xref: /linux-6.15/include/linux/mm.h (revision dee3d0be)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 /* Bits set in the VMA until the stack is in its final location */
410 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
411 
412 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
413 
414 /* Common data flag combinations */
415 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
416 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
417 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
418 				 VM_MAYWRITE | VM_MAYEXEC)
419 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
420 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
421 
422 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
423 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
424 #endif
425 
426 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
427 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
428 #endif
429 
430 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
431 
432 #ifdef CONFIG_STACK_GROWSUP
433 #define VM_STACK	VM_GROWSUP
434 #define VM_STACK_EARLY	VM_GROWSDOWN
435 #else
436 #define VM_STACK	VM_GROWSDOWN
437 #define VM_STACK_EARLY	0
438 #endif
439 
440 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
441 
442 /* VMA basic access permission flags */
443 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
444 
445 
446 /*
447  * Special vmas that are non-mergable, non-mlock()able.
448  */
449 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
450 
451 /* This mask prevents VMA from being scanned with khugepaged */
452 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
453 
454 /* This mask defines which mm->def_flags a process can inherit its parent */
455 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
456 
457 /* This mask represents all the VMA flag bits used by mlock */
458 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
459 
460 /* Arch-specific flags to clear when updating VM flags on protection change */
461 #ifndef VM_ARCH_CLEAR
462 # define VM_ARCH_CLEAR	VM_NONE
463 #endif
464 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
465 
466 /*
467  * mapping from the currently active vm_flags protection bits (the
468  * low four bits) to a page protection mask..
469  */
470 
471 /*
472  * The default fault flags that should be used by most of the
473  * arch-specific page fault handlers.
474  */
475 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
476 			     FAULT_FLAG_KILLABLE | \
477 			     FAULT_FLAG_INTERRUPTIBLE)
478 
479 /**
480  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
481  * @flags: Fault flags.
482  *
483  * This is mostly used for places where we want to try to avoid taking
484  * the mmap_lock for too long a time when waiting for another condition
485  * to change, in which case we can try to be polite to release the
486  * mmap_lock in the first round to avoid potential starvation of other
487  * processes that would also want the mmap_lock.
488  *
489  * Return: true if the page fault allows retry and this is the first
490  * attempt of the fault handling; false otherwise.
491  */
492 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
493 {
494 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
495 	    (!(flags & FAULT_FLAG_TRIED));
496 }
497 
498 #define FAULT_FLAG_TRACE \
499 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
500 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
501 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
502 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
503 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
504 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
505 	{ FAULT_FLAG_USER,		"USER" }, \
506 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
507 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
508 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
509 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
510 
511 /*
512  * vm_fault is filled by the pagefault handler and passed to the vma's
513  * ->fault function. The vma's ->fault is responsible for returning a bitmask
514  * of VM_FAULT_xxx flags that give details about how the fault was handled.
515  *
516  * MM layer fills up gfp_mask for page allocations but fault handler might
517  * alter it if its implementation requires a different allocation context.
518  *
519  * pgoff should be used in favour of virtual_address, if possible.
520  */
521 struct vm_fault {
522 	const struct {
523 		struct vm_area_struct *vma;	/* Target VMA */
524 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
525 		pgoff_t pgoff;			/* Logical page offset based on vma */
526 		unsigned long address;		/* Faulting virtual address - masked */
527 		unsigned long real_address;	/* Faulting virtual address - unmasked */
528 	};
529 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
530 					 * XXX: should really be 'const' */
531 	pmd_t *pmd;			/* Pointer to pmd entry matching
532 					 * the 'address' */
533 	pud_t *pud;			/* Pointer to pud entry matching
534 					 * the 'address'
535 					 */
536 	union {
537 		pte_t orig_pte;		/* Value of PTE at the time of fault */
538 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
539 					 * used by PMD fault only.
540 					 */
541 	};
542 
543 	struct page *cow_page;		/* Page handler may use for COW fault */
544 	struct page *page;		/* ->fault handlers should return a
545 					 * page here, unless VM_FAULT_NOPAGE
546 					 * is set (which is also implied by
547 					 * VM_FAULT_ERROR).
548 					 */
549 	/* These three entries are valid only while holding ptl lock */
550 	pte_t *pte;			/* Pointer to pte entry matching
551 					 * the 'address'. NULL if the page
552 					 * table hasn't been allocated.
553 					 */
554 	spinlock_t *ptl;		/* Page table lock.
555 					 * Protects pte page table if 'pte'
556 					 * is not NULL, otherwise pmd.
557 					 */
558 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
559 					 * vm_ops->map_pages() sets up a page
560 					 * table from atomic context.
561 					 * do_fault_around() pre-allocates
562 					 * page table to avoid allocation from
563 					 * atomic context.
564 					 */
565 };
566 
567 /*
568  * These are the virtual MM functions - opening of an area, closing and
569  * unmapping it (needed to keep files on disk up-to-date etc), pointer
570  * to the functions called when a no-page or a wp-page exception occurs.
571  */
572 struct vm_operations_struct {
573 	void (*open)(struct vm_area_struct * area);
574 	/**
575 	 * @close: Called when the VMA is being removed from the MM.
576 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
577 	 */
578 	void (*close)(struct vm_area_struct * area);
579 	/* Called any time before splitting to check if it's allowed */
580 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
581 	int (*mremap)(struct vm_area_struct *area);
582 	/*
583 	 * Called by mprotect() to make driver-specific permission
584 	 * checks before mprotect() is finalised.   The VMA must not
585 	 * be modified.  Returns 0 if mprotect() can proceed.
586 	 */
587 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
588 			unsigned long end, unsigned long newflags);
589 	vm_fault_t (*fault)(struct vm_fault *vmf);
590 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
591 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
592 			pgoff_t start_pgoff, pgoff_t end_pgoff);
593 	unsigned long (*pagesize)(struct vm_area_struct * area);
594 
595 	/* notification that a previously read-only page is about to become
596 	 * writable, if an error is returned it will cause a SIGBUS */
597 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
598 
599 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
600 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
601 
602 	/* called by access_process_vm when get_user_pages() fails, typically
603 	 * for use by special VMAs. See also generic_access_phys() for a generic
604 	 * implementation useful for any iomem mapping.
605 	 */
606 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
607 		      void *buf, int len, int write);
608 
609 	/* Called by the /proc/PID/maps code to ask the vma whether it
610 	 * has a special name.  Returning non-NULL will also cause this
611 	 * vma to be dumped unconditionally. */
612 	const char *(*name)(struct vm_area_struct *vma);
613 
614 #ifdef CONFIG_NUMA
615 	/*
616 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
617 	 * to hold the policy upon return.  Caller should pass NULL @new to
618 	 * remove a policy and fall back to surrounding context--i.e. do not
619 	 * install a MPOL_DEFAULT policy, nor the task or system default
620 	 * mempolicy.
621 	 */
622 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
623 
624 	/*
625 	 * get_policy() op must add reference [mpol_get()] to any policy at
626 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
627 	 * in mm/mempolicy.c will do this automatically.
628 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
629 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
630 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
631 	 * must return NULL--i.e., do not "fallback" to task or system default
632 	 * policy.
633 	 */
634 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
635 					unsigned long addr, pgoff_t *ilx);
636 #endif
637 	/*
638 	 * Called by vm_normal_page() for special PTEs to find the
639 	 * page for @addr.  This is useful if the default behavior
640 	 * (using pte_page()) would not find the correct page.
641 	 */
642 	struct page *(*find_special_page)(struct vm_area_struct *vma,
643 					  unsigned long addr);
644 };
645 
646 #ifdef CONFIG_NUMA_BALANCING
647 static inline void vma_numab_state_init(struct vm_area_struct *vma)
648 {
649 	vma->numab_state = NULL;
650 }
651 static inline void vma_numab_state_free(struct vm_area_struct *vma)
652 {
653 	kfree(vma->numab_state);
654 }
655 #else
656 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
657 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
658 #endif /* CONFIG_NUMA_BALANCING */
659 
660 #ifdef CONFIG_PER_VMA_LOCK
661 /*
662  * Try to read-lock a vma. The function is allowed to occasionally yield false
663  * locked result to avoid performance overhead, in which case we fall back to
664  * using mmap_lock. The function should never yield false unlocked result.
665  */
666 static inline bool vma_start_read(struct vm_area_struct *vma)
667 {
668 	/*
669 	 * Check before locking. A race might cause false locked result.
670 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
671 	 * ACQUIRE semantics, because this is just a lockless check whose result
672 	 * we don't rely on for anything - the mm_lock_seq read against which we
673 	 * need ordering is below.
674 	 */
675 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
676 		return false;
677 
678 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
679 		return false;
680 
681 	/*
682 	 * Overflow might produce false locked result.
683 	 * False unlocked result is impossible because we modify and check
684 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
685 	 * modification invalidates all existing locks.
686 	 *
687 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
688 	 * racing with vma_end_write_all(), we only start reading from the VMA
689 	 * after it has been unlocked.
690 	 * This pairs with RELEASE semantics in vma_end_write_all().
691 	 */
692 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
693 		up_read(&vma->vm_lock->lock);
694 		return false;
695 	}
696 	return true;
697 }
698 
699 static inline void vma_end_read(struct vm_area_struct *vma)
700 {
701 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
702 	up_read(&vma->vm_lock->lock);
703 	rcu_read_unlock();
704 }
705 
706 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
707 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
708 {
709 	mmap_assert_write_locked(vma->vm_mm);
710 
711 	/*
712 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
713 	 * mm->mm_lock_seq can't be concurrently modified.
714 	 */
715 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
716 	return (vma->vm_lock_seq == *mm_lock_seq);
717 }
718 
719 /*
720  * Begin writing to a VMA.
721  * Exclude concurrent readers under the per-VMA lock until the currently
722  * write-locked mmap_lock is dropped or downgraded.
723  */
724 static inline void vma_start_write(struct vm_area_struct *vma)
725 {
726 	int mm_lock_seq;
727 
728 	if (__is_vma_write_locked(vma, &mm_lock_seq))
729 		return;
730 
731 	down_write(&vma->vm_lock->lock);
732 	/*
733 	 * We should use WRITE_ONCE() here because we can have concurrent reads
734 	 * from the early lockless pessimistic check in vma_start_read().
735 	 * We don't really care about the correctness of that early check, but
736 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
737 	 */
738 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
739 	up_write(&vma->vm_lock->lock);
740 }
741 
742 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
743 {
744 	int mm_lock_seq;
745 
746 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
747 }
748 
749 static inline void vma_assert_locked(struct vm_area_struct *vma)
750 {
751 	if (!rwsem_is_locked(&vma->vm_lock->lock))
752 		vma_assert_write_locked(vma);
753 }
754 
755 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
756 {
757 	/* When detaching vma should be write-locked */
758 	if (detached)
759 		vma_assert_write_locked(vma);
760 	vma->detached = detached;
761 }
762 
763 static inline void release_fault_lock(struct vm_fault *vmf)
764 {
765 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
766 		vma_end_read(vmf->vma);
767 	else
768 		mmap_read_unlock(vmf->vma->vm_mm);
769 }
770 
771 static inline void assert_fault_locked(struct vm_fault *vmf)
772 {
773 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
774 		vma_assert_locked(vmf->vma);
775 	else
776 		mmap_assert_locked(vmf->vma->vm_mm);
777 }
778 
779 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
780 					  unsigned long address);
781 
782 #else /* CONFIG_PER_VMA_LOCK */
783 
784 static inline bool vma_start_read(struct vm_area_struct *vma)
785 		{ return false; }
786 static inline void vma_end_read(struct vm_area_struct *vma) {}
787 static inline void vma_start_write(struct vm_area_struct *vma) {}
788 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
789 		{ mmap_assert_write_locked(vma->vm_mm); }
790 static inline void vma_mark_detached(struct vm_area_struct *vma,
791 				     bool detached) {}
792 
793 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
794 		unsigned long address)
795 {
796 	return NULL;
797 }
798 
799 static inline void vma_assert_locked(struct vm_area_struct *vma)
800 {
801 	mmap_assert_locked(vma->vm_mm);
802 }
803 
804 static inline void release_fault_lock(struct vm_fault *vmf)
805 {
806 	mmap_read_unlock(vmf->vma->vm_mm);
807 }
808 
809 static inline void assert_fault_locked(struct vm_fault *vmf)
810 {
811 	mmap_assert_locked(vmf->vma->vm_mm);
812 }
813 
814 #endif /* CONFIG_PER_VMA_LOCK */
815 
816 extern const struct vm_operations_struct vma_dummy_vm_ops;
817 
818 /*
819  * WARNING: vma_init does not initialize vma->vm_lock.
820  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
821  */
822 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
823 {
824 	memset(vma, 0, sizeof(*vma));
825 	vma->vm_mm = mm;
826 	vma->vm_ops = &vma_dummy_vm_ops;
827 	INIT_LIST_HEAD(&vma->anon_vma_chain);
828 	vma_mark_detached(vma, false);
829 	vma_numab_state_init(vma);
830 }
831 
832 /* Use when VMA is not part of the VMA tree and needs no locking */
833 static inline void vm_flags_init(struct vm_area_struct *vma,
834 				 vm_flags_t flags)
835 {
836 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
837 }
838 
839 /*
840  * Use when VMA is part of the VMA tree and modifications need coordination
841  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
842  * it should be locked explicitly beforehand.
843  */
844 static inline void vm_flags_reset(struct vm_area_struct *vma,
845 				  vm_flags_t flags)
846 {
847 	vma_assert_write_locked(vma);
848 	vm_flags_init(vma, flags);
849 }
850 
851 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
852 				       vm_flags_t flags)
853 {
854 	vma_assert_write_locked(vma);
855 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
856 }
857 
858 static inline void vm_flags_set(struct vm_area_struct *vma,
859 				vm_flags_t flags)
860 {
861 	vma_start_write(vma);
862 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
863 }
864 
865 static inline void vm_flags_clear(struct vm_area_struct *vma,
866 				  vm_flags_t flags)
867 {
868 	vma_start_write(vma);
869 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
870 }
871 
872 /*
873  * Use only if VMA is not part of the VMA tree or has no other users and
874  * therefore needs no locking.
875  */
876 static inline void __vm_flags_mod(struct vm_area_struct *vma,
877 				  vm_flags_t set, vm_flags_t clear)
878 {
879 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
880 }
881 
882 /*
883  * Use only when the order of set/clear operations is unimportant, otherwise
884  * use vm_flags_{set|clear} explicitly.
885  */
886 static inline void vm_flags_mod(struct vm_area_struct *vma,
887 				vm_flags_t set, vm_flags_t clear)
888 {
889 	vma_start_write(vma);
890 	__vm_flags_mod(vma, set, clear);
891 }
892 
893 static inline void vma_set_anonymous(struct vm_area_struct *vma)
894 {
895 	vma->vm_ops = NULL;
896 }
897 
898 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
899 {
900 	return !vma->vm_ops;
901 }
902 
903 /*
904  * Indicate if the VMA is a heap for the given task; for
905  * /proc/PID/maps that is the heap of the main task.
906  */
907 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
908 {
909 	return vma->vm_start < vma->vm_mm->brk &&
910 		vma->vm_end > vma->vm_mm->start_brk;
911 }
912 
913 /*
914  * Indicate if the VMA is a stack for the given task; for
915  * /proc/PID/maps that is the stack of the main task.
916  */
917 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
918 {
919 	/*
920 	 * We make no effort to guess what a given thread considers to be
921 	 * its "stack".  It's not even well-defined for programs written
922 	 * languages like Go.
923 	 */
924 	return vma->vm_start <= vma->vm_mm->start_stack &&
925 		vma->vm_end >= vma->vm_mm->start_stack;
926 }
927 
928 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
929 {
930 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
931 
932 	if (!maybe_stack)
933 		return false;
934 
935 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
936 						VM_STACK_INCOMPLETE_SETUP)
937 		return true;
938 
939 	return false;
940 }
941 
942 static inline bool vma_is_foreign(struct vm_area_struct *vma)
943 {
944 	if (!current->mm)
945 		return true;
946 
947 	if (current->mm != vma->vm_mm)
948 		return true;
949 
950 	return false;
951 }
952 
953 static inline bool vma_is_accessible(struct vm_area_struct *vma)
954 {
955 	return vma->vm_flags & VM_ACCESS_FLAGS;
956 }
957 
958 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
959 {
960 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
961 		(VM_SHARED | VM_MAYWRITE);
962 }
963 
964 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
965 {
966 	return is_shared_maywrite(vma->vm_flags);
967 }
968 
969 static inline
970 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
971 {
972 	return mas_find(&vmi->mas, max - 1);
973 }
974 
975 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
976 {
977 	/*
978 	 * Uses mas_find() to get the first VMA when the iterator starts.
979 	 * Calling mas_next() could skip the first entry.
980 	 */
981 	return mas_find(&vmi->mas, ULONG_MAX);
982 }
983 
984 static inline
985 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
986 {
987 	return mas_next_range(&vmi->mas, ULONG_MAX);
988 }
989 
990 
991 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
992 {
993 	return mas_prev(&vmi->mas, 0);
994 }
995 
996 static inline
997 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
998 {
999 	return mas_prev_range(&vmi->mas, 0);
1000 }
1001 
1002 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1003 {
1004 	return vmi->mas.index;
1005 }
1006 
1007 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1008 {
1009 	return vmi->mas.last + 1;
1010 }
1011 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1012 				      unsigned long count)
1013 {
1014 	return mas_expected_entries(&vmi->mas, count);
1015 }
1016 
1017 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1018 			unsigned long start, unsigned long end, gfp_t gfp)
1019 {
1020 	__mas_set_range(&vmi->mas, start, end - 1);
1021 	mas_store_gfp(&vmi->mas, NULL, gfp);
1022 	if (unlikely(mas_is_err(&vmi->mas)))
1023 		return -ENOMEM;
1024 
1025 	return 0;
1026 }
1027 
1028 /* Free any unused preallocations */
1029 static inline void vma_iter_free(struct vma_iterator *vmi)
1030 {
1031 	mas_destroy(&vmi->mas);
1032 }
1033 
1034 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1035 				      struct vm_area_struct *vma)
1036 {
1037 	vmi->mas.index = vma->vm_start;
1038 	vmi->mas.last = vma->vm_end - 1;
1039 	mas_store(&vmi->mas, vma);
1040 	if (unlikely(mas_is_err(&vmi->mas)))
1041 		return -ENOMEM;
1042 
1043 	return 0;
1044 }
1045 
1046 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1047 {
1048 	mas_pause(&vmi->mas);
1049 }
1050 
1051 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1052 {
1053 	mas_set(&vmi->mas, addr);
1054 }
1055 
1056 #define for_each_vma(__vmi, __vma)					\
1057 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1058 
1059 /* The MM code likes to work with exclusive end addresses */
1060 #define for_each_vma_range(__vmi, __vma, __end)				\
1061 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1062 
1063 #ifdef CONFIG_SHMEM
1064 /*
1065  * The vma_is_shmem is not inline because it is used only by slow
1066  * paths in userfault.
1067  */
1068 bool vma_is_shmem(struct vm_area_struct *vma);
1069 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1070 #else
1071 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1072 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1073 #endif
1074 
1075 int vma_is_stack_for_current(struct vm_area_struct *vma);
1076 
1077 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1078 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1079 
1080 struct mmu_gather;
1081 struct inode;
1082 
1083 /*
1084  * compound_order() can be called without holding a reference, which means
1085  * that niceties like page_folio() don't work.  These callers should be
1086  * prepared to handle wild return values.  For example, PG_head may be
1087  * set before the order is initialised, or this may be a tail page.
1088  * See compaction.c for some good examples.
1089  */
1090 static inline unsigned int compound_order(struct page *page)
1091 {
1092 	struct folio *folio = (struct folio *)page;
1093 
1094 	if (!test_bit(PG_head, &folio->flags))
1095 		return 0;
1096 	return folio->_flags_1 & 0xff;
1097 }
1098 
1099 /**
1100  * folio_order - The allocation order of a folio.
1101  * @folio: The folio.
1102  *
1103  * A folio is composed of 2^order pages.  See get_order() for the definition
1104  * of order.
1105  *
1106  * Return: The order of the folio.
1107  */
1108 static inline unsigned int folio_order(struct folio *folio)
1109 {
1110 	if (!folio_test_large(folio))
1111 		return 0;
1112 	return folio->_flags_1 & 0xff;
1113 }
1114 
1115 #include <linux/huge_mm.h>
1116 
1117 /*
1118  * Methods to modify the page usage count.
1119  *
1120  * What counts for a page usage:
1121  * - cache mapping   (page->mapping)
1122  * - private data    (page->private)
1123  * - page mapped in a task's page tables, each mapping
1124  *   is counted separately
1125  *
1126  * Also, many kernel routines increase the page count before a critical
1127  * routine so they can be sure the page doesn't go away from under them.
1128  */
1129 
1130 /*
1131  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1132  */
1133 static inline int put_page_testzero(struct page *page)
1134 {
1135 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1136 	return page_ref_dec_and_test(page);
1137 }
1138 
1139 static inline int folio_put_testzero(struct folio *folio)
1140 {
1141 	return put_page_testzero(&folio->page);
1142 }
1143 
1144 /*
1145  * Try to grab a ref unless the page has a refcount of zero, return false if
1146  * that is the case.
1147  * This can be called when MMU is off so it must not access
1148  * any of the virtual mappings.
1149  */
1150 static inline bool get_page_unless_zero(struct page *page)
1151 {
1152 	return page_ref_add_unless(page, 1, 0);
1153 }
1154 
1155 static inline struct folio *folio_get_nontail_page(struct page *page)
1156 {
1157 	if (unlikely(!get_page_unless_zero(page)))
1158 		return NULL;
1159 	return (struct folio *)page;
1160 }
1161 
1162 extern int page_is_ram(unsigned long pfn);
1163 
1164 enum {
1165 	REGION_INTERSECTS,
1166 	REGION_DISJOINT,
1167 	REGION_MIXED,
1168 };
1169 
1170 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1171 		      unsigned long desc);
1172 
1173 /* Support for virtually mapped pages */
1174 struct page *vmalloc_to_page(const void *addr);
1175 unsigned long vmalloc_to_pfn(const void *addr);
1176 
1177 /*
1178  * Determine if an address is within the vmalloc range
1179  *
1180  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1181  * is no special casing required.
1182  */
1183 #ifdef CONFIG_MMU
1184 extern bool is_vmalloc_addr(const void *x);
1185 extern int is_vmalloc_or_module_addr(const void *x);
1186 #else
1187 static inline bool is_vmalloc_addr(const void *x)
1188 {
1189 	return false;
1190 }
1191 static inline int is_vmalloc_or_module_addr(const void *x)
1192 {
1193 	return 0;
1194 }
1195 #endif
1196 
1197 /*
1198  * How many times the entire folio is mapped as a single unit (eg by a
1199  * PMD or PUD entry).  This is probably not what you want, except for
1200  * debugging purposes - it does not include PTE-mapped sub-pages; look
1201  * at folio_mapcount() or page_mapcount() instead.
1202  */
1203 static inline int folio_entire_mapcount(const struct folio *folio)
1204 {
1205 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1206 	return atomic_read(&folio->_entire_mapcount) + 1;
1207 }
1208 
1209 /*
1210  * The atomic page->_mapcount, starts from -1: so that transitions
1211  * both from it and to it can be tracked, using atomic_inc_and_test
1212  * and atomic_add_negative(-1).
1213  */
1214 static inline void page_mapcount_reset(struct page *page)
1215 {
1216 	atomic_set(&(page)->_mapcount, -1);
1217 }
1218 
1219 /**
1220  * page_mapcount() - Number of times this precise page is mapped.
1221  * @page: The page.
1222  *
1223  * The number of times this page is mapped.  If this page is part of
1224  * a large folio, it includes the number of times this page is mapped
1225  * as part of that folio.
1226  *
1227  * Will report 0 for pages which cannot be mapped into userspace, eg
1228  * slab, page tables and similar.
1229  */
1230 static inline int page_mapcount(struct page *page)
1231 {
1232 	int mapcount = atomic_read(&page->_mapcount) + 1;
1233 
1234 	/* Handle page_has_type() pages */
1235 	if (mapcount < 0)
1236 		mapcount = 0;
1237 	if (unlikely(PageCompound(page)))
1238 		mapcount += folio_entire_mapcount(page_folio(page));
1239 
1240 	return mapcount;
1241 }
1242 
1243 int folio_total_mapcount(const struct folio *folio);
1244 
1245 /**
1246  * folio_mapcount() - Calculate the number of mappings of this folio.
1247  * @folio: The folio.
1248  *
1249  * A large folio tracks both how many times the entire folio is mapped,
1250  * and how many times each individual page in the folio is mapped.
1251  * This function calculates the total number of times the folio is
1252  * mapped.
1253  *
1254  * Return: The number of times this folio is mapped.
1255  */
1256 static inline int folio_mapcount(const struct folio *folio)
1257 {
1258 	if (likely(!folio_test_large(folio)))
1259 		return atomic_read(&folio->_mapcount) + 1;
1260 	return folio_total_mapcount(folio);
1261 }
1262 
1263 static inline bool folio_large_is_mapped(const struct folio *folio)
1264 {
1265 	/*
1266 	 * Reading _entire_mapcount below could be omitted if hugetlb
1267 	 * participated in incrementing nr_pages_mapped when compound mapped.
1268 	 */
1269 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1270 		atomic_read(&folio->_entire_mapcount) >= 0;
1271 }
1272 
1273 /**
1274  * folio_mapped - Is this folio mapped into userspace?
1275  * @folio: The folio.
1276  *
1277  * Return: True if any page in this folio is referenced by user page tables.
1278  */
1279 static inline bool folio_mapped(struct folio *folio)
1280 {
1281 	if (likely(!folio_test_large(folio)))
1282 		return atomic_read(&folio->_mapcount) >= 0;
1283 	return folio_large_is_mapped(folio);
1284 }
1285 
1286 /*
1287  * Return true if this page is mapped into pagetables.
1288  * For compound page it returns true if any sub-page of compound page is mapped,
1289  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1290  */
1291 static inline bool page_mapped(const struct page *page)
1292 {
1293 	if (likely(!PageCompound(page)))
1294 		return atomic_read(&page->_mapcount) >= 0;
1295 	return folio_large_is_mapped(page_folio(page));
1296 }
1297 
1298 static inline struct page *virt_to_head_page(const void *x)
1299 {
1300 	struct page *page = virt_to_page(x);
1301 
1302 	return compound_head(page);
1303 }
1304 
1305 static inline struct folio *virt_to_folio(const void *x)
1306 {
1307 	struct page *page = virt_to_page(x);
1308 
1309 	return page_folio(page);
1310 }
1311 
1312 void __folio_put(struct folio *folio);
1313 
1314 void put_pages_list(struct list_head *pages);
1315 
1316 void split_page(struct page *page, unsigned int order);
1317 void folio_copy(struct folio *dst, struct folio *src);
1318 
1319 unsigned long nr_free_buffer_pages(void);
1320 
1321 void destroy_large_folio(struct folio *folio);
1322 
1323 /* Returns the number of bytes in this potentially compound page. */
1324 static inline unsigned long page_size(struct page *page)
1325 {
1326 	return PAGE_SIZE << compound_order(page);
1327 }
1328 
1329 /* Returns the number of bits needed for the number of bytes in a page */
1330 static inline unsigned int page_shift(struct page *page)
1331 {
1332 	return PAGE_SHIFT + compound_order(page);
1333 }
1334 
1335 /**
1336  * thp_order - Order of a transparent huge page.
1337  * @page: Head page of a transparent huge page.
1338  */
1339 static inline unsigned int thp_order(struct page *page)
1340 {
1341 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1342 	return compound_order(page);
1343 }
1344 
1345 /**
1346  * thp_size - Size of a transparent huge page.
1347  * @page: Head page of a transparent huge page.
1348  *
1349  * Return: Number of bytes in this page.
1350  */
1351 static inline unsigned long thp_size(struct page *page)
1352 {
1353 	return PAGE_SIZE << thp_order(page);
1354 }
1355 
1356 #ifdef CONFIG_MMU
1357 /*
1358  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1359  * servicing faults for write access.  In the normal case, do always want
1360  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1361  * that do not have writing enabled, when used by access_process_vm.
1362  */
1363 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1364 {
1365 	if (likely(vma->vm_flags & VM_WRITE))
1366 		pte = pte_mkwrite(pte, vma);
1367 	return pte;
1368 }
1369 
1370 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1371 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1372 		struct page *page, unsigned int nr, unsigned long addr);
1373 
1374 vm_fault_t finish_fault(struct vm_fault *vmf);
1375 #endif
1376 
1377 /*
1378  * Multiple processes may "see" the same page. E.g. for untouched
1379  * mappings of /dev/null, all processes see the same page full of
1380  * zeroes, and text pages of executables and shared libraries have
1381  * only one copy in memory, at most, normally.
1382  *
1383  * For the non-reserved pages, page_count(page) denotes a reference count.
1384  *   page_count() == 0 means the page is free. page->lru is then used for
1385  *   freelist management in the buddy allocator.
1386  *   page_count() > 0  means the page has been allocated.
1387  *
1388  * Pages are allocated by the slab allocator in order to provide memory
1389  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1390  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1391  * unless a particular usage is carefully commented. (the responsibility of
1392  * freeing the kmalloc memory is the caller's, of course).
1393  *
1394  * A page may be used by anyone else who does a __get_free_page().
1395  * In this case, page_count still tracks the references, and should only
1396  * be used through the normal accessor functions. The top bits of page->flags
1397  * and page->virtual store page management information, but all other fields
1398  * are unused and could be used privately, carefully. The management of this
1399  * page is the responsibility of the one who allocated it, and those who have
1400  * subsequently been given references to it.
1401  *
1402  * The other pages (we may call them "pagecache pages") are completely
1403  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1404  * The following discussion applies only to them.
1405  *
1406  * A pagecache page contains an opaque `private' member, which belongs to the
1407  * page's address_space. Usually, this is the address of a circular list of
1408  * the page's disk buffers. PG_private must be set to tell the VM to call
1409  * into the filesystem to release these pages.
1410  *
1411  * A page may belong to an inode's memory mapping. In this case, page->mapping
1412  * is the pointer to the inode, and page->index is the file offset of the page,
1413  * in units of PAGE_SIZE.
1414  *
1415  * If pagecache pages are not associated with an inode, they are said to be
1416  * anonymous pages. These may become associated with the swapcache, and in that
1417  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1418  *
1419  * In either case (swapcache or inode backed), the pagecache itself holds one
1420  * reference to the page. Setting PG_private should also increment the
1421  * refcount. The each user mapping also has a reference to the page.
1422  *
1423  * The pagecache pages are stored in a per-mapping radix tree, which is
1424  * rooted at mapping->i_pages, and indexed by offset.
1425  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1426  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1427  *
1428  * All pagecache pages may be subject to I/O:
1429  * - inode pages may need to be read from disk,
1430  * - inode pages which have been modified and are MAP_SHARED may need
1431  *   to be written back to the inode on disk,
1432  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1433  *   modified may need to be swapped out to swap space and (later) to be read
1434  *   back into memory.
1435  */
1436 
1437 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1438 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1439 
1440 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1441 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1442 {
1443 	if (!static_branch_unlikely(&devmap_managed_key))
1444 		return false;
1445 	if (!is_zone_device_page(page))
1446 		return false;
1447 	return __put_devmap_managed_page_refs(page, refs);
1448 }
1449 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1450 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1451 {
1452 	return false;
1453 }
1454 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1455 
1456 static inline bool put_devmap_managed_page(struct page *page)
1457 {
1458 	return put_devmap_managed_page_refs(page, 1);
1459 }
1460 
1461 /* 127: arbitrary random number, small enough to assemble well */
1462 #define folio_ref_zero_or_close_to_overflow(folio) \
1463 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1464 
1465 /**
1466  * folio_get - Increment the reference count on a folio.
1467  * @folio: The folio.
1468  *
1469  * Context: May be called in any context, as long as you know that
1470  * you have a refcount on the folio.  If you do not already have one,
1471  * folio_try_get() may be the right interface for you to use.
1472  */
1473 static inline void folio_get(struct folio *folio)
1474 {
1475 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1476 	folio_ref_inc(folio);
1477 }
1478 
1479 static inline void get_page(struct page *page)
1480 {
1481 	folio_get(page_folio(page));
1482 }
1483 
1484 static inline __must_check bool try_get_page(struct page *page)
1485 {
1486 	page = compound_head(page);
1487 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1488 		return false;
1489 	page_ref_inc(page);
1490 	return true;
1491 }
1492 
1493 /**
1494  * folio_put - Decrement the reference count on a folio.
1495  * @folio: The folio.
1496  *
1497  * If the folio's reference count reaches zero, the memory will be
1498  * released back to the page allocator and may be used by another
1499  * allocation immediately.  Do not access the memory or the struct folio
1500  * after calling folio_put() unless you can be sure that it wasn't the
1501  * last reference.
1502  *
1503  * Context: May be called in process or interrupt context, but not in NMI
1504  * context.  May be called while holding a spinlock.
1505  */
1506 static inline void folio_put(struct folio *folio)
1507 {
1508 	if (folio_put_testzero(folio))
1509 		__folio_put(folio);
1510 }
1511 
1512 /**
1513  * folio_put_refs - Reduce the reference count on a folio.
1514  * @folio: The folio.
1515  * @refs: The amount to subtract from the folio's reference count.
1516  *
1517  * If the folio's reference count reaches zero, the memory will be
1518  * released back to the page allocator and may be used by another
1519  * allocation immediately.  Do not access the memory or the struct folio
1520  * after calling folio_put_refs() unless you can be sure that these weren't
1521  * the last references.
1522  *
1523  * Context: May be called in process or interrupt context, but not in NMI
1524  * context.  May be called while holding a spinlock.
1525  */
1526 static inline void folio_put_refs(struct folio *folio, int refs)
1527 {
1528 	if (folio_ref_sub_and_test(folio, refs))
1529 		__folio_put(folio);
1530 }
1531 
1532 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1533 
1534 /*
1535  * union release_pages_arg - an array of pages or folios
1536  *
1537  * release_pages() releases a simple array of multiple pages, and
1538  * accepts various different forms of said page array: either
1539  * a regular old boring array of pages, an array of folios, or
1540  * an array of encoded page pointers.
1541  *
1542  * The transparent union syntax for this kind of "any of these
1543  * argument types" is all kinds of ugly, so look away.
1544  */
1545 typedef union {
1546 	struct page **pages;
1547 	struct folio **folios;
1548 	struct encoded_page **encoded_pages;
1549 } release_pages_arg __attribute__ ((__transparent_union__));
1550 
1551 void release_pages(release_pages_arg, int nr);
1552 
1553 /**
1554  * folios_put - Decrement the reference count on an array of folios.
1555  * @folios: The folios.
1556  *
1557  * Like folio_put(), but for a batch of folios.  This is more efficient
1558  * than writing the loop yourself as it will optimise the locks which need
1559  * to be taken if the folios are freed.  The folios batch is returned
1560  * empty and ready to be reused for another batch; there is no need to
1561  * reinitialise it.
1562  *
1563  * Context: May be called in process or interrupt context, but not in NMI
1564  * context.  May be called while holding a spinlock.
1565  */
1566 static inline void folios_put(struct folio_batch *folios)
1567 {
1568 	folios_put_refs(folios, NULL);
1569 }
1570 
1571 static inline void put_page(struct page *page)
1572 {
1573 	struct folio *folio = page_folio(page);
1574 
1575 	/*
1576 	 * For some devmap managed pages we need to catch refcount transition
1577 	 * from 2 to 1:
1578 	 */
1579 	if (put_devmap_managed_page(&folio->page))
1580 		return;
1581 	folio_put(folio);
1582 }
1583 
1584 /*
1585  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1586  * the page's refcount so that two separate items are tracked: the original page
1587  * reference count, and also a new count of how many pin_user_pages() calls were
1588  * made against the page. ("gup-pinned" is another term for the latter).
1589  *
1590  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1591  * distinct from normal pages. As such, the unpin_user_page() call (and its
1592  * variants) must be used in order to release gup-pinned pages.
1593  *
1594  * Choice of value:
1595  *
1596  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1597  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1598  * simpler, due to the fact that adding an even power of two to the page
1599  * refcount has the effect of using only the upper N bits, for the code that
1600  * counts up using the bias value. This means that the lower bits are left for
1601  * the exclusive use of the original code that increments and decrements by one
1602  * (or at least, by much smaller values than the bias value).
1603  *
1604  * Of course, once the lower bits overflow into the upper bits (and this is
1605  * OK, because subtraction recovers the original values), then visual inspection
1606  * no longer suffices to directly view the separate counts. However, for normal
1607  * applications that don't have huge page reference counts, this won't be an
1608  * issue.
1609  *
1610  * Locking: the lockless algorithm described in folio_try_get_rcu()
1611  * provides safe operation for get_user_pages(), page_mkclean() and
1612  * other calls that race to set up page table entries.
1613  */
1614 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1615 
1616 void unpin_user_page(struct page *page);
1617 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1618 				 bool make_dirty);
1619 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1620 				      bool make_dirty);
1621 void unpin_user_pages(struct page **pages, unsigned long npages);
1622 
1623 static inline bool is_cow_mapping(vm_flags_t flags)
1624 {
1625 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1626 }
1627 
1628 #ifndef CONFIG_MMU
1629 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1630 {
1631 	/*
1632 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1633 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1634 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1635 	 * underlying memory if ptrace is active, so this is only possible if
1636 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1637 	 * write permissions later.
1638 	 */
1639 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1640 }
1641 #endif
1642 
1643 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1644 #define SECTION_IN_PAGE_FLAGS
1645 #endif
1646 
1647 /*
1648  * The identification function is mainly used by the buddy allocator for
1649  * determining if two pages could be buddies. We are not really identifying
1650  * the zone since we could be using the section number id if we do not have
1651  * node id available in page flags.
1652  * We only guarantee that it will return the same value for two combinable
1653  * pages in a zone.
1654  */
1655 static inline int page_zone_id(struct page *page)
1656 {
1657 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1658 }
1659 
1660 #ifdef NODE_NOT_IN_PAGE_FLAGS
1661 int page_to_nid(const struct page *page);
1662 #else
1663 static inline int page_to_nid(const struct page *page)
1664 {
1665 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1666 }
1667 #endif
1668 
1669 static inline int folio_nid(const struct folio *folio)
1670 {
1671 	return page_to_nid(&folio->page);
1672 }
1673 
1674 #ifdef CONFIG_NUMA_BALANCING
1675 /* page access time bits needs to hold at least 4 seconds */
1676 #define PAGE_ACCESS_TIME_MIN_BITS	12
1677 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1678 #define PAGE_ACCESS_TIME_BUCKETS				\
1679 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1680 #else
1681 #define PAGE_ACCESS_TIME_BUCKETS	0
1682 #endif
1683 
1684 #define PAGE_ACCESS_TIME_MASK				\
1685 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1686 
1687 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1688 {
1689 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1690 }
1691 
1692 static inline int cpupid_to_pid(int cpupid)
1693 {
1694 	return cpupid & LAST__PID_MASK;
1695 }
1696 
1697 static inline int cpupid_to_cpu(int cpupid)
1698 {
1699 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1700 }
1701 
1702 static inline int cpupid_to_nid(int cpupid)
1703 {
1704 	return cpu_to_node(cpupid_to_cpu(cpupid));
1705 }
1706 
1707 static inline bool cpupid_pid_unset(int cpupid)
1708 {
1709 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1710 }
1711 
1712 static inline bool cpupid_cpu_unset(int cpupid)
1713 {
1714 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1715 }
1716 
1717 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1718 {
1719 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1720 }
1721 
1722 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1723 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1724 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1725 {
1726 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1727 }
1728 
1729 static inline int folio_last_cpupid(struct folio *folio)
1730 {
1731 	return folio->_last_cpupid;
1732 }
1733 static inline void page_cpupid_reset_last(struct page *page)
1734 {
1735 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1736 }
1737 #else
1738 static inline int folio_last_cpupid(struct folio *folio)
1739 {
1740 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1741 }
1742 
1743 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1744 
1745 static inline void page_cpupid_reset_last(struct page *page)
1746 {
1747 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1748 }
1749 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1750 
1751 static inline int folio_xchg_access_time(struct folio *folio, int time)
1752 {
1753 	int last_time;
1754 
1755 	last_time = folio_xchg_last_cpupid(folio,
1756 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1757 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1758 }
1759 
1760 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1761 {
1762 	unsigned int pid_bit;
1763 
1764 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1765 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1766 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1767 	}
1768 }
1769 #else /* !CONFIG_NUMA_BALANCING */
1770 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1771 {
1772 	return folio_nid(folio); /* XXX */
1773 }
1774 
1775 static inline int folio_xchg_access_time(struct folio *folio, int time)
1776 {
1777 	return 0;
1778 }
1779 
1780 static inline int folio_last_cpupid(struct folio *folio)
1781 {
1782 	return folio_nid(folio); /* XXX */
1783 }
1784 
1785 static inline int cpupid_to_nid(int cpupid)
1786 {
1787 	return -1;
1788 }
1789 
1790 static inline int cpupid_to_pid(int cpupid)
1791 {
1792 	return -1;
1793 }
1794 
1795 static inline int cpupid_to_cpu(int cpupid)
1796 {
1797 	return -1;
1798 }
1799 
1800 static inline int cpu_pid_to_cpupid(int nid, int pid)
1801 {
1802 	return -1;
1803 }
1804 
1805 static inline bool cpupid_pid_unset(int cpupid)
1806 {
1807 	return true;
1808 }
1809 
1810 static inline void page_cpupid_reset_last(struct page *page)
1811 {
1812 }
1813 
1814 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1815 {
1816 	return false;
1817 }
1818 
1819 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1820 {
1821 }
1822 #endif /* CONFIG_NUMA_BALANCING */
1823 
1824 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1825 
1826 /*
1827  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1828  * setting tags for all pages to native kernel tag value 0xff, as the default
1829  * value 0x00 maps to 0xff.
1830  */
1831 
1832 static inline u8 page_kasan_tag(const struct page *page)
1833 {
1834 	u8 tag = KASAN_TAG_KERNEL;
1835 
1836 	if (kasan_enabled()) {
1837 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1838 		tag ^= 0xff;
1839 	}
1840 
1841 	return tag;
1842 }
1843 
1844 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1845 {
1846 	unsigned long old_flags, flags;
1847 
1848 	if (!kasan_enabled())
1849 		return;
1850 
1851 	tag ^= 0xff;
1852 	old_flags = READ_ONCE(page->flags);
1853 	do {
1854 		flags = old_flags;
1855 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1856 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1857 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1858 }
1859 
1860 static inline void page_kasan_tag_reset(struct page *page)
1861 {
1862 	if (kasan_enabled())
1863 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1864 }
1865 
1866 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1867 
1868 static inline u8 page_kasan_tag(const struct page *page)
1869 {
1870 	return 0xff;
1871 }
1872 
1873 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1874 static inline void page_kasan_tag_reset(struct page *page) { }
1875 
1876 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1877 
1878 static inline struct zone *page_zone(const struct page *page)
1879 {
1880 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1881 }
1882 
1883 static inline pg_data_t *page_pgdat(const struct page *page)
1884 {
1885 	return NODE_DATA(page_to_nid(page));
1886 }
1887 
1888 static inline struct zone *folio_zone(const struct folio *folio)
1889 {
1890 	return page_zone(&folio->page);
1891 }
1892 
1893 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1894 {
1895 	return page_pgdat(&folio->page);
1896 }
1897 
1898 #ifdef SECTION_IN_PAGE_FLAGS
1899 static inline void set_page_section(struct page *page, unsigned long section)
1900 {
1901 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1902 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1903 }
1904 
1905 static inline unsigned long page_to_section(const struct page *page)
1906 {
1907 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1908 }
1909 #endif
1910 
1911 /**
1912  * folio_pfn - Return the Page Frame Number of a folio.
1913  * @folio: The folio.
1914  *
1915  * A folio may contain multiple pages.  The pages have consecutive
1916  * Page Frame Numbers.
1917  *
1918  * Return: The Page Frame Number of the first page in the folio.
1919  */
1920 static inline unsigned long folio_pfn(struct folio *folio)
1921 {
1922 	return page_to_pfn(&folio->page);
1923 }
1924 
1925 static inline struct folio *pfn_folio(unsigned long pfn)
1926 {
1927 	return page_folio(pfn_to_page(pfn));
1928 }
1929 
1930 /**
1931  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1932  * @folio: The folio.
1933  *
1934  * This function checks if a folio has been pinned via a call to
1935  * a function in the pin_user_pages() family.
1936  *
1937  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1938  * because it means "definitely not pinned for DMA", but true means "probably
1939  * pinned for DMA, but possibly a false positive due to having at least
1940  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1941  *
1942  * False positives are OK, because: a) it's unlikely for a folio to
1943  * get that many refcounts, and b) all the callers of this routine are
1944  * expected to be able to deal gracefully with a false positive.
1945  *
1946  * For large folios, the result will be exactly correct. That's because
1947  * we have more tracking data available: the _pincount field is used
1948  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1949  *
1950  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1951  *
1952  * Return: True, if it is likely that the page has been "dma-pinned".
1953  * False, if the page is definitely not dma-pinned.
1954  */
1955 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1956 {
1957 	if (folio_test_large(folio))
1958 		return atomic_read(&folio->_pincount) > 0;
1959 
1960 	/*
1961 	 * folio_ref_count() is signed. If that refcount overflows, then
1962 	 * folio_ref_count() returns a negative value, and callers will avoid
1963 	 * further incrementing the refcount.
1964 	 *
1965 	 * Here, for that overflow case, use the sign bit to count a little
1966 	 * bit higher via unsigned math, and thus still get an accurate result.
1967 	 */
1968 	return ((unsigned int)folio_ref_count(folio)) >=
1969 		GUP_PIN_COUNTING_BIAS;
1970 }
1971 
1972 static inline bool page_maybe_dma_pinned(struct page *page)
1973 {
1974 	return folio_maybe_dma_pinned(page_folio(page));
1975 }
1976 
1977 /*
1978  * This should most likely only be called during fork() to see whether we
1979  * should break the cow immediately for an anon page on the src mm.
1980  *
1981  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1982  */
1983 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1984 					  struct folio *folio)
1985 {
1986 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1987 
1988 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1989 		return false;
1990 
1991 	return folio_maybe_dma_pinned(folio);
1992 }
1993 
1994 /**
1995  * is_zero_page - Query if a page is a zero page
1996  * @page: The page to query
1997  *
1998  * This returns true if @page is one of the permanent zero pages.
1999  */
2000 static inline bool is_zero_page(const struct page *page)
2001 {
2002 	return is_zero_pfn(page_to_pfn(page));
2003 }
2004 
2005 /**
2006  * is_zero_folio - Query if a folio is a zero page
2007  * @folio: The folio to query
2008  *
2009  * This returns true if @folio is one of the permanent zero pages.
2010  */
2011 static inline bool is_zero_folio(const struct folio *folio)
2012 {
2013 	return is_zero_page(&folio->page);
2014 }
2015 
2016 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2017 #ifdef CONFIG_MIGRATION
2018 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2019 {
2020 #ifdef CONFIG_CMA
2021 	int mt = folio_migratetype(folio);
2022 
2023 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2024 		return false;
2025 #endif
2026 	/* The zero page can be "pinned" but gets special handling. */
2027 	if (is_zero_folio(folio))
2028 		return true;
2029 
2030 	/* Coherent device memory must always allow eviction. */
2031 	if (folio_is_device_coherent(folio))
2032 		return false;
2033 
2034 	/* Otherwise, non-movable zone folios can be pinned. */
2035 	return !folio_is_zone_movable(folio);
2036 
2037 }
2038 #else
2039 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2040 {
2041 	return true;
2042 }
2043 #endif
2044 
2045 static inline void set_page_zone(struct page *page, enum zone_type zone)
2046 {
2047 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2048 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2049 }
2050 
2051 static inline void set_page_node(struct page *page, unsigned long node)
2052 {
2053 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2054 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2055 }
2056 
2057 static inline void set_page_links(struct page *page, enum zone_type zone,
2058 	unsigned long node, unsigned long pfn)
2059 {
2060 	set_page_zone(page, zone);
2061 	set_page_node(page, node);
2062 #ifdef SECTION_IN_PAGE_FLAGS
2063 	set_page_section(page, pfn_to_section_nr(pfn));
2064 #endif
2065 }
2066 
2067 /**
2068  * folio_nr_pages - The number of pages in the folio.
2069  * @folio: The folio.
2070  *
2071  * Return: A positive power of two.
2072  */
2073 static inline long folio_nr_pages(const struct folio *folio)
2074 {
2075 	if (!folio_test_large(folio))
2076 		return 1;
2077 #ifdef CONFIG_64BIT
2078 	return folio->_folio_nr_pages;
2079 #else
2080 	return 1L << (folio->_flags_1 & 0xff);
2081 #endif
2082 }
2083 
2084 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2085 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2086 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2087 #else
2088 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2089 #endif
2090 
2091 /*
2092  * compound_nr() returns the number of pages in this potentially compound
2093  * page.  compound_nr() can be called on a tail page, and is defined to
2094  * return 1 in that case.
2095  */
2096 static inline unsigned long compound_nr(struct page *page)
2097 {
2098 	struct folio *folio = (struct folio *)page;
2099 
2100 	if (!test_bit(PG_head, &folio->flags))
2101 		return 1;
2102 #ifdef CONFIG_64BIT
2103 	return folio->_folio_nr_pages;
2104 #else
2105 	return 1L << (folio->_flags_1 & 0xff);
2106 #endif
2107 }
2108 
2109 /**
2110  * thp_nr_pages - The number of regular pages in this huge page.
2111  * @page: The head page of a huge page.
2112  */
2113 static inline int thp_nr_pages(struct page *page)
2114 {
2115 	return folio_nr_pages((struct folio *)page);
2116 }
2117 
2118 /**
2119  * folio_next - Move to the next physical folio.
2120  * @folio: The folio we're currently operating on.
2121  *
2122  * If you have physically contiguous memory which may span more than
2123  * one folio (eg a &struct bio_vec), use this function to move from one
2124  * folio to the next.  Do not use it if the memory is only virtually
2125  * contiguous as the folios are almost certainly not adjacent to each
2126  * other.  This is the folio equivalent to writing ``page++``.
2127  *
2128  * Context: We assume that the folios are refcounted and/or locked at a
2129  * higher level and do not adjust the reference counts.
2130  * Return: The next struct folio.
2131  */
2132 static inline struct folio *folio_next(struct folio *folio)
2133 {
2134 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2135 }
2136 
2137 /**
2138  * folio_shift - The size of the memory described by this folio.
2139  * @folio: The folio.
2140  *
2141  * A folio represents a number of bytes which is a power-of-two in size.
2142  * This function tells you which power-of-two the folio is.  See also
2143  * folio_size() and folio_order().
2144  *
2145  * Context: The caller should have a reference on the folio to prevent
2146  * it from being split.  It is not necessary for the folio to be locked.
2147  * Return: The base-2 logarithm of the size of this folio.
2148  */
2149 static inline unsigned int folio_shift(struct folio *folio)
2150 {
2151 	return PAGE_SHIFT + folio_order(folio);
2152 }
2153 
2154 /**
2155  * folio_size - The number of bytes in a folio.
2156  * @folio: The folio.
2157  *
2158  * Context: The caller should have a reference on the folio to prevent
2159  * it from being split.  It is not necessary for the folio to be locked.
2160  * Return: The number of bytes in this folio.
2161  */
2162 static inline size_t folio_size(struct folio *folio)
2163 {
2164 	return PAGE_SIZE << folio_order(folio);
2165 }
2166 
2167 /**
2168  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2169  *				tables of more than one MM
2170  * @folio: The folio.
2171  *
2172  * This function checks if the folio is currently mapped into more than one
2173  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2174  * ("mapped exclusively").
2175  *
2176  * As precise information is not easily available for all folios, this function
2177  * estimates the number of MMs ("sharers") that are currently mapping a folio
2178  * using the number of times the first page of the folio is currently mapped
2179  * into page tables.
2180  *
2181  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2182  * the return value will be exactly correct, because they can only be mapped
2183  * at most once into an MM, and they cannot be partially mapped.
2184  *
2185  * For other folios, the result can be fuzzy:
2186  *    #. For partially-mappable large folios (THP), the return value can wrongly
2187  *       indicate "mapped exclusively" (false negative) when the folio is
2188  *       only partially mapped into at least one MM.
2189  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2190  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2191  *       cover the same file range.
2192  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2193  *       shared" (false negative), when the folio is mapped multiple times into
2194  *       the same MM.
2195  *
2196  * Further, this function only considers current page table mappings that
2197  * are tracked using the folio mapcount(s).
2198  *
2199  * This function does not consider:
2200  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2201  *       pagecache, temporary unmapping for migration).
2202  *    #. If the folio is mapped differently (VM_PFNMAP).
2203  *    #. If hugetlb page table sharing applies. Callers might want to check
2204  *       hugetlb_pmd_shared().
2205  *
2206  * Return: Whether the folio is estimated to be mapped into more than one MM.
2207  */
2208 static inline bool folio_likely_mapped_shared(struct folio *folio)
2209 {
2210 	return page_mapcount(folio_page(folio, 0)) > 1;
2211 }
2212 
2213 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2214 static inline int arch_make_page_accessible(struct page *page)
2215 {
2216 	return 0;
2217 }
2218 #endif
2219 
2220 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2221 static inline int arch_make_folio_accessible(struct folio *folio)
2222 {
2223 	int ret;
2224 	long i, nr = folio_nr_pages(folio);
2225 
2226 	for (i = 0; i < nr; i++) {
2227 		ret = arch_make_page_accessible(folio_page(folio, i));
2228 		if (ret)
2229 			break;
2230 	}
2231 
2232 	return ret;
2233 }
2234 #endif
2235 
2236 /*
2237  * Some inline functions in vmstat.h depend on page_zone()
2238  */
2239 #include <linux/vmstat.h>
2240 
2241 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2242 #define HASHED_PAGE_VIRTUAL
2243 #endif
2244 
2245 #if defined(WANT_PAGE_VIRTUAL)
2246 static inline void *page_address(const struct page *page)
2247 {
2248 	return page->virtual;
2249 }
2250 static inline void set_page_address(struct page *page, void *address)
2251 {
2252 	page->virtual = address;
2253 }
2254 #define page_address_init()  do { } while(0)
2255 #endif
2256 
2257 #if defined(HASHED_PAGE_VIRTUAL)
2258 void *page_address(const struct page *page);
2259 void set_page_address(struct page *page, void *virtual);
2260 void page_address_init(void);
2261 #endif
2262 
2263 static __always_inline void *lowmem_page_address(const struct page *page)
2264 {
2265 	return page_to_virt(page);
2266 }
2267 
2268 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2269 #define page_address(page) lowmem_page_address(page)
2270 #define set_page_address(page, address)  do { } while(0)
2271 #define page_address_init()  do { } while(0)
2272 #endif
2273 
2274 static inline void *folio_address(const struct folio *folio)
2275 {
2276 	return page_address(&folio->page);
2277 }
2278 
2279 extern pgoff_t __page_file_index(struct page *page);
2280 
2281 /*
2282  * Return the pagecache index of the passed page.  Regular pagecache pages
2283  * use ->index whereas swapcache pages use swp_offset(->private)
2284  */
2285 static inline pgoff_t page_index(struct page *page)
2286 {
2287 	if (unlikely(PageSwapCache(page)))
2288 		return __page_file_index(page);
2289 	return page->index;
2290 }
2291 
2292 /*
2293  * Return true only if the page has been allocated with
2294  * ALLOC_NO_WATERMARKS and the low watermark was not
2295  * met implying that the system is under some pressure.
2296  */
2297 static inline bool page_is_pfmemalloc(const struct page *page)
2298 {
2299 	/*
2300 	 * lru.next has bit 1 set if the page is allocated from the
2301 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2302 	 * they do not need to preserve that information.
2303 	 */
2304 	return (uintptr_t)page->lru.next & BIT(1);
2305 }
2306 
2307 /*
2308  * Return true only if the folio has been allocated with
2309  * ALLOC_NO_WATERMARKS and the low watermark was not
2310  * met implying that the system is under some pressure.
2311  */
2312 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2313 {
2314 	/*
2315 	 * lru.next has bit 1 set if the page is allocated from the
2316 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2317 	 * they do not need to preserve that information.
2318 	 */
2319 	return (uintptr_t)folio->lru.next & BIT(1);
2320 }
2321 
2322 /*
2323  * Only to be called by the page allocator on a freshly allocated
2324  * page.
2325  */
2326 static inline void set_page_pfmemalloc(struct page *page)
2327 {
2328 	page->lru.next = (void *)BIT(1);
2329 }
2330 
2331 static inline void clear_page_pfmemalloc(struct page *page)
2332 {
2333 	page->lru.next = NULL;
2334 }
2335 
2336 /*
2337  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2338  */
2339 extern void pagefault_out_of_memory(void);
2340 
2341 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2342 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2343 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2344 
2345 /*
2346  * Parameter block passed down to zap_pte_range in exceptional cases.
2347  */
2348 struct zap_details {
2349 	struct folio *single_folio;	/* Locked folio to be unmapped */
2350 	bool even_cows;			/* Zap COWed private pages too? */
2351 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2352 };
2353 
2354 /*
2355  * Whether to drop the pte markers, for example, the uffd-wp information for
2356  * file-backed memory.  This should only be specified when we will completely
2357  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2358  * default, the flag is not set.
2359  */
2360 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2361 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2362 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2363 
2364 #ifdef CONFIG_SCHED_MM_CID
2365 void sched_mm_cid_before_execve(struct task_struct *t);
2366 void sched_mm_cid_after_execve(struct task_struct *t);
2367 void sched_mm_cid_fork(struct task_struct *t);
2368 void sched_mm_cid_exit_signals(struct task_struct *t);
2369 static inline int task_mm_cid(struct task_struct *t)
2370 {
2371 	return t->mm_cid;
2372 }
2373 #else
2374 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2375 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2376 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2377 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2378 static inline int task_mm_cid(struct task_struct *t)
2379 {
2380 	/*
2381 	 * Use the processor id as a fall-back when the mm cid feature is
2382 	 * disabled. This provides functional per-cpu data structure accesses
2383 	 * in user-space, althrough it won't provide the memory usage benefits.
2384 	 */
2385 	return raw_smp_processor_id();
2386 }
2387 #endif
2388 
2389 #ifdef CONFIG_MMU
2390 extern bool can_do_mlock(void);
2391 #else
2392 static inline bool can_do_mlock(void) { return false; }
2393 #endif
2394 extern int user_shm_lock(size_t, struct ucounts *);
2395 extern void user_shm_unlock(size_t, struct ucounts *);
2396 
2397 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2398 			     pte_t pte);
2399 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2400 			     pte_t pte);
2401 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2402 				  unsigned long addr, pmd_t pmd);
2403 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2404 				pmd_t pmd);
2405 
2406 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2407 		  unsigned long size);
2408 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2409 			   unsigned long size, struct zap_details *details);
2410 static inline void zap_vma_pages(struct vm_area_struct *vma)
2411 {
2412 	zap_page_range_single(vma, vma->vm_start,
2413 			      vma->vm_end - vma->vm_start, NULL);
2414 }
2415 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2416 		struct vm_area_struct *start_vma, unsigned long start,
2417 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2418 
2419 struct mmu_notifier_range;
2420 
2421 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2422 		unsigned long end, unsigned long floor, unsigned long ceiling);
2423 int
2424 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2425 int follow_pte(struct mm_struct *mm, unsigned long address,
2426 	       pte_t **ptepp, spinlock_t **ptlp);
2427 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2428 			void *buf, int len, int write);
2429 
2430 extern void truncate_pagecache(struct inode *inode, loff_t new);
2431 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2432 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2433 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2434 int generic_error_remove_folio(struct address_space *mapping,
2435 		struct folio *folio);
2436 
2437 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2438 		unsigned long address, struct pt_regs *regs);
2439 
2440 #ifdef CONFIG_MMU
2441 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2442 				  unsigned long address, unsigned int flags,
2443 				  struct pt_regs *regs);
2444 extern int fixup_user_fault(struct mm_struct *mm,
2445 			    unsigned long address, unsigned int fault_flags,
2446 			    bool *unlocked);
2447 void unmap_mapping_pages(struct address_space *mapping,
2448 		pgoff_t start, pgoff_t nr, bool even_cows);
2449 void unmap_mapping_range(struct address_space *mapping,
2450 		loff_t const holebegin, loff_t const holelen, int even_cows);
2451 #else
2452 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2453 					 unsigned long address, unsigned int flags,
2454 					 struct pt_regs *regs)
2455 {
2456 	/* should never happen if there's no MMU */
2457 	BUG();
2458 	return VM_FAULT_SIGBUS;
2459 }
2460 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2461 		unsigned int fault_flags, bool *unlocked)
2462 {
2463 	/* should never happen if there's no MMU */
2464 	BUG();
2465 	return -EFAULT;
2466 }
2467 static inline void unmap_mapping_pages(struct address_space *mapping,
2468 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2469 static inline void unmap_mapping_range(struct address_space *mapping,
2470 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2471 #endif
2472 
2473 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2474 		loff_t const holebegin, loff_t const holelen)
2475 {
2476 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2477 }
2478 
2479 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2480 						unsigned long addr);
2481 
2482 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2483 		void *buf, int len, unsigned int gup_flags);
2484 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2485 		void *buf, int len, unsigned int gup_flags);
2486 
2487 long get_user_pages_remote(struct mm_struct *mm,
2488 			   unsigned long start, unsigned long nr_pages,
2489 			   unsigned int gup_flags, struct page **pages,
2490 			   int *locked);
2491 long pin_user_pages_remote(struct mm_struct *mm,
2492 			   unsigned long start, unsigned long nr_pages,
2493 			   unsigned int gup_flags, struct page **pages,
2494 			   int *locked);
2495 
2496 /*
2497  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2498  */
2499 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2500 						    unsigned long addr,
2501 						    int gup_flags,
2502 						    struct vm_area_struct **vmap)
2503 {
2504 	struct page *page;
2505 	struct vm_area_struct *vma;
2506 	int got;
2507 
2508 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2509 		return ERR_PTR(-EINVAL);
2510 
2511 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2512 
2513 	if (got < 0)
2514 		return ERR_PTR(got);
2515 
2516 	vma = vma_lookup(mm, addr);
2517 	if (WARN_ON_ONCE(!vma)) {
2518 		put_page(page);
2519 		return ERR_PTR(-EINVAL);
2520 	}
2521 
2522 	*vmap = vma;
2523 	return page;
2524 }
2525 
2526 long get_user_pages(unsigned long start, unsigned long nr_pages,
2527 		    unsigned int gup_flags, struct page **pages);
2528 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2529 		    unsigned int gup_flags, struct page **pages);
2530 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2531 		    struct page **pages, unsigned int gup_flags);
2532 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2533 		    struct page **pages, unsigned int gup_flags);
2534 
2535 int get_user_pages_fast(unsigned long start, int nr_pages,
2536 			unsigned int gup_flags, struct page **pages);
2537 int pin_user_pages_fast(unsigned long start, int nr_pages,
2538 			unsigned int gup_flags, struct page **pages);
2539 void folio_add_pin(struct folio *folio);
2540 
2541 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2542 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2543 			struct task_struct *task, bool bypass_rlim);
2544 
2545 struct kvec;
2546 struct page *get_dump_page(unsigned long addr);
2547 
2548 bool folio_mark_dirty(struct folio *folio);
2549 bool set_page_dirty(struct page *page);
2550 int set_page_dirty_lock(struct page *page);
2551 
2552 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2553 
2554 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2555 		unsigned long old_addr, struct vm_area_struct *new_vma,
2556 		unsigned long new_addr, unsigned long len,
2557 		bool need_rmap_locks, bool for_stack);
2558 
2559 /*
2560  * Flags used by change_protection().  For now we make it a bitmap so
2561  * that we can pass in multiple flags just like parameters.  However
2562  * for now all the callers are only use one of the flags at the same
2563  * time.
2564  */
2565 /*
2566  * Whether we should manually check if we can map individual PTEs writable,
2567  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2568  * PTEs automatically in a writable mapping.
2569  */
2570 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2571 /* Whether this protection change is for NUMA hints */
2572 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2573 /* Whether this change is for write protecting */
2574 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2575 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2576 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2577 					    MM_CP_UFFD_WP_RESOLVE)
2578 
2579 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2580 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2581 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2582 {
2583 	/*
2584 	 * We want to check manually if we can change individual PTEs writable
2585 	 * if we can't do that automatically for all PTEs in a mapping. For
2586 	 * private mappings, that's always the case when we have write
2587 	 * permissions as we properly have to handle COW.
2588 	 */
2589 	if (vma->vm_flags & VM_SHARED)
2590 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2591 	return !!(vma->vm_flags & VM_WRITE);
2592 
2593 }
2594 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2595 			     pte_t pte);
2596 extern long change_protection(struct mmu_gather *tlb,
2597 			      struct vm_area_struct *vma, unsigned long start,
2598 			      unsigned long end, unsigned long cp_flags);
2599 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2600 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2601 	  unsigned long start, unsigned long end, unsigned long newflags);
2602 
2603 /*
2604  * doesn't attempt to fault and will return short.
2605  */
2606 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2607 			     unsigned int gup_flags, struct page **pages);
2608 
2609 static inline bool get_user_page_fast_only(unsigned long addr,
2610 			unsigned int gup_flags, struct page **pagep)
2611 {
2612 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2613 }
2614 /*
2615  * per-process(per-mm_struct) statistics.
2616  */
2617 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2618 {
2619 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2620 }
2621 
2622 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2623 
2624 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2625 {
2626 	percpu_counter_add(&mm->rss_stat[member], value);
2627 
2628 	mm_trace_rss_stat(mm, member);
2629 }
2630 
2631 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2632 {
2633 	percpu_counter_inc(&mm->rss_stat[member]);
2634 
2635 	mm_trace_rss_stat(mm, member);
2636 }
2637 
2638 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2639 {
2640 	percpu_counter_dec(&mm->rss_stat[member]);
2641 
2642 	mm_trace_rss_stat(mm, member);
2643 }
2644 
2645 /* Optimized variant when folio is already known not to be anon */
2646 static inline int mm_counter_file(struct folio *folio)
2647 {
2648 	if (folio_test_swapbacked(folio))
2649 		return MM_SHMEMPAGES;
2650 	return MM_FILEPAGES;
2651 }
2652 
2653 static inline int mm_counter(struct folio *folio)
2654 {
2655 	if (folio_test_anon(folio))
2656 		return MM_ANONPAGES;
2657 	return mm_counter_file(folio);
2658 }
2659 
2660 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2661 {
2662 	return get_mm_counter(mm, MM_FILEPAGES) +
2663 		get_mm_counter(mm, MM_ANONPAGES) +
2664 		get_mm_counter(mm, MM_SHMEMPAGES);
2665 }
2666 
2667 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2668 {
2669 	return max(mm->hiwater_rss, get_mm_rss(mm));
2670 }
2671 
2672 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2673 {
2674 	return max(mm->hiwater_vm, mm->total_vm);
2675 }
2676 
2677 static inline void update_hiwater_rss(struct mm_struct *mm)
2678 {
2679 	unsigned long _rss = get_mm_rss(mm);
2680 
2681 	if ((mm)->hiwater_rss < _rss)
2682 		(mm)->hiwater_rss = _rss;
2683 }
2684 
2685 static inline void update_hiwater_vm(struct mm_struct *mm)
2686 {
2687 	if (mm->hiwater_vm < mm->total_vm)
2688 		mm->hiwater_vm = mm->total_vm;
2689 }
2690 
2691 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2692 {
2693 	mm->hiwater_rss = get_mm_rss(mm);
2694 }
2695 
2696 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2697 					 struct mm_struct *mm)
2698 {
2699 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2700 
2701 	if (*maxrss < hiwater_rss)
2702 		*maxrss = hiwater_rss;
2703 }
2704 
2705 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2706 static inline int pte_special(pte_t pte)
2707 {
2708 	return 0;
2709 }
2710 
2711 static inline pte_t pte_mkspecial(pte_t pte)
2712 {
2713 	return pte;
2714 }
2715 #endif
2716 
2717 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2718 static inline int pte_devmap(pte_t pte)
2719 {
2720 	return 0;
2721 }
2722 #endif
2723 
2724 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2725 			       spinlock_t **ptl);
2726 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2727 				    spinlock_t **ptl)
2728 {
2729 	pte_t *ptep;
2730 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2731 	return ptep;
2732 }
2733 
2734 #ifdef __PAGETABLE_P4D_FOLDED
2735 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2736 						unsigned long address)
2737 {
2738 	return 0;
2739 }
2740 #else
2741 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2742 #endif
2743 
2744 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2745 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2746 						unsigned long address)
2747 {
2748 	return 0;
2749 }
2750 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2751 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2752 
2753 #else
2754 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2755 
2756 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2757 {
2758 	if (mm_pud_folded(mm))
2759 		return;
2760 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2761 }
2762 
2763 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2764 {
2765 	if (mm_pud_folded(mm))
2766 		return;
2767 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2768 }
2769 #endif
2770 
2771 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2772 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2773 						unsigned long address)
2774 {
2775 	return 0;
2776 }
2777 
2778 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2779 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2780 
2781 #else
2782 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2783 
2784 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2785 {
2786 	if (mm_pmd_folded(mm))
2787 		return;
2788 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2789 }
2790 
2791 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2792 {
2793 	if (mm_pmd_folded(mm))
2794 		return;
2795 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2796 }
2797 #endif
2798 
2799 #ifdef CONFIG_MMU
2800 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2801 {
2802 	atomic_long_set(&mm->pgtables_bytes, 0);
2803 }
2804 
2805 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2806 {
2807 	return atomic_long_read(&mm->pgtables_bytes);
2808 }
2809 
2810 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2811 {
2812 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2813 }
2814 
2815 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2816 {
2817 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2818 }
2819 #else
2820 
2821 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2822 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2823 {
2824 	return 0;
2825 }
2826 
2827 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2828 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2829 #endif
2830 
2831 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2832 int __pte_alloc_kernel(pmd_t *pmd);
2833 
2834 #if defined(CONFIG_MMU)
2835 
2836 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2837 		unsigned long address)
2838 {
2839 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2840 		NULL : p4d_offset(pgd, address);
2841 }
2842 
2843 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2844 		unsigned long address)
2845 {
2846 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2847 		NULL : pud_offset(p4d, address);
2848 }
2849 
2850 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2851 {
2852 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2853 		NULL: pmd_offset(pud, address);
2854 }
2855 #endif /* CONFIG_MMU */
2856 
2857 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2858 {
2859 	return page_ptdesc(virt_to_page(x));
2860 }
2861 
2862 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2863 {
2864 	return page_to_virt(ptdesc_page(pt));
2865 }
2866 
2867 static inline void *ptdesc_address(const struct ptdesc *pt)
2868 {
2869 	return folio_address(ptdesc_folio(pt));
2870 }
2871 
2872 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2873 {
2874 	return folio_test_reserved(ptdesc_folio(pt));
2875 }
2876 
2877 /**
2878  * pagetable_alloc - Allocate pagetables
2879  * @gfp:    GFP flags
2880  * @order:  desired pagetable order
2881  *
2882  * pagetable_alloc allocates memory for page tables as well as a page table
2883  * descriptor to describe that memory.
2884  *
2885  * Return: The ptdesc describing the allocated page tables.
2886  */
2887 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2888 {
2889 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2890 
2891 	return page_ptdesc(page);
2892 }
2893 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2894 
2895 /**
2896  * pagetable_free - Free pagetables
2897  * @pt:	The page table descriptor
2898  *
2899  * pagetable_free frees the memory of all page tables described by a page
2900  * table descriptor and the memory for the descriptor itself.
2901  */
2902 static inline void pagetable_free(struct ptdesc *pt)
2903 {
2904 	struct page *page = ptdesc_page(pt);
2905 
2906 	__free_pages(page, compound_order(page));
2907 }
2908 
2909 #if USE_SPLIT_PTE_PTLOCKS
2910 #if ALLOC_SPLIT_PTLOCKS
2911 void __init ptlock_cache_init(void);
2912 bool ptlock_alloc(struct ptdesc *ptdesc);
2913 void ptlock_free(struct ptdesc *ptdesc);
2914 
2915 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2916 {
2917 	return ptdesc->ptl;
2918 }
2919 #else /* ALLOC_SPLIT_PTLOCKS */
2920 static inline void ptlock_cache_init(void)
2921 {
2922 }
2923 
2924 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2925 {
2926 	return true;
2927 }
2928 
2929 static inline void ptlock_free(struct ptdesc *ptdesc)
2930 {
2931 }
2932 
2933 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2934 {
2935 	return &ptdesc->ptl;
2936 }
2937 #endif /* ALLOC_SPLIT_PTLOCKS */
2938 
2939 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2940 {
2941 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2942 }
2943 
2944 static inline bool ptlock_init(struct ptdesc *ptdesc)
2945 {
2946 	/*
2947 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2948 	 * with 0. Make sure nobody took it in use in between.
2949 	 *
2950 	 * It can happen if arch try to use slab for page table allocation:
2951 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2952 	 */
2953 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2954 	if (!ptlock_alloc(ptdesc))
2955 		return false;
2956 	spin_lock_init(ptlock_ptr(ptdesc));
2957 	return true;
2958 }
2959 
2960 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2961 /*
2962  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2963  */
2964 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2965 {
2966 	return &mm->page_table_lock;
2967 }
2968 static inline void ptlock_cache_init(void) {}
2969 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2970 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2971 #endif /* USE_SPLIT_PTE_PTLOCKS */
2972 
2973 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2974 {
2975 	struct folio *folio = ptdesc_folio(ptdesc);
2976 
2977 	if (!ptlock_init(ptdesc))
2978 		return false;
2979 	__folio_set_pgtable(folio);
2980 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2981 	return true;
2982 }
2983 
2984 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2985 {
2986 	struct folio *folio = ptdesc_folio(ptdesc);
2987 
2988 	ptlock_free(ptdesc);
2989 	__folio_clear_pgtable(folio);
2990 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2991 }
2992 
2993 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2994 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2995 {
2996 	return __pte_offset_map(pmd, addr, NULL);
2997 }
2998 
2999 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3000 			unsigned long addr, spinlock_t **ptlp);
3001 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3002 			unsigned long addr, spinlock_t **ptlp)
3003 {
3004 	pte_t *pte;
3005 
3006 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3007 	return pte;
3008 }
3009 
3010 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3011 			unsigned long addr, spinlock_t **ptlp);
3012 
3013 #define pte_unmap_unlock(pte, ptl)	do {		\
3014 	spin_unlock(ptl);				\
3015 	pte_unmap(pte);					\
3016 } while (0)
3017 
3018 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3019 
3020 #define pte_alloc_map(mm, pmd, address)			\
3021 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3022 
3023 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3024 	(pte_alloc(mm, pmd) ?			\
3025 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3026 
3027 #define pte_alloc_kernel(pmd, address)			\
3028 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3029 		NULL: pte_offset_kernel(pmd, address))
3030 
3031 #if USE_SPLIT_PMD_PTLOCKS
3032 
3033 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3034 {
3035 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3036 	return virt_to_page((void *)((unsigned long) pmd & mask));
3037 }
3038 
3039 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3040 {
3041 	return page_ptdesc(pmd_pgtable_page(pmd));
3042 }
3043 
3044 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3045 {
3046 	return ptlock_ptr(pmd_ptdesc(pmd));
3047 }
3048 
3049 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3050 {
3051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3052 	ptdesc->pmd_huge_pte = NULL;
3053 #endif
3054 	return ptlock_init(ptdesc);
3055 }
3056 
3057 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3058 {
3059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3060 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3061 #endif
3062 	ptlock_free(ptdesc);
3063 }
3064 
3065 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3066 
3067 #else
3068 
3069 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3070 {
3071 	return &mm->page_table_lock;
3072 }
3073 
3074 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3075 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3076 
3077 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3078 
3079 #endif
3080 
3081 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3082 {
3083 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3084 	spin_lock(ptl);
3085 	return ptl;
3086 }
3087 
3088 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3089 {
3090 	struct folio *folio = ptdesc_folio(ptdesc);
3091 
3092 	if (!pmd_ptlock_init(ptdesc))
3093 		return false;
3094 	__folio_set_pgtable(folio);
3095 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3096 	return true;
3097 }
3098 
3099 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3100 {
3101 	struct folio *folio = ptdesc_folio(ptdesc);
3102 
3103 	pmd_ptlock_free(ptdesc);
3104 	__folio_clear_pgtable(folio);
3105 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3106 }
3107 
3108 /*
3109  * No scalability reason to split PUD locks yet, but follow the same pattern
3110  * as the PMD locks to make it easier if we decide to.  The VM should not be
3111  * considered ready to switch to split PUD locks yet; there may be places
3112  * which need to be converted from page_table_lock.
3113  */
3114 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3115 {
3116 	return &mm->page_table_lock;
3117 }
3118 
3119 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3120 {
3121 	spinlock_t *ptl = pud_lockptr(mm, pud);
3122 
3123 	spin_lock(ptl);
3124 	return ptl;
3125 }
3126 
3127 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3128 {
3129 	struct folio *folio = ptdesc_folio(ptdesc);
3130 
3131 	__folio_set_pgtable(folio);
3132 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3133 }
3134 
3135 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3136 {
3137 	struct folio *folio = ptdesc_folio(ptdesc);
3138 
3139 	__folio_clear_pgtable(folio);
3140 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3141 }
3142 
3143 extern void __init pagecache_init(void);
3144 extern void free_initmem(void);
3145 
3146 /*
3147  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3148  * into the buddy system. The freed pages will be poisoned with pattern
3149  * "poison" if it's within range [0, UCHAR_MAX].
3150  * Return pages freed into the buddy system.
3151  */
3152 extern unsigned long free_reserved_area(void *start, void *end,
3153 					int poison, const char *s);
3154 
3155 extern void adjust_managed_page_count(struct page *page, long count);
3156 
3157 extern void reserve_bootmem_region(phys_addr_t start,
3158 				   phys_addr_t end, int nid);
3159 
3160 /* Free the reserved page into the buddy system, so it gets managed. */
3161 static inline void free_reserved_page(struct page *page)
3162 {
3163 	if (mem_alloc_profiling_enabled()) {
3164 		union codetag_ref *ref = get_page_tag_ref(page);
3165 
3166 		if (ref) {
3167 			set_codetag_empty(ref);
3168 			put_page_tag_ref(ref);
3169 		}
3170 	}
3171 	ClearPageReserved(page);
3172 	init_page_count(page);
3173 	__free_page(page);
3174 	adjust_managed_page_count(page, 1);
3175 }
3176 #define free_highmem_page(page) free_reserved_page(page)
3177 
3178 static inline void mark_page_reserved(struct page *page)
3179 {
3180 	SetPageReserved(page);
3181 	adjust_managed_page_count(page, -1);
3182 }
3183 
3184 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3185 {
3186 	free_reserved_page(ptdesc_page(pt));
3187 }
3188 
3189 /*
3190  * Default method to free all the __init memory into the buddy system.
3191  * The freed pages will be poisoned with pattern "poison" if it's within
3192  * range [0, UCHAR_MAX].
3193  * Return pages freed into the buddy system.
3194  */
3195 static inline unsigned long free_initmem_default(int poison)
3196 {
3197 	extern char __init_begin[], __init_end[];
3198 
3199 	return free_reserved_area(&__init_begin, &__init_end,
3200 				  poison, "unused kernel image (initmem)");
3201 }
3202 
3203 static inline unsigned long get_num_physpages(void)
3204 {
3205 	int nid;
3206 	unsigned long phys_pages = 0;
3207 
3208 	for_each_online_node(nid)
3209 		phys_pages += node_present_pages(nid);
3210 
3211 	return phys_pages;
3212 }
3213 
3214 /*
3215  * Using memblock node mappings, an architecture may initialise its
3216  * zones, allocate the backing mem_map and account for memory holes in an
3217  * architecture independent manner.
3218  *
3219  * An architecture is expected to register range of page frames backed by
3220  * physical memory with memblock_add[_node]() before calling
3221  * free_area_init() passing in the PFN each zone ends at. At a basic
3222  * usage, an architecture is expected to do something like
3223  *
3224  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3225  * 							 max_highmem_pfn};
3226  * for_each_valid_physical_page_range()
3227  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3228  * free_area_init(max_zone_pfns);
3229  */
3230 void free_area_init(unsigned long *max_zone_pfn);
3231 unsigned long node_map_pfn_alignment(void);
3232 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3233 						unsigned long end_pfn);
3234 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3235 						unsigned long end_pfn);
3236 extern void get_pfn_range_for_nid(unsigned int nid,
3237 			unsigned long *start_pfn, unsigned long *end_pfn);
3238 
3239 #ifndef CONFIG_NUMA
3240 static inline int early_pfn_to_nid(unsigned long pfn)
3241 {
3242 	return 0;
3243 }
3244 #else
3245 /* please see mm/page_alloc.c */
3246 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3247 #endif
3248 
3249 extern void mem_init(void);
3250 extern void __init mmap_init(void);
3251 
3252 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3253 static inline void show_mem(void)
3254 {
3255 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3256 }
3257 extern long si_mem_available(void);
3258 extern void si_meminfo(struct sysinfo * val);
3259 extern void si_meminfo_node(struct sysinfo *val, int nid);
3260 
3261 extern __printf(3, 4)
3262 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3263 
3264 extern void setup_per_cpu_pageset(void);
3265 
3266 /* nommu.c */
3267 extern atomic_long_t mmap_pages_allocated;
3268 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3269 
3270 /* interval_tree.c */
3271 void vma_interval_tree_insert(struct vm_area_struct *node,
3272 			      struct rb_root_cached *root);
3273 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3274 				    struct vm_area_struct *prev,
3275 				    struct rb_root_cached *root);
3276 void vma_interval_tree_remove(struct vm_area_struct *node,
3277 			      struct rb_root_cached *root);
3278 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3279 				unsigned long start, unsigned long last);
3280 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3281 				unsigned long start, unsigned long last);
3282 
3283 #define vma_interval_tree_foreach(vma, root, start, last)		\
3284 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3285 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3286 
3287 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3288 				   struct rb_root_cached *root);
3289 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3290 				   struct rb_root_cached *root);
3291 struct anon_vma_chain *
3292 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3293 				  unsigned long start, unsigned long last);
3294 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3295 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3296 #ifdef CONFIG_DEBUG_VM_RB
3297 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3298 #endif
3299 
3300 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3301 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3302 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3303 
3304 /* mmap.c */
3305 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3306 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3307 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3308 		      struct vm_area_struct *next);
3309 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3310 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3311 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3312 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3313 extern void unlink_file_vma(struct vm_area_struct *);
3314 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3315 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3316 	bool *need_rmap_locks);
3317 extern void exit_mmap(struct mm_struct *);
3318 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3319 				  struct vm_area_struct *prev,
3320 				  struct vm_area_struct *vma,
3321 				  unsigned long start, unsigned long end,
3322 				  unsigned long vm_flags,
3323 				  struct mempolicy *policy,
3324 				  struct vm_userfaultfd_ctx uffd_ctx,
3325 				  struct anon_vma_name *anon_name);
3326 
3327 /* We are about to modify the VMA's flags. */
3328 static inline struct vm_area_struct
3329 *vma_modify_flags(struct vma_iterator *vmi,
3330 		  struct vm_area_struct *prev,
3331 		  struct vm_area_struct *vma,
3332 		  unsigned long start, unsigned long end,
3333 		  unsigned long new_flags)
3334 {
3335 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3336 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3337 			  anon_vma_name(vma));
3338 }
3339 
3340 /* We are about to modify the VMA's flags and/or anon_name. */
3341 static inline struct vm_area_struct
3342 *vma_modify_flags_name(struct vma_iterator *vmi,
3343 		       struct vm_area_struct *prev,
3344 		       struct vm_area_struct *vma,
3345 		       unsigned long start,
3346 		       unsigned long end,
3347 		       unsigned long new_flags,
3348 		       struct anon_vma_name *new_name)
3349 {
3350 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3351 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3352 }
3353 
3354 /* We are about to modify the VMA's memory policy. */
3355 static inline struct vm_area_struct
3356 *vma_modify_policy(struct vma_iterator *vmi,
3357 		   struct vm_area_struct *prev,
3358 		   struct vm_area_struct *vma,
3359 		   unsigned long start, unsigned long end,
3360 		   struct mempolicy *new_pol)
3361 {
3362 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3363 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3364 }
3365 
3366 /* We are about to modify the VMA's flags and/or uffd context. */
3367 static inline struct vm_area_struct
3368 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3369 		       struct vm_area_struct *prev,
3370 		       struct vm_area_struct *vma,
3371 		       unsigned long start, unsigned long end,
3372 		       unsigned long new_flags,
3373 		       struct vm_userfaultfd_ctx new_ctx)
3374 {
3375 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3376 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3377 }
3378 
3379 static inline int check_data_rlimit(unsigned long rlim,
3380 				    unsigned long new,
3381 				    unsigned long start,
3382 				    unsigned long end_data,
3383 				    unsigned long start_data)
3384 {
3385 	if (rlim < RLIM_INFINITY) {
3386 		if (((new - start) + (end_data - start_data)) > rlim)
3387 			return -ENOSPC;
3388 	}
3389 
3390 	return 0;
3391 }
3392 
3393 extern int mm_take_all_locks(struct mm_struct *mm);
3394 extern void mm_drop_all_locks(struct mm_struct *mm);
3395 
3396 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3397 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3398 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3399 extern struct file *get_task_exe_file(struct task_struct *task);
3400 
3401 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3402 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3403 
3404 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3405 				   const struct vm_special_mapping *sm);
3406 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3407 				   unsigned long addr, unsigned long len,
3408 				   unsigned long flags,
3409 				   const struct vm_special_mapping *spec);
3410 /* This is an obsolete alternative to _install_special_mapping. */
3411 extern int install_special_mapping(struct mm_struct *mm,
3412 				   unsigned long addr, unsigned long len,
3413 				   unsigned long flags, struct page **pages);
3414 
3415 unsigned long randomize_stack_top(unsigned long stack_top);
3416 unsigned long randomize_page(unsigned long start, unsigned long range);
3417 
3418 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3419 
3420 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3421 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3422 	struct list_head *uf);
3423 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3424 	unsigned long len, unsigned long prot, unsigned long flags,
3425 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3426 	struct list_head *uf);
3427 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3428 			 unsigned long start, size_t len, struct list_head *uf,
3429 			 bool unlock);
3430 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3431 		     struct list_head *uf);
3432 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3433 
3434 #ifdef CONFIG_MMU
3435 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3436 			 unsigned long start, unsigned long end,
3437 			 struct list_head *uf, bool unlock);
3438 extern int __mm_populate(unsigned long addr, unsigned long len,
3439 			 int ignore_errors);
3440 static inline void mm_populate(unsigned long addr, unsigned long len)
3441 {
3442 	/* Ignore errors */
3443 	(void) __mm_populate(addr, len, 1);
3444 }
3445 #else
3446 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3447 #endif
3448 
3449 /* This takes the mm semaphore itself */
3450 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3451 extern int vm_munmap(unsigned long, size_t);
3452 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3453         unsigned long, unsigned long,
3454         unsigned long, unsigned long);
3455 
3456 struct vm_unmapped_area_info {
3457 #define VM_UNMAPPED_AREA_TOPDOWN 1
3458 	unsigned long flags;
3459 	unsigned long length;
3460 	unsigned long low_limit;
3461 	unsigned long high_limit;
3462 	unsigned long align_mask;
3463 	unsigned long align_offset;
3464 };
3465 
3466 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3467 
3468 /* truncate.c */
3469 extern void truncate_inode_pages(struct address_space *, loff_t);
3470 extern void truncate_inode_pages_range(struct address_space *,
3471 				       loff_t lstart, loff_t lend);
3472 extern void truncate_inode_pages_final(struct address_space *);
3473 
3474 /* generic vm_area_ops exported for stackable file systems */
3475 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3476 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3477 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3478 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3479 
3480 extern unsigned long stack_guard_gap;
3481 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3482 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3483 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3484 
3485 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3486 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3487 
3488 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3489 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3490 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3491 					     struct vm_area_struct **pprev);
3492 
3493 /*
3494  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3495  * NULL if none.  Assume start_addr < end_addr.
3496  */
3497 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3498 			unsigned long start_addr, unsigned long end_addr);
3499 
3500 /**
3501  * vma_lookup() - Find a VMA at a specific address
3502  * @mm: The process address space.
3503  * @addr: The user address.
3504  *
3505  * Return: The vm_area_struct at the given address, %NULL otherwise.
3506  */
3507 static inline
3508 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3509 {
3510 	return mtree_load(&mm->mm_mt, addr);
3511 }
3512 
3513 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3514 {
3515 	if (vma->vm_flags & VM_GROWSDOWN)
3516 		return stack_guard_gap;
3517 
3518 	/* See reasoning around the VM_SHADOW_STACK definition */
3519 	if (vma->vm_flags & VM_SHADOW_STACK)
3520 		return PAGE_SIZE;
3521 
3522 	return 0;
3523 }
3524 
3525 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3526 {
3527 	unsigned long gap = stack_guard_start_gap(vma);
3528 	unsigned long vm_start = vma->vm_start;
3529 
3530 	vm_start -= gap;
3531 	if (vm_start > vma->vm_start)
3532 		vm_start = 0;
3533 	return vm_start;
3534 }
3535 
3536 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3537 {
3538 	unsigned long vm_end = vma->vm_end;
3539 
3540 	if (vma->vm_flags & VM_GROWSUP) {
3541 		vm_end += stack_guard_gap;
3542 		if (vm_end < vma->vm_end)
3543 			vm_end = -PAGE_SIZE;
3544 	}
3545 	return vm_end;
3546 }
3547 
3548 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3549 {
3550 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3551 }
3552 
3553 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3554 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3555 				unsigned long vm_start, unsigned long vm_end)
3556 {
3557 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3558 
3559 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3560 		vma = NULL;
3561 
3562 	return vma;
3563 }
3564 
3565 static inline bool range_in_vma(struct vm_area_struct *vma,
3566 				unsigned long start, unsigned long end)
3567 {
3568 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3569 }
3570 
3571 #ifdef CONFIG_MMU
3572 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3573 void vma_set_page_prot(struct vm_area_struct *vma);
3574 #else
3575 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3576 {
3577 	return __pgprot(0);
3578 }
3579 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3580 {
3581 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3582 }
3583 #endif
3584 
3585 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3586 
3587 #ifdef CONFIG_NUMA_BALANCING
3588 unsigned long change_prot_numa(struct vm_area_struct *vma,
3589 			unsigned long start, unsigned long end);
3590 #endif
3591 
3592 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3593 		unsigned long addr);
3594 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3595 			unsigned long pfn, unsigned long size, pgprot_t);
3596 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3597 		unsigned long pfn, unsigned long size, pgprot_t prot);
3598 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3599 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3600 			struct page **pages, unsigned long *num);
3601 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3602 				unsigned long num);
3603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3604 				unsigned long num);
3605 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3606 			unsigned long pfn);
3607 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3608 			unsigned long pfn, pgprot_t pgprot);
3609 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3610 			pfn_t pfn);
3611 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3612 		unsigned long addr, pfn_t pfn);
3613 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3614 
3615 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3616 				unsigned long addr, struct page *page)
3617 {
3618 	int err = vm_insert_page(vma, addr, page);
3619 
3620 	if (err == -ENOMEM)
3621 		return VM_FAULT_OOM;
3622 	if (err < 0 && err != -EBUSY)
3623 		return VM_FAULT_SIGBUS;
3624 
3625 	return VM_FAULT_NOPAGE;
3626 }
3627 
3628 #ifndef io_remap_pfn_range
3629 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3630 				     unsigned long addr, unsigned long pfn,
3631 				     unsigned long size, pgprot_t prot)
3632 {
3633 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3634 }
3635 #endif
3636 
3637 static inline vm_fault_t vmf_error(int err)
3638 {
3639 	if (err == -ENOMEM)
3640 		return VM_FAULT_OOM;
3641 	else if (err == -EHWPOISON)
3642 		return VM_FAULT_HWPOISON;
3643 	return VM_FAULT_SIGBUS;
3644 }
3645 
3646 /*
3647  * Convert errno to return value for ->page_mkwrite() calls.
3648  *
3649  * This should eventually be merged with vmf_error() above, but will need a
3650  * careful audit of all vmf_error() callers.
3651  */
3652 static inline vm_fault_t vmf_fs_error(int err)
3653 {
3654 	if (err == 0)
3655 		return VM_FAULT_LOCKED;
3656 	if (err == -EFAULT || err == -EAGAIN)
3657 		return VM_FAULT_NOPAGE;
3658 	if (err == -ENOMEM)
3659 		return VM_FAULT_OOM;
3660 	/* -ENOSPC, -EDQUOT, -EIO ... */
3661 	return VM_FAULT_SIGBUS;
3662 }
3663 
3664 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3665 			 unsigned int foll_flags);
3666 
3667 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3668 {
3669 	if (vm_fault & VM_FAULT_OOM)
3670 		return -ENOMEM;
3671 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3672 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3673 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3674 		return -EFAULT;
3675 	return 0;
3676 }
3677 
3678 /*
3679  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3680  * a (NUMA hinting) fault is required.
3681  */
3682 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3683 					   unsigned int flags)
3684 {
3685 	/*
3686 	 * If callers don't want to honor NUMA hinting faults, no need to
3687 	 * determine if we would actually have to trigger a NUMA hinting fault.
3688 	 */
3689 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3690 		return true;
3691 
3692 	/*
3693 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3694 	 *
3695 	 * Requiring a fault here even for inaccessible VMAs would mean that
3696 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3697 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3698 	 */
3699 	return !vma_is_accessible(vma);
3700 }
3701 
3702 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3703 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3704 			       unsigned long size, pte_fn_t fn, void *data);
3705 extern int apply_to_existing_page_range(struct mm_struct *mm,
3706 				   unsigned long address, unsigned long size,
3707 				   pte_fn_t fn, void *data);
3708 
3709 #ifdef CONFIG_PAGE_POISONING
3710 extern void __kernel_poison_pages(struct page *page, int numpages);
3711 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3712 extern bool _page_poisoning_enabled_early;
3713 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3714 static inline bool page_poisoning_enabled(void)
3715 {
3716 	return _page_poisoning_enabled_early;
3717 }
3718 /*
3719  * For use in fast paths after init_mem_debugging() has run, or when a
3720  * false negative result is not harmful when called too early.
3721  */
3722 static inline bool page_poisoning_enabled_static(void)
3723 {
3724 	return static_branch_unlikely(&_page_poisoning_enabled);
3725 }
3726 static inline void kernel_poison_pages(struct page *page, int numpages)
3727 {
3728 	if (page_poisoning_enabled_static())
3729 		__kernel_poison_pages(page, numpages);
3730 }
3731 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3732 {
3733 	if (page_poisoning_enabled_static())
3734 		__kernel_unpoison_pages(page, numpages);
3735 }
3736 #else
3737 static inline bool page_poisoning_enabled(void) { return false; }
3738 static inline bool page_poisoning_enabled_static(void) { return false; }
3739 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3740 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3741 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3742 #endif
3743 
3744 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3745 static inline bool want_init_on_alloc(gfp_t flags)
3746 {
3747 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3748 				&init_on_alloc))
3749 		return true;
3750 	return flags & __GFP_ZERO;
3751 }
3752 
3753 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3754 static inline bool want_init_on_free(void)
3755 {
3756 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3757 				   &init_on_free);
3758 }
3759 
3760 extern bool _debug_pagealloc_enabled_early;
3761 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3762 
3763 static inline bool debug_pagealloc_enabled(void)
3764 {
3765 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3766 		_debug_pagealloc_enabled_early;
3767 }
3768 
3769 /*
3770  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3771  * or when a false negative result is not harmful when called too early.
3772  */
3773 static inline bool debug_pagealloc_enabled_static(void)
3774 {
3775 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3776 		return false;
3777 
3778 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3779 }
3780 
3781 /*
3782  * To support DEBUG_PAGEALLOC architecture must ensure that
3783  * __kernel_map_pages() never fails
3784  */
3785 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3786 #ifdef CONFIG_DEBUG_PAGEALLOC
3787 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3788 {
3789 	if (debug_pagealloc_enabled_static())
3790 		__kernel_map_pages(page, numpages, 1);
3791 }
3792 
3793 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3794 {
3795 	if (debug_pagealloc_enabled_static())
3796 		__kernel_map_pages(page, numpages, 0);
3797 }
3798 
3799 extern unsigned int _debug_guardpage_minorder;
3800 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3801 
3802 static inline unsigned int debug_guardpage_minorder(void)
3803 {
3804 	return _debug_guardpage_minorder;
3805 }
3806 
3807 static inline bool debug_guardpage_enabled(void)
3808 {
3809 	return static_branch_unlikely(&_debug_guardpage_enabled);
3810 }
3811 
3812 static inline bool page_is_guard(struct page *page)
3813 {
3814 	if (!debug_guardpage_enabled())
3815 		return false;
3816 
3817 	return PageGuard(page);
3818 }
3819 
3820 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3821 static inline bool set_page_guard(struct zone *zone, struct page *page,
3822 				  unsigned int order)
3823 {
3824 	if (!debug_guardpage_enabled())
3825 		return false;
3826 	return __set_page_guard(zone, page, order);
3827 }
3828 
3829 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3830 static inline void clear_page_guard(struct zone *zone, struct page *page,
3831 				    unsigned int order)
3832 {
3833 	if (!debug_guardpage_enabled())
3834 		return;
3835 	__clear_page_guard(zone, page, order);
3836 }
3837 
3838 #else	/* CONFIG_DEBUG_PAGEALLOC */
3839 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3840 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3841 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3842 static inline bool debug_guardpage_enabled(void) { return false; }
3843 static inline bool page_is_guard(struct page *page) { return false; }
3844 static inline bool set_page_guard(struct zone *zone, struct page *page,
3845 			unsigned int order) { return false; }
3846 static inline void clear_page_guard(struct zone *zone, struct page *page,
3847 				unsigned int order) {}
3848 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3849 
3850 #ifdef __HAVE_ARCH_GATE_AREA
3851 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3852 extern int in_gate_area_no_mm(unsigned long addr);
3853 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3854 #else
3855 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3856 {
3857 	return NULL;
3858 }
3859 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3860 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3861 {
3862 	return 0;
3863 }
3864 #endif	/* __HAVE_ARCH_GATE_AREA */
3865 
3866 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3867 
3868 #ifdef CONFIG_SYSCTL
3869 extern int sysctl_drop_caches;
3870 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3871 		loff_t *);
3872 #endif
3873 
3874 void drop_slab(void);
3875 
3876 #ifndef CONFIG_MMU
3877 #define randomize_va_space 0
3878 #else
3879 extern int randomize_va_space;
3880 #endif
3881 
3882 const char * arch_vma_name(struct vm_area_struct *vma);
3883 #ifdef CONFIG_MMU
3884 void print_vma_addr(char *prefix, unsigned long rip);
3885 #else
3886 static inline void print_vma_addr(char *prefix, unsigned long rip)
3887 {
3888 }
3889 #endif
3890 
3891 void *sparse_buffer_alloc(unsigned long size);
3892 struct page * __populate_section_memmap(unsigned long pfn,
3893 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3894 		struct dev_pagemap *pgmap);
3895 void pmd_init(void *addr);
3896 void pud_init(void *addr);
3897 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3898 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3899 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3900 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3901 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3902 			    struct vmem_altmap *altmap, struct page *reuse);
3903 void *vmemmap_alloc_block(unsigned long size, int node);
3904 struct vmem_altmap;
3905 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3906 			      struct vmem_altmap *altmap);
3907 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3908 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3909 		     unsigned long addr, unsigned long next);
3910 int vmemmap_check_pmd(pmd_t *pmd, int node,
3911 		      unsigned long addr, unsigned long next);
3912 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3913 			       int node, struct vmem_altmap *altmap);
3914 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3915 			       int node, struct vmem_altmap *altmap);
3916 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3917 		struct vmem_altmap *altmap);
3918 void vmemmap_populate_print_last(void);
3919 #ifdef CONFIG_MEMORY_HOTPLUG
3920 void vmemmap_free(unsigned long start, unsigned long end,
3921 		struct vmem_altmap *altmap);
3922 #endif
3923 
3924 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3925 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3926 {
3927 	/* number of pfns from base where pfn_to_page() is valid */
3928 	if (altmap)
3929 		return altmap->reserve + altmap->free;
3930 	return 0;
3931 }
3932 
3933 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3934 				    unsigned long nr_pfns)
3935 {
3936 	altmap->alloc -= nr_pfns;
3937 }
3938 #else
3939 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3940 {
3941 	return 0;
3942 }
3943 
3944 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3945 				    unsigned long nr_pfns)
3946 {
3947 }
3948 #endif
3949 
3950 #define VMEMMAP_RESERVE_NR	2
3951 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3952 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3953 					  struct dev_pagemap *pgmap)
3954 {
3955 	unsigned long nr_pages;
3956 	unsigned long nr_vmemmap_pages;
3957 
3958 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3959 		return false;
3960 
3961 	nr_pages = pgmap_vmemmap_nr(pgmap);
3962 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3963 	/*
3964 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3965 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3966 	 */
3967 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3968 }
3969 /*
3970  * If we don't have an architecture override, use the generic rule
3971  */
3972 #ifndef vmemmap_can_optimize
3973 #define vmemmap_can_optimize __vmemmap_can_optimize
3974 #endif
3975 
3976 #else
3977 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3978 					   struct dev_pagemap *pgmap)
3979 {
3980 	return false;
3981 }
3982 #endif
3983 
3984 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3985 				  unsigned long nr_pages);
3986 
3987 enum mf_flags {
3988 	MF_COUNT_INCREASED = 1 << 0,
3989 	MF_ACTION_REQUIRED = 1 << 1,
3990 	MF_MUST_KILL = 1 << 2,
3991 	MF_SOFT_OFFLINE = 1 << 3,
3992 	MF_UNPOISON = 1 << 4,
3993 	MF_SW_SIMULATED = 1 << 5,
3994 	MF_NO_RETRY = 1 << 6,
3995 	MF_MEM_PRE_REMOVE = 1 << 7,
3996 };
3997 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3998 		      unsigned long count, int mf_flags);
3999 extern int memory_failure(unsigned long pfn, int flags);
4000 extern void memory_failure_queue_kick(int cpu);
4001 extern int unpoison_memory(unsigned long pfn);
4002 extern void shake_page(struct page *p);
4003 extern atomic_long_t num_poisoned_pages __read_mostly;
4004 extern int soft_offline_page(unsigned long pfn, int flags);
4005 #ifdef CONFIG_MEMORY_FAILURE
4006 /*
4007  * Sysfs entries for memory failure handling statistics.
4008  */
4009 extern const struct attribute_group memory_failure_attr_group;
4010 extern void memory_failure_queue(unsigned long pfn, int flags);
4011 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4012 					bool *migratable_cleared);
4013 void num_poisoned_pages_inc(unsigned long pfn);
4014 void num_poisoned_pages_sub(unsigned long pfn, long i);
4015 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
4016 #else
4017 static inline void memory_failure_queue(unsigned long pfn, int flags)
4018 {
4019 }
4020 
4021 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4022 					bool *migratable_cleared)
4023 {
4024 	return 0;
4025 }
4026 
4027 static inline void num_poisoned_pages_inc(unsigned long pfn)
4028 {
4029 }
4030 
4031 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4032 {
4033 }
4034 #endif
4035 
4036 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4037 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4038 		     struct vm_area_struct *vma, struct list_head *to_kill,
4039 		     unsigned long ksm_addr);
4040 #endif
4041 
4042 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4043 extern void memblk_nr_poison_inc(unsigned long pfn);
4044 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4045 #else
4046 static inline void memblk_nr_poison_inc(unsigned long pfn)
4047 {
4048 }
4049 
4050 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4051 {
4052 }
4053 #endif
4054 
4055 #ifndef arch_memory_failure
4056 static inline int arch_memory_failure(unsigned long pfn, int flags)
4057 {
4058 	return -ENXIO;
4059 }
4060 #endif
4061 
4062 #ifndef arch_is_platform_page
4063 static inline bool arch_is_platform_page(u64 paddr)
4064 {
4065 	return false;
4066 }
4067 #endif
4068 
4069 /*
4070  * Error handlers for various types of pages.
4071  */
4072 enum mf_result {
4073 	MF_IGNORED,	/* Error: cannot be handled */
4074 	MF_FAILED,	/* Error: handling failed */
4075 	MF_DELAYED,	/* Will be handled later */
4076 	MF_RECOVERED,	/* Successfully recovered */
4077 };
4078 
4079 enum mf_action_page_type {
4080 	MF_MSG_KERNEL,
4081 	MF_MSG_KERNEL_HIGH_ORDER,
4082 	MF_MSG_SLAB,
4083 	MF_MSG_DIFFERENT_COMPOUND,
4084 	MF_MSG_HUGE,
4085 	MF_MSG_FREE_HUGE,
4086 	MF_MSG_UNMAP_FAILED,
4087 	MF_MSG_DIRTY_SWAPCACHE,
4088 	MF_MSG_CLEAN_SWAPCACHE,
4089 	MF_MSG_DIRTY_MLOCKED_LRU,
4090 	MF_MSG_CLEAN_MLOCKED_LRU,
4091 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4092 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4093 	MF_MSG_DIRTY_LRU,
4094 	MF_MSG_CLEAN_LRU,
4095 	MF_MSG_TRUNCATED_LRU,
4096 	MF_MSG_BUDDY,
4097 	MF_MSG_DAX,
4098 	MF_MSG_UNSPLIT_THP,
4099 	MF_MSG_UNKNOWN,
4100 };
4101 
4102 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4103 extern void clear_huge_page(struct page *page,
4104 			    unsigned long addr_hint,
4105 			    unsigned int pages_per_huge_page);
4106 int copy_user_large_folio(struct folio *dst, struct folio *src,
4107 			  unsigned long addr_hint,
4108 			  struct vm_area_struct *vma);
4109 long copy_folio_from_user(struct folio *dst_folio,
4110 			   const void __user *usr_src,
4111 			   bool allow_pagefault);
4112 
4113 /**
4114  * vma_is_special_huge - Are transhuge page-table entries considered special?
4115  * @vma: Pointer to the struct vm_area_struct to consider
4116  *
4117  * Whether transhuge page-table entries are considered "special" following
4118  * the definition in vm_normal_page().
4119  *
4120  * Return: true if transhuge page-table entries should be considered special,
4121  * false otherwise.
4122  */
4123 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4124 {
4125 	return vma_is_dax(vma) || (vma->vm_file &&
4126 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4127 }
4128 
4129 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4130 
4131 #if MAX_NUMNODES > 1
4132 void __init setup_nr_node_ids(void);
4133 #else
4134 static inline void setup_nr_node_ids(void) {}
4135 #endif
4136 
4137 extern int memcmp_pages(struct page *page1, struct page *page2);
4138 
4139 static inline int pages_identical(struct page *page1, struct page *page2)
4140 {
4141 	return !memcmp_pages(page1, page2);
4142 }
4143 
4144 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4145 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4146 						pgoff_t first_index, pgoff_t nr,
4147 						pgoff_t bitmap_pgoff,
4148 						unsigned long *bitmap,
4149 						pgoff_t *start,
4150 						pgoff_t *end);
4151 
4152 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4153 				      pgoff_t first_index, pgoff_t nr);
4154 #endif
4155 
4156 extern int sysctl_nr_trim_pages;
4157 
4158 #ifdef CONFIG_PRINTK
4159 void mem_dump_obj(void *object);
4160 #else
4161 static inline void mem_dump_obj(void *object) {}
4162 #endif
4163 
4164 /**
4165  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4166  *                    handle them.
4167  * @seals: the seals to check
4168  * @vma: the vma to operate on
4169  *
4170  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4171  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4172  */
4173 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4174 {
4175 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4176 		/*
4177 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4178 		 * write seals are active.
4179 		 */
4180 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4181 			return -EPERM;
4182 
4183 		/*
4184 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4185 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4186 		 * revert protections on such mappings. Do this only for shared
4187 		 * mappings. For private mappings, don't need to mask
4188 		 * VM_MAYWRITE as we still want them to be COW-writable.
4189 		 */
4190 		if (vma->vm_flags & VM_SHARED)
4191 			vm_flags_clear(vma, VM_MAYWRITE);
4192 	}
4193 
4194 	return 0;
4195 }
4196 
4197 #ifdef CONFIG_ANON_VMA_NAME
4198 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4199 			  unsigned long len_in,
4200 			  struct anon_vma_name *anon_name);
4201 #else
4202 static inline int
4203 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4204 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4205 	return 0;
4206 }
4207 #endif
4208 
4209 #ifdef CONFIG_UNACCEPTED_MEMORY
4210 
4211 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4212 void accept_memory(phys_addr_t start, phys_addr_t end);
4213 
4214 #else
4215 
4216 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4217 						    phys_addr_t end)
4218 {
4219 	return false;
4220 }
4221 
4222 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4223 {
4224 }
4225 
4226 #endif
4227 
4228 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4229 {
4230 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4231 
4232 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4233 }
4234 
4235 #endif /* _LINUX_MM_H */
4236