xref: /linux-6.15/include/linux/mm.h (revision dfd32cad)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 
30 struct mempolicy;
31 struct anon_vma;
32 struct anon_vma_chain;
33 struct file_ra_state;
34 struct user_struct;
35 struct writeback_control;
36 struct bdi_writeback;
37 
38 void init_mm_internals(void);
39 
40 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
41 extern unsigned long max_mapnr;
42 
43 static inline void set_max_mapnr(unsigned long limit)
44 {
45 	max_mapnr = limit;
46 }
47 #else
48 static inline void set_max_mapnr(unsigned long limit) { }
49 #endif
50 
51 extern atomic_long_t _totalram_pages;
52 static inline unsigned long totalram_pages(void)
53 {
54 	return (unsigned long)atomic_long_read(&_totalram_pages);
55 }
56 
57 static inline void totalram_pages_inc(void)
58 {
59 	atomic_long_inc(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_dec(void)
63 {
64 	atomic_long_dec(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_add(long count)
68 {
69 	atomic_long_add(count, &_totalram_pages);
70 }
71 
72 static inline void totalram_pages_set(long val)
73 {
74 	atomic_long_set(&_totalram_pages, val);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 
80 #ifdef CONFIG_SYSCTL
81 extern int sysctl_legacy_va_layout;
82 #else
83 #define sysctl_legacy_va_layout 0
84 #endif
85 
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87 extern const int mmap_rnd_bits_min;
88 extern const int mmap_rnd_bits_max;
89 extern int mmap_rnd_bits __read_mostly;
90 #endif
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92 extern const int mmap_rnd_compat_bits_min;
93 extern const int mmap_rnd_compat_bits_max;
94 extern int mmap_rnd_compat_bits __read_mostly;
95 #endif
96 
97 #include <asm/page.h>
98 #include <asm/pgtable.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * Those architectures should provide their own implementation of "struct page"
127  * zeroing by defining this macro in <asm/pgtable.h>.
128  */
129 #ifndef mm_zero_struct_page
130 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
131 #endif
132 
133 /*
134  * Default maximum number of active map areas, this limits the number of vmas
135  * per mm struct. Users can overwrite this number by sysctl but there is a
136  * problem.
137  *
138  * When a program's coredump is generated as ELF format, a section is created
139  * per a vma. In ELF, the number of sections is represented in unsigned short.
140  * This means the number of sections should be smaller than 65535 at coredump.
141  * Because the kernel adds some informative sections to a image of program at
142  * generating coredump, we need some margin. The number of extra sections is
143  * 1-3 now and depends on arch. We use "5" as safe margin, here.
144  *
145  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
146  * not a hard limit any more. Although some userspace tools can be surprised by
147  * that.
148  */
149 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
150 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
151 
152 extern int sysctl_max_map_count;
153 
154 extern unsigned long sysctl_user_reserve_kbytes;
155 extern unsigned long sysctl_admin_reserve_kbytes;
156 
157 extern int sysctl_overcommit_memory;
158 extern int sysctl_overcommit_ratio;
159 extern unsigned long sysctl_overcommit_kbytes;
160 
161 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
162 				    size_t *, loff_t *);
163 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
164 				    size_t *, loff_t *);
165 
166 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
167 
168 /* to align the pointer to the (next) page boundary */
169 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
170 
171 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
172 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
173 
174 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
175 
176 /*
177  * Linux kernel virtual memory manager primitives.
178  * The idea being to have a "virtual" mm in the same way
179  * we have a virtual fs - giving a cleaner interface to the
180  * mm details, and allowing different kinds of memory mappings
181  * (from shared memory to executable loading to arbitrary
182  * mmap() functions).
183  */
184 
185 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
186 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
187 void vm_area_free(struct vm_area_struct *);
188 
189 #ifndef CONFIG_MMU
190 extern struct rb_root nommu_region_tree;
191 extern struct rw_semaphore nommu_region_sem;
192 
193 extern unsigned int kobjsize(const void *objp);
194 #endif
195 
196 /*
197  * vm_flags in vm_area_struct, see mm_types.h.
198  * When changing, update also include/trace/events/mmflags.h
199  */
200 #define VM_NONE		0x00000000
201 
202 #define VM_READ		0x00000001	/* currently active flags */
203 #define VM_WRITE	0x00000002
204 #define VM_EXEC		0x00000004
205 #define VM_SHARED	0x00000008
206 
207 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
208 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
209 #define VM_MAYWRITE	0x00000020
210 #define VM_MAYEXEC	0x00000040
211 #define VM_MAYSHARE	0x00000080
212 
213 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
214 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
215 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
216 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
217 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
218 
219 #define VM_LOCKED	0x00002000
220 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
221 
222 					/* Used by sys_madvise() */
223 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
224 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
225 
226 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
227 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
228 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
229 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
230 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
231 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
232 #define VM_SYNC		0x00800000	/* Synchronous page faults */
233 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
234 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
235 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
236 
237 #ifdef CONFIG_MEM_SOFT_DIRTY
238 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
239 #else
240 # define VM_SOFTDIRTY	0
241 #endif
242 
243 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
244 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
245 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
246 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
247 
248 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
249 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
250 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
251 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
252 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
253 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
254 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
255 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
256 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
257 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
258 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
259 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
260 
261 #ifdef CONFIG_ARCH_HAS_PKEYS
262 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
263 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
264 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
265 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
266 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
267 #ifdef CONFIG_PPC
268 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
269 #else
270 # define VM_PKEY_BIT4  0
271 #endif
272 #endif /* CONFIG_ARCH_HAS_PKEYS */
273 
274 #if defined(CONFIG_X86)
275 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
276 #elif defined(CONFIG_PPC)
277 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
278 #elif defined(CONFIG_PARISC)
279 # define VM_GROWSUP	VM_ARCH_1
280 #elif defined(CONFIG_IA64)
281 # define VM_GROWSUP	VM_ARCH_1
282 #elif defined(CONFIG_SPARC64)
283 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
284 # define VM_ARCH_CLEAR	VM_SPARC_ADI
285 #elif !defined(CONFIG_MMU)
286 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
287 #endif
288 
289 #if defined(CONFIG_X86_INTEL_MPX)
290 /* MPX specific bounds table or bounds directory */
291 # define VM_MPX		VM_HIGH_ARCH_4
292 #else
293 # define VM_MPX		VM_NONE
294 #endif
295 
296 #ifndef VM_GROWSUP
297 # define VM_GROWSUP	VM_NONE
298 #endif
299 
300 /* Bits set in the VMA until the stack is in its final location */
301 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
302 
303 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
304 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
305 #endif
306 
307 #ifdef CONFIG_STACK_GROWSUP
308 #define VM_STACK	VM_GROWSUP
309 #else
310 #define VM_STACK	VM_GROWSDOWN
311 #endif
312 
313 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
314 
315 /*
316  * Special vmas that are non-mergable, non-mlock()able.
317  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
318  */
319 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
320 
321 /* This mask defines which mm->def_flags a process can inherit its parent */
322 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
323 
324 /* This mask is used to clear all the VMA flags used by mlock */
325 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
326 
327 /* Arch-specific flags to clear when updating VM flags on protection change */
328 #ifndef VM_ARCH_CLEAR
329 # define VM_ARCH_CLEAR	VM_NONE
330 #endif
331 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
332 
333 /*
334  * mapping from the currently active vm_flags protection bits (the
335  * low four bits) to a page protection mask..
336  */
337 extern pgprot_t protection_map[16];
338 
339 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
340 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
341 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
342 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
343 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
344 #define FAULT_FLAG_TRIED	0x20	/* Second try */
345 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
346 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
347 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
348 
349 #define FAULT_FLAG_TRACE \
350 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
351 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
352 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
353 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
354 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
355 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
356 	{ FAULT_FLAG_USER,		"USER" }, \
357 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
358 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
359 
360 /*
361  * vm_fault is filled by the the pagefault handler and passed to the vma's
362  * ->fault function. The vma's ->fault is responsible for returning a bitmask
363  * of VM_FAULT_xxx flags that give details about how the fault was handled.
364  *
365  * MM layer fills up gfp_mask for page allocations but fault handler might
366  * alter it if its implementation requires a different allocation context.
367  *
368  * pgoff should be used in favour of virtual_address, if possible.
369  */
370 struct vm_fault {
371 	struct vm_area_struct *vma;	/* Target VMA */
372 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
373 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
374 	pgoff_t pgoff;			/* Logical page offset based on vma */
375 	unsigned long address;		/* Faulting virtual address */
376 	pmd_t *pmd;			/* Pointer to pmd entry matching
377 					 * the 'address' */
378 	pud_t *pud;			/* Pointer to pud entry matching
379 					 * the 'address'
380 					 */
381 	pte_t orig_pte;			/* Value of PTE at the time of fault */
382 
383 	struct page *cow_page;		/* Page handler may use for COW fault */
384 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
385 	struct page *page;		/* ->fault handlers should return a
386 					 * page here, unless VM_FAULT_NOPAGE
387 					 * is set (which is also implied by
388 					 * VM_FAULT_ERROR).
389 					 */
390 	/* These three entries are valid only while holding ptl lock */
391 	pte_t *pte;			/* Pointer to pte entry matching
392 					 * the 'address'. NULL if the page
393 					 * table hasn't been allocated.
394 					 */
395 	spinlock_t *ptl;		/* Page table lock.
396 					 * Protects pte page table if 'pte'
397 					 * is not NULL, otherwise pmd.
398 					 */
399 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
400 					 * vm_ops->map_pages() calls
401 					 * alloc_set_pte() from atomic context.
402 					 * do_fault_around() pre-allocates
403 					 * page table to avoid allocation from
404 					 * atomic context.
405 					 */
406 };
407 
408 /* page entry size for vm->huge_fault() */
409 enum page_entry_size {
410 	PE_SIZE_PTE = 0,
411 	PE_SIZE_PMD,
412 	PE_SIZE_PUD,
413 };
414 
415 /*
416  * These are the virtual MM functions - opening of an area, closing and
417  * unmapping it (needed to keep files on disk up-to-date etc), pointer
418  * to the functions called when a no-page or a wp-page exception occurs.
419  */
420 struct vm_operations_struct {
421 	void (*open)(struct vm_area_struct * area);
422 	void (*close)(struct vm_area_struct * area);
423 	int (*split)(struct vm_area_struct * area, unsigned long addr);
424 	int (*mremap)(struct vm_area_struct * area);
425 	vm_fault_t (*fault)(struct vm_fault *vmf);
426 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
427 			enum page_entry_size pe_size);
428 	void (*map_pages)(struct vm_fault *vmf,
429 			pgoff_t start_pgoff, pgoff_t end_pgoff);
430 	unsigned long (*pagesize)(struct vm_area_struct * area);
431 
432 	/* notification that a previously read-only page is about to become
433 	 * writable, if an error is returned it will cause a SIGBUS */
434 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
435 
436 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
437 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
438 
439 	/* called by access_process_vm when get_user_pages() fails, typically
440 	 * for use by special VMAs that can switch between memory and hardware
441 	 */
442 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
443 		      void *buf, int len, int write);
444 
445 	/* Called by the /proc/PID/maps code to ask the vma whether it
446 	 * has a special name.  Returning non-NULL will also cause this
447 	 * vma to be dumped unconditionally. */
448 	const char *(*name)(struct vm_area_struct *vma);
449 
450 #ifdef CONFIG_NUMA
451 	/*
452 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
453 	 * to hold the policy upon return.  Caller should pass NULL @new to
454 	 * remove a policy and fall back to surrounding context--i.e. do not
455 	 * install a MPOL_DEFAULT policy, nor the task or system default
456 	 * mempolicy.
457 	 */
458 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
459 
460 	/*
461 	 * get_policy() op must add reference [mpol_get()] to any policy at
462 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
463 	 * in mm/mempolicy.c will do this automatically.
464 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
465 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
466 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
467 	 * must return NULL--i.e., do not "fallback" to task or system default
468 	 * policy.
469 	 */
470 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
471 					unsigned long addr);
472 #endif
473 	/*
474 	 * Called by vm_normal_page() for special PTEs to find the
475 	 * page for @addr.  This is useful if the default behavior
476 	 * (using pte_page()) would not find the correct page.
477 	 */
478 	struct page *(*find_special_page)(struct vm_area_struct *vma,
479 					  unsigned long addr);
480 };
481 
482 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
483 {
484 	static const struct vm_operations_struct dummy_vm_ops = {};
485 
486 	memset(vma, 0, sizeof(*vma));
487 	vma->vm_mm = mm;
488 	vma->vm_ops = &dummy_vm_ops;
489 	INIT_LIST_HEAD(&vma->anon_vma_chain);
490 }
491 
492 static inline void vma_set_anonymous(struct vm_area_struct *vma)
493 {
494 	vma->vm_ops = NULL;
495 }
496 
497 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
498 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
499 
500 struct mmu_gather;
501 struct inode;
502 
503 #define page_private(page)		((page)->private)
504 #define set_page_private(page, v)	((page)->private = (v))
505 
506 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
507 static inline int pmd_devmap(pmd_t pmd)
508 {
509 	return 0;
510 }
511 static inline int pud_devmap(pud_t pud)
512 {
513 	return 0;
514 }
515 static inline int pgd_devmap(pgd_t pgd)
516 {
517 	return 0;
518 }
519 #endif
520 
521 /*
522  * FIXME: take this include out, include page-flags.h in
523  * files which need it (119 of them)
524  */
525 #include <linux/page-flags.h>
526 #include <linux/huge_mm.h>
527 
528 /*
529  * Methods to modify the page usage count.
530  *
531  * What counts for a page usage:
532  * - cache mapping   (page->mapping)
533  * - private data    (page->private)
534  * - page mapped in a task's page tables, each mapping
535  *   is counted separately
536  *
537  * Also, many kernel routines increase the page count before a critical
538  * routine so they can be sure the page doesn't go away from under them.
539  */
540 
541 /*
542  * Drop a ref, return true if the refcount fell to zero (the page has no users)
543  */
544 static inline int put_page_testzero(struct page *page)
545 {
546 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
547 	return page_ref_dec_and_test(page);
548 }
549 
550 /*
551  * Try to grab a ref unless the page has a refcount of zero, return false if
552  * that is the case.
553  * This can be called when MMU is off so it must not access
554  * any of the virtual mappings.
555  */
556 static inline int get_page_unless_zero(struct page *page)
557 {
558 	return page_ref_add_unless(page, 1, 0);
559 }
560 
561 extern int page_is_ram(unsigned long pfn);
562 
563 enum {
564 	REGION_INTERSECTS,
565 	REGION_DISJOINT,
566 	REGION_MIXED,
567 };
568 
569 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
570 		      unsigned long desc);
571 
572 /* Support for virtually mapped pages */
573 struct page *vmalloc_to_page(const void *addr);
574 unsigned long vmalloc_to_pfn(const void *addr);
575 
576 /*
577  * Determine if an address is within the vmalloc range
578  *
579  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
580  * is no special casing required.
581  */
582 static inline bool is_vmalloc_addr(const void *x)
583 {
584 #ifdef CONFIG_MMU
585 	unsigned long addr = (unsigned long)x;
586 
587 	return addr >= VMALLOC_START && addr < VMALLOC_END;
588 #else
589 	return false;
590 #endif
591 }
592 #ifdef CONFIG_MMU
593 extern int is_vmalloc_or_module_addr(const void *x);
594 #else
595 static inline int is_vmalloc_or_module_addr(const void *x)
596 {
597 	return 0;
598 }
599 #endif
600 
601 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
602 static inline void *kvmalloc(size_t size, gfp_t flags)
603 {
604 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
605 }
606 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
607 {
608 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
609 }
610 static inline void *kvzalloc(size_t size, gfp_t flags)
611 {
612 	return kvmalloc(size, flags | __GFP_ZERO);
613 }
614 
615 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
616 {
617 	size_t bytes;
618 
619 	if (unlikely(check_mul_overflow(n, size, &bytes)))
620 		return NULL;
621 
622 	return kvmalloc(bytes, flags);
623 }
624 
625 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
626 {
627 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
628 }
629 
630 extern void kvfree(const void *addr);
631 
632 static inline atomic_t *compound_mapcount_ptr(struct page *page)
633 {
634 	return &page[1].compound_mapcount;
635 }
636 
637 static inline int compound_mapcount(struct page *page)
638 {
639 	VM_BUG_ON_PAGE(!PageCompound(page), page);
640 	page = compound_head(page);
641 	return atomic_read(compound_mapcount_ptr(page)) + 1;
642 }
643 
644 /*
645  * The atomic page->_mapcount, starts from -1: so that transitions
646  * both from it and to it can be tracked, using atomic_inc_and_test
647  * and atomic_add_negative(-1).
648  */
649 static inline void page_mapcount_reset(struct page *page)
650 {
651 	atomic_set(&(page)->_mapcount, -1);
652 }
653 
654 int __page_mapcount(struct page *page);
655 
656 static inline int page_mapcount(struct page *page)
657 {
658 	VM_BUG_ON_PAGE(PageSlab(page), page);
659 
660 	if (unlikely(PageCompound(page)))
661 		return __page_mapcount(page);
662 	return atomic_read(&page->_mapcount) + 1;
663 }
664 
665 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
666 int total_mapcount(struct page *page);
667 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
668 #else
669 static inline int total_mapcount(struct page *page)
670 {
671 	return page_mapcount(page);
672 }
673 static inline int page_trans_huge_mapcount(struct page *page,
674 					   int *total_mapcount)
675 {
676 	int mapcount = page_mapcount(page);
677 	if (total_mapcount)
678 		*total_mapcount = mapcount;
679 	return mapcount;
680 }
681 #endif
682 
683 static inline struct page *virt_to_head_page(const void *x)
684 {
685 	struct page *page = virt_to_page(x);
686 
687 	return compound_head(page);
688 }
689 
690 void __put_page(struct page *page);
691 
692 void put_pages_list(struct list_head *pages);
693 
694 void split_page(struct page *page, unsigned int order);
695 
696 /*
697  * Compound pages have a destructor function.  Provide a
698  * prototype for that function and accessor functions.
699  * These are _only_ valid on the head of a compound page.
700  */
701 typedef void compound_page_dtor(struct page *);
702 
703 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
704 enum compound_dtor_id {
705 	NULL_COMPOUND_DTOR,
706 	COMPOUND_PAGE_DTOR,
707 #ifdef CONFIG_HUGETLB_PAGE
708 	HUGETLB_PAGE_DTOR,
709 #endif
710 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
711 	TRANSHUGE_PAGE_DTOR,
712 #endif
713 	NR_COMPOUND_DTORS,
714 };
715 extern compound_page_dtor * const compound_page_dtors[];
716 
717 static inline void set_compound_page_dtor(struct page *page,
718 		enum compound_dtor_id compound_dtor)
719 {
720 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
721 	page[1].compound_dtor = compound_dtor;
722 }
723 
724 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
725 {
726 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
727 	return compound_page_dtors[page[1].compound_dtor];
728 }
729 
730 static inline unsigned int compound_order(struct page *page)
731 {
732 	if (!PageHead(page))
733 		return 0;
734 	return page[1].compound_order;
735 }
736 
737 static inline void set_compound_order(struct page *page, unsigned int order)
738 {
739 	page[1].compound_order = order;
740 }
741 
742 void free_compound_page(struct page *page);
743 
744 #ifdef CONFIG_MMU
745 /*
746  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
747  * servicing faults for write access.  In the normal case, do always want
748  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
749  * that do not have writing enabled, when used by access_process_vm.
750  */
751 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
752 {
753 	if (likely(vma->vm_flags & VM_WRITE))
754 		pte = pte_mkwrite(pte);
755 	return pte;
756 }
757 
758 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
759 		struct page *page);
760 vm_fault_t finish_fault(struct vm_fault *vmf);
761 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
762 #endif
763 
764 /*
765  * Multiple processes may "see" the same page. E.g. for untouched
766  * mappings of /dev/null, all processes see the same page full of
767  * zeroes, and text pages of executables and shared libraries have
768  * only one copy in memory, at most, normally.
769  *
770  * For the non-reserved pages, page_count(page) denotes a reference count.
771  *   page_count() == 0 means the page is free. page->lru is then used for
772  *   freelist management in the buddy allocator.
773  *   page_count() > 0  means the page has been allocated.
774  *
775  * Pages are allocated by the slab allocator in order to provide memory
776  * to kmalloc and kmem_cache_alloc. In this case, the management of the
777  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
778  * unless a particular usage is carefully commented. (the responsibility of
779  * freeing the kmalloc memory is the caller's, of course).
780  *
781  * A page may be used by anyone else who does a __get_free_page().
782  * In this case, page_count still tracks the references, and should only
783  * be used through the normal accessor functions. The top bits of page->flags
784  * and page->virtual store page management information, but all other fields
785  * are unused and could be used privately, carefully. The management of this
786  * page is the responsibility of the one who allocated it, and those who have
787  * subsequently been given references to it.
788  *
789  * The other pages (we may call them "pagecache pages") are completely
790  * managed by the Linux memory manager: I/O, buffers, swapping etc.
791  * The following discussion applies only to them.
792  *
793  * A pagecache page contains an opaque `private' member, which belongs to the
794  * page's address_space. Usually, this is the address of a circular list of
795  * the page's disk buffers. PG_private must be set to tell the VM to call
796  * into the filesystem to release these pages.
797  *
798  * A page may belong to an inode's memory mapping. In this case, page->mapping
799  * is the pointer to the inode, and page->index is the file offset of the page,
800  * in units of PAGE_SIZE.
801  *
802  * If pagecache pages are not associated with an inode, they are said to be
803  * anonymous pages. These may become associated with the swapcache, and in that
804  * case PG_swapcache is set, and page->private is an offset into the swapcache.
805  *
806  * In either case (swapcache or inode backed), the pagecache itself holds one
807  * reference to the page. Setting PG_private should also increment the
808  * refcount. The each user mapping also has a reference to the page.
809  *
810  * The pagecache pages are stored in a per-mapping radix tree, which is
811  * rooted at mapping->i_pages, and indexed by offset.
812  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
813  * lists, we instead now tag pages as dirty/writeback in the radix tree.
814  *
815  * All pagecache pages may be subject to I/O:
816  * - inode pages may need to be read from disk,
817  * - inode pages which have been modified and are MAP_SHARED may need
818  *   to be written back to the inode on disk,
819  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
820  *   modified may need to be swapped out to swap space and (later) to be read
821  *   back into memory.
822  */
823 
824 /*
825  * The zone field is never updated after free_area_init_core()
826  * sets it, so none of the operations on it need to be atomic.
827  */
828 
829 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
830 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
831 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
832 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
833 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
834 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
835 
836 /*
837  * Define the bit shifts to access each section.  For non-existent
838  * sections we define the shift as 0; that plus a 0 mask ensures
839  * the compiler will optimise away reference to them.
840  */
841 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
842 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
843 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
844 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
845 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
846 
847 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
848 #ifdef NODE_NOT_IN_PAGE_FLAGS
849 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
850 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
851 						SECTIONS_PGOFF : ZONES_PGOFF)
852 #else
853 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
854 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
855 						NODES_PGOFF : ZONES_PGOFF)
856 #endif
857 
858 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
859 
860 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
861 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
862 #endif
863 
864 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
865 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
866 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
867 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
868 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
869 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
870 
871 static inline enum zone_type page_zonenum(const struct page *page)
872 {
873 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
874 }
875 
876 #ifdef CONFIG_ZONE_DEVICE
877 static inline bool is_zone_device_page(const struct page *page)
878 {
879 	return page_zonenum(page) == ZONE_DEVICE;
880 }
881 extern void memmap_init_zone_device(struct zone *, unsigned long,
882 				    unsigned long, struct dev_pagemap *);
883 #else
884 static inline bool is_zone_device_page(const struct page *page)
885 {
886 	return false;
887 }
888 #endif
889 
890 #ifdef CONFIG_DEV_PAGEMAP_OPS
891 void dev_pagemap_get_ops(void);
892 void dev_pagemap_put_ops(void);
893 void __put_devmap_managed_page(struct page *page);
894 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
895 static inline bool put_devmap_managed_page(struct page *page)
896 {
897 	if (!static_branch_unlikely(&devmap_managed_key))
898 		return false;
899 	if (!is_zone_device_page(page))
900 		return false;
901 	switch (page->pgmap->type) {
902 	case MEMORY_DEVICE_PRIVATE:
903 	case MEMORY_DEVICE_PUBLIC:
904 	case MEMORY_DEVICE_FS_DAX:
905 		__put_devmap_managed_page(page);
906 		return true;
907 	default:
908 		break;
909 	}
910 	return false;
911 }
912 
913 static inline bool is_device_private_page(const struct page *page)
914 {
915 	return is_zone_device_page(page) &&
916 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
917 }
918 
919 static inline bool is_device_public_page(const struct page *page)
920 {
921 	return is_zone_device_page(page) &&
922 		page->pgmap->type == MEMORY_DEVICE_PUBLIC;
923 }
924 
925 #ifdef CONFIG_PCI_P2PDMA
926 static inline bool is_pci_p2pdma_page(const struct page *page)
927 {
928 	return is_zone_device_page(page) &&
929 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
930 }
931 #else /* CONFIG_PCI_P2PDMA */
932 static inline bool is_pci_p2pdma_page(const struct page *page)
933 {
934 	return false;
935 }
936 #endif /* CONFIG_PCI_P2PDMA */
937 
938 #else /* CONFIG_DEV_PAGEMAP_OPS */
939 static inline void dev_pagemap_get_ops(void)
940 {
941 }
942 
943 static inline void dev_pagemap_put_ops(void)
944 {
945 }
946 
947 static inline bool put_devmap_managed_page(struct page *page)
948 {
949 	return false;
950 }
951 
952 static inline bool is_device_private_page(const struct page *page)
953 {
954 	return false;
955 }
956 
957 static inline bool is_device_public_page(const struct page *page)
958 {
959 	return false;
960 }
961 
962 static inline bool is_pci_p2pdma_page(const struct page *page)
963 {
964 	return false;
965 }
966 #endif /* CONFIG_DEV_PAGEMAP_OPS */
967 
968 static inline void get_page(struct page *page)
969 {
970 	page = compound_head(page);
971 	/*
972 	 * Getting a normal page or the head of a compound page
973 	 * requires to already have an elevated page->_refcount.
974 	 */
975 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
976 	page_ref_inc(page);
977 }
978 
979 static inline void put_page(struct page *page)
980 {
981 	page = compound_head(page);
982 
983 	/*
984 	 * For devmap managed pages we need to catch refcount transition from
985 	 * 2 to 1, when refcount reach one it means the page is free and we
986 	 * need to inform the device driver through callback. See
987 	 * include/linux/memremap.h and HMM for details.
988 	 */
989 	if (put_devmap_managed_page(page))
990 		return;
991 
992 	if (put_page_testzero(page))
993 		__put_page(page);
994 }
995 
996 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
997 #define SECTION_IN_PAGE_FLAGS
998 #endif
999 
1000 /*
1001  * The identification function is mainly used by the buddy allocator for
1002  * determining if two pages could be buddies. We are not really identifying
1003  * the zone since we could be using the section number id if we do not have
1004  * node id available in page flags.
1005  * We only guarantee that it will return the same value for two combinable
1006  * pages in a zone.
1007  */
1008 static inline int page_zone_id(struct page *page)
1009 {
1010 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1011 }
1012 
1013 #ifdef NODE_NOT_IN_PAGE_FLAGS
1014 extern int page_to_nid(const struct page *page);
1015 #else
1016 static inline int page_to_nid(const struct page *page)
1017 {
1018 	struct page *p = (struct page *)page;
1019 
1020 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1021 }
1022 #endif
1023 
1024 #ifdef CONFIG_NUMA_BALANCING
1025 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1026 {
1027 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1028 }
1029 
1030 static inline int cpupid_to_pid(int cpupid)
1031 {
1032 	return cpupid & LAST__PID_MASK;
1033 }
1034 
1035 static inline int cpupid_to_cpu(int cpupid)
1036 {
1037 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1038 }
1039 
1040 static inline int cpupid_to_nid(int cpupid)
1041 {
1042 	return cpu_to_node(cpupid_to_cpu(cpupid));
1043 }
1044 
1045 static inline bool cpupid_pid_unset(int cpupid)
1046 {
1047 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1048 }
1049 
1050 static inline bool cpupid_cpu_unset(int cpupid)
1051 {
1052 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1053 }
1054 
1055 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1056 {
1057 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1058 }
1059 
1060 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1061 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1062 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1063 {
1064 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1065 }
1066 
1067 static inline int page_cpupid_last(struct page *page)
1068 {
1069 	return page->_last_cpupid;
1070 }
1071 static inline void page_cpupid_reset_last(struct page *page)
1072 {
1073 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1074 }
1075 #else
1076 static inline int page_cpupid_last(struct page *page)
1077 {
1078 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1079 }
1080 
1081 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1082 
1083 static inline void page_cpupid_reset_last(struct page *page)
1084 {
1085 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1086 }
1087 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1088 #else /* !CONFIG_NUMA_BALANCING */
1089 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1090 {
1091 	return page_to_nid(page); /* XXX */
1092 }
1093 
1094 static inline int page_cpupid_last(struct page *page)
1095 {
1096 	return page_to_nid(page); /* XXX */
1097 }
1098 
1099 static inline int cpupid_to_nid(int cpupid)
1100 {
1101 	return -1;
1102 }
1103 
1104 static inline int cpupid_to_pid(int cpupid)
1105 {
1106 	return -1;
1107 }
1108 
1109 static inline int cpupid_to_cpu(int cpupid)
1110 {
1111 	return -1;
1112 }
1113 
1114 static inline int cpu_pid_to_cpupid(int nid, int pid)
1115 {
1116 	return -1;
1117 }
1118 
1119 static inline bool cpupid_pid_unset(int cpupid)
1120 {
1121 	return 1;
1122 }
1123 
1124 static inline void page_cpupid_reset_last(struct page *page)
1125 {
1126 }
1127 
1128 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1129 {
1130 	return false;
1131 }
1132 #endif /* CONFIG_NUMA_BALANCING */
1133 
1134 #ifdef CONFIG_KASAN_SW_TAGS
1135 static inline u8 page_kasan_tag(const struct page *page)
1136 {
1137 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1138 }
1139 
1140 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1141 {
1142 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1143 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1144 }
1145 
1146 static inline void page_kasan_tag_reset(struct page *page)
1147 {
1148 	page_kasan_tag_set(page, 0xff);
1149 }
1150 #else
1151 static inline u8 page_kasan_tag(const struct page *page)
1152 {
1153 	return 0xff;
1154 }
1155 
1156 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1157 static inline void page_kasan_tag_reset(struct page *page) { }
1158 #endif
1159 
1160 static inline struct zone *page_zone(const struct page *page)
1161 {
1162 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1163 }
1164 
1165 static inline pg_data_t *page_pgdat(const struct page *page)
1166 {
1167 	return NODE_DATA(page_to_nid(page));
1168 }
1169 
1170 #ifdef SECTION_IN_PAGE_FLAGS
1171 static inline void set_page_section(struct page *page, unsigned long section)
1172 {
1173 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1174 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1175 }
1176 
1177 static inline unsigned long page_to_section(const struct page *page)
1178 {
1179 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1180 }
1181 #endif
1182 
1183 static inline void set_page_zone(struct page *page, enum zone_type zone)
1184 {
1185 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1186 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1187 }
1188 
1189 static inline void set_page_node(struct page *page, unsigned long node)
1190 {
1191 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1192 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1193 }
1194 
1195 static inline void set_page_links(struct page *page, enum zone_type zone,
1196 	unsigned long node, unsigned long pfn)
1197 {
1198 	set_page_zone(page, zone);
1199 	set_page_node(page, node);
1200 #ifdef SECTION_IN_PAGE_FLAGS
1201 	set_page_section(page, pfn_to_section_nr(pfn));
1202 #endif
1203 }
1204 
1205 #ifdef CONFIG_MEMCG
1206 static inline struct mem_cgroup *page_memcg(struct page *page)
1207 {
1208 	return page->mem_cgroup;
1209 }
1210 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1211 {
1212 	WARN_ON_ONCE(!rcu_read_lock_held());
1213 	return READ_ONCE(page->mem_cgroup);
1214 }
1215 #else
1216 static inline struct mem_cgroup *page_memcg(struct page *page)
1217 {
1218 	return NULL;
1219 }
1220 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1221 {
1222 	WARN_ON_ONCE(!rcu_read_lock_held());
1223 	return NULL;
1224 }
1225 #endif
1226 
1227 /*
1228  * Some inline functions in vmstat.h depend on page_zone()
1229  */
1230 #include <linux/vmstat.h>
1231 
1232 static __always_inline void *lowmem_page_address(const struct page *page)
1233 {
1234 	return page_to_virt(page);
1235 }
1236 
1237 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1238 #define HASHED_PAGE_VIRTUAL
1239 #endif
1240 
1241 #if defined(WANT_PAGE_VIRTUAL)
1242 static inline void *page_address(const struct page *page)
1243 {
1244 	return page->virtual;
1245 }
1246 static inline void set_page_address(struct page *page, void *address)
1247 {
1248 	page->virtual = address;
1249 }
1250 #define page_address_init()  do { } while(0)
1251 #endif
1252 
1253 #if defined(HASHED_PAGE_VIRTUAL)
1254 void *page_address(const struct page *page);
1255 void set_page_address(struct page *page, void *virtual);
1256 void page_address_init(void);
1257 #endif
1258 
1259 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1260 #define page_address(page) lowmem_page_address(page)
1261 #define set_page_address(page, address)  do { } while(0)
1262 #define page_address_init()  do { } while(0)
1263 #endif
1264 
1265 extern void *page_rmapping(struct page *page);
1266 extern struct anon_vma *page_anon_vma(struct page *page);
1267 extern struct address_space *page_mapping(struct page *page);
1268 
1269 extern struct address_space *__page_file_mapping(struct page *);
1270 
1271 static inline
1272 struct address_space *page_file_mapping(struct page *page)
1273 {
1274 	if (unlikely(PageSwapCache(page)))
1275 		return __page_file_mapping(page);
1276 
1277 	return page->mapping;
1278 }
1279 
1280 extern pgoff_t __page_file_index(struct page *page);
1281 
1282 /*
1283  * Return the pagecache index of the passed page.  Regular pagecache pages
1284  * use ->index whereas swapcache pages use swp_offset(->private)
1285  */
1286 static inline pgoff_t page_index(struct page *page)
1287 {
1288 	if (unlikely(PageSwapCache(page)))
1289 		return __page_file_index(page);
1290 	return page->index;
1291 }
1292 
1293 bool page_mapped(struct page *page);
1294 struct address_space *page_mapping(struct page *page);
1295 struct address_space *page_mapping_file(struct page *page);
1296 
1297 /*
1298  * Return true only if the page has been allocated with
1299  * ALLOC_NO_WATERMARKS and the low watermark was not
1300  * met implying that the system is under some pressure.
1301  */
1302 static inline bool page_is_pfmemalloc(struct page *page)
1303 {
1304 	/*
1305 	 * Page index cannot be this large so this must be
1306 	 * a pfmemalloc page.
1307 	 */
1308 	return page->index == -1UL;
1309 }
1310 
1311 /*
1312  * Only to be called by the page allocator on a freshly allocated
1313  * page.
1314  */
1315 static inline void set_page_pfmemalloc(struct page *page)
1316 {
1317 	page->index = -1UL;
1318 }
1319 
1320 static inline void clear_page_pfmemalloc(struct page *page)
1321 {
1322 	page->index = 0;
1323 }
1324 
1325 /*
1326  * Different kinds of faults, as returned by handle_mm_fault().
1327  * Used to decide whether a process gets delivered SIGBUS or
1328  * just gets major/minor fault counters bumped up.
1329  */
1330 
1331 #define VM_FAULT_OOM	0x0001
1332 #define VM_FAULT_SIGBUS	0x0002
1333 #define VM_FAULT_MAJOR	0x0004
1334 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1335 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1336 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1337 #define VM_FAULT_SIGSEGV 0x0040
1338 
1339 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1340 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1341 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1342 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1343 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1344 #define VM_FAULT_NEEDDSYNC  0x2000	/* ->fault did not modify page tables
1345 					 * and needs fsync() to complete (for
1346 					 * synchronous page faults in DAX) */
1347 
1348 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1349 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1350 			 VM_FAULT_FALLBACK)
1351 
1352 #define VM_FAULT_RESULT_TRACE \
1353 	{ VM_FAULT_OOM,			"OOM" }, \
1354 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1355 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1356 	{ VM_FAULT_WRITE,		"WRITE" }, \
1357 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1358 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1359 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1360 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1361 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1362 	{ VM_FAULT_RETRY,		"RETRY" }, \
1363 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1364 	{ VM_FAULT_DONE_COW,		"DONE_COW" }, \
1365 	{ VM_FAULT_NEEDDSYNC,		"NEEDDSYNC" }
1366 
1367 /* Encode hstate index for a hwpoisoned large page */
1368 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1369 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1370 
1371 /*
1372  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1373  */
1374 extern void pagefault_out_of_memory(void);
1375 
1376 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1377 
1378 /*
1379  * Flags passed to show_mem() and show_free_areas() to suppress output in
1380  * various contexts.
1381  */
1382 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1383 
1384 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1385 
1386 extern bool can_do_mlock(void);
1387 extern int user_shm_lock(size_t, struct user_struct *);
1388 extern void user_shm_unlock(size_t, struct user_struct *);
1389 
1390 /*
1391  * Parameter block passed down to zap_pte_range in exceptional cases.
1392  */
1393 struct zap_details {
1394 	struct address_space *check_mapping;	/* Check page->mapping if set */
1395 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1396 	pgoff_t last_index;			/* Highest page->index to unmap */
1397 };
1398 
1399 struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1400 			     pte_t pte, bool with_public_device);
1401 #define vm_normal_page(vma, addr, pte) _vm_normal_page(vma, addr, pte, false)
1402 
1403 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1404 				pmd_t pmd);
1405 
1406 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1407 		  unsigned long size);
1408 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1409 		    unsigned long size);
1410 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1411 		unsigned long start, unsigned long end);
1412 
1413 /**
1414  * mm_walk - callbacks for walk_page_range
1415  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1416  *	       this handler should only handle pud_trans_huge() puds.
1417  *	       the pmd_entry or pte_entry callbacks will be used for
1418  *	       regular PUDs.
1419  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1420  *	       this handler is required to be able to handle
1421  *	       pmd_trans_huge() pmds.  They may simply choose to
1422  *	       split_huge_page() instead of handling it explicitly.
1423  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1424  * @pte_hole: if set, called for each hole at all levels
1425  * @hugetlb_entry: if set, called for each hugetlb entry
1426  * @test_walk: caller specific callback function to determine whether
1427  *             we walk over the current vma or not. Returning 0
1428  *             value means "do page table walk over the current vma,"
1429  *             and a negative one means "abort current page table walk
1430  *             right now." 1 means "skip the current vma."
1431  * @mm:        mm_struct representing the target process of page table walk
1432  * @vma:       vma currently walked (NULL if walking outside vmas)
1433  * @private:   private data for callbacks' usage
1434  *
1435  * (see the comment on walk_page_range() for more details)
1436  */
1437 struct mm_walk {
1438 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1439 			 unsigned long next, struct mm_walk *walk);
1440 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1441 			 unsigned long next, struct mm_walk *walk);
1442 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1443 			 unsigned long next, struct mm_walk *walk);
1444 	int (*pte_hole)(unsigned long addr, unsigned long next,
1445 			struct mm_walk *walk);
1446 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1447 			     unsigned long addr, unsigned long next,
1448 			     struct mm_walk *walk);
1449 	int (*test_walk)(unsigned long addr, unsigned long next,
1450 			struct mm_walk *walk);
1451 	struct mm_struct *mm;
1452 	struct vm_area_struct *vma;
1453 	void *private;
1454 };
1455 
1456 struct mmu_notifier_range;
1457 
1458 int walk_page_range(unsigned long addr, unsigned long end,
1459 		struct mm_walk *walk);
1460 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1461 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1462 		unsigned long end, unsigned long floor, unsigned long ceiling);
1463 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1464 			struct vm_area_struct *vma);
1465 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1466 		   struct mmu_notifier_range *range,
1467 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1468 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1469 	unsigned long *pfn);
1470 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1471 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1472 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1473 			void *buf, int len, int write);
1474 
1475 extern void truncate_pagecache(struct inode *inode, loff_t new);
1476 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1477 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1478 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1479 int truncate_inode_page(struct address_space *mapping, struct page *page);
1480 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1481 int invalidate_inode_page(struct page *page);
1482 
1483 #ifdef CONFIG_MMU
1484 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1485 			unsigned long address, unsigned int flags);
1486 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1487 			    unsigned long address, unsigned int fault_flags,
1488 			    bool *unlocked);
1489 void unmap_mapping_pages(struct address_space *mapping,
1490 		pgoff_t start, pgoff_t nr, bool even_cows);
1491 void unmap_mapping_range(struct address_space *mapping,
1492 		loff_t const holebegin, loff_t const holelen, int even_cows);
1493 #else
1494 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1495 		unsigned long address, unsigned int flags)
1496 {
1497 	/* should never happen if there's no MMU */
1498 	BUG();
1499 	return VM_FAULT_SIGBUS;
1500 }
1501 static inline int fixup_user_fault(struct task_struct *tsk,
1502 		struct mm_struct *mm, unsigned long address,
1503 		unsigned int fault_flags, bool *unlocked)
1504 {
1505 	/* should never happen if there's no MMU */
1506 	BUG();
1507 	return -EFAULT;
1508 }
1509 static inline void unmap_mapping_pages(struct address_space *mapping,
1510 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1511 static inline void unmap_mapping_range(struct address_space *mapping,
1512 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1513 #endif
1514 
1515 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1516 		loff_t const holebegin, loff_t const holelen)
1517 {
1518 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1519 }
1520 
1521 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1522 		void *buf, int len, unsigned int gup_flags);
1523 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1524 		void *buf, int len, unsigned int gup_flags);
1525 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1526 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1527 
1528 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1529 			    unsigned long start, unsigned long nr_pages,
1530 			    unsigned int gup_flags, struct page **pages,
1531 			    struct vm_area_struct **vmas, int *locked);
1532 long get_user_pages(unsigned long start, unsigned long nr_pages,
1533 			    unsigned int gup_flags, struct page **pages,
1534 			    struct vm_area_struct **vmas);
1535 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1536 		    unsigned int gup_flags, struct page **pages, int *locked);
1537 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1538 		    struct page **pages, unsigned int gup_flags);
1539 #ifdef CONFIG_FS_DAX
1540 long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1541 			    unsigned int gup_flags, struct page **pages,
1542 			    struct vm_area_struct **vmas);
1543 #else
1544 static inline long get_user_pages_longterm(unsigned long start,
1545 		unsigned long nr_pages, unsigned int gup_flags,
1546 		struct page **pages, struct vm_area_struct **vmas)
1547 {
1548 	return get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1549 }
1550 #endif /* CONFIG_FS_DAX */
1551 
1552 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1553 			struct page **pages);
1554 
1555 /* Container for pinned pfns / pages */
1556 struct frame_vector {
1557 	unsigned int nr_allocated;	/* Number of frames we have space for */
1558 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1559 	bool got_ref;		/* Did we pin pages by getting page ref? */
1560 	bool is_pfns;		/* Does array contain pages or pfns? */
1561 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1562 				 * pfns_vector_pages() or pfns_vector_pfns()
1563 				 * for access */
1564 };
1565 
1566 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1567 void frame_vector_destroy(struct frame_vector *vec);
1568 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1569 		     unsigned int gup_flags, struct frame_vector *vec);
1570 void put_vaddr_frames(struct frame_vector *vec);
1571 int frame_vector_to_pages(struct frame_vector *vec);
1572 void frame_vector_to_pfns(struct frame_vector *vec);
1573 
1574 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1575 {
1576 	return vec->nr_frames;
1577 }
1578 
1579 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1580 {
1581 	if (vec->is_pfns) {
1582 		int err = frame_vector_to_pages(vec);
1583 
1584 		if (err)
1585 			return ERR_PTR(err);
1586 	}
1587 	return (struct page **)(vec->ptrs);
1588 }
1589 
1590 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1591 {
1592 	if (!vec->is_pfns)
1593 		frame_vector_to_pfns(vec);
1594 	return (unsigned long *)(vec->ptrs);
1595 }
1596 
1597 struct kvec;
1598 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1599 			struct page **pages);
1600 int get_kernel_page(unsigned long start, int write, struct page **pages);
1601 struct page *get_dump_page(unsigned long addr);
1602 
1603 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1604 extern void do_invalidatepage(struct page *page, unsigned int offset,
1605 			      unsigned int length);
1606 
1607 void __set_page_dirty(struct page *, struct address_space *, int warn);
1608 int __set_page_dirty_nobuffers(struct page *page);
1609 int __set_page_dirty_no_writeback(struct page *page);
1610 int redirty_page_for_writepage(struct writeback_control *wbc,
1611 				struct page *page);
1612 void account_page_dirtied(struct page *page, struct address_space *mapping);
1613 void account_page_cleaned(struct page *page, struct address_space *mapping,
1614 			  struct bdi_writeback *wb);
1615 int set_page_dirty(struct page *page);
1616 int set_page_dirty_lock(struct page *page);
1617 void __cancel_dirty_page(struct page *page);
1618 static inline void cancel_dirty_page(struct page *page)
1619 {
1620 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1621 	if (PageDirty(page))
1622 		__cancel_dirty_page(page);
1623 }
1624 int clear_page_dirty_for_io(struct page *page);
1625 
1626 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1627 
1628 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1629 {
1630 	return !vma->vm_ops;
1631 }
1632 
1633 #ifdef CONFIG_SHMEM
1634 /*
1635  * The vma_is_shmem is not inline because it is used only by slow
1636  * paths in userfault.
1637  */
1638 bool vma_is_shmem(struct vm_area_struct *vma);
1639 #else
1640 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1641 #endif
1642 
1643 int vma_is_stack_for_current(struct vm_area_struct *vma);
1644 
1645 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1646 		unsigned long old_addr, struct vm_area_struct *new_vma,
1647 		unsigned long new_addr, unsigned long len,
1648 		bool need_rmap_locks);
1649 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1650 			      unsigned long end, pgprot_t newprot,
1651 			      int dirty_accountable, int prot_numa);
1652 extern int mprotect_fixup(struct vm_area_struct *vma,
1653 			  struct vm_area_struct **pprev, unsigned long start,
1654 			  unsigned long end, unsigned long newflags);
1655 
1656 /*
1657  * doesn't attempt to fault and will return short.
1658  */
1659 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1660 			  struct page **pages);
1661 /*
1662  * per-process(per-mm_struct) statistics.
1663  */
1664 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1665 {
1666 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1667 
1668 #ifdef SPLIT_RSS_COUNTING
1669 	/*
1670 	 * counter is updated in asynchronous manner and may go to minus.
1671 	 * But it's never be expected number for users.
1672 	 */
1673 	if (val < 0)
1674 		val = 0;
1675 #endif
1676 	return (unsigned long)val;
1677 }
1678 
1679 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1680 {
1681 	atomic_long_add(value, &mm->rss_stat.count[member]);
1682 }
1683 
1684 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1685 {
1686 	atomic_long_inc(&mm->rss_stat.count[member]);
1687 }
1688 
1689 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1690 {
1691 	atomic_long_dec(&mm->rss_stat.count[member]);
1692 }
1693 
1694 /* Optimized variant when page is already known not to be PageAnon */
1695 static inline int mm_counter_file(struct page *page)
1696 {
1697 	if (PageSwapBacked(page))
1698 		return MM_SHMEMPAGES;
1699 	return MM_FILEPAGES;
1700 }
1701 
1702 static inline int mm_counter(struct page *page)
1703 {
1704 	if (PageAnon(page))
1705 		return MM_ANONPAGES;
1706 	return mm_counter_file(page);
1707 }
1708 
1709 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1710 {
1711 	return get_mm_counter(mm, MM_FILEPAGES) +
1712 		get_mm_counter(mm, MM_ANONPAGES) +
1713 		get_mm_counter(mm, MM_SHMEMPAGES);
1714 }
1715 
1716 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1717 {
1718 	return max(mm->hiwater_rss, get_mm_rss(mm));
1719 }
1720 
1721 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1722 {
1723 	return max(mm->hiwater_vm, mm->total_vm);
1724 }
1725 
1726 static inline void update_hiwater_rss(struct mm_struct *mm)
1727 {
1728 	unsigned long _rss = get_mm_rss(mm);
1729 
1730 	if ((mm)->hiwater_rss < _rss)
1731 		(mm)->hiwater_rss = _rss;
1732 }
1733 
1734 static inline void update_hiwater_vm(struct mm_struct *mm)
1735 {
1736 	if (mm->hiwater_vm < mm->total_vm)
1737 		mm->hiwater_vm = mm->total_vm;
1738 }
1739 
1740 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1741 {
1742 	mm->hiwater_rss = get_mm_rss(mm);
1743 }
1744 
1745 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1746 					 struct mm_struct *mm)
1747 {
1748 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1749 
1750 	if (*maxrss < hiwater_rss)
1751 		*maxrss = hiwater_rss;
1752 }
1753 
1754 #if defined(SPLIT_RSS_COUNTING)
1755 void sync_mm_rss(struct mm_struct *mm);
1756 #else
1757 static inline void sync_mm_rss(struct mm_struct *mm)
1758 {
1759 }
1760 #endif
1761 
1762 #ifndef __HAVE_ARCH_PTE_DEVMAP
1763 static inline int pte_devmap(pte_t pte)
1764 {
1765 	return 0;
1766 }
1767 #endif
1768 
1769 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1770 
1771 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1772 			       spinlock_t **ptl);
1773 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1774 				    spinlock_t **ptl)
1775 {
1776 	pte_t *ptep;
1777 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1778 	return ptep;
1779 }
1780 
1781 #ifdef __PAGETABLE_P4D_FOLDED
1782 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1783 						unsigned long address)
1784 {
1785 	return 0;
1786 }
1787 #else
1788 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1789 #endif
1790 
1791 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1792 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1793 						unsigned long address)
1794 {
1795 	return 0;
1796 }
1797 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1798 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1799 
1800 #else
1801 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1802 
1803 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1804 {
1805 	if (mm_pud_folded(mm))
1806 		return;
1807 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1808 }
1809 
1810 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1811 {
1812 	if (mm_pud_folded(mm))
1813 		return;
1814 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1815 }
1816 #endif
1817 
1818 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1819 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1820 						unsigned long address)
1821 {
1822 	return 0;
1823 }
1824 
1825 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1826 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1827 
1828 #else
1829 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1830 
1831 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1832 {
1833 	if (mm_pmd_folded(mm))
1834 		return;
1835 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1836 }
1837 
1838 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1839 {
1840 	if (mm_pmd_folded(mm))
1841 		return;
1842 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1843 }
1844 #endif
1845 
1846 #ifdef CONFIG_MMU
1847 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1848 {
1849 	atomic_long_set(&mm->pgtables_bytes, 0);
1850 }
1851 
1852 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1853 {
1854 	return atomic_long_read(&mm->pgtables_bytes);
1855 }
1856 
1857 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1858 {
1859 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1860 }
1861 
1862 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1863 {
1864 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1865 }
1866 #else
1867 
1868 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1869 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1870 {
1871 	return 0;
1872 }
1873 
1874 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1875 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1876 #endif
1877 
1878 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1879 int __pte_alloc_kernel(pmd_t *pmd);
1880 
1881 /*
1882  * The following ifdef needed to get the 4level-fixup.h header to work.
1883  * Remove it when 4level-fixup.h has been removed.
1884  */
1885 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1886 
1887 #ifndef __ARCH_HAS_5LEVEL_HACK
1888 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1889 		unsigned long address)
1890 {
1891 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1892 		NULL : p4d_offset(pgd, address);
1893 }
1894 
1895 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1896 		unsigned long address)
1897 {
1898 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1899 		NULL : pud_offset(p4d, address);
1900 }
1901 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1902 
1903 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1904 {
1905 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1906 		NULL: pmd_offset(pud, address);
1907 }
1908 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1909 
1910 #if USE_SPLIT_PTE_PTLOCKS
1911 #if ALLOC_SPLIT_PTLOCKS
1912 void __init ptlock_cache_init(void);
1913 extern bool ptlock_alloc(struct page *page);
1914 extern void ptlock_free(struct page *page);
1915 
1916 static inline spinlock_t *ptlock_ptr(struct page *page)
1917 {
1918 	return page->ptl;
1919 }
1920 #else /* ALLOC_SPLIT_PTLOCKS */
1921 static inline void ptlock_cache_init(void)
1922 {
1923 }
1924 
1925 static inline bool ptlock_alloc(struct page *page)
1926 {
1927 	return true;
1928 }
1929 
1930 static inline void ptlock_free(struct page *page)
1931 {
1932 }
1933 
1934 static inline spinlock_t *ptlock_ptr(struct page *page)
1935 {
1936 	return &page->ptl;
1937 }
1938 #endif /* ALLOC_SPLIT_PTLOCKS */
1939 
1940 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1941 {
1942 	return ptlock_ptr(pmd_page(*pmd));
1943 }
1944 
1945 static inline bool ptlock_init(struct page *page)
1946 {
1947 	/*
1948 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1949 	 * with 0. Make sure nobody took it in use in between.
1950 	 *
1951 	 * It can happen if arch try to use slab for page table allocation:
1952 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1953 	 */
1954 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1955 	if (!ptlock_alloc(page))
1956 		return false;
1957 	spin_lock_init(ptlock_ptr(page));
1958 	return true;
1959 }
1960 
1961 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1962 /*
1963  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1964  */
1965 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1966 {
1967 	return &mm->page_table_lock;
1968 }
1969 static inline void ptlock_cache_init(void) {}
1970 static inline bool ptlock_init(struct page *page) { return true; }
1971 static inline void ptlock_free(struct page *page) {}
1972 #endif /* USE_SPLIT_PTE_PTLOCKS */
1973 
1974 static inline void pgtable_init(void)
1975 {
1976 	ptlock_cache_init();
1977 	pgtable_cache_init();
1978 }
1979 
1980 static inline bool pgtable_page_ctor(struct page *page)
1981 {
1982 	if (!ptlock_init(page))
1983 		return false;
1984 	__SetPageTable(page);
1985 	inc_zone_page_state(page, NR_PAGETABLE);
1986 	return true;
1987 }
1988 
1989 static inline void pgtable_page_dtor(struct page *page)
1990 {
1991 	ptlock_free(page);
1992 	__ClearPageTable(page);
1993 	dec_zone_page_state(page, NR_PAGETABLE);
1994 }
1995 
1996 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1997 ({							\
1998 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1999 	pte_t *__pte = pte_offset_map(pmd, address);	\
2000 	*(ptlp) = __ptl;				\
2001 	spin_lock(__ptl);				\
2002 	__pte;						\
2003 })
2004 
2005 #define pte_unmap_unlock(pte, ptl)	do {		\
2006 	spin_unlock(ptl);				\
2007 	pte_unmap(pte);					\
2008 } while (0)
2009 
2010 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2011 
2012 #define pte_alloc_map(mm, pmd, address)			\
2013 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2014 
2015 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2016 	(pte_alloc(mm, pmd) ?			\
2017 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2018 
2019 #define pte_alloc_kernel(pmd, address)			\
2020 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2021 		NULL: pte_offset_kernel(pmd, address))
2022 
2023 #if USE_SPLIT_PMD_PTLOCKS
2024 
2025 static struct page *pmd_to_page(pmd_t *pmd)
2026 {
2027 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2028 	return virt_to_page((void *)((unsigned long) pmd & mask));
2029 }
2030 
2031 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2032 {
2033 	return ptlock_ptr(pmd_to_page(pmd));
2034 }
2035 
2036 static inline bool pgtable_pmd_page_ctor(struct page *page)
2037 {
2038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2039 	page->pmd_huge_pte = NULL;
2040 #endif
2041 	return ptlock_init(page);
2042 }
2043 
2044 static inline void pgtable_pmd_page_dtor(struct page *page)
2045 {
2046 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2047 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2048 #endif
2049 	ptlock_free(page);
2050 }
2051 
2052 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2053 
2054 #else
2055 
2056 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2057 {
2058 	return &mm->page_table_lock;
2059 }
2060 
2061 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2062 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2063 
2064 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2065 
2066 #endif
2067 
2068 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2069 {
2070 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2071 	spin_lock(ptl);
2072 	return ptl;
2073 }
2074 
2075 /*
2076  * No scalability reason to split PUD locks yet, but follow the same pattern
2077  * as the PMD locks to make it easier if we decide to.  The VM should not be
2078  * considered ready to switch to split PUD locks yet; there may be places
2079  * which need to be converted from page_table_lock.
2080  */
2081 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2082 {
2083 	return &mm->page_table_lock;
2084 }
2085 
2086 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2087 {
2088 	spinlock_t *ptl = pud_lockptr(mm, pud);
2089 
2090 	spin_lock(ptl);
2091 	return ptl;
2092 }
2093 
2094 extern void __init pagecache_init(void);
2095 extern void free_area_init(unsigned long * zones_size);
2096 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2097 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2098 extern void free_initmem(void);
2099 
2100 /*
2101  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2102  * into the buddy system. The freed pages will be poisoned with pattern
2103  * "poison" if it's within range [0, UCHAR_MAX].
2104  * Return pages freed into the buddy system.
2105  */
2106 extern unsigned long free_reserved_area(void *start, void *end,
2107 					int poison, const char *s);
2108 
2109 #ifdef	CONFIG_HIGHMEM
2110 /*
2111  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2112  * and totalram_pages.
2113  */
2114 extern void free_highmem_page(struct page *page);
2115 #endif
2116 
2117 extern void adjust_managed_page_count(struct page *page, long count);
2118 extern void mem_init_print_info(const char *str);
2119 
2120 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2121 
2122 /* Free the reserved page into the buddy system, so it gets managed. */
2123 static inline void __free_reserved_page(struct page *page)
2124 {
2125 	ClearPageReserved(page);
2126 	init_page_count(page);
2127 	__free_page(page);
2128 }
2129 
2130 static inline void free_reserved_page(struct page *page)
2131 {
2132 	__free_reserved_page(page);
2133 	adjust_managed_page_count(page, 1);
2134 }
2135 
2136 static inline void mark_page_reserved(struct page *page)
2137 {
2138 	SetPageReserved(page);
2139 	adjust_managed_page_count(page, -1);
2140 }
2141 
2142 /*
2143  * Default method to free all the __init memory into the buddy system.
2144  * The freed pages will be poisoned with pattern "poison" if it's within
2145  * range [0, UCHAR_MAX].
2146  * Return pages freed into the buddy system.
2147  */
2148 static inline unsigned long free_initmem_default(int poison)
2149 {
2150 	extern char __init_begin[], __init_end[];
2151 
2152 	return free_reserved_area(&__init_begin, &__init_end,
2153 				  poison, "unused kernel");
2154 }
2155 
2156 static inline unsigned long get_num_physpages(void)
2157 {
2158 	int nid;
2159 	unsigned long phys_pages = 0;
2160 
2161 	for_each_online_node(nid)
2162 		phys_pages += node_present_pages(nid);
2163 
2164 	return phys_pages;
2165 }
2166 
2167 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2168 /*
2169  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2170  * zones, allocate the backing mem_map and account for memory holes in a more
2171  * architecture independent manner. This is a substitute for creating the
2172  * zone_sizes[] and zholes_size[] arrays and passing them to
2173  * free_area_init_node()
2174  *
2175  * An architecture is expected to register range of page frames backed by
2176  * physical memory with memblock_add[_node]() before calling
2177  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2178  * usage, an architecture is expected to do something like
2179  *
2180  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2181  * 							 max_highmem_pfn};
2182  * for_each_valid_physical_page_range()
2183  * 	memblock_add_node(base, size, nid)
2184  * free_area_init_nodes(max_zone_pfns);
2185  *
2186  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2187  * registered physical page range.  Similarly
2188  * sparse_memory_present_with_active_regions() calls memory_present() for
2189  * each range when SPARSEMEM is enabled.
2190  *
2191  * See mm/page_alloc.c for more information on each function exposed by
2192  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2193  */
2194 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2195 unsigned long node_map_pfn_alignment(void);
2196 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2197 						unsigned long end_pfn);
2198 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2199 						unsigned long end_pfn);
2200 extern void get_pfn_range_for_nid(unsigned int nid,
2201 			unsigned long *start_pfn, unsigned long *end_pfn);
2202 extern unsigned long find_min_pfn_with_active_regions(void);
2203 extern void free_bootmem_with_active_regions(int nid,
2204 						unsigned long max_low_pfn);
2205 extern void sparse_memory_present_with_active_regions(int nid);
2206 
2207 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2208 
2209 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2210     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2211 static inline int __early_pfn_to_nid(unsigned long pfn,
2212 					struct mminit_pfnnid_cache *state)
2213 {
2214 	return 0;
2215 }
2216 #else
2217 /* please see mm/page_alloc.c */
2218 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2219 /* there is a per-arch backend function. */
2220 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2221 					struct mminit_pfnnid_cache *state);
2222 #endif
2223 
2224 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2225 void zero_resv_unavail(void);
2226 #else
2227 static inline void zero_resv_unavail(void) {}
2228 #endif
2229 
2230 extern void set_dma_reserve(unsigned long new_dma_reserve);
2231 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2232 		enum memmap_context, struct vmem_altmap *);
2233 extern void setup_per_zone_wmarks(void);
2234 extern int __meminit init_per_zone_wmark_min(void);
2235 extern void mem_init(void);
2236 extern void __init mmap_init(void);
2237 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2238 extern long si_mem_available(void);
2239 extern void si_meminfo(struct sysinfo * val);
2240 extern void si_meminfo_node(struct sysinfo *val, int nid);
2241 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2242 extern unsigned long arch_reserved_kernel_pages(void);
2243 #endif
2244 
2245 extern __printf(3, 4)
2246 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2247 
2248 extern void setup_per_cpu_pageset(void);
2249 
2250 extern void zone_pcp_update(struct zone *zone);
2251 extern void zone_pcp_reset(struct zone *zone);
2252 
2253 /* page_alloc.c */
2254 extern int min_free_kbytes;
2255 extern int watermark_boost_factor;
2256 extern int watermark_scale_factor;
2257 
2258 /* nommu.c */
2259 extern atomic_long_t mmap_pages_allocated;
2260 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2261 
2262 /* interval_tree.c */
2263 void vma_interval_tree_insert(struct vm_area_struct *node,
2264 			      struct rb_root_cached *root);
2265 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2266 				    struct vm_area_struct *prev,
2267 				    struct rb_root_cached *root);
2268 void vma_interval_tree_remove(struct vm_area_struct *node,
2269 			      struct rb_root_cached *root);
2270 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2271 				unsigned long start, unsigned long last);
2272 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2273 				unsigned long start, unsigned long last);
2274 
2275 #define vma_interval_tree_foreach(vma, root, start, last)		\
2276 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2277 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2278 
2279 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2280 				   struct rb_root_cached *root);
2281 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2282 				   struct rb_root_cached *root);
2283 struct anon_vma_chain *
2284 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2285 				  unsigned long start, unsigned long last);
2286 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2287 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2288 #ifdef CONFIG_DEBUG_VM_RB
2289 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2290 #endif
2291 
2292 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2293 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2294 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2295 
2296 /* mmap.c */
2297 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2298 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2299 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2300 	struct vm_area_struct *expand);
2301 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2302 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2303 {
2304 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2305 }
2306 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2307 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2308 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2309 	struct mempolicy *, struct vm_userfaultfd_ctx);
2310 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2311 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2312 	unsigned long addr, int new_below);
2313 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2314 	unsigned long addr, int new_below);
2315 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2316 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2317 	struct rb_node **, struct rb_node *);
2318 extern void unlink_file_vma(struct vm_area_struct *);
2319 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2320 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2321 	bool *need_rmap_locks);
2322 extern void exit_mmap(struct mm_struct *);
2323 
2324 static inline int check_data_rlimit(unsigned long rlim,
2325 				    unsigned long new,
2326 				    unsigned long start,
2327 				    unsigned long end_data,
2328 				    unsigned long start_data)
2329 {
2330 	if (rlim < RLIM_INFINITY) {
2331 		if (((new - start) + (end_data - start_data)) > rlim)
2332 			return -ENOSPC;
2333 	}
2334 
2335 	return 0;
2336 }
2337 
2338 extern int mm_take_all_locks(struct mm_struct *mm);
2339 extern void mm_drop_all_locks(struct mm_struct *mm);
2340 
2341 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2342 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2343 extern struct file *get_task_exe_file(struct task_struct *task);
2344 
2345 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2346 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2347 
2348 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2349 				   const struct vm_special_mapping *sm);
2350 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2351 				   unsigned long addr, unsigned long len,
2352 				   unsigned long flags,
2353 				   const struct vm_special_mapping *spec);
2354 /* This is an obsolete alternative to _install_special_mapping. */
2355 extern int install_special_mapping(struct mm_struct *mm,
2356 				   unsigned long addr, unsigned long len,
2357 				   unsigned long flags, struct page **pages);
2358 
2359 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2360 
2361 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2362 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2363 	struct list_head *uf);
2364 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2365 	unsigned long len, unsigned long prot, unsigned long flags,
2366 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2367 	struct list_head *uf);
2368 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2369 		       struct list_head *uf, bool downgrade);
2370 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2371 		     struct list_head *uf);
2372 
2373 static inline unsigned long
2374 do_mmap_pgoff(struct file *file, unsigned long addr,
2375 	unsigned long len, unsigned long prot, unsigned long flags,
2376 	unsigned long pgoff, unsigned long *populate,
2377 	struct list_head *uf)
2378 {
2379 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2380 }
2381 
2382 #ifdef CONFIG_MMU
2383 extern int __mm_populate(unsigned long addr, unsigned long len,
2384 			 int ignore_errors);
2385 static inline void mm_populate(unsigned long addr, unsigned long len)
2386 {
2387 	/* Ignore errors */
2388 	(void) __mm_populate(addr, len, 1);
2389 }
2390 #else
2391 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2392 #endif
2393 
2394 /* These take the mm semaphore themselves */
2395 extern int __must_check vm_brk(unsigned long, unsigned long);
2396 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2397 extern int vm_munmap(unsigned long, size_t);
2398 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2399         unsigned long, unsigned long,
2400         unsigned long, unsigned long);
2401 
2402 struct vm_unmapped_area_info {
2403 #define VM_UNMAPPED_AREA_TOPDOWN 1
2404 	unsigned long flags;
2405 	unsigned long length;
2406 	unsigned long low_limit;
2407 	unsigned long high_limit;
2408 	unsigned long align_mask;
2409 	unsigned long align_offset;
2410 };
2411 
2412 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2413 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2414 
2415 /*
2416  * Search for an unmapped address range.
2417  *
2418  * We are looking for a range that:
2419  * - does not intersect with any VMA;
2420  * - is contained within the [low_limit, high_limit) interval;
2421  * - is at least the desired size.
2422  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2423  */
2424 static inline unsigned long
2425 vm_unmapped_area(struct vm_unmapped_area_info *info)
2426 {
2427 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2428 		return unmapped_area_topdown(info);
2429 	else
2430 		return unmapped_area(info);
2431 }
2432 
2433 /* truncate.c */
2434 extern void truncate_inode_pages(struct address_space *, loff_t);
2435 extern void truncate_inode_pages_range(struct address_space *,
2436 				       loff_t lstart, loff_t lend);
2437 extern void truncate_inode_pages_final(struct address_space *);
2438 
2439 /* generic vm_area_ops exported for stackable file systems */
2440 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2441 extern void filemap_map_pages(struct vm_fault *vmf,
2442 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2443 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2444 
2445 /* mm/page-writeback.c */
2446 int __must_check write_one_page(struct page *page);
2447 void task_dirty_inc(struct task_struct *tsk);
2448 
2449 /* readahead.c */
2450 #define VM_MAX_READAHEAD	128	/* kbytes */
2451 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2452 
2453 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2454 			pgoff_t offset, unsigned long nr_to_read);
2455 
2456 void page_cache_sync_readahead(struct address_space *mapping,
2457 			       struct file_ra_state *ra,
2458 			       struct file *filp,
2459 			       pgoff_t offset,
2460 			       unsigned long size);
2461 
2462 void page_cache_async_readahead(struct address_space *mapping,
2463 				struct file_ra_state *ra,
2464 				struct file *filp,
2465 				struct page *pg,
2466 				pgoff_t offset,
2467 				unsigned long size);
2468 
2469 extern unsigned long stack_guard_gap;
2470 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2471 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2472 
2473 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2474 extern int expand_downwards(struct vm_area_struct *vma,
2475 		unsigned long address);
2476 #if VM_GROWSUP
2477 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2478 #else
2479   #define expand_upwards(vma, address) (0)
2480 #endif
2481 
2482 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2483 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2484 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2485 					     struct vm_area_struct **pprev);
2486 
2487 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2488    NULL if none.  Assume start_addr < end_addr. */
2489 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2490 {
2491 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2492 
2493 	if (vma && end_addr <= vma->vm_start)
2494 		vma = NULL;
2495 	return vma;
2496 }
2497 
2498 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2499 {
2500 	unsigned long vm_start = vma->vm_start;
2501 
2502 	if (vma->vm_flags & VM_GROWSDOWN) {
2503 		vm_start -= stack_guard_gap;
2504 		if (vm_start > vma->vm_start)
2505 			vm_start = 0;
2506 	}
2507 	return vm_start;
2508 }
2509 
2510 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2511 {
2512 	unsigned long vm_end = vma->vm_end;
2513 
2514 	if (vma->vm_flags & VM_GROWSUP) {
2515 		vm_end += stack_guard_gap;
2516 		if (vm_end < vma->vm_end)
2517 			vm_end = -PAGE_SIZE;
2518 	}
2519 	return vm_end;
2520 }
2521 
2522 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2523 {
2524 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2525 }
2526 
2527 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2528 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2529 				unsigned long vm_start, unsigned long vm_end)
2530 {
2531 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2532 
2533 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2534 		vma = NULL;
2535 
2536 	return vma;
2537 }
2538 
2539 static inline bool range_in_vma(struct vm_area_struct *vma,
2540 				unsigned long start, unsigned long end)
2541 {
2542 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2543 }
2544 
2545 #ifdef CONFIG_MMU
2546 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2547 void vma_set_page_prot(struct vm_area_struct *vma);
2548 #else
2549 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2550 {
2551 	return __pgprot(0);
2552 }
2553 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2554 {
2555 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2556 }
2557 #endif
2558 
2559 #ifdef CONFIG_NUMA_BALANCING
2560 unsigned long change_prot_numa(struct vm_area_struct *vma,
2561 			unsigned long start, unsigned long end);
2562 #endif
2563 
2564 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2565 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2566 			unsigned long pfn, unsigned long size, pgprot_t);
2567 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2568 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2569 			unsigned long pfn);
2570 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2571 			unsigned long pfn, pgprot_t pgprot);
2572 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2573 			pfn_t pfn);
2574 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2575 		unsigned long addr, pfn_t pfn);
2576 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2577 
2578 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2579 				unsigned long addr, struct page *page)
2580 {
2581 	int err = vm_insert_page(vma, addr, page);
2582 
2583 	if (err == -ENOMEM)
2584 		return VM_FAULT_OOM;
2585 	if (err < 0 && err != -EBUSY)
2586 		return VM_FAULT_SIGBUS;
2587 
2588 	return VM_FAULT_NOPAGE;
2589 }
2590 
2591 static inline vm_fault_t vmf_error(int err)
2592 {
2593 	if (err == -ENOMEM)
2594 		return VM_FAULT_OOM;
2595 	return VM_FAULT_SIGBUS;
2596 }
2597 
2598 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2599 			 unsigned int foll_flags);
2600 
2601 #define FOLL_WRITE	0x01	/* check pte is writable */
2602 #define FOLL_TOUCH	0x02	/* mark page accessed */
2603 #define FOLL_GET	0x04	/* do get_page on page */
2604 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2605 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2606 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2607 				 * and return without waiting upon it */
2608 #define FOLL_POPULATE	0x40	/* fault in page */
2609 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2610 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2611 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2612 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2613 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2614 #define FOLL_MLOCK	0x1000	/* lock present pages */
2615 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2616 #define FOLL_COW	0x4000	/* internal GUP flag */
2617 #define FOLL_ANON	0x8000	/* don't do file mappings */
2618 
2619 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2620 {
2621 	if (vm_fault & VM_FAULT_OOM)
2622 		return -ENOMEM;
2623 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2624 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2625 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2626 		return -EFAULT;
2627 	return 0;
2628 }
2629 
2630 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2631 			void *data);
2632 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2633 			       unsigned long size, pte_fn_t fn, void *data);
2634 
2635 
2636 #ifdef CONFIG_PAGE_POISONING
2637 extern bool page_poisoning_enabled(void);
2638 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2639 #else
2640 static inline bool page_poisoning_enabled(void) { return false; }
2641 static inline void kernel_poison_pages(struct page *page, int numpages,
2642 					int enable) { }
2643 #endif
2644 
2645 #ifdef CONFIG_DEBUG_PAGEALLOC
2646 extern bool _debug_pagealloc_enabled;
2647 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2648 
2649 static inline bool debug_pagealloc_enabled(void)
2650 {
2651 	return _debug_pagealloc_enabled;
2652 }
2653 
2654 static inline void
2655 kernel_map_pages(struct page *page, int numpages, int enable)
2656 {
2657 	if (!debug_pagealloc_enabled())
2658 		return;
2659 
2660 	__kernel_map_pages(page, numpages, enable);
2661 }
2662 #ifdef CONFIG_HIBERNATION
2663 extern bool kernel_page_present(struct page *page);
2664 #endif	/* CONFIG_HIBERNATION */
2665 #else	/* CONFIG_DEBUG_PAGEALLOC */
2666 static inline void
2667 kernel_map_pages(struct page *page, int numpages, int enable) {}
2668 #ifdef CONFIG_HIBERNATION
2669 static inline bool kernel_page_present(struct page *page) { return true; }
2670 #endif	/* CONFIG_HIBERNATION */
2671 static inline bool debug_pagealloc_enabled(void)
2672 {
2673 	return false;
2674 }
2675 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2676 
2677 #ifdef __HAVE_ARCH_GATE_AREA
2678 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2679 extern int in_gate_area_no_mm(unsigned long addr);
2680 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2681 #else
2682 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2683 {
2684 	return NULL;
2685 }
2686 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2687 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2688 {
2689 	return 0;
2690 }
2691 #endif	/* __HAVE_ARCH_GATE_AREA */
2692 
2693 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2694 
2695 #ifdef CONFIG_SYSCTL
2696 extern int sysctl_drop_caches;
2697 int drop_caches_sysctl_handler(struct ctl_table *, int,
2698 					void __user *, size_t *, loff_t *);
2699 #endif
2700 
2701 void drop_slab(void);
2702 void drop_slab_node(int nid);
2703 
2704 #ifndef CONFIG_MMU
2705 #define randomize_va_space 0
2706 #else
2707 extern int randomize_va_space;
2708 #endif
2709 
2710 const char * arch_vma_name(struct vm_area_struct *vma);
2711 void print_vma_addr(char *prefix, unsigned long rip);
2712 
2713 void *sparse_buffer_alloc(unsigned long size);
2714 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2715 		struct vmem_altmap *altmap);
2716 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2717 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2718 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2719 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2720 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2721 void *vmemmap_alloc_block(unsigned long size, int node);
2722 struct vmem_altmap;
2723 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2724 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2725 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2726 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2727 			       int node);
2728 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2729 		struct vmem_altmap *altmap);
2730 void vmemmap_populate_print_last(void);
2731 #ifdef CONFIG_MEMORY_HOTPLUG
2732 void vmemmap_free(unsigned long start, unsigned long end,
2733 		struct vmem_altmap *altmap);
2734 #endif
2735 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2736 				  unsigned long nr_pages);
2737 
2738 enum mf_flags {
2739 	MF_COUNT_INCREASED = 1 << 0,
2740 	MF_ACTION_REQUIRED = 1 << 1,
2741 	MF_MUST_KILL = 1 << 2,
2742 	MF_SOFT_OFFLINE = 1 << 3,
2743 };
2744 extern int memory_failure(unsigned long pfn, int flags);
2745 extern void memory_failure_queue(unsigned long pfn, int flags);
2746 extern int unpoison_memory(unsigned long pfn);
2747 extern int get_hwpoison_page(struct page *page);
2748 #define put_hwpoison_page(page)	put_page(page)
2749 extern int sysctl_memory_failure_early_kill;
2750 extern int sysctl_memory_failure_recovery;
2751 extern void shake_page(struct page *p, int access);
2752 extern atomic_long_t num_poisoned_pages __read_mostly;
2753 extern int soft_offline_page(struct page *page, int flags);
2754 
2755 
2756 /*
2757  * Error handlers for various types of pages.
2758  */
2759 enum mf_result {
2760 	MF_IGNORED,	/* Error: cannot be handled */
2761 	MF_FAILED,	/* Error: handling failed */
2762 	MF_DELAYED,	/* Will be handled later */
2763 	MF_RECOVERED,	/* Successfully recovered */
2764 };
2765 
2766 enum mf_action_page_type {
2767 	MF_MSG_KERNEL,
2768 	MF_MSG_KERNEL_HIGH_ORDER,
2769 	MF_MSG_SLAB,
2770 	MF_MSG_DIFFERENT_COMPOUND,
2771 	MF_MSG_POISONED_HUGE,
2772 	MF_MSG_HUGE,
2773 	MF_MSG_FREE_HUGE,
2774 	MF_MSG_NON_PMD_HUGE,
2775 	MF_MSG_UNMAP_FAILED,
2776 	MF_MSG_DIRTY_SWAPCACHE,
2777 	MF_MSG_CLEAN_SWAPCACHE,
2778 	MF_MSG_DIRTY_MLOCKED_LRU,
2779 	MF_MSG_CLEAN_MLOCKED_LRU,
2780 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2781 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2782 	MF_MSG_DIRTY_LRU,
2783 	MF_MSG_CLEAN_LRU,
2784 	MF_MSG_TRUNCATED_LRU,
2785 	MF_MSG_BUDDY,
2786 	MF_MSG_BUDDY_2ND,
2787 	MF_MSG_DAX,
2788 	MF_MSG_UNKNOWN,
2789 };
2790 
2791 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2792 extern void clear_huge_page(struct page *page,
2793 			    unsigned long addr_hint,
2794 			    unsigned int pages_per_huge_page);
2795 extern void copy_user_huge_page(struct page *dst, struct page *src,
2796 				unsigned long addr_hint,
2797 				struct vm_area_struct *vma,
2798 				unsigned int pages_per_huge_page);
2799 extern long copy_huge_page_from_user(struct page *dst_page,
2800 				const void __user *usr_src,
2801 				unsigned int pages_per_huge_page,
2802 				bool allow_pagefault);
2803 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2804 
2805 extern struct page_ext_operations debug_guardpage_ops;
2806 
2807 #ifdef CONFIG_DEBUG_PAGEALLOC
2808 extern unsigned int _debug_guardpage_minorder;
2809 extern bool _debug_guardpage_enabled;
2810 
2811 static inline unsigned int debug_guardpage_minorder(void)
2812 {
2813 	return _debug_guardpage_minorder;
2814 }
2815 
2816 static inline bool debug_guardpage_enabled(void)
2817 {
2818 	return _debug_guardpage_enabled;
2819 }
2820 
2821 static inline bool page_is_guard(struct page *page)
2822 {
2823 	struct page_ext *page_ext;
2824 
2825 	if (!debug_guardpage_enabled())
2826 		return false;
2827 
2828 	page_ext = lookup_page_ext(page);
2829 	if (unlikely(!page_ext))
2830 		return false;
2831 
2832 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2833 }
2834 #else
2835 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2836 static inline bool debug_guardpage_enabled(void) { return false; }
2837 static inline bool page_is_guard(struct page *page) { return false; }
2838 #endif /* CONFIG_DEBUG_PAGEALLOC */
2839 
2840 #if MAX_NUMNODES > 1
2841 void __init setup_nr_node_ids(void);
2842 #else
2843 static inline void setup_nr_node_ids(void) {}
2844 #endif
2845 
2846 #endif /* __KERNEL__ */
2847 #endif /* _LINUX_MM_H */
2848