xref: /linux-6.15/include/linux/mm.h (revision e120d1bc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 #include <linux/cacheinfo.h>
35 #include <linux/rcuwait.h>
36 
37 struct mempolicy;
38 struct anon_vma;
39 struct anon_vma_chain;
40 struct user_struct;
41 struct pt_regs;
42 struct folio_batch;
43 
44 extern int sysctl_page_lock_unfairness;
45 
46 void mm_core_init(void);
47 void init_mm_internals(void);
48 
49 extern atomic_long_t _totalram_pages;
50 static inline unsigned long totalram_pages(void)
51 {
52 	return (unsigned long)atomic_long_read(&_totalram_pages);
53 }
54 
55 static inline void totalram_pages_inc(void)
56 {
57 	atomic_long_inc(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_dec(void)
61 {
62 	atomic_long_dec(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_add(long count)
66 {
67 	atomic_long_add(count, &_totalram_pages);
68 }
69 
70 extern void * high_memory;
71 extern int page_cluster;
72 extern const int page_cluster_max;
73 
74 #ifdef CONFIG_SYSCTL
75 extern int sysctl_legacy_va_layout;
76 #else
77 #define sysctl_legacy_va_layout 0
78 #endif
79 
80 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
81 extern const int mmap_rnd_bits_min;
82 extern int mmap_rnd_bits_max __ro_after_init;
83 extern int mmap_rnd_bits __read_mostly;
84 #endif
85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
86 extern const int mmap_rnd_compat_bits_min;
87 extern const int mmap_rnd_compat_bits_max;
88 extern int mmap_rnd_compat_bits __read_mostly;
89 #endif
90 
91 #ifndef DIRECT_MAP_PHYSMEM_END
92 # ifdef MAX_PHYSMEM_BITS
93 # define DIRECT_MAP_PHYSMEM_END	((1ULL << MAX_PHYSMEM_BITS) - 1)
94 # else
95 # define DIRECT_MAP_PHYSMEM_END	(((phys_addr_t)-1)&~(1ULL<<63))
96 # endif
97 #endif
98 
99 #include <asm/page.h>
100 #include <asm/processor.h>
101 
102 #ifndef __pa_symbol
103 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
104 #endif
105 
106 #ifndef page_to_virt
107 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
108 #endif
109 
110 #ifndef lm_alias
111 #define lm_alias(x)	__va(__pa_symbol(x))
112 #endif
113 
114 /*
115  * To prevent common memory management code establishing
116  * a zero page mapping on a read fault.
117  * This macro should be defined within <asm/pgtable.h>.
118  * s390 does this to prevent multiplexing of hardware bits
119  * related to the physical page in case of virtualization.
120  */
121 #ifndef mm_forbids_zeropage
122 #define mm_forbids_zeropage(X)	(0)
123 #endif
124 
125 /*
126  * On some architectures it is expensive to call memset() for small sizes.
127  * If an architecture decides to implement their own version of
128  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129  * define their own version of this macro in <asm/pgtable.h>
130  */
131 #if BITS_PER_LONG == 64
132 /* This function must be updated when the size of struct page grows above 96
133  * or reduces below 56. The idea that compiler optimizes out switch()
134  * statement, and only leaves move/store instructions. Also the compiler can
135  * combine write statements if they are both assignments and can be reordered,
136  * this can result in several of the writes here being dropped.
137  */
138 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
139 static inline void __mm_zero_struct_page(struct page *page)
140 {
141 	unsigned long *_pp = (void *)page;
142 
143 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
144 	BUILD_BUG_ON(sizeof(struct page) & 7);
145 	BUILD_BUG_ON(sizeof(struct page) < 56);
146 	BUILD_BUG_ON(sizeof(struct page) > 96);
147 
148 	switch (sizeof(struct page)) {
149 	case 96:
150 		_pp[11] = 0;
151 		fallthrough;
152 	case 88:
153 		_pp[10] = 0;
154 		fallthrough;
155 	case 80:
156 		_pp[9] = 0;
157 		fallthrough;
158 	case 72:
159 		_pp[8] = 0;
160 		fallthrough;
161 	case 64:
162 		_pp[7] = 0;
163 		fallthrough;
164 	case 56:
165 		_pp[6] = 0;
166 		_pp[5] = 0;
167 		_pp[4] = 0;
168 		_pp[3] = 0;
169 		_pp[2] = 0;
170 		_pp[1] = 0;
171 		_pp[0] = 0;
172 	}
173 }
174 #else
175 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
176 #endif
177 
178 /*
179  * Default maximum number of active map areas, this limits the number of vmas
180  * per mm struct. Users can overwrite this number by sysctl but there is a
181  * problem.
182  *
183  * When a program's coredump is generated as ELF format, a section is created
184  * per a vma. In ELF, the number of sections is represented in unsigned short.
185  * This means the number of sections should be smaller than 65535 at coredump.
186  * Because the kernel adds some informative sections to a image of program at
187  * generating coredump, we need some margin. The number of extra sections is
188  * 1-3 now and depends on arch. We use "5" as safe margin, here.
189  *
190  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191  * not a hard limit any more. Although some userspace tools can be surprised by
192  * that.
193  */
194 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
195 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196 
197 extern int sysctl_max_map_count;
198 
199 extern unsigned long sysctl_user_reserve_kbytes;
200 extern unsigned long sysctl_admin_reserve_kbytes;
201 
202 extern int sysctl_overcommit_memory;
203 extern int sysctl_overcommit_ratio;
204 extern unsigned long sysctl_overcommit_kbytes;
205 
206 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
207 		loff_t *);
208 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
216 #else
217 #define nth_page(page,n) ((page) + (n))
218 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
219 #endif
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* to align the pointer to the (prev) page boundary */
225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
226 
227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
228 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229 
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 
251 #ifndef CONFIG_MMU
252 extern struct rb_root nommu_region_tree;
253 extern struct rw_semaphore nommu_region_sem;
254 
255 extern unsigned int kobjsize(const void *objp);
256 #endif
257 
258 /*
259  * vm_flags in vm_area_struct, see mm_types.h.
260  * When changing, update also include/trace/events/mmflags.h
261  */
262 #define VM_NONE		0x00000000
263 
264 #define VM_READ		0x00000001	/* currently active flags */
265 #define VM_WRITE	0x00000002
266 #define VM_EXEC		0x00000004
267 #define VM_SHARED	0x00000008
268 
269 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
270 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
271 #define VM_MAYWRITE	0x00000020
272 #define VM_MAYEXEC	0x00000040
273 #define VM_MAYSHARE	0x00000080
274 
275 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
276 #ifdef CONFIG_MMU
277 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
278 #else /* CONFIG_MMU */
279 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
280 #define VM_UFFD_MISSING	0
281 #endif /* CONFIG_MMU */
282 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
283 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
284 
285 #define VM_LOCKED	0x00002000
286 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
287 
288 					/* Used by sys_madvise() */
289 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
290 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
291 
292 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
293 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
294 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
295 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
296 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
297 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
298 #define VM_SYNC		0x00800000	/* Synchronous page faults */
299 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
300 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
301 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
302 
303 #ifdef CONFIG_MEM_SOFT_DIRTY
304 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
305 #else
306 # define VM_SOFTDIRTY	0
307 #endif
308 
309 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
310 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
311 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
312 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
313 
314 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
315 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_6	38	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
328 #define VM_HIGH_ARCH_6	BIT(VM_HIGH_ARCH_BIT_6)
329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330 
331 #ifdef CONFIG_ARCH_HAS_PKEYS
332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
333 # define VM_PKEY_BIT0  VM_HIGH_ARCH_0
334 # define VM_PKEY_BIT1  VM_HIGH_ARCH_1
335 # define VM_PKEY_BIT2  VM_HIGH_ARCH_2
336 #if CONFIG_ARCH_PKEY_BITS > 3
337 # define VM_PKEY_BIT3  VM_HIGH_ARCH_3
338 #else
339 # define VM_PKEY_BIT3  0
340 #endif
341 #if CONFIG_ARCH_PKEY_BITS > 4
342 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
343 #else
344 # define VM_PKEY_BIT4  0
345 #endif
346 #endif /* CONFIG_ARCH_HAS_PKEYS */
347 
348 #ifdef CONFIG_X86_USER_SHADOW_STACK
349 /*
350  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
351  * support core mm.
352  *
353  * These VMAs will get a single end guard page. This helps userspace protect
354  * itself from attacks. A single page is enough for current shadow stack archs
355  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
356  * for more details on the guard size.
357  */
358 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
359 #endif
360 
361 #if defined(CONFIG_ARM64_GCS)
362 /*
363  * arm64's Guarded Control Stack implements similar functionality and
364  * has similar constraints to shadow stacks.
365  */
366 # define VM_SHADOW_STACK	VM_HIGH_ARCH_6
367 #endif
368 
369 #ifndef VM_SHADOW_STACK
370 # define VM_SHADOW_STACK	VM_NONE
371 #endif
372 
373 #if defined(CONFIG_X86)
374 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
375 #elif defined(CONFIG_PPC64)
376 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
377 #elif defined(CONFIG_PARISC)
378 # define VM_GROWSUP	VM_ARCH_1
379 #elif defined(CONFIG_SPARC64)
380 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
381 # define VM_ARCH_CLEAR	VM_SPARC_ADI
382 #elif defined(CONFIG_ARM64)
383 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
384 # define VM_ARCH_CLEAR	VM_ARM64_BTI
385 #elif !defined(CONFIG_MMU)
386 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
387 #endif
388 
389 #if defined(CONFIG_ARM64_MTE)
390 # define VM_MTE		VM_HIGH_ARCH_4	/* Use Tagged memory for access control */
391 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_5	/* Tagged memory permitted */
392 #else
393 # define VM_MTE		VM_NONE
394 # define VM_MTE_ALLOWED	VM_NONE
395 #endif
396 
397 #ifndef VM_GROWSUP
398 # define VM_GROWSUP	VM_NONE
399 #endif
400 
401 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
402 # define VM_UFFD_MINOR_BIT	38
403 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
404 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
405 # define VM_UFFD_MINOR		VM_NONE
406 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
407 
408 /*
409  * This flag is used to connect VFIO to arch specific KVM code. It
410  * indicates that the memory under this VMA is safe for use with any
411  * non-cachable memory type inside KVM. Some VFIO devices, on some
412  * platforms, are thought to be unsafe and can cause machine crashes
413  * if KVM does not lock down the memory type.
414  */
415 #ifdef CONFIG_64BIT
416 #define VM_ALLOW_ANY_UNCACHED_BIT	39
417 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
418 #else
419 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
420 #endif
421 
422 #ifdef CONFIG_64BIT
423 #define VM_DROPPABLE_BIT	40
424 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
425 #elif defined(CONFIG_PPC32)
426 #define VM_DROPPABLE		VM_ARCH_1
427 #else
428 #define VM_DROPPABLE		VM_NONE
429 #endif
430 
431 #ifdef CONFIG_64BIT
432 /* VM is sealed, in vm_flags */
433 #define VM_SEALED	_BITUL(63)
434 #endif
435 
436 /* Bits set in the VMA until the stack is in its final location */
437 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
438 
439 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
440 
441 /* Common data flag combinations */
442 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
443 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
444 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
445 				 VM_MAYWRITE | VM_MAYEXEC)
446 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
447 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
448 
449 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
450 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
451 #endif
452 
453 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
454 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
455 #endif
456 
457 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
458 
459 #ifdef CONFIG_STACK_GROWSUP
460 #define VM_STACK	VM_GROWSUP
461 #define VM_STACK_EARLY	VM_GROWSDOWN
462 #else
463 #define VM_STACK	VM_GROWSDOWN
464 #define VM_STACK_EARLY	0
465 #endif
466 
467 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
468 
469 /* VMA basic access permission flags */
470 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
471 
472 
473 /*
474  * Special vmas that are non-mergable, non-mlock()able.
475  */
476 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
477 
478 /* This mask prevents VMA from being scanned with khugepaged */
479 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
480 
481 /* This mask defines which mm->def_flags a process can inherit its parent */
482 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
483 
484 /* This mask represents all the VMA flag bits used by mlock */
485 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
486 
487 /* Arch-specific flags to clear when updating VM flags on protection change */
488 #ifndef VM_ARCH_CLEAR
489 # define VM_ARCH_CLEAR	VM_NONE
490 #endif
491 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
492 
493 /*
494  * mapping from the currently active vm_flags protection bits (the
495  * low four bits) to a page protection mask..
496  */
497 
498 /*
499  * The default fault flags that should be used by most of the
500  * arch-specific page fault handlers.
501  */
502 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
503 			     FAULT_FLAG_KILLABLE | \
504 			     FAULT_FLAG_INTERRUPTIBLE)
505 
506 /**
507  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
508  * @flags: Fault flags.
509  *
510  * This is mostly used for places where we want to try to avoid taking
511  * the mmap_lock for too long a time when waiting for another condition
512  * to change, in which case we can try to be polite to release the
513  * mmap_lock in the first round to avoid potential starvation of other
514  * processes that would also want the mmap_lock.
515  *
516  * Return: true if the page fault allows retry and this is the first
517  * attempt of the fault handling; false otherwise.
518  */
519 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
520 {
521 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
522 	    (!(flags & FAULT_FLAG_TRIED));
523 }
524 
525 #define FAULT_FLAG_TRACE \
526 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
527 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
528 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
529 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
530 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
531 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
532 	{ FAULT_FLAG_USER,		"USER" }, \
533 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
534 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
535 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
536 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
537 
538 /*
539  * vm_fault is filled by the pagefault handler and passed to the vma's
540  * ->fault function. The vma's ->fault is responsible for returning a bitmask
541  * of VM_FAULT_xxx flags that give details about how the fault was handled.
542  *
543  * MM layer fills up gfp_mask for page allocations but fault handler might
544  * alter it if its implementation requires a different allocation context.
545  *
546  * pgoff should be used in favour of virtual_address, if possible.
547  */
548 struct vm_fault {
549 	const struct {
550 		struct vm_area_struct *vma;	/* Target VMA */
551 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
552 		pgoff_t pgoff;			/* Logical page offset based on vma */
553 		unsigned long address;		/* Faulting virtual address - masked */
554 		unsigned long real_address;	/* Faulting virtual address - unmasked */
555 	};
556 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
557 					 * XXX: should really be 'const' */
558 	pmd_t *pmd;			/* Pointer to pmd entry matching
559 					 * the 'address' */
560 	pud_t *pud;			/* Pointer to pud entry matching
561 					 * the 'address'
562 					 */
563 	union {
564 		pte_t orig_pte;		/* Value of PTE at the time of fault */
565 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
566 					 * used by PMD fault only.
567 					 */
568 	};
569 
570 	struct page *cow_page;		/* Page handler may use for COW fault */
571 	struct page *page;		/* ->fault handlers should return a
572 					 * page here, unless VM_FAULT_NOPAGE
573 					 * is set (which is also implied by
574 					 * VM_FAULT_ERROR).
575 					 */
576 	/* These three entries are valid only while holding ptl lock */
577 	pte_t *pte;			/* Pointer to pte entry matching
578 					 * the 'address'. NULL if the page
579 					 * table hasn't been allocated.
580 					 */
581 	spinlock_t *ptl;		/* Page table lock.
582 					 * Protects pte page table if 'pte'
583 					 * is not NULL, otherwise pmd.
584 					 */
585 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
586 					 * vm_ops->map_pages() sets up a page
587 					 * table from atomic context.
588 					 * do_fault_around() pre-allocates
589 					 * page table to avoid allocation from
590 					 * atomic context.
591 					 */
592 };
593 
594 /*
595  * These are the virtual MM functions - opening of an area, closing and
596  * unmapping it (needed to keep files on disk up-to-date etc), pointer
597  * to the functions called when a no-page or a wp-page exception occurs.
598  */
599 struct vm_operations_struct {
600 	void (*open)(struct vm_area_struct * area);
601 	/**
602 	 * @close: Called when the VMA is being removed from the MM.
603 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
604 	 */
605 	void (*close)(struct vm_area_struct * area);
606 	/* Called any time before splitting to check if it's allowed */
607 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
608 	int (*mremap)(struct vm_area_struct *area);
609 	/*
610 	 * Called by mprotect() to make driver-specific permission
611 	 * checks before mprotect() is finalised.   The VMA must not
612 	 * be modified.  Returns 0 if mprotect() can proceed.
613 	 */
614 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
615 			unsigned long end, unsigned long newflags);
616 	vm_fault_t (*fault)(struct vm_fault *vmf);
617 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
618 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
619 			pgoff_t start_pgoff, pgoff_t end_pgoff);
620 	unsigned long (*pagesize)(struct vm_area_struct * area);
621 
622 	/* notification that a previously read-only page is about to become
623 	 * writable, if an error is returned it will cause a SIGBUS */
624 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
625 
626 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
627 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
628 
629 	/* called by access_process_vm when get_user_pages() fails, typically
630 	 * for use by special VMAs. See also generic_access_phys() for a generic
631 	 * implementation useful for any iomem mapping.
632 	 */
633 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
634 		      void *buf, int len, int write);
635 
636 	/* Called by the /proc/PID/maps code to ask the vma whether it
637 	 * has a special name.  Returning non-NULL will also cause this
638 	 * vma to be dumped unconditionally. */
639 	const char *(*name)(struct vm_area_struct *vma);
640 
641 #ifdef CONFIG_NUMA
642 	/*
643 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
644 	 * to hold the policy upon return.  Caller should pass NULL @new to
645 	 * remove a policy and fall back to surrounding context--i.e. do not
646 	 * install a MPOL_DEFAULT policy, nor the task or system default
647 	 * mempolicy.
648 	 */
649 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
650 
651 	/*
652 	 * get_policy() op must add reference [mpol_get()] to any policy at
653 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
654 	 * in mm/mempolicy.c will do this automatically.
655 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
656 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
657 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
658 	 * must return NULL--i.e., do not "fallback" to task or system default
659 	 * policy.
660 	 */
661 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
662 					unsigned long addr, pgoff_t *ilx);
663 #endif
664 	/*
665 	 * Called by vm_normal_page() for special PTEs to find the
666 	 * page for @addr.  This is useful if the default behavior
667 	 * (using pte_page()) would not find the correct page.
668 	 */
669 	struct page *(*find_special_page)(struct vm_area_struct *vma,
670 					  unsigned long addr);
671 };
672 
673 #ifdef CONFIG_NUMA_BALANCING
674 static inline void vma_numab_state_init(struct vm_area_struct *vma)
675 {
676 	vma->numab_state = NULL;
677 }
678 static inline void vma_numab_state_free(struct vm_area_struct *vma)
679 {
680 	kfree(vma->numab_state);
681 }
682 #else
683 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
684 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
685 #endif /* CONFIG_NUMA_BALANCING */
686 
687 #ifdef CONFIG_PER_VMA_LOCK
688 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt)
689 {
690 #ifdef CONFIG_DEBUG_LOCK_ALLOC
691 	static struct lock_class_key lockdep_key;
692 
693 	lockdep_init_map(&vma->vmlock_dep_map, "vm_lock", &lockdep_key, 0);
694 #endif
695 	if (reset_refcnt)
696 		refcount_set(&vma->vm_refcnt, 0);
697 	vma->vm_lock_seq = UINT_MAX;
698 }
699 
700 static inline bool is_vma_writer_only(int refcnt)
701 {
702 	/*
703 	 * With a writer and no readers, refcnt is VMA_LOCK_OFFSET if the vma
704 	 * is detached and (VMA_LOCK_OFFSET + 1) if it is attached. Waiting on
705 	 * a detached vma happens only in vma_mark_detached() and is a rare
706 	 * case, therefore most of the time there will be no unnecessary wakeup.
707 	 */
708 	return refcnt & VMA_LOCK_OFFSET && refcnt <= VMA_LOCK_OFFSET + 1;
709 }
710 
711 static inline void vma_refcount_put(struct vm_area_struct *vma)
712 {
713 	/* Use a copy of vm_mm in case vma is freed after we drop vm_refcnt */
714 	struct mm_struct *mm = vma->vm_mm;
715 	int oldcnt;
716 
717 	rwsem_release(&vma->vmlock_dep_map, _RET_IP_);
718 	if (!__refcount_dec_and_test(&vma->vm_refcnt, &oldcnt)) {
719 
720 		if (is_vma_writer_only(oldcnt - 1))
721 			rcuwait_wake_up(&mm->vma_writer_wait);
722 	}
723 }
724 
725 /*
726  * Try to read-lock a vma. The function is allowed to occasionally yield false
727  * locked result to avoid performance overhead, in which case we fall back to
728  * using mmap_lock. The function should never yield false unlocked result.
729  * False locked result is possible if mm_lock_seq overflows or if vma gets
730  * reused and attached to a different mm before we lock it.
731  * Returns the vma on success, NULL on failure to lock and EAGAIN if vma got
732  * detached.
733  */
734 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
735 						    struct vm_area_struct *vma)
736 {
737 	int oldcnt;
738 
739 	/*
740 	 * Check before locking. A race might cause false locked result.
741 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
742 	 * ACQUIRE semantics, because this is just a lockless check whose result
743 	 * we don't rely on for anything - the mm_lock_seq read against which we
744 	 * need ordering is below.
745 	 */
746 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(mm->mm_lock_seq.sequence))
747 		return NULL;
748 
749 	/*
750 	 * If VMA_LOCK_OFFSET is set, __refcount_inc_not_zero_limited_acquire()
751 	 * will fail because VMA_REF_LIMIT is less than VMA_LOCK_OFFSET.
752 	 * Acquire fence is required here to avoid reordering against later
753 	 * vm_lock_seq check and checks inside lock_vma_under_rcu().
754 	 */
755 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
756 							      VMA_REF_LIMIT))) {
757 		/* return EAGAIN if vma got detached from under us */
758 		return oldcnt ? NULL : ERR_PTR(-EAGAIN);
759 	}
760 
761 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
762 	/*
763 	 * Overflow of vm_lock_seq/mm_lock_seq might produce false locked result.
764 	 * False unlocked result is impossible because we modify and check
765 	 * vma->vm_lock_seq under vma->vm_refcnt protection and mm->mm_lock_seq
766 	 * modification invalidates all existing locks.
767 	 *
768 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
769 	 * racing with vma_end_write_all(), we only start reading from the VMA
770 	 * after it has been unlocked.
771 	 * This pairs with RELEASE semantics in vma_end_write_all().
772 	 */
773 	if (unlikely(vma->vm_lock_seq == raw_read_seqcount(&mm->mm_lock_seq))) {
774 		vma_refcount_put(vma);
775 		return NULL;
776 	}
777 
778 	return vma;
779 }
780 
781 /*
782  * Use only while holding mmap read lock which guarantees that locking will not
783  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
784  * not be used in such cases because it might fail due to mm_lock_seq overflow.
785  * This functionality is used to obtain vma read lock and drop the mmap read lock.
786  */
787 static inline bool vma_start_read_locked_nested(struct vm_area_struct *vma, int subclass)
788 {
789 	int oldcnt;
790 
791 	mmap_assert_locked(vma->vm_mm);
792 	if (unlikely(!__refcount_inc_not_zero_limited_acquire(&vma->vm_refcnt, &oldcnt,
793 							      VMA_REF_LIMIT)))
794 		return false;
795 
796 	rwsem_acquire_read(&vma->vmlock_dep_map, 0, 1, _RET_IP_);
797 	return true;
798 }
799 
800 /*
801  * Use only while holding mmap read lock which guarantees that locking will not
802  * fail (nobody can concurrently write-lock the vma). vma_start_read() should
803  * not be used in such cases because it might fail due to mm_lock_seq overflow.
804  * This functionality is used to obtain vma read lock and drop the mmap read lock.
805  */
806 static inline bool vma_start_read_locked(struct vm_area_struct *vma)
807 {
808 	return vma_start_read_locked_nested(vma, 0);
809 }
810 
811 static inline void vma_end_read(struct vm_area_struct *vma)
812 {
813 	vma_refcount_put(vma);
814 }
815 
816 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
817 static bool __is_vma_write_locked(struct vm_area_struct *vma, unsigned int *mm_lock_seq)
818 {
819 	mmap_assert_write_locked(vma->vm_mm);
820 
821 	/*
822 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
823 	 * mm->mm_lock_seq can't be concurrently modified.
824 	 */
825 	*mm_lock_seq = vma->vm_mm->mm_lock_seq.sequence;
826 	return (vma->vm_lock_seq == *mm_lock_seq);
827 }
828 
829 void __vma_start_write(struct vm_area_struct *vma, unsigned int mm_lock_seq);
830 
831 /*
832  * Begin writing to a VMA.
833  * Exclude concurrent readers under the per-VMA lock until the currently
834  * write-locked mmap_lock is dropped or downgraded.
835  */
836 static inline void vma_start_write(struct vm_area_struct *vma)
837 {
838 	unsigned int mm_lock_seq;
839 
840 	if (__is_vma_write_locked(vma, &mm_lock_seq))
841 		return;
842 
843 	__vma_start_write(vma, mm_lock_seq);
844 }
845 
846 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
847 {
848 	unsigned int mm_lock_seq;
849 
850 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
851 }
852 
853 static inline void vma_assert_locked(struct vm_area_struct *vma)
854 {
855 	unsigned int mm_lock_seq;
856 
857 	VM_BUG_ON_VMA(refcount_read(&vma->vm_refcnt) <= 1 &&
858 		      !__is_vma_write_locked(vma, &mm_lock_seq), vma);
859 }
860 
861 /*
862  * WARNING: to avoid racing with vma_mark_attached()/vma_mark_detached(), these
863  * assertions should be made either under mmap_write_lock or when the object
864  * has been isolated under mmap_write_lock, ensuring no competing writers.
865  */
866 static inline void vma_assert_attached(struct vm_area_struct *vma)
867 {
868 	WARN_ON_ONCE(!refcount_read(&vma->vm_refcnt));
869 }
870 
871 static inline void vma_assert_detached(struct vm_area_struct *vma)
872 {
873 	WARN_ON_ONCE(refcount_read(&vma->vm_refcnt));
874 }
875 
876 static inline void vma_mark_attached(struct vm_area_struct *vma)
877 {
878 	vma_assert_write_locked(vma);
879 	vma_assert_detached(vma);
880 	refcount_set_release(&vma->vm_refcnt, 1);
881 }
882 
883 void vma_mark_detached(struct vm_area_struct *vma);
884 
885 static inline void release_fault_lock(struct vm_fault *vmf)
886 {
887 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
888 		vma_end_read(vmf->vma);
889 	else
890 		mmap_read_unlock(vmf->vma->vm_mm);
891 }
892 
893 static inline void assert_fault_locked(struct vm_fault *vmf)
894 {
895 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
896 		vma_assert_locked(vmf->vma);
897 	else
898 		mmap_assert_locked(vmf->vma->vm_mm);
899 }
900 
901 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
902 					  unsigned long address);
903 
904 #else /* CONFIG_PER_VMA_LOCK */
905 
906 static inline void vma_lock_init(struct vm_area_struct *vma, bool reset_refcnt) {}
907 static inline struct vm_area_struct *vma_start_read(struct mm_struct *mm,
908 						    struct vm_area_struct *vma)
909 		{ return NULL; }
910 static inline void vma_end_read(struct vm_area_struct *vma) {}
911 static inline void vma_start_write(struct vm_area_struct *vma) {}
912 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
913 		{ mmap_assert_write_locked(vma->vm_mm); }
914 static inline void vma_assert_attached(struct vm_area_struct *vma) {}
915 static inline void vma_assert_detached(struct vm_area_struct *vma) {}
916 static inline void vma_mark_attached(struct vm_area_struct *vma) {}
917 static inline void vma_mark_detached(struct vm_area_struct *vma) {}
918 
919 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
920 		unsigned long address)
921 {
922 	return NULL;
923 }
924 
925 static inline void vma_assert_locked(struct vm_area_struct *vma)
926 {
927 	mmap_assert_locked(vma->vm_mm);
928 }
929 
930 static inline void release_fault_lock(struct vm_fault *vmf)
931 {
932 	mmap_read_unlock(vmf->vma->vm_mm);
933 }
934 
935 static inline void assert_fault_locked(struct vm_fault *vmf)
936 {
937 	mmap_assert_locked(vmf->vma->vm_mm);
938 }
939 
940 #endif /* CONFIG_PER_VMA_LOCK */
941 
942 extern const struct vm_operations_struct vma_dummy_vm_ops;
943 
944 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
945 {
946 	memset(vma, 0, sizeof(*vma));
947 	vma->vm_mm = mm;
948 	vma->vm_ops = &vma_dummy_vm_ops;
949 	INIT_LIST_HEAD(&vma->anon_vma_chain);
950 	vma_lock_init(vma, false);
951 }
952 
953 /* Use when VMA is not part of the VMA tree and needs no locking */
954 static inline void vm_flags_init(struct vm_area_struct *vma,
955 				 vm_flags_t flags)
956 {
957 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
958 }
959 
960 /*
961  * Use when VMA is part of the VMA tree and modifications need coordination
962  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
963  * it should be locked explicitly beforehand.
964  */
965 static inline void vm_flags_reset(struct vm_area_struct *vma,
966 				  vm_flags_t flags)
967 {
968 	vma_assert_write_locked(vma);
969 	vm_flags_init(vma, flags);
970 }
971 
972 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
973 				       vm_flags_t flags)
974 {
975 	vma_assert_write_locked(vma);
976 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
977 }
978 
979 static inline void vm_flags_set(struct vm_area_struct *vma,
980 				vm_flags_t flags)
981 {
982 	vma_start_write(vma);
983 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
984 }
985 
986 static inline void vm_flags_clear(struct vm_area_struct *vma,
987 				  vm_flags_t flags)
988 {
989 	vma_start_write(vma);
990 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
991 }
992 
993 /*
994  * Use only if VMA is not part of the VMA tree or has no other users and
995  * therefore needs no locking.
996  */
997 static inline void __vm_flags_mod(struct vm_area_struct *vma,
998 				  vm_flags_t set, vm_flags_t clear)
999 {
1000 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
1001 }
1002 
1003 /*
1004  * Use only when the order of set/clear operations is unimportant, otherwise
1005  * use vm_flags_{set|clear} explicitly.
1006  */
1007 static inline void vm_flags_mod(struct vm_area_struct *vma,
1008 				vm_flags_t set, vm_flags_t clear)
1009 {
1010 	vma_start_write(vma);
1011 	__vm_flags_mod(vma, set, clear);
1012 }
1013 
1014 static inline void vma_set_anonymous(struct vm_area_struct *vma)
1015 {
1016 	vma->vm_ops = NULL;
1017 }
1018 
1019 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1020 {
1021 	return !vma->vm_ops;
1022 }
1023 
1024 /*
1025  * Indicate if the VMA is a heap for the given task; for
1026  * /proc/PID/maps that is the heap of the main task.
1027  */
1028 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
1029 {
1030 	return vma->vm_start < vma->vm_mm->brk &&
1031 		vma->vm_end > vma->vm_mm->start_brk;
1032 }
1033 
1034 /*
1035  * Indicate if the VMA is a stack for the given task; for
1036  * /proc/PID/maps that is the stack of the main task.
1037  */
1038 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
1039 {
1040 	/*
1041 	 * We make no effort to guess what a given thread considers to be
1042 	 * its "stack".  It's not even well-defined for programs written
1043 	 * languages like Go.
1044 	 */
1045 	return vma->vm_start <= vma->vm_mm->start_stack &&
1046 		vma->vm_end >= vma->vm_mm->start_stack;
1047 }
1048 
1049 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
1050 {
1051 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1052 
1053 	if (!maybe_stack)
1054 		return false;
1055 
1056 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1057 						VM_STACK_INCOMPLETE_SETUP)
1058 		return true;
1059 
1060 	return false;
1061 }
1062 
1063 static inline bool vma_is_foreign(struct vm_area_struct *vma)
1064 {
1065 	if (!current->mm)
1066 		return true;
1067 
1068 	if (current->mm != vma->vm_mm)
1069 		return true;
1070 
1071 	return false;
1072 }
1073 
1074 static inline bool vma_is_accessible(struct vm_area_struct *vma)
1075 {
1076 	return vma->vm_flags & VM_ACCESS_FLAGS;
1077 }
1078 
1079 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
1080 {
1081 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
1082 		(VM_SHARED | VM_MAYWRITE);
1083 }
1084 
1085 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
1086 {
1087 	return is_shared_maywrite(vma->vm_flags);
1088 }
1089 
1090 static inline
1091 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
1092 {
1093 	return mas_find(&vmi->mas, max - 1);
1094 }
1095 
1096 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
1097 {
1098 	/*
1099 	 * Uses mas_find() to get the first VMA when the iterator starts.
1100 	 * Calling mas_next() could skip the first entry.
1101 	 */
1102 	return mas_find(&vmi->mas, ULONG_MAX);
1103 }
1104 
1105 static inline
1106 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
1107 {
1108 	return mas_next_range(&vmi->mas, ULONG_MAX);
1109 }
1110 
1111 
1112 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1113 {
1114 	return mas_prev(&vmi->mas, 0);
1115 }
1116 
1117 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1118 			unsigned long start, unsigned long end, gfp_t gfp)
1119 {
1120 	__mas_set_range(&vmi->mas, start, end - 1);
1121 	mas_store_gfp(&vmi->mas, NULL, gfp);
1122 	if (unlikely(mas_is_err(&vmi->mas)))
1123 		return -ENOMEM;
1124 
1125 	return 0;
1126 }
1127 
1128 /* Free any unused preallocations */
1129 static inline void vma_iter_free(struct vma_iterator *vmi)
1130 {
1131 	mas_destroy(&vmi->mas);
1132 }
1133 
1134 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1135 				      struct vm_area_struct *vma)
1136 {
1137 	vmi->mas.index = vma->vm_start;
1138 	vmi->mas.last = vma->vm_end - 1;
1139 	mas_store(&vmi->mas, vma);
1140 	if (unlikely(mas_is_err(&vmi->mas)))
1141 		return -ENOMEM;
1142 
1143 	vma_mark_attached(vma);
1144 	return 0;
1145 }
1146 
1147 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1148 {
1149 	mas_pause(&vmi->mas);
1150 }
1151 
1152 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1153 {
1154 	mas_set(&vmi->mas, addr);
1155 }
1156 
1157 #define for_each_vma(__vmi, __vma)					\
1158 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1159 
1160 /* The MM code likes to work with exclusive end addresses */
1161 #define for_each_vma_range(__vmi, __vma, __end)				\
1162 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1163 
1164 #ifdef CONFIG_SHMEM
1165 /*
1166  * The vma_is_shmem is not inline because it is used only by slow
1167  * paths in userfault.
1168  */
1169 bool vma_is_shmem(struct vm_area_struct *vma);
1170 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1171 #else
1172 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1173 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1174 #endif
1175 
1176 int vma_is_stack_for_current(struct vm_area_struct *vma);
1177 
1178 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1179 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1180 
1181 struct mmu_gather;
1182 struct inode;
1183 
1184 extern void prep_compound_page(struct page *page, unsigned int order);
1185 
1186 static inline unsigned int folio_large_order(const struct folio *folio)
1187 {
1188 	return folio->_flags_1 & 0xff;
1189 }
1190 
1191 #ifdef NR_PAGES_IN_LARGE_FOLIO
1192 static inline long folio_large_nr_pages(const struct folio *folio)
1193 {
1194 	return folio->_nr_pages;
1195 }
1196 #else
1197 static inline long folio_large_nr_pages(const struct folio *folio)
1198 {
1199 	return 1L << folio_large_order(folio);
1200 }
1201 #endif
1202 
1203 /*
1204  * compound_order() can be called without holding a reference, which means
1205  * that niceties like page_folio() don't work.  These callers should be
1206  * prepared to handle wild return values.  For example, PG_head may be
1207  * set before the order is initialised, or this may be a tail page.
1208  * See compaction.c for some good examples.
1209  */
1210 static inline unsigned int compound_order(struct page *page)
1211 {
1212 	struct folio *folio = (struct folio *)page;
1213 
1214 	if (!test_bit(PG_head, &folio->flags))
1215 		return 0;
1216 	return folio_large_order(folio);
1217 }
1218 
1219 /**
1220  * folio_order - The allocation order of a folio.
1221  * @folio: The folio.
1222  *
1223  * A folio is composed of 2^order pages.  See get_order() for the definition
1224  * of order.
1225  *
1226  * Return: The order of the folio.
1227  */
1228 static inline unsigned int folio_order(const struct folio *folio)
1229 {
1230 	if (!folio_test_large(folio))
1231 		return 0;
1232 	return folio_large_order(folio);
1233 }
1234 
1235 #include <linux/huge_mm.h>
1236 
1237 /*
1238  * Methods to modify the page usage count.
1239  *
1240  * What counts for a page usage:
1241  * - cache mapping   (page->mapping)
1242  * - private data    (page->private)
1243  * - page mapped in a task's page tables, each mapping
1244  *   is counted separately
1245  *
1246  * Also, many kernel routines increase the page count before a critical
1247  * routine so they can be sure the page doesn't go away from under them.
1248  */
1249 
1250 /*
1251  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1252  */
1253 static inline int put_page_testzero(struct page *page)
1254 {
1255 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1256 	return page_ref_dec_and_test(page);
1257 }
1258 
1259 static inline int folio_put_testzero(struct folio *folio)
1260 {
1261 	return put_page_testzero(&folio->page);
1262 }
1263 
1264 /*
1265  * Try to grab a ref unless the page has a refcount of zero, return false if
1266  * that is the case.
1267  * This can be called when MMU is off so it must not access
1268  * any of the virtual mappings.
1269  */
1270 static inline bool get_page_unless_zero(struct page *page)
1271 {
1272 	return page_ref_add_unless(page, 1, 0);
1273 }
1274 
1275 static inline struct folio *folio_get_nontail_page(struct page *page)
1276 {
1277 	if (unlikely(!get_page_unless_zero(page)))
1278 		return NULL;
1279 	return (struct folio *)page;
1280 }
1281 
1282 extern int page_is_ram(unsigned long pfn);
1283 
1284 enum {
1285 	REGION_INTERSECTS,
1286 	REGION_DISJOINT,
1287 	REGION_MIXED,
1288 };
1289 
1290 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1291 		      unsigned long desc);
1292 
1293 /* Support for virtually mapped pages */
1294 struct page *vmalloc_to_page(const void *addr);
1295 unsigned long vmalloc_to_pfn(const void *addr);
1296 
1297 /*
1298  * Determine if an address is within the vmalloc range
1299  *
1300  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1301  * is no special casing required.
1302  */
1303 #ifdef CONFIG_MMU
1304 extern bool is_vmalloc_addr(const void *x);
1305 extern int is_vmalloc_or_module_addr(const void *x);
1306 #else
1307 static inline bool is_vmalloc_addr(const void *x)
1308 {
1309 	return false;
1310 }
1311 static inline int is_vmalloc_or_module_addr(const void *x)
1312 {
1313 	return 0;
1314 }
1315 #endif
1316 
1317 /*
1318  * How many times the entire folio is mapped as a single unit (eg by a
1319  * PMD or PUD entry).  This is probably not what you want, except for
1320  * debugging purposes or implementation of other core folio_*() primitives.
1321  */
1322 static inline int folio_entire_mapcount(const struct folio *folio)
1323 {
1324 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1325 	if (!IS_ENABLED(CONFIG_64BIT) && unlikely(folio_large_order(folio) == 1))
1326 		return 0;
1327 	return atomic_read(&folio->_entire_mapcount) + 1;
1328 }
1329 
1330 static inline int folio_large_mapcount(const struct folio *folio)
1331 {
1332 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1333 	return atomic_read(&folio->_large_mapcount) + 1;
1334 }
1335 
1336 /**
1337  * folio_mapcount() - Number of mappings of this folio.
1338  * @folio: The folio.
1339  *
1340  * The folio mapcount corresponds to the number of present user page table
1341  * entries that reference any part of a folio. Each such present user page
1342  * table entry must be paired with exactly on folio reference.
1343  *
1344  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1345  * exactly once.
1346  *
1347  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1348  * references the entire folio counts exactly once, even when such special
1349  * page table entries are comprised of multiple ordinary page table entries.
1350  *
1351  * Will report 0 for pages which cannot be mapped into userspace, such as
1352  * slab, page tables and similar.
1353  *
1354  * Return: The number of times this folio is mapped.
1355  */
1356 static inline int folio_mapcount(const struct folio *folio)
1357 {
1358 	int mapcount;
1359 
1360 	if (likely(!folio_test_large(folio))) {
1361 		mapcount = atomic_read(&folio->_mapcount) + 1;
1362 		if (page_mapcount_is_type(mapcount))
1363 			mapcount = 0;
1364 		return mapcount;
1365 	}
1366 	return folio_large_mapcount(folio);
1367 }
1368 
1369 /**
1370  * folio_mapped - Is this folio mapped into userspace?
1371  * @folio: The folio.
1372  *
1373  * Return: True if any page in this folio is referenced by user page tables.
1374  */
1375 static inline bool folio_mapped(const struct folio *folio)
1376 {
1377 	return folio_mapcount(folio) >= 1;
1378 }
1379 
1380 /*
1381  * Return true if this page is mapped into pagetables.
1382  * For compound page it returns true if any sub-page of compound page is mapped,
1383  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1384  */
1385 static inline bool page_mapped(const struct page *page)
1386 {
1387 	return folio_mapped(page_folio(page));
1388 }
1389 
1390 static inline struct page *virt_to_head_page(const void *x)
1391 {
1392 	struct page *page = virt_to_page(x);
1393 
1394 	return compound_head(page);
1395 }
1396 
1397 static inline struct folio *virt_to_folio(const void *x)
1398 {
1399 	struct page *page = virt_to_page(x);
1400 
1401 	return page_folio(page);
1402 }
1403 
1404 void __folio_put(struct folio *folio);
1405 
1406 void split_page(struct page *page, unsigned int order);
1407 void folio_copy(struct folio *dst, struct folio *src);
1408 int folio_mc_copy(struct folio *dst, struct folio *src);
1409 
1410 unsigned long nr_free_buffer_pages(void);
1411 
1412 /* Returns the number of bytes in this potentially compound page. */
1413 static inline unsigned long page_size(struct page *page)
1414 {
1415 	return PAGE_SIZE << compound_order(page);
1416 }
1417 
1418 /* Returns the number of bits needed for the number of bytes in a page */
1419 static inline unsigned int page_shift(struct page *page)
1420 {
1421 	return PAGE_SHIFT + compound_order(page);
1422 }
1423 
1424 /**
1425  * thp_order - Order of a transparent huge page.
1426  * @page: Head page of a transparent huge page.
1427  */
1428 static inline unsigned int thp_order(struct page *page)
1429 {
1430 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1431 	return compound_order(page);
1432 }
1433 
1434 /**
1435  * thp_size - Size of a transparent huge page.
1436  * @page: Head page of a transparent huge page.
1437  *
1438  * Return: Number of bytes in this page.
1439  */
1440 static inline unsigned long thp_size(struct page *page)
1441 {
1442 	return PAGE_SIZE << thp_order(page);
1443 }
1444 
1445 #ifdef CONFIG_MMU
1446 /*
1447  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1448  * servicing faults for write access.  In the normal case, do always want
1449  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1450  * that do not have writing enabled, when used by access_process_vm.
1451  */
1452 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1453 {
1454 	if (likely(vma->vm_flags & VM_WRITE))
1455 		pte = pte_mkwrite(pte, vma);
1456 	return pte;
1457 }
1458 
1459 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1460 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1461 		struct page *page, unsigned int nr, unsigned long addr);
1462 
1463 vm_fault_t finish_fault(struct vm_fault *vmf);
1464 #endif
1465 
1466 /*
1467  * Multiple processes may "see" the same page. E.g. for untouched
1468  * mappings of /dev/null, all processes see the same page full of
1469  * zeroes, and text pages of executables and shared libraries have
1470  * only one copy in memory, at most, normally.
1471  *
1472  * For the non-reserved pages, page_count(page) denotes a reference count.
1473  *   page_count() == 0 means the page is free. page->lru is then used for
1474  *   freelist management in the buddy allocator.
1475  *   page_count() > 0  means the page has been allocated.
1476  *
1477  * Pages are allocated by the slab allocator in order to provide memory
1478  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1479  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1480  * unless a particular usage is carefully commented. (the responsibility of
1481  * freeing the kmalloc memory is the caller's, of course).
1482  *
1483  * A page may be used by anyone else who does a __get_free_page().
1484  * In this case, page_count still tracks the references, and should only
1485  * be used through the normal accessor functions. The top bits of page->flags
1486  * and page->virtual store page management information, but all other fields
1487  * are unused and could be used privately, carefully. The management of this
1488  * page is the responsibility of the one who allocated it, and those who have
1489  * subsequently been given references to it.
1490  *
1491  * The other pages (we may call them "pagecache pages") are completely
1492  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1493  * The following discussion applies only to them.
1494  *
1495  * A pagecache page contains an opaque `private' member, which belongs to the
1496  * page's address_space. Usually, this is the address of a circular list of
1497  * the page's disk buffers. PG_private must be set to tell the VM to call
1498  * into the filesystem to release these pages.
1499  *
1500  * A page may belong to an inode's memory mapping. In this case, page->mapping
1501  * is the pointer to the inode, and page->index is the file offset of the page,
1502  * in units of PAGE_SIZE.
1503  *
1504  * If pagecache pages are not associated with an inode, they are said to be
1505  * anonymous pages. These may become associated with the swapcache, and in that
1506  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1507  *
1508  * In either case (swapcache or inode backed), the pagecache itself holds one
1509  * reference to the page. Setting PG_private should also increment the
1510  * refcount. The each user mapping also has a reference to the page.
1511  *
1512  * The pagecache pages are stored in a per-mapping radix tree, which is
1513  * rooted at mapping->i_pages, and indexed by offset.
1514  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1515  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1516  *
1517  * All pagecache pages may be subject to I/O:
1518  * - inode pages may need to be read from disk,
1519  * - inode pages which have been modified and are MAP_SHARED may need
1520  *   to be written back to the inode on disk,
1521  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1522  *   modified may need to be swapped out to swap space and (later) to be read
1523  *   back into memory.
1524  */
1525 
1526 /* 127: arbitrary random number, small enough to assemble well */
1527 #define folio_ref_zero_or_close_to_overflow(folio) \
1528 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1529 
1530 /**
1531  * folio_get - Increment the reference count on a folio.
1532  * @folio: The folio.
1533  *
1534  * Context: May be called in any context, as long as you know that
1535  * you have a refcount on the folio.  If you do not already have one,
1536  * folio_try_get() may be the right interface for you to use.
1537  */
1538 static inline void folio_get(struct folio *folio)
1539 {
1540 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1541 	folio_ref_inc(folio);
1542 }
1543 
1544 static inline void get_page(struct page *page)
1545 {
1546 	struct folio *folio = page_folio(page);
1547 	if (WARN_ON_ONCE(folio_test_slab(folio)))
1548 		return;
1549 	folio_get(folio);
1550 }
1551 
1552 static inline __must_check bool try_get_page(struct page *page)
1553 {
1554 	page = compound_head(page);
1555 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1556 		return false;
1557 	page_ref_inc(page);
1558 	return true;
1559 }
1560 
1561 /**
1562  * folio_put - Decrement the reference count on a folio.
1563  * @folio: The folio.
1564  *
1565  * If the folio's reference count reaches zero, the memory will be
1566  * released back to the page allocator and may be used by another
1567  * allocation immediately.  Do not access the memory or the struct folio
1568  * after calling folio_put() unless you can be sure that it wasn't the
1569  * last reference.
1570  *
1571  * Context: May be called in process or interrupt context, but not in NMI
1572  * context.  May be called while holding a spinlock.
1573  */
1574 static inline void folio_put(struct folio *folio)
1575 {
1576 	if (folio_put_testzero(folio))
1577 		__folio_put(folio);
1578 }
1579 
1580 /**
1581  * folio_put_refs - Reduce the reference count on a folio.
1582  * @folio: The folio.
1583  * @refs: The amount to subtract from the folio's reference count.
1584  *
1585  * If the folio's reference count reaches zero, the memory will be
1586  * released back to the page allocator and may be used by another
1587  * allocation immediately.  Do not access the memory or the struct folio
1588  * after calling folio_put_refs() unless you can be sure that these weren't
1589  * the last references.
1590  *
1591  * Context: May be called in process or interrupt context, but not in NMI
1592  * context.  May be called while holding a spinlock.
1593  */
1594 static inline void folio_put_refs(struct folio *folio, int refs)
1595 {
1596 	if (folio_ref_sub_and_test(folio, refs))
1597 		__folio_put(folio);
1598 }
1599 
1600 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1601 
1602 /*
1603  * union release_pages_arg - an array of pages or folios
1604  *
1605  * release_pages() releases a simple array of multiple pages, and
1606  * accepts various different forms of said page array: either
1607  * a regular old boring array of pages, an array of folios, or
1608  * an array of encoded page pointers.
1609  *
1610  * The transparent union syntax for this kind of "any of these
1611  * argument types" is all kinds of ugly, so look away.
1612  */
1613 typedef union {
1614 	struct page **pages;
1615 	struct folio **folios;
1616 	struct encoded_page **encoded_pages;
1617 } release_pages_arg __attribute__ ((__transparent_union__));
1618 
1619 void release_pages(release_pages_arg, int nr);
1620 
1621 /**
1622  * folios_put - Decrement the reference count on an array of folios.
1623  * @folios: The folios.
1624  *
1625  * Like folio_put(), but for a batch of folios.  This is more efficient
1626  * than writing the loop yourself as it will optimise the locks which need
1627  * to be taken if the folios are freed.  The folios batch is returned
1628  * empty and ready to be reused for another batch; there is no need to
1629  * reinitialise it.
1630  *
1631  * Context: May be called in process or interrupt context, but not in NMI
1632  * context.  May be called while holding a spinlock.
1633  */
1634 static inline void folios_put(struct folio_batch *folios)
1635 {
1636 	folios_put_refs(folios, NULL);
1637 }
1638 
1639 static inline void put_page(struct page *page)
1640 {
1641 	struct folio *folio = page_folio(page);
1642 
1643 	if (folio_test_slab(folio))
1644 		return;
1645 
1646 	folio_put(folio);
1647 }
1648 
1649 /*
1650  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1651  * the page's refcount so that two separate items are tracked: the original page
1652  * reference count, and also a new count of how many pin_user_pages() calls were
1653  * made against the page. ("gup-pinned" is another term for the latter).
1654  *
1655  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1656  * distinct from normal pages. As such, the unpin_user_page() call (and its
1657  * variants) must be used in order to release gup-pinned pages.
1658  *
1659  * Choice of value:
1660  *
1661  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1662  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1663  * simpler, due to the fact that adding an even power of two to the page
1664  * refcount has the effect of using only the upper N bits, for the code that
1665  * counts up using the bias value. This means that the lower bits are left for
1666  * the exclusive use of the original code that increments and decrements by one
1667  * (or at least, by much smaller values than the bias value).
1668  *
1669  * Of course, once the lower bits overflow into the upper bits (and this is
1670  * OK, because subtraction recovers the original values), then visual inspection
1671  * no longer suffices to directly view the separate counts. However, for normal
1672  * applications that don't have huge page reference counts, this won't be an
1673  * issue.
1674  *
1675  * Locking: the lockless algorithm described in folio_try_get_rcu()
1676  * provides safe operation for get_user_pages(), folio_mkclean() and
1677  * other calls that race to set up page table entries.
1678  */
1679 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1680 
1681 void unpin_user_page(struct page *page);
1682 void unpin_folio(struct folio *folio);
1683 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1684 				 bool make_dirty);
1685 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1686 				      bool make_dirty);
1687 void unpin_user_pages(struct page **pages, unsigned long npages);
1688 void unpin_user_folio(struct folio *folio, unsigned long npages);
1689 void unpin_folios(struct folio **folios, unsigned long nfolios);
1690 
1691 static inline bool is_cow_mapping(vm_flags_t flags)
1692 {
1693 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1694 }
1695 
1696 #ifndef CONFIG_MMU
1697 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1698 {
1699 	/*
1700 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1701 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1702 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1703 	 * underlying memory if ptrace is active, so this is only possible if
1704 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1705 	 * write permissions later.
1706 	 */
1707 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1708 }
1709 #endif
1710 
1711 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1712 #define SECTION_IN_PAGE_FLAGS
1713 #endif
1714 
1715 /*
1716  * The identification function is mainly used by the buddy allocator for
1717  * determining if two pages could be buddies. We are not really identifying
1718  * the zone since we could be using the section number id if we do not have
1719  * node id available in page flags.
1720  * We only guarantee that it will return the same value for two combinable
1721  * pages in a zone.
1722  */
1723 static inline int page_zone_id(struct page *page)
1724 {
1725 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1726 }
1727 
1728 #ifdef NODE_NOT_IN_PAGE_FLAGS
1729 int page_to_nid(const struct page *page);
1730 #else
1731 static inline int page_to_nid(const struct page *page)
1732 {
1733 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1734 }
1735 #endif
1736 
1737 static inline int folio_nid(const struct folio *folio)
1738 {
1739 	return page_to_nid(&folio->page);
1740 }
1741 
1742 #ifdef CONFIG_NUMA_BALANCING
1743 /* page access time bits needs to hold at least 4 seconds */
1744 #define PAGE_ACCESS_TIME_MIN_BITS	12
1745 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1746 #define PAGE_ACCESS_TIME_BUCKETS				\
1747 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1748 #else
1749 #define PAGE_ACCESS_TIME_BUCKETS	0
1750 #endif
1751 
1752 #define PAGE_ACCESS_TIME_MASK				\
1753 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1754 
1755 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1756 {
1757 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1758 }
1759 
1760 static inline int cpupid_to_pid(int cpupid)
1761 {
1762 	return cpupid & LAST__PID_MASK;
1763 }
1764 
1765 static inline int cpupid_to_cpu(int cpupid)
1766 {
1767 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1768 }
1769 
1770 static inline int cpupid_to_nid(int cpupid)
1771 {
1772 	return cpu_to_node(cpupid_to_cpu(cpupid));
1773 }
1774 
1775 static inline bool cpupid_pid_unset(int cpupid)
1776 {
1777 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1778 }
1779 
1780 static inline bool cpupid_cpu_unset(int cpupid)
1781 {
1782 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1783 }
1784 
1785 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1786 {
1787 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1788 }
1789 
1790 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1791 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1792 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1793 {
1794 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1795 }
1796 
1797 static inline int folio_last_cpupid(struct folio *folio)
1798 {
1799 	return folio->_last_cpupid;
1800 }
1801 static inline void page_cpupid_reset_last(struct page *page)
1802 {
1803 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1804 }
1805 #else
1806 static inline int folio_last_cpupid(struct folio *folio)
1807 {
1808 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1809 }
1810 
1811 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1812 
1813 static inline void page_cpupid_reset_last(struct page *page)
1814 {
1815 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1816 }
1817 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1818 
1819 static inline int folio_xchg_access_time(struct folio *folio, int time)
1820 {
1821 	int last_time;
1822 
1823 	last_time = folio_xchg_last_cpupid(folio,
1824 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1825 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1826 }
1827 
1828 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1829 {
1830 	unsigned int pid_bit;
1831 
1832 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1833 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1834 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1835 	}
1836 }
1837 
1838 bool folio_use_access_time(struct folio *folio);
1839 #else /* !CONFIG_NUMA_BALANCING */
1840 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1841 {
1842 	return folio_nid(folio); /* XXX */
1843 }
1844 
1845 static inline int folio_xchg_access_time(struct folio *folio, int time)
1846 {
1847 	return 0;
1848 }
1849 
1850 static inline int folio_last_cpupid(struct folio *folio)
1851 {
1852 	return folio_nid(folio); /* XXX */
1853 }
1854 
1855 static inline int cpupid_to_nid(int cpupid)
1856 {
1857 	return -1;
1858 }
1859 
1860 static inline int cpupid_to_pid(int cpupid)
1861 {
1862 	return -1;
1863 }
1864 
1865 static inline int cpupid_to_cpu(int cpupid)
1866 {
1867 	return -1;
1868 }
1869 
1870 static inline int cpu_pid_to_cpupid(int nid, int pid)
1871 {
1872 	return -1;
1873 }
1874 
1875 static inline bool cpupid_pid_unset(int cpupid)
1876 {
1877 	return true;
1878 }
1879 
1880 static inline void page_cpupid_reset_last(struct page *page)
1881 {
1882 }
1883 
1884 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1885 {
1886 	return false;
1887 }
1888 
1889 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1890 {
1891 }
1892 static inline bool folio_use_access_time(struct folio *folio)
1893 {
1894 	return false;
1895 }
1896 #endif /* CONFIG_NUMA_BALANCING */
1897 
1898 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1899 
1900 /*
1901  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1902  * setting tags for all pages to native kernel tag value 0xff, as the default
1903  * value 0x00 maps to 0xff.
1904  */
1905 
1906 static inline u8 page_kasan_tag(const struct page *page)
1907 {
1908 	u8 tag = KASAN_TAG_KERNEL;
1909 
1910 	if (kasan_enabled()) {
1911 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1912 		tag ^= 0xff;
1913 	}
1914 
1915 	return tag;
1916 }
1917 
1918 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1919 {
1920 	unsigned long old_flags, flags;
1921 
1922 	if (!kasan_enabled())
1923 		return;
1924 
1925 	tag ^= 0xff;
1926 	old_flags = READ_ONCE(page->flags);
1927 	do {
1928 		flags = old_flags;
1929 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1930 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1931 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1932 }
1933 
1934 static inline void page_kasan_tag_reset(struct page *page)
1935 {
1936 	if (kasan_enabled())
1937 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1938 }
1939 
1940 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1941 
1942 static inline u8 page_kasan_tag(const struct page *page)
1943 {
1944 	return 0xff;
1945 }
1946 
1947 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1948 static inline void page_kasan_tag_reset(struct page *page) { }
1949 
1950 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1951 
1952 static inline struct zone *page_zone(const struct page *page)
1953 {
1954 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1955 }
1956 
1957 static inline pg_data_t *page_pgdat(const struct page *page)
1958 {
1959 	return NODE_DATA(page_to_nid(page));
1960 }
1961 
1962 static inline struct zone *folio_zone(const struct folio *folio)
1963 {
1964 	return page_zone(&folio->page);
1965 }
1966 
1967 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1968 {
1969 	return page_pgdat(&folio->page);
1970 }
1971 
1972 #ifdef SECTION_IN_PAGE_FLAGS
1973 static inline void set_page_section(struct page *page, unsigned long section)
1974 {
1975 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1976 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1977 }
1978 
1979 static inline unsigned long page_to_section(const struct page *page)
1980 {
1981 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1982 }
1983 #endif
1984 
1985 /**
1986  * folio_pfn - Return the Page Frame Number of a folio.
1987  * @folio: The folio.
1988  *
1989  * A folio may contain multiple pages.  The pages have consecutive
1990  * Page Frame Numbers.
1991  *
1992  * Return: The Page Frame Number of the first page in the folio.
1993  */
1994 static inline unsigned long folio_pfn(const struct folio *folio)
1995 {
1996 	return page_to_pfn(&folio->page);
1997 }
1998 
1999 static inline struct folio *pfn_folio(unsigned long pfn)
2000 {
2001 	return page_folio(pfn_to_page(pfn));
2002 }
2003 
2004 static inline bool folio_has_pincount(const struct folio *folio)
2005 {
2006 	if (IS_ENABLED(CONFIG_64BIT))
2007 		return folio_test_large(folio);
2008 	return folio_order(folio) > 1;
2009 }
2010 
2011 /**
2012  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
2013  * @folio: The folio.
2014  *
2015  * This function checks if a folio has been pinned via a call to
2016  * a function in the pin_user_pages() family.
2017  *
2018  * For small folios, the return value is partially fuzzy: false is not fuzzy,
2019  * because it means "definitely not pinned for DMA", but true means "probably
2020  * pinned for DMA, but possibly a false positive due to having at least
2021  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
2022  *
2023  * False positives are OK, because: a) it's unlikely for a folio to
2024  * get that many refcounts, and b) all the callers of this routine are
2025  * expected to be able to deal gracefully with a false positive.
2026  *
2027  * For most large folios, the result will be exactly correct. That's because
2028  * we have more tracking data available: the _pincount field is used
2029  * instead of the GUP_PIN_COUNTING_BIAS scheme.
2030  *
2031  * For more information, please see Documentation/core-api/pin_user_pages.rst.
2032  *
2033  * Return: True, if it is likely that the folio has been "dma-pinned".
2034  * False, if the folio is definitely not dma-pinned.
2035  */
2036 static inline bool folio_maybe_dma_pinned(struct folio *folio)
2037 {
2038 	if (folio_has_pincount(folio))
2039 		return atomic_read(&folio->_pincount) > 0;
2040 
2041 	/*
2042 	 * folio_ref_count() is signed. If that refcount overflows, then
2043 	 * folio_ref_count() returns a negative value, and callers will avoid
2044 	 * further incrementing the refcount.
2045 	 *
2046 	 * Here, for that overflow case, use the sign bit to count a little
2047 	 * bit higher via unsigned math, and thus still get an accurate result.
2048 	 */
2049 	return ((unsigned int)folio_ref_count(folio)) >=
2050 		GUP_PIN_COUNTING_BIAS;
2051 }
2052 
2053 /*
2054  * This should most likely only be called during fork() to see whether we
2055  * should break the cow immediately for an anon page on the src mm.
2056  *
2057  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
2058  */
2059 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
2060 					  struct folio *folio)
2061 {
2062 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
2063 
2064 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
2065 		return false;
2066 
2067 	return folio_maybe_dma_pinned(folio);
2068 }
2069 
2070 /**
2071  * is_zero_page - Query if a page is a zero page
2072  * @page: The page to query
2073  *
2074  * This returns true if @page is one of the permanent zero pages.
2075  */
2076 static inline bool is_zero_page(const struct page *page)
2077 {
2078 	return is_zero_pfn(page_to_pfn(page));
2079 }
2080 
2081 /**
2082  * is_zero_folio - Query if a folio is a zero page
2083  * @folio: The folio to query
2084  *
2085  * This returns true if @folio is one of the permanent zero pages.
2086  */
2087 static inline bool is_zero_folio(const struct folio *folio)
2088 {
2089 	return is_zero_page(&folio->page);
2090 }
2091 
2092 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2093 #ifdef CONFIG_MIGRATION
2094 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2095 {
2096 #ifdef CONFIG_CMA
2097 	int mt = folio_migratetype(folio);
2098 
2099 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2100 		return false;
2101 #endif
2102 	/* The zero page can be "pinned" but gets special handling. */
2103 	if (is_zero_folio(folio))
2104 		return true;
2105 
2106 	/* Coherent device memory must always allow eviction. */
2107 	if (folio_is_device_coherent(folio))
2108 		return false;
2109 
2110 	/*
2111 	 * Filesystems can only tolerate transient delays to truncate and
2112 	 * hole-punch operations
2113 	 */
2114 	if (folio_is_fsdax(folio))
2115 		return false;
2116 
2117 	/* Otherwise, non-movable zone folios can be pinned. */
2118 	return !folio_is_zone_movable(folio);
2119 
2120 }
2121 #else
2122 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2123 {
2124 	return true;
2125 }
2126 #endif
2127 
2128 static inline void set_page_zone(struct page *page, enum zone_type zone)
2129 {
2130 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2131 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2132 }
2133 
2134 static inline void set_page_node(struct page *page, unsigned long node)
2135 {
2136 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2137 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2138 }
2139 
2140 static inline void set_page_links(struct page *page, enum zone_type zone,
2141 	unsigned long node, unsigned long pfn)
2142 {
2143 	set_page_zone(page, zone);
2144 	set_page_node(page, node);
2145 #ifdef SECTION_IN_PAGE_FLAGS
2146 	set_page_section(page, pfn_to_section_nr(pfn));
2147 #endif
2148 }
2149 
2150 /**
2151  * folio_nr_pages - The number of pages in the folio.
2152  * @folio: The folio.
2153  *
2154  * Return: A positive power of two.
2155  */
2156 static inline long folio_nr_pages(const struct folio *folio)
2157 {
2158 	if (!folio_test_large(folio))
2159 		return 1;
2160 	return folio_large_nr_pages(folio);
2161 }
2162 
2163 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2164 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2165 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2166 #else
2167 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2168 #endif
2169 
2170 /*
2171  * compound_nr() returns the number of pages in this potentially compound
2172  * page.  compound_nr() can be called on a tail page, and is defined to
2173  * return 1 in that case.
2174  */
2175 static inline long compound_nr(struct page *page)
2176 {
2177 	struct folio *folio = (struct folio *)page;
2178 
2179 	if (!test_bit(PG_head, &folio->flags))
2180 		return 1;
2181 	return folio_large_nr_pages(folio);
2182 }
2183 
2184 /**
2185  * thp_nr_pages - The number of regular pages in this huge page.
2186  * @page: The head page of a huge page.
2187  */
2188 static inline long thp_nr_pages(struct page *page)
2189 {
2190 	return folio_nr_pages((struct folio *)page);
2191 }
2192 
2193 /**
2194  * folio_next - Move to the next physical folio.
2195  * @folio: The folio we're currently operating on.
2196  *
2197  * If you have physically contiguous memory which may span more than
2198  * one folio (eg a &struct bio_vec), use this function to move from one
2199  * folio to the next.  Do not use it if the memory is only virtually
2200  * contiguous as the folios are almost certainly not adjacent to each
2201  * other.  This is the folio equivalent to writing ``page++``.
2202  *
2203  * Context: We assume that the folios are refcounted and/or locked at a
2204  * higher level and do not adjust the reference counts.
2205  * Return: The next struct folio.
2206  */
2207 static inline struct folio *folio_next(struct folio *folio)
2208 {
2209 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2210 }
2211 
2212 /**
2213  * folio_shift - The size of the memory described by this folio.
2214  * @folio: The folio.
2215  *
2216  * A folio represents a number of bytes which is a power-of-two in size.
2217  * This function tells you which power-of-two the folio is.  See also
2218  * folio_size() and folio_order().
2219  *
2220  * Context: The caller should have a reference on the folio to prevent
2221  * it from being split.  It is not necessary for the folio to be locked.
2222  * Return: The base-2 logarithm of the size of this folio.
2223  */
2224 static inline unsigned int folio_shift(const struct folio *folio)
2225 {
2226 	return PAGE_SHIFT + folio_order(folio);
2227 }
2228 
2229 /**
2230  * folio_size - The number of bytes in a folio.
2231  * @folio: The folio.
2232  *
2233  * Context: The caller should have a reference on the folio to prevent
2234  * it from being split.  It is not necessary for the folio to be locked.
2235  * Return: The number of bytes in this folio.
2236  */
2237 static inline size_t folio_size(const struct folio *folio)
2238 {
2239 	return PAGE_SIZE << folio_order(folio);
2240 }
2241 
2242 /**
2243  * folio_maybe_mapped_shared - Whether the folio is mapped into the page
2244  *			       tables of more than one MM
2245  * @folio: The folio.
2246  *
2247  * This function checks if the folio maybe currently mapped into more than one
2248  * MM ("maybe mapped shared"), or if the folio is certainly mapped into a single
2249  * MM ("mapped exclusively").
2250  *
2251  * For KSM folios, this function also returns "mapped shared" when a folio is
2252  * mapped multiple times into the same MM, because the individual page mappings
2253  * are independent.
2254  *
2255  * For small anonymous folios and anonymous hugetlb folios, the return
2256  * value will be exactly correct: non-KSM folios can only be mapped at most once
2257  * into an MM, and they cannot be partially mapped. KSM folios are
2258  * considered shared even if mapped multiple times into the same MM.
2259  *
2260  * For other folios, the result can be fuzzy:
2261  *    #. For partially-mappable large folios (THP), the return value can wrongly
2262  *       indicate "mapped shared" (false positive) if a folio was mapped by
2263  *       more than two MMs at one point in time.
2264  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2265  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2266  *       cover the same file range.
2267  *
2268  * Further, this function only considers current page table mappings that
2269  * are tracked using the folio mapcount(s).
2270  *
2271  * This function does not consider:
2272  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2273  *       pagecache, temporary unmapping for migration).
2274  *    #. If the folio is mapped differently (VM_PFNMAP).
2275  *    #. If hugetlb page table sharing applies. Callers might want to check
2276  *       hugetlb_pmd_shared().
2277  *
2278  * Return: Whether the folio is estimated to be mapped into more than one MM.
2279  */
2280 static inline bool folio_maybe_mapped_shared(struct folio *folio)
2281 {
2282 	int mapcount = folio_mapcount(folio);
2283 
2284 	/* Only partially-mappable folios require more care. */
2285 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2286 		return mapcount > 1;
2287 
2288 	/*
2289 	 * vm_insert_page() without CONFIG_TRANSPARENT_HUGEPAGE ...
2290 	 * simply assume "mapped shared", nobody should really care
2291 	 * about this for arbitrary kernel allocations.
2292 	 */
2293 	if (!IS_ENABLED(CONFIG_MM_ID))
2294 		return true;
2295 
2296 	/*
2297 	 * A single mapping implies "mapped exclusively", even if the
2298 	 * folio flag says something different: it's easier to handle this
2299 	 * case here instead of on the RMAP hot path.
2300 	 */
2301 	if (mapcount <= 1)
2302 		return false;
2303 	return folio_test_large_maybe_mapped_shared(folio);
2304 }
2305 
2306 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2307 static inline int arch_make_folio_accessible(struct folio *folio)
2308 {
2309 	return 0;
2310 }
2311 #endif
2312 
2313 /*
2314  * Some inline functions in vmstat.h depend on page_zone()
2315  */
2316 #include <linux/vmstat.h>
2317 
2318 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2319 #define HASHED_PAGE_VIRTUAL
2320 #endif
2321 
2322 #if defined(WANT_PAGE_VIRTUAL)
2323 static inline void *page_address(const struct page *page)
2324 {
2325 	return page->virtual;
2326 }
2327 static inline void set_page_address(struct page *page, void *address)
2328 {
2329 	page->virtual = address;
2330 }
2331 #define page_address_init()  do { } while(0)
2332 #endif
2333 
2334 #if defined(HASHED_PAGE_VIRTUAL)
2335 void *page_address(const struct page *page);
2336 void set_page_address(struct page *page, void *virtual);
2337 void page_address_init(void);
2338 #endif
2339 
2340 static __always_inline void *lowmem_page_address(const struct page *page)
2341 {
2342 	return page_to_virt(page);
2343 }
2344 
2345 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2346 #define page_address(page) lowmem_page_address(page)
2347 #define set_page_address(page, address)  do { } while(0)
2348 #define page_address_init()  do { } while(0)
2349 #endif
2350 
2351 static inline void *folio_address(const struct folio *folio)
2352 {
2353 	return page_address(&folio->page);
2354 }
2355 
2356 /*
2357  * Return true only if the page has been allocated with
2358  * ALLOC_NO_WATERMARKS and the low watermark was not
2359  * met implying that the system is under some pressure.
2360  */
2361 static inline bool page_is_pfmemalloc(const struct page *page)
2362 {
2363 	/*
2364 	 * lru.next has bit 1 set if the page is allocated from the
2365 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2366 	 * they do not need to preserve that information.
2367 	 */
2368 	return (uintptr_t)page->lru.next & BIT(1);
2369 }
2370 
2371 /*
2372  * Return true only if the folio has been allocated with
2373  * ALLOC_NO_WATERMARKS and the low watermark was not
2374  * met implying that the system is under some pressure.
2375  */
2376 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2377 {
2378 	/*
2379 	 * lru.next has bit 1 set if the page is allocated from the
2380 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2381 	 * they do not need to preserve that information.
2382 	 */
2383 	return (uintptr_t)folio->lru.next & BIT(1);
2384 }
2385 
2386 /*
2387  * Only to be called by the page allocator on a freshly allocated
2388  * page.
2389  */
2390 static inline void set_page_pfmemalloc(struct page *page)
2391 {
2392 	page->lru.next = (void *)BIT(1);
2393 }
2394 
2395 static inline void clear_page_pfmemalloc(struct page *page)
2396 {
2397 	page->lru.next = NULL;
2398 }
2399 
2400 /*
2401  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2402  */
2403 extern void pagefault_out_of_memory(void);
2404 
2405 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2406 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2407 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2408 
2409 /*
2410  * Parameter block passed down to zap_pte_range in exceptional cases.
2411  */
2412 struct zap_details {
2413 	struct folio *single_folio;	/* Locked folio to be unmapped */
2414 	bool even_cows;			/* Zap COWed private pages too? */
2415 	bool reclaim_pt;		/* Need reclaim page tables? */
2416 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2417 };
2418 
2419 /*
2420  * Whether to drop the pte markers, for example, the uffd-wp information for
2421  * file-backed memory.  This should only be specified when we will completely
2422  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2423  * default, the flag is not set.
2424  */
2425 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2426 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2427 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2428 
2429 #ifdef CONFIG_SCHED_MM_CID
2430 void sched_mm_cid_before_execve(struct task_struct *t);
2431 void sched_mm_cid_after_execve(struct task_struct *t);
2432 void sched_mm_cid_fork(struct task_struct *t);
2433 void sched_mm_cid_exit_signals(struct task_struct *t);
2434 static inline int task_mm_cid(struct task_struct *t)
2435 {
2436 	return t->mm_cid;
2437 }
2438 #else
2439 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2440 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2441 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2442 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2443 static inline int task_mm_cid(struct task_struct *t)
2444 {
2445 	/*
2446 	 * Use the processor id as a fall-back when the mm cid feature is
2447 	 * disabled. This provides functional per-cpu data structure accesses
2448 	 * in user-space, althrough it won't provide the memory usage benefits.
2449 	 */
2450 	return raw_smp_processor_id();
2451 }
2452 #endif
2453 
2454 #ifdef CONFIG_MMU
2455 extern bool can_do_mlock(void);
2456 #else
2457 static inline bool can_do_mlock(void) { return false; }
2458 #endif
2459 extern int user_shm_lock(size_t, struct ucounts *);
2460 extern void user_shm_unlock(size_t, struct ucounts *);
2461 
2462 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2463 			     pte_t pte);
2464 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2465 			     pte_t pte);
2466 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2467 				  unsigned long addr, pmd_t pmd);
2468 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2469 				pmd_t pmd);
2470 
2471 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2472 		  unsigned long size);
2473 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2474 			   unsigned long size, struct zap_details *details);
2475 static inline void zap_vma_pages(struct vm_area_struct *vma)
2476 {
2477 	zap_page_range_single(vma, vma->vm_start,
2478 			      vma->vm_end - vma->vm_start, NULL);
2479 }
2480 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2481 		struct vm_area_struct *start_vma, unsigned long start,
2482 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2483 
2484 struct mmu_notifier_range;
2485 
2486 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2487 		unsigned long end, unsigned long floor, unsigned long ceiling);
2488 int
2489 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2490 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2491 			void *buf, int len, int write);
2492 
2493 struct follow_pfnmap_args {
2494 	/**
2495 	 * Inputs:
2496 	 * @vma: Pointer to @vm_area_struct struct
2497 	 * @address: the virtual address to walk
2498 	 */
2499 	struct vm_area_struct *vma;
2500 	unsigned long address;
2501 	/**
2502 	 * Internals:
2503 	 *
2504 	 * The caller shouldn't touch any of these.
2505 	 */
2506 	spinlock_t *lock;
2507 	pte_t *ptep;
2508 	/**
2509 	 * Outputs:
2510 	 *
2511 	 * @pfn: the PFN of the address
2512 	 * @pgprot: the pgprot_t of the mapping
2513 	 * @writable: whether the mapping is writable
2514 	 * @special: whether the mapping is a special mapping (real PFN maps)
2515 	 */
2516 	unsigned long pfn;
2517 	pgprot_t pgprot;
2518 	bool writable;
2519 	bool special;
2520 };
2521 int follow_pfnmap_start(struct follow_pfnmap_args *args);
2522 void follow_pfnmap_end(struct follow_pfnmap_args *args);
2523 
2524 extern void truncate_pagecache(struct inode *inode, loff_t new);
2525 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2526 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2527 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2528 int generic_error_remove_folio(struct address_space *mapping,
2529 		struct folio *folio);
2530 
2531 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2532 		unsigned long address, struct pt_regs *regs);
2533 
2534 #ifdef CONFIG_MMU
2535 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2536 				  unsigned long address, unsigned int flags,
2537 				  struct pt_regs *regs);
2538 extern int fixup_user_fault(struct mm_struct *mm,
2539 			    unsigned long address, unsigned int fault_flags,
2540 			    bool *unlocked);
2541 void unmap_mapping_pages(struct address_space *mapping,
2542 		pgoff_t start, pgoff_t nr, bool even_cows);
2543 void unmap_mapping_range(struct address_space *mapping,
2544 		loff_t const holebegin, loff_t const holelen, int even_cows);
2545 #else
2546 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2547 					 unsigned long address, unsigned int flags,
2548 					 struct pt_regs *regs)
2549 {
2550 	/* should never happen if there's no MMU */
2551 	BUG();
2552 	return VM_FAULT_SIGBUS;
2553 }
2554 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2555 		unsigned int fault_flags, bool *unlocked)
2556 {
2557 	/* should never happen if there's no MMU */
2558 	BUG();
2559 	return -EFAULT;
2560 }
2561 static inline void unmap_mapping_pages(struct address_space *mapping,
2562 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2563 static inline void unmap_mapping_range(struct address_space *mapping,
2564 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2565 #endif
2566 
2567 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2568 		loff_t const holebegin, loff_t const holelen)
2569 {
2570 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2571 }
2572 
2573 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2574 						unsigned long addr);
2575 
2576 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2577 		void *buf, int len, unsigned int gup_flags);
2578 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2579 		void *buf, int len, unsigned int gup_flags);
2580 
2581 long get_user_pages_remote(struct mm_struct *mm,
2582 			   unsigned long start, unsigned long nr_pages,
2583 			   unsigned int gup_flags, struct page **pages,
2584 			   int *locked);
2585 long pin_user_pages_remote(struct mm_struct *mm,
2586 			   unsigned long start, unsigned long nr_pages,
2587 			   unsigned int gup_flags, struct page **pages,
2588 			   int *locked);
2589 
2590 /*
2591  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2592  */
2593 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2594 						    unsigned long addr,
2595 						    int gup_flags,
2596 						    struct vm_area_struct **vmap)
2597 {
2598 	struct page *page;
2599 	struct vm_area_struct *vma;
2600 	int got;
2601 
2602 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2603 		return ERR_PTR(-EINVAL);
2604 
2605 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2606 
2607 	if (got < 0)
2608 		return ERR_PTR(got);
2609 
2610 	vma = vma_lookup(mm, addr);
2611 	if (WARN_ON_ONCE(!vma)) {
2612 		put_page(page);
2613 		return ERR_PTR(-EINVAL);
2614 	}
2615 
2616 	*vmap = vma;
2617 	return page;
2618 }
2619 
2620 long get_user_pages(unsigned long start, unsigned long nr_pages,
2621 		    unsigned int gup_flags, struct page **pages);
2622 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2623 		    unsigned int gup_flags, struct page **pages);
2624 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2625 		    struct page **pages, unsigned int gup_flags);
2626 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2627 		    struct page **pages, unsigned int gup_flags);
2628 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2629 		      struct folio **folios, unsigned int max_folios,
2630 		      pgoff_t *offset);
2631 int folio_add_pins(struct folio *folio, unsigned int pins);
2632 
2633 int get_user_pages_fast(unsigned long start, int nr_pages,
2634 			unsigned int gup_flags, struct page **pages);
2635 int pin_user_pages_fast(unsigned long start, int nr_pages,
2636 			unsigned int gup_flags, struct page **pages);
2637 void folio_add_pin(struct folio *folio);
2638 
2639 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2640 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2641 			struct task_struct *task, bool bypass_rlim);
2642 
2643 struct kvec;
2644 struct page *get_dump_page(unsigned long addr);
2645 
2646 bool folio_mark_dirty(struct folio *folio);
2647 bool folio_mark_dirty_lock(struct folio *folio);
2648 bool set_page_dirty(struct page *page);
2649 int set_page_dirty_lock(struct page *page);
2650 
2651 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2652 
2653 /*
2654  * Flags used by change_protection().  For now we make it a bitmap so
2655  * that we can pass in multiple flags just like parameters.  However
2656  * for now all the callers are only use one of the flags at the same
2657  * time.
2658  */
2659 /*
2660  * Whether we should manually check if we can map individual PTEs writable,
2661  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2662  * PTEs automatically in a writable mapping.
2663  */
2664 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2665 /* Whether this protection change is for NUMA hints */
2666 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2667 /* Whether this change is for write protecting */
2668 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2669 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2670 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2671 					    MM_CP_UFFD_WP_RESOLVE)
2672 
2673 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2674 			     pte_t pte);
2675 extern long change_protection(struct mmu_gather *tlb,
2676 			      struct vm_area_struct *vma, unsigned long start,
2677 			      unsigned long end, unsigned long cp_flags);
2678 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2679 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2680 	  unsigned long start, unsigned long end, unsigned long newflags);
2681 
2682 /*
2683  * doesn't attempt to fault and will return short.
2684  */
2685 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2686 			     unsigned int gup_flags, struct page **pages);
2687 
2688 static inline bool get_user_page_fast_only(unsigned long addr,
2689 			unsigned int gup_flags, struct page **pagep)
2690 {
2691 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2692 }
2693 /*
2694  * per-process(per-mm_struct) statistics.
2695  */
2696 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2697 {
2698 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2699 }
2700 
2701 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2702 
2703 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2704 {
2705 	percpu_counter_add(&mm->rss_stat[member], value);
2706 
2707 	mm_trace_rss_stat(mm, member);
2708 }
2709 
2710 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2711 {
2712 	percpu_counter_inc(&mm->rss_stat[member]);
2713 
2714 	mm_trace_rss_stat(mm, member);
2715 }
2716 
2717 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2718 {
2719 	percpu_counter_dec(&mm->rss_stat[member]);
2720 
2721 	mm_trace_rss_stat(mm, member);
2722 }
2723 
2724 /* Optimized variant when folio is already known not to be anon */
2725 static inline int mm_counter_file(struct folio *folio)
2726 {
2727 	if (folio_test_swapbacked(folio))
2728 		return MM_SHMEMPAGES;
2729 	return MM_FILEPAGES;
2730 }
2731 
2732 static inline int mm_counter(struct folio *folio)
2733 {
2734 	if (folio_test_anon(folio))
2735 		return MM_ANONPAGES;
2736 	return mm_counter_file(folio);
2737 }
2738 
2739 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2740 {
2741 	return get_mm_counter(mm, MM_FILEPAGES) +
2742 		get_mm_counter(mm, MM_ANONPAGES) +
2743 		get_mm_counter(mm, MM_SHMEMPAGES);
2744 }
2745 
2746 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2747 {
2748 	return max(mm->hiwater_rss, get_mm_rss(mm));
2749 }
2750 
2751 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2752 {
2753 	return max(mm->hiwater_vm, mm->total_vm);
2754 }
2755 
2756 static inline void update_hiwater_rss(struct mm_struct *mm)
2757 {
2758 	unsigned long _rss = get_mm_rss(mm);
2759 
2760 	if ((mm)->hiwater_rss < _rss)
2761 		(mm)->hiwater_rss = _rss;
2762 }
2763 
2764 static inline void update_hiwater_vm(struct mm_struct *mm)
2765 {
2766 	if (mm->hiwater_vm < mm->total_vm)
2767 		mm->hiwater_vm = mm->total_vm;
2768 }
2769 
2770 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2771 {
2772 	mm->hiwater_rss = get_mm_rss(mm);
2773 }
2774 
2775 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2776 					 struct mm_struct *mm)
2777 {
2778 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2779 
2780 	if (*maxrss < hiwater_rss)
2781 		*maxrss = hiwater_rss;
2782 }
2783 
2784 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2785 static inline int pte_special(pte_t pte)
2786 {
2787 	return 0;
2788 }
2789 
2790 static inline pte_t pte_mkspecial(pte_t pte)
2791 {
2792 	return pte;
2793 }
2794 #endif
2795 
2796 #ifndef CONFIG_ARCH_SUPPORTS_PMD_PFNMAP
2797 static inline bool pmd_special(pmd_t pmd)
2798 {
2799 	return false;
2800 }
2801 
2802 static inline pmd_t pmd_mkspecial(pmd_t pmd)
2803 {
2804 	return pmd;
2805 }
2806 #endif	/* CONFIG_ARCH_SUPPORTS_PMD_PFNMAP */
2807 
2808 #ifndef CONFIG_ARCH_SUPPORTS_PUD_PFNMAP
2809 static inline bool pud_special(pud_t pud)
2810 {
2811 	return false;
2812 }
2813 
2814 static inline pud_t pud_mkspecial(pud_t pud)
2815 {
2816 	return pud;
2817 }
2818 #endif	/* CONFIG_ARCH_SUPPORTS_PUD_PFNMAP */
2819 
2820 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2821 static inline int pte_devmap(pte_t pte)
2822 {
2823 	return 0;
2824 }
2825 #endif
2826 
2827 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2828 			       spinlock_t **ptl);
2829 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2830 				    spinlock_t **ptl)
2831 {
2832 	pte_t *ptep;
2833 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2834 	return ptep;
2835 }
2836 
2837 #ifdef __PAGETABLE_P4D_FOLDED
2838 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2839 						unsigned long address)
2840 {
2841 	return 0;
2842 }
2843 #else
2844 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2845 #endif
2846 
2847 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2848 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2849 						unsigned long address)
2850 {
2851 	return 0;
2852 }
2853 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2854 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2855 
2856 #else
2857 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2858 
2859 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2860 {
2861 	if (mm_pud_folded(mm))
2862 		return;
2863 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2864 }
2865 
2866 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2867 {
2868 	if (mm_pud_folded(mm))
2869 		return;
2870 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2871 }
2872 #endif
2873 
2874 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2875 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2876 						unsigned long address)
2877 {
2878 	return 0;
2879 }
2880 
2881 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2882 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2883 
2884 #else
2885 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2886 
2887 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2888 {
2889 	if (mm_pmd_folded(mm))
2890 		return;
2891 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2892 }
2893 
2894 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2895 {
2896 	if (mm_pmd_folded(mm))
2897 		return;
2898 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2899 }
2900 #endif
2901 
2902 #ifdef CONFIG_MMU
2903 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2904 {
2905 	atomic_long_set(&mm->pgtables_bytes, 0);
2906 }
2907 
2908 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2909 {
2910 	return atomic_long_read(&mm->pgtables_bytes);
2911 }
2912 
2913 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2914 {
2915 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2916 }
2917 
2918 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2919 {
2920 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2921 }
2922 #else
2923 
2924 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2925 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2926 {
2927 	return 0;
2928 }
2929 
2930 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2931 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2932 #endif
2933 
2934 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2935 int __pte_alloc_kernel(pmd_t *pmd);
2936 
2937 #if defined(CONFIG_MMU)
2938 
2939 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2940 		unsigned long address)
2941 {
2942 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2943 		NULL : p4d_offset(pgd, address);
2944 }
2945 
2946 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2947 		unsigned long address)
2948 {
2949 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2950 		NULL : pud_offset(p4d, address);
2951 }
2952 
2953 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2954 {
2955 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2956 		NULL: pmd_offset(pud, address);
2957 }
2958 #endif /* CONFIG_MMU */
2959 
2960 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2961 {
2962 	return page_ptdesc(virt_to_page(x));
2963 }
2964 
2965 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2966 {
2967 	return page_to_virt(ptdesc_page(pt));
2968 }
2969 
2970 static inline void *ptdesc_address(const struct ptdesc *pt)
2971 {
2972 	return folio_address(ptdesc_folio(pt));
2973 }
2974 
2975 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2976 {
2977 	return folio_test_reserved(ptdesc_folio(pt));
2978 }
2979 
2980 /**
2981  * pagetable_alloc - Allocate pagetables
2982  * @gfp:    GFP flags
2983  * @order:  desired pagetable order
2984  *
2985  * pagetable_alloc allocates memory for page tables as well as a page table
2986  * descriptor to describe that memory.
2987  *
2988  * Return: The ptdesc describing the allocated page tables.
2989  */
2990 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2991 {
2992 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2993 
2994 	return page_ptdesc(page);
2995 }
2996 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2997 
2998 /**
2999  * pagetable_free - Free pagetables
3000  * @pt:	The page table descriptor
3001  *
3002  * pagetable_free frees the memory of all page tables described by a page
3003  * table descriptor and the memory for the descriptor itself.
3004  */
3005 static inline void pagetable_free(struct ptdesc *pt)
3006 {
3007 	struct page *page = ptdesc_page(pt);
3008 
3009 	__free_pages(page, compound_order(page));
3010 }
3011 
3012 #if defined(CONFIG_SPLIT_PTE_PTLOCKS)
3013 #if ALLOC_SPLIT_PTLOCKS
3014 void __init ptlock_cache_init(void);
3015 bool ptlock_alloc(struct ptdesc *ptdesc);
3016 void ptlock_free(struct ptdesc *ptdesc);
3017 
3018 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3019 {
3020 	return ptdesc->ptl;
3021 }
3022 #else /* ALLOC_SPLIT_PTLOCKS */
3023 static inline void ptlock_cache_init(void)
3024 {
3025 }
3026 
3027 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
3028 {
3029 	return true;
3030 }
3031 
3032 static inline void ptlock_free(struct ptdesc *ptdesc)
3033 {
3034 }
3035 
3036 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
3037 {
3038 	return &ptdesc->ptl;
3039 }
3040 #endif /* ALLOC_SPLIT_PTLOCKS */
3041 
3042 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3043 {
3044 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
3045 }
3046 
3047 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3048 {
3049 	BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE));
3050 	BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE);
3051 	return ptlock_ptr(virt_to_ptdesc(pte));
3052 }
3053 
3054 static inline bool ptlock_init(struct ptdesc *ptdesc)
3055 {
3056 	/*
3057 	 * prep_new_page() initialize page->private (and therefore page->ptl)
3058 	 * with 0. Make sure nobody took it in use in between.
3059 	 *
3060 	 * It can happen if arch try to use slab for page table allocation:
3061 	 * slab code uses page->slab_cache, which share storage with page->ptl.
3062 	 */
3063 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
3064 	if (!ptlock_alloc(ptdesc))
3065 		return false;
3066 	spin_lock_init(ptlock_ptr(ptdesc));
3067 	return true;
3068 }
3069 
3070 #else	/* !defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3071 /*
3072  * We use mm->page_table_lock to guard all pagetable pages of the mm.
3073  */
3074 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
3075 {
3076 	return &mm->page_table_lock;
3077 }
3078 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte)
3079 {
3080 	return &mm->page_table_lock;
3081 }
3082 static inline void ptlock_cache_init(void) {}
3083 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
3084 static inline void ptlock_free(struct ptdesc *ptdesc) {}
3085 #endif /* defined(CONFIG_SPLIT_PTE_PTLOCKS) */
3086 
3087 static inline void __pagetable_ctor(struct ptdesc *ptdesc)
3088 {
3089 	struct folio *folio = ptdesc_folio(ptdesc);
3090 
3091 	__folio_set_pgtable(folio);
3092 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3093 }
3094 
3095 static inline void pagetable_dtor(struct ptdesc *ptdesc)
3096 {
3097 	struct folio *folio = ptdesc_folio(ptdesc);
3098 
3099 	ptlock_free(ptdesc);
3100 	__folio_clear_pgtable(folio);
3101 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3102 }
3103 
3104 static inline void pagetable_dtor_free(struct ptdesc *ptdesc)
3105 {
3106 	pagetable_dtor(ptdesc);
3107 	pagetable_free(ptdesc);
3108 }
3109 
3110 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
3111 {
3112 	if (!ptlock_init(ptdesc))
3113 		return false;
3114 	__pagetable_ctor(ptdesc);
3115 	return true;
3116 }
3117 
3118 pte_t *___pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3119 static inline pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr,
3120 			pmd_t *pmdvalp)
3121 {
3122 	pte_t *pte;
3123 
3124 	__cond_lock(RCU, pte = ___pte_offset_map(pmd, addr, pmdvalp));
3125 	return pte;
3126 }
3127 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3128 {
3129 	return __pte_offset_map(pmd, addr, NULL);
3130 }
3131 
3132 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3133 			unsigned long addr, spinlock_t **ptlp);
3134 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3135 			unsigned long addr, spinlock_t **ptlp)
3136 {
3137 	pte_t *pte;
3138 
3139 	__cond_lock(RCU, __cond_lock(*ptlp,
3140 			pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)));
3141 	return pte;
3142 }
3143 
3144 pte_t *pte_offset_map_ro_nolock(struct mm_struct *mm, pmd_t *pmd,
3145 				unsigned long addr, spinlock_t **ptlp);
3146 pte_t *pte_offset_map_rw_nolock(struct mm_struct *mm, pmd_t *pmd,
3147 				unsigned long addr, pmd_t *pmdvalp,
3148 				spinlock_t **ptlp);
3149 
3150 #define pte_unmap_unlock(pte, ptl)	do {		\
3151 	spin_unlock(ptl);				\
3152 	pte_unmap(pte);					\
3153 } while (0)
3154 
3155 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3156 
3157 #define pte_alloc_map(mm, pmd, address)			\
3158 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3159 
3160 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3161 	(pte_alloc(mm, pmd) ?			\
3162 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3163 
3164 #define pte_alloc_kernel(pmd, address)			\
3165 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3166 		NULL: pte_offset_kernel(pmd, address))
3167 
3168 #if defined(CONFIG_SPLIT_PMD_PTLOCKS)
3169 
3170 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3171 {
3172 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3173 	return virt_to_page((void *)((unsigned long) pmd & mask));
3174 }
3175 
3176 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3177 {
3178 	return page_ptdesc(pmd_pgtable_page(pmd));
3179 }
3180 
3181 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3182 {
3183 	return ptlock_ptr(pmd_ptdesc(pmd));
3184 }
3185 
3186 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3187 {
3188 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3189 	ptdesc->pmd_huge_pte = NULL;
3190 #endif
3191 	return ptlock_init(ptdesc);
3192 }
3193 
3194 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3195 
3196 #else
3197 
3198 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3199 {
3200 	return &mm->page_table_lock;
3201 }
3202 
3203 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3204 
3205 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3206 
3207 #endif
3208 
3209 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3210 {
3211 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3212 	spin_lock(ptl);
3213 	return ptl;
3214 }
3215 
3216 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3217 {
3218 	if (!pmd_ptlock_init(ptdesc))
3219 		return false;
3220 	ptdesc_pmd_pts_init(ptdesc);
3221 	__pagetable_ctor(ptdesc);
3222 	return true;
3223 }
3224 
3225 /*
3226  * No scalability reason to split PUD locks yet, but follow the same pattern
3227  * as the PMD locks to make it easier if we decide to.  The VM should not be
3228  * considered ready to switch to split PUD locks yet; there may be places
3229  * which need to be converted from page_table_lock.
3230  */
3231 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3232 {
3233 	return &mm->page_table_lock;
3234 }
3235 
3236 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3237 {
3238 	spinlock_t *ptl = pud_lockptr(mm, pud);
3239 
3240 	spin_lock(ptl);
3241 	return ptl;
3242 }
3243 
3244 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3245 {
3246 	__pagetable_ctor(ptdesc);
3247 }
3248 
3249 static inline void pagetable_p4d_ctor(struct ptdesc *ptdesc)
3250 {
3251 	__pagetable_ctor(ptdesc);
3252 }
3253 
3254 static inline void pagetable_pgd_ctor(struct ptdesc *ptdesc)
3255 {
3256 	__pagetable_ctor(ptdesc);
3257 }
3258 
3259 extern void __init pagecache_init(void);
3260 extern void free_initmem(void);
3261 
3262 /*
3263  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3264  * into the buddy system. The freed pages will be poisoned with pattern
3265  * "poison" if it's within range [0, UCHAR_MAX].
3266  * Return pages freed into the buddy system.
3267  */
3268 extern unsigned long free_reserved_area(void *start, void *end,
3269 					int poison, const char *s);
3270 
3271 extern void adjust_managed_page_count(struct page *page, long count);
3272 
3273 extern void reserve_bootmem_region(phys_addr_t start,
3274 				   phys_addr_t end, int nid);
3275 
3276 /* Free the reserved page into the buddy system, so it gets managed. */
3277 void free_reserved_page(struct page *page);
3278 #define free_highmem_page(page) free_reserved_page(page)
3279 
3280 static inline void mark_page_reserved(struct page *page)
3281 {
3282 	SetPageReserved(page);
3283 	adjust_managed_page_count(page, -1);
3284 }
3285 
3286 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3287 {
3288 	free_reserved_page(ptdesc_page(pt));
3289 }
3290 
3291 /*
3292  * Default method to free all the __init memory into the buddy system.
3293  * The freed pages will be poisoned with pattern "poison" if it's within
3294  * range [0, UCHAR_MAX].
3295  * Return pages freed into the buddy system.
3296  */
3297 static inline unsigned long free_initmem_default(int poison)
3298 {
3299 	extern char __init_begin[], __init_end[];
3300 
3301 	return free_reserved_area(&__init_begin, &__init_end,
3302 				  poison, "unused kernel image (initmem)");
3303 }
3304 
3305 static inline unsigned long get_num_physpages(void)
3306 {
3307 	int nid;
3308 	unsigned long phys_pages = 0;
3309 
3310 	for_each_online_node(nid)
3311 		phys_pages += node_present_pages(nid);
3312 
3313 	return phys_pages;
3314 }
3315 
3316 /*
3317  * Using memblock node mappings, an architecture may initialise its
3318  * zones, allocate the backing mem_map and account for memory holes in an
3319  * architecture independent manner.
3320  *
3321  * An architecture is expected to register range of page frames backed by
3322  * physical memory with memblock_add[_node]() before calling
3323  * free_area_init() passing in the PFN each zone ends at. At a basic
3324  * usage, an architecture is expected to do something like
3325  *
3326  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3327  * 							 max_highmem_pfn};
3328  * for_each_valid_physical_page_range()
3329  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3330  * free_area_init(max_zone_pfns);
3331  */
3332 void free_area_init(unsigned long *max_zone_pfn);
3333 unsigned long node_map_pfn_alignment(void);
3334 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3335 						unsigned long end_pfn);
3336 extern void get_pfn_range_for_nid(unsigned int nid,
3337 			unsigned long *start_pfn, unsigned long *end_pfn);
3338 
3339 #ifndef CONFIG_NUMA
3340 static inline int early_pfn_to_nid(unsigned long pfn)
3341 {
3342 	return 0;
3343 }
3344 #else
3345 /* please see mm/page_alloc.c */
3346 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3347 #endif
3348 
3349 extern void mem_init(void);
3350 extern void __init mmap_init(void);
3351 
3352 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3353 static inline void show_mem(void)
3354 {
3355 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3356 }
3357 extern long si_mem_available(void);
3358 extern void si_meminfo(struct sysinfo * val);
3359 extern void si_meminfo_node(struct sysinfo *val, int nid);
3360 
3361 extern __printf(3, 4)
3362 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3363 
3364 extern void setup_per_cpu_pageset(void);
3365 
3366 /* nommu.c */
3367 extern atomic_long_t mmap_pages_allocated;
3368 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3369 
3370 /* interval_tree.c */
3371 void vma_interval_tree_insert(struct vm_area_struct *node,
3372 			      struct rb_root_cached *root);
3373 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3374 				    struct vm_area_struct *prev,
3375 				    struct rb_root_cached *root);
3376 void vma_interval_tree_remove(struct vm_area_struct *node,
3377 			      struct rb_root_cached *root);
3378 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3379 				unsigned long start, unsigned long last);
3380 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3381 				unsigned long start, unsigned long last);
3382 
3383 #define vma_interval_tree_foreach(vma, root, start, last)		\
3384 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3385 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3386 
3387 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3388 				   struct rb_root_cached *root);
3389 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3390 				   struct rb_root_cached *root);
3391 struct anon_vma_chain *
3392 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3393 				  unsigned long start, unsigned long last);
3394 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3395 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3396 #ifdef CONFIG_DEBUG_VM_RB
3397 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3398 #endif
3399 
3400 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3401 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3402 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3403 
3404 /* mmap.c */
3405 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3406 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3407 extern void exit_mmap(struct mm_struct *);
3408 int relocate_vma_down(struct vm_area_struct *vma, unsigned long shift);
3409 bool mmap_read_lock_maybe_expand(struct mm_struct *mm, struct vm_area_struct *vma,
3410 				 unsigned long addr, bool write);
3411 
3412 static inline int check_data_rlimit(unsigned long rlim,
3413 				    unsigned long new,
3414 				    unsigned long start,
3415 				    unsigned long end_data,
3416 				    unsigned long start_data)
3417 {
3418 	if (rlim < RLIM_INFINITY) {
3419 		if (((new - start) + (end_data - start_data)) > rlim)
3420 			return -ENOSPC;
3421 	}
3422 
3423 	return 0;
3424 }
3425 
3426 extern int mm_take_all_locks(struct mm_struct *mm);
3427 extern void mm_drop_all_locks(struct mm_struct *mm);
3428 
3429 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3430 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3431 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3432 extern struct file *get_task_exe_file(struct task_struct *task);
3433 
3434 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3435 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3436 
3437 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3438 				   const struct vm_special_mapping *sm);
3439 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3440 				   unsigned long addr, unsigned long len,
3441 				   unsigned long flags,
3442 				   const struct vm_special_mapping *spec);
3443 
3444 unsigned long randomize_stack_top(unsigned long stack_top);
3445 unsigned long randomize_page(unsigned long start, unsigned long range);
3446 
3447 unsigned long
3448 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3449 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3450 
3451 static inline unsigned long
3452 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3453 		  unsigned long pgoff, unsigned long flags)
3454 {
3455 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3456 }
3457 
3458 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3459 	unsigned long len, unsigned long prot, unsigned long flags,
3460 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3461 	struct list_head *uf);
3462 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3463 			 unsigned long start, size_t len, struct list_head *uf,
3464 			 bool unlock);
3465 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3466 		    struct mm_struct *mm, unsigned long start,
3467 		    unsigned long end, struct list_head *uf, bool unlock);
3468 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3469 		     struct list_head *uf);
3470 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3471 
3472 #ifdef CONFIG_MMU
3473 extern int __mm_populate(unsigned long addr, unsigned long len,
3474 			 int ignore_errors);
3475 static inline void mm_populate(unsigned long addr, unsigned long len)
3476 {
3477 	/* Ignore errors */
3478 	(void) __mm_populate(addr, len, 1);
3479 }
3480 #else
3481 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3482 #endif
3483 
3484 /* This takes the mm semaphore itself */
3485 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3486 extern int vm_munmap(unsigned long, size_t);
3487 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3488         unsigned long, unsigned long,
3489         unsigned long, unsigned long);
3490 
3491 struct vm_unmapped_area_info {
3492 #define VM_UNMAPPED_AREA_TOPDOWN 1
3493 	unsigned long flags;
3494 	unsigned long length;
3495 	unsigned long low_limit;
3496 	unsigned long high_limit;
3497 	unsigned long align_mask;
3498 	unsigned long align_offset;
3499 	unsigned long start_gap;
3500 };
3501 
3502 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3503 
3504 /* truncate.c */
3505 extern void truncate_inode_pages(struct address_space *, loff_t);
3506 extern void truncate_inode_pages_range(struct address_space *,
3507 				       loff_t lstart, loff_t lend);
3508 extern void truncate_inode_pages_final(struct address_space *);
3509 
3510 /* generic vm_area_ops exported for stackable file systems */
3511 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3512 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3513 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3514 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3515 extern vm_fault_t filemap_fsnotify_fault(struct vm_fault *vmf);
3516 
3517 extern unsigned long stack_guard_gap;
3518 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3519 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3520 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3521 
3522 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3523 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3524 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3525 					     struct vm_area_struct **pprev);
3526 
3527 /*
3528  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3529  * NULL if none.  Assume start_addr < end_addr.
3530  */
3531 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3532 			unsigned long start_addr, unsigned long end_addr);
3533 
3534 /**
3535  * vma_lookup() - Find a VMA at a specific address
3536  * @mm: The process address space.
3537  * @addr: The user address.
3538  *
3539  * Return: The vm_area_struct at the given address, %NULL otherwise.
3540  */
3541 static inline
3542 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3543 {
3544 	return mtree_load(&mm->mm_mt, addr);
3545 }
3546 
3547 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3548 {
3549 	if (vma->vm_flags & VM_GROWSDOWN)
3550 		return stack_guard_gap;
3551 
3552 	/* See reasoning around the VM_SHADOW_STACK definition */
3553 	if (vma->vm_flags & VM_SHADOW_STACK)
3554 		return PAGE_SIZE;
3555 
3556 	return 0;
3557 }
3558 
3559 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3560 {
3561 	unsigned long gap = stack_guard_start_gap(vma);
3562 	unsigned long vm_start = vma->vm_start;
3563 
3564 	vm_start -= gap;
3565 	if (vm_start > vma->vm_start)
3566 		vm_start = 0;
3567 	return vm_start;
3568 }
3569 
3570 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3571 {
3572 	unsigned long vm_end = vma->vm_end;
3573 
3574 	if (vma->vm_flags & VM_GROWSUP) {
3575 		vm_end += stack_guard_gap;
3576 		if (vm_end < vma->vm_end)
3577 			vm_end = -PAGE_SIZE;
3578 	}
3579 	return vm_end;
3580 }
3581 
3582 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3583 {
3584 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3585 }
3586 
3587 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3588 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3589 				unsigned long vm_start, unsigned long vm_end)
3590 {
3591 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3592 
3593 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3594 		vma = NULL;
3595 
3596 	return vma;
3597 }
3598 
3599 static inline bool range_in_vma(struct vm_area_struct *vma,
3600 				unsigned long start, unsigned long end)
3601 {
3602 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3603 }
3604 
3605 #ifdef CONFIG_MMU
3606 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3607 void vma_set_page_prot(struct vm_area_struct *vma);
3608 #else
3609 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3610 {
3611 	return __pgprot(0);
3612 }
3613 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3614 {
3615 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3616 }
3617 #endif
3618 
3619 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3620 
3621 #ifdef CONFIG_NUMA_BALANCING
3622 unsigned long change_prot_numa(struct vm_area_struct *vma,
3623 			unsigned long start, unsigned long end);
3624 #endif
3625 
3626 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3627 		unsigned long addr);
3628 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3629 			unsigned long pfn, unsigned long size, pgprot_t);
3630 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3631 		unsigned long pfn, unsigned long size, pgprot_t prot);
3632 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3633 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3634 			struct page **pages, unsigned long *num);
3635 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3636 				unsigned long num);
3637 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3638 				unsigned long num);
3639 vm_fault_t vmf_insert_page_mkwrite(struct vm_fault *vmf, struct page *page,
3640 			bool write);
3641 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3642 			unsigned long pfn);
3643 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3644 			unsigned long pfn, pgprot_t pgprot);
3645 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3646 			pfn_t pfn);
3647 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3648 		unsigned long addr, pfn_t pfn);
3649 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3650 
3651 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3652 				unsigned long addr, struct page *page)
3653 {
3654 	int err = vm_insert_page(vma, addr, page);
3655 
3656 	if (err == -ENOMEM)
3657 		return VM_FAULT_OOM;
3658 	if (err < 0 && err != -EBUSY)
3659 		return VM_FAULT_SIGBUS;
3660 
3661 	return VM_FAULT_NOPAGE;
3662 }
3663 
3664 #ifndef io_remap_pfn_range
3665 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3666 				     unsigned long addr, unsigned long pfn,
3667 				     unsigned long size, pgprot_t prot)
3668 {
3669 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3670 }
3671 #endif
3672 
3673 static inline vm_fault_t vmf_error(int err)
3674 {
3675 	if (err == -ENOMEM)
3676 		return VM_FAULT_OOM;
3677 	else if (err == -EHWPOISON)
3678 		return VM_FAULT_HWPOISON;
3679 	return VM_FAULT_SIGBUS;
3680 }
3681 
3682 /*
3683  * Convert errno to return value for ->page_mkwrite() calls.
3684  *
3685  * This should eventually be merged with vmf_error() above, but will need a
3686  * careful audit of all vmf_error() callers.
3687  */
3688 static inline vm_fault_t vmf_fs_error(int err)
3689 {
3690 	if (err == 0)
3691 		return VM_FAULT_LOCKED;
3692 	if (err == -EFAULT || err == -EAGAIN)
3693 		return VM_FAULT_NOPAGE;
3694 	if (err == -ENOMEM)
3695 		return VM_FAULT_OOM;
3696 	/* -ENOSPC, -EDQUOT, -EIO ... */
3697 	return VM_FAULT_SIGBUS;
3698 }
3699 
3700 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3701 {
3702 	if (vm_fault & VM_FAULT_OOM)
3703 		return -ENOMEM;
3704 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3705 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3706 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3707 		return -EFAULT;
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3713  * a (NUMA hinting) fault is required.
3714  */
3715 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3716 					   unsigned int flags)
3717 {
3718 	/*
3719 	 * If callers don't want to honor NUMA hinting faults, no need to
3720 	 * determine if we would actually have to trigger a NUMA hinting fault.
3721 	 */
3722 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3723 		return true;
3724 
3725 	/*
3726 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3727 	 *
3728 	 * Requiring a fault here even for inaccessible VMAs would mean that
3729 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3730 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3731 	 */
3732 	return !vma_is_accessible(vma);
3733 }
3734 
3735 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3736 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3737 			       unsigned long size, pte_fn_t fn, void *data);
3738 extern int apply_to_existing_page_range(struct mm_struct *mm,
3739 				   unsigned long address, unsigned long size,
3740 				   pte_fn_t fn, void *data);
3741 
3742 #ifdef CONFIG_PAGE_POISONING
3743 extern void __kernel_poison_pages(struct page *page, int numpages);
3744 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3745 extern bool _page_poisoning_enabled_early;
3746 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3747 static inline bool page_poisoning_enabled(void)
3748 {
3749 	return _page_poisoning_enabled_early;
3750 }
3751 /*
3752  * For use in fast paths after init_mem_debugging() has run, or when a
3753  * false negative result is not harmful when called too early.
3754  */
3755 static inline bool page_poisoning_enabled_static(void)
3756 {
3757 	return static_branch_unlikely(&_page_poisoning_enabled);
3758 }
3759 static inline void kernel_poison_pages(struct page *page, int numpages)
3760 {
3761 	if (page_poisoning_enabled_static())
3762 		__kernel_poison_pages(page, numpages);
3763 }
3764 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3765 {
3766 	if (page_poisoning_enabled_static())
3767 		__kernel_unpoison_pages(page, numpages);
3768 }
3769 #else
3770 static inline bool page_poisoning_enabled(void) { return false; }
3771 static inline bool page_poisoning_enabled_static(void) { return false; }
3772 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3773 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3774 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3775 #endif
3776 
3777 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3778 static inline bool want_init_on_alloc(gfp_t flags)
3779 {
3780 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3781 				&init_on_alloc))
3782 		return true;
3783 	return flags & __GFP_ZERO;
3784 }
3785 
3786 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3787 static inline bool want_init_on_free(void)
3788 {
3789 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3790 				   &init_on_free);
3791 }
3792 
3793 extern bool _debug_pagealloc_enabled_early;
3794 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3795 
3796 static inline bool debug_pagealloc_enabled(void)
3797 {
3798 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3799 		_debug_pagealloc_enabled_early;
3800 }
3801 
3802 /*
3803  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3804  * or when a false negative result is not harmful when called too early.
3805  */
3806 static inline bool debug_pagealloc_enabled_static(void)
3807 {
3808 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3809 		return false;
3810 
3811 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3812 }
3813 
3814 /*
3815  * To support DEBUG_PAGEALLOC architecture must ensure that
3816  * __kernel_map_pages() never fails
3817  */
3818 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3819 #ifdef CONFIG_DEBUG_PAGEALLOC
3820 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3821 {
3822 	if (debug_pagealloc_enabled_static())
3823 		__kernel_map_pages(page, numpages, 1);
3824 }
3825 
3826 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3827 {
3828 	if (debug_pagealloc_enabled_static())
3829 		__kernel_map_pages(page, numpages, 0);
3830 }
3831 
3832 extern unsigned int _debug_guardpage_minorder;
3833 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3834 
3835 static inline unsigned int debug_guardpage_minorder(void)
3836 {
3837 	return _debug_guardpage_minorder;
3838 }
3839 
3840 static inline bool debug_guardpage_enabled(void)
3841 {
3842 	return static_branch_unlikely(&_debug_guardpage_enabled);
3843 }
3844 
3845 static inline bool page_is_guard(struct page *page)
3846 {
3847 	if (!debug_guardpage_enabled())
3848 		return false;
3849 
3850 	return PageGuard(page);
3851 }
3852 
3853 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3854 static inline bool set_page_guard(struct zone *zone, struct page *page,
3855 				  unsigned int order)
3856 {
3857 	if (!debug_guardpage_enabled())
3858 		return false;
3859 	return __set_page_guard(zone, page, order);
3860 }
3861 
3862 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3863 static inline void clear_page_guard(struct zone *zone, struct page *page,
3864 				    unsigned int order)
3865 {
3866 	if (!debug_guardpage_enabled())
3867 		return;
3868 	__clear_page_guard(zone, page, order);
3869 }
3870 
3871 #else	/* CONFIG_DEBUG_PAGEALLOC */
3872 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3873 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3874 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3875 static inline bool debug_guardpage_enabled(void) { return false; }
3876 static inline bool page_is_guard(struct page *page) { return false; }
3877 static inline bool set_page_guard(struct zone *zone, struct page *page,
3878 			unsigned int order) { return false; }
3879 static inline void clear_page_guard(struct zone *zone, struct page *page,
3880 				unsigned int order) {}
3881 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3882 
3883 #ifdef __HAVE_ARCH_GATE_AREA
3884 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3885 extern int in_gate_area_no_mm(unsigned long addr);
3886 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3887 #else
3888 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3889 {
3890 	return NULL;
3891 }
3892 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3893 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3894 {
3895 	return 0;
3896 }
3897 #endif	/* __HAVE_ARCH_GATE_AREA */
3898 
3899 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3900 
3901 #ifdef CONFIG_SYSCTL
3902 extern int sysctl_drop_caches;
3903 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3904 		loff_t *);
3905 #endif
3906 
3907 void drop_slab(void);
3908 
3909 #ifndef CONFIG_MMU
3910 #define randomize_va_space 0
3911 #else
3912 extern int randomize_va_space;
3913 #endif
3914 
3915 const char * arch_vma_name(struct vm_area_struct *vma);
3916 #ifdef CONFIG_MMU
3917 void print_vma_addr(char *prefix, unsigned long rip);
3918 #else
3919 static inline void print_vma_addr(char *prefix, unsigned long rip)
3920 {
3921 }
3922 #endif
3923 
3924 void *sparse_buffer_alloc(unsigned long size);
3925 unsigned long section_map_size(void);
3926 struct page * __populate_section_memmap(unsigned long pfn,
3927 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3928 		struct dev_pagemap *pgmap);
3929 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3930 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3931 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3932 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3933 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3934 			    struct vmem_altmap *altmap, unsigned long ptpfn,
3935 			    unsigned long flags);
3936 void *vmemmap_alloc_block(unsigned long size, int node);
3937 struct vmem_altmap;
3938 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3939 			      struct vmem_altmap *altmap);
3940 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3941 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3942 		     unsigned long addr, unsigned long next);
3943 int vmemmap_check_pmd(pmd_t *pmd, int node,
3944 		      unsigned long addr, unsigned long next);
3945 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3946 			       int node, struct vmem_altmap *altmap);
3947 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3948 			       int node, struct vmem_altmap *altmap);
3949 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3950 		struct vmem_altmap *altmap);
3951 int vmemmap_populate_hvo(unsigned long start, unsigned long end, int node,
3952 			 unsigned long headsize);
3953 int vmemmap_undo_hvo(unsigned long start, unsigned long end, int node,
3954 		     unsigned long headsize);
3955 void vmemmap_wrprotect_hvo(unsigned long start, unsigned long end, int node,
3956 			  unsigned long headsize);
3957 void vmemmap_populate_print_last(void);
3958 #ifdef CONFIG_MEMORY_HOTPLUG
3959 void vmemmap_free(unsigned long start, unsigned long end,
3960 		struct vmem_altmap *altmap);
3961 #endif
3962 
3963 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3964 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3965 {
3966 	/* number of pfns from base where pfn_to_page() is valid */
3967 	if (altmap)
3968 		return altmap->reserve + altmap->free;
3969 	return 0;
3970 }
3971 
3972 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3973 				    unsigned long nr_pfns)
3974 {
3975 	altmap->alloc -= nr_pfns;
3976 }
3977 #else
3978 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3979 {
3980 	return 0;
3981 }
3982 
3983 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3984 				    unsigned long nr_pfns)
3985 {
3986 }
3987 #endif
3988 
3989 #define VMEMMAP_RESERVE_NR	2
3990 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3991 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3992 					  struct dev_pagemap *pgmap)
3993 {
3994 	unsigned long nr_pages;
3995 	unsigned long nr_vmemmap_pages;
3996 
3997 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3998 		return false;
3999 
4000 	nr_pages = pgmap_vmemmap_nr(pgmap);
4001 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
4002 	/*
4003 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
4004 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4005 	 */
4006 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4007 }
4008 /*
4009  * If we don't have an architecture override, use the generic rule
4010  */
4011 #ifndef vmemmap_can_optimize
4012 #define vmemmap_can_optimize __vmemmap_can_optimize
4013 #endif
4014 
4015 #else
4016 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4017 					   struct dev_pagemap *pgmap)
4018 {
4019 	return false;
4020 }
4021 #endif
4022 
4023 enum mf_flags {
4024 	MF_COUNT_INCREASED = 1 << 0,
4025 	MF_ACTION_REQUIRED = 1 << 1,
4026 	MF_MUST_KILL = 1 << 2,
4027 	MF_SOFT_OFFLINE = 1 << 3,
4028 	MF_UNPOISON = 1 << 4,
4029 	MF_SW_SIMULATED = 1 << 5,
4030 	MF_NO_RETRY = 1 << 6,
4031 	MF_MEM_PRE_REMOVE = 1 << 7,
4032 };
4033 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4034 		      unsigned long count, int mf_flags);
4035 extern int memory_failure(unsigned long pfn, int flags);
4036 extern void memory_failure_queue_kick(int cpu);
4037 extern int unpoison_memory(unsigned long pfn);
4038 extern atomic_long_t num_poisoned_pages __read_mostly;
4039 extern int soft_offline_page(unsigned long pfn, int flags);
4040 #ifdef CONFIG_MEMORY_FAILURE
4041 /*
4042  * Sysfs entries for memory failure handling statistics.
4043  */
4044 extern const struct attribute_group memory_failure_attr_group;
4045 extern void memory_failure_queue(unsigned long pfn, int flags);
4046 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4047 					bool *migratable_cleared);
4048 void num_poisoned_pages_inc(unsigned long pfn);
4049 void num_poisoned_pages_sub(unsigned long pfn, long i);
4050 #else
4051 static inline void memory_failure_queue(unsigned long pfn, int flags)
4052 {
4053 }
4054 
4055 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4056 					bool *migratable_cleared)
4057 {
4058 	return 0;
4059 }
4060 
4061 static inline void num_poisoned_pages_inc(unsigned long pfn)
4062 {
4063 }
4064 
4065 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4066 {
4067 }
4068 #endif
4069 
4070 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4071 extern void memblk_nr_poison_inc(unsigned long pfn);
4072 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4073 #else
4074 static inline void memblk_nr_poison_inc(unsigned long pfn)
4075 {
4076 }
4077 
4078 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4079 {
4080 }
4081 #endif
4082 
4083 #ifndef arch_memory_failure
4084 static inline int arch_memory_failure(unsigned long pfn, int flags)
4085 {
4086 	return -ENXIO;
4087 }
4088 #endif
4089 
4090 #ifndef arch_is_platform_page
4091 static inline bool arch_is_platform_page(u64 paddr)
4092 {
4093 	return false;
4094 }
4095 #endif
4096 
4097 /*
4098  * Error handlers for various types of pages.
4099  */
4100 enum mf_result {
4101 	MF_IGNORED,	/* Error: cannot be handled */
4102 	MF_FAILED,	/* Error: handling failed */
4103 	MF_DELAYED,	/* Will be handled later */
4104 	MF_RECOVERED,	/* Successfully recovered */
4105 };
4106 
4107 enum mf_action_page_type {
4108 	MF_MSG_KERNEL,
4109 	MF_MSG_KERNEL_HIGH_ORDER,
4110 	MF_MSG_DIFFERENT_COMPOUND,
4111 	MF_MSG_HUGE,
4112 	MF_MSG_FREE_HUGE,
4113 	MF_MSG_GET_HWPOISON,
4114 	MF_MSG_UNMAP_FAILED,
4115 	MF_MSG_DIRTY_SWAPCACHE,
4116 	MF_MSG_CLEAN_SWAPCACHE,
4117 	MF_MSG_DIRTY_MLOCKED_LRU,
4118 	MF_MSG_CLEAN_MLOCKED_LRU,
4119 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4120 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4121 	MF_MSG_DIRTY_LRU,
4122 	MF_MSG_CLEAN_LRU,
4123 	MF_MSG_TRUNCATED_LRU,
4124 	MF_MSG_BUDDY,
4125 	MF_MSG_DAX,
4126 	MF_MSG_UNSPLIT_THP,
4127 	MF_MSG_ALREADY_POISONED,
4128 	MF_MSG_UNKNOWN,
4129 };
4130 
4131 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4132 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4133 int copy_user_large_folio(struct folio *dst, struct folio *src,
4134 			  unsigned long addr_hint,
4135 			  struct vm_area_struct *vma);
4136 long copy_folio_from_user(struct folio *dst_folio,
4137 			   const void __user *usr_src,
4138 			   bool allow_pagefault);
4139 
4140 /**
4141  * vma_is_special_huge - Are transhuge page-table entries considered special?
4142  * @vma: Pointer to the struct vm_area_struct to consider
4143  *
4144  * Whether transhuge page-table entries are considered "special" following
4145  * the definition in vm_normal_page().
4146  *
4147  * Return: true if transhuge page-table entries should be considered special,
4148  * false otherwise.
4149  */
4150 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4151 {
4152 	return vma_is_dax(vma) || (vma->vm_file &&
4153 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4154 }
4155 
4156 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4157 
4158 #if MAX_NUMNODES > 1
4159 void __init setup_nr_node_ids(void);
4160 #else
4161 static inline void setup_nr_node_ids(void) {}
4162 #endif
4163 
4164 extern int memcmp_pages(struct page *page1, struct page *page2);
4165 
4166 static inline int pages_identical(struct page *page1, struct page *page2)
4167 {
4168 	return !memcmp_pages(page1, page2);
4169 }
4170 
4171 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4172 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4173 						pgoff_t first_index, pgoff_t nr,
4174 						pgoff_t bitmap_pgoff,
4175 						unsigned long *bitmap,
4176 						pgoff_t *start,
4177 						pgoff_t *end);
4178 
4179 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4180 				      pgoff_t first_index, pgoff_t nr);
4181 #endif
4182 
4183 extern int sysctl_nr_trim_pages;
4184 
4185 #ifdef CONFIG_ANON_VMA_NAME
4186 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4187 			  unsigned long len_in,
4188 			  struct anon_vma_name *anon_name);
4189 #else
4190 static inline int
4191 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4192 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4193 	return 0;
4194 }
4195 #endif
4196 
4197 #ifdef CONFIG_UNACCEPTED_MEMORY
4198 
4199 bool range_contains_unaccepted_memory(phys_addr_t start, unsigned long size);
4200 void accept_memory(phys_addr_t start, unsigned long size);
4201 
4202 #else
4203 
4204 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4205 						    unsigned long size)
4206 {
4207 	return false;
4208 }
4209 
4210 static inline void accept_memory(phys_addr_t start, unsigned long size)
4211 {
4212 }
4213 
4214 #endif
4215 
4216 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4217 {
4218 	return range_contains_unaccepted_memory(pfn << PAGE_SHIFT, PAGE_SIZE);
4219 }
4220 
4221 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4222 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4223 
4224 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4225 
4226 #ifdef CONFIG_64BIT
4227 int do_mseal(unsigned long start, size_t len_in, unsigned long flags);
4228 #else
4229 static inline int do_mseal(unsigned long start, size_t len_in, unsigned long flags)
4230 {
4231 	/* noop on 32 bit */
4232 	return 0;
4233 }
4234 #endif
4235 
4236 /*
4237  * user_alloc_needs_zeroing checks if a user folio from page allocator needs to
4238  * be zeroed or not.
4239  */
4240 static inline bool user_alloc_needs_zeroing(void)
4241 {
4242 	/*
4243 	 * for user folios, arch with cache aliasing requires cache flush and
4244 	 * arc changes folio->flags to make icache coherent with dcache, so
4245 	 * always return false to make caller use
4246 	 * clear_user_page()/clear_user_highpage().
4247 	 */
4248 	return cpu_dcache_is_aliasing() || cpu_icache_is_aliasing() ||
4249 	       !static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
4250 				   &init_on_alloc);
4251 }
4252 
4253 int arch_get_shadow_stack_status(struct task_struct *t, unsigned long __user *status);
4254 int arch_set_shadow_stack_status(struct task_struct *t, unsigned long status);
4255 int arch_lock_shadow_stack_status(struct task_struct *t, unsigned long status);
4256 
4257 #endif /* _LINUX_MM_H */
4258