1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 #ifdef CONFIG_64BIT 410 #define VM_DROPPABLE_BIT 40 411 #define VM_DROPPABLE BIT(VM_DROPPABLE_BIT) 412 #else 413 #define VM_DROPPABLE VM_NONE 414 #endif 415 416 #ifdef CONFIG_64BIT 417 /* VM is sealed, in vm_flags */ 418 #define VM_SEALED _BITUL(63) 419 #endif 420 421 /* Bits set in the VMA until the stack is in its final location */ 422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 423 424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 425 426 /* Common data flag combinations */ 427 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 428 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 429 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 430 VM_MAYWRITE | VM_MAYEXEC) 431 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 432 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 433 434 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 435 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 436 #endif 437 438 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 440 #endif 441 442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 443 444 #ifdef CONFIG_STACK_GROWSUP 445 #define VM_STACK VM_GROWSUP 446 #define VM_STACK_EARLY VM_GROWSDOWN 447 #else 448 #define VM_STACK VM_GROWSDOWN 449 #define VM_STACK_EARLY 0 450 #endif 451 452 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 453 454 /* VMA basic access permission flags */ 455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 456 457 458 /* 459 * Special vmas that are non-mergable, non-mlock()able. 460 */ 461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 462 463 /* This mask prevents VMA from being scanned with khugepaged */ 464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 465 466 /* This mask defines which mm->def_flags a process can inherit its parent */ 467 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 468 469 /* This mask represents all the VMA flag bits used by mlock */ 470 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 471 472 /* Arch-specific flags to clear when updating VM flags on protection change */ 473 #ifndef VM_ARCH_CLEAR 474 # define VM_ARCH_CLEAR VM_NONE 475 #endif 476 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 477 478 /* 479 * mapping from the currently active vm_flags protection bits (the 480 * low four bits) to a page protection mask.. 481 */ 482 483 /* 484 * The default fault flags that should be used by most of the 485 * arch-specific page fault handlers. 486 */ 487 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 488 FAULT_FLAG_KILLABLE | \ 489 FAULT_FLAG_INTERRUPTIBLE) 490 491 /** 492 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 493 * @flags: Fault flags. 494 * 495 * This is mostly used for places where we want to try to avoid taking 496 * the mmap_lock for too long a time when waiting for another condition 497 * to change, in which case we can try to be polite to release the 498 * mmap_lock in the first round to avoid potential starvation of other 499 * processes that would also want the mmap_lock. 500 * 501 * Return: true if the page fault allows retry and this is the first 502 * attempt of the fault handling; false otherwise. 503 */ 504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 505 { 506 return (flags & FAULT_FLAG_ALLOW_RETRY) && 507 (!(flags & FAULT_FLAG_TRIED)); 508 } 509 510 #define FAULT_FLAG_TRACE \ 511 { FAULT_FLAG_WRITE, "WRITE" }, \ 512 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 513 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 514 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 515 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 516 { FAULT_FLAG_TRIED, "TRIED" }, \ 517 { FAULT_FLAG_USER, "USER" }, \ 518 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 519 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 520 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 521 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 522 523 /* 524 * vm_fault is filled by the pagefault handler and passed to the vma's 525 * ->fault function. The vma's ->fault is responsible for returning a bitmask 526 * of VM_FAULT_xxx flags that give details about how the fault was handled. 527 * 528 * MM layer fills up gfp_mask for page allocations but fault handler might 529 * alter it if its implementation requires a different allocation context. 530 * 531 * pgoff should be used in favour of virtual_address, if possible. 532 */ 533 struct vm_fault { 534 const struct { 535 struct vm_area_struct *vma; /* Target VMA */ 536 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 537 pgoff_t pgoff; /* Logical page offset based on vma */ 538 unsigned long address; /* Faulting virtual address - masked */ 539 unsigned long real_address; /* Faulting virtual address - unmasked */ 540 }; 541 enum fault_flag flags; /* FAULT_FLAG_xxx flags 542 * XXX: should really be 'const' */ 543 pmd_t *pmd; /* Pointer to pmd entry matching 544 * the 'address' */ 545 pud_t *pud; /* Pointer to pud entry matching 546 * the 'address' 547 */ 548 union { 549 pte_t orig_pte; /* Value of PTE at the time of fault */ 550 pmd_t orig_pmd; /* Value of PMD at the time of fault, 551 * used by PMD fault only. 552 */ 553 }; 554 555 struct page *cow_page; /* Page handler may use for COW fault */ 556 struct page *page; /* ->fault handlers should return a 557 * page here, unless VM_FAULT_NOPAGE 558 * is set (which is also implied by 559 * VM_FAULT_ERROR). 560 */ 561 /* These three entries are valid only while holding ptl lock */ 562 pte_t *pte; /* Pointer to pte entry matching 563 * the 'address'. NULL if the page 564 * table hasn't been allocated. 565 */ 566 spinlock_t *ptl; /* Page table lock. 567 * Protects pte page table if 'pte' 568 * is not NULL, otherwise pmd. 569 */ 570 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 571 * vm_ops->map_pages() sets up a page 572 * table from atomic context. 573 * do_fault_around() pre-allocates 574 * page table to avoid allocation from 575 * atomic context. 576 */ 577 }; 578 579 /* 580 * These are the virtual MM functions - opening of an area, closing and 581 * unmapping it (needed to keep files on disk up-to-date etc), pointer 582 * to the functions called when a no-page or a wp-page exception occurs. 583 */ 584 struct vm_operations_struct { 585 void (*open)(struct vm_area_struct * area); 586 /** 587 * @close: Called when the VMA is being removed from the MM. 588 * Context: User context. May sleep. Caller holds mmap_lock. 589 */ 590 void (*close)(struct vm_area_struct * area); 591 /* Called any time before splitting to check if it's allowed */ 592 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 593 int (*mremap)(struct vm_area_struct *area); 594 /* 595 * Called by mprotect() to make driver-specific permission 596 * checks before mprotect() is finalised. The VMA must not 597 * be modified. Returns 0 if mprotect() can proceed. 598 */ 599 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 600 unsigned long end, unsigned long newflags); 601 vm_fault_t (*fault)(struct vm_fault *vmf); 602 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 603 vm_fault_t (*map_pages)(struct vm_fault *vmf, 604 pgoff_t start_pgoff, pgoff_t end_pgoff); 605 unsigned long (*pagesize)(struct vm_area_struct * area); 606 607 /* notification that a previously read-only page is about to become 608 * writable, if an error is returned it will cause a SIGBUS */ 609 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 610 611 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 612 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 613 614 /* called by access_process_vm when get_user_pages() fails, typically 615 * for use by special VMAs. See also generic_access_phys() for a generic 616 * implementation useful for any iomem mapping. 617 */ 618 int (*access)(struct vm_area_struct *vma, unsigned long addr, 619 void *buf, int len, int write); 620 621 /* Called by the /proc/PID/maps code to ask the vma whether it 622 * has a special name. Returning non-NULL will also cause this 623 * vma to be dumped unconditionally. */ 624 const char *(*name)(struct vm_area_struct *vma); 625 626 #ifdef CONFIG_NUMA 627 /* 628 * set_policy() op must add a reference to any non-NULL @new mempolicy 629 * to hold the policy upon return. Caller should pass NULL @new to 630 * remove a policy and fall back to surrounding context--i.e. do not 631 * install a MPOL_DEFAULT policy, nor the task or system default 632 * mempolicy. 633 */ 634 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 635 636 /* 637 * get_policy() op must add reference [mpol_get()] to any policy at 638 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 639 * in mm/mempolicy.c will do this automatically. 640 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 641 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 642 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 643 * must return NULL--i.e., do not "fallback" to task or system default 644 * policy. 645 */ 646 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 647 unsigned long addr, pgoff_t *ilx); 648 #endif 649 /* 650 * Called by vm_normal_page() for special PTEs to find the 651 * page for @addr. This is useful if the default behavior 652 * (using pte_page()) would not find the correct page. 653 */ 654 struct page *(*find_special_page)(struct vm_area_struct *vma, 655 unsigned long addr); 656 }; 657 658 #ifdef CONFIG_NUMA_BALANCING 659 static inline void vma_numab_state_init(struct vm_area_struct *vma) 660 { 661 vma->numab_state = NULL; 662 } 663 static inline void vma_numab_state_free(struct vm_area_struct *vma) 664 { 665 kfree(vma->numab_state); 666 } 667 #else 668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 670 #endif /* CONFIG_NUMA_BALANCING */ 671 672 #ifdef CONFIG_PER_VMA_LOCK 673 /* 674 * Try to read-lock a vma. The function is allowed to occasionally yield false 675 * locked result to avoid performance overhead, in which case we fall back to 676 * using mmap_lock. The function should never yield false unlocked result. 677 */ 678 static inline bool vma_start_read(struct vm_area_struct *vma) 679 { 680 /* 681 * Check before locking. A race might cause false locked result. 682 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 683 * ACQUIRE semantics, because this is just a lockless check whose result 684 * we don't rely on for anything - the mm_lock_seq read against which we 685 * need ordering is below. 686 */ 687 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 688 return false; 689 690 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 691 return false; 692 693 /* 694 * Overflow might produce false locked result. 695 * False unlocked result is impossible because we modify and check 696 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 697 * modification invalidates all existing locks. 698 * 699 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 700 * racing with vma_end_write_all(), we only start reading from the VMA 701 * after it has been unlocked. 702 * This pairs with RELEASE semantics in vma_end_write_all(). 703 */ 704 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 705 up_read(&vma->vm_lock->lock); 706 return false; 707 } 708 return true; 709 } 710 711 static inline void vma_end_read(struct vm_area_struct *vma) 712 { 713 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 714 up_read(&vma->vm_lock->lock); 715 rcu_read_unlock(); 716 } 717 718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 720 { 721 mmap_assert_write_locked(vma->vm_mm); 722 723 /* 724 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 725 * mm->mm_lock_seq can't be concurrently modified. 726 */ 727 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 728 return (vma->vm_lock_seq == *mm_lock_seq); 729 } 730 731 /* 732 * Begin writing to a VMA. 733 * Exclude concurrent readers under the per-VMA lock until the currently 734 * write-locked mmap_lock is dropped or downgraded. 735 */ 736 static inline void vma_start_write(struct vm_area_struct *vma) 737 { 738 int mm_lock_seq; 739 740 if (__is_vma_write_locked(vma, &mm_lock_seq)) 741 return; 742 743 down_write(&vma->vm_lock->lock); 744 /* 745 * We should use WRITE_ONCE() here because we can have concurrent reads 746 * from the early lockless pessimistic check in vma_start_read(). 747 * We don't really care about the correctness of that early check, but 748 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 749 */ 750 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 751 up_write(&vma->vm_lock->lock); 752 } 753 754 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 755 { 756 int mm_lock_seq; 757 758 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 759 } 760 761 static inline void vma_assert_locked(struct vm_area_struct *vma) 762 { 763 if (!rwsem_is_locked(&vma->vm_lock->lock)) 764 vma_assert_write_locked(vma); 765 } 766 767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 768 { 769 /* When detaching vma should be write-locked */ 770 if (detached) 771 vma_assert_write_locked(vma); 772 vma->detached = detached; 773 } 774 775 static inline void release_fault_lock(struct vm_fault *vmf) 776 { 777 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 778 vma_end_read(vmf->vma); 779 else 780 mmap_read_unlock(vmf->vma->vm_mm); 781 } 782 783 static inline void assert_fault_locked(struct vm_fault *vmf) 784 { 785 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 786 vma_assert_locked(vmf->vma); 787 else 788 mmap_assert_locked(vmf->vma->vm_mm); 789 } 790 791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 792 unsigned long address); 793 794 #else /* CONFIG_PER_VMA_LOCK */ 795 796 static inline bool vma_start_read(struct vm_area_struct *vma) 797 { return false; } 798 static inline void vma_end_read(struct vm_area_struct *vma) {} 799 static inline void vma_start_write(struct vm_area_struct *vma) {} 800 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 801 { mmap_assert_write_locked(vma->vm_mm); } 802 static inline void vma_mark_detached(struct vm_area_struct *vma, 803 bool detached) {} 804 805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 806 unsigned long address) 807 { 808 return NULL; 809 } 810 811 static inline void vma_assert_locked(struct vm_area_struct *vma) 812 { 813 mmap_assert_locked(vma->vm_mm); 814 } 815 816 static inline void release_fault_lock(struct vm_fault *vmf) 817 { 818 mmap_read_unlock(vmf->vma->vm_mm); 819 } 820 821 static inline void assert_fault_locked(struct vm_fault *vmf) 822 { 823 mmap_assert_locked(vmf->vma->vm_mm); 824 } 825 826 #endif /* CONFIG_PER_VMA_LOCK */ 827 828 extern const struct vm_operations_struct vma_dummy_vm_ops; 829 830 /* 831 * WARNING: vma_init does not initialize vma->vm_lock. 832 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 833 */ 834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 835 { 836 memset(vma, 0, sizeof(*vma)); 837 vma->vm_mm = mm; 838 vma->vm_ops = &vma_dummy_vm_ops; 839 INIT_LIST_HEAD(&vma->anon_vma_chain); 840 vma_mark_detached(vma, false); 841 vma_numab_state_init(vma); 842 } 843 844 /* Use when VMA is not part of the VMA tree and needs no locking */ 845 static inline void vm_flags_init(struct vm_area_struct *vma, 846 vm_flags_t flags) 847 { 848 ACCESS_PRIVATE(vma, __vm_flags) = flags; 849 } 850 851 /* 852 * Use when VMA is part of the VMA tree and modifications need coordination 853 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 854 * it should be locked explicitly beforehand. 855 */ 856 static inline void vm_flags_reset(struct vm_area_struct *vma, 857 vm_flags_t flags) 858 { 859 vma_assert_write_locked(vma); 860 vm_flags_init(vma, flags); 861 } 862 863 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 864 vm_flags_t flags) 865 { 866 vma_assert_write_locked(vma); 867 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 868 } 869 870 static inline void vm_flags_set(struct vm_area_struct *vma, 871 vm_flags_t flags) 872 { 873 vma_start_write(vma); 874 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 875 } 876 877 static inline void vm_flags_clear(struct vm_area_struct *vma, 878 vm_flags_t flags) 879 { 880 vma_start_write(vma); 881 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 882 } 883 884 /* 885 * Use only if VMA is not part of the VMA tree or has no other users and 886 * therefore needs no locking. 887 */ 888 static inline void __vm_flags_mod(struct vm_area_struct *vma, 889 vm_flags_t set, vm_flags_t clear) 890 { 891 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 892 } 893 894 /* 895 * Use only when the order of set/clear operations is unimportant, otherwise 896 * use vm_flags_{set|clear} explicitly. 897 */ 898 static inline void vm_flags_mod(struct vm_area_struct *vma, 899 vm_flags_t set, vm_flags_t clear) 900 { 901 vma_start_write(vma); 902 __vm_flags_mod(vma, set, clear); 903 } 904 905 static inline void vma_set_anonymous(struct vm_area_struct *vma) 906 { 907 vma->vm_ops = NULL; 908 } 909 910 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 911 { 912 return !vma->vm_ops; 913 } 914 915 /* 916 * Indicate if the VMA is a heap for the given task; for 917 * /proc/PID/maps that is the heap of the main task. 918 */ 919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 920 { 921 return vma->vm_start < vma->vm_mm->brk && 922 vma->vm_end > vma->vm_mm->start_brk; 923 } 924 925 /* 926 * Indicate if the VMA is a stack for the given task; for 927 * /proc/PID/maps that is the stack of the main task. 928 */ 929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 930 { 931 /* 932 * We make no effort to guess what a given thread considers to be 933 * its "stack". It's not even well-defined for programs written 934 * languages like Go. 935 */ 936 return vma->vm_start <= vma->vm_mm->start_stack && 937 vma->vm_end >= vma->vm_mm->start_stack; 938 } 939 940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 941 { 942 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 943 944 if (!maybe_stack) 945 return false; 946 947 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 948 VM_STACK_INCOMPLETE_SETUP) 949 return true; 950 951 return false; 952 } 953 954 static inline bool vma_is_foreign(struct vm_area_struct *vma) 955 { 956 if (!current->mm) 957 return true; 958 959 if (current->mm != vma->vm_mm) 960 return true; 961 962 return false; 963 } 964 965 static inline bool vma_is_accessible(struct vm_area_struct *vma) 966 { 967 return vma->vm_flags & VM_ACCESS_FLAGS; 968 } 969 970 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 971 { 972 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 973 (VM_SHARED | VM_MAYWRITE); 974 } 975 976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 977 { 978 return is_shared_maywrite(vma->vm_flags); 979 } 980 981 static inline 982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 983 { 984 return mas_find(&vmi->mas, max - 1); 985 } 986 987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 988 { 989 /* 990 * Uses mas_find() to get the first VMA when the iterator starts. 991 * Calling mas_next() could skip the first entry. 992 */ 993 return mas_find(&vmi->mas, ULONG_MAX); 994 } 995 996 static inline 997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 998 { 999 return mas_next_range(&vmi->mas, ULONG_MAX); 1000 } 1001 1002 1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 1004 { 1005 return mas_prev(&vmi->mas, 0); 1006 } 1007 1008 static inline 1009 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 1010 { 1011 return mas_prev_range(&vmi->mas, 0); 1012 } 1013 1014 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1015 { 1016 return vmi->mas.index; 1017 } 1018 1019 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1020 { 1021 return vmi->mas.last + 1; 1022 } 1023 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1024 unsigned long count) 1025 { 1026 return mas_expected_entries(&vmi->mas, count); 1027 } 1028 1029 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1030 unsigned long start, unsigned long end, gfp_t gfp) 1031 { 1032 __mas_set_range(&vmi->mas, start, end - 1); 1033 mas_store_gfp(&vmi->mas, NULL, gfp); 1034 if (unlikely(mas_is_err(&vmi->mas))) 1035 return -ENOMEM; 1036 1037 return 0; 1038 } 1039 1040 /* Free any unused preallocations */ 1041 static inline void vma_iter_free(struct vma_iterator *vmi) 1042 { 1043 mas_destroy(&vmi->mas); 1044 } 1045 1046 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1047 struct vm_area_struct *vma) 1048 { 1049 vmi->mas.index = vma->vm_start; 1050 vmi->mas.last = vma->vm_end - 1; 1051 mas_store(&vmi->mas, vma); 1052 if (unlikely(mas_is_err(&vmi->mas))) 1053 return -ENOMEM; 1054 1055 return 0; 1056 } 1057 1058 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1059 { 1060 mas_pause(&vmi->mas); 1061 } 1062 1063 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1064 { 1065 mas_set(&vmi->mas, addr); 1066 } 1067 1068 #define for_each_vma(__vmi, __vma) \ 1069 while (((__vma) = vma_next(&(__vmi))) != NULL) 1070 1071 /* The MM code likes to work with exclusive end addresses */ 1072 #define for_each_vma_range(__vmi, __vma, __end) \ 1073 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1074 1075 #ifdef CONFIG_SHMEM 1076 /* 1077 * The vma_is_shmem is not inline because it is used only by slow 1078 * paths in userfault. 1079 */ 1080 bool vma_is_shmem(struct vm_area_struct *vma); 1081 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1082 #else 1083 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1084 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1085 #endif 1086 1087 int vma_is_stack_for_current(struct vm_area_struct *vma); 1088 1089 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1090 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1091 1092 struct mmu_gather; 1093 struct inode; 1094 1095 /* 1096 * compound_order() can be called without holding a reference, which means 1097 * that niceties like page_folio() don't work. These callers should be 1098 * prepared to handle wild return values. For example, PG_head may be 1099 * set before the order is initialised, or this may be a tail page. 1100 * See compaction.c for some good examples. 1101 */ 1102 static inline unsigned int compound_order(struct page *page) 1103 { 1104 struct folio *folio = (struct folio *)page; 1105 1106 if (!test_bit(PG_head, &folio->flags)) 1107 return 0; 1108 return folio->_flags_1 & 0xff; 1109 } 1110 1111 /** 1112 * folio_order - The allocation order of a folio. 1113 * @folio: The folio. 1114 * 1115 * A folio is composed of 2^order pages. See get_order() for the definition 1116 * of order. 1117 * 1118 * Return: The order of the folio. 1119 */ 1120 static inline unsigned int folio_order(const struct folio *folio) 1121 { 1122 if (!folio_test_large(folio)) 1123 return 0; 1124 return folio->_flags_1 & 0xff; 1125 } 1126 1127 #include <linux/huge_mm.h> 1128 1129 /* 1130 * Methods to modify the page usage count. 1131 * 1132 * What counts for a page usage: 1133 * - cache mapping (page->mapping) 1134 * - private data (page->private) 1135 * - page mapped in a task's page tables, each mapping 1136 * is counted separately 1137 * 1138 * Also, many kernel routines increase the page count before a critical 1139 * routine so they can be sure the page doesn't go away from under them. 1140 */ 1141 1142 /* 1143 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1144 */ 1145 static inline int put_page_testzero(struct page *page) 1146 { 1147 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1148 return page_ref_dec_and_test(page); 1149 } 1150 1151 static inline int folio_put_testzero(struct folio *folio) 1152 { 1153 return put_page_testzero(&folio->page); 1154 } 1155 1156 /* 1157 * Try to grab a ref unless the page has a refcount of zero, return false if 1158 * that is the case. 1159 * This can be called when MMU is off so it must not access 1160 * any of the virtual mappings. 1161 */ 1162 static inline bool get_page_unless_zero(struct page *page) 1163 { 1164 return page_ref_add_unless(page, 1, 0); 1165 } 1166 1167 static inline struct folio *folio_get_nontail_page(struct page *page) 1168 { 1169 if (unlikely(!get_page_unless_zero(page))) 1170 return NULL; 1171 return (struct folio *)page; 1172 } 1173 1174 extern int page_is_ram(unsigned long pfn); 1175 1176 enum { 1177 REGION_INTERSECTS, 1178 REGION_DISJOINT, 1179 REGION_MIXED, 1180 }; 1181 1182 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1183 unsigned long desc); 1184 1185 /* Support for virtually mapped pages */ 1186 struct page *vmalloc_to_page(const void *addr); 1187 unsigned long vmalloc_to_pfn(const void *addr); 1188 1189 /* 1190 * Determine if an address is within the vmalloc range 1191 * 1192 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1193 * is no special casing required. 1194 */ 1195 #ifdef CONFIG_MMU 1196 extern bool is_vmalloc_addr(const void *x); 1197 extern int is_vmalloc_or_module_addr(const void *x); 1198 #else 1199 static inline bool is_vmalloc_addr(const void *x) 1200 { 1201 return false; 1202 } 1203 static inline int is_vmalloc_or_module_addr(const void *x) 1204 { 1205 return 0; 1206 } 1207 #endif 1208 1209 /* 1210 * How many times the entire folio is mapped as a single unit (eg by a 1211 * PMD or PUD entry). This is probably not what you want, except for 1212 * debugging purposes or implementation of other core folio_*() primitives. 1213 */ 1214 static inline int folio_entire_mapcount(const struct folio *folio) 1215 { 1216 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1217 return atomic_read(&folio->_entire_mapcount) + 1; 1218 } 1219 1220 static inline int folio_large_mapcount(const struct folio *folio) 1221 { 1222 VM_WARN_ON_FOLIO(!folio_test_large(folio), folio); 1223 return atomic_read(&folio->_large_mapcount) + 1; 1224 } 1225 1226 /** 1227 * folio_mapcount() - Number of mappings of this folio. 1228 * @folio: The folio. 1229 * 1230 * The folio mapcount corresponds to the number of present user page table 1231 * entries that reference any part of a folio. Each such present user page 1232 * table entry must be paired with exactly on folio reference. 1233 * 1234 * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts 1235 * exactly once. 1236 * 1237 * For hugetlb folios, each abstracted "hugetlb" user page table entry that 1238 * references the entire folio counts exactly once, even when such special 1239 * page table entries are comprised of multiple ordinary page table entries. 1240 * 1241 * Will report 0 for pages which cannot be mapped into userspace, such as 1242 * slab, page tables and similar. 1243 * 1244 * Return: The number of times this folio is mapped. 1245 */ 1246 static inline int folio_mapcount(const struct folio *folio) 1247 { 1248 int mapcount; 1249 1250 if (likely(!folio_test_large(folio))) { 1251 mapcount = atomic_read(&folio->_mapcount) + 1; 1252 /* Handle page_has_type() pages */ 1253 if (mapcount < PAGE_MAPCOUNT_RESERVE + 1) 1254 mapcount = 0; 1255 return mapcount; 1256 } 1257 return folio_large_mapcount(folio); 1258 } 1259 1260 /** 1261 * folio_mapped - Is this folio mapped into userspace? 1262 * @folio: The folio. 1263 * 1264 * Return: True if any page in this folio is referenced by user page tables. 1265 */ 1266 static inline bool folio_mapped(const struct folio *folio) 1267 { 1268 return folio_mapcount(folio) >= 1; 1269 } 1270 1271 /* 1272 * Return true if this page is mapped into pagetables. 1273 * For compound page it returns true if any sub-page of compound page is mapped, 1274 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1275 */ 1276 static inline bool page_mapped(const struct page *page) 1277 { 1278 return folio_mapped(page_folio(page)); 1279 } 1280 1281 static inline struct page *virt_to_head_page(const void *x) 1282 { 1283 struct page *page = virt_to_page(x); 1284 1285 return compound_head(page); 1286 } 1287 1288 static inline struct folio *virt_to_folio(const void *x) 1289 { 1290 struct page *page = virt_to_page(x); 1291 1292 return page_folio(page); 1293 } 1294 1295 void __folio_put(struct folio *folio); 1296 1297 void put_pages_list(struct list_head *pages); 1298 1299 void split_page(struct page *page, unsigned int order); 1300 void folio_copy(struct folio *dst, struct folio *src); 1301 int folio_mc_copy(struct folio *dst, struct folio *src); 1302 1303 unsigned long nr_free_buffer_pages(void); 1304 1305 /* Returns the number of bytes in this potentially compound page. */ 1306 static inline unsigned long page_size(struct page *page) 1307 { 1308 return PAGE_SIZE << compound_order(page); 1309 } 1310 1311 /* Returns the number of bits needed for the number of bytes in a page */ 1312 static inline unsigned int page_shift(struct page *page) 1313 { 1314 return PAGE_SHIFT + compound_order(page); 1315 } 1316 1317 /** 1318 * thp_order - Order of a transparent huge page. 1319 * @page: Head page of a transparent huge page. 1320 */ 1321 static inline unsigned int thp_order(struct page *page) 1322 { 1323 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1324 return compound_order(page); 1325 } 1326 1327 /** 1328 * thp_size - Size of a transparent huge page. 1329 * @page: Head page of a transparent huge page. 1330 * 1331 * Return: Number of bytes in this page. 1332 */ 1333 static inline unsigned long thp_size(struct page *page) 1334 { 1335 return PAGE_SIZE << thp_order(page); 1336 } 1337 1338 #ifdef CONFIG_MMU 1339 /* 1340 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1341 * servicing faults for write access. In the normal case, do always want 1342 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1343 * that do not have writing enabled, when used by access_process_vm. 1344 */ 1345 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1346 { 1347 if (likely(vma->vm_flags & VM_WRITE)) 1348 pte = pte_mkwrite(pte, vma); 1349 return pte; 1350 } 1351 1352 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1353 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1354 struct page *page, unsigned int nr, unsigned long addr); 1355 1356 vm_fault_t finish_fault(struct vm_fault *vmf); 1357 #endif 1358 1359 /* 1360 * Multiple processes may "see" the same page. E.g. for untouched 1361 * mappings of /dev/null, all processes see the same page full of 1362 * zeroes, and text pages of executables and shared libraries have 1363 * only one copy in memory, at most, normally. 1364 * 1365 * For the non-reserved pages, page_count(page) denotes a reference count. 1366 * page_count() == 0 means the page is free. page->lru is then used for 1367 * freelist management in the buddy allocator. 1368 * page_count() > 0 means the page has been allocated. 1369 * 1370 * Pages are allocated by the slab allocator in order to provide memory 1371 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1372 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1373 * unless a particular usage is carefully commented. (the responsibility of 1374 * freeing the kmalloc memory is the caller's, of course). 1375 * 1376 * A page may be used by anyone else who does a __get_free_page(). 1377 * In this case, page_count still tracks the references, and should only 1378 * be used through the normal accessor functions. The top bits of page->flags 1379 * and page->virtual store page management information, but all other fields 1380 * are unused and could be used privately, carefully. The management of this 1381 * page is the responsibility of the one who allocated it, and those who have 1382 * subsequently been given references to it. 1383 * 1384 * The other pages (we may call them "pagecache pages") are completely 1385 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1386 * The following discussion applies only to them. 1387 * 1388 * A pagecache page contains an opaque `private' member, which belongs to the 1389 * page's address_space. Usually, this is the address of a circular list of 1390 * the page's disk buffers. PG_private must be set to tell the VM to call 1391 * into the filesystem to release these pages. 1392 * 1393 * A page may belong to an inode's memory mapping. In this case, page->mapping 1394 * is the pointer to the inode, and page->index is the file offset of the page, 1395 * in units of PAGE_SIZE. 1396 * 1397 * If pagecache pages are not associated with an inode, they are said to be 1398 * anonymous pages. These may become associated with the swapcache, and in that 1399 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1400 * 1401 * In either case (swapcache or inode backed), the pagecache itself holds one 1402 * reference to the page. Setting PG_private should also increment the 1403 * refcount. The each user mapping also has a reference to the page. 1404 * 1405 * The pagecache pages are stored in a per-mapping radix tree, which is 1406 * rooted at mapping->i_pages, and indexed by offset. 1407 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1408 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1409 * 1410 * All pagecache pages may be subject to I/O: 1411 * - inode pages may need to be read from disk, 1412 * - inode pages which have been modified and are MAP_SHARED may need 1413 * to be written back to the inode on disk, 1414 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1415 * modified may need to be swapped out to swap space and (later) to be read 1416 * back into memory. 1417 */ 1418 1419 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1420 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1421 1422 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs); 1423 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1424 { 1425 if (!static_branch_unlikely(&devmap_managed_key)) 1426 return false; 1427 if (!folio_is_zone_device(folio)) 1428 return false; 1429 return __put_devmap_managed_folio_refs(folio, refs); 1430 } 1431 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1432 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs) 1433 { 1434 return false; 1435 } 1436 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1437 1438 /* 127: arbitrary random number, small enough to assemble well */ 1439 #define folio_ref_zero_or_close_to_overflow(folio) \ 1440 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1441 1442 /** 1443 * folio_get - Increment the reference count on a folio. 1444 * @folio: The folio. 1445 * 1446 * Context: May be called in any context, as long as you know that 1447 * you have a refcount on the folio. If you do not already have one, 1448 * folio_try_get() may be the right interface for you to use. 1449 */ 1450 static inline void folio_get(struct folio *folio) 1451 { 1452 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1453 folio_ref_inc(folio); 1454 } 1455 1456 static inline void get_page(struct page *page) 1457 { 1458 folio_get(page_folio(page)); 1459 } 1460 1461 static inline __must_check bool try_get_page(struct page *page) 1462 { 1463 page = compound_head(page); 1464 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1465 return false; 1466 page_ref_inc(page); 1467 return true; 1468 } 1469 1470 /** 1471 * folio_put - Decrement the reference count on a folio. 1472 * @folio: The folio. 1473 * 1474 * If the folio's reference count reaches zero, the memory will be 1475 * released back to the page allocator and may be used by another 1476 * allocation immediately. Do not access the memory or the struct folio 1477 * after calling folio_put() unless you can be sure that it wasn't the 1478 * last reference. 1479 * 1480 * Context: May be called in process or interrupt context, but not in NMI 1481 * context. May be called while holding a spinlock. 1482 */ 1483 static inline void folio_put(struct folio *folio) 1484 { 1485 if (folio_put_testzero(folio)) 1486 __folio_put(folio); 1487 } 1488 1489 /** 1490 * folio_put_refs - Reduce the reference count on a folio. 1491 * @folio: The folio. 1492 * @refs: The amount to subtract from the folio's reference count. 1493 * 1494 * If the folio's reference count reaches zero, the memory will be 1495 * released back to the page allocator and may be used by another 1496 * allocation immediately. Do not access the memory or the struct folio 1497 * after calling folio_put_refs() unless you can be sure that these weren't 1498 * the last references. 1499 * 1500 * Context: May be called in process or interrupt context, but not in NMI 1501 * context. May be called while holding a spinlock. 1502 */ 1503 static inline void folio_put_refs(struct folio *folio, int refs) 1504 { 1505 if (folio_ref_sub_and_test(folio, refs)) 1506 __folio_put(folio); 1507 } 1508 1509 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1510 1511 /* 1512 * union release_pages_arg - an array of pages or folios 1513 * 1514 * release_pages() releases a simple array of multiple pages, and 1515 * accepts various different forms of said page array: either 1516 * a regular old boring array of pages, an array of folios, or 1517 * an array of encoded page pointers. 1518 * 1519 * The transparent union syntax for this kind of "any of these 1520 * argument types" is all kinds of ugly, so look away. 1521 */ 1522 typedef union { 1523 struct page **pages; 1524 struct folio **folios; 1525 struct encoded_page **encoded_pages; 1526 } release_pages_arg __attribute__ ((__transparent_union__)); 1527 1528 void release_pages(release_pages_arg, int nr); 1529 1530 /** 1531 * folios_put - Decrement the reference count on an array of folios. 1532 * @folios: The folios. 1533 * 1534 * Like folio_put(), but for a batch of folios. This is more efficient 1535 * than writing the loop yourself as it will optimise the locks which need 1536 * to be taken if the folios are freed. The folios batch is returned 1537 * empty and ready to be reused for another batch; there is no need to 1538 * reinitialise it. 1539 * 1540 * Context: May be called in process or interrupt context, but not in NMI 1541 * context. May be called while holding a spinlock. 1542 */ 1543 static inline void folios_put(struct folio_batch *folios) 1544 { 1545 folios_put_refs(folios, NULL); 1546 } 1547 1548 static inline void put_page(struct page *page) 1549 { 1550 struct folio *folio = page_folio(page); 1551 1552 /* 1553 * For some devmap managed pages we need to catch refcount transition 1554 * from 2 to 1: 1555 */ 1556 if (put_devmap_managed_folio_refs(folio, 1)) 1557 return; 1558 folio_put(folio); 1559 } 1560 1561 /* 1562 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1563 * the page's refcount so that two separate items are tracked: the original page 1564 * reference count, and also a new count of how many pin_user_pages() calls were 1565 * made against the page. ("gup-pinned" is another term for the latter). 1566 * 1567 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1568 * distinct from normal pages. As such, the unpin_user_page() call (and its 1569 * variants) must be used in order to release gup-pinned pages. 1570 * 1571 * Choice of value: 1572 * 1573 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1574 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1575 * simpler, due to the fact that adding an even power of two to the page 1576 * refcount has the effect of using only the upper N bits, for the code that 1577 * counts up using the bias value. This means that the lower bits are left for 1578 * the exclusive use of the original code that increments and decrements by one 1579 * (or at least, by much smaller values than the bias value). 1580 * 1581 * Of course, once the lower bits overflow into the upper bits (and this is 1582 * OK, because subtraction recovers the original values), then visual inspection 1583 * no longer suffices to directly view the separate counts. However, for normal 1584 * applications that don't have huge page reference counts, this won't be an 1585 * issue. 1586 * 1587 * Locking: the lockless algorithm described in folio_try_get_rcu() 1588 * provides safe operation for get_user_pages(), folio_mkclean() and 1589 * other calls that race to set up page table entries. 1590 */ 1591 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1592 1593 void unpin_user_page(struct page *page); 1594 void unpin_folio(struct folio *folio); 1595 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1596 bool make_dirty); 1597 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1598 bool make_dirty); 1599 void unpin_user_pages(struct page **pages, unsigned long npages); 1600 void unpin_folios(struct folio **folios, unsigned long nfolios); 1601 1602 static inline bool is_cow_mapping(vm_flags_t flags) 1603 { 1604 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1605 } 1606 1607 #ifndef CONFIG_MMU 1608 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1609 { 1610 /* 1611 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1612 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1613 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1614 * underlying memory if ptrace is active, so this is only possible if 1615 * ptrace does not apply. Note that there is no mprotect() to upgrade 1616 * write permissions later. 1617 */ 1618 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1619 } 1620 #endif 1621 1622 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1623 #define SECTION_IN_PAGE_FLAGS 1624 #endif 1625 1626 /* 1627 * The identification function is mainly used by the buddy allocator for 1628 * determining if two pages could be buddies. We are not really identifying 1629 * the zone since we could be using the section number id if we do not have 1630 * node id available in page flags. 1631 * We only guarantee that it will return the same value for two combinable 1632 * pages in a zone. 1633 */ 1634 static inline int page_zone_id(struct page *page) 1635 { 1636 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1637 } 1638 1639 #ifdef NODE_NOT_IN_PAGE_FLAGS 1640 int page_to_nid(const struct page *page); 1641 #else 1642 static inline int page_to_nid(const struct page *page) 1643 { 1644 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1645 } 1646 #endif 1647 1648 static inline int folio_nid(const struct folio *folio) 1649 { 1650 return page_to_nid(&folio->page); 1651 } 1652 1653 #ifdef CONFIG_NUMA_BALANCING 1654 /* page access time bits needs to hold at least 4 seconds */ 1655 #define PAGE_ACCESS_TIME_MIN_BITS 12 1656 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1657 #define PAGE_ACCESS_TIME_BUCKETS \ 1658 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1659 #else 1660 #define PAGE_ACCESS_TIME_BUCKETS 0 1661 #endif 1662 1663 #define PAGE_ACCESS_TIME_MASK \ 1664 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1665 1666 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1667 { 1668 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1669 } 1670 1671 static inline int cpupid_to_pid(int cpupid) 1672 { 1673 return cpupid & LAST__PID_MASK; 1674 } 1675 1676 static inline int cpupid_to_cpu(int cpupid) 1677 { 1678 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1679 } 1680 1681 static inline int cpupid_to_nid(int cpupid) 1682 { 1683 return cpu_to_node(cpupid_to_cpu(cpupid)); 1684 } 1685 1686 static inline bool cpupid_pid_unset(int cpupid) 1687 { 1688 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1689 } 1690 1691 static inline bool cpupid_cpu_unset(int cpupid) 1692 { 1693 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1694 } 1695 1696 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1697 { 1698 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1699 } 1700 1701 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1702 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1703 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1704 { 1705 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1706 } 1707 1708 static inline int folio_last_cpupid(struct folio *folio) 1709 { 1710 return folio->_last_cpupid; 1711 } 1712 static inline void page_cpupid_reset_last(struct page *page) 1713 { 1714 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1715 } 1716 #else 1717 static inline int folio_last_cpupid(struct folio *folio) 1718 { 1719 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1720 } 1721 1722 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1723 1724 static inline void page_cpupid_reset_last(struct page *page) 1725 { 1726 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1727 } 1728 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1729 1730 static inline int folio_xchg_access_time(struct folio *folio, int time) 1731 { 1732 int last_time; 1733 1734 last_time = folio_xchg_last_cpupid(folio, 1735 time >> PAGE_ACCESS_TIME_BUCKETS); 1736 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1737 } 1738 1739 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1740 { 1741 unsigned int pid_bit; 1742 1743 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1744 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1745 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1746 } 1747 } 1748 1749 bool folio_use_access_time(struct folio *folio); 1750 #else /* !CONFIG_NUMA_BALANCING */ 1751 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1752 { 1753 return folio_nid(folio); /* XXX */ 1754 } 1755 1756 static inline int folio_xchg_access_time(struct folio *folio, int time) 1757 { 1758 return 0; 1759 } 1760 1761 static inline int folio_last_cpupid(struct folio *folio) 1762 { 1763 return folio_nid(folio); /* XXX */ 1764 } 1765 1766 static inline int cpupid_to_nid(int cpupid) 1767 { 1768 return -1; 1769 } 1770 1771 static inline int cpupid_to_pid(int cpupid) 1772 { 1773 return -1; 1774 } 1775 1776 static inline int cpupid_to_cpu(int cpupid) 1777 { 1778 return -1; 1779 } 1780 1781 static inline int cpu_pid_to_cpupid(int nid, int pid) 1782 { 1783 return -1; 1784 } 1785 1786 static inline bool cpupid_pid_unset(int cpupid) 1787 { 1788 return true; 1789 } 1790 1791 static inline void page_cpupid_reset_last(struct page *page) 1792 { 1793 } 1794 1795 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1796 { 1797 return false; 1798 } 1799 1800 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1801 { 1802 } 1803 static inline bool folio_use_access_time(struct folio *folio) 1804 { 1805 return false; 1806 } 1807 #endif /* CONFIG_NUMA_BALANCING */ 1808 1809 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1810 1811 /* 1812 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1813 * setting tags for all pages to native kernel tag value 0xff, as the default 1814 * value 0x00 maps to 0xff. 1815 */ 1816 1817 static inline u8 page_kasan_tag(const struct page *page) 1818 { 1819 u8 tag = KASAN_TAG_KERNEL; 1820 1821 if (kasan_enabled()) { 1822 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1823 tag ^= 0xff; 1824 } 1825 1826 return tag; 1827 } 1828 1829 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1830 { 1831 unsigned long old_flags, flags; 1832 1833 if (!kasan_enabled()) 1834 return; 1835 1836 tag ^= 0xff; 1837 old_flags = READ_ONCE(page->flags); 1838 do { 1839 flags = old_flags; 1840 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1841 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1842 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1843 } 1844 1845 static inline void page_kasan_tag_reset(struct page *page) 1846 { 1847 if (kasan_enabled()) 1848 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1849 } 1850 1851 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1852 1853 static inline u8 page_kasan_tag(const struct page *page) 1854 { 1855 return 0xff; 1856 } 1857 1858 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1859 static inline void page_kasan_tag_reset(struct page *page) { } 1860 1861 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1862 1863 static inline struct zone *page_zone(const struct page *page) 1864 { 1865 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1866 } 1867 1868 static inline pg_data_t *page_pgdat(const struct page *page) 1869 { 1870 return NODE_DATA(page_to_nid(page)); 1871 } 1872 1873 static inline struct zone *folio_zone(const struct folio *folio) 1874 { 1875 return page_zone(&folio->page); 1876 } 1877 1878 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1879 { 1880 return page_pgdat(&folio->page); 1881 } 1882 1883 #ifdef SECTION_IN_PAGE_FLAGS 1884 static inline void set_page_section(struct page *page, unsigned long section) 1885 { 1886 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1887 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1888 } 1889 1890 static inline unsigned long page_to_section(const struct page *page) 1891 { 1892 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1893 } 1894 #endif 1895 1896 /** 1897 * folio_pfn - Return the Page Frame Number of a folio. 1898 * @folio: The folio. 1899 * 1900 * A folio may contain multiple pages. The pages have consecutive 1901 * Page Frame Numbers. 1902 * 1903 * Return: The Page Frame Number of the first page in the folio. 1904 */ 1905 static inline unsigned long folio_pfn(struct folio *folio) 1906 { 1907 return page_to_pfn(&folio->page); 1908 } 1909 1910 static inline struct folio *pfn_folio(unsigned long pfn) 1911 { 1912 return page_folio(pfn_to_page(pfn)); 1913 } 1914 1915 /** 1916 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1917 * @folio: The folio. 1918 * 1919 * This function checks if a folio has been pinned via a call to 1920 * a function in the pin_user_pages() family. 1921 * 1922 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1923 * because it means "definitely not pinned for DMA", but true means "probably 1924 * pinned for DMA, but possibly a false positive due to having at least 1925 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1926 * 1927 * False positives are OK, because: a) it's unlikely for a folio to 1928 * get that many refcounts, and b) all the callers of this routine are 1929 * expected to be able to deal gracefully with a false positive. 1930 * 1931 * For large folios, the result will be exactly correct. That's because 1932 * we have more tracking data available: the _pincount field is used 1933 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1934 * 1935 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1936 * 1937 * Return: True, if it is likely that the folio has been "dma-pinned". 1938 * False, if the folio is definitely not dma-pinned. 1939 */ 1940 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1941 { 1942 if (folio_test_large(folio)) 1943 return atomic_read(&folio->_pincount) > 0; 1944 1945 /* 1946 * folio_ref_count() is signed. If that refcount overflows, then 1947 * folio_ref_count() returns a negative value, and callers will avoid 1948 * further incrementing the refcount. 1949 * 1950 * Here, for that overflow case, use the sign bit to count a little 1951 * bit higher via unsigned math, and thus still get an accurate result. 1952 */ 1953 return ((unsigned int)folio_ref_count(folio)) >= 1954 GUP_PIN_COUNTING_BIAS; 1955 } 1956 1957 /* 1958 * This should most likely only be called during fork() to see whether we 1959 * should break the cow immediately for an anon page on the src mm. 1960 * 1961 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1962 */ 1963 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1964 struct folio *folio) 1965 { 1966 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1967 1968 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1969 return false; 1970 1971 return folio_maybe_dma_pinned(folio); 1972 } 1973 1974 /** 1975 * is_zero_page - Query if a page is a zero page 1976 * @page: The page to query 1977 * 1978 * This returns true if @page is one of the permanent zero pages. 1979 */ 1980 static inline bool is_zero_page(const struct page *page) 1981 { 1982 return is_zero_pfn(page_to_pfn(page)); 1983 } 1984 1985 /** 1986 * is_zero_folio - Query if a folio is a zero page 1987 * @folio: The folio to query 1988 * 1989 * This returns true if @folio is one of the permanent zero pages. 1990 */ 1991 static inline bool is_zero_folio(const struct folio *folio) 1992 { 1993 return is_zero_page(&folio->page); 1994 } 1995 1996 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1997 #ifdef CONFIG_MIGRATION 1998 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1999 { 2000 #ifdef CONFIG_CMA 2001 int mt = folio_migratetype(folio); 2002 2003 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2004 return false; 2005 #endif 2006 /* The zero page can be "pinned" but gets special handling. */ 2007 if (is_zero_folio(folio)) 2008 return true; 2009 2010 /* Coherent device memory must always allow eviction. */ 2011 if (folio_is_device_coherent(folio)) 2012 return false; 2013 2014 /* Otherwise, non-movable zone folios can be pinned. */ 2015 return !folio_is_zone_movable(folio); 2016 2017 } 2018 #else 2019 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2020 { 2021 return true; 2022 } 2023 #endif 2024 2025 static inline void set_page_zone(struct page *page, enum zone_type zone) 2026 { 2027 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2028 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2029 } 2030 2031 static inline void set_page_node(struct page *page, unsigned long node) 2032 { 2033 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2034 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2035 } 2036 2037 static inline void set_page_links(struct page *page, enum zone_type zone, 2038 unsigned long node, unsigned long pfn) 2039 { 2040 set_page_zone(page, zone); 2041 set_page_node(page, node); 2042 #ifdef SECTION_IN_PAGE_FLAGS 2043 set_page_section(page, pfn_to_section_nr(pfn)); 2044 #endif 2045 } 2046 2047 /** 2048 * folio_nr_pages - The number of pages in the folio. 2049 * @folio: The folio. 2050 * 2051 * Return: A positive power of two. 2052 */ 2053 static inline long folio_nr_pages(const struct folio *folio) 2054 { 2055 if (!folio_test_large(folio)) 2056 return 1; 2057 #ifdef CONFIG_64BIT 2058 return folio->_folio_nr_pages; 2059 #else 2060 return 1L << (folio->_flags_1 & 0xff); 2061 #endif 2062 } 2063 2064 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2065 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2066 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2067 #else 2068 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2069 #endif 2070 2071 /* 2072 * compound_nr() returns the number of pages in this potentially compound 2073 * page. compound_nr() can be called on a tail page, and is defined to 2074 * return 1 in that case. 2075 */ 2076 static inline unsigned long compound_nr(struct page *page) 2077 { 2078 struct folio *folio = (struct folio *)page; 2079 2080 if (!test_bit(PG_head, &folio->flags)) 2081 return 1; 2082 #ifdef CONFIG_64BIT 2083 return folio->_folio_nr_pages; 2084 #else 2085 return 1L << (folio->_flags_1 & 0xff); 2086 #endif 2087 } 2088 2089 /** 2090 * thp_nr_pages - The number of regular pages in this huge page. 2091 * @page: The head page of a huge page. 2092 */ 2093 static inline int thp_nr_pages(struct page *page) 2094 { 2095 return folio_nr_pages((struct folio *)page); 2096 } 2097 2098 /** 2099 * folio_next - Move to the next physical folio. 2100 * @folio: The folio we're currently operating on. 2101 * 2102 * If you have physically contiguous memory which may span more than 2103 * one folio (eg a &struct bio_vec), use this function to move from one 2104 * folio to the next. Do not use it if the memory is only virtually 2105 * contiguous as the folios are almost certainly not adjacent to each 2106 * other. This is the folio equivalent to writing ``page++``. 2107 * 2108 * Context: We assume that the folios are refcounted and/or locked at a 2109 * higher level and do not adjust the reference counts. 2110 * Return: The next struct folio. 2111 */ 2112 static inline struct folio *folio_next(struct folio *folio) 2113 { 2114 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2115 } 2116 2117 /** 2118 * folio_shift - The size of the memory described by this folio. 2119 * @folio: The folio. 2120 * 2121 * A folio represents a number of bytes which is a power-of-two in size. 2122 * This function tells you which power-of-two the folio is. See also 2123 * folio_size() and folio_order(). 2124 * 2125 * Context: The caller should have a reference on the folio to prevent 2126 * it from being split. It is not necessary for the folio to be locked. 2127 * Return: The base-2 logarithm of the size of this folio. 2128 */ 2129 static inline unsigned int folio_shift(const struct folio *folio) 2130 { 2131 return PAGE_SHIFT + folio_order(folio); 2132 } 2133 2134 /** 2135 * folio_size - The number of bytes in a folio. 2136 * @folio: The folio. 2137 * 2138 * Context: The caller should have a reference on the folio to prevent 2139 * it from being split. It is not necessary for the folio to be locked. 2140 * Return: The number of bytes in this folio. 2141 */ 2142 static inline size_t folio_size(const struct folio *folio) 2143 { 2144 return PAGE_SIZE << folio_order(folio); 2145 } 2146 2147 /** 2148 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2149 * tables of more than one MM 2150 * @folio: The folio. 2151 * 2152 * This function checks if the folio is currently mapped into more than one 2153 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2154 * ("mapped exclusively"). 2155 * 2156 * As precise information is not easily available for all folios, this function 2157 * estimates the number of MMs ("sharers") that are currently mapping a folio 2158 * using the number of times the first page of the folio is currently mapped 2159 * into page tables. 2160 * 2161 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios, 2162 * the return value will be exactly correct, because they can only be mapped 2163 * at most once into an MM, and they cannot be partially mapped. 2164 * 2165 * For other folios, the result can be fuzzy: 2166 * #. For partially-mappable large folios (THP), the return value can wrongly 2167 * indicate "mapped exclusively" (false negative) when the folio is 2168 * only partially mapped into at least one MM. 2169 * #. For pagecache folios (including hugetlb), the return value can wrongly 2170 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2171 * cover the same file range. 2172 * #. For (small) KSM folios, the return value can wrongly indicate "mapped 2173 * shared" (false positive), when the folio is mapped multiple times into 2174 * the same MM. 2175 * 2176 * Further, this function only considers current page table mappings that 2177 * are tracked using the folio mapcount(s). 2178 * 2179 * This function does not consider: 2180 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2181 * pagecache, temporary unmapping for migration). 2182 * #. If the folio is mapped differently (VM_PFNMAP). 2183 * #. If hugetlb page table sharing applies. Callers might want to check 2184 * hugetlb_pmd_shared(). 2185 * 2186 * Return: Whether the folio is estimated to be mapped into more than one MM. 2187 */ 2188 static inline bool folio_likely_mapped_shared(struct folio *folio) 2189 { 2190 int mapcount = folio_mapcount(folio); 2191 2192 /* Only partially-mappable folios require more care. */ 2193 if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio))) 2194 return mapcount > 1; 2195 2196 /* A single mapping implies "mapped exclusively". */ 2197 if (mapcount <= 1) 2198 return false; 2199 2200 /* If any page is mapped more than once we treat it "mapped shared". */ 2201 if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio)) 2202 return true; 2203 2204 /* Let's guess based on the first subpage. */ 2205 return atomic_read(&folio->_mapcount) > 0; 2206 } 2207 2208 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2209 static inline int arch_make_page_accessible(struct page *page) 2210 { 2211 return 0; 2212 } 2213 #endif 2214 2215 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2216 static inline int arch_make_folio_accessible(struct folio *folio) 2217 { 2218 int ret; 2219 long i, nr = folio_nr_pages(folio); 2220 2221 for (i = 0; i < nr; i++) { 2222 ret = arch_make_page_accessible(folio_page(folio, i)); 2223 if (ret) 2224 break; 2225 } 2226 2227 return ret; 2228 } 2229 #endif 2230 2231 /* 2232 * Some inline functions in vmstat.h depend on page_zone() 2233 */ 2234 #include <linux/vmstat.h> 2235 2236 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2237 #define HASHED_PAGE_VIRTUAL 2238 #endif 2239 2240 #if defined(WANT_PAGE_VIRTUAL) 2241 static inline void *page_address(const struct page *page) 2242 { 2243 return page->virtual; 2244 } 2245 static inline void set_page_address(struct page *page, void *address) 2246 { 2247 page->virtual = address; 2248 } 2249 #define page_address_init() do { } while(0) 2250 #endif 2251 2252 #if defined(HASHED_PAGE_VIRTUAL) 2253 void *page_address(const struct page *page); 2254 void set_page_address(struct page *page, void *virtual); 2255 void page_address_init(void); 2256 #endif 2257 2258 static __always_inline void *lowmem_page_address(const struct page *page) 2259 { 2260 return page_to_virt(page); 2261 } 2262 2263 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2264 #define page_address(page) lowmem_page_address(page) 2265 #define set_page_address(page, address) do { } while(0) 2266 #define page_address_init() do { } while(0) 2267 #endif 2268 2269 static inline void *folio_address(const struct folio *folio) 2270 { 2271 return page_address(&folio->page); 2272 } 2273 2274 /* 2275 * Return true only if the page has been allocated with 2276 * ALLOC_NO_WATERMARKS and the low watermark was not 2277 * met implying that the system is under some pressure. 2278 */ 2279 static inline bool page_is_pfmemalloc(const struct page *page) 2280 { 2281 /* 2282 * lru.next has bit 1 set if the page is allocated from the 2283 * pfmemalloc reserves. Callers may simply overwrite it if 2284 * they do not need to preserve that information. 2285 */ 2286 return (uintptr_t)page->lru.next & BIT(1); 2287 } 2288 2289 /* 2290 * Return true only if the folio has been allocated with 2291 * ALLOC_NO_WATERMARKS and the low watermark was not 2292 * met implying that the system is under some pressure. 2293 */ 2294 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2295 { 2296 /* 2297 * lru.next has bit 1 set if the page is allocated from the 2298 * pfmemalloc reserves. Callers may simply overwrite it if 2299 * they do not need to preserve that information. 2300 */ 2301 return (uintptr_t)folio->lru.next & BIT(1); 2302 } 2303 2304 /* 2305 * Only to be called by the page allocator on a freshly allocated 2306 * page. 2307 */ 2308 static inline void set_page_pfmemalloc(struct page *page) 2309 { 2310 page->lru.next = (void *)BIT(1); 2311 } 2312 2313 static inline void clear_page_pfmemalloc(struct page *page) 2314 { 2315 page->lru.next = NULL; 2316 } 2317 2318 /* 2319 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2320 */ 2321 extern void pagefault_out_of_memory(void); 2322 2323 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2324 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2325 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2326 2327 /* 2328 * Parameter block passed down to zap_pte_range in exceptional cases. 2329 */ 2330 struct zap_details { 2331 struct folio *single_folio; /* Locked folio to be unmapped */ 2332 bool even_cows; /* Zap COWed private pages too? */ 2333 zap_flags_t zap_flags; /* Extra flags for zapping */ 2334 }; 2335 2336 /* 2337 * Whether to drop the pte markers, for example, the uffd-wp information for 2338 * file-backed memory. This should only be specified when we will completely 2339 * drop the page in the mm, either by truncation or unmapping of the vma. By 2340 * default, the flag is not set. 2341 */ 2342 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2343 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2344 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2345 2346 #ifdef CONFIG_SCHED_MM_CID 2347 void sched_mm_cid_before_execve(struct task_struct *t); 2348 void sched_mm_cid_after_execve(struct task_struct *t); 2349 void sched_mm_cid_fork(struct task_struct *t); 2350 void sched_mm_cid_exit_signals(struct task_struct *t); 2351 static inline int task_mm_cid(struct task_struct *t) 2352 { 2353 return t->mm_cid; 2354 } 2355 #else 2356 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2357 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2358 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2359 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2360 static inline int task_mm_cid(struct task_struct *t) 2361 { 2362 /* 2363 * Use the processor id as a fall-back when the mm cid feature is 2364 * disabled. This provides functional per-cpu data structure accesses 2365 * in user-space, althrough it won't provide the memory usage benefits. 2366 */ 2367 return raw_smp_processor_id(); 2368 } 2369 #endif 2370 2371 #ifdef CONFIG_MMU 2372 extern bool can_do_mlock(void); 2373 #else 2374 static inline bool can_do_mlock(void) { return false; } 2375 #endif 2376 extern int user_shm_lock(size_t, struct ucounts *); 2377 extern void user_shm_unlock(size_t, struct ucounts *); 2378 2379 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2380 pte_t pte); 2381 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2382 pte_t pte); 2383 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2384 unsigned long addr, pmd_t pmd); 2385 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2386 pmd_t pmd); 2387 2388 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2389 unsigned long size); 2390 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2391 unsigned long size, struct zap_details *details); 2392 static inline void zap_vma_pages(struct vm_area_struct *vma) 2393 { 2394 zap_page_range_single(vma, vma->vm_start, 2395 vma->vm_end - vma->vm_start, NULL); 2396 } 2397 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2398 struct vm_area_struct *start_vma, unsigned long start, 2399 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2400 2401 struct mmu_notifier_range; 2402 2403 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2404 unsigned long end, unsigned long floor, unsigned long ceiling); 2405 int 2406 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2407 int follow_pte(struct vm_area_struct *vma, unsigned long address, 2408 pte_t **ptepp, spinlock_t **ptlp); 2409 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2410 void *buf, int len, int write); 2411 2412 extern void truncate_pagecache(struct inode *inode, loff_t new); 2413 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2414 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2415 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2416 int generic_error_remove_folio(struct address_space *mapping, 2417 struct folio *folio); 2418 2419 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2420 unsigned long address, struct pt_regs *regs); 2421 2422 #ifdef CONFIG_MMU 2423 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2424 unsigned long address, unsigned int flags, 2425 struct pt_regs *regs); 2426 extern int fixup_user_fault(struct mm_struct *mm, 2427 unsigned long address, unsigned int fault_flags, 2428 bool *unlocked); 2429 void unmap_mapping_pages(struct address_space *mapping, 2430 pgoff_t start, pgoff_t nr, bool even_cows); 2431 void unmap_mapping_range(struct address_space *mapping, 2432 loff_t const holebegin, loff_t const holelen, int even_cows); 2433 #else 2434 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2435 unsigned long address, unsigned int flags, 2436 struct pt_regs *regs) 2437 { 2438 /* should never happen if there's no MMU */ 2439 BUG(); 2440 return VM_FAULT_SIGBUS; 2441 } 2442 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2443 unsigned int fault_flags, bool *unlocked) 2444 { 2445 /* should never happen if there's no MMU */ 2446 BUG(); 2447 return -EFAULT; 2448 } 2449 static inline void unmap_mapping_pages(struct address_space *mapping, 2450 pgoff_t start, pgoff_t nr, bool even_cows) { } 2451 static inline void unmap_mapping_range(struct address_space *mapping, 2452 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2453 #endif 2454 2455 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2456 loff_t const holebegin, loff_t const holelen) 2457 { 2458 unmap_mapping_range(mapping, holebegin, holelen, 0); 2459 } 2460 2461 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2462 unsigned long addr); 2463 2464 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2465 void *buf, int len, unsigned int gup_flags); 2466 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2467 void *buf, int len, unsigned int gup_flags); 2468 2469 long get_user_pages_remote(struct mm_struct *mm, 2470 unsigned long start, unsigned long nr_pages, 2471 unsigned int gup_flags, struct page **pages, 2472 int *locked); 2473 long pin_user_pages_remote(struct mm_struct *mm, 2474 unsigned long start, unsigned long nr_pages, 2475 unsigned int gup_flags, struct page **pages, 2476 int *locked); 2477 2478 /* 2479 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2480 */ 2481 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2482 unsigned long addr, 2483 int gup_flags, 2484 struct vm_area_struct **vmap) 2485 { 2486 struct page *page; 2487 struct vm_area_struct *vma; 2488 int got; 2489 2490 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2491 return ERR_PTR(-EINVAL); 2492 2493 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2494 2495 if (got < 0) 2496 return ERR_PTR(got); 2497 2498 vma = vma_lookup(mm, addr); 2499 if (WARN_ON_ONCE(!vma)) { 2500 put_page(page); 2501 return ERR_PTR(-EINVAL); 2502 } 2503 2504 *vmap = vma; 2505 return page; 2506 } 2507 2508 long get_user_pages(unsigned long start, unsigned long nr_pages, 2509 unsigned int gup_flags, struct page **pages); 2510 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2511 unsigned int gup_flags, struct page **pages); 2512 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2513 struct page **pages, unsigned int gup_flags); 2514 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2515 struct page **pages, unsigned int gup_flags); 2516 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end, 2517 struct folio **folios, unsigned int max_folios, 2518 pgoff_t *offset); 2519 2520 int get_user_pages_fast(unsigned long start, int nr_pages, 2521 unsigned int gup_flags, struct page **pages); 2522 int pin_user_pages_fast(unsigned long start, int nr_pages, 2523 unsigned int gup_flags, struct page **pages); 2524 void folio_add_pin(struct folio *folio); 2525 2526 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2527 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2528 struct task_struct *task, bool bypass_rlim); 2529 2530 struct kvec; 2531 struct page *get_dump_page(unsigned long addr); 2532 2533 bool folio_mark_dirty(struct folio *folio); 2534 bool set_page_dirty(struct page *page); 2535 int set_page_dirty_lock(struct page *page); 2536 2537 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2538 2539 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2540 unsigned long old_addr, struct vm_area_struct *new_vma, 2541 unsigned long new_addr, unsigned long len, 2542 bool need_rmap_locks, bool for_stack); 2543 2544 /* 2545 * Flags used by change_protection(). For now we make it a bitmap so 2546 * that we can pass in multiple flags just like parameters. However 2547 * for now all the callers are only use one of the flags at the same 2548 * time. 2549 */ 2550 /* 2551 * Whether we should manually check if we can map individual PTEs writable, 2552 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2553 * PTEs automatically in a writable mapping. 2554 */ 2555 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2556 /* Whether this protection change is for NUMA hints */ 2557 #define MM_CP_PROT_NUMA (1UL << 1) 2558 /* Whether this change is for write protecting */ 2559 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2560 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2561 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2562 MM_CP_UFFD_WP_RESOLVE) 2563 2564 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2565 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2566 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2567 { 2568 /* 2569 * We want to check manually if we can change individual PTEs writable 2570 * if we can't do that automatically for all PTEs in a mapping. For 2571 * private mappings, that's always the case when we have write 2572 * permissions as we properly have to handle COW. 2573 */ 2574 if (vma->vm_flags & VM_SHARED) 2575 return vma_wants_writenotify(vma, vma->vm_page_prot); 2576 return !!(vma->vm_flags & VM_WRITE); 2577 2578 } 2579 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2580 pte_t pte); 2581 extern long change_protection(struct mmu_gather *tlb, 2582 struct vm_area_struct *vma, unsigned long start, 2583 unsigned long end, unsigned long cp_flags); 2584 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2585 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2586 unsigned long start, unsigned long end, unsigned long newflags); 2587 2588 /* 2589 * doesn't attempt to fault and will return short. 2590 */ 2591 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2592 unsigned int gup_flags, struct page **pages); 2593 2594 static inline bool get_user_page_fast_only(unsigned long addr, 2595 unsigned int gup_flags, struct page **pagep) 2596 { 2597 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2598 } 2599 /* 2600 * per-process(per-mm_struct) statistics. 2601 */ 2602 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2603 { 2604 return percpu_counter_read_positive(&mm->rss_stat[member]); 2605 } 2606 2607 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2608 2609 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2610 { 2611 percpu_counter_add(&mm->rss_stat[member], value); 2612 2613 mm_trace_rss_stat(mm, member); 2614 } 2615 2616 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2617 { 2618 percpu_counter_inc(&mm->rss_stat[member]); 2619 2620 mm_trace_rss_stat(mm, member); 2621 } 2622 2623 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2624 { 2625 percpu_counter_dec(&mm->rss_stat[member]); 2626 2627 mm_trace_rss_stat(mm, member); 2628 } 2629 2630 /* Optimized variant when folio is already known not to be anon */ 2631 static inline int mm_counter_file(struct folio *folio) 2632 { 2633 if (folio_test_swapbacked(folio)) 2634 return MM_SHMEMPAGES; 2635 return MM_FILEPAGES; 2636 } 2637 2638 static inline int mm_counter(struct folio *folio) 2639 { 2640 if (folio_test_anon(folio)) 2641 return MM_ANONPAGES; 2642 return mm_counter_file(folio); 2643 } 2644 2645 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2646 { 2647 return get_mm_counter(mm, MM_FILEPAGES) + 2648 get_mm_counter(mm, MM_ANONPAGES) + 2649 get_mm_counter(mm, MM_SHMEMPAGES); 2650 } 2651 2652 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2653 { 2654 return max(mm->hiwater_rss, get_mm_rss(mm)); 2655 } 2656 2657 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2658 { 2659 return max(mm->hiwater_vm, mm->total_vm); 2660 } 2661 2662 static inline void update_hiwater_rss(struct mm_struct *mm) 2663 { 2664 unsigned long _rss = get_mm_rss(mm); 2665 2666 if ((mm)->hiwater_rss < _rss) 2667 (mm)->hiwater_rss = _rss; 2668 } 2669 2670 static inline void update_hiwater_vm(struct mm_struct *mm) 2671 { 2672 if (mm->hiwater_vm < mm->total_vm) 2673 mm->hiwater_vm = mm->total_vm; 2674 } 2675 2676 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2677 { 2678 mm->hiwater_rss = get_mm_rss(mm); 2679 } 2680 2681 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2682 struct mm_struct *mm) 2683 { 2684 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2685 2686 if (*maxrss < hiwater_rss) 2687 *maxrss = hiwater_rss; 2688 } 2689 2690 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2691 static inline int pte_special(pte_t pte) 2692 { 2693 return 0; 2694 } 2695 2696 static inline pte_t pte_mkspecial(pte_t pte) 2697 { 2698 return pte; 2699 } 2700 #endif 2701 2702 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2703 static inline int pte_devmap(pte_t pte) 2704 { 2705 return 0; 2706 } 2707 #endif 2708 2709 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2710 spinlock_t **ptl); 2711 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2712 spinlock_t **ptl) 2713 { 2714 pte_t *ptep; 2715 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2716 return ptep; 2717 } 2718 2719 #ifdef __PAGETABLE_P4D_FOLDED 2720 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2721 unsigned long address) 2722 { 2723 return 0; 2724 } 2725 #else 2726 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2727 #endif 2728 2729 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2730 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2731 unsigned long address) 2732 { 2733 return 0; 2734 } 2735 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2736 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2737 2738 #else 2739 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2740 2741 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2742 { 2743 if (mm_pud_folded(mm)) 2744 return; 2745 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2746 } 2747 2748 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2749 { 2750 if (mm_pud_folded(mm)) 2751 return; 2752 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2753 } 2754 #endif 2755 2756 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2757 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2758 unsigned long address) 2759 { 2760 return 0; 2761 } 2762 2763 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2764 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2765 2766 #else 2767 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2768 2769 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2770 { 2771 if (mm_pmd_folded(mm)) 2772 return; 2773 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2774 } 2775 2776 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2777 { 2778 if (mm_pmd_folded(mm)) 2779 return; 2780 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2781 } 2782 #endif 2783 2784 #ifdef CONFIG_MMU 2785 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2786 { 2787 atomic_long_set(&mm->pgtables_bytes, 0); 2788 } 2789 2790 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2791 { 2792 return atomic_long_read(&mm->pgtables_bytes); 2793 } 2794 2795 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2796 { 2797 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2798 } 2799 2800 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2801 { 2802 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2803 } 2804 #else 2805 2806 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2807 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2808 { 2809 return 0; 2810 } 2811 2812 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2813 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2814 #endif 2815 2816 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2817 int __pte_alloc_kernel(pmd_t *pmd); 2818 2819 #if defined(CONFIG_MMU) 2820 2821 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2822 unsigned long address) 2823 { 2824 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2825 NULL : p4d_offset(pgd, address); 2826 } 2827 2828 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2829 unsigned long address) 2830 { 2831 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2832 NULL : pud_offset(p4d, address); 2833 } 2834 2835 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2836 { 2837 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2838 NULL: pmd_offset(pud, address); 2839 } 2840 #endif /* CONFIG_MMU */ 2841 2842 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2843 { 2844 return page_ptdesc(virt_to_page(x)); 2845 } 2846 2847 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2848 { 2849 return page_to_virt(ptdesc_page(pt)); 2850 } 2851 2852 static inline void *ptdesc_address(const struct ptdesc *pt) 2853 { 2854 return folio_address(ptdesc_folio(pt)); 2855 } 2856 2857 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2858 { 2859 return folio_test_reserved(ptdesc_folio(pt)); 2860 } 2861 2862 /** 2863 * pagetable_alloc - Allocate pagetables 2864 * @gfp: GFP flags 2865 * @order: desired pagetable order 2866 * 2867 * pagetable_alloc allocates memory for page tables as well as a page table 2868 * descriptor to describe that memory. 2869 * 2870 * Return: The ptdesc describing the allocated page tables. 2871 */ 2872 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2873 { 2874 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2875 2876 return page_ptdesc(page); 2877 } 2878 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2879 2880 /** 2881 * pagetable_free - Free pagetables 2882 * @pt: The page table descriptor 2883 * 2884 * pagetable_free frees the memory of all page tables described by a page 2885 * table descriptor and the memory for the descriptor itself. 2886 */ 2887 static inline void pagetable_free(struct ptdesc *pt) 2888 { 2889 struct page *page = ptdesc_page(pt); 2890 2891 __free_pages(page, compound_order(page)); 2892 } 2893 2894 #if USE_SPLIT_PTE_PTLOCKS 2895 #if ALLOC_SPLIT_PTLOCKS 2896 void __init ptlock_cache_init(void); 2897 bool ptlock_alloc(struct ptdesc *ptdesc); 2898 void ptlock_free(struct ptdesc *ptdesc); 2899 2900 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2901 { 2902 return ptdesc->ptl; 2903 } 2904 #else /* ALLOC_SPLIT_PTLOCKS */ 2905 static inline void ptlock_cache_init(void) 2906 { 2907 } 2908 2909 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2910 { 2911 return true; 2912 } 2913 2914 static inline void ptlock_free(struct ptdesc *ptdesc) 2915 { 2916 } 2917 2918 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2919 { 2920 return &ptdesc->ptl; 2921 } 2922 #endif /* ALLOC_SPLIT_PTLOCKS */ 2923 2924 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2925 { 2926 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2927 } 2928 2929 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2930 { 2931 BUILD_BUG_ON(IS_ENABLED(CONFIG_HIGHPTE)); 2932 BUILD_BUG_ON(MAX_PTRS_PER_PTE * sizeof(pte_t) > PAGE_SIZE); 2933 return ptlock_ptr(virt_to_ptdesc(pte)); 2934 } 2935 2936 static inline bool ptlock_init(struct ptdesc *ptdesc) 2937 { 2938 /* 2939 * prep_new_page() initialize page->private (and therefore page->ptl) 2940 * with 0. Make sure nobody took it in use in between. 2941 * 2942 * It can happen if arch try to use slab for page table allocation: 2943 * slab code uses page->slab_cache, which share storage with page->ptl. 2944 */ 2945 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2946 if (!ptlock_alloc(ptdesc)) 2947 return false; 2948 spin_lock_init(ptlock_ptr(ptdesc)); 2949 return true; 2950 } 2951 2952 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2953 /* 2954 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2955 */ 2956 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2957 { 2958 return &mm->page_table_lock; 2959 } 2960 static inline spinlock_t *ptep_lockptr(struct mm_struct *mm, pte_t *pte) 2961 { 2962 return &mm->page_table_lock; 2963 } 2964 static inline void ptlock_cache_init(void) {} 2965 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2966 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2967 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2968 2969 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2970 { 2971 struct folio *folio = ptdesc_folio(ptdesc); 2972 2973 if (!ptlock_init(ptdesc)) 2974 return false; 2975 __folio_set_pgtable(folio); 2976 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2977 return true; 2978 } 2979 2980 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2981 { 2982 struct folio *folio = ptdesc_folio(ptdesc); 2983 2984 ptlock_free(ptdesc); 2985 __folio_clear_pgtable(folio); 2986 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2987 } 2988 2989 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2990 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2991 { 2992 return __pte_offset_map(pmd, addr, NULL); 2993 } 2994 2995 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2996 unsigned long addr, spinlock_t **ptlp); 2997 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2998 unsigned long addr, spinlock_t **ptlp) 2999 { 3000 pte_t *pte; 3001 3002 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3003 return pte; 3004 } 3005 3006 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3007 unsigned long addr, spinlock_t **ptlp); 3008 3009 #define pte_unmap_unlock(pte, ptl) do { \ 3010 spin_unlock(ptl); \ 3011 pte_unmap(pte); \ 3012 } while (0) 3013 3014 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3015 3016 #define pte_alloc_map(mm, pmd, address) \ 3017 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3018 3019 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3020 (pte_alloc(mm, pmd) ? \ 3021 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3022 3023 #define pte_alloc_kernel(pmd, address) \ 3024 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3025 NULL: pte_offset_kernel(pmd, address)) 3026 3027 #if USE_SPLIT_PMD_PTLOCKS 3028 3029 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3030 { 3031 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3032 return virt_to_page((void *)((unsigned long) pmd & mask)); 3033 } 3034 3035 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3036 { 3037 return page_ptdesc(pmd_pgtable_page(pmd)); 3038 } 3039 3040 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3041 { 3042 return ptlock_ptr(pmd_ptdesc(pmd)); 3043 } 3044 3045 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3046 { 3047 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3048 ptdesc->pmd_huge_pte = NULL; 3049 #endif 3050 return ptlock_init(ptdesc); 3051 } 3052 3053 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3054 { 3055 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3056 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3057 #endif 3058 ptlock_free(ptdesc); 3059 } 3060 3061 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3062 3063 #else 3064 3065 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3066 { 3067 return &mm->page_table_lock; 3068 } 3069 3070 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3071 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3072 3073 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3074 3075 #endif 3076 3077 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3078 { 3079 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3080 spin_lock(ptl); 3081 return ptl; 3082 } 3083 3084 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3085 { 3086 struct folio *folio = ptdesc_folio(ptdesc); 3087 3088 if (!pmd_ptlock_init(ptdesc)) 3089 return false; 3090 __folio_set_pgtable(folio); 3091 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3092 return true; 3093 } 3094 3095 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3096 { 3097 struct folio *folio = ptdesc_folio(ptdesc); 3098 3099 pmd_ptlock_free(ptdesc); 3100 __folio_clear_pgtable(folio); 3101 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3102 } 3103 3104 /* 3105 * No scalability reason to split PUD locks yet, but follow the same pattern 3106 * as the PMD locks to make it easier if we decide to. The VM should not be 3107 * considered ready to switch to split PUD locks yet; there may be places 3108 * which need to be converted from page_table_lock. 3109 */ 3110 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3111 { 3112 return &mm->page_table_lock; 3113 } 3114 3115 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3116 { 3117 spinlock_t *ptl = pud_lockptr(mm, pud); 3118 3119 spin_lock(ptl); 3120 return ptl; 3121 } 3122 3123 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3124 { 3125 struct folio *folio = ptdesc_folio(ptdesc); 3126 3127 __folio_set_pgtable(folio); 3128 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3129 } 3130 3131 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3132 { 3133 struct folio *folio = ptdesc_folio(ptdesc); 3134 3135 __folio_clear_pgtable(folio); 3136 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3137 } 3138 3139 extern void __init pagecache_init(void); 3140 extern void free_initmem(void); 3141 3142 /* 3143 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3144 * into the buddy system. The freed pages will be poisoned with pattern 3145 * "poison" if it's within range [0, UCHAR_MAX]. 3146 * Return pages freed into the buddy system. 3147 */ 3148 extern unsigned long free_reserved_area(void *start, void *end, 3149 int poison, const char *s); 3150 3151 extern void adjust_managed_page_count(struct page *page, long count); 3152 3153 extern void reserve_bootmem_region(phys_addr_t start, 3154 phys_addr_t end, int nid); 3155 3156 /* Free the reserved page into the buddy system, so it gets managed. */ 3157 void free_reserved_page(struct page *page); 3158 #define free_highmem_page(page) free_reserved_page(page) 3159 3160 static inline void mark_page_reserved(struct page *page) 3161 { 3162 SetPageReserved(page); 3163 adjust_managed_page_count(page, -1); 3164 } 3165 3166 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3167 { 3168 free_reserved_page(ptdesc_page(pt)); 3169 } 3170 3171 /* 3172 * Default method to free all the __init memory into the buddy system. 3173 * The freed pages will be poisoned with pattern "poison" if it's within 3174 * range [0, UCHAR_MAX]. 3175 * Return pages freed into the buddy system. 3176 */ 3177 static inline unsigned long free_initmem_default(int poison) 3178 { 3179 extern char __init_begin[], __init_end[]; 3180 3181 return free_reserved_area(&__init_begin, &__init_end, 3182 poison, "unused kernel image (initmem)"); 3183 } 3184 3185 static inline unsigned long get_num_physpages(void) 3186 { 3187 int nid; 3188 unsigned long phys_pages = 0; 3189 3190 for_each_online_node(nid) 3191 phys_pages += node_present_pages(nid); 3192 3193 return phys_pages; 3194 } 3195 3196 /* 3197 * Using memblock node mappings, an architecture may initialise its 3198 * zones, allocate the backing mem_map and account for memory holes in an 3199 * architecture independent manner. 3200 * 3201 * An architecture is expected to register range of page frames backed by 3202 * physical memory with memblock_add[_node]() before calling 3203 * free_area_init() passing in the PFN each zone ends at. At a basic 3204 * usage, an architecture is expected to do something like 3205 * 3206 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3207 * max_highmem_pfn}; 3208 * for_each_valid_physical_page_range() 3209 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3210 * free_area_init(max_zone_pfns); 3211 */ 3212 void free_area_init(unsigned long *max_zone_pfn); 3213 unsigned long node_map_pfn_alignment(void); 3214 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3215 unsigned long end_pfn); 3216 extern void get_pfn_range_for_nid(unsigned int nid, 3217 unsigned long *start_pfn, unsigned long *end_pfn); 3218 3219 #ifndef CONFIG_NUMA 3220 static inline int early_pfn_to_nid(unsigned long pfn) 3221 { 3222 return 0; 3223 } 3224 #else 3225 /* please see mm/page_alloc.c */ 3226 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3227 #endif 3228 3229 extern void mem_init(void); 3230 extern void __init mmap_init(void); 3231 3232 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3233 static inline void show_mem(void) 3234 { 3235 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3236 } 3237 extern long si_mem_available(void); 3238 extern void si_meminfo(struct sysinfo * val); 3239 extern void si_meminfo_node(struct sysinfo *val, int nid); 3240 3241 extern __printf(3, 4) 3242 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3243 3244 extern void setup_per_cpu_pageset(void); 3245 3246 /* nommu.c */ 3247 extern atomic_long_t mmap_pages_allocated; 3248 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3249 3250 /* interval_tree.c */ 3251 void vma_interval_tree_insert(struct vm_area_struct *node, 3252 struct rb_root_cached *root); 3253 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3254 struct vm_area_struct *prev, 3255 struct rb_root_cached *root); 3256 void vma_interval_tree_remove(struct vm_area_struct *node, 3257 struct rb_root_cached *root); 3258 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3259 unsigned long start, unsigned long last); 3260 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3261 unsigned long start, unsigned long last); 3262 3263 #define vma_interval_tree_foreach(vma, root, start, last) \ 3264 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3265 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3266 3267 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3268 struct rb_root_cached *root); 3269 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3270 struct rb_root_cached *root); 3271 struct anon_vma_chain * 3272 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3273 unsigned long start, unsigned long last); 3274 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3275 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3276 #ifdef CONFIG_DEBUG_VM_RB 3277 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3278 #endif 3279 3280 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3281 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3282 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3283 3284 /* mmap.c */ 3285 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3286 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3287 unsigned long start, unsigned long end, pgoff_t pgoff, 3288 struct vm_area_struct *next); 3289 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3290 unsigned long start, unsigned long end, pgoff_t pgoff); 3291 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3292 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3293 extern void unlink_file_vma(struct vm_area_struct *); 3294 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3295 unsigned long addr, unsigned long len, pgoff_t pgoff, 3296 bool *need_rmap_locks); 3297 extern void exit_mmap(struct mm_struct *); 3298 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3299 struct vm_area_struct *prev, 3300 struct vm_area_struct *vma, 3301 unsigned long start, unsigned long end, 3302 unsigned long vm_flags, 3303 struct mempolicy *policy, 3304 struct vm_userfaultfd_ctx uffd_ctx, 3305 struct anon_vma_name *anon_name); 3306 3307 /* We are about to modify the VMA's flags. */ 3308 static inline struct vm_area_struct 3309 *vma_modify_flags(struct vma_iterator *vmi, 3310 struct vm_area_struct *prev, 3311 struct vm_area_struct *vma, 3312 unsigned long start, unsigned long end, 3313 unsigned long new_flags) 3314 { 3315 return vma_modify(vmi, prev, vma, start, end, new_flags, 3316 vma_policy(vma), vma->vm_userfaultfd_ctx, 3317 anon_vma_name(vma)); 3318 } 3319 3320 /* We are about to modify the VMA's flags and/or anon_name. */ 3321 static inline struct vm_area_struct 3322 *vma_modify_flags_name(struct vma_iterator *vmi, 3323 struct vm_area_struct *prev, 3324 struct vm_area_struct *vma, 3325 unsigned long start, 3326 unsigned long end, 3327 unsigned long new_flags, 3328 struct anon_vma_name *new_name) 3329 { 3330 return vma_modify(vmi, prev, vma, start, end, new_flags, 3331 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3332 } 3333 3334 /* We are about to modify the VMA's memory policy. */ 3335 static inline struct vm_area_struct 3336 *vma_modify_policy(struct vma_iterator *vmi, 3337 struct vm_area_struct *prev, 3338 struct vm_area_struct *vma, 3339 unsigned long start, unsigned long end, 3340 struct mempolicy *new_pol) 3341 { 3342 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3343 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3344 } 3345 3346 /* We are about to modify the VMA's flags and/or uffd context. */ 3347 static inline struct vm_area_struct 3348 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3349 struct vm_area_struct *prev, 3350 struct vm_area_struct *vma, 3351 unsigned long start, unsigned long end, 3352 unsigned long new_flags, 3353 struct vm_userfaultfd_ctx new_ctx) 3354 { 3355 return vma_modify(vmi, prev, vma, start, end, new_flags, 3356 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3357 } 3358 3359 static inline int check_data_rlimit(unsigned long rlim, 3360 unsigned long new, 3361 unsigned long start, 3362 unsigned long end_data, 3363 unsigned long start_data) 3364 { 3365 if (rlim < RLIM_INFINITY) { 3366 if (((new - start) + (end_data - start_data)) > rlim) 3367 return -ENOSPC; 3368 } 3369 3370 return 0; 3371 } 3372 3373 extern int mm_take_all_locks(struct mm_struct *mm); 3374 extern void mm_drop_all_locks(struct mm_struct *mm); 3375 3376 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3377 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3378 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3379 extern struct file *get_task_exe_file(struct task_struct *task); 3380 3381 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3382 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3383 3384 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3385 const struct vm_special_mapping *sm); 3386 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3387 unsigned long addr, unsigned long len, 3388 unsigned long flags, 3389 const struct vm_special_mapping *spec); 3390 /* This is an obsolete alternative to _install_special_mapping. */ 3391 extern int install_special_mapping(struct mm_struct *mm, 3392 unsigned long addr, unsigned long len, 3393 unsigned long flags, struct page **pages); 3394 3395 unsigned long randomize_stack_top(unsigned long stack_top); 3396 unsigned long randomize_page(unsigned long start, unsigned long range); 3397 3398 unsigned long 3399 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3400 unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags); 3401 3402 static inline unsigned long 3403 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, 3404 unsigned long pgoff, unsigned long flags) 3405 { 3406 return __get_unmapped_area(file, addr, len, pgoff, flags, 0); 3407 } 3408 3409 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3410 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3411 struct list_head *uf); 3412 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3413 unsigned long len, unsigned long prot, unsigned long flags, 3414 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3415 struct list_head *uf); 3416 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3417 unsigned long start, size_t len, struct list_head *uf, 3418 bool unlock); 3419 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3420 struct list_head *uf); 3421 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3422 3423 #ifdef CONFIG_MMU 3424 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3425 unsigned long start, unsigned long end, 3426 struct list_head *uf, bool unlock); 3427 extern int __mm_populate(unsigned long addr, unsigned long len, 3428 int ignore_errors); 3429 static inline void mm_populate(unsigned long addr, unsigned long len) 3430 { 3431 /* Ignore errors */ 3432 (void) __mm_populate(addr, len, 1); 3433 } 3434 #else 3435 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3436 #endif 3437 3438 /* This takes the mm semaphore itself */ 3439 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3440 extern int vm_munmap(unsigned long, size_t); 3441 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3442 unsigned long, unsigned long, 3443 unsigned long, unsigned long); 3444 3445 struct vm_unmapped_area_info { 3446 #define VM_UNMAPPED_AREA_TOPDOWN 1 3447 unsigned long flags; 3448 unsigned long length; 3449 unsigned long low_limit; 3450 unsigned long high_limit; 3451 unsigned long align_mask; 3452 unsigned long align_offset; 3453 unsigned long start_gap; 3454 }; 3455 3456 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3457 3458 /* truncate.c */ 3459 extern void truncate_inode_pages(struct address_space *, loff_t); 3460 extern void truncate_inode_pages_range(struct address_space *, 3461 loff_t lstart, loff_t lend); 3462 extern void truncate_inode_pages_final(struct address_space *); 3463 3464 /* generic vm_area_ops exported for stackable file systems */ 3465 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3466 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3467 pgoff_t start_pgoff, pgoff_t end_pgoff); 3468 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3469 3470 extern unsigned long stack_guard_gap; 3471 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3472 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3473 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3474 3475 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3476 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3477 3478 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3479 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3480 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3481 struct vm_area_struct **pprev); 3482 3483 /* 3484 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3485 * NULL if none. Assume start_addr < end_addr. 3486 */ 3487 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3488 unsigned long start_addr, unsigned long end_addr); 3489 3490 /** 3491 * vma_lookup() - Find a VMA at a specific address 3492 * @mm: The process address space. 3493 * @addr: The user address. 3494 * 3495 * Return: The vm_area_struct at the given address, %NULL otherwise. 3496 */ 3497 static inline 3498 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3499 { 3500 return mtree_load(&mm->mm_mt, addr); 3501 } 3502 3503 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3504 { 3505 if (vma->vm_flags & VM_GROWSDOWN) 3506 return stack_guard_gap; 3507 3508 /* See reasoning around the VM_SHADOW_STACK definition */ 3509 if (vma->vm_flags & VM_SHADOW_STACK) 3510 return PAGE_SIZE; 3511 3512 return 0; 3513 } 3514 3515 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3516 { 3517 unsigned long gap = stack_guard_start_gap(vma); 3518 unsigned long vm_start = vma->vm_start; 3519 3520 vm_start -= gap; 3521 if (vm_start > vma->vm_start) 3522 vm_start = 0; 3523 return vm_start; 3524 } 3525 3526 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3527 { 3528 unsigned long vm_end = vma->vm_end; 3529 3530 if (vma->vm_flags & VM_GROWSUP) { 3531 vm_end += stack_guard_gap; 3532 if (vm_end < vma->vm_end) 3533 vm_end = -PAGE_SIZE; 3534 } 3535 return vm_end; 3536 } 3537 3538 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3539 { 3540 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3541 } 3542 3543 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3544 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3545 unsigned long vm_start, unsigned long vm_end) 3546 { 3547 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3548 3549 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3550 vma = NULL; 3551 3552 return vma; 3553 } 3554 3555 static inline bool range_in_vma(struct vm_area_struct *vma, 3556 unsigned long start, unsigned long end) 3557 { 3558 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3559 } 3560 3561 #ifdef CONFIG_MMU 3562 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3563 void vma_set_page_prot(struct vm_area_struct *vma); 3564 #else 3565 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3566 { 3567 return __pgprot(0); 3568 } 3569 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3570 { 3571 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3572 } 3573 #endif 3574 3575 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3576 3577 #ifdef CONFIG_NUMA_BALANCING 3578 unsigned long change_prot_numa(struct vm_area_struct *vma, 3579 unsigned long start, unsigned long end); 3580 #endif 3581 3582 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3583 unsigned long addr); 3584 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3585 unsigned long pfn, unsigned long size, pgprot_t); 3586 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3587 unsigned long pfn, unsigned long size, pgprot_t prot); 3588 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3589 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3590 struct page **pages, unsigned long *num); 3591 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3592 unsigned long num); 3593 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3594 unsigned long num); 3595 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3596 unsigned long pfn); 3597 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3598 unsigned long pfn, pgprot_t pgprot); 3599 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3600 pfn_t pfn); 3601 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3602 unsigned long addr, pfn_t pfn); 3603 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3604 3605 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3606 unsigned long addr, struct page *page) 3607 { 3608 int err = vm_insert_page(vma, addr, page); 3609 3610 if (err == -ENOMEM) 3611 return VM_FAULT_OOM; 3612 if (err < 0 && err != -EBUSY) 3613 return VM_FAULT_SIGBUS; 3614 3615 return VM_FAULT_NOPAGE; 3616 } 3617 3618 #ifndef io_remap_pfn_range 3619 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3620 unsigned long addr, unsigned long pfn, 3621 unsigned long size, pgprot_t prot) 3622 { 3623 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3624 } 3625 #endif 3626 3627 static inline vm_fault_t vmf_error(int err) 3628 { 3629 if (err == -ENOMEM) 3630 return VM_FAULT_OOM; 3631 else if (err == -EHWPOISON) 3632 return VM_FAULT_HWPOISON; 3633 return VM_FAULT_SIGBUS; 3634 } 3635 3636 /* 3637 * Convert errno to return value for ->page_mkwrite() calls. 3638 * 3639 * This should eventually be merged with vmf_error() above, but will need a 3640 * careful audit of all vmf_error() callers. 3641 */ 3642 static inline vm_fault_t vmf_fs_error(int err) 3643 { 3644 if (err == 0) 3645 return VM_FAULT_LOCKED; 3646 if (err == -EFAULT || err == -EAGAIN) 3647 return VM_FAULT_NOPAGE; 3648 if (err == -ENOMEM) 3649 return VM_FAULT_OOM; 3650 /* -ENOSPC, -EDQUOT, -EIO ... */ 3651 return VM_FAULT_SIGBUS; 3652 } 3653 3654 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3655 unsigned int foll_flags); 3656 3657 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3658 { 3659 if (vm_fault & VM_FAULT_OOM) 3660 return -ENOMEM; 3661 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3662 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3663 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3664 return -EFAULT; 3665 return 0; 3666 } 3667 3668 /* 3669 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3670 * a (NUMA hinting) fault is required. 3671 */ 3672 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3673 unsigned int flags) 3674 { 3675 /* 3676 * If callers don't want to honor NUMA hinting faults, no need to 3677 * determine if we would actually have to trigger a NUMA hinting fault. 3678 */ 3679 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3680 return true; 3681 3682 /* 3683 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3684 * 3685 * Requiring a fault here even for inaccessible VMAs would mean that 3686 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3687 * refuses to process NUMA hinting faults in inaccessible VMAs. 3688 */ 3689 return !vma_is_accessible(vma); 3690 } 3691 3692 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3693 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3694 unsigned long size, pte_fn_t fn, void *data); 3695 extern int apply_to_existing_page_range(struct mm_struct *mm, 3696 unsigned long address, unsigned long size, 3697 pte_fn_t fn, void *data); 3698 3699 #ifdef CONFIG_PAGE_POISONING 3700 extern void __kernel_poison_pages(struct page *page, int numpages); 3701 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3702 extern bool _page_poisoning_enabled_early; 3703 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3704 static inline bool page_poisoning_enabled(void) 3705 { 3706 return _page_poisoning_enabled_early; 3707 } 3708 /* 3709 * For use in fast paths after init_mem_debugging() has run, or when a 3710 * false negative result is not harmful when called too early. 3711 */ 3712 static inline bool page_poisoning_enabled_static(void) 3713 { 3714 return static_branch_unlikely(&_page_poisoning_enabled); 3715 } 3716 static inline void kernel_poison_pages(struct page *page, int numpages) 3717 { 3718 if (page_poisoning_enabled_static()) 3719 __kernel_poison_pages(page, numpages); 3720 } 3721 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3722 { 3723 if (page_poisoning_enabled_static()) 3724 __kernel_unpoison_pages(page, numpages); 3725 } 3726 #else 3727 static inline bool page_poisoning_enabled(void) { return false; } 3728 static inline bool page_poisoning_enabled_static(void) { return false; } 3729 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3730 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3731 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3732 #endif 3733 3734 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3735 static inline bool want_init_on_alloc(gfp_t flags) 3736 { 3737 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3738 &init_on_alloc)) 3739 return true; 3740 return flags & __GFP_ZERO; 3741 } 3742 3743 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3744 static inline bool want_init_on_free(void) 3745 { 3746 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3747 &init_on_free); 3748 } 3749 3750 extern bool _debug_pagealloc_enabled_early; 3751 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3752 3753 static inline bool debug_pagealloc_enabled(void) 3754 { 3755 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3756 _debug_pagealloc_enabled_early; 3757 } 3758 3759 /* 3760 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3761 * or when a false negative result is not harmful when called too early. 3762 */ 3763 static inline bool debug_pagealloc_enabled_static(void) 3764 { 3765 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3766 return false; 3767 3768 return static_branch_unlikely(&_debug_pagealloc_enabled); 3769 } 3770 3771 /* 3772 * To support DEBUG_PAGEALLOC architecture must ensure that 3773 * __kernel_map_pages() never fails 3774 */ 3775 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3776 #ifdef CONFIG_DEBUG_PAGEALLOC 3777 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3778 { 3779 if (debug_pagealloc_enabled_static()) 3780 __kernel_map_pages(page, numpages, 1); 3781 } 3782 3783 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3784 { 3785 if (debug_pagealloc_enabled_static()) 3786 __kernel_map_pages(page, numpages, 0); 3787 } 3788 3789 extern unsigned int _debug_guardpage_minorder; 3790 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3791 3792 static inline unsigned int debug_guardpage_minorder(void) 3793 { 3794 return _debug_guardpage_minorder; 3795 } 3796 3797 static inline bool debug_guardpage_enabled(void) 3798 { 3799 return static_branch_unlikely(&_debug_guardpage_enabled); 3800 } 3801 3802 static inline bool page_is_guard(struct page *page) 3803 { 3804 if (!debug_guardpage_enabled()) 3805 return false; 3806 3807 return PageGuard(page); 3808 } 3809 3810 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3811 static inline bool set_page_guard(struct zone *zone, struct page *page, 3812 unsigned int order) 3813 { 3814 if (!debug_guardpage_enabled()) 3815 return false; 3816 return __set_page_guard(zone, page, order); 3817 } 3818 3819 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3820 static inline void clear_page_guard(struct zone *zone, struct page *page, 3821 unsigned int order) 3822 { 3823 if (!debug_guardpage_enabled()) 3824 return; 3825 __clear_page_guard(zone, page, order); 3826 } 3827 3828 #else /* CONFIG_DEBUG_PAGEALLOC */ 3829 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3830 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3831 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3832 static inline bool debug_guardpage_enabled(void) { return false; } 3833 static inline bool page_is_guard(struct page *page) { return false; } 3834 static inline bool set_page_guard(struct zone *zone, struct page *page, 3835 unsigned int order) { return false; } 3836 static inline void clear_page_guard(struct zone *zone, struct page *page, 3837 unsigned int order) {} 3838 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3839 3840 #ifdef __HAVE_ARCH_GATE_AREA 3841 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3842 extern int in_gate_area_no_mm(unsigned long addr); 3843 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3844 #else 3845 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3846 { 3847 return NULL; 3848 } 3849 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3850 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3851 { 3852 return 0; 3853 } 3854 #endif /* __HAVE_ARCH_GATE_AREA */ 3855 3856 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3857 3858 #ifdef CONFIG_SYSCTL 3859 extern int sysctl_drop_caches; 3860 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *, 3861 loff_t *); 3862 #endif 3863 3864 void drop_slab(void); 3865 3866 #ifndef CONFIG_MMU 3867 #define randomize_va_space 0 3868 #else 3869 extern int randomize_va_space; 3870 #endif 3871 3872 const char * arch_vma_name(struct vm_area_struct *vma); 3873 #ifdef CONFIG_MMU 3874 void print_vma_addr(char *prefix, unsigned long rip); 3875 #else 3876 static inline void print_vma_addr(char *prefix, unsigned long rip) 3877 { 3878 } 3879 #endif 3880 3881 void *sparse_buffer_alloc(unsigned long size); 3882 struct page * __populate_section_memmap(unsigned long pfn, 3883 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3884 struct dev_pagemap *pgmap); 3885 void pmd_init(void *addr); 3886 void pud_init(void *addr); 3887 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3888 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3889 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3890 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3891 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3892 struct vmem_altmap *altmap, struct page *reuse); 3893 void *vmemmap_alloc_block(unsigned long size, int node); 3894 struct vmem_altmap; 3895 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3896 struct vmem_altmap *altmap); 3897 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3898 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3899 unsigned long addr, unsigned long next); 3900 int vmemmap_check_pmd(pmd_t *pmd, int node, 3901 unsigned long addr, unsigned long next); 3902 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3903 int node, struct vmem_altmap *altmap); 3904 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3905 int node, struct vmem_altmap *altmap); 3906 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3907 struct vmem_altmap *altmap); 3908 void vmemmap_populate_print_last(void); 3909 #ifdef CONFIG_MEMORY_HOTPLUG 3910 void vmemmap_free(unsigned long start, unsigned long end, 3911 struct vmem_altmap *altmap); 3912 #endif 3913 3914 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3915 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3916 { 3917 /* number of pfns from base where pfn_to_page() is valid */ 3918 if (altmap) 3919 return altmap->reserve + altmap->free; 3920 return 0; 3921 } 3922 3923 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3924 unsigned long nr_pfns) 3925 { 3926 altmap->alloc -= nr_pfns; 3927 } 3928 #else 3929 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3930 { 3931 return 0; 3932 } 3933 3934 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3935 unsigned long nr_pfns) 3936 { 3937 } 3938 #endif 3939 3940 #define VMEMMAP_RESERVE_NR 2 3941 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3942 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3943 struct dev_pagemap *pgmap) 3944 { 3945 unsigned long nr_pages; 3946 unsigned long nr_vmemmap_pages; 3947 3948 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3949 return false; 3950 3951 nr_pages = pgmap_vmemmap_nr(pgmap); 3952 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3953 /* 3954 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3955 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3956 */ 3957 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3958 } 3959 /* 3960 * If we don't have an architecture override, use the generic rule 3961 */ 3962 #ifndef vmemmap_can_optimize 3963 #define vmemmap_can_optimize __vmemmap_can_optimize 3964 #endif 3965 3966 #else 3967 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3968 struct dev_pagemap *pgmap) 3969 { 3970 return false; 3971 } 3972 #endif 3973 3974 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3975 unsigned long nr_pages); 3976 3977 enum mf_flags { 3978 MF_COUNT_INCREASED = 1 << 0, 3979 MF_ACTION_REQUIRED = 1 << 1, 3980 MF_MUST_KILL = 1 << 2, 3981 MF_SOFT_OFFLINE = 1 << 3, 3982 MF_UNPOISON = 1 << 4, 3983 MF_SW_SIMULATED = 1 << 5, 3984 MF_NO_RETRY = 1 << 6, 3985 MF_MEM_PRE_REMOVE = 1 << 7, 3986 }; 3987 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3988 unsigned long count, int mf_flags); 3989 extern int memory_failure(unsigned long pfn, int flags); 3990 extern void memory_failure_queue_kick(int cpu); 3991 extern int unpoison_memory(unsigned long pfn); 3992 extern atomic_long_t num_poisoned_pages __read_mostly; 3993 extern int soft_offline_page(unsigned long pfn, int flags); 3994 #ifdef CONFIG_MEMORY_FAILURE 3995 /* 3996 * Sysfs entries for memory failure handling statistics. 3997 */ 3998 extern const struct attribute_group memory_failure_attr_group; 3999 extern void memory_failure_queue(unsigned long pfn, int flags); 4000 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4001 bool *migratable_cleared); 4002 void num_poisoned_pages_inc(unsigned long pfn); 4003 void num_poisoned_pages_sub(unsigned long pfn, long i); 4004 #else 4005 static inline void memory_failure_queue(unsigned long pfn, int flags) 4006 { 4007 } 4008 4009 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4010 bool *migratable_cleared) 4011 { 4012 return 0; 4013 } 4014 4015 static inline void num_poisoned_pages_inc(unsigned long pfn) 4016 { 4017 } 4018 4019 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4020 { 4021 } 4022 #endif 4023 4024 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4025 extern void memblk_nr_poison_inc(unsigned long pfn); 4026 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4027 #else 4028 static inline void memblk_nr_poison_inc(unsigned long pfn) 4029 { 4030 } 4031 4032 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4033 { 4034 } 4035 #endif 4036 4037 #ifndef arch_memory_failure 4038 static inline int arch_memory_failure(unsigned long pfn, int flags) 4039 { 4040 return -ENXIO; 4041 } 4042 #endif 4043 4044 #ifndef arch_is_platform_page 4045 static inline bool arch_is_platform_page(u64 paddr) 4046 { 4047 return false; 4048 } 4049 #endif 4050 4051 /* 4052 * Error handlers for various types of pages. 4053 */ 4054 enum mf_result { 4055 MF_IGNORED, /* Error: cannot be handled */ 4056 MF_FAILED, /* Error: handling failed */ 4057 MF_DELAYED, /* Will be handled later */ 4058 MF_RECOVERED, /* Successfully recovered */ 4059 }; 4060 4061 enum mf_action_page_type { 4062 MF_MSG_KERNEL, 4063 MF_MSG_KERNEL_HIGH_ORDER, 4064 MF_MSG_DIFFERENT_COMPOUND, 4065 MF_MSG_HUGE, 4066 MF_MSG_FREE_HUGE, 4067 MF_MSG_GET_HWPOISON, 4068 MF_MSG_UNMAP_FAILED, 4069 MF_MSG_DIRTY_SWAPCACHE, 4070 MF_MSG_CLEAN_SWAPCACHE, 4071 MF_MSG_DIRTY_MLOCKED_LRU, 4072 MF_MSG_CLEAN_MLOCKED_LRU, 4073 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4074 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4075 MF_MSG_DIRTY_LRU, 4076 MF_MSG_CLEAN_LRU, 4077 MF_MSG_TRUNCATED_LRU, 4078 MF_MSG_BUDDY, 4079 MF_MSG_DAX, 4080 MF_MSG_UNSPLIT_THP, 4081 MF_MSG_ALREADY_POISONED, 4082 MF_MSG_UNKNOWN, 4083 }; 4084 4085 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4086 void folio_zero_user(struct folio *folio, unsigned long addr_hint); 4087 int copy_user_large_folio(struct folio *dst, struct folio *src, 4088 unsigned long addr_hint, 4089 struct vm_area_struct *vma); 4090 long copy_folio_from_user(struct folio *dst_folio, 4091 const void __user *usr_src, 4092 bool allow_pagefault); 4093 4094 /** 4095 * vma_is_special_huge - Are transhuge page-table entries considered special? 4096 * @vma: Pointer to the struct vm_area_struct to consider 4097 * 4098 * Whether transhuge page-table entries are considered "special" following 4099 * the definition in vm_normal_page(). 4100 * 4101 * Return: true if transhuge page-table entries should be considered special, 4102 * false otherwise. 4103 */ 4104 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4105 { 4106 return vma_is_dax(vma) || (vma->vm_file && 4107 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4108 } 4109 4110 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4111 4112 #if MAX_NUMNODES > 1 4113 void __init setup_nr_node_ids(void); 4114 #else 4115 static inline void setup_nr_node_ids(void) {} 4116 #endif 4117 4118 extern int memcmp_pages(struct page *page1, struct page *page2); 4119 4120 static inline int pages_identical(struct page *page1, struct page *page2) 4121 { 4122 return !memcmp_pages(page1, page2); 4123 } 4124 4125 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4126 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4127 pgoff_t first_index, pgoff_t nr, 4128 pgoff_t bitmap_pgoff, 4129 unsigned long *bitmap, 4130 pgoff_t *start, 4131 pgoff_t *end); 4132 4133 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4134 pgoff_t first_index, pgoff_t nr); 4135 #endif 4136 4137 extern int sysctl_nr_trim_pages; 4138 4139 #ifdef CONFIG_PRINTK 4140 void mem_dump_obj(void *object); 4141 #else 4142 static inline void mem_dump_obj(void *object) {} 4143 #endif 4144 4145 /** 4146 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4147 * handle them. 4148 * @seals: the seals to check 4149 * @vma: the vma to operate on 4150 * 4151 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4152 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4153 */ 4154 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4155 { 4156 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4157 /* 4158 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4159 * write seals are active. 4160 */ 4161 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4162 return -EPERM; 4163 4164 /* 4165 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4166 * MAP_SHARED and read-only, take care to not allow mprotect to 4167 * revert protections on such mappings. Do this only for shared 4168 * mappings. For private mappings, don't need to mask 4169 * VM_MAYWRITE as we still want them to be COW-writable. 4170 */ 4171 if (vma->vm_flags & VM_SHARED) 4172 vm_flags_clear(vma, VM_MAYWRITE); 4173 } 4174 4175 return 0; 4176 } 4177 4178 #ifdef CONFIG_ANON_VMA_NAME 4179 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4180 unsigned long len_in, 4181 struct anon_vma_name *anon_name); 4182 #else 4183 static inline int 4184 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4185 unsigned long len_in, struct anon_vma_name *anon_name) { 4186 return 0; 4187 } 4188 #endif 4189 4190 #ifdef CONFIG_UNACCEPTED_MEMORY 4191 4192 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4193 void accept_memory(phys_addr_t start, phys_addr_t end); 4194 4195 #else 4196 4197 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4198 phys_addr_t end) 4199 { 4200 return false; 4201 } 4202 4203 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4204 { 4205 } 4206 4207 #endif 4208 4209 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4210 { 4211 phys_addr_t paddr = pfn << PAGE_SHIFT; 4212 4213 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4214 } 4215 4216 void vma_pgtable_walk_begin(struct vm_area_struct *vma); 4217 void vma_pgtable_walk_end(struct vm_area_struct *vma); 4218 4219 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size); 4220 4221 #endif /* _LINUX_MM_H */ 4222