1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 25 struct mempolicy; 26 struct anon_vma; 27 struct anon_vma_chain; 28 struct file_ra_state; 29 struct user_struct; 30 struct writeback_control; 31 struct bdi_writeback; 32 33 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 34 extern unsigned long max_mapnr; 35 36 static inline void set_max_mapnr(unsigned long limit) 37 { 38 max_mapnr = limit; 39 } 40 #else 41 static inline void set_max_mapnr(unsigned long limit) { } 42 #endif 43 44 extern unsigned long totalram_pages; 45 extern void * high_memory; 46 extern int page_cluster; 47 48 #ifdef CONFIG_SYSCTL 49 extern int sysctl_legacy_va_layout; 50 #else 51 #define sysctl_legacy_va_layout 0 52 #endif 53 54 #include <asm/page.h> 55 #include <asm/pgtable.h> 56 #include <asm/processor.h> 57 58 #ifndef __pa_symbol 59 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 60 #endif 61 62 /* 63 * To prevent common memory management code establishing 64 * a zero page mapping on a read fault. 65 * This macro should be defined within <asm/pgtable.h>. 66 * s390 does this to prevent multiplexing of hardware bits 67 * related to the physical page in case of virtualization. 68 */ 69 #ifndef mm_forbids_zeropage 70 #define mm_forbids_zeropage(X) (0) 71 #endif 72 73 extern unsigned long sysctl_user_reserve_kbytes; 74 extern unsigned long sysctl_admin_reserve_kbytes; 75 76 extern int sysctl_overcommit_memory; 77 extern int sysctl_overcommit_ratio; 78 extern unsigned long sysctl_overcommit_kbytes; 79 80 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 81 size_t *, loff_t *); 82 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 83 size_t *, loff_t *); 84 85 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 86 87 /* to align the pointer to the (next) page boundary */ 88 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 89 90 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 91 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 92 93 /* 94 * Linux kernel virtual memory manager primitives. 95 * The idea being to have a "virtual" mm in the same way 96 * we have a virtual fs - giving a cleaner interface to the 97 * mm details, and allowing different kinds of memory mappings 98 * (from shared memory to executable loading to arbitrary 99 * mmap() functions). 100 */ 101 102 extern struct kmem_cache *vm_area_cachep; 103 104 #ifndef CONFIG_MMU 105 extern struct rb_root nommu_region_tree; 106 extern struct rw_semaphore nommu_region_sem; 107 108 extern unsigned int kobjsize(const void *objp); 109 #endif 110 111 /* 112 * vm_flags in vm_area_struct, see mm_types.h. 113 */ 114 #define VM_NONE 0x00000000 115 116 #define VM_READ 0x00000001 /* currently active flags */ 117 #define VM_WRITE 0x00000002 118 #define VM_EXEC 0x00000004 119 #define VM_SHARED 0x00000008 120 121 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 122 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 123 #define VM_MAYWRITE 0x00000020 124 #define VM_MAYEXEC 0x00000040 125 #define VM_MAYSHARE 0x00000080 126 127 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 128 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 129 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 130 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 131 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 132 133 #define VM_LOCKED 0x00002000 134 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 135 136 /* Used by sys_madvise() */ 137 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 138 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 139 140 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 141 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 142 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 143 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 144 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 145 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 146 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 147 #define VM_ARCH_2 0x02000000 148 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 149 150 #ifdef CONFIG_MEM_SOFT_DIRTY 151 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 152 #else 153 # define VM_SOFTDIRTY 0 154 #endif 155 156 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 157 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 158 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 159 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 160 161 #if defined(CONFIG_X86) 162 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 163 #elif defined(CONFIG_PPC) 164 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 165 #elif defined(CONFIG_PARISC) 166 # define VM_GROWSUP VM_ARCH_1 167 #elif defined(CONFIG_METAG) 168 # define VM_GROWSUP VM_ARCH_1 169 #elif defined(CONFIG_IA64) 170 # define VM_GROWSUP VM_ARCH_1 171 #elif !defined(CONFIG_MMU) 172 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 173 #endif 174 175 #if defined(CONFIG_X86) 176 /* MPX specific bounds table or bounds directory */ 177 # define VM_MPX VM_ARCH_2 178 #endif 179 180 #ifndef VM_GROWSUP 181 # define VM_GROWSUP VM_NONE 182 #endif 183 184 /* Bits set in the VMA until the stack is in its final location */ 185 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 186 187 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 188 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 189 #endif 190 191 #ifdef CONFIG_STACK_GROWSUP 192 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 193 #else 194 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 195 #endif 196 197 /* 198 * Special vmas that are non-mergable, non-mlock()able. 199 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 200 */ 201 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 202 203 /* This mask defines which mm->def_flags a process can inherit its parent */ 204 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 205 206 /* This mask is used to clear all the VMA flags used by mlock */ 207 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 208 209 /* 210 * mapping from the currently active vm_flags protection bits (the 211 * low four bits) to a page protection mask.. 212 */ 213 extern pgprot_t protection_map[16]; 214 215 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 216 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 217 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 218 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 219 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 220 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 221 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 222 223 /* 224 * vm_fault is filled by the the pagefault handler and passed to the vma's 225 * ->fault function. The vma's ->fault is responsible for returning a bitmask 226 * of VM_FAULT_xxx flags that give details about how the fault was handled. 227 * 228 * pgoff should be used in favour of virtual_address, if possible. 229 */ 230 struct vm_fault { 231 unsigned int flags; /* FAULT_FLAG_xxx flags */ 232 pgoff_t pgoff; /* Logical page offset based on vma */ 233 void __user *virtual_address; /* Faulting virtual address */ 234 235 struct page *cow_page; /* Handler may choose to COW */ 236 struct page *page; /* ->fault handlers should return a 237 * page here, unless VM_FAULT_NOPAGE 238 * is set (which is also implied by 239 * VM_FAULT_ERROR). 240 */ 241 /* for ->map_pages() only */ 242 pgoff_t max_pgoff; /* map pages for offset from pgoff till 243 * max_pgoff inclusive */ 244 pte_t *pte; /* pte entry associated with ->pgoff */ 245 }; 246 247 /* 248 * These are the virtual MM functions - opening of an area, closing and 249 * unmapping it (needed to keep files on disk up-to-date etc), pointer 250 * to the functions called when a no-page or a wp-page exception occurs. 251 */ 252 struct vm_operations_struct { 253 void (*open)(struct vm_area_struct * area); 254 void (*close)(struct vm_area_struct * area); 255 int (*mremap)(struct vm_area_struct * area); 256 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 257 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 258 pmd_t *, unsigned int flags); 259 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 260 261 /* notification that a previously read-only page is about to become 262 * writable, if an error is returned it will cause a SIGBUS */ 263 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 264 265 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 266 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 267 268 /* called by access_process_vm when get_user_pages() fails, typically 269 * for use by special VMAs that can switch between memory and hardware 270 */ 271 int (*access)(struct vm_area_struct *vma, unsigned long addr, 272 void *buf, int len, int write); 273 274 /* Called by the /proc/PID/maps code to ask the vma whether it 275 * has a special name. Returning non-NULL will also cause this 276 * vma to be dumped unconditionally. */ 277 const char *(*name)(struct vm_area_struct *vma); 278 279 #ifdef CONFIG_NUMA 280 /* 281 * set_policy() op must add a reference to any non-NULL @new mempolicy 282 * to hold the policy upon return. Caller should pass NULL @new to 283 * remove a policy and fall back to surrounding context--i.e. do not 284 * install a MPOL_DEFAULT policy, nor the task or system default 285 * mempolicy. 286 */ 287 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 288 289 /* 290 * get_policy() op must add reference [mpol_get()] to any policy at 291 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 292 * in mm/mempolicy.c will do this automatically. 293 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 294 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 295 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 296 * must return NULL--i.e., do not "fallback" to task or system default 297 * policy. 298 */ 299 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 300 unsigned long addr); 301 #endif 302 /* 303 * Called by vm_normal_page() for special PTEs to find the 304 * page for @addr. This is useful if the default behavior 305 * (using pte_page()) would not find the correct page. 306 */ 307 struct page *(*find_special_page)(struct vm_area_struct *vma, 308 unsigned long addr); 309 }; 310 311 struct mmu_gather; 312 struct inode; 313 314 #define page_private(page) ((page)->private) 315 #define set_page_private(page, v) ((page)->private = (v)) 316 317 /* 318 * FIXME: take this include out, include page-flags.h in 319 * files which need it (119 of them) 320 */ 321 #include <linux/page-flags.h> 322 #include <linux/huge_mm.h> 323 324 /* 325 * Methods to modify the page usage count. 326 * 327 * What counts for a page usage: 328 * - cache mapping (page->mapping) 329 * - private data (page->private) 330 * - page mapped in a task's page tables, each mapping 331 * is counted separately 332 * 333 * Also, many kernel routines increase the page count before a critical 334 * routine so they can be sure the page doesn't go away from under them. 335 */ 336 337 /* 338 * Drop a ref, return true if the refcount fell to zero (the page has no users) 339 */ 340 static inline int put_page_testzero(struct page *page) 341 { 342 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 343 return atomic_dec_and_test(&page->_count); 344 } 345 346 /* 347 * Try to grab a ref unless the page has a refcount of zero, return false if 348 * that is the case. 349 * This can be called when MMU is off so it must not access 350 * any of the virtual mappings. 351 */ 352 static inline int get_page_unless_zero(struct page *page) 353 { 354 return atomic_inc_not_zero(&page->_count); 355 } 356 357 extern int page_is_ram(unsigned long pfn); 358 359 enum { 360 REGION_INTERSECTS, 361 REGION_DISJOINT, 362 REGION_MIXED, 363 }; 364 365 int region_intersects(resource_size_t offset, size_t size, const char *type); 366 367 /* Support for virtually mapped pages */ 368 struct page *vmalloc_to_page(const void *addr); 369 unsigned long vmalloc_to_pfn(const void *addr); 370 371 /* 372 * Determine if an address is within the vmalloc range 373 * 374 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 375 * is no special casing required. 376 */ 377 static inline int is_vmalloc_addr(const void *x) 378 { 379 #ifdef CONFIG_MMU 380 unsigned long addr = (unsigned long)x; 381 382 return addr >= VMALLOC_START && addr < VMALLOC_END; 383 #else 384 return 0; 385 #endif 386 } 387 #ifdef CONFIG_MMU 388 extern int is_vmalloc_or_module_addr(const void *x); 389 #else 390 static inline int is_vmalloc_or_module_addr(const void *x) 391 { 392 return 0; 393 } 394 #endif 395 396 extern void kvfree(const void *addr); 397 398 static inline void compound_lock(struct page *page) 399 { 400 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 401 VM_BUG_ON_PAGE(PageSlab(page), page); 402 bit_spin_lock(PG_compound_lock, &page->flags); 403 #endif 404 } 405 406 static inline void compound_unlock(struct page *page) 407 { 408 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 409 VM_BUG_ON_PAGE(PageSlab(page), page); 410 bit_spin_unlock(PG_compound_lock, &page->flags); 411 #endif 412 } 413 414 static inline unsigned long compound_lock_irqsave(struct page *page) 415 { 416 unsigned long uninitialized_var(flags); 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 local_irq_save(flags); 419 compound_lock(page); 420 #endif 421 return flags; 422 } 423 424 static inline void compound_unlock_irqrestore(struct page *page, 425 unsigned long flags) 426 { 427 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 428 compound_unlock(page); 429 local_irq_restore(flags); 430 #endif 431 } 432 433 /* 434 * The atomic page->_mapcount, starts from -1: so that transitions 435 * both from it and to it can be tracked, using atomic_inc_and_test 436 * and atomic_add_negative(-1). 437 */ 438 static inline void page_mapcount_reset(struct page *page) 439 { 440 atomic_set(&(page)->_mapcount, -1); 441 } 442 443 static inline int page_mapcount(struct page *page) 444 { 445 VM_BUG_ON_PAGE(PageSlab(page), page); 446 return atomic_read(&page->_mapcount) + 1; 447 } 448 449 static inline int page_count(struct page *page) 450 { 451 return atomic_read(&compound_head(page)->_count); 452 } 453 454 static inline bool __compound_tail_refcounted(struct page *page) 455 { 456 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 457 } 458 459 /* 460 * This takes a head page as parameter and tells if the 461 * tail page reference counting can be skipped. 462 * 463 * For this to be safe, PageSlab and PageHeadHuge must remain true on 464 * any given page where they return true here, until all tail pins 465 * have been released. 466 */ 467 static inline bool compound_tail_refcounted(struct page *page) 468 { 469 VM_BUG_ON_PAGE(!PageHead(page), page); 470 return __compound_tail_refcounted(page); 471 } 472 473 static inline void get_huge_page_tail(struct page *page) 474 { 475 /* 476 * __split_huge_page_refcount() cannot run from under us. 477 */ 478 VM_BUG_ON_PAGE(!PageTail(page), page); 479 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 480 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 481 if (compound_tail_refcounted(compound_head(page))) 482 atomic_inc(&page->_mapcount); 483 } 484 485 extern bool __get_page_tail(struct page *page); 486 487 static inline void get_page(struct page *page) 488 { 489 if (unlikely(PageTail(page))) 490 if (likely(__get_page_tail(page))) 491 return; 492 /* 493 * Getting a normal page or the head of a compound page 494 * requires to already have an elevated page->_count. 495 */ 496 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 497 atomic_inc(&page->_count); 498 } 499 500 static inline struct page *virt_to_head_page(const void *x) 501 { 502 struct page *page = virt_to_page(x); 503 504 return compound_head(page); 505 } 506 507 /* 508 * Setup the page count before being freed into the page allocator for 509 * the first time (boot or memory hotplug) 510 */ 511 static inline void init_page_count(struct page *page) 512 { 513 atomic_set(&page->_count, 1); 514 } 515 516 void put_page(struct page *page); 517 void put_pages_list(struct list_head *pages); 518 519 void split_page(struct page *page, unsigned int order); 520 int split_free_page(struct page *page); 521 522 /* 523 * Compound pages have a destructor function. Provide a 524 * prototype for that function and accessor functions. 525 * These are _only_ valid on the head of a compound page. 526 */ 527 typedef void compound_page_dtor(struct page *); 528 529 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 530 enum compound_dtor_id { 531 NULL_COMPOUND_DTOR, 532 COMPOUND_PAGE_DTOR, 533 #ifdef CONFIG_HUGETLB_PAGE 534 HUGETLB_PAGE_DTOR, 535 #endif 536 NR_COMPOUND_DTORS, 537 }; 538 extern compound_page_dtor * const compound_page_dtors[]; 539 540 static inline void set_compound_page_dtor(struct page *page, 541 enum compound_dtor_id compound_dtor) 542 { 543 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 544 page[1].compound_dtor = compound_dtor; 545 } 546 547 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 548 { 549 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 550 return compound_page_dtors[page[1].compound_dtor]; 551 } 552 553 static inline unsigned int compound_order(struct page *page) 554 { 555 if (!PageHead(page)) 556 return 0; 557 return page[1].compound_order; 558 } 559 560 static inline void set_compound_order(struct page *page, unsigned int order) 561 { 562 page[1].compound_order = order; 563 } 564 565 #ifdef CONFIG_MMU 566 /* 567 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 568 * servicing faults for write access. In the normal case, do always want 569 * pte_mkwrite. But get_user_pages can cause write faults for mappings 570 * that do not have writing enabled, when used by access_process_vm. 571 */ 572 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 573 { 574 if (likely(vma->vm_flags & VM_WRITE)) 575 pte = pte_mkwrite(pte); 576 return pte; 577 } 578 579 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 580 struct page *page, pte_t *pte, bool write, bool anon); 581 #endif 582 583 /* 584 * Multiple processes may "see" the same page. E.g. for untouched 585 * mappings of /dev/null, all processes see the same page full of 586 * zeroes, and text pages of executables and shared libraries have 587 * only one copy in memory, at most, normally. 588 * 589 * For the non-reserved pages, page_count(page) denotes a reference count. 590 * page_count() == 0 means the page is free. page->lru is then used for 591 * freelist management in the buddy allocator. 592 * page_count() > 0 means the page has been allocated. 593 * 594 * Pages are allocated by the slab allocator in order to provide memory 595 * to kmalloc and kmem_cache_alloc. In this case, the management of the 596 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 597 * unless a particular usage is carefully commented. (the responsibility of 598 * freeing the kmalloc memory is the caller's, of course). 599 * 600 * A page may be used by anyone else who does a __get_free_page(). 601 * In this case, page_count still tracks the references, and should only 602 * be used through the normal accessor functions. The top bits of page->flags 603 * and page->virtual store page management information, but all other fields 604 * are unused and could be used privately, carefully. The management of this 605 * page is the responsibility of the one who allocated it, and those who have 606 * subsequently been given references to it. 607 * 608 * The other pages (we may call them "pagecache pages") are completely 609 * managed by the Linux memory manager: I/O, buffers, swapping etc. 610 * The following discussion applies only to them. 611 * 612 * A pagecache page contains an opaque `private' member, which belongs to the 613 * page's address_space. Usually, this is the address of a circular list of 614 * the page's disk buffers. PG_private must be set to tell the VM to call 615 * into the filesystem to release these pages. 616 * 617 * A page may belong to an inode's memory mapping. In this case, page->mapping 618 * is the pointer to the inode, and page->index is the file offset of the page, 619 * in units of PAGE_CACHE_SIZE. 620 * 621 * If pagecache pages are not associated with an inode, they are said to be 622 * anonymous pages. These may become associated with the swapcache, and in that 623 * case PG_swapcache is set, and page->private is an offset into the swapcache. 624 * 625 * In either case (swapcache or inode backed), the pagecache itself holds one 626 * reference to the page. Setting PG_private should also increment the 627 * refcount. The each user mapping also has a reference to the page. 628 * 629 * The pagecache pages are stored in a per-mapping radix tree, which is 630 * rooted at mapping->page_tree, and indexed by offset. 631 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 632 * lists, we instead now tag pages as dirty/writeback in the radix tree. 633 * 634 * All pagecache pages may be subject to I/O: 635 * - inode pages may need to be read from disk, 636 * - inode pages which have been modified and are MAP_SHARED may need 637 * to be written back to the inode on disk, 638 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 639 * modified may need to be swapped out to swap space and (later) to be read 640 * back into memory. 641 */ 642 643 /* 644 * The zone field is never updated after free_area_init_core() 645 * sets it, so none of the operations on it need to be atomic. 646 */ 647 648 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 649 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 650 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 651 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 652 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 653 654 /* 655 * Define the bit shifts to access each section. For non-existent 656 * sections we define the shift as 0; that plus a 0 mask ensures 657 * the compiler will optimise away reference to them. 658 */ 659 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 660 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 661 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 662 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 663 664 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 665 #ifdef NODE_NOT_IN_PAGE_FLAGS 666 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 667 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 668 SECTIONS_PGOFF : ZONES_PGOFF) 669 #else 670 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 671 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 672 NODES_PGOFF : ZONES_PGOFF) 673 #endif 674 675 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 676 677 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 678 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 679 #endif 680 681 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 682 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 683 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 684 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 685 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 686 687 static inline enum zone_type page_zonenum(const struct page *page) 688 { 689 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 690 } 691 692 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 693 #define SECTION_IN_PAGE_FLAGS 694 #endif 695 696 /* 697 * The identification function is mainly used by the buddy allocator for 698 * determining if two pages could be buddies. We are not really identifying 699 * the zone since we could be using the section number id if we do not have 700 * node id available in page flags. 701 * We only guarantee that it will return the same value for two combinable 702 * pages in a zone. 703 */ 704 static inline int page_zone_id(struct page *page) 705 { 706 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 707 } 708 709 static inline int zone_to_nid(struct zone *zone) 710 { 711 #ifdef CONFIG_NUMA 712 return zone->node; 713 #else 714 return 0; 715 #endif 716 } 717 718 #ifdef NODE_NOT_IN_PAGE_FLAGS 719 extern int page_to_nid(const struct page *page); 720 #else 721 static inline int page_to_nid(const struct page *page) 722 { 723 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 724 } 725 #endif 726 727 #ifdef CONFIG_NUMA_BALANCING 728 static inline int cpu_pid_to_cpupid(int cpu, int pid) 729 { 730 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 731 } 732 733 static inline int cpupid_to_pid(int cpupid) 734 { 735 return cpupid & LAST__PID_MASK; 736 } 737 738 static inline int cpupid_to_cpu(int cpupid) 739 { 740 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 741 } 742 743 static inline int cpupid_to_nid(int cpupid) 744 { 745 return cpu_to_node(cpupid_to_cpu(cpupid)); 746 } 747 748 static inline bool cpupid_pid_unset(int cpupid) 749 { 750 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 751 } 752 753 static inline bool cpupid_cpu_unset(int cpupid) 754 { 755 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 756 } 757 758 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 759 { 760 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 761 } 762 763 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 764 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 765 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 766 { 767 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 768 } 769 770 static inline int page_cpupid_last(struct page *page) 771 { 772 return page->_last_cpupid; 773 } 774 static inline void page_cpupid_reset_last(struct page *page) 775 { 776 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 777 } 778 #else 779 static inline int page_cpupid_last(struct page *page) 780 { 781 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 782 } 783 784 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 785 786 static inline void page_cpupid_reset_last(struct page *page) 787 { 788 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 789 790 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 791 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 792 } 793 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 794 #else /* !CONFIG_NUMA_BALANCING */ 795 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 796 { 797 return page_to_nid(page); /* XXX */ 798 } 799 800 static inline int page_cpupid_last(struct page *page) 801 { 802 return page_to_nid(page); /* XXX */ 803 } 804 805 static inline int cpupid_to_nid(int cpupid) 806 { 807 return -1; 808 } 809 810 static inline int cpupid_to_pid(int cpupid) 811 { 812 return -1; 813 } 814 815 static inline int cpupid_to_cpu(int cpupid) 816 { 817 return -1; 818 } 819 820 static inline int cpu_pid_to_cpupid(int nid, int pid) 821 { 822 return -1; 823 } 824 825 static inline bool cpupid_pid_unset(int cpupid) 826 { 827 return 1; 828 } 829 830 static inline void page_cpupid_reset_last(struct page *page) 831 { 832 } 833 834 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 835 { 836 return false; 837 } 838 #endif /* CONFIG_NUMA_BALANCING */ 839 840 static inline struct zone *page_zone(const struct page *page) 841 { 842 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 843 } 844 845 #ifdef SECTION_IN_PAGE_FLAGS 846 static inline void set_page_section(struct page *page, unsigned long section) 847 { 848 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 849 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 850 } 851 852 static inline unsigned long page_to_section(const struct page *page) 853 { 854 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 855 } 856 #endif 857 858 static inline void set_page_zone(struct page *page, enum zone_type zone) 859 { 860 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 861 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 862 } 863 864 static inline void set_page_node(struct page *page, unsigned long node) 865 { 866 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 867 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 868 } 869 870 static inline void set_page_links(struct page *page, enum zone_type zone, 871 unsigned long node, unsigned long pfn) 872 { 873 set_page_zone(page, zone); 874 set_page_node(page, node); 875 #ifdef SECTION_IN_PAGE_FLAGS 876 set_page_section(page, pfn_to_section_nr(pfn)); 877 #endif 878 } 879 880 #ifdef CONFIG_MEMCG 881 static inline struct mem_cgroup *page_memcg(struct page *page) 882 { 883 return page->mem_cgroup; 884 } 885 886 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 887 { 888 page->mem_cgroup = memcg; 889 } 890 #else 891 static inline struct mem_cgroup *page_memcg(struct page *page) 892 { 893 return NULL; 894 } 895 896 static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg) 897 { 898 } 899 #endif 900 901 /* 902 * Some inline functions in vmstat.h depend on page_zone() 903 */ 904 #include <linux/vmstat.h> 905 906 static __always_inline void *lowmem_page_address(const struct page *page) 907 { 908 return __va(PFN_PHYS(page_to_pfn(page))); 909 } 910 911 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 912 #define HASHED_PAGE_VIRTUAL 913 #endif 914 915 #if defined(WANT_PAGE_VIRTUAL) 916 static inline void *page_address(const struct page *page) 917 { 918 return page->virtual; 919 } 920 static inline void set_page_address(struct page *page, void *address) 921 { 922 page->virtual = address; 923 } 924 #define page_address_init() do { } while(0) 925 #endif 926 927 #if defined(HASHED_PAGE_VIRTUAL) 928 void *page_address(const struct page *page); 929 void set_page_address(struct page *page, void *virtual); 930 void page_address_init(void); 931 #endif 932 933 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 934 #define page_address(page) lowmem_page_address(page) 935 #define set_page_address(page, address) do { } while(0) 936 #define page_address_init() do { } while(0) 937 #endif 938 939 extern void *page_rmapping(struct page *page); 940 extern struct anon_vma *page_anon_vma(struct page *page); 941 extern struct address_space *page_mapping(struct page *page); 942 943 extern struct address_space *__page_file_mapping(struct page *); 944 945 static inline 946 struct address_space *page_file_mapping(struct page *page) 947 { 948 if (unlikely(PageSwapCache(page))) 949 return __page_file_mapping(page); 950 951 return page->mapping; 952 } 953 954 /* 955 * Return the pagecache index of the passed page. Regular pagecache pages 956 * use ->index whereas swapcache pages use ->private 957 */ 958 static inline pgoff_t page_index(struct page *page) 959 { 960 if (unlikely(PageSwapCache(page))) 961 return page_private(page); 962 return page->index; 963 } 964 965 extern pgoff_t __page_file_index(struct page *page); 966 967 /* 968 * Return the file index of the page. Regular pagecache pages use ->index 969 * whereas swapcache pages use swp_offset(->private) 970 */ 971 static inline pgoff_t page_file_index(struct page *page) 972 { 973 if (unlikely(PageSwapCache(page))) 974 return __page_file_index(page); 975 976 return page->index; 977 } 978 979 /* 980 * Return true if this page is mapped into pagetables. 981 */ 982 static inline int page_mapped(struct page *page) 983 { 984 return atomic_read(&(page)->_mapcount) >= 0; 985 } 986 987 /* 988 * Return true only if the page has been allocated with 989 * ALLOC_NO_WATERMARKS and the low watermark was not 990 * met implying that the system is under some pressure. 991 */ 992 static inline bool page_is_pfmemalloc(struct page *page) 993 { 994 /* 995 * Page index cannot be this large so this must be 996 * a pfmemalloc page. 997 */ 998 return page->index == -1UL; 999 } 1000 1001 /* 1002 * Only to be called by the page allocator on a freshly allocated 1003 * page. 1004 */ 1005 static inline void set_page_pfmemalloc(struct page *page) 1006 { 1007 page->index = -1UL; 1008 } 1009 1010 static inline void clear_page_pfmemalloc(struct page *page) 1011 { 1012 page->index = 0; 1013 } 1014 1015 /* 1016 * Different kinds of faults, as returned by handle_mm_fault(). 1017 * Used to decide whether a process gets delivered SIGBUS or 1018 * just gets major/minor fault counters bumped up. 1019 */ 1020 1021 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1022 1023 #define VM_FAULT_OOM 0x0001 1024 #define VM_FAULT_SIGBUS 0x0002 1025 #define VM_FAULT_MAJOR 0x0004 1026 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1027 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1028 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1029 #define VM_FAULT_SIGSEGV 0x0040 1030 1031 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1032 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1033 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1034 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1035 1036 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1037 1038 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1039 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1040 VM_FAULT_FALLBACK) 1041 1042 /* Encode hstate index for a hwpoisoned large page */ 1043 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1044 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1045 1046 /* 1047 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1048 */ 1049 extern void pagefault_out_of_memory(void); 1050 1051 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1052 1053 /* 1054 * Flags passed to show_mem() and show_free_areas() to suppress output in 1055 * various contexts. 1056 */ 1057 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1058 1059 extern void show_free_areas(unsigned int flags); 1060 extern bool skip_free_areas_node(unsigned int flags, int nid); 1061 1062 int shmem_zero_setup(struct vm_area_struct *); 1063 #ifdef CONFIG_SHMEM 1064 bool shmem_mapping(struct address_space *mapping); 1065 #else 1066 static inline bool shmem_mapping(struct address_space *mapping) 1067 { 1068 return false; 1069 } 1070 #endif 1071 1072 extern int can_do_mlock(void); 1073 extern int user_shm_lock(size_t, struct user_struct *); 1074 extern void user_shm_unlock(size_t, struct user_struct *); 1075 1076 /* 1077 * Parameter block passed down to zap_pte_range in exceptional cases. 1078 */ 1079 struct zap_details { 1080 struct address_space *check_mapping; /* Check page->mapping if set */ 1081 pgoff_t first_index; /* Lowest page->index to unmap */ 1082 pgoff_t last_index; /* Highest page->index to unmap */ 1083 }; 1084 1085 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1086 pte_t pte); 1087 1088 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1089 unsigned long size); 1090 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1091 unsigned long size, struct zap_details *); 1092 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1093 unsigned long start, unsigned long end); 1094 1095 /** 1096 * mm_walk - callbacks for walk_page_range 1097 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1098 * this handler is required to be able to handle 1099 * pmd_trans_huge() pmds. They may simply choose to 1100 * split_huge_page() instead of handling it explicitly. 1101 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1102 * @pte_hole: if set, called for each hole at all levels 1103 * @hugetlb_entry: if set, called for each hugetlb entry 1104 * @test_walk: caller specific callback function to determine whether 1105 * we walk over the current vma or not. A positive returned 1106 * value means "do page table walk over the current vma," 1107 * and a negative one means "abort current page table walk 1108 * right now." 0 means "skip the current vma." 1109 * @mm: mm_struct representing the target process of page table walk 1110 * @vma: vma currently walked (NULL if walking outside vmas) 1111 * @private: private data for callbacks' usage 1112 * 1113 * (see the comment on walk_page_range() for more details) 1114 */ 1115 struct mm_walk { 1116 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1117 unsigned long next, struct mm_walk *walk); 1118 int (*pte_entry)(pte_t *pte, unsigned long addr, 1119 unsigned long next, struct mm_walk *walk); 1120 int (*pte_hole)(unsigned long addr, unsigned long next, 1121 struct mm_walk *walk); 1122 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1123 unsigned long addr, unsigned long next, 1124 struct mm_walk *walk); 1125 int (*test_walk)(unsigned long addr, unsigned long next, 1126 struct mm_walk *walk); 1127 struct mm_struct *mm; 1128 struct vm_area_struct *vma; 1129 void *private; 1130 }; 1131 1132 int walk_page_range(unsigned long addr, unsigned long end, 1133 struct mm_walk *walk); 1134 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1135 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1136 unsigned long end, unsigned long floor, unsigned long ceiling); 1137 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1138 struct vm_area_struct *vma); 1139 void unmap_mapping_range(struct address_space *mapping, 1140 loff_t const holebegin, loff_t const holelen, int even_cows); 1141 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1142 unsigned long *pfn); 1143 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1144 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1145 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1146 void *buf, int len, int write); 1147 1148 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1149 loff_t const holebegin, loff_t const holelen) 1150 { 1151 unmap_mapping_range(mapping, holebegin, holelen, 0); 1152 } 1153 1154 extern void truncate_pagecache(struct inode *inode, loff_t new); 1155 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1156 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1157 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1158 int truncate_inode_page(struct address_space *mapping, struct page *page); 1159 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1160 int invalidate_inode_page(struct page *page); 1161 1162 #ifdef CONFIG_MMU 1163 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1164 unsigned long address, unsigned int flags); 1165 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1166 unsigned long address, unsigned int fault_flags); 1167 #else 1168 static inline int handle_mm_fault(struct mm_struct *mm, 1169 struct vm_area_struct *vma, unsigned long address, 1170 unsigned int flags) 1171 { 1172 /* should never happen if there's no MMU */ 1173 BUG(); 1174 return VM_FAULT_SIGBUS; 1175 } 1176 static inline int fixup_user_fault(struct task_struct *tsk, 1177 struct mm_struct *mm, unsigned long address, 1178 unsigned int fault_flags) 1179 { 1180 /* should never happen if there's no MMU */ 1181 BUG(); 1182 return -EFAULT; 1183 } 1184 #endif 1185 1186 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1187 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1188 void *buf, int len, int write); 1189 1190 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1191 unsigned long start, unsigned long nr_pages, 1192 unsigned int foll_flags, struct page **pages, 1193 struct vm_area_struct **vmas, int *nonblocking); 1194 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1195 unsigned long start, unsigned long nr_pages, 1196 int write, int force, struct page **pages, 1197 struct vm_area_struct **vmas); 1198 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1199 unsigned long start, unsigned long nr_pages, 1200 int write, int force, struct page **pages, 1201 int *locked); 1202 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1203 unsigned long start, unsigned long nr_pages, 1204 int write, int force, struct page **pages, 1205 unsigned int gup_flags); 1206 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1207 unsigned long start, unsigned long nr_pages, 1208 int write, int force, struct page **pages); 1209 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1210 struct page **pages); 1211 1212 /* Container for pinned pfns / pages */ 1213 struct frame_vector { 1214 unsigned int nr_allocated; /* Number of frames we have space for */ 1215 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1216 bool got_ref; /* Did we pin pages by getting page ref? */ 1217 bool is_pfns; /* Does array contain pages or pfns? */ 1218 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1219 * pfns_vector_pages() or pfns_vector_pfns() 1220 * for access */ 1221 }; 1222 1223 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1224 void frame_vector_destroy(struct frame_vector *vec); 1225 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1226 bool write, bool force, struct frame_vector *vec); 1227 void put_vaddr_frames(struct frame_vector *vec); 1228 int frame_vector_to_pages(struct frame_vector *vec); 1229 void frame_vector_to_pfns(struct frame_vector *vec); 1230 1231 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1232 { 1233 return vec->nr_frames; 1234 } 1235 1236 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1237 { 1238 if (vec->is_pfns) { 1239 int err = frame_vector_to_pages(vec); 1240 1241 if (err) 1242 return ERR_PTR(err); 1243 } 1244 return (struct page **)(vec->ptrs); 1245 } 1246 1247 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1248 { 1249 if (!vec->is_pfns) 1250 frame_vector_to_pfns(vec); 1251 return (unsigned long *)(vec->ptrs); 1252 } 1253 1254 struct kvec; 1255 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1256 struct page **pages); 1257 int get_kernel_page(unsigned long start, int write, struct page **pages); 1258 struct page *get_dump_page(unsigned long addr); 1259 1260 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1261 extern void do_invalidatepage(struct page *page, unsigned int offset, 1262 unsigned int length); 1263 1264 int __set_page_dirty_nobuffers(struct page *page); 1265 int __set_page_dirty_no_writeback(struct page *page); 1266 int redirty_page_for_writepage(struct writeback_control *wbc, 1267 struct page *page); 1268 void account_page_dirtied(struct page *page, struct address_space *mapping, 1269 struct mem_cgroup *memcg); 1270 void account_page_cleaned(struct page *page, struct address_space *mapping, 1271 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1272 int set_page_dirty(struct page *page); 1273 int set_page_dirty_lock(struct page *page); 1274 void cancel_dirty_page(struct page *page); 1275 int clear_page_dirty_for_io(struct page *page); 1276 1277 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1278 1279 /* Is the vma a continuation of the stack vma above it? */ 1280 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1281 { 1282 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1283 } 1284 1285 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1286 { 1287 return !vma->vm_ops; 1288 } 1289 1290 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1291 unsigned long addr) 1292 { 1293 return (vma->vm_flags & VM_GROWSDOWN) && 1294 (vma->vm_start == addr) && 1295 !vma_growsdown(vma->vm_prev, addr); 1296 } 1297 1298 /* Is the vma a continuation of the stack vma below it? */ 1299 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1300 { 1301 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1302 } 1303 1304 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1305 unsigned long addr) 1306 { 1307 return (vma->vm_flags & VM_GROWSUP) && 1308 (vma->vm_end == addr) && 1309 !vma_growsup(vma->vm_next, addr); 1310 } 1311 1312 extern struct task_struct *task_of_stack(struct task_struct *task, 1313 struct vm_area_struct *vma, bool in_group); 1314 1315 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1316 unsigned long old_addr, struct vm_area_struct *new_vma, 1317 unsigned long new_addr, unsigned long len, 1318 bool need_rmap_locks); 1319 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1320 unsigned long end, pgprot_t newprot, 1321 int dirty_accountable, int prot_numa); 1322 extern int mprotect_fixup(struct vm_area_struct *vma, 1323 struct vm_area_struct **pprev, unsigned long start, 1324 unsigned long end, unsigned long newflags); 1325 1326 /* 1327 * doesn't attempt to fault and will return short. 1328 */ 1329 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1330 struct page **pages); 1331 /* 1332 * per-process(per-mm_struct) statistics. 1333 */ 1334 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1335 { 1336 long val = atomic_long_read(&mm->rss_stat.count[member]); 1337 1338 #ifdef SPLIT_RSS_COUNTING 1339 /* 1340 * counter is updated in asynchronous manner and may go to minus. 1341 * But it's never be expected number for users. 1342 */ 1343 if (val < 0) 1344 val = 0; 1345 #endif 1346 return (unsigned long)val; 1347 } 1348 1349 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1350 { 1351 atomic_long_add(value, &mm->rss_stat.count[member]); 1352 } 1353 1354 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1355 { 1356 atomic_long_inc(&mm->rss_stat.count[member]); 1357 } 1358 1359 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1360 { 1361 atomic_long_dec(&mm->rss_stat.count[member]); 1362 } 1363 1364 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1365 { 1366 return get_mm_counter(mm, MM_FILEPAGES) + 1367 get_mm_counter(mm, MM_ANONPAGES); 1368 } 1369 1370 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1371 { 1372 return max(mm->hiwater_rss, get_mm_rss(mm)); 1373 } 1374 1375 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1376 { 1377 return max(mm->hiwater_vm, mm->total_vm); 1378 } 1379 1380 static inline void update_hiwater_rss(struct mm_struct *mm) 1381 { 1382 unsigned long _rss = get_mm_rss(mm); 1383 1384 if ((mm)->hiwater_rss < _rss) 1385 (mm)->hiwater_rss = _rss; 1386 } 1387 1388 static inline void update_hiwater_vm(struct mm_struct *mm) 1389 { 1390 if (mm->hiwater_vm < mm->total_vm) 1391 mm->hiwater_vm = mm->total_vm; 1392 } 1393 1394 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1395 { 1396 mm->hiwater_rss = get_mm_rss(mm); 1397 } 1398 1399 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1400 struct mm_struct *mm) 1401 { 1402 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1403 1404 if (*maxrss < hiwater_rss) 1405 *maxrss = hiwater_rss; 1406 } 1407 1408 #if defined(SPLIT_RSS_COUNTING) 1409 void sync_mm_rss(struct mm_struct *mm); 1410 #else 1411 static inline void sync_mm_rss(struct mm_struct *mm) 1412 { 1413 } 1414 #endif 1415 1416 int vma_wants_writenotify(struct vm_area_struct *vma); 1417 1418 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1419 spinlock_t **ptl); 1420 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1421 spinlock_t **ptl) 1422 { 1423 pte_t *ptep; 1424 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1425 return ptep; 1426 } 1427 1428 #ifdef __PAGETABLE_PUD_FOLDED 1429 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1430 unsigned long address) 1431 { 1432 return 0; 1433 } 1434 #else 1435 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1436 #endif 1437 1438 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1439 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1440 unsigned long address) 1441 { 1442 return 0; 1443 } 1444 1445 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1446 1447 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1448 { 1449 return 0; 1450 } 1451 1452 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1453 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1454 1455 #else 1456 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1457 1458 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1459 { 1460 atomic_long_set(&mm->nr_pmds, 0); 1461 } 1462 1463 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1464 { 1465 return atomic_long_read(&mm->nr_pmds); 1466 } 1467 1468 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1469 { 1470 atomic_long_inc(&mm->nr_pmds); 1471 } 1472 1473 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1474 { 1475 atomic_long_dec(&mm->nr_pmds); 1476 } 1477 #endif 1478 1479 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1480 pmd_t *pmd, unsigned long address); 1481 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1482 1483 /* 1484 * The following ifdef needed to get the 4level-fixup.h header to work. 1485 * Remove it when 4level-fixup.h has been removed. 1486 */ 1487 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1488 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1489 { 1490 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1491 NULL: pud_offset(pgd, address); 1492 } 1493 1494 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1495 { 1496 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1497 NULL: pmd_offset(pud, address); 1498 } 1499 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1500 1501 #if USE_SPLIT_PTE_PTLOCKS 1502 #if ALLOC_SPLIT_PTLOCKS 1503 void __init ptlock_cache_init(void); 1504 extern bool ptlock_alloc(struct page *page); 1505 extern void ptlock_free(struct page *page); 1506 1507 static inline spinlock_t *ptlock_ptr(struct page *page) 1508 { 1509 return page->ptl; 1510 } 1511 #else /* ALLOC_SPLIT_PTLOCKS */ 1512 static inline void ptlock_cache_init(void) 1513 { 1514 } 1515 1516 static inline bool ptlock_alloc(struct page *page) 1517 { 1518 return true; 1519 } 1520 1521 static inline void ptlock_free(struct page *page) 1522 { 1523 } 1524 1525 static inline spinlock_t *ptlock_ptr(struct page *page) 1526 { 1527 return &page->ptl; 1528 } 1529 #endif /* ALLOC_SPLIT_PTLOCKS */ 1530 1531 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1532 { 1533 return ptlock_ptr(pmd_page(*pmd)); 1534 } 1535 1536 static inline bool ptlock_init(struct page *page) 1537 { 1538 /* 1539 * prep_new_page() initialize page->private (and therefore page->ptl) 1540 * with 0. Make sure nobody took it in use in between. 1541 * 1542 * It can happen if arch try to use slab for page table allocation: 1543 * slab code uses page->slab_cache, which share storage with page->ptl. 1544 */ 1545 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1546 if (!ptlock_alloc(page)) 1547 return false; 1548 spin_lock_init(ptlock_ptr(page)); 1549 return true; 1550 } 1551 1552 /* Reset page->mapping so free_pages_check won't complain. */ 1553 static inline void pte_lock_deinit(struct page *page) 1554 { 1555 page->mapping = NULL; 1556 ptlock_free(page); 1557 } 1558 1559 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1560 /* 1561 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1562 */ 1563 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1564 { 1565 return &mm->page_table_lock; 1566 } 1567 static inline void ptlock_cache_init(void) {} 1568 static inline bool ptlock_init(struct page *page) { return true; } 1569 static inline void pte_lock_deinit(struct page *page) {} 1570 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1571 1572 static inline void pgtable_init(void) 1573 { 1574 ptlock_cache_init(); 1575 pgtable_cache_init(); 1576 } 1577 1578 static inline bool pgtable_page_ctor(struct page *page) 1579 { 1580 if (!ptlock_init(page)) 1581 return false; 1582 inc_zone_page_state(page, NR_PAGETABLE); 1583 return true; 1584 } 1585 1586 static inline void pgtable_page_dtor(struct page *page) 1587 { 1588 pte_lock_deinit(page); 1589 dec_zone_page_state(page, NR_PAGETABLE); 1590 } 1591 1592 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1593 ({ \ 1594 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1595 pte_t *__pte = pte_offset_map(pmd, address); \ 1596 *(ptlp) = __ptl; \ 1597 spin_lock(__ptl); \ 1598 __pte; \ 1599 }) 1600 1601 #define pte_unmap_unlock(pte, ptl) do { \ 1602 spin_unlock(ptl); \ 1603 pte_unmap(pte); \ 1604 } while (0) 1605 1606 #define pte_alloc_map(mm, vma, pmd, address) \ 1607 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1608 pmd, address))? \ 1609 NULL: pte_offset_map(pmd, address)) 1610 1611 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1612 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1613 pmd, address))? \ 1614 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1615 1616 #define pte_alloc_kernel(pmd, address) \ 1617 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1618 NULL: pte_offset_kernel(pmd, address)) 1619 1620 #if USE_SPLIT_PMD_PTLOCKS 1621 1622 static struct page *pmd_to_page(pmd_t *pmd) 1623 { 1624 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1625 return virt_to_page((void *)((unsigned long) pmd & mask)); 1626 } 1627 1628 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1629 { 1630 return ptlock_ptr(pmd_to_page(pmd)); 1631 } 1632 1633 static inline bool pgtable_pmd_page_ctor(struct page *page) 1634 { 1635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1636 page->pmd_huge_pte = NULL; 1637 #endif 1638 return ptlock_init(page); 1639 } 1640 1641 static inline void pgtable_pmd_page_dtor(struct page *page) 1642 { 1643 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1644 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1645 #endif 1646 ptlock_free(page); 1647 } 1648 1649 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1650 1651 #else 1652 1653 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1654 { 1655 return &mm->page_table_lock; 1656 } 1657 1658 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1659 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1660 1661 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1662 1663 #endif 1664 1665 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1666 { 1667 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1668 spin_lock(ptl); 1669 return ptl; 1670 } 1671 1672 extern void free_area_init(unsigned long * zones_size); 1673 extern void free_area_init_node(int nid, unsigned long * zones_size, 1674 unsigned long zone_start_pfn, unsigned long *zholes_size); 1675 extern void free_initmem(void); 1676 1677 /* 1678 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1679 * into the buddy system. The freed pages will be poisoned with pattern 1680 * "poison" if it's within range [0, UCHAR_MAX]. 1681 * Return pages freed into the buddy system. 1682 */ 1683 extern unsigned long free_reserved_area(void *start, void *end, 1684 int poison, char *s); 1685 1686 #ifdef CONFIG_HIGHMEM 1687 /* 1688 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1689 * and totalram_pages. 1690 */ 1691 extern void free_highmem_page(struct page *page); 1692 #endif 1693 1694 extern void adjust_managed_page_count(struct page *page, long count); 1695 extern void mem_init_print_info(const char *str); 1696 1697 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1698 1699 /* Free the reserved page into the buddy system, so it gets managed. */ 1700 static inline void __free_reserved_page(struct page *page) 1701 { 1702 ClearPageReserved(page); 1703 init_page_count(page); 1704 __free_page(page); 1705 } 1706 1707 static inline void free_reserved_page(struct page *page) 1708 { 1709 __free_reserved_page(page); 1710 adjust_managed_page_count(page, 1); 1711 } 1712 1713 static inline void mark_page_reserved(struct page *page) 1714 { 1715 SetPageReserved(page); 1716 adjust_managed_page_count(page, -1); 1717 } 1718 1719 /* 1720 * Default method to free all the __init memory into the buddy system. 1721 * The freed pages will be poisoned with pattern "poison" if it's within 1722 * range [0, UCHAR_MAX]. 1723 * Return pages freed into the buddy system. 1724 */ 1725 static inline unsigned long free_initmem_default(int poison) 1726 { 1727 extern char __init_begin[], __init_end[]; 1728 1729 return free_reserved_area(&__init_begin, &__init_end, 1730 poison, "unused kernel"); 1731 } 1732 1733 static inline unsigned long get_num_physpages(void) 1734 { 1735 int nid; 1736 unsigned long phys_pages = 0; 1737 1738 for_each_online_node(nid) 1739 phys_pages += node_present_pages(nid); 1740 1741 return phys_pages; 1742 } 1743 1744 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1745 /* 1746 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1747 * zones, allocate the backing mem_map and account for memory holes in a more 1748 * architecture independent manner. This is a substitute for creating the 1749 * zone_sizes[] and zholes_size[] arrays and passing them to 1750 * free_area_init_node() 1751 * 1752 * An architecture is expected to register range of page frames backed by 1753 * physical memory with memblock_add[_node]() before calling 1754 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1755 * usage, an architecture is expected to do something like 1756 * 1757 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1758 * max_highmem_pfn}; 1759 * for_each_valid_physical_page_range() 1760 * memblock_add_node(base, size, nid) 1761 * free_area_init_nodes(max_zone_pfns); 1762 * 1763 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1764 * registered physical page range. Similarly 1765 * sparse_memory_present_with_active_regions() calls memory_present() for 1766 * each range when SPARSEMEM is enabled. 1767 * 1768 * See mm/page_alloc.c for more information on each function exposed by 1769 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1770 */ 1771 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1772 unsigned long node_map_pfn_alignment(void); 1773 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1774 unsigned long end_pfn); 1775 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1776 unsigned long end_pfn); 1777 extern void get_pfn_range_for_nid(unsigned int nid, 1778 unsigned long *start_pfn, unsigned long *end_pfn); 1779 extern unsigned long find_min_pfn_with_active_regions(void); 1780 extern void free_bootmem_with_active_regions(int nid, 1781 unsigned long max_low_pfn); 1782 extern void sparse_memory_present_with_active_regions(int nid); 1783 1784 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1785 1786 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1787 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1788 static inline int __early_pfn_to_nid(unsigned long pfn, 1789 struct mminit_pfnnid_cache *state) 1790 { 1791 return 0; 1792 } 1793 #else 1794 /* please see mm/page_alloc.c */ 1795 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1796 /* there is a per-arch backend function. */ 1797 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1798 struct mminit_pfnnid_cache *state); 1799 #endif 1800 1801 extern void set_dma_reserve(unsigned long new_dma_reserve); 1802 extern void memmap_init_zone(unsigned long, int, unsigned long, 1803 unsigned long, enum memmap_context); 1804 extern void setup_per_zone_wmarks(void); 1805 extern int __meminit init_per_zone_wmark_min(void); 1806 extern void mem_init(void); 1807 extern void __init mmap_init(void); 1808 extern void show_mem(unsigned int flags); 1809 extern void si_meminfo(struct sysinfo * val); 1810 extern void si_meminfo_node(struct sysinfo *val, int nid); 1811 1812 extern __printf(3, 4) 1813 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1814 const char *fmt, ...); 1815 1816 extern void setup_per_cpu_pageset(void); 1817 1818 extern void zone_pcp_update(struct zone *zone); 1819 extern void zone_pcp_reset(struct zone *zone); 1820 1821 /* page_alloc.c */ 1822 extern int min_free_kbytes; 1823 1824 /* nommu.c */ 1825 extern atomic_long_t mmap_pages_allocated; 1826 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1827 1828 /* interval_tree.c */ 1829 void vma_interval_tree_insert(struct vm_area_struct *node, 1830 struct rb_root *root); 1831 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1832 struct vm_area_struct *prev, 1833 struct rb_root *root); 1834 void vma_interval_tree_remove(struct vm_area_struct *node, 1835 struct rb_root *root); 1836 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1837 unsigned long start, unsigned long last); 1838 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1839 unsigned long start, unsigned long last); 1840 1841 #define vma_interval_tree_foreach(vma, root, start, last) \ 1842 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1843 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1844 1845 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1846 struct rb_root *root); 1847 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1848 struct rb_root *root); 1849 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1850 struct rb_root *root, unsigned long start, unsigned long last); 1851 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1852 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1853 #ifdef CONFIG_DEBUG_VM_RB 1854 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1855 #endif 1856 1857 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1858 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1859 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1860 1861 /* mmap.c */ 1862 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1863 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1864 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1865 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1866 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1867 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1868 struct mempolicy *, struct vm_userfaultfd_ctx); 1869 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1870 extern int split_vma(struct mm_struct *, 1871 struct vm_area_struct *, unsigned long addr, int new_below); 1872 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1873 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1874 struct rb_node **, struct rb_node *); 1875 extern void unlink_file_vma(struct vm_area_struct *); 1876 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1877 unsigned long addr, unsigned long len, pgoff_t pgoff, 1878 bool *need_rmap_locks); 1879 extern void exit_mmap(struct mm_struct *); 1880 1881 static inline int check_data_rlimit(unsigned long rlim, 1882 unsigned long new, 1883 unsigned long start, 1884 unsigned long end_data, 1885 unsigned long start_data) 1886 { 1887 if (rlim < RLIM_INFINITY) { 1888 if (((new - start) + (end_data - start_data)) > rlim) 1889 return -ENOSPC; 1890 } 1891 1892 return 0; 1893 } 1894 1895 extern int mm_take_all_locks(struct mm_struct *mm); 1896 extern void mm_drop_all_locks(struct mm_struct *mm); 1897 1898 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1899 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1900 1901 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1902 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1903 unsigned long addr, unsigned long len, 1904 unsigned long flags, 1905 const struct vm_special_mapping *spec); 1906 /* This is an obsolete alternative to _install_special_mapping. */ 1907 extern int install_special_mapping(struct mm_struct *mm, 1908 unsigned long addr, unsigned long len, 1909 unsigned long flags, struct page **pages); 1910 1911 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1912 1913 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1914 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1915 extern unsigned long do_mmap(struct file *file, unsigned long addr, 1916 unsigned long len, unsigned long prot, unsigned long flags, 1917 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1918 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1919 1920 static inline unsigned long 1921 do_mmap_pgoff(struct file *file, unsigned long addr, 1922 unsigned long len, unsigned long prot, unsigned long flags, 1923 unsigned long pgoff, unsigned long *populate) 1924 { 1925 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1926 } 1927 1928 #ifdef CONFIG_MMU 1929 extern int __mm_populate(unsigned long addr, unsigned long len, 1930 int ignore_errors); 1931 static inline void mm_populate(unsigned long addr, unsigned long len) 1932 { 1933 /* Ignore errors */ 1934 (void) __mm_populate(addr, len, 1); 1935 } 1936 #else 1937 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1938 #endif 1939 1940 /* These take the mm semaphore themselves */ 1941 extern unsigned long vm_brk(unsigned long, unsigned long); 1942 extern int vm_munmap(unsigned long, size_t); 1943 extern unsigned long vm_mmap(struct file *, unsigned long, 1944 unsigned long, unsigned long, 1945 unsigned long, unsigned long); 1946 1947 struct vm_unmapped_area_info { 1948 #define VM_UNMAPPED_AREA_TOPDOWN 1 1949 unsigned long flags; 1950 unsigned long length; 1951 unsigned long low_limit; 1952 unsigned long high_limit; 1953 unsigned long align_mask; 1954 unsigned long align_offset; 1955 }; 1956 1957 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1958 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1959 1960 /* 1961 * Search for an unmapped address range. 1962 * 1963 * We are looking for a range that: 1964 * - does not intersect with any VMA; 1965 * - is contained within the [low_limit, high_limit) interval; 1966 * - is at least the desired size. 1967 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1968 */ 1969 static inline unsigned long 1970 vm_unmapped_area(struct vm_unmapped_area_info *info) 1971 { 1972 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1973 return unmapped_area_topdown(info); 1974 else 1975 return unmapped_area(info); 1976 } 1977 1978 /* truncate.c */ 1979 extern void truncate_inode_pages(struct address_space *, loff_t); 1980 extern void truncate_inode_pages_range(struct address_space *, 1981 loff_t lstart, loff_t lend); 1982 extern void truncate_inode_pages_final(struct address_space *); 1983 1984 /* generic vm_area_ops exported for stackable file systems */ 1985 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1986 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1987 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1988 1989 /* mm/page-writeback.c */ 1990 int write_one_page(struct page *page, int wait); 1991 void task_dirty_inc(struct task_struct *tsk); 1992 1993 /* readahead.c */ 1994 #define VM_MAX_READAHEAD 128 /* kbytes */ 1995 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1996 1997 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1998 pgoff_t offset, unsigned long nr_to_read); 1999 2000 void page_cache_sync_readahead(struct address_space *mapping, 2001 struct file_ra_state *ra, 2002 struct file *filp, 2003 pgoff_t offset, 2004 unsigned long size); 2005 2006 void page_cache_async_readahead(struct address_space *mapping, 2007 struct file_ra_state *ra, 2008 struct file *filp, 2009 struct page *pg, 2010 pgoff_t offset, 2011 unsigned long size); 2012 2013 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2014 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2015 2016 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2017 extern int expand_downwards(struct vm_area_struct *vma, 2018 unsigned long address); 2019 #if VM_GROWSUP 2020 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2021 #else 2022 #define expand_upwards(vma, address) (0) 2023 #endif 2024 2025 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2026 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2027 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2028 struct vm_area_struct **pprev); 2029 2030 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2031 NULL if none. Assume start_addr < end_addr. */ 2032 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2033 { 2034 struct vm_area_struct * vma = find_vma(mm,start_addr); 2035 2036 if (vma && end_addr <= vma->vm_start) 2037 vma = NULL; 2038 return vma; 2039 } 2040 2041 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2042 { 2043 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2044 } 2045 2046 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2047 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2048 unsigned long vm_start, unsigned long vm_end) 2049 { 2050 struct vm_area_struct *vma = find_vma(mm, vm_start); 2051 2052 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2053 vma = NULL; 2054 2055 return vma; 2056 } 2057 2058 #ifdef CONFIG_MMU 2059 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2060 void vma_set_page_prot(struct vm_area_struct *vma); 2061 #else 2062 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2063 { 2064 return __pgprot(0); 2065 } 2066 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2067 { 2068 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2069 } 2070 #endif 2071 2072 #ifdef CONFIG_NUMA_BALANCING 2073 unsigned long change_prot_numa(struct vm_area_struct *vma, 2074 unsigned long start, unsigned long end); 2075 #endif 2076 2077 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2078 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2079 unsigned long pfn, unsigned long size, pgprot_t); 2080 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2081 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2082 unsigned long pfn); 2083 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2084 unsigned long pfn); 2085 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2086 2087 2088 struct page *follow_page_mask(struct vm_area_struct *vma, 2089 unsigned long address, unsigned int foll_flags, 2090 unsigned int *page_mask); 2091 2092 static inline struct page *follow_page(struct vm_area_struct *vma, 2093 unsigned long address, unsigned int foll_flags) 2094 { 2095 unsigned int unused_page_mask; 2096 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2097 } 2098 2099 #define FOLL_WRITE 0x01 /* check pte is writable */ 2100 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2101 #define FOLL_GET 0x04 /* do get_page on page */ 2102 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2103 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2104 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2105 * and return without waiting upon it */ 2106 #define FOLL_POPULATE 0x40 /* fault in page */ 2107 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2108 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2109 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2110 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2111 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2112 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2113 2114 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2115 void *data); 2116 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2117 unsigned long size, pte_fn_t fn, void *data); 2118 2119 #ifdef CONFIG_PROC_FS 2120 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2121 #else 2122 static inline void vm_stat_account(struct mm_struct *mm, 2123 unsigned long flags, struct file *file, long pages) 2124 { 2125 mm->total_vm += pages; 2126 } 2127 #endif /* CONFIG_PROC_FS */ 2128 2129 #ifdef CONFIG_DEBUG_PAGEALLOC 2130 extern bool _debug_pagealloc_enabled; 2131 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2132 2133 static inline bool debug_pagealloc_enabled(void) 2134 { 2135 return _debug_pagealloc_enabled; 2136 } 2137 2138 static inline void 2139 kernel_map_pages(struct page *page, int numpages, int enable) 2140 { 2141 if (!debug_pagealloc_enabled()) 2142 return; 2143 2144 __kernel_map_pages(page, numpages, enable); 2145 } 2146 #ifdef CONFIG_HIBERNATION 2147 extern bool kernel_page_present(struct page *page); 2148 #endif /* CONFIG_HIBERNATION */ 2149 #else 2150 static inline void 2151 kernel_map_pages(struct page *page, int numpages, int enable) {} 2152 #ifdef CONFIG_HIBERNATION 2153 static inline bool kernel_page_present(struct page *page) { return true; } 2154 #endif /* CONFIG_HIBERNATION */ 2155 #endif 2156 2157 #ifdef __HAVE_ARCH_GATE_AREA 2158 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2159 extern int in_gate_area_no_mm(unsigned long addr); 2160 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2161 #else 2162 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2163 { 2164 return NULL; 2165 } 2166 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2167 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2168 { 2169 return 0; 2170 } 2171 #endif /* __HAVE_ARCH_GATE_AREA */ 2172 2173 #ifdef CONFIG_SYSCTL 2174 extern int sysctl_drop_caches; 2175 int drop_caches_sysctl_handler(struct ctl_table *, int, 2176 void __user *, size_t *, loff_t *); 2177 #endif 2178 2179 void drop_slab(void); 2180 void drop_slab_node(int nid); 2181 2182 #ifndef CONFIG_MMU 2183 #define randomize_va_space 0 2184 #else 2185 extern int randomize_va_space; 2186 #endif 2187 2188 const char * arch_vma_name(struct vm_area_struct *vma); 2189 void print_vma_addr(char *prefix, unsigned long rip); 2190 2191 void sparse_mem_maps_populate_node(struct page **map_map, 2192 unsigned long pnum_begin, 2193 unsigned long pnum_end, 2194 unsigned long map_count, 2195 int nodeid); 2196 2197 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2198 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2199 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2200 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2201 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2202 void *vmemmap_alloc_block(unsigned long size, int node); 2203 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2204 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2205 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2206 int node); 2207 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2208 void vmemmap_populate_print_last(void); 2209 #ifdef CONFIG_MEMORY_HOTPLUG 2210 void vmemmap_free(unsigned long start, unsigned long end); 2211 #endif 2212 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2213 unsigned long size); 2214 2215 enum mf_flags { 2216 MF_COUNT_INCREASED = 1 << 0, 2217 MF_ACTION_REQUIRED = 1 << 1, 2218 MF_MUST_KILL = 1 << 2, 2219 MF_SOFT_OFFLINE = 1 << 3, 2220 }; 2221 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2222 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2223 extern int unpoison_memory(unsigned long pfn); 2224 extern int get_hwpoison_page(struct page *page); 2225 extern void put_hwpoison_page(struct page *page); 2226 extern int sysctl_memory_failure_early_kill; 2227 extern int sysctl_memory_failure_recovery; 2228 extern void shake_page(struct page *p, int access); 2229 extern atomic_long_t num_poisoned_pages; 2230 extern int soft_offline_page(struct page *page, int flags); 2231 2232 2233 /* 2234 * Error handlers for various types of pages. 2235 */ 2236 enum mf_result { 2237 MF_IGNORED, /* Error: cannot be handled */ 2238 MF_FAILED, /* Error: handling failed */ 2239 MF_DELAYED, /* Will be handled later */ 2240 MF_RECOVERED, /* Successfully recovered */ 2241 }; 2242 2243 enum mf_action_page_type { 2244 MF_MSG_KERNEL, 2245 MF_MSG_KERNEL_HIGH_ORDER, 2246 MF_MSG_SLAB, 2247 MF_MSG_DIFFERENT_COMPOUND, 2248 MF_MSG_POISONED_HUGE, 2249 MF_MSG_HUGE, 2250 MF_MSG_FREE_HUGE, 2251 MF_MSG_UNMAP_FAILED, 2252 MF_MSG_DIRTY_SWAPCACHE, 2253 MF_MSG_CLEAN_SWAPCACHE, 2254 MF_MSG_DIRTY_MLOCKED_LRU, 2255 MF_MSG_CLEAN_MLOCKED_LRU, 2256 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2257 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2258 MF_MSG_DIRTY_LRU, 2259 MF_MSG_CLEAN_LRU, 2260 MF_MSG_TRUNCATED_LRU, 2261 MF_MSG_BUDDY, 2262 MF_MSG_BUDDY_2ND, 2263 MF_MSG_UNKNOWN, 2264 }; 2265 2266 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2267 extern void clear_huge_page(struct page *page, 2268 unsigned long addr, 2269 unsigned int pages_per_huge_page); 2270 extern void copy_user_huge_page(struct page *dst, struct page *src, 2271 unsigned long addr, struct vm_area_struct *vma, 2272 unsigned int pages_per_huge_page); 2273 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2274 2275 extern struct page_ext_operations debug_guardpage_ops; 2276 extern struct page_ext_operations page_poisoning_ops; 2277 2278 #ifdef CONFIG_DEBUG_PAGEALLOC 2279 extern unsigned int _debug_guardpage_minorder; 2280 extern bool _debug_guardpage_enabled; 2281 2282 static inline unsigned int debug_guardpage_minorder(void) 2283 { 2284 return _debug_guardpage_minorder; 2285 } 2286 2287 static inline bool debug_guardpage_enabled(void) 2288 { 2289 return _debug_guardpage_enabled; 2290 } 2291 2292 static inline bool page_is_guard(struct page *page) 2293 { 2294 struct page_ext *page_ext; 2295 2296 if (!debug_guardpage_enabled()) 2297 return false; 2298 2299 page_ext = lookup_page_ext(page); 2300 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2301 } 2302 #else 2303 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2304 static inline bool debug_guardpage_enabled(void) { return false; } 2305 static inline bool page_is_guard(struct page *page) { return false; } 2306 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2307 2308 #if MAX_NUMNODES > 1 2309 void __init setup_nr_node_ids(void); 2310 #else 2311 static inline void setup_nr_node_ids(void) {} 2312 #endif 2313 2314 #endif /* __KERNEL__ */ 2315 #endif /* _LINUX_MM_H */ 2316