * For compound page it returns true if any sub-page of compound page is mapped, 1383 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1384 */ 1385 static inline bool page_mapped(const struct page *page) 1386 { 1387 return folio_mapped(page_folio(page)); 1388 } 1389 1390 static inline struct page *virt_to_head_page(const void *x) 1391 { 1392 struct page *page = virt_to_page(x); 1393 1394 return compound_head(page); 1395 } 1396 1397 static inline struct folio *virt_to_folio(const void *x) 1398 { 1399 struct page *page = virt_to_page(x); 1400 1401 return page_folio(page); 1402 } 1403 1404 void __folio_put(struct folio *folio); 1405 1406 void split_page(struct page *page, unsigned int order); 1407 void folio_copy(struct folio *dst, struct folio *src); 1408 int folio_mc_copy(struct folio *dst, struct folio *src); 1409 1410 unsigned long nr_free_buffer_pages(void); 1411 1412 /* Returns the number of bytes in this potentially compound page. */ 1413 static inline unsigned long page_size(struct page *page) 1414 { 1415 return PAGE_SIZE << compound_order(page); 1416 } 1417 1418 /* Returns the number of bits needed for the number of bytes in a page */ 1419 static inline unsigned int page_shift(struct page *page) 1420 { 1421 return PAGE_SHIFT + compound_order(page); 1422 } 1423 1424 /** 1425 * thp_order - Order of a transparent huge page. 1426 * @page: Head page of a transparent huge page. 1427 */ 1428 static inline unsigned int thp_order(struct page *page) 1429 { 1430 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1431 return compound_order(page); 1432 } 1433 1434 /** 1435 * thp_size - Size of a transparent huge page. 1436 * @page: Head page of a transparent huge page. 1437 * 1438 * Return: Number of bytes in this page. 1439 */ 1440 static inline unsigned long thp_size(struct page *page) 1441 { 1442 return PAGE_SIZE << thp_order(page); 1443 } 1444 1445 #ifdef CONFIG_MMU 1446 /* 1447 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1448 * servicing faults for write access. In the normal case, do always want 1449 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1450 * that do not have writing enabled, when used by access_process_vm. 1451 */ 1452 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1453 { 1454 if (likely(vma->vm_flags & VM_WRITE)) 1455 pte = pte_mkwrite(pte, vma); 1456 return pte; 1457 } 1458 1459 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1460 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1461 struct page *page, unsigned int nr, unsigned long addr); 1462 1463 vm_fault_t finish_fault(struct vm_fault *vmf); 1464 #endif 1465 1466 /* 1467 * Multiple processes may "see" the same page. E.g. for untouched 1468 * mappings of /dev/null, all processes see the same page full of 1469 * zeroes, and text pages of executables and shared libraries have 1470 * only one copy in memory, at most, normally. 1471 * 1472 * For the non-reserved pages, page_count(page) denotes a reference count. 1473 * page_count() == 0 means the page is free. page->lru is then used for 1474 * freelist management in the buddy allocator. 1475 * page_count() > 0 means the page has been allocated. 1476 * 1477 * Pages are allocated by the slab allocator in order to provide memory 1478 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1479 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1480 * unless a particular usage is carefully commented. (the responsibility of 1481 * freeing the kmalloc memory is the caller's, of course). 1482 * 1483 * A page may be used by anyone else who does a __get_free_page(). 1484 * In this case, page_count still tracks the references, and should only 1485 * be used through the normal accessor functions. The top bits of page->flags 1486 * and page->virtual store page management information, but all other fields 1487 * are unused and could be used privately, carefully. The management of this 1488 * page is the responsibility of the one who allocated it, and those who have 1489 * subsequently been given references to it. 1490 * 1491 * The other pages (we may call them "pagecache pages") are completely 1492 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1493 * The following discussion applies only to them. 1494 * 1495 * A pagecache page contains an opaque `private' member, which belongs to the 1496 * page's address_space. Usually, this is the address of a circular list of 1497 * the page's disk buffers. PG_private must be set to tell the VM to call 1498 * into the filesystem to release these pages. 1499 * 1500 * A page may belong to an inode's memory mapping. In this case, page->mapping 1501 * is the pointer to the inode, and page->index is the file offset of the page, 1502 * in units of PAGE_SIZE. 1503 * 1504 * If pagecache pages are not associated with an inode, they are said to be 1505 * anonymous pages. These may become associated with the swapcache, and in that 1506 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1507 * 1508 * In either case (swapcache or inode backed), the pagecache itself holds one 1509 * reference to the page. Setting PG_private should also increment the 1510 * refcount. The each user mapping also has a reference to the page. 1511 * 1512 * The pagecache pages are stored in a per-mapping radix tree, which is 1513 * rooted at mapping->i_pages, and indexed by offset. 1514 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1515 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1516 * 1517 * All pagecache pages may be subject to I/O: 1518 * - inode pages may need to be read from disk, 1519 * - inode pages which have been modified and are MAP_SHARED may need 1520 * to be written back to the inode on disk, 1521 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1522 * modified may need to be swapped out to swap space and (later) to be read 1523 * back into memory. 1524 */ 1525 1526 /* 127: arbitrary random number, small enough to assemble well */ 1527 #define folio_ref_zero_or_close_to_overflow(folio) \ 1528 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1529 1530 /** 1531 * folio_get - Increment the reference count on a folio. 1532 * @folio: The folio. 1533 * 1534 * Context: May be called in any context, as long as you know that 1535 * you have a refcount on the folio. If you do not already have one, 1536 * folio_try_get() may be the right interface for you to use. 1537 */ 1538 static inline void folio_get(struct folio *folio) 1539 { 1540 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1541 folio_ref_inc(folio); 1542 } 1543 1544 static inline void get_page(struct page *page) 1545 { 1546 struct folio *folio = page_folio(page); 1547 if (WARN_ON_ONCE(folio_test_slab(folio))) 1548 return; 1549 folio_get(folio); 1550 } 1551 1552 static inline __must_check bool try_get_page(struct page *page) 1553 { 1554 page = compound_head(page); 1555 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1556 return false; 1557 page_ref_inc(page); 1558 return true; 1559 } 1560 1561 /** 1562 * folio_put - Decrement the reference count on a folio. 1563 * @folio: The folio. 1564 * 1565 * If the folio's reference count reaches zero, the memory will be 1566 * released back to the page allocator and may be used by another 1567 * allocation immediately. Do not access the memory or the struct folio 1568 * after calling folio_put() unless you can be sure that it wasn't the 1569 * last reference. 1570 * 1571 * Context: May be called in process or interrupt context, but not in NMI 1572 * context. May be called while holding a spinlock. 1573 */ 1574 static inline void folio_put(struct folio *folio) 1575 { 1576 if (folio_put_testzero(folio)) 1577 __folio_put(folio); 1578 } 1579 1580 /** 1581 * folio_put_refs - Reduce the reference count on a folio. 1582 * @folio: The folio. 1583 * @refs: The amount to subtract from the folio's reference count. 1584 * 1585 * If the folio's reference count reaches zero, the memory will be 1586 * released back to the page allocator and may be used by another 1587 * allocation immediately. Do not access the memory or the struct folio 1588 * after calling folio_put_refs() unless you can be sure that these weren't 1589 * the last references. 1590 * 1591 * Context: May be called in process or interrupt context, but not in NMI 1592 * context. May be called while holding a spinlock. 1593 */ 1594 static inline void folio_put_refs(struct folio *folio, int refs) 1595 { 1596 if (folio_ref_sub_and_test(folio, refs)) 1597 __folio_put(folio); 1598 } 1599 1600 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1601 1602 /* 1603 * union release_pages_arg - an array of pages or folios 1604 * 1605 * release_pages() releases a simple array of multiple pages, and 1606 * accepts various different forms of said page array: either 1607 * a regular old boring array of pages, an array of folios, or 1608 * an array of encoded page pointers. 1609 * 1610 * The transparent union syntax for this kind of "any of these 1611 * argument types" is all kinds of ugly, so look away. 1612 */ 1613 typedef union { 1614 struct page **pages; 1615 struct folio **folios; 1616 struct encoded_page **encoded_pages; 1617 } release_pages_arg __attribute__ ((__transparent_union__)); 1618 1619 void release_pages(release_pages_arg, int nr); 1620 1621 /** 1622 * folios_put - Decrement the reference count on an array of folios. 1623 * @folios: The folios. 1624 * 1625 * Like folio_put(), but for a batch of folios. This is more efficient 1626 * than writing the loop yourself as it will optimise the locks which need 1627 * to be taken if the folios are freed. The folios batch is returned 1628 * empty and ready to be reused for another batch; there is no need to 1629 * reinitialise it. 1630 * 1631 * Context: May be called in process or interrupt context, but not in NMI 1632 * context. May be called while holding a spinlock. 1633 */ 1634 static inline void folios_put(struct folio_batch *folios) 1635 { 1636 folios_put_refs(folios, NULL); 1637 } 1638 1639 static inline void put_page(struct page *page) 1640 { 1641 struct folio *folio = page_folio(page); 1642 1643 if (folio_test_slab(folio)) 1644 return; 1645 1646 folio_put(folio); 1647 } 1648 1649 /* 1650 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1651 * the page's refcount so that two separate items are tracked: the original page 1652 * reference count, and also a new count of how many pin_user_pages() calls were 1653 * made against the page. ("gup-pinned" is another term for the latter). 1654 * 1655 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1656 * distinct from normal pages. As such, the unpin_user_page() call (and its 1657 * variants) must be used in order to release gup-pinned pages. 1658 * 1659 * Choice of value: 1660 * 1661 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1662 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1663 * simpler, due to the fact that adding an even power of two to the page 1664 * refcount has the effect of using only the upper N bits, for the code that 1665 * counts up using the bias value. This means that the lower bits are left for 1666 * the exclusive use of the original code that increments and decrements by one 1667 * (or at least, by much smaller values than the bias value). 1668 * 1669 * Of course, once the lower bits overflow into the upper bits (and this is 1670 * OK, because subtraction recovers the original values), then visual inspection 1671 * no longer suffices to directly view the separate counts. However, for normal 1672 * applications that don't have huge page reference counts, this won't be an 1673 * issue. 1674 * 1675 * Locking: the lockless algorithm described in folio_try_get_rcu() 1676 * provides safe operation for get_user_pages(), folio_mkclean() and 1677 * other calls that race to set up page table entries. 1678 */ 1679 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1680 1681 void unpin_user_page(struct page *page); 1682 void unpin_folio(struct folio *folio); 1683 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1684 bool make_dirty); 1685 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1686 bool make_dirty); 1687 void unpin_user_pages(struct page **pages, unsigned long npages); 1688 void unpin_user_folio(struct folio *folio, unsigned long npages); 1689 void unpin_folios(struct folio **folios, unsigned long nfolios); 1690 1691 static inline bool is_cow_mapping(vm_flags_t flags) 1692 { 1693 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1694 } 1695 1696 #ifndef CONFIG_MMU 1697 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1698 { 1699 /* 1700 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1701 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1702 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1703 * underlying memory if ptrace is active, so this is only possible if 1704 * ptrace does not apply. Note that there is no mprotect() to upgrade 1705 * write permissions later. 1706 */ 1707 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1708 } 1709 #endif 1710 1711 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1712 #define SECTION_IN_PAGE_FLAGS 1713 #endif 1714 1715 /* 1716 * The identification function is mainly used by the buddy allocator for 1717 * determining if two pages could be buddies. We are not really identifying 1718 * the zone since we could be using the section number id if we do not have 1719 * node id available in page flags. 1720 * We only guarantee that it will return the same value for two combinable 1721 * pages in a zone. 1722 */ 1723 static inline int page_zone_id(struct page *page) 1724 { 1725 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1726 } 1727 1728 #ifdef NODE_NOT_IN_PAGE_FLAGS 1729 int page_to_nid(const struct page *page); 1730 #else 1731 static inline int page_to_nid(const struct page *page) 1732 { 1733 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1734 } 1735 #endif 1736 1737 static inline int folio_nid(const struct folio *folio) 1738 { 1739 return page_to_nid(&folio->page); 1740 } 1741 1742 #ifdef CONFIG_NUMA_BALANCING 1743 /* page access time bits needs to hold at least 4 seconds */ 1744 #define PAGE_ACCESS_TIME_MIN_BITS 12 1745 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1746 #define PAGE_ACCESS_TIME_BUCKETS \ 1747 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1748 #else 1749 #define PAGE_ACCESS_TIME_BUCKETS 0 1750 #endif 1751 1752 #define PAGE_ACCESS_TIME_MASK \ 1753 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1754 1755 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1756 { 1757 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1758 } 1759 1760 static inline int cpupid_to_pid(int cpupid) 1761 { 1762 return cpupid & LAST__PID_MASK; 1763 } 1764 1765 static inline int cpupid_to_cpu(int cpupid) 1766 { 1767 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1768 } 1769 1770 static inline int cpupid_to_nid(int cpupid) 1771 { 1772 return cpu_to_node(cpupid_to_cpu(cpupid)); 1773 } 1774 1775 static inline bool cpupid_pid_unset(int cpupid) 1776 { 1777 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1778 } 1779 1780 static inline bool cpupid_cpu_unset(int cpupid) 1781 { 1782 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1783 } 1784 1785 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1786 { 1787 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1788 } 1789 1790 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1791 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1792 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1793 { 1794 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1795 } 1796 1797 static inline int folio_last_cpupid(struct folio *folio) 1798 { 1799 return folio->_last_cpupid; 1800 } 1801 static inline void page_cpupid_reset_last(struct page *page) 1802 { 1803 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1804 } 1805 #else 1806 static inline int folio_last_cpupid(struct folio *folio) 1807 { 1808 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1809 } 1810 1811 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1812 1813 static inline void page_cpupid_reset_last(struct page *page) 1814 { 1815 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1816 } 1817 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1818 1819 static inline int folio_xchg_access_time(struct folio *folio, int time) 1820 { 1821 int last_time; 1822 1823 last_time = folio_xchg_last_cpupid(folio, 1824 time >> PAGE_ACCESS_TIME_BUCKETS); 1825 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1826 } 1827 1828 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1829 { 1830 unsigned int pid_bit; 1831 1832 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1833 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1834 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1835 } 1836 } 1837 1838 bool folio_use_access_time(struct folio *folio); 1839 #else /* !CONFIG_NUMA_BALANCING */ 1840 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1841 { 1842 return folio_nid(folio); /* XXX */ 1843 } 1844 1845 static inline int folio_xchg_access_time(struct folio *folio, int time) 1846 { 1847 return 0; 1848 } 1849 1850 static inline int folio_last_cpupid(struct folio *folio) 1851 { 1852 return folio_nid(folio); /* XXX */ 1853 } 1854 1855 static inline int cpupid_to_nid(int cpupid) 1856 { 1857 return -1; 1858 } 1859 1860 static inline int cpupid_to_pid(int cpupid) 1861 { 1862 return -1; 1863 } 1864 1865 static inline int cpupid_to_cpu(int cpupid) 1866 { 1867 return -1; 1868 } 1869 1870 static inline int cpu_pid_to_cpupid(int nid, int pid) 1871 { 1872 return -1; 1873 } 1874 1875 static inline bool cpupid_pid_unset(int cpupid) 1876 { 1877 return true; 1878 } 1879 1880 static inline void page_cpupid_reset_last(struct page *page) 1881 { 1882 } 1883 1884 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1885 { 1886 return false; 1887 } 1888 1889 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1890 { 1891 } 1892 static inline bool folio_use_access_time(struct folio *folio) 1893 { 1894 return false; 1895 } 1896 #endif /* CONFIG_NUMA_BALANCING */ 1897 1898 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1899 1900 /* 1901 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1902 * setting tags for all pages to native kernel tag value 0xff, as the default 1903 * value 0x00 maps to 0xff. 1904 */ 1905 1906 static inline u8 page_kasan_tag(const struct page *page) 1907 { 1908 u8 tag = KASAN_TAG_KERNEL; 1909 1910 if (kasan_enabled()) { 1911 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1912 tag ^= 0xff; 1913 } 1914 1915 return tag; 1916 } 1917 1918 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1919 { 1920 unsigned long old_flags, flags; 1921 1922 if (!kasan_enabled()) 1923 return; 1924 1925 tag ^= 0xff; 1926 old_flags = READ_ONCE(page->flags); 1927 do { 1928 flags = old_flags; 1929 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1930 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1931 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1932 } 1933 1934 static inline void page_kasan_tag_reset(struct page *page) 1935 { 1936 if (kasan_enabled()) 1937 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1938 } 1939 1940 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1941 1942 static inline u8 page_kasan_tag(const struct page *page) 1943 { 1944 return 0xff; 1945 } 1946 1947 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1948 static inline void page_kasan_tag_reset(struct page *page) { } 1949 1950 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1951 1952 static inline struct zone *page_zone(const struct page *page) 1953 { 1954 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1955 } 1956 1957 static inline pg_data_t *page_pgdat(const struct page *page) 1958 { 1959 return NODE_DATA(page_to_nid(page)); 1960 } 1961 1962 static inline struct zone *folio_zone(const struct folio *folio) 1963 { 1964 return page_zone(&folio->page); 1965 } 1966 1967 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1968 { 1969 return page_pgdat(&folio->page); 1970 } 1971 1972 #ifdef SECTION_IN_PAGE_FLAGS 1973 static inline void set_page_section(struct page *page, unsigned long section) 1974 { 1975 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1976 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1977 } 1978 1979 static inline unsigned long page_to_section(const struct page *page) 1980 { 1981 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1982 } 1983 #endif 1984 1985 /** 1986 * folio_pfn - Return the Page Frame Number of a folio. 1987 * @folio: The folio. 1988 * 1989 * A folio may contain multiple pages. The pages have consecutive 1990 * Page Frame Numbers. 1991 * 1992 * Return: The Page Frame Number of the first page in the folio. 1993 */ 1994 static inline unsigned long folio_pfn(const struct folio *folio) 1995 { 1996 return page_to_pfn(&folio->page); 1997 } 1998 1999 static inline struct folio *pfn_folio(unsigned long pfn) 2000 { 2001 return page_folio(pfn_to_page(pfn)); 2002 } 2003 2004 static inline bool folio_has_pincount(const struct folio *folio) 2005 { 2006 if (IS_ENABLED(CONFIG_64BIT)) 2007 return folio_test_large(folio); 2008 return folio_order(folio) > 1; 2009 } 2010 2011 /** 2012 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 2013 * @folio: The folio. 2014 * 2015 * This function checks if a folio has been pinned via a call to 2016 * a function in the pin_user_pages() family. 2017 * 2018 * For small folios, the return value is partially fuzzy: false is not fuzzy, 2019 * because it means "definitely not pinned for DMA", but true means "probably 2020 * pinned for DMA, but possibly a false positive due to having at least 2021 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 2022 * 2023 * False positives are OK, because: a) it's unlikely for a folio to 2024 * get that many refcounts, and b) all the callers of this routine are 2025 * expected to be able to deal gracefully with a false positive. 2026 * 2027 * For most large folios, the result will be exactly correct. That's because 2028 * we have more tracking data available: the _pincount field is used 2029 * instead of the GUP_PIN_COUNTING_BIAS scheme. 2030 * 2031 * For more information, please see Documentation/core-api/pin_user_pages.rst. 2032 * 2033 * Return: True, if it is likely that the folio has been "dma-pinned". 2034 * False, if the folio is definitely not dma-pinned. 2035 */ 2036 static inline bool folio_maybe_dma_pinned(struct folio *folio) 2037 { 2038 if (folio_has_pincount(folio)) 2039 return atomic_read(&folio->_pincount) > 0; 2040 2041 /* 2042 * folio_ref_count() is signed. If that refcount overflows, then 2043 * folio_ref_count() returns a negative value, and callers will avoid 2044 * further incrementing the refcount. 2045 * 2046 * Here, for that overflow case, use the sign bit to count a little 2047 * bit higher via unsigned math, and thus still get an accurate result. 2048 */ 2049 return ((unsigned int)folio_ref_count(folio)) >= 2050 GUP_PIN_COUNTING_BIAS; 2051 } 2052 2053 /* 2054 * This should most likely only be called during fork() to see whether we 2055 * should break the cow immediately for an anon page on the src mm. 2056 * 2057 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 2058 */ 2059 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 2060 struct folio *folio) 2061 { 2062 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 2063 2064 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 2065 return false; 2066 2067 return folio_maybe_dma_pinned(folio); 2068 } 2069 2070 /** 2071 * is_zero_page - Query if a page is a zero page 2072 * @page: The page to query 2073 * 2074 * This returns true if @page is one of the permanent zero pages. 2075 */ 2076 static inline bool is_zero_page(const struct page *page) 2077 { 2078 return is_zero_pfn(page_to_pfn(page)); 2079 } 2080 2081 /** 2082 * is_zero_folio - Query if a folio is a zero page 2083 * @folio: The folio to query 2084 * 2085 * This returns true if @folio is one of the permanent zero pages. 2086 */ 2087 static inline bool is_zero_folio(const struct folio *folio) 2088 { 2089 return is_zero_page(&folio->page); 2090 } 2091 2092 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2093 #ifdef CONFIG_MIGRATION 2094 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2095 { 2096 #ifdef CONFIG_CMA 2097 int mt = folio_migratetype(folio); 2098 2099 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2100 return false; 2101 #endif 2102 /* The zero page can be "pinned" but gets special handling. */ 2103 if (is_zero_folio(folio)) 2104 return true; 2105 2106 /* Coherent device memory must always allow eviction. */ 2107 if (folio_is_device_coherent(folio)) 2108 return false; 2109 2110 /* 2111 * Filesystems can only tolerate transient delays to truncate and 2112 * hole-punch operations 2113 */ 2114 if (folio_is_fsdax(folio)) 2115 return false; 2116 2117 /* Otherwise, non-movable zone folios can be pinned. */ 2118 return !folio_is_zone_movable(folio); 2119 2120 } 2121 #else 2122 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2123 { 2124 return true; 2125 } 2126 #endif 2127 2128 static inline void set_page_zone(struct page *page, enum zone_type zone) 2129 { 2130 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2131 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2132 } 2133 2134 static inline void set_page_node(struct page *page, unsigned long node) 2135 { 2136 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2137 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2138 } 2139 2140 static inline void set_page_links(struct page *page, enum zone_type zone, 2141 unsigned long node, unsigned long pfn) 2142 { 2143 set_page_zone(page, zone); 2144 set_page_node(page, node); 2145 #ifdef SECTION_IN_PAGE_FLAGS 2146 set_page_section(page, pfn_to_section_nr(pfn)); 2147 #endif 2148 } 2149 2150 /** 2151 * folio_nr_pages - The number of pages in the folio. 2152 * @folio: The folio. 2153 * 2154 * Return: A positive power of two. 2155 */ 2156 static inline long folio_nr_pages(const struct folio *folio) 2157 { 2158 if (!folio_test_large(folio)) 2159 return 1; 2160 return folio_large_nr_pages(folio); 2161 } 2162 2163 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2164 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2165 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2166 #else 2167 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2168 #endif 2169 2170 /* 2171 * compound_nr() returns the number of pages in this potentially compound 2172 * page. compound_nr() can be called on a tail page, and is defined to 2173 * return 1 in that case. 2174 */ 2175 static inline long compound_nr(struct page *page) 2176 { 2177 struct folio *folio = (struct folio *)page; 2178 2179 if (!test_bit(PG_head, &folio->flags)) 2180 return 1; 2181 return folio_large_nr_pages(folio); 2182 } 2183 2184 /** 2185 * thp_nr_pages - The number of regular pages in this huge page. 2186 * @page: The head page of a huge page. 2187 */ 2188 static inline long thp_nr_pages(struct page *page) 2189 { 2190 return folio_nr_pages((struct folio *)page); 2191 } 2192 2193 /** 2194 * folio_next - Move to the next physical folio. 2195 * @folio: The folio we're currently operating on. 2196 * 2197 * If you have physically contiguous memory which may span more than 2198 * one folio (eg a &struct bio_vec), use this function to move from one 2199 * folio to the next. Do not use it if the memory is only virtually 2200 * contiguous as the folios are almost certainly not adjacent to each 2201 * other. This is the folio equivalent to writing ``page++``. 2202 * 2203 * Context: We assume that the folios are refcounted and/or locked at a 2204 * higher level and do not adjust the reference counts. 2205 * Return: The next struct folio. 2206 */ 2207 static inline struct folio *folio_next(struct folio *folio) 2208 { 2209 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2210 } 2211 2212 /** 2213 * folio_shift - The size of the memory described by this folio. 2214 * @folio: The folio. 2215 * 2216 * A folio represents a number of bytes which is a power-of-two in size. 2217 * This function tells you which power-of-two the folio is. See also 2218 * folio_size() and folio_order(). 2219 * 2220 * Context: The caller should have a reference on the folio to prevent 2221 * it from being split. It is not necessary for the folio to be locked. 2222 * Return: The base-2 logarithm of the size of this folio. 2223 */ 2224 static inline unsigned int folio_shift(const struct folio *folio) 2225 { 2226 return PAGE_SHIFT + folio_order(folio); 2227 } 2228 2229 /** 2230 * folio_size - The number of bytes in a folio. 2231 * @folio: The folio. 2232 * 2233 * Context: The caller should have a reference on the folio to prevent 2234 * it from being split. It is not necessary for the folio to be locked. 2235 * Return: The number of bytes in this folio. 2236 */ 2237 static inline size_t folio_size(const struct folio *folio) 2238 { 2239 return PAGE_SIZE << folio_order(folio); 2240 } 2241 2242 /** 2243 * folio_maybe_mapped_shared - Whether the folio is mapped into the page 2244 * tables of more than one MM 2245 * @folio: The folio. 2246 * 2247 * This function checks if the folio maybe currently mapped into more than one 2248 * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single 2249 * MM ("mapped exclusively"). 2250 * 2251 * For KSM folios, this function also returns "mapped shared" when a folio is 2252 * mapped multiple times into the same MM, because the individual page mappings 2253 * are independent. 2254 * 2255 * For small anonymous folios and anonymous hugetlb folios, the return 2256 * value will be exactly correct: non-KSM folios can only be mapped at most once 2257 * into an MM, and they cannot be partially mapped. KSM folios are 2258 * considered shared even if mapped multiple times into the same MM. 2259 * 2260 * For other folios, the result can be fuzzy: 2261 * #. For partially-mappable large folios (THP), the return value can wrongly 2262 * indicate "mapped shared" (false positive) if a folio was mapped by 2263 * more than two MMs at one point in time. 2264 * #. For pagecache folios (including hugetlb), the return value can wrongly 2265 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2266 * cover the same file range. 2267 * 2268 * Further, this function only considers current page table mappings that 2269 * are tracked using the folio mapcount(s). 2270 * 2271 * This function does not consider: 2272 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2273 * pagecache, temporary unmapping for migration). 2274 * #. If the folio is mapped differently (VM_PFNMAP). 2275 * #. If hugetlb page table sharing applies. Callers might want to check 2276 * hugetlb_pmd_shared(). 2277 * 2278 * Return: Whether the folio is estimated to be mapped into more than one MM. 2279 */ 2280 static inline bool folio_maybe_mapped_shared(struct folio *folio) 2281 { 2282 int mapcount = folio_mapcount(folio); 2283 2284 /* Only partially-mappable folios require more care. */ 2285 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2286 return mapcount > 1; 2287 2288 /* 2289 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ... 2290 * simply assume "mapped shared", nobody should really care 2291 * about this for arbitrary kernel allocations. 2292 */ 2293 if (!IS_ENABLED(CONFIG_MM_ID)) 2294 return true; 2295 2296 /* 2297 * A single mapping implies "mapped exclusively", even if the 2298 * folio flag says something different: it's easier to handle this 2299 * case here instead of on the RMAP hot path. 2300 */ 2301 if (mapcount <= 1) 2302 return false; 2303 return folio_test_large_maybe_mapped_shared(folio); 2304 } 2305 2306 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2307 static inline int arch_make_folio_accessible(struct folio *folio) 2308 { 2309 return 0; 2310 } 2311 #endif 2312 2313 /* 2314 * Some inline functions in vmstat.h depend on page_zone() 2315 */ 2316 #include <linux/vmstat.h> 2317 2318 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2319 #define HASHED_PAGE_VIRTUAL 2320 #endif 2321 2322 #if defined(WANT_PAGE_VIRTUAL) 2323 static inline void *page_address(const struct page *page) 2324 { 2325 return page->virtual; 2326 } 2327 static inline void set_page_address(struct page *page, void *address) 2328 { 2329 page->virtual = address; 2330 } 2331 #define page_address_init() do { } while(0) 2332 #endif 2333 2334 #if defined(HASHED_PAGE_VIRTUAL) 2335 void *page_address(const struct page *page); 2336 void set_page_address(struct page *page, void *virtual); 2337 void page_address_init(void); 2338 #endif 2339 2340 static __always_inline void *lowmem_page_address(const struct page *page) 2341 { 2342 return page_to_virt(page); 2343 } 2344 2345 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2346 #define page_address(page) lowmem_page_address(page) 2347 #define set_page_address(page, address) do { } while(0) 2348 #define page_address_init() do { } while(0) 2349 #endif 2350 2351 static inline void *folio_address(const struct folio *folio) 2352 { 2353 return page_address(&folio->page); 2354 } 2355 2356 /* 2357 * Return true only if the page has been allocated with 2358 * ALLOC_NO_WATERMARKS and the low watermark was not 2359 * met implying that the system is under some pressure. 2360 */ 2361 static inline bool page_is_pfmemalloc(const struct page *page) 2362 { 2363 /* 2364 * lru.next has bit 1 set if the page is allocated from the 2365 * pfmemalloc reserves. Callers may simply overwrite it if 2366 * they do not need to preserve that information. 2367 */ 2368 return (uintptr_t)page->lru.next & BIT(1); 2369 } 2370 2371 /* 2372 * Return true only if the folio has been allocated with 2373 * ALLOC_NO_WATERMARKS and the low watermark was not 2374 * met implying that the system is under some pressure. 2375 */ 2376 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2377 { 2378 /* 2379 * lru.next has bit 1 set if the page is allocated from the 2380 * pfmemalloc reserves. Callers may simply overwrite it if 2381 * they do not need to preserve that information. 2382 */ 2383 return (uintptr_t)folio->lru.next & BIT(1); 2384 } 2385 2386 /* 2387 * Only to be called by the page allocator on a freshly allocated 2388 * page. 2389 */ 2390 static inline void set_page_pfmemalloc(struct page *page) 2391 { 2392 page->lru.next = (void *)BIT(1); 2393 } 2394 2395 static inline void clear_page_pfmemalloc(struct page *page) 2396 { 2397 page->lru.next = NULL; 2398 } 2399 2400 /* 2401 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2402 */ 2403 extern void pagefault_out_of_memory(void); 2404 2405 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2406 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2407 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2408 2409 /* 2410 * Parameter block passed down to zap_pte_range in exceptional cases. 2411 */ 2412 struct zap_details { 2413 struct folio *single_folio; /* Locked folio to be unmapped */ 2414 bool even_cows; /* Zap COWed private pages too? */ 2415 bool reclaim_pt; /* Need reclaim page tables? */ 2416 zap_flags_t zap_flags; /* Extra flags for zapping */ 2417 }; 2418 2419 /* 2420 * Whether to drop the pte markers, for example, the uffd-wp information for 2421 * file-backed memory. This should only be specified when we will completely 2422 * drop the page in the mm, either by truncation or unmapping of the vma. By 2423 * default, the flag is not set. 2424 */ 2425 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2426 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2427 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2428 2429 #ifdef CONFIG_SCHED_MM_CID 2430 void sched_mm_cid_before_execve(struct task_struct *t); 2431 void sched_mm_cid_after_execve(struct task_struct *t); 2432 void sched_mm_cid_fork(struct task_struct *t); 2433 void sched_mm_cid_exit_signals(struct task_struct *t); 2434 static inline int task_mm_cid(struct task_struct *t) 2435 { 2436 return t->mm_cid; 2437 } 2438 #else 2439 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2440 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2441 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2442 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2443 static inline int task_mm_cid(struct task_struct *t) 2444 { 2445 /* 2446 * Use the processor id as a fall-back when the mm cid feature is 2447 * disabled. This provides functional per-cpu data structure accesses 2448 * in user-space, althrough it won't provide the memory usage benefits. 2449 */ 2450 return raw_smp_processor_id(); 2451 } 2452 #endif 2453 2454 #ifdef CONFIG_MMU 2455 extern bool can_do_mlock(void); 2456 #else 2457 static inline bool can_do_mlock(void) { return false; } 2458 #endif 2459 extern int user_shm_lock(size_t, struct ucounts *); 2460 extern void user_shm_unlock(size_t, struct ucounts *); 2461 2462 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2463 pte_t pte); 2464 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2465 pte_t pte); 2466 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2467 unsigned long addr, pmd_t pmd); 2468 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2469 pmd_t pmd); 2470 2471 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2472 unsigned long size); 2473 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2474 unsigned long size, struct zap_details *details); 2475 static inline void zap_vma_pages(struct vm_area_struct *vma) 2476 { 2477 zap_page_range_single(vma, vma->vm_start, 2478 vma->vm_end - vma->vm_start, NULL); 2479 } 2480 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2481 struct vm_area_struct *start_vma, unsigned long start, 2482 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2483 2484 struct mmu_notifier_range; 2485 2486 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2487 unsigned long end, unsigned long floor, unsigned long ceiling); 2488 int 2489 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2490 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2491 void *buf, int len, int write); 2492 2493 struct follow_pfnmap_args { 2494 /** 2495 * Inputs: 2496 * @vma: Pointer to @vm_area_struct struct 2497 * @address: the virtual address to walk 2498 */ 2499 struct vm_area_struct *vma; 2500 unsigned long address; 2501 /** 2502 * Internals: 2503 * 2504 * The caller shouldn't touch any of these. 2505 */ 2506 spinlock_t *lock; 2507 pte_t *ptep; 2508 /** 2509 * Outputs: 2510 * 2511 * @pfn: the PFN of the address 2512 * @pgprot: the pgprot_t of the mapping 2513 * @writable: whether the mapping is writable 2514 * @special: whether the mapping is a special mapping (real PFN maps) 2515 */ 2516 unsigned long pfn; 2517 pgprot_t pgprot; 2518 bool writable; 2519 bool special; 2520 }; 2521 int follow_pfnmap_start(struct follow_pfnmap_args *args); 2522 void follow_pfnmap_end(struct follow_pfnmap_args *args); 2523 2524 extern void truncate_pagecache(struct inode *inode, loff_t new); 2525 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2526 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2527 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2528 int generic_error_remove_folio(struct address_space *mapping, 2529 struct folio *folio); 2530 2531 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2532 unsigned long address, struct pt_regs *regs); 2533 2534 #ifdef CONFIG_MMU 2535 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2536 unsigned long address, unsigned int flags, 2537 struct pt_regs *regs); 2538 extern int fixup_user_fault(struct mm_struct *mm, 2539 unsigned long address, unsigned int fault_flags, 2540 bool *unlocked); 2541 void unmap_mapping_pages(struct address_space *mapping, 2542 pgoff_t start, pgoff_t nr, bool even_cows); 2543 void unmap_mapping_range(struct address_space *mapping, 2544 loff_t const holebegin, loff_t const holelen, int even_cows); 2545 #else 2546 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2547 unsigned long address, unsigned int flags, 2548 struct pt_regs *regs) 2549 { 2550 /* should never happen if there's no MMU */ 2551 BUG(); 2552 return VM_FAULT_SIGBUS; 2553 } 2554 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2555 unsigned int fault_flags, bool *unlocked) 2556 { 2557 /* should never happen if there's no MMU */ 2558 BUG(); 2559 return -EFAULT; 2560 } 2561 static inline void unmap_mapping_pages(struct address_space *mapping, 2562 pgoff_t start, pgoff_t nr, bool even_cows) { } 2563 static inline void unmap_mapping_range(struct address_space *mapping, 2564 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2565 #endif 2566 2567 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2568 loff_t const holebegin, loff_t const holelen) 2569 { 2570 unmap_mapping_range(mapping, holebegin, holelen, 0); 2571 } 2572 2573 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2574 unsigned long addr); 2575 2576 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2577 void *buf, int len, unsigned int gup_flags); 2578 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2579 void *buf, int len, unsigned int gup_flags); 2580 2581 long get_user_pages_remote(struct mm_struct *mm, 2582 unsigned long start, unsigned long nr_pages, 2583 unsigned int gup_flags, struct page **pages, 2584 int *locked); 2585 long pin_user_pages_remote(struct mm_struct *mm, 2586 unsigned long start, unsigned long nr_pages, 2587 unsigned int gup_flags, struct page **pages, 2588 int *locked); 2589 2590 /* 2591 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2592 */ 2593 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2594 unsigned long addr, 2595 int gup_flags, 2596 struct vm_area_struct **vmap) 2597 { 2598 struct page *page; 2599 struct vm_area_struct *vma; 2600 int got; 2601 2602 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2603 return ERR_PTR(-EINVAL); 2604 2605 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2606 2607 if (got < 0) 2608 return ERR_PTR(got); 2609 2610 vma = vma_lookup(mm, addr); 2611 if (WARN_ON_ONCE(!vma)) { 2612 put_page(page); 2613 return ERR_PTR(-EINVAL); 2614 } 2615 2616 *vmap = vma; 2617 return page; 2618 } 2619 2620 long get_user_pages(unsigned long start, unsigned long nr_pages, 2621 unsigned int gup_flags, struct page **pages); 2622 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2623 unsigned int gup_flags, struct page **pages); 2624 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2625 struct page **pages, unsigned int gup_flags); 2626 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2627 struct page **pages, unsigned int gup_flags); 2628 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2629 struct folio **folios, unsigned int max_folios, 2630 pgoff_t *offset); 2631 int folio_add_pins(struct folio *folio, unsigned int pins); 2632 2633 int get_user_pages_fast(unsigned long start, int nr_pages, 2634 unsigned int gup_flags, struct page **pages); 2635 int pin_user_pages_fast(unsigned long start, int nr_pages, 2636 unsigned int gup_flags, struct page **pages); 2637 void folio_add_pin(struct folio *folio); 2638 2639 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2640 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2641 struct task_struct *task, bool bypass_rlim); 2642 2643 struct kvec; 2644 struct page *get_dump_page(unsigned long addr); 2645 2646 bool folio_mark_dirty(struct folio *folio); 2647 bool folio_mark_dirty_lock(struct folio *folio); 2648 bool set_page_dirty(struct page *page); 2649 int set_page_dirty_lock(struct page *page); 2650 2651 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2652 2653 /* 2654 * Flags used by change_protection(). For now we make it a bitmap so 2655 * that we can pass in multiple flags just like parameters. However 2656 * for now all the callers are only use one of the flags at the same 2657 * time. 2658 */ 2659 /* 2660 * Whether we should manually check if we can map individual PTEs writable, 2661 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2662 * PTEs automatically in a writable mapping. 2663 */ 2664 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2665 /* Whether this protection change is for NUMA hints */ 2666 #define MM_CP_PROT_NUMA (1UL << 1) 2667 /* Whether this change is for write protecting */ 2668 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2669 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2670 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2671 MM_CP_UFFD_WP_RESOLVE) 2672 2673 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2674 pte_t pte); 2675 extern long change_protection(struct mmu_gather *tlb, 2676 struct vm_area_struct *vma, unsigned long start, 2677 unsigned long end, unsigned long cp_flags); 2678 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2679 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2680 unsigned long start, unsigned long end, unsigned long newflags); 2681 2682 /* 2683 * doesn't attempt to fault and will return short. 2684 */ 2685 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2686 unsigned int gup_flags, struct page **pages); 2687 2688 static inline bool get_user_page_fast_only(unsigned long addr, 2689 unsigned int gup_flags, struct page **pagep) 2690 { 2691 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2692 } 2693 /* 2694 * per-process(per-mm_struct) statistics. 2695 */ 2696 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2697 { 2698 return percpu_counter_read_positive(&mm->rss_stat[member]); 2699 } 2700 2701 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2702 2703 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2704 { 2705 percpu_counter_add(&mm->rss_stat[member], value); 2706 2707 mm_trace_rss_stat(mm, member); 2708 } 2709 2710 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2711 { 2712 percpu_counter_inc(&mm->rss_stat[member]); 2713 2714 mm_trace_rss_stat(mm, member); 2715 } 2716 2717 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2718 { 2719 percpu_counter_dec(&mm->rss_stat[member]); 2720 2721 mm_trace_rss_stat(mm, member); 2722 } 2723 2724 /* Optimized variant when folio is already known not to be anon */ 2725 static inline int mm_counter_file(struct folio *folio) 2726 { 2727 if (folio_test_swapbacked(folio)) 2728 return MM_SHMEMPAGES; 2729 return MM_FILEPAGES; 2730 } 2731 2732 static inline int mm_counter(struct folio *folio) 2733 { 2734 if (folio_test_anon(folio)) 2735 return MM_ANONPAGES; 2736 return mm_counter_file(folio); 2737 } 2738 2739 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2740 { 2741 return get_mm_counter(mm, MM_FILEPAGES) + 2742 get_mm_counter(mm, MM_ANONPAGES) + 2743 get_mm_counter(mm, MM_SHMEMPAGES); 2744 } 2745 2746 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2747 { 2748 return max(mm->hiwater_rss, get_mm_rss(mm)); 2749 } 2750 2751 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2752 { 2753 return max(mm->hiwater_vm, mm->total_vm); 2754 } 2755 2756 static inline void update_hiwater_rss(struct mm_struct *mm) 2757 { 2758 unsigned long _rss = get_mm_rss(mm); 2759 2760 if ((mm)->hiwater_rss < _rss) 2761 (mm)->hiwater_rss = _rss; 2762 } 2763 2764 static inline void update_hiwater_vm(struct mm_struct *mm) 2765 { 2766 if (mm->hiwater_vm < mm->total_vm) 2767 mm->hiwater_vm = mm->total_vm; 2768 } 2769 2770 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2771 { 2772 mm->hiwater_rss = get_mm_rss(mm); 2773 } 2774 2775 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2776 struct mm_struct *mm) 2777 { 2778 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2779 2780 if (*maxrss < hiwater_rss) 2781 *maxrss = hiwater_rss; 2782 } 2783 2784 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2785 static inline int pte_special(pte_t pte) 2786 { 2787 return 0; 2788 } 2789 2790 static inline pte_t pte_mkspecial(pte_t pte) 2791 { 2792 return pte; 2793 } 2794 #endif 2795 2796 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP 2797 static inline bool pmd_special(pmd_t pmd) 2798 { 2799 return false; 2800 } 2801 2802 static inline pmd_t pmd_mkspecial(pmd_t pmd) 2803 { 2804 return pmd; 2805 } 2806 #endif /* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */ 2807 2808 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP 2809 static inline bool pud_special(pud_t pud) 2810 { 2811 return false; 2812 } 2813 2814 static inline pud_t pud_mkspecial(pud_t pud) 2815 { 2816 return pud; 2817 } 2818 #endif /* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */ 2819 2820 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2821 static inline int pte_devmap(pte_t pte) 2822 { 2823 return 0; 2824 } 2825 #endif 2826 2827 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2828 spinlock_t **ptl); 2829 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2830 spinlock_t **ptl) 2831 { 2832 pte_t *ptep; 2833 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2834 return ptep; 2835 } 2836 2837 #ifdef __PAGETABLE_P4D_FOLDED 2838 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2839 unsigned long address) 2840 { 2841 return 0; 2842 } 2843 #else 2844 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2845 #endif 2846 2847 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2848 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2849 unsigned long address) 2850 { 2851 return 0; 2852 } 2853 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2854 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2855 2856 #else 2857 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2858 2859 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2860 { 2861 if (mm_pud_folded(mm)) 2862 return; 2863 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2864 } 2865 2866 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2867 { 2868 if (mm_pud_folded(mm)) 2869 return; 2870 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2871 } 2872 #endif 2873 2874 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2875 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2876 unsigned long address) 2877 { 2878 return 0; 2879 } 2880 2881 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2882 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2883 2884 #else 2885 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2886 2887 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2888 { 2889 if (mm_pmd_folded(mm)) 2890 return; 2891 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2892 } 2893 2894 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2895 { 2896 if (mm_pmd_folded(mm)) 2897 return; 2898 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2899 } 2900 #endif 2901 2902 #ifdef CONFIG_MMU 2903 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2904 { 2905 atomic_long_set(&mm->pgtables_bytes, 0); 2906 } 2907 2908 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2909 { 2910 return atomic_long_read(&mm->pgtables_bytes); 2911 } 2912 2913 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2914 { 2915 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2916 } 2917 2918 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2919 { 2920 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2921 } 2922 #else 2923 2924 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2925 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2926 { 2927 return 0; 2928 } 2929 2930 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2931 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2932 #endif 2933 2934 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2935 int __pte_alloc_kernel(pmd_t *pmd); 2936 2937 #if defined(CONFIG_MMU) 2938 2939 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2940 unsigned long address) 2941 { 2942 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2943 NULL : p4d_offset(pgd, address); 2944 } 2945 2946 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2947 unsigned long address) 2948 { 2949 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2950 NULL : pud_offset(p4d, address); 2951 } 2952 2953 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2954 { 2955 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2956 NULL: pmd_offset(pud, address); 2957 } 2958 #endif /* CONFIG_MMU */ 2959 2960 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2961 { 2962 return page_ptdesc(virt_to_page(x)); 2963 } 2964 2965 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2966 { 2967 return page_to_virt(ptdesc_page(pt)); 2968 } 2969 2970 static inline void *ptdesc_address(const struct ptdesc *pt) 2971 { 2972 return folio_address(ptdesc_folio(pt)); 2973 } 2974 2975 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2976 { 2977 return folio_test_reserved(ptdesc_folio(pt)); 2978 } 2979 2980 /** 2981 * pagetable_alloc - Allocate pagetables 2982 * @gfp: GFP flags 2983 * @order: desired pagetable order 2984 * 2985 * pagetable_alloc allocates memory for page tables as well as a page table 2986 * descriptor to describe that memory. 2987 * 2988 * Return: The ptdesc describing the allocated page tables. 2989 */ 2990 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2991 { 2992 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2993 2994 return page_ptdesc(page); 2995 } 2996 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2997 2998 /** 2999 * pagetable_free - Free pagetables 3000 * @pt: The page table descriptor 3001 * 3002 * pagetable_free frees the memory of all page tables described by a page 3003 * table descriptor and the memory for the descriptor itself. 3004 */ 3005 static inline void pagetable_free(struct ptdesc *pt) 3006 { 3007 struct page *page = ptdesc_page(pt); 3008 3009 __free_pages(page, compound_order(page)); 3010 } 3011 3012 #if defined(CONFIG_SPLIT_PTE_PTLOCKS) 3013 #if ALLOC_SPLIT_PTLOCKS 3014 void __init ptlock_cache_init(void); 3015 bool ptlock_alloc(struct ptdesc *ptdesc); 3016 void ptlock_free(struct ptdesc *ptdesc); 3017 3018 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3019 { 3020 return ptdesc->ptl; 3021 } 3022 #else /* ALLOC_SPLIT_PTLOCKS */ 3023 static inline void ptlock_cache_init(void) 3024 { 3025 } 3026 3027 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 3028 { 3029 return true; 3030 } 3031 3032 static inline void ptlock_free(struct ptdesc *ptdesc) 3033 { 3034 } 3035 3036 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 3037 { 3038 return &ptdesc->ptl; 3039 } 3040 #endif /* ALLOC_SPLIT_PTLOCKS */ 3041 3042 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3043 { 3044 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 3045 } 3046 3047 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3048 { 3049 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 3050 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 3051 return ptlock_ptr(virt_to_ptdesc(pte)); 3052 } 3053 3054 static inline bool ptlock_init(struct ptdesc *ptdesc) 3055 { 3056 /* 3057 * prep_new_page() initialize page->private (and therefore page->ptl) 3058 * with 0. Make sure nobody took it in use in between. 3059 * 3060 * It can happen if arch try to use slab for page table allocation: 3061 * slab code uses page->slab_cache, which share storage with page->ptl. 3062 */ 3063 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 3064 if (!ptlock_alloc(ptdesc)) 3065 return false; 3066 spin_lock_init(ptlock_ptr(ptdesc)); 3067 return true; 3068 } 3069 3070 #else /* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3071 /* 3072 * We use mm->page_table_lock to guard all pagetable pages of the mm. 3073 */ 3074 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 3075 { 3076 return &mm->page_table_lock; 3077 } 3078 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 3079 { 3080 return &mm->page_table_lock; 3081 } 3082 static inline void ptlock_cache_init(void) {} 3083 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 3084 static inline void ptlock_free(struct ptdesc *ptdesc) {} 3085 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */ 3086 3087 static inline void __pagetable_ctor(struct ptdesc *ptdesc) 3088 { 3089 struct folio *folio = ptdesc_folio(ptdesc); 3090 3091 __folio_set_pgtable(folio); 3092 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3093 } 3094 3095 static inline void pagetable_dtor(struct ptdesc *ptdesc) 3096 { 3097 struct folio *folio = ptdesc_folio(ptdesc); 3098 3099 ptlock_free(ptdesc); 3100 __folio_clear_pgtable(folio); 3101 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3102 } 3103 3104 static inline void pagetable_dtor_free(struct ptdesc *ptdesc) 3105 { 3106 pagetable_dtor(ptdesc); 3107 pagetable_free(ptdesc); 3108 } 3109 3110 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 3111 { 3112 if (!ptlock_init(ptdesc)) 3113 return false; 3114 __pagetable_ctor(ptdesc); 3115 return true; 3116 } 3117 3118 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 3119 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, 3120 pmd_t *pmdvalp) 3121 { 3122 pte_t *pte; 3123 3124 __cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp)); 3125 return pte; 3126 } 3127 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 3128 { 3129 return __pte_offset_map(pmd, addr, NULL); 3130 } 3131 3132 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3133 unsigned long addr, spinlock_t **ptlp); 3134 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3135 unsigned long addr, spinlock_t **ptlp) 3136 { 3137 pte_t *pte; 3138 3139 __cond_lock(RCU, __cond_lock(*ptlp, 3140 pte = __pte_offset_map_lock(mm, pmd, addr, ptlp))); 3141 return pte; 3142 } 3143 3144 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd, 3145 unsigned long addr, spinlock_t **ptlp); 3146 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd, 3147 unsigned long addr, pmd_t *pmdvalp, 3148 spinlock_t **ptlp); 3149 3150 #define pte_unmap_unlock(pte, ptl) do { \ 3151 spin_unlock(ptl); \ 3152 pte_unmap(pte); \ 3153 } while (0) 3154 3155 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3156 3157 #define pte_alloc_map(mm, pmd, address) \ 3158 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3159 3160 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3161 (pte_alloc(mm, pmd) ? \ 3162 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3163 3164 #define pte_alloc_kernel(pmd, address) \ 3165 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3166 NULL: pte_offset_kernel(pmd, address)) 3167 3168 #if defined(CONFIG_SPLIT_PMD_PTLOCKS) 3169 3170 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3171 { 3172 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3173 return virt_to_page((void *)((unsigned long) pmd & mask)); 3174 } 3175 3176 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3177 { 3178 return page_ptdesc(pmd_pgtable_page(pmd)); 3179 } 3180 3181 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3182 { 3183 return ptlock_ptr(pmd_ptdesc(pmd)); 3184 } 3185 3186 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3187 { 3188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3189 ptdesc->pmd_huge_pte = NULL; 3190 #endif 3191 return ptlock_init(ptdesc); 3192 } 3193 3194 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3195 3196 #else 3197 3198 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3199 { 3200 return &mm->page_table_lock; 3201 } 3202 3203 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3204 3205 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3206 3207 #endif 3208 3209 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3210 { 3211 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3212 spin_lock(ptl); 3213 return ptl; 3214 } 3215 3216 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3217 { 3218 if (!pmd_ptlock_init(ptdesc)) 3219 return false; 3220 ptdesc_pmd_pts_init(ptdesc); 3221 __pagetable_ctor(ptdesc); 3222 return true; 3223 } 3224 3225 /* 3226 * No scalability reason to split PUD locks yet, but follow the same pattern 3227 * as the PMD locks to make it easier if we decide to. The VM should not be 3228 * considered ready to switch to split PUD locks yet; there may be places 3229 * which need to be converted from page_table_lock. 3230 */ 3231 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3232 { 3233 return &mm->page_table_lock; 3234 } 3235 3236 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3237 { 3238 spinlock_t *ptl = pud_lockptr(mm, pud); 3239 3240 spin_lock(ptl); 3241 return ptl; 3242 } 3243 3244 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3245 { 3246 __pagetable_ctor(ptdesc); 3247 } 3248 3249 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc) 3250 { 3251 __pagetable_ctor(ptdesc); 3252 } 3253 3254 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc) 3255 { 3256 __pagetable_ctor(ptdesc); 3257 } 3258 3259 extern void __init pagecache_init(void); 3260 extern void free_initmem(void); 3261 3262 /* 3263 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3264 * into the buddy system. The freed pages will be poisoned with pattern 3265 * "poison" if it's within range [0, UCHAR_MAX]. 3266 * Return pages freed into the buddy system. 3267 */ 3268 extern unsigned long free_reserved_area(void *start, void *end, 3269 int poison, const char *s); 3270 3271 extern void adjust_managed_page_count(struct page *page, long count); 3272 3273 extern void reserve_bootmem_region(phys_addr_t start, 3274 phys_addr_t end, int nid); 3275 3276 /* Free the reserved page into the buddy system, so it gets managed. */ 3277 void free_reserved_page(struct page *page); 3278 #define free_highmem_page(page) free_reserved_page(page) 3279 3280 static inline void mark_page_reserved(struct page *page) 3281 { 3282 SetPageReserved(page); 3283 adjust_managed_page_count(page, -1); 3284 } 3285 3286 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3287 { 3288 free_reserved_page(ptdesc_page(pt)); 3289 } 3290 3291 /* 3292 * Default method to free all the __init memory into the buddy system. 3293 * The freed pages will be poisoned with pattern "poison" if it's within 3294 * range [0, UCHAR_MAX]. 3295 * Return pages freed into the buddy system. 3296 */ 3297 static inline unsigned long free_initmem_default(int poison) 3298 { 3299 extern char __init_begin[], __init_end[]; 3300 3301 return free_reserved_area(&__init_begin, &__init_end, 3302 poison, "unused kernel image (initmem)"); 3303 } 3304 3305 static inline unsigned long get_num_physpages(void) 3306 { 3307 int nid; 3308 unsigned long phys_pages = 0; 3309 3310 for_each_online_node(nid) 3311 phys_pages += node_present_pages(nid); 3312 3313 return phys_pages; 3314 } 3315 3316 /* 3317 * Using memblock node mappings, an architecture may initialise its 3318 * zones, allocate the backing mem_map and account for memory holes in an 3319 * architecture independent manner. 3320 * 3321 * An architecture is expected to register range of page frames backed by 3322 * physical memory with memblock_add[_node]() before calling 3323 * free_area_init() passing in the PFN each zone ends at. At a basic 3324 * usage, an architecture is expected to do something like 3325 * 3326 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3327 * max_highmem_pfn}; 3328 * for_each_valid_physical_page_range() 3329 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3330 * free_area_init(max_zone_pfns); 3331 */ 3332 void free_area_init(unsigned long *max_zone_pfn); 3333 unsigned long node_map_pfn_alignment(void); 3334 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3335 unsigned long end_pfn); 3336 extern void get_pfn_range_for_nid(unsigned int nid, 3337 unsigned long *start_pfn, unsigned long *end_pfn); 3338 3339 #ifndef CONFIG_NUMA 3340 static inline int early_pfn_to_nid(unsigned long pfn) 3341 { 3342 return 0; 3343 } 3344 #else 3345 /* please see mm/page_alloc.c */ 3346 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3347 #endif 3348 3349 extern void mem_init(void); 3350 extern void __init mmap_init(void); 3351 3352 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3353 static inline void show_mem(void) 3354 { 3355 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3356 } 3357 extern long si_mem_available(void); 3358 extern void si_meminfo(struct sysinfo * val); 3359 extern void si_meminfo_node(struct sysinfo *val, int nid); 3360 3361 extern __printf(3, 4) 3362 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3363 3364 extern void setup_per_cpu_pageset(void); 3365 3366 /* nommu.c */ 3367 extern atomic_long_t mmap_pages_allocated; 3368 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3369 3370 /* interval_tree.c */ 3371 void vma_interval_tree_insert(struct vm_area_struct *node, 3372 struct rb_root_cached *root); 3373 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3374 struct vm_area_struct *prev, 3375 struct rb_root_cached *root); 3376 void vma_interval_tree_remove(struct vm_area_struct *node, 3377 struct rb_root_cached *root); 3378 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3379 unsigned long start, unsigned long last); 3380 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3381 unsigned long start, unsigned long last); 3382 3383 #define vma_interval_tree_foreach(vma, root, start, last) \ 3384 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3385 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3386 3387 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3388 struct rb_root_cached *root); 3389 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3390 struct rb_root_cached *root); 3391 struct anon_vma_chain * 3392 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3393 unsigned long start, unsigned long last); 3394 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3395 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3396 #ifdef CONFIG_DEBUG_VM_RB 3397 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3398 #endif 3399 3400 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3401 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3402 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3403 3404 /* mmap.c */ 3405 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3406 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3407 extern void exit_mmap(struct mm_struct *); 3408 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift); 3409 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma, 3410 unsigned long addr, bool write); 3411 3412 static inline int check_data_rlimit(unsigned long rlim, 3413 unsigned long new, 3414 unsigned long start, 3415 unsigned long end_data, 3416 unsigned long start_data) 3417 { 3418 if (rlim < RLIM_INFINITY) { 3419 if (((new - start) + (end_data - start_data)) > rlim) 3420 return -ENOSPC; 3421 } 3422 3423 return 0; 3424 } 3425 3426 extern int mm_take_all_locks(struct mm_struct *mm); 3427 extern void mm_drop_all_locks(struct mm_struct *mm); 3428 3429 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3430 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3431 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3432 extern struct file *get_task_exe_file(struct task_struct *task); 3433 3434 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3435 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3436 3437 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3438 const struct vm_special_mapping *sm); 3439 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3440 unsigned long addr, unsigned long len, 3441 unsigned long flags, 3442 const struct vm_special_mapping *spec); 3443 3444 unsigned long randomize_stack_top(unsigned long stack_top); 3445 unsigned long randomize_page(unsigned long start, unsigned long range); 3446 3447 unsigned long 3448 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3449 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3450 3451 static inline unsigned long 3452 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3453 unsigned long pgoff, unsigned long flags) 3454 { 3455 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3456 } 3457 3458 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3459 unsigned long len, unsigned long prot, unsigned long flags, 3460 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3461 struct list_head *uf); 3462 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3463 unsigned long start, size_t len, struct list_head *uf, 3464 bool unlock); 3465 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3466 struct mm_struct *mm, unsigned long start, 3467 unsigned long end, struct list_head *uf, bool unlock); 3468 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3469 struct list_head *uf); 3470 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3471 3472 #ifdef CONFIG_MMU 3473 extern int __mm_populate(unsigned long addr, unsigned long len, 3474 int ignore_errors); 3475 static inline void mm_populate(unsigned long addr, unsigned long len) 3476 { 3477 /* Ignore errors */ 3478 (void) __mm_populate(addr, len, 1); 3479 } 3480 #else 3481 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3482 #endif 3483 3484 /* This takes the mm semaphore itself */ 3485 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3486 extern int vm_munmap(unsigned long, size_t); 3487 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3488 unsigned long, unsigned long, 3489 unsigned long, unsigned long); 3490 3491 struct vm_unmapped_area_info { 3492 #define VM_UNMAPPED_AREA_TOPDOWN 1 3493 unsigned long flags; 3494 unsigned long length; 3495 unsigned long low_limit; 3496 unsigned long high_limit; 3497 unsigned long align_mask; 3498 unsigned long align_offset; 3499 unsigned long start_gap; 3500 }; 3501 3502 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3503 3504 /* truncate.c */ 3505 extern void truncate_inode_pages(struct address_space *, loff_t); 3506 extern void truncate_inode_pages_range(struct address_space *, 3507 loff_t lstart, loff_t lend); 3508 extern void truncate_inode_pages_final(struct address_space *); 3509 3510 /* generic vm_area_ops exported for stackable file systems */ 3511 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3512 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3513 pgoff_t start_pgoff, pgoff_t end_pgoff); 3514 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3515 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf); 3516 3517 extern unsigned long stack_guard_gap; 3518 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3519 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3520 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3521 3522 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3523 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3524 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3525 struct vm_area_struct **pprev); 3526 3527 /* 3528 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3529 * NULL if none. Assume start_addr < end_addr. 3530 */ 3531 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3532 unsigned long start_addr, unsigned long end_addr); 3533 3534 /** 3535 * vma_lookup() - Find a VMA at a specific address 3536 * @mm: The process address space. 3537 * @addr: The user address. 3538 * 3539 * Return: The vm_area_struct at the given address, %NULL otherwise. 3540 */ 3541 static inline 3542 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3543 { 3544 return mtree_load(&mm->mm_mt, addr); 3545 } 3546 3547 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3548 { 3549 if (vma->vm_flags & VM_GROWSDOWN) 3550 return stack_guard_gap; 3551 3552 /* See reasoning around the VM_SHADOW_STACK definition */ 3553 if (vma->vm_flags & VM_SHADOW_STACK) 3554 return PAGE_SIZE; 3555 3556 return 0; 3557 } 3558 3559 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3560 { 3561 unsigned long gap = stack_guard_start_gap(vma); 3562 unsigned long vm_start = vma->vm_start; 3563 3564 vm_start -= gap; 3565 if (vm_start > vma->vm_start) 3566 vm_start = 0; 3567 return vm_start; 3568 } 3569 3570 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3571 { 3572 unsigned long vm_end = vma->vm_end; 3573 3574 if (vma->vm_flags & VM_GROWSUP) { 3575 vm_end += stack_guard_gap; 3576 if (vm_end < vma->vm_end) 3577 vm_end = -PAGE_SIZE; 3578 } 3579 return vm_end; 3580 } 3581 3582 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3583 { 3584 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3585 } 3586 3587 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3588 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3589 unsigned long vm_start, unsigned long vm_end) 3590 { 3591 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3592 3593 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3594 vma = NULL; 3595 3596 return vma; 3597 } 3598 3599 static inline bool range_in_vma(struct vm_area_struct *vma, 3600 unsigned long start, unsigned long end) 3601 { 3602 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3603 } 3604 3605 #ifdef CONFIG_MMU 3606 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3607 void vma_set_page_prot(struct vm_area_struct *vma); 3608 #else 3609 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3610 { 3611 return __pgprot(0); 3612 } 3613 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3614 { 3615 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3616 } 3617 #endif 3618 3619 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3620 3621 #ifdef CONFIG_NUMA_BALANCING 3622 unsigned long change_prot_numa(struct vm_area_struct *vma, 3623 unsigned long start, unsigned long end); 3624 #endif 3625 3626 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3627 unsigned long addr); 3628 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3629 unsigned long pfn, unsigned long size, pgprot_t); 3630 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3631 unsigned long pfn, unsigned long size, pgprot_t prot); 3632 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3633 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3634 struct page **pages, unsigned long *num); 3635 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3636 unsigned long num); 3637 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3638 unsigned long num); 3639 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page, 3640 bool write); 3641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3642 unsigned long pfn); 3643 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3644 unsigned long pfn, pgprot_t pgprot); 3645 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3646 pfn_t pfn); 3647 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3648 unsigned long addr, pfn_t pfn); 3649 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3650 3651 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3652 unsigned long addr, struct page *page) 3653 { 3654 int err = vm_insert_page(vma, addr, page); 3655 3656 if (err == -ENOMEM) 3657 return VM_FAULT_OOM; 3658 if (err < 0 && err != -EBUSY) 3659 return VM_FAULT_SIGBUS; 3660 3661 return VM_FAULT_NOPAGE; 3662 } 3663 3664 #ifndef io_remap_pfn_range 3665 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3666 unsigned long addr, unsigned long pfn, 3667 unsigned long size, pgprot_t prot) 3668 { 3669 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3670 } 3671 #endif 3672 3673 static inline vm_fault_t vmf_error(int err) 3674 { 3675 if (err == -ENOMEM) 3676 return VM_FAULT_OOM; 3677 else if (err == -EHWPOISON) 3678 return VM_FAULT_HWPOISON; 3679 return VM_FAULT_SIGBUS; 3680 } 3681 3682 /* 3683 * Convert errno to return value for ->page_mkwrite() calls. 3684 * 3685 * This should eventually be merged with vmf_error() above, but will need a 3686 * careful audit of all vmf_error() callers. 3687 */ 3688 static inline vm_fault_t vmf_fs_error(int err) 3689 { 3690 if (err == 0) 3691 return VM_FAULT_LOCKED; 3692 if (err == -EFAULT || err == -EAGAIN) 3693 return VM_FAULT_NOPAGE; 3694 if (err == -ENOMEM) 3695 return VM_FAULT_OOM; 3696 /* -ENOSPC, -EDQUOT, -EIO ... */ 3697 return VM_FAULT_SIGBUS; 3698 } 3699 3700 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3701 { 3702 if (vm_fault & VM_FAULT_OOM) 3703 return -ENOMEM; 3704 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3705 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3706 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3707 return -EFAULT; 3708 return 0; 3709 } 3710 3711 /* 3712 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3713 * a (NUMA hinting) fault is required. 3714 */ 3715 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3716 unsigned int flags) 3717 { 3718 /* 3719 * If callers don't want to honor NUMA hinting faults, no need to 3720 * determine if we would actually have to trigger a NUMA hinting fault. 3721 */ 3722 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3723 return true; 3724 3725 /* 3726 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3727 * 3728 * Requiring a fault here even for inaccessible VMAs would mean that 3729 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3730 * refuses to process NUMA hinting faults in inaccessible VMAs. 3731 */ 3732 return !vma_is_accessible(vma); 3733 } 3734 3735 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3736 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3737 unsigned long size, pte_fn_t fn, void *data); 3738 extern int apply_to_existing_page_range(struct mm_struct *mm, 3739 unsigned long address, unsigned long size, 3740 pte_fn_t fn, void *data); 3741 3742 #ifdef CONFIG_PAGE_POISONING 3743 extern void __kernel_poison_pages(struct page *page, int numpages); 3744 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3745 extern bool _page_poisoning_enabled_early; 3746 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3747 static inline bool page_poisoning_enabled(void) 3748 { 3749 return _page_poisoning_enabled_early; 3750 } 3751 /* 3752 * For use in fast paths after init_mem_debugging() has run, or when a 3753 * false negative result is not harmful when called too early. 3754 */ 3755 static inline bool page_poisoning_enabled_static(void) 3756 { 3757 return static_branch_unlikely(&_page_poisoning_enabled); 3758 } 3759 static inline void kernel_poison_pages(struct page *page, int numpages) 3760 { 3761 if (page_poisoning_enabled_static()) 3762 __kernel_poison_pages(page, numpages); 3763 } 3764 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3765 { 3766 if (page_poisoning_enabled_static()) 3767 __kernel_unpoison_pages(page, numpages); 3768 } 3769 #else 3770 static inline bool page_poisoning_enabled(void) { return false; } 3771 static inline bool page_poisoning_enabled_static(void) { return false; } 3772 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3773 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3774 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3775 #endif 3776 3777 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3778 static inline bool want_init_on_alloc(gfp_t flags) 3779 { 3780 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3781 &init_on_alloc)) 3782 return true; 3783 return flags & __GFP_ZERO; 3784 } 3785 3786 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3787 static inline bool want_init_on_free(void) 3788 { 3789 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3790 &init_on_free); 3791 } 3792 3793 extern bool _debug_pagealloc_enabled_early; 3794 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3795 3796 static inline bool debug_pagealloc_enabled(void) 3797 { 3798 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3799 _debug_pagealloc_enabled_early; 3800 } 3801 3802 /* 3803 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3804 * or when a false negative result is not harmful when called too early. 3805 */ 3806 static inline bool debug_pagealloc_enabled_static(void) 3807 { 3808 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3809 return false; 3810 3811 return static_branch_unlikely(&_debug_pagealloc_enabled); 3812 } 3813 3814 /* 3815 * To support DEBUG_PAGEALLOC architecture must ensure that 3816 * __kernel_map_pages() never fails 3817 */ 3818 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3819 #ifdef CONFIG_DEBUG_PAGEALLOC 3820 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3821 { 3822 if (debug_pagealloc_enabled_static()) 3823 __kernel_map_pages(page, numpages, 1); 3824 } 3825 3826 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3827 { 3828 if (debug_pagealloc_enabled_static()) 3829 __kernel_map_pages(page, numpages, 0); 3830 } 3831 3832 extern unsigned int _debug_guardpage_minorder; 3833 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3834 3835 static inline unsigned int debug_guardpage_minorder(void) 3836 { 3837 return _debug_guardpage_minorder; 3838 } 3839 3840 static inline bool debug_guardpage_enabled(void) 3841 { 3842 return static_branch_unlikely(&_debug_guardpage_enabled); 3843 } 3844 3845 static inline bool page_is_guard(struct page *page) 3846 { 3847 if (!debug_guardpage_enabled()) 3848 return false; 3849 3850 return PageGuard(page); 3851 } 3852 3853 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3854 static inline bool set_page_guard(struct zone *zone, struct page *page, 3855 unsigned int order) 3856 { 3857 if (!debug_guardpage_enabled()) 3858 return false; 3859 return __set_page_guard(zone, page, order); 3860 } 3861 3862 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3863 static inline void clear_page_guard(struct zone *zone, struct page *page, 3864 unsigned int order) 3865 { 3866 if (!debug_guardpage_enabled()) 3867 return; 3868 __clear_page_guard(zone, page, order); 3869 } 3870 3871 #else /* CONFIG_DEBUG_PAGEALLOC */ 3872 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3873 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3874 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3875 static inline bool debug_guardpage_enabled(void) { return false; } 3876 static inline bool page_is_guard(struct page *page) { return false; } 3877 static inline bool set_page_guard(struct zone *zone, struct page *page, 3878 unsigned int order) { return false; } 3879 static inline void clear_page_guard(struct zone *zone, struct page *page, 3880 unsigned int order) {} 3881 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3882 3883 #ifdef __HAVE_ARCH_GATE_AREA 3884 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3885 extern int in_gate_area_no_mm(unsigned long addr); 3886 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3887 #else 3888 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3889 { 3890 return NULL; 3891 } 3892 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3893 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3894 { 3895 return 0; 3896 } 3897 #endif /* __HAVE_ARCH_GATE_AREA */ 3898 3899 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3900 3901 #ifdef CONFIG_SYSCTL 3902 extern int sysctl_drop_caches; 3903 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3904 loff_t *); 3905 #endif 3906 3907 void drop_slab(void); 3908 3909 #ifndef CONFIG_MMU 3910 #define randomize_va_space 0 3911 #else 3912 extern int randomize_va_space; 3913 #endif 3914 3915 const char * arch_vma_name(struct vm_area_struct *vma); 3916 #ifdef CONFIG_MMU 3917 void print_vma_addr(char *prefix, unsigned long rip); 3918 #else 3919 static inline void print_vma_addr(char *prefix, unsigned long rip) 3920 { 3921 } 3922 #endif 3923 3924 void *sparse_buffer_alloc(unsigned long size); 3925 unsigned long section_map_size(void); 3926 struct page * __populate_section_memmap(unsigned long pfn, 3927 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3928 struct dev_pagemap *pgmap); 3929 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3930 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3931 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3932 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3933 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3934 struct vmem_altmap *altmap, unsigned long ptpfn, 3935 unsigned long flags); 3936 void *vmemmap_alloc_block(unsigned long size, int node); 3937 struct vmem_altmap; 3938 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3939 struct vmem_altmap *altmap); 3940 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3941 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3942 unsigned long addr, unsigned long next); 3943 int vmemmap_check_pmd(pmd_t *pmd, int node, 3944 unsigned long addr, unsigned long next); 3945 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3946 int node, struct vmem_altmap *altmap); 3947 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3948 int node, struct vmem_altmap *altmap); 3949 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3950 struct vmem_altmap *altmap); 3951 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node, 3952 unsigned long headsize); 3953 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node, 3954 unsigned long headsize); 3955 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node, 3956 unsigned long headsize); 3957 void vmemmap_populate_print_last(void); 3958 #ifdef CONFIG_MEMORY_HOTPLUG 3959 void vmemmap_free(unsigned long start, unsigned long end, 3960 struct vmem_altmap *altmap); 3961 #endif 3962 3963 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3964 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3965 { 3966 /* number of pfns from base where pfn_to_page() is valid */ 3967 if (altmap) 3968 return altmap->reserve + altmap->free; 3969 return 0; 3970 } 3971 3972 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3973 unsigned long nr_pfns) 3974 { 3975 altmap->alloc -= nr_pfns; 3976 } 3977 #else 3978 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3979 { 3980 return 0; 3981 } 3982 3983 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3984 unsigned long nr_pfns) 3985 { 3986 } 3987 #endif 3988 3989 #define VMEMMAP_RESERVE_NR 2 3990 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3991 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3992 struct dev_pagemap *pgmap) 3993 { 3994 unsigned long nr_pages; 3995 unsigned long nr_vmemmap_pages; 3996 3997 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3998 return false; 3999 4000 nr_pages = pgmap_vmemmap_nr(pgmap); 4001 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 4002 /* 4003 * For vmemmap optimization with DAX we need minimum 2 vmemmap 4004 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 4005 */ 4006 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 4007 } 4008 /* 4009 * If we don't have an architecture override, use the generic rule 4010 */ 4011 #ifndef vmemmap_can_optimize 4012 #define vmemmap_can_optimize __vmemmap_can_optimize 4013 #endif 4014 4015 #else 4016 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 4017 struct dev_pagemap *pgmap) 4018 { 4019 return false; 4020 } 4021 #endif 4022 4023 enum mf_flags { 4024 MF_COUNT_INCREASED = 1 << 0, 4025 MF_ACTION_REQUIRED = 1 << 1, 4026 MF_MUST_KILL = 1 << 2, 4027 MF_SOFT_OFFLINE = 1 << 3, 4028 MF_UNPOISON = 1 << 4, 4029 MF_SW_SIMULATED = 1 << 5, 4030 MF_NO_RETRY = 1 << 6, 4031 MF_MEM_PRE_REMOVE = 1 << 7, 4032 }; 4033 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 4034 unsigned long count, int mf_flags); 4035 extern int memory_failure(unsigned long pfn, int flags); 4036 extern void memory_failure_queue_kick(int cpu); 4037 extern int unpoison_memory(unsigned long pfn); 4038 extern atomic_long_t num_poisoned_pages __read_mostly; 4039 extern int soft_offline_page(unsigned long pfn, int flags); 4040 #ifdef CONFIG_MEMORY_FAILURE 4041 /* 4042 * Sysfs entries for memory failure handling statistics. 4043 */ 4044 extern const struct attribute_group memory_failure_attr_group; 4045 extern void memory_failure_queue(unsigned long pfn, int flags); 4046 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4047 bool *migratable_cleared); 4048 void num_poisoned_pages_inc(unsigned long pfn); 4049 void num_poisoned_pages_sub(unsigned long pfn, long i); 4050 #else 4051 static inline void memory_failure_queue(unsigned long pfn, int flags) 4052 { 4053 } 4054 4055 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4056 bool *migratable_cleared) 4057 { 4058 return 0; 4059 } 4060 4061 static inline void num_poisoned_pages_inc(unsigned long pfn) 4062 { 4063 } 4064 4065 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4066 { 4067 } 4068 #endif 4069 4070 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4071 extern void memblk_nr_poison_inc(unsigned long pfn); 4072 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4073 #else 4074 static inline void memblk_nr_poison_inc(unsigned long pfn) 4075 { 4076 } 4077 4078 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4079 { 4080 } 4081 #endif 4082 4083 #ifndef arch_memory_failure 4084 static inline int arch_memory_failure(unsigned long pfn, int flags) 4085 { 4086 return -ENXIO; 4087 } 4088 #endif 4089 4090 #ifndef arch_is_platform_page 4091 static inline bool arch_is_platform_page(u64 paddr) 4092 { 4093 return false; 4094 } 4095 #endif 4096 4097 /* 4098 * Error handlers for various types of pages. 4099 */ 4100 enum mf_result { 4101 MF_IGNORED, /* Error: cannot be handled */ 4102 MF_FAILED, /* Error: handling failed */ 4103 MF_DELAYED, /* Will be handled later */ 4104 MF_RECOVERED, /* Successfully recovered */ 4105 }; 4106 4107 enum mf_action_page_type { 4108 MF_MSG_KERNEL, 4109 MF_MSG_KERNEL_HIGH_ORDER, 4110 MF_MSG_DIFFERENT_COMPOUND, 4111 MF_MSG_HUGE, 4112 MF_MSG_FREE_HUGE, 4113 MF_MSG_GET_HWPOISON, 4114 MF_MSG_UNMAP_FAILED, 4115 MF_MSG_DIRTY_SWAPCACHE, 4116 MF_MSG_CLEAN_SWAPCACHE, 4117 MF_MSG_DIRTY_MLOCKED_LRU, 4118 MF_MSG_CLEAN_MLOCKED_LRU, 4119 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4120 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4121 MF_MSG_DIRTY_LRU, 4122 MF_MSG_CLEAN_LRU, 4123 MF_MSG_TRUNCATED_LRU, 4124 MF_MSG_BUDDY, 4125 MF_MSG_DAX, 4126 MF_MSG_UNSPLIT_THP, 4127 MF_MSG_ALREADY_POISONED, 4128 MF_MSG_UNKNOWN, 4129 }; 4130 4131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4132 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4133 int copy_user_large_folio(struct folio *dst, struct folio *src, 4134 unsigned long addr_hint, 4135 struct vm_area_struct *vma); 4136 long copy_folio_from_user(struct folio *dst_folio, 4137 const void __user *usr_src, 4138 bool allow_pagefault); 4139 4140 /** 4141 * vma_is_special_huge - Are transhuge page-table entries considered special? 4142 * @vma: Pointer to the struct vm_area_struct to consider 4143 * 4144 * Whether transhuge page-table entries are considered "special" following 4145 * the definition in vm_normal_page(). 4146 * 4147 * Return: true if transhuge page-table entries should be considered special, 4148 * false otherwise. 4149 */ 4150 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4151 { 4152 return vma_is_dax(vma) || (vma->vm_file && 4153 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4154 } 4155 4156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4157 4158 #if MAX_NUMNODES > 1 4159 void __init setup_nr_node_ids(void); 4160 #else 4161 static inline void setup_nr_node_ids(void) {} 4162 #endif 4163 4164 extern int memcmp_pages(struct page *page1, struct page *page2); 4165 4166 static inline int pages_identical(struct page *page1, struct page *page2) 4167 { 4168 return !memcmp_pages(page1, page2); 4169 } 4170 4171 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4172 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4173 pgoff_t first_index, pgoff_t nr, 4174 pgoff_t bitmap_pgoff, 4175 unsigned long *bitmap, 4176 pgoff_t *start, 4177 pgoff_t *end); 4178 4179 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4180 pgoff_t first_index, pgoff_t nr); 4181 #endif 4182 4183 extern int sysctl_nr_trim_pages; 4184 4185 #ifdef CONFIG_ANON_VMA_NAME 4186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4187 unsigned long len_in, 4188 struct anon_vma_name *anon_name); 4189 #else 4190 static inline int 4191 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4192 unsigned long len_in, struct anon_vma_name *anon_name) { 4193 return 0; 4194 } 4195 #endif 4196 4197 #ifdef CONFIG_UNACCEPTED_MEMORY 4198 4199 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size); 4200 void accept_memory(phys_addr_t start, unsigned long size); 4201 4202 #else 4203 4204 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4205 unsigned long size) 4206 { 4207 return false; 4208 } 4209 4210 static inline void accept_memory(phys_addr_t start, unsigned long size) 4211 { 4212 } 4213 4214 #endif 4215 4216 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4217 { 4218 return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE); 4219 } 4220 4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4222 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4223 4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4225 4226 #ifdef CONFIG_64BIT 4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags); 4228 #else 4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags) 4230 { 4231 /* noop on 32 bit */ 4232 return 0; 4233 } 4234 #endif 4235 4236 /* 4237 * user_alloc_needs_zeroing checks if a user folio from page allocator needs to 4238 * be zeroed or not. 4239 */ 4240 static inline bool user_alloc_needs_zeroing(void) 4241 { 4242 /* 4243 * for user folios, arch with cache aliasing requires cache flush and 4244 * arc changes folio->flags to make icache coherent with dcache, so 4245 * always return false to make caller use 4246 * clear_user_page()/clear_user_highpage(). 4247 */ 4248 return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() || 4249 !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 4250 &init_on_alloc); 4251 } 4252 4253 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status); 4254 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status); 4255 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status); 4256 4257 #endif /* _LINUX_MM_H */ 4258