1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/pgalloc_tag.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/mmap_lock.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page-flags.h> 26 #include <linux/page_ref.h> 27 #include <linux/overflow.h> 28 #include <linux/sizes.h> 29 #include <linux/sched.h> 30 #include <linux/pgtable.h> 31 #include <linux/kasan.h> 32 #include <linux/memremap.h> 33 #include <linux/slab.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct user_struct; 39 struct pt_regs; 40 struct folio_batch; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void mm_core_init(void); 45 void init_mm_internals(void); 46 47 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 48 extern unsigned long max_mapnr; 49 50 static inline void set_max_mapnr(unsigned long limit) 51 { 52 max_mapnr = limit; 53 } 54 #else 55 static inline void set_max_mapnr(unsigned long limit) { } 56 #endif 57 58 extern atomic_long_t _totalram_pages; 59 static inline unsigned long totalram_pages(void) 60 { 61 return (unsigned long)atomic_long_read(&_totalram_pages); 62 } 63 64 static inline void totalram_pages_inc(void) 65 { 66 atomic_long_inc(&_totalram_pages); 67 } 68 69 static inline void totalram_pages_dec(void) 70 { 71 atomic_long_dec(&_totalram_pages); 72 } 73 74 static inline void totalram_pages_add(long count) 75 { 76 atomic_long_add(count, &_totalram_pages); 77 } 78 79 extern void * high_memory; 80 extern int page_cluster; 81 extern const int page_cluster_max; 82 83 #ifdef CONFIG_SYSCTL 84 extern int sysctl_legacy_va_layout; 85 #else 86 #define sysctl_legacy_va_layout 0 87 #endif 88 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 90 extern const int mmap_rnd_bits_min; 91 extern int mmap_rnd_bits_max __ro_after_init; 92 extern int mmap_rnd_bits __read_mostly; 93 #endif 94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 95 extern const int mmap_rnd_compat_bits_min; 96 extern const int mmap_rnd_compat_bits_max; 97 extern int mmap_rnd_compat_bits __read_mostly; 98 #endif 99 100 #include <asm/page.h> 101 #include <asm/processor.h> 102 103 #ifndef __pa_symbol 104 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 105 #endif 106 107 #ifndef page_to_virt 108 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 109 #endif 110 111 #ifndef lm_alias 112 #define lm_alias(x) __va(__pa_symbol(x)) 113 #endif 114 115 /* 116 * To prevent common memory management code establishing 117 * a zero page mapping on a read fault. 118 * This macro should be defined within <asm/pgtable.h>. 119 * s390 does this to prevent multiplexing of hardware bits 120 * related to the physical page in case of virtualization. 121 */ 122 #ifndef mm_forbids_zeropage 123 #define mm_forbids_zeropage(X) (0) 124 #endif 125 126 /* 127 * On some architectures it is expensive to call memset() for small sizes. 128 * If an architecture decides to implement their own version of 129 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 130 * define their own version of this macro in <asm/pgtable.h> 131 */ 132 #if BITS_PER_LONG == 64 133 /* This function must be updated when the size of struct page grows above 96 134 * or reduces below 56. The idea that compiler optimizes out switch() 135 * statement, and only leaves move/store instructions. Also the compiler can 136 * combine write statements if they are both assignments and can be reordered, 137 * this can result in several of the writes here being dropped. 138 */ 139 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 140 static inline void __mm_zero_struct_page(struct page *page) 141 { 142 unsigned long *_pp = (void *)page; 143 144 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 145 BUILD_BUG_ON(sizeof(struct page) & 7); 146 BUILD_BUG_ON(sizeof(struct page) < 56); 147 BUILD_BUG_ON(sizeof(struct page) > 96); 148 149 switch (sizeof(struct page)) { 150 case 96: 151 _pp[11] = 0; 152 fallthrough; 153 case 88: 154 _pp[10] = 0; 155 fallthrough; 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 static inline struct folio *lru_to_folio(struct list_head *head) 232 { 233 return list_entry((head)->prev, struct folio, lru); 234 } 235 236 void setup_initial_init_mm(void *start_code, void *end_code, 237 void *end_data, void *brk); 238 239 /* 240 * Linux kernel virtual memory manager primitives. 241 * The idea being to have a "virtual" mm in the same way 242 * we have a virtual fs - giving a cleaner interface to the 243 * mm details, and allowing different kinds of memory mappings 244 * (from shared memory to executable loading to arbitrary 245 * mmap() functions). 246 */ 247 248 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 250 void vm_area_free(struct vm_area_struct *); 251 /* Use only if VMA has no other users */ 252 void __vm_area_free(struct vm_area_struct *vma); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 324 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 325 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 326 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 327 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 328 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 329 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 331 332 #ifdef CONFIG_ARCH_HAS_PKEYS 333 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 334 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 335 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 336 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 337 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 338 #ifdef CONFIG_PPC 339 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 340 #else 341 # define VM_PKEY_BIT4 0 342 #endif 343 #endif /* CONFIG_ARCH_HAS_PKEYS */ 344 345 #ifdef CONFIG_X86_USER_SHADOW_STACK 346 /* 347 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 348 * support core mm. 349 * 350 * These VMAs will get a single end guard page. This helps userspace protect 351 * itself from attacks. A single page is enough for current shadow stack archs 352 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 353 * for more details on the guard size. 354 */ 355 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 356 #else 357 # define VM_SHADOW_STACK VM_NONE 358 #endif 359 360 #if defined(CONFIG_X86) 361 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 362 #elif defined(CONFIG_PPC) 363 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 364 #elif defined(CONFIG_PARISC) 365 # define VM_GROWSUP VM_ARCH_1 366 #elif defined(CONFIG_SPARC64) 367 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 368 # define VM_ARCH_CLEAR VM_SPARC_ADI 369 #elif defined(CONFIG_ARM64) 370 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 371 # define VM_ARCH_CLEAR VM_ARM64_BTI 372 #elif !defined(CONFIG_MMU) 373 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 374 #endif 375 376 #if defined(CONFIG_ARM64_MTE) 377 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 378 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 379 #else 380 # define VM_MTE VM_NONE 381 # define VM_MTE_ALLOWED VM_NONE 382 #endif 383 384 #ifndef VM_GROWSUP 385 # define VM_GROWSUP VM_NONE 386 #endif 387 388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 389 # define VM_UFFD_MINOR_BIT 38 390 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 392 # define VM_UFFD_MINOR VM_NONE 393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 394 395 /* 396 * This flag is used to connect VFIO to arch specific KVM code. It 397 * indicates that the memory under this VMA is safe for use with any 398 * non-cachable memory type inside KVM. Some VFIO devices, on some 399 * platforms, are thought to be unsafe and can cause machine crashes 400 * if KVM does not lock down the memory type. 401 */ 402 #ifdef CONFIG_64BIT 403 #define VM_ALLOW_ANY_UNCACHED_BIT 39 404 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 405 #else 406 #define VM_ALLOW_ANY_UNCACHED VM_NONE 407 #endif 408 409 /* Bits set in the VMA until the stack is in its final location */ 410 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 411 412 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 413 414 /* Common data flag combinations */ 415 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 416 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 417 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 418 VM_MAYWRITE | VM_MAYEXEC) 419 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 420 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 421 422 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 423 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 424 #endif 425 426 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 427 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 428 #endif 429 430 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 431 432 #ifdef CONFIG_STACK_GROWSUP 433 #define VM_STACK VM_GROWSUP 434 #define VM_STACK_EARLY VM_GROWSDOWN 435 #else 436 #define VM_STACK VM_GROWSDOWN 437 #define VM_STACK_EARLY 0 438 #endif 439 440 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 441 442 /* VMA basic access permission flags */ 443 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 444 445 446 /* 447 * Special vmas that are non-mergable, non-mlock()able. 448 */ 449 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 450 451 /* This mask prevents VMA from being scanned with khugepaged */ 452 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 453 454 /* This mask defines which mm->def_flags a process can inherit its parent */ 455 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 456 457 /* This mask represents all the VMA flag bits used by mlock */ 458 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 459 460 /* Arch-specific flags to clear when updating VM flags on protection change */ 461 #ifndef VM_ARCH_CLEAR 462 # define VM_ARCH_CLEAR VM_NONE 463 #endif 464 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 465 466 /* 467 * mapping from the currently active vm_flags protection bits (the 468 * low four bits) to a page protection mask.. 469 */ 470 471 /* 472 * The default fault flags that should be used by most of the 473 * arch-specific page fault handlers. 474 */ 475 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 476 FAULT_FLAG_KILLABLE | \ 477 FAULT_FLAG_INTERRUPTIBLE) 478 479 /** 480 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 481 * @flags: Fault flags. 482 * 483 * This is mostly used for places where we want to try to avoid taking 484 * the mmap_lock for too long a time when waiting for another condition 485 * to change, in which case we can try to be polite to release the 486 * mmap_lock in the first round to avoid potential starvation of other 487 * processes that would also want the mmap_lock. 488 * 489 * Return: true if the page fault allows retry and this is the first 490 * attempt of the fault handling; false otherwise. 491 */ 492 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 493 { 494 return (flags & FAULT_FLAG_ALLOW_RETRY) && 495 (!(flags & FAULT_FLAG_TRIED)); 496 } 497 498 #define FAULT_FLAG_TRACE \ 499 { FAULT_FLAG_WRITE, "WRITE" }, \ 500 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 501 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 502 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 503 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 504 { FAULT_FLAG_TRIED, "TRIED" }, \ 505 { FAULT_FLAG_USER, "USER" }, \ 506 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 507 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 508 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 509 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 510 511 /* 512 * vm_fault is filled by the pagefault handler and passed to the vma's 513 * ->fault function. The vma's ->fault is responsible for returning a bitmask 514 * of VM_FAULT_xxx flags that give details about how the fault was handled. 515 * 516 * MM layer fills up gfp_mask for page allocations but fault handler might 517 * alter it if its implementation requires a different allocation context. 518 * 519 * pgoff should be used in favour of virtual_address, if possible. 520 */ 521 struct vm_fault { 522 const struct { 523 struct vm_area_struct *vma; /* Target VMA */ 524 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 525 pgoff_t pgoff; /* Logical page offset based on vma */ 526 unsigned long address; /* Faulting virtual address - masked */ 527 unsigned long real_address; /* Faulting virtual address - unmasked */ 528 }; 529 enum fault_flag flags; /* FAULT_FLAG_xxx flags 530 * XXX: should really be 'const' */ 531 pmd_t *pmd; /* Pointer to pmd entry matching 532 * the 'address' */ 533 pud_t *pud; /* Pointer to pud entry matching 534 * the 'address' 535 */ 536 union { 537 pte_t orig_pte; /* Value of PTE at the time of fault */ 538 pmd_t orig_pmd; /* Value of PMD at the time of fault, 539 * used by PMD fault only. 540 */ 541 }; 542 543 struct page *cow_page; /* Page handler may use for COW fault */ 544 struct page *page; /* ->fault handlers should return a 545 * page here, unless VM_FAULT_NOPAGE 546 * is set (which is also implied by 547 * VM_FAULT_ERROR). 548 */ 549 /* These three entries are valid only while holding ptl lock */ 550 pte_t *pte; /* Pointer to pte entry matching 551 * the 'address'. NULL if the page 552 * table hasn't been allocated. 553 */ 554 spinlock_t *ptl; /* Page table lock. 555 * Protects pte page table if 'pte' 556 * is not NULL, otherwise pmd. 557 */ 558 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 559 * vm_ops->map_pages() sets up a page 560 * table from atomic context. 561 * do_fault_around() pre-allocates 562 * page table to avoid allocation from 563 * atomic context. 564 */ 565 }; 566 567 /* 568 * These are the virtual MM functions - opening of an area, closing and 569 * unmapping it (needed to keep files on disk up-to-date etc), pointer 570 * to the functions called when a no-page or a wp-page exception occurs. 571 */ 572 struct vm_operations_struct { 573 void (*open)(struct vm_area_struct * area); 574 /** 575 * @close: Called when the VMA is being removed from the MM. 576 * Context: User context. May sleep. Caller holds mmap_lock. 577 */ 578 void (*close)(struct vm_area_struct * area); 579 /* Called any time before splitting to check if it's allowed */ 580 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 581 int (*mremap)(struct vm_area_struct *area); 582 /* 583 * Called by mprotect() to make driver-specific permission 584 * checks before mprotect() is finalised. The VMA must not 585 * be modified. Returns 0 if mprotect() can proceed. 586 */ 587 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 588 unsigned long end, unsigned long newflags); 589 vm_fault_t (*fault)(struct vm_fault *vmf); 590 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 591 vm_fault_t (*map_pages)(struct vm_fault *vmf, 592 pgoff_t start_pgoff, pgoff_t end_pgoff); 593 unsigned long (*pagesize)(struct vm_area_struct * area); 594 595 /* notification that a previously read-only page is about to become 596 * writable, if an error is returned it will cause a SIGBUS */ 597 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 598 599 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 600 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 601 602 /* called by access_process_vm when get_user_pages() fails, typically 603 * for use by special VMAs. See also generic_access_phys() for a generic 604 * implementation useful for any iomem mapping. 605 */ 606 int (*access)(struct vm_area_struct *vma, unsigned long addr, 607 void *buf, int len, int write); 608 609 /* Called by the /proc/PID/maps code to ask the vma whether it 610 * has a special name. Returning non-NULL will also cause this 611 * vma to be dumped unconditionally. */ 612 const char *(*name)(struct vm_area_struct *vma); 613 614 #ifdef CONFIG_NUMA 615 /* 616 * set_policy() op must add a reference to any non-NULL @new mempolicy 617 * to hold the policy upon return. Caller should pass NULL @new to 618 * remove a policy and fall back to surrounding context--i.e. do not 619 * install a MPOL_DEFAULT policy, nor the task or system default 620 * mempolicy. 621 */ 622 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 623 624 /* 625 * get_policy() op must add reference [mpol_get()] to any policy at 626 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 627 * in mm/mempolicy.c will do this automatically. 628 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 629 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 630 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 631 * must return NULL--i.e., do not "fallback" to task or system default 632 * policy. 633 */ 634 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 635 unsigned long addr, pgoff_t *ilx); 636 #endif 637 /* 638 * Called by vm_normal_page() for special PTEs to find the 639 * page for @addr. This is useful if the default behavior 640 * (using pte_page()) would not find the correct page. 641 */ 642 struct page *(*find_special_page)(struct vm_area_struct *vma, 643 unsigned long addr); 644 }; 645 646 #ifdef CONFIG_NUMA_BALANCING 647 static inline void vma_numab_state_init(struct vm_area_struct *vma) 648 { 649 vma->numab_state = NULL; 650 } 651 static inline void vma_numab_state_free(struct vm_area_struct *vma) 652 { 653 kfree(vma->numab_state); 654 } 655 #else 656 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 657 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 658 #endif /* CONFIG_NUMA_BALANCING */ 659 660 #ifdef CONFIG_PER_VMA_LOCK 661 /* 662 * Try to read-lock a vma. The function is allowed to occasionally yield false 663 * locked result to avoid performance overhead, in which case we fall back to 664 * using mmap_lock. The function should never yield false unlocked result. 665 */ 666 static inline bool vma_start_read(struct vm_area_struct *vma) 667 { 668 /* 669 * Check before locking. A race might cause false locked result. 670 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 671 * ACQUIRE semantics, because this is just a lockless check whose result 672 * we don't rely on for anything - the mm_lock_seq read against which we 673 * need ordering is below. 674 */ 675 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 676 return false; 677 678 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 679 return false; 680 681 /* 682 * Overflow might produce false locked result. 683 * False unlocked result is impossible because we modify and check 684 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 685 * modification invalidates all existing locks. 686 * 687 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 688 * racing with vma_end_write_all(), we only start reading from the VMA 689 * after it has been unlocked. 690 * This pairs with RELEASE semantics in vma_end_write_all(). 691 */ 692 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 693 up_read(&vma->vm_lock->lock); 694 return false; 695 } 696 return true; 697 } 698 699 static inline void vma_end_read(struct vm_area_struct *vma) 700 { 701 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 702 up_read(&vma->vm_lock->lock); 703 rcu_read_unlock(); 704 } 705 706 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 707 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 708 { 709 mmap_assert_write_locked(vma->vm_mm); 710 711 /* 712 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 713 * mm->mm_lock_seq can't be concurrently modified. 714 */ 715 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 716 return (vma->vm_lock_seq == *mm_lock_seq); 717 } 718 719 /* 720 * Begin writing to a VMA. 721 * Exclude concurrent readers under the per-VMA lock until the currently 722 * write-locked mmap_lock is dropped or downgraded. 723 */ 724 static inline void vma_start_write(struct vm_area_struct *vma) 725 { 726 int mm_lock_seq; 727 728 if (__is_vma_write_locked(vma, &mm_lock_seq)) 729 return; 730 731 down_write(&vma->vm_lock->lock); 732 /* 733 * We should use WRITE_ONCE() here because we can have concurrent reads 734 * from the early lockless pessimistic check in vma_start_read(). 735 * We don't really care about the correctness of that early check, but 736 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 737 */ 738 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 739 up_write(&vma->vm_lock->lock); 740 } 741 742 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 743 { 744 int mm_lock_seq; 745 746 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 747 } 748 749 static inline void vma_assert_locked(struct vm_area_struct *vma) 750 { 751 if (!rwsem_is_locked(&vma->vm_lock->lock)) 752 vma_assert_write_locked(vma); 753 } 754 755 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 756 { 757 /* When detaching vma should be write-locked */ 758 if (detached) 759 vma_assert_write_locked(vma); 760 vma->detached = detached; 761 } 762 763 static inline void release_fault_lock(struct vm_fault *vmf) 764 { 765 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 766 vma_end_read(vmf->vma); 767 else 768 mmap_read_unlock(vmf->vma->vm_mm); 769 } 770 771 static inline void assert_fault_locked(struct vm_fault *vmf) 772 { 773 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 774 vma_assert_locked(vmf->vma); 775 else 776 mmap_assert_locked(vmf->vma->vm_mm); 777 } 778 779 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 780 unsigned long address); 781 782 #else /* CONFIG_PER_VMA_LOCK */ 783 784 static inline bool vma_start_read(struct vm_area_struct *vma) 785 { return false; } 786 static inline void vma_end_read(struct vm_area_struct *vma) {} 787 static inline void vma_start_write(struct vm_area_struct *vma) {} 788 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 789 { mmap_assert_write_locked(vma->vm_mm); } 790 static inline void vma_mark_detached(struct vm_area_struct *vma, 791 bool detached) {} 792 793 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 794 unsigned long address) 795 { 796 return NULL; 797 } 798 799 static inline void vma_assert_locked(struct vm_area_struct *vma) 800 { 801 mmap_assert_locked(vma->vm_mm); 802 } 803 804 static inline void release_fault_lock(struct vm_fault *vmf) 805 { 806 mmap_read_unlock(vmf->vma->vm_mm); 807 } 808 809 static inline void assert_fault_locked(struct vm_fault *vmf) 810 { 811 mmap_assert_locked(vmf->vma->vm_mm); 812 } 813 814 #endif /* CONFIG_PER_VMA_LOCK */ 815 816 extern const struct vm_operations_struct vma_dummy_vm_ops; 817 818 /* 819 * WARNING: vma_init does not initialize vma->vm_lock. 820 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 821 */ 822 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 823 { 824 memset(vma, 0, sizeof(*vma)); 825 vma->vm_mm = mm; 826 vma->vm_ops = &vma_dummy_vm_ops; 827 INIT_LIST_HEAD(&vma->anon_vma_chain); 828 vma_mark_detached(vma, false); 829 vma_numab_state_init(vma); 830 } 831 832 /* Use when VMA is not part of the VMA tree and needs no locking */ 833 static inline void vm_flags_init(struct vm_area_struct *vma, 834 vm_flags_t flags) 835 { 836 ACCESS_PRIVATE(vma, __vm_flags) = flags; 837 } 838 839 /* 840 * Use when VMA is part of the VMA tree and modifications need coordination 841 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 842 * it should be locked explicitly beforehand. 843 */ 844 static inline void vm_flags_reset(struct vm_area_struct *vma, 845 vm_flags_t flags) 846 { 847 vma_assert_write_locked(vma); 848 vm_flags_init(vma, flags); 849 } 850 851 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 852 vm_flags_t flags) 853 { 854 vma_assert_write_locked(vma); 855 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 856 } 857 858 static inline void vm_flags_set(struct vm_area_struct *vma, 859 vm_flags_t flags) 860 { 861 vma_start_write(vma); 862 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 863 } 864 865 static inline void vm_flags_clear(struct vm_area_struct *vma, 866 vm_flags_t flags) 867 { 868 vma_start_write(vma); 869 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 870 } 871 872 /* 873 * Use only if VMA is not part of the VMA tree or has no other users and 874 * therefore needs no locking. 875 */ 876 static inline void __vm_flags_mod(struct vm_area_struct *vma, 877 vm_flags_t set, vm_flags_t clear) 878 { 879 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 880 } 881 882 /* 883 * Use only when the order of set/clear operations is unimportant, otherwise 884 * use vm_flags_{set|clear} explicitly. 885 */ 886 static inline void vm_flags_mod(struct vm_area_struct *vma, 887 vm_flags_t set, vm_flags_t clear) 888 { 889 vma_start_write(vma); 890 __vm_flags_mod(vma, set, clear); 891 } 892 893 static inline void vma_set_anonymous(struct vm_area_struct *vma) 894 { 895 vma->vm_ops = NULL; 896 } 897 898 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 899 { 900 return !vma->vm_ops; 901 } 902 903 /* 904 * Indicate if the VMA is a heap for the given task; for 905 * /proc/PID/maps that is the heap of the main task. 906 */ 907 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 908 { 909 return vma->vm_start < vma->vm_mm->brk && 910 vma->vm_end > vma->vm_mm->start_brk; 911 } 912 913 /* 914 * Indicate if the VMA is a stack for the given task; for 915 * /proc/PID/maps that is the stack of the main task. 916 */ 917 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 918 { 919 /* 920 * We make no effort to guess what a given thread considers to be 921 * its "stack". It's not even well-defined for programs written 922 * languages like Go. 923 */ 924 return vma->vm_start <= vma->vm_mm->start_stack && 925 vma->vm_end >= vma->vm_mm->start_stack; 926 } 927 928 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 929 { 930 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 931 932 if (!maybe_stack) 933 return false; 934 935 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 936 VM_STACK_INCOMPLETE_SETUP) 937 return true; 938 939 return false; 940 } 941 942 static inline bool vma_is_foreign(struct vm_area_struct *vma) 943 { 944 if (!current->mm) 945 return true; 946 947 if (current->mm != vma->vm_mm) 948 return true; 949 950 return false; 951 } 952 953 static inline bool vma_is_accessible(struct vm_area_struct *vma) 954 { 955 return vma->vm_flags & VM_ACCESS_FLAGS; 956 } 957 958 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 959 { 960 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 961 (VM_SHARED | VM_MAYWRITE); 962 } 963 964 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 965 { 966 return is_shared_maywrite(vma->vm_flags); 967 } 968 969 static inline 970 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 971 { 972 return mas_find(&vmi->mas, max - 1); 973 } 974 975 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 976 { 977 /* 978 * Uses mas_find() to get the first VMA when the iterator starts. 979 * Calling mas_next() could skip the first entry. 980 */ 981 return mas_find(&vmi->mas, ULONG_MAX); 982 } 983 984 static inline 985 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 986 { 987 return mas_next_range(&vmi->mas, ULONG_MAX); 988 } 989 990 991 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 992 { 993 return mas_prev(&vmi->mas, 0); 994 } 995 996 static inline 997 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 998 { 999 return mas_prev_range(&vmi->mas, 0); 1000 } 1001 1002 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1003 { 1004 return vmi->mas.index; 1005 } 1006 1007 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1008 { 1009 return vmi->mas.last + 1; 1010 } 1011 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1012 unsigned long count) 1013 { 1014 return mas_expected_entries(&vmi->mas, count); 1015 } 1016 1017 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1018 unsigned long start, unsigned long end, gfp_t gfp) 1019 { 1020 __mas_set_range(&vmi->mas, start, end - 1); 1021 mas_store_gfp(&vmi->mas, NULL, gfp); 1022 if (unlikely(mas_is_err(&vmi->mas))) 1023 return -ENOMEM; 1024 1025 return 0; 1026 } 1027 1028 /* Free any unused preallocations */ 1029 static inline void vma_iter_free(struct vma_iterator *vmi) 1030 { 1031 mas_destroy(&vmi->mas); 1032 } 1033 1034 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1035 struct vm_area_struct *vma) 1036 { 1037 vmi->mas.index = vma->vm_start; 1038 vmi->mas.last = vma->vm_end - 1; 1039 mas_store(&vmi->mas, vma); 1040 if (unlikely(mas_is_err(&vmi->mas))) 1041 return -ENOMEM; 1042 1043 return 0; 1044 } 1045 1046 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1047 { 1048 mas_pause(&vmi->mas); 1049 } 1050 1051 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1052 { 1053 mas_set(&vmi->mas, addr); 1054 } 1055 1056 #define for_each_vma(__vmi, __vma) \ 1057 while (((__vma) = vma_next(&(__vmi))) != NULL) 1058 1059 /* The MM code likes to work with exclusive end addresses */ 1060 #define for_each_vma_range(__vmi, __vma, __end) \ 1061 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1062 1063 #ifdef CONFIG_SHMEM 1064 /* 1065 * The vma_is_shmem is not inline because it is used only by slow 1066 * paths in userfault. 1067 */ 1068 bool vma_is_shmem(struct vm_area_struct *vma); 1069 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1070 #else 1071 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1072 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1073 #endif 1074 1075 int vma_is_stack_for_current(struct vm_area_struct *vma); 1076 1077 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1078 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1079 1080 struct mmu_gather; 1081 struct inode; 1082 1083 /* 1084 * compound_order() can be called without holding a reference, which means 1085 * that niceties like page_folio() don't work. These callers should be 1086 * prepared to handle wild return values. For example, PG_head may be 1087 * set before the order is initialised, or this may be a tail page. 1088 * See compaction.c for some good examples. 1089 */ 1090 static inline unsigned int compound_order(struct page *page) 1091 { 1092 struct folio *folio = (struct folio *)page; 1093 1094 if (!test_bit(PG_head, &folio->flags)) 1095 return 0; 1096 return folio->_flags_1 & 0xff; 1097 } 1098 1099 /** 1100 * folio_order - The allocation order of a folio. 1101 * @folio: The folio. 1102 * 1103 * A folio is composed of 2^order pages. See get_order() for the definition 1104 * of order. 1105 * 1106 * Return: The order of the folio. 1107 */ 1108 static inline unsigned int folio_order(struct folio *folio) 1109 { 1110 if (!folio_test_large(folio)) 1111 return 0; 1112 return folio->_flags_1 & 0xff; 1113 } 1114 1115 #include <linux/huge_mm.h> 1116 1117 /* 1118 * Methods to modify the page usage count. 1119 * 1120 * What counts for a page usage: 1121 * - cache mapping (page->mapping) 1122 * - private data (page->private) 1123 * - page mapped in a task's page tables, each mapping 1124 * is counted separately 1125 * 1126 * Also, many kernel routines increase the page count before a critical 1127 * routine so they can be sure the page doesn't go away from under them. 1128 */ 1129 1130 /* 1131 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1132 */ 1133 static inline int put_page_testzero(struct page *page) 1134 { 1135 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1136 return page_ref_dec_and_test(page); 1137 } 1138 1139 static inline int folio_put_testzero(struct folio *folio) 1140 { 1141 return put_page_testzero(&folio->page); 1142 } 1143 1144 /* 1145 * Try to grab a ref unless the page has a refcount of zero, return false if 1146 * that is the case. 1147 * This can be called when MMU is off so it must not access 1148 * any of the virtual mappings. 1149 */ 1150 static inline bool get_page_unless_zero(struct page *page) 1151 { 1152 return page_ref_add_unless(page, 1, 0); 1153 } 1154 1155 static inline struct folio *folio_get_nontail_page(struct page *page) 1156 { 1157 if (unlikely(!get_page_unless_zero(page))) 1158 return NULL; 1159 return (struct folio *)page; 1160 } 1161 1162 extern int page_is_ram(unsigned long pfn); 1163 1164 enum { 1165 REGION_INTERSECTS, 1166 REGION_DISJOINT, 1167 REGION_MIXED, 1168 }; 1169 1170 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1171 unsigned long desc); 1172 1173 /* Support for virtually mapped pages */ 1174 struct page *vmalloc_to_page(const void *addr); 1175 unsigned long vmalloc_to_pfn(const void *addr); 1176 1177 /* 1178 * Determine if an address is within the vmalloc range 1179 * 1180 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1181 * is no special casing required. 1182 */ 1183 #ifdef CONFIG_MMU 1184 extern bool is_vmalloc_addr(const void *x); 1185 extern int is_vmalloc_or_module_addr(const void *x); 1186 #else 1187 static inline bool is_vmalloc_addr(const void *x) 1188 { 1189 return false; 1190 } 1191 static inline int is_vmalloc_or_module_addr(const void *x) 1192 { 1193 return 0; 1194 } 1195 #endif 1196 1197 /* 1198 * How many times the entire folio is mapped as a single unit (eg by a 1199 * PMD or PUD entry). This is probably not what you want, except for 1200 * debugging purposes - it does not include PTE-mapped sub-pages; look 1201 * at folio_mapcount() or page_mapcount() instead. 1202 */ 1203 static inline int folio_entire_mapcount(const struct folio *folio) 1204 { 1205 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1206 return atomic_read(&folio->_entire_mapcount) + 1; 1207 } 1208 1209 /* 1210 * The atomic page->_mapcount, starts from -1: so that transitions 1211 * both from it and to it can be tracked, using atomic_inc_and_test 1212 * and atomic_add_negative(-1). 1213 */ 1214 static inline void page_mapcount_reset(struct page *page) 1215 { 1216 atomic_set(&(page)->_mapcount, -1); 1217 } 1218 1219 /** 1220 * page_mapcount() - Number of times this precise page is mapped. 1221 * @page: The page. 1222 * 1223 * The number of times this page is mapped. If this page is part of 1224 * a large folio, it includes the number of times this page is mapped 1225 * as part of that folio. 1226 * 1227 * Will report 0 for pages which cannot be mapped into userspace, eg 1228 * slab, page tables and similar. 1229 */ 1230 static inline int page_mapcount(struct page *page) 1231 { 1232 int mapcount = atomic_read(&page->_mapcount) + 1; 1233 1234 /* Handle page_has_type() pages */ 1235 if (mapcount < 0) 1236 mapcount = 0; 1237 if (unlikely(PageCompound(page))) 1238 mapcount += folio_entire_mapcount(page_folio(page)); 1239 1240 return mapcount; 1241 } 1242 1243 int folio_total_mapcount(const struct folio *folio); 1244 1245 /** 1246 * folio_mapcount() - Calculate the number of mappings of this folio. 1247 * @folio: The folio. 1248 * 1249 * A large folio tracks both how many times the entire folio is mapped, 1250 * and how many times each individual page in the folio is mapped. 1251 * This function calculates the total number of times the folio is 1252 * mapped. 1253 * 1254 * Return: The number of times this folio is mapped. 1255 */ 1256 static inline int folio_mapcount(const struct folio *folio) 1257 { 1258 if (likely(!folio_test_large(folio))) 1259 return atomic_read(&folio->_mapcount) + 1; 1260 return folio_total_mapcount(folio); 1261 } 1262 1263 static inline bool folio_large_is_mapped(const struct folio *folio) 1264 { 1265 /* 1266 * Reading _entire_mapcount below could be omitted if hugetlb 1267 * participated in incrementing nr_pages_mapped when compound mapped. 1268 */ 1269 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1270 atomic_read(&folio->_entire_mapcount) >= 0; 1271 } 1272 1273 /** 1274 * folio_mapped - Is this folio mapped into userspace? 1275 * @folio: The folio. 1276 * 1277 * Return: True if any page in this folio is referenced by user page tables. 1278 */ 1279 static inline bool folio_mapped(struct folio *folio) 1280 { 1281 if (likely(!folio_test_large(folio))) 1282 return atomic_read(&folio->_mapcount) >= 0; 1283 return folio_large_is_mapped(folio); 1284 } 1285 1286 /* 1287 * Return true if this page is mapped into pagetables. 1288 * For compound page it returns true if any sub-page of compound page is mapped, 1289 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1290 */ 1291 static inline bool page_mapped(const struct page *page) 1292 { 1293 if (likely(!PageCompound(page))) 1294 return atomic_read(&page->_mapcount) >= 0; 1295 return folio_large_is_mapped(page_folio(page)); 1296 } 1297 1298 static inline struct page *virt_to_head_page(const void *x) 1299 { 1300 struct page *page = virt_to_page(x); 1301 1302 return compound_head(page); 1303 } 1304 1305 static inline struct folio *virt_to_folio(const void *x) 1306 { 1307 struct page *page = virt_to_page(x); 1308 1309 return page_folio(page); 1310 } 1311 1312 void __folio_put(struct folio *folio); 1313 1314 void put_pages_list(struct list_head *pages); 1315 1316 void split_page(struct page *page, unsigned int order); 1317 void folio_copy(struct folio *dst, struct folio *src); 1318 1319 unsigned long nr_free_buffer_pages(void); 1320 1321 void destroy_large_folio(struct folio *folio); 1322 1323 /* Returns the number of bytes in this potentially compound page. */ 1324 static inline unsigned long page_size(struct page *page) 1325 { 1326 return PAGE_SIZE << compound_order(page); 1327 } 1328 1329 /* Returns the number of bits needed for the number of bytes in a page */ 1330 static inline unsigned int page_shift(struct page *page) 1331 { 1332 return PAGE_SHIFT + compound_order(page); 1333 } 1334 1335 /** 1336 * thp_order - Order of a transparent huge page. 1337 * @page: Head page of a transparent huge page. 1338 */ 1339 static inline unsigned int thp_order(struct page *page) 1340 { 1341 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1342 return compound_order(page); 1343 } 1344 1345 /** 1346 * thp_size - Size of a transparent huge page. 1347 * @page: Head page of a transparent huge page. 1348 * 1349 * Return: Number of bytes in this page. 1350 */ 1351 static inline unsigned long thp_size(struct page *page) 1352 { 1353 return PAGE_SIZE << thp_order(page); 1354 } 1355 1356 #ifdef CONFIG_MMU 1357 /* 1358 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1359 * servicing faults for write access. In the normal case, do always want 1360 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1361 * that do not have writing enabled, when used by access_process_vm. 1362 */ 1363 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1364 { 1365 if (likely(vma->vm_flags & VM_WRITE)) 1366 pte = pte_mkwrite(pte, vma); 1367 return pte; 1368 } 1369 1370 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1371 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1372 struct page *page, unsigned int nr, unsigned long addr); 1373 1374 vm_fault_t finish_fault(struct vm_fault *vmf); 1375 #endif 1376 1377 /* 1378 * Multiple processes may "see" the same page. E.g. for untouched 1379 * mappings of /dev/null, all processes see the same page full of 1380 * zeroes, and text pages of executables and shared libraries have 1381 * only one copy in memory, at most, normally. 1382 * 1383 * For the non-reserved pages, page_count(page) denotes a reference count. 1384 * page_count() == 0 means the page is free. page->lru is then used for 1385 * freelist management in the buddy allocator. 1386 * page_count() > 0 means the page has been allocated. 1387 * 1388 * Pages are allocated by the slab allocator in order to provide memory 1389 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1390 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1391 * unless a particular usage is carefully commented. (the responsibility of 1392 * freeing the kmalloc memory is the caller's, of course). 1393 * 1394 * A page may be used by anyone else who does a __get_free_page(). 1395 * In this case, page_count still tracks the references, and should only 1396 * be used through the normal accessor functions. The top bits of page->flags 1397 * and page->virtual store page management information, but all other fields 1398 * are unused and could be used privately, carefully. The management of this 1399 * page is the responsibility of the one who allocated it, and those who have 1400 * subsequently been given references to it. 1401 * 1402 * The other pages (we may call them "pagecache pages") are completely 1403 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1404 * The following discussion applies only to them. 1405 * 1406 * A pagecache page contains an opaque `private' member, which belongs to the 1407 * page's address_space. Usually, this is the address of a circular list of 1408 * the page's disk buffers. PG_private must be set to tell the VM to call 1409 * into the filesystem to release these pages. 1410 * 1411 * A page may belong to an inode's memory mapping. In this case, page->mapping 1412 * is the pointer to the inode, and page->index is the file offset of the page, 1413 * in units of PAGE_SIZE. 1414 * 1415 * If pagecache pages are not associated with an inode, they are said to be 1416 * anonymous pages. These may become associated with the swapcache, and in that 1417 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1418 * 1419 * In either case (swapcache or inode backed), the pagecache itself holds one 1420 * reference to the page. Setting PG_private should also increment the 1421 * refcount. The each user mapping also has a reference to the page. 1422 * 1423 * The pagecache pages are stored in a per-mapping radix tree, which is 1424 * rooted at mapping->i_pages, and indexed by offset. 1425 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1426 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1427 * 1428 * All pagecache pages may be subject to I/O: 1429 * - inode pages may need to be read from disk, 1430 * - inode pages which have been modified and are MAP_SHARED may need 1431 * to be written back to the inode on disk, 1432 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1433 * modified may need to be swapped out to swap space and (later) to be read 1434 * back into memory. 1435 */ 1436 1437 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1438 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1439 1440 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1441 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1442 { 1443 if (!static_branch_unlikely(&devmap_managed_key)) 1444 return false; 1445 if (!is_zone_device_page(page)) 1446 return false; 1447 return __put_devmap_managed_page_refs(page, refs); 1448 } 1449 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1450 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1451 { 1452 return false; 1453 } 1454 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1455 1456 static inline bool put_devmap_managed_page(struct page *page) 1457 { 1458 return put_devmap_managed_page_refs(page, 1); 1459 } 1460 1461 /* 127: arbitrary random number, small enough to assemble well */ 1462 #define folio_ref_zero_or_close_to_overflow(folio) \ 1463 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1464 1465 /** 1466 * folio_get - Increment the reference count on a folio. 1467 * @folio: The folio. 1468 * 1469 * Context: May be called in any context, as long as you know that 1470 * you have a refcount on the folio. If you do not already have one, 1471 * folio_try_get() may be the right interface for you to use. 1472 */ 1473 static inline void folio_get(struct folio *folio) 1474 { 1475 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1476 folio_ref_inc(folio); 1477 } 1478 1479 static inline void get_page(struct page *page) 1480 { 1481 folio_get(page_folio(page)); 1482 } 1483 1484 static inline __must_check bool try_get_page(struct page *page) 1485 { 1486 page = compound_head(page); 1487 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1488 return false; 1489 page_ref_inc(page); 1490 return true; 1491 } 1492 1493 /** 1494 * folio_put - Decrement the reference count on a folio. 1495 * @folio: The folio. 1496 * 1497 * If the folio's reference count reaches zero, the memory will be 1498 * released back to the page allocator and may be used by another 1499 * allocation immediately. Do not access the memory or the struct folio 1500 * after calling folio_put() unless you can be sure that it wasn't the 1501 * last reference. 1502 * 1503 * Context: May be called in process or interrupt context, but not in NMI 1504 * context. May be called while holding a spinlock. 1505 */ 1506 static inline void folio_put(struct folio *folio) 1507 { 1508 if (folio_put_testzero(folio)) 1509 __folio_put(folio); 1510 } 1511 1512 /** 1513 * folio_put_refs - Reduce the reference count on a folio. 1514 * @folio: The folio. 1515 * @refs: The amount to subtract from the folio's reference count. 1516 * 1517 * If the folio's reference count reaches zero, the memory will be 1518 * released back to the page allocator and may be used by another 1519 * allocation immediately. Do not access the memory or the struct folio 1520 * after calling folio_put_refs() unless you can be sure that these weren't 1521 * the last references. 1522 * 1523 * Context: May be called in process or interrupt context, but not in NMI 1524 * context. May be called while holding a spinlock. 1525 */ 1526 static inline void folio_put_refs(struct folio *folio, int refs) 1527 { 1528 if (folio_ref_sub_and_test(folio, refs)) 1529 __folio_put(folio); 1530 } 1531 1532 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1533 1534 /* 1535 * union release_pages_arg - an array of pages or folios 1536 * 1537 * release_pages() releases a simple array of multiple pages, and 1538 * accepts various different forms of said page array: either 1539 * a regular old boring array of pages, an array of folios, or 1540 * an array of encoded page pointers. 1541 * 1542 * The transparent union syntax for this kind of "any of these 1543 * argument types" is all kinds of ugly, so look away. 1544 */ 1545 typedef union { 1546 struct page **pages; 1547 struct folio **folios; 1548 struct encoded_page **encoded_pages; 1549 } release_pages_arg __attribute__ ((__transparent_union__)); 1550 1551 void release_pages(release_pages_arg, int nr); 1552 1553 /** 1554 * folios_put - Decrement the reference count on an array of folios. 1555 * @folios: The folios. 1556 * 1557 * Like folio_put(), but for a batch of folios. This is more efficient 1558 * than writing the loop yourself as it will optimise the locks which need 1559 * to be taken if the folios are freed. The folios batch is returned 1560 * empty and ready to be reused for another batch; there is no need to 1561 * reinitialise it. 1562 * 1563 * Context: May be called in process or interrupt context, but not in NMI 1564 * context. May be called while holding a spinlock. 1565 */ 1566 static inline void folios_put(struct folio_batch *folios) 1567 { 1568 folios_put_refs(folios, NULL); 1569 } 1570 1571 static inline void put_page(struct page *page) 1572 { 1573 struct folio *folio = page_folio(page); 1574 1575 /* 1576 * For some devmap managed pages we need to catch refcount transition 1577 * from 2 to 1: 1578 */ 1579 if (put_devmap_managed_page(&folio->page)) 1580 return; 1581 folio_put(folio); 1582 } 1583 1584 /* 1585 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1586 * the page's refcount so that two separate items are tracked: the original page 1587 * reference count, and also a new count of how many pin_user_pages() calls were 1588 * made against the page. ("gup-pinned" is another term for the latter). 1589 * 1590 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1591 * distinct from normal pages. As such, the unpin_user_page() call (and its 1592 * variants) must be used in order to release gup-pinned pages. 1593 * 1594 * Choice of value: 1595 * 1596 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1597 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1598 * simpler, due to the fact that adding an even power of two to the page 1599 * refcount has the effect of using only the upper N bits, for the code that 1600 * counts up using the bias value. This means that the lower bits are left for 1601 * the exclusive use of the original code that increments and decrements by one 1602 * (or at least, by much smaller values than the bias value). 1603 * 1604 * Of course, once the lower bits overflow into the upper bits (and this is 1605 * OK, because subtraction recovers the original values), then visual inspection 1606 * no longer suffices to directly view the separate counts. However, for normal 1607 * applications that don't have huge page reference counts, this won't be an 1608 * issue. 1609 * 1610 * Locking: the lockless algorithm described in folio_try_get_rcu() 1611 * provides safe operation for get_user_pages(), page_mkclean() and 1612 * other calls that race to set up page table entries. 1613 */ 1614 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1615 1616 void unpin_user_page(struct page *page); 1617 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1618 bool make_dirty); 1619 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1620 bool make_dirty); 1621 void unpin_user_pages(struct page **pages, unsigned long npages); 1622 1623 static inline bool is_cow_mapping(vm_flags_t flags) 1624 { 1625 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1626 } 1627 1628 #ifndef CONFIG_MMU 1629 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1630 { 1631 /* 1632 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1633 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1634 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1635 * underlying memory if ptrace is active, so this is only possible if 1636 * ptrace does not apply. Note that there is no mprotect() to upgrade 1637 * write permissions later. 1638 */ 1639 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1640 } 1641 #endif 1642 1643 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1644 #define SECTION_IN_PAGE_FLAGS 1645 #endif 1646 1647 /* 1648 * The identification function is mainly used by the buddy allocator for 1649 * determining if two pages could be buddies. We are not really identifying 1650 * the zone since we could be using the section number id if we do not have 1651 * node id available in page flags. 1652 * We only guarantee that it will return the same value for two combinable 1653 * pages in a zone. 1654 */ 1655 static inline int page_zone_id(struct page *page) 1656 { 1657 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1658 } 1659 1660 #ifdef NODE_NOT_IN_PAGE_FLAGS 1661 int page_to_nid(const struct page *page); 1662 #else 1663 static inline int page_to_nid(const struct page *page) 1664 { 1665 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1666 } 1667 #endif 1668 1669 static inline int folio_nid(const struct folio *folio) 1670 { 1671 return page_to_nid(&folio->page); 1672 } 1673 1674 #ifdef CONFIG_NUMA_BALANCING 1675 /* page access time bits needs to hold at least 4 seconds */ 1676 #define PAGE_ACCESS_TIME_MIN_BITS 12 1677 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1678 #define PAGE_ACCESS_TIME_BUCKETS \ 1679 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1680 #else 1681 #define PAGE_ACCESS_TIME_BUCKETS 0 1682 #endif 1683 1684 #define PAGE_ACCESS_TIME_MASK \ 1685 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1686 1687 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1688 { 1689 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1690 } 1691 1692 static inline int cpupid_to_pid(int cpupid) 1693 { 1694 return cpupid & LAST__PID_MASK; 1695 } 1696 1697 static inline int cpupid_to_cpu(int cpupid) 1698 { 1699 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1700 } 1701 1702 static inline int cpupid_to_nid(int cpupid) 1703 { 1704 return cpu_to_node(cpupid_to_cpu(cpupid)); 1705 } 1706 1707 static inline bool cpupid_pid_unset(int cpupid) 1708 { 1709 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1710 } 1711 1712 static inline bool cpupid_cpu_unset(int cpupid) 1713 { 1714 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1715 } 1716 1717 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1718 { 1719 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1720 } 1721 1722 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1723 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1724 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1725 { 1726 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1727 } 1728 1729 static inline int folio_last_cpupid(struct folio *folio) 1730 { 1731 return folio->_last_cpupid; 1732 } 1733 static inline void page_cpupid_reset_last(struct page *page) 1734 { 1735 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1736 } 1737 #else 1738 static inline int folio_last_cpupid(struct folio *folio) 1739 { 1740 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1741 } 1742 1743 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1744 1745 static inline void page_cpupid_reset_last(struct page *page) 1746 { 1747 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1748 } 1749 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1750 1751 static inline int folio_xchg_access_time(struct folio *folio, int time) 1752 { 1753 int last_time; 1754 1755 last_time = folio_xchg_last_cpupid(folio, 1756 time >> PAGE_ACCESS_TIME_BUCKETS); 1757 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1758 } 1759 1760 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1761 { 1762 unsigned int pid_bit; 1763 1764 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1765 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1766 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1767 } 1768 } 1769 #else /* !CONFIG_NUMA_BALANCING */ 1770 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1771 { 1772 return folio_nid(folio); /* XXX */ 1773 } 1774 1775 static inline int folio_xchg_access_time(struct folio *folio, int time) 1776 { 1777 return 0; 1778 } 1779 1780 static inline int folio_last_cpupid(struct folio *folio) 1781 { 1782 return folio_nid(folio); /* XXX */ 1783 } 1784 1785 static inline int cpupid_to_nid(int cpupid) 1786 { 1787 return -1; 1788 } 1789 1790 static inline int cpupid_to_pid(int cpupid) 1791 { 1792 return -1; 1793 } 1794 1795 static inline int cpupid_to_cpu(int cpupid) 1796 { 1797 return -1; 1798 } 1799 1800 static inline int cpu_pid_to_cpupid(int nid, int pid) 1801 { 1802 return -1; 1803 } 1804 1805 static inline bool cpupid_pid_unset(int cpupid) 1806 { 1807 return true; 1808 } 1809 1810 static inline void page_cpupid_reset_last(struct page *page) 1811 { 1812 } 1813 1814 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1815 { 1816 return false; 1817 } 1818 1819 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1820 { 1821 } 1822 #endif /* CONFIG_NUMA_BALANCING */ 1823 1824 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1825 1826 /* 1827 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1828 * setting tags for all pages to native kernel tag value 0xff, as the default 1829 * value 0x00 maps to 0xff. 1830 */ 1831 1832 static inline u8 page_kasan_tag(const struct page *page) 1833 { 1834 u8 tag = KASAN_TAG_KERNEL; 1835 1836 if (kasan_enabled()) { 1837 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1838 tag ^= 0xff; 1839 } 1840 1841 return tag; 1842 } 1843 1844 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1845 { 1846 unsigned long old_flags, flags; 1847 1848 if (!kasan_enabled()) 1849 return; 1850 1851 tag ^= 0xff; 1852 old_flags = READ_ONCE(page->flags); 1853 do { 1854 flags = old_flags; 1855 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1856 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1857 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1858 } 1859 1860 static inline void page_kasan_tag_reset(struct page *page) 1861 { 1862 if (kasan_enabled()) 1863 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1864 } 1865 1866 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1867 1868 static inline u8 page_kasan_tag(const struct page *page) 1869 { 1870 return 0xff; 1871 } 1872 1873 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1874 static inline void page_kasan_tag_reset(struct page *page) { } 1875 1876 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1877 1878 static inline struct zone *page_zone(const struct page *page) 1879 { 1880 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1881 } 1882 1883 static inline pg_data_t *page_pgdat(const struct page *page) 1884 { 1885 return NODE_DATA(page_to_nid(page)); 1886 } 1887 1888 static inline struct zone *folio_zone(const struct folio *folio) 1889 { 1890 return page_zone(&folio->page); 1891 } 1892 1893 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1894 { 1895 return page_pgdat(&folio->page); 1896 } 1897 1898 #ifdef SECTION_IN_PAGE_FLAGS 1899 static inline void set_page_section(struct page *page, unsigned long section) 1900 { 1901 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1902 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1903 } 1904 1905 static inline unsigned long page_to_section(const struct page *page) 1906 { 1907 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1908 } 1909 #endif 1910 1911 /** 1912 * folio_pfn - Return the Page Frame Number of a folio. 1913 * @folio: The folio. 1914 * 1915 * A folio may contain multiple pages. The pages have consecutive 1916 * Page Frame Numbers. 1917 * 1918 * Return: The Page Frame Number of the first page in the folio. 1919 */ 1920 static inline unsigned long folio_pfn(struct folio *folio) 1921 { 1922 return page_to_pfn(&folio->page); 1923 } 1924 1925 static inline struct folio *pfn_folio(unsigned long pfn) 1926 { 1927 return page_folio(pfn_to_page(pfn)); 1928 } 1929 1930 /** 1931 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1932 * @folio: The folio. 1933 * 1934 * This function checks if a folio has been pinned via a call to 1935 * a function in the pin_user_pages() family. 1936 * 1937 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1938 * because it means "definitely not pinned for DMA", but true means "probably 1939 * pinned for DMA, but possibly a false positive due to having at least 1940 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1941 * 1942 * False positives are OK, because: a) it's unlikely for a folio to 1943 * get that many refcounts, and b) all the callers of this routine are 1944 * expected to be able to deal gracefully with a false positive. 1945 * 1946 * For large folios, the result will be exactly correct. That's because 1947 * we have more tracking data available: the _pincount field is used 1948 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1949 * 1950 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1951 * 1952 * Return: True, if it is likely that the page has been "dma-pinned". 1953 * False, if the page is definitely not dma-pinned. 1954 */ 1955 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1956 { 1957 if (folio_test_large(folio)) 1958 return atomic_read(&folio->_pincount) > 0; 1959 1960 /* 1961 * folio_ref_count() is signed. If that refcount overflows, then 1962 * folio_ref_count() returns a negative value, and callers will avoid 1963 * further incrementing the refcount. 1964 * 1965 * Here, for that overflow case, use the sign bit to count a little 1966 * bit higher via unsigned math, and thus still get an accurate result. 1967 */ 1968 return ((unsigned int)folio_ref_count(folio)) >= 1969 GUP_PIN_COUNTING_BIAS; 1970 } 1971 1972 static inline bool page_maybe_dma_pinned(struct page *page) 1973 { 1974 return folio_maybe_dma_pinned(page_folio(page)); 1975 } 1976 1977 /* 1978 * This should most likely only be called during fork() to see whether we 1979 * should break the cow immediately for an anon page on the src mm. 1980 * 1981 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1982 */ 1983 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1984 struct folio *folio) 1985 { 1986 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1987 1988 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1989 return false; 1990 1991 return folio_maybe_dma_pinned(folio); 1992 } 1993 1994 /** 1995 * is_zero_page - Query if a page is a zero page 1996 * @page: The page to query 1997 * 1998 * This returns true if @page is one of the permanent zero pages. 1999 */ 2000 static inline bool is_zero_page(const struct page *page) 2001 { 2002 return is_zero_pfn(page_to_pfn(page)); 2003 } 2004 2005 /** 2006 * is_zero_folio - Query if a folio is a zero page 2007 * @folio: The folio to query 2008 * 2009 * This returns true if @folio is one of the permanent zero pages. 2010 */ 2011 static inline bool is_zero_folio(const struct folio *folio) 2012 { 2013 return is_zero_page(&folio->page); 2014 } 2015 2016 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2017 #ifdef CONFIG_MIGRATION 2018 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2019 { 2020 #ifdef CONFIG_CMA 2021 int mt = folio_migratetype(folio); 2022 2023 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2024 return false; 2025 #endif 2026 /* The zero page can be "pinned" but gets special handling. */ 2027 if (is_zero_folio(folio)) 2028 return true; 2029 2030 /* Coherent device memory must always allow eviction. */ 2031 if (folio_is_device_coherent(folio)) 2032 return false; 2033 2034 /* Otherwise, non-movable zone folios can be pinned. */ 2035 return !folio_is_zone_movable(folio); 2036 2037 } 2038 #else 2039 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2040 { 2041 return true; 2042 } 2043 #endif 2044 2045 static inline void set_page_zone(struct page *page, enum zone_type zone) 2046 { 2047 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2048 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2049 } 2050 2051 static inline void set_page_node(struct page *page, unsigned long node) 2052 { 2053 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2054 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2055 } 2056 2057 static inline void set_page_links(struct page *page, enum zone_type zone, 2058 unsigned long node, unsigned long pfn) 2059 { 2060 set_page_zone(page, zone); 2061 set_page_node(page, node); 2062 #ifdef SECTION_IN_PAGE_FLAGS 2063 set_page_section(page, pfn_to_section_nr(pfn)); 2064 #endif 2065 } 2066 2067 /** 2068 * folio_nr_pages - The number of pages in the folio. 2069 * @folio: The folio. 2070 * 2071 * Return: A positive power of two. 2072 */ 2073 static inline long folio_nr_pages(const struct folio *folio) 2074 { 2075 if (!folio_test_large(folio)) 2076 return 1; 2077 #ifdef CONFIG_64BIT 2078 return folio->_folio_nr_pages; 2079 #else 2080 return 1L << (folio->_flags_1 & 0xff); 2081 #endif 2082 } 2083 2084 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2085 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2086 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2087 #else 2088 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2089 #endif 2090 2091 /* 2092 * compound_nr() returns the number of pages in this potentially compound 2093 * page. compound_nr() can be called on a tail page, and is defined to 2094 * return 1 in that case. 2095 */ 2096 static inline unsigned long compound_nr(struct page *page) 2097 { 2098 struct folio *folio = (struct folio *)page; 2099 2100 if (!test_bit(PG_head, &folio->flags)) 2101 return 1; 2102 #ifdef CONFIG_64BIT 2103 return folio->_folio_nr_pages; 2104 #else 2105 return 1L << (folio->_flags_1 & 0xff); 2106 #endif 2107 } 2108 2109 /** 2110 * thp_nr_pages - The number of regular pages in this huge page. 2111 * @page: The head page of a huge page. 2112 */ 2113 static inline int thp_nr_pages(struct page *page) 2114 { 2115 return folio_nr_pages((struct folio *)page); 2116 } 2117 2118 /** 2119 * folio_next - Move to the next physical folio. 2120 * @folio: The folio we're currently operating on. 2121 * 2122 * If you have physically contiguous memory which may span more than 2123 * one folio (eg a &struct bio_vec), use this function to move from one 2124 * folio to the next. Do not use it if the memory is only virtually 2125 * contiguous as the folios are almost certainly not adjacent to each 2126 * other. This is the folio equivalent to writing ``page++``. 2127 * 2128 * Context: We assume that the folios are refcounted and/or locked at a 2129 * higher level and do not adjust the reference counts. 2130 * Return: The next struct folio. 2131 */ 2132 static inline struct folio *folio_next(struct folio *folio) 2133 { 2134 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2135 } 2136 2137 /** 2138 * folio_shift - The size of the memory described by this folio. 2139 * @folio: The folio. 2140 * 2141 * A folio represents a number of bytes which is a power-of-two in size. 2142 * This function tells you which power-of-two the folio is. See also 2143 * folio_size() and folio_order(). 2144 * 2145 * Context: The caller should have a reference on the folio to prevent 2146 * it from being split. It is not necessary for the folio to be locked. 2147 * Return: The base-2 logarithm of the size of this folio. 2148 */ 2149 static inline unsigned int folio_shift(struct folio *folio) 2150 { 2151 return PAGE_SHIFT + folio_order(folio); 2152 } 2153 2154 /** 2155 * folio_size - The number of bytes in a folio. 2156 * @folio: The folio. 2157 * 2158 * Context: The caller should have a reference on the folio to prevent 2159 * it from being split. It is not necessary for the folio to be locked. 2160 * Return: The number of bytes in this folio. 2161 */ 2162 static inline size_t folio_size(struct folio *folio) 2163 { 2164 return PAGE_SIZE << folio_order(folio); 2165 } 2166 2167 /** 2168 * folio_likely_mapped_shared - Estimate if the folio is mapped into the page 2169 * tables of more than one MM 2170 * @folio: The folio. 2171 * 2172 * This function checks if the folio is currently mapped into more than one 2173 * MM ("mapped shared"), or if the folio is only mapped into a single MM 2174 * ("mapped exclusively"). 2175 * 2176 * As precise information is not easily available for all folios, this function 2177 * estimates the number of MMs ("sharers") that are currently mapping a folio 2178 * using the number of times the first page of the folio is currently mapped 2179 * into page tables. 2180 * 2181 * For small anonymous folios (except KSM folios) and anonymous hugetlb folios, 2182 * the return value will be exactly correct, because they can only be mapped 2183 * at most once into an MM, and they cannot be partially mapped. 2184 * 2185 * For other folios, the result can be fuzzy: 2186 * #. For partially-mappable large folios (THP), the return value can wrongly 2187 * indicate "mapped exclusively" (false negative) when the folio is 2188 * only partially mapped into at least one MM. 2189 * #. For pagecache folios (including hugetlb), the return value can wrongly 2190 * indicate "mapped shared" (false positive) when two VMAs in the same MM 2191 * cover the same file range. 2192 * #. For (small) KSM folios, the return value can wrongly indicate "mapped 2193 * shared" (false negative), when the folio is mapped multiple times into 2194 * the same MM. 2195 * 2196 * Further, this function only considers current page table mappings that 2197 * are tracked using the folio mapcount(s). 2198 * 2199 * This function does not consider: 2200 * #. If the folio might get mapped in the (near) future (e.g., swapcache, 2201 * pagecache, temporary unmapping for migration). 2202 * #. If the folio is mapped differently (VM_PFNMAP). 2203 * #. If hugetlb page table sharing applies. Callers might want to check 2204 * hugetlb_pmd_shared(). 2205 * 2206 * Return: Whether the folio is estimated to be mapped into more than one MM. 2207 */ 2208 static inline bool folio_likely_mapped_shared(struct folio *folio) 2209 { 2210 return page_mapcount(folio_page(folio, 0)) > 1; 2211 } 2212 2213 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2214 static inline int arch_make_page_accessible(struct page *page) 2215 { 2216 return 0; 2217 } 2218 #endif 2219 2220 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2221 static inline int arch_make_folio_accessible(struct folio *folio) 2222 { 2223 int ret; 2224 long i, nr = folio_nr_pages(folio); 2225 2226 for (i = 0; i < nr; i++) { 2227 ret = arch_make_page_accessible(folio_page(folio, i)); 2228 if (ret) 2229 break; 2230 } 2231 2232 return ret; 2233 } 2234 #endif 2235 2236 /* 2237 * Some inline functions in vmstat.h depend on page_zone() 2238 */ 2239 #include <linux/vmstat.h> 2240 2241 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2242 #define HASHED_PAGE_VIRTUAL 2243 #endif 2244 2245 #if defined(WANT_PAGE_VIRTUAL) 2246 static inline void *page_address(const struct page *page) 2247 { 2248 return page->virtual; 2249 } 2250 static inline void set_page_address(struct page *page, void *address) 2251 { 2252 page->virtual = address; 2253 } 2254 #define page_address_init() do { } while(0) 2255 #endif 2256 2257 #if defined(HASHED_PAGE_VIRTUAL) 2258 void *page_address(const struct page *page); 2259 void set_page_address(struct page *page, void *virtual); 2260 void page_address_init(void); 2261 #endif 2262 2263 static __always_inline void *lowmem_page_address(const struct page *page) 2264 { 2265 return page_to_virt(page); 2266 } 2267 2268 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2269 #define page_address(page) lowmem_page_address(page) 2270 #define set_page_address(page, address) do { } while(0) 2271 #define page_address_init() do { } while(0) 2272 #endif 2273 2274 static inline void *folio_address(const struct folio *folio) 2275 { 2276 return page_address(&folio->page); 2277 } 2278 2279 extern pgoff_t __page_file_index(struct page *page); 2280 2281 /* 2282 * Return the pagecache index of the passed page. Regular pagecache pages 2283 * use ->index whereas swapcache pages use swp_offset(->private) 2284 */ 2285 static inline pgoff_t page_index(struct page *page) 2286 { 2287 if (unlikely(PageSwapCache(page))) 2288 return __page_file_index(page); 2289 return page->index; 2290 } 2291 2292 /* 2293 * Return true only if the page has been allocated with 2294 * ALLOC_NO_WATERMARKS and the low watermark was not 2295 * met implying that the system is under some pressure. 2296 */ 2297 static inline bool page_is_pfmemalloc(const struct page *page) 2298 { 2299 /* 2300 * lru.next has bit 1 set if the page is allocated from the 2301 * pfmemalloc reserves. Callers may simply overwrite it if 2302 * they do not need to preserve that information. 2303 */ 2304 return (uintptr_t)page->lru.next & BIT(1); 2305 } 2306 2307 /* 2308 * Return true only if the folio has been allocated with 2309 * ALLOC_NO_WATERMARKS and the low watermark was not 2310 * met implying that the system is under some pressure. 2311 */ 2312 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2313 { 2314 /* 2315 * lru.next has bit 1 set if the page is allocated from the 2316 * pfmemalloc reserves. Callers may simply overwrite it if 2317 * they do not need to preserve that information. 2318 */ 2319 return (uintptr_t)folio->lru.next & BIT(1); 2320 } 2321 2322 /* 2323 * Only to be called by the page allocator on a freshly allocated 2324 * page. 2325 */ 2326 static inline void set_page_pfmemalloc(struct page *page) 2327 { 2328 page->lru.next = (void *)BIT(1); 2329 } 2330 2331 static inline void clear_page_pfmemalloc(struct page *page) 2332 { 2333 page->lru.next = NULL; 2334 } 2335 2336 /* 2337 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2338 */ 2339 extern void pagefault_out_of_memory(void); 2340 2341 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2342 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2343 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2344 2345 /* 2346 * Parameter block passed down to zap_pte_range in exceptional cases. 2347 */ 2348 struct zap_details { 2349 struct folio *single_folio; /* Locked folio to be unmapped */ 2350 bool even_cows; /* Zap COWed private pages too? */ 2351 zap_flags_t zap_flags; /* Extra flags for zapping */ 2352 }; 2353 2354 /* 2355 * Whether to drop the pte markers, for example, the uffd-wp information for 2356 * file-backed memory. This should only be specified when we will completely 2357 * drop the page in the mm, either by truncation or unmapping of the vma. By 2358 * default, the flag is not set. 2359 */ 2360 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2361 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2362 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2363 2364 #ifdef CONFIG_SCHED_MM_CID 2365 void sched_mm_cid_before_execve(struct task_struct *t); 2366 void sched_mm_cid_after_execve(struct task_struct *t); 2367 void sched_mm_cid_fork(struct task_struct *t); 2368 void sched_mm_cid_exit_signals(struct task_struct *t); 2369 static inline int task_mm_cid(struct task_struct *t) 2370 { 2371 return t->mm_cid; 2372 } 2373 #else 2374 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2375 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2376 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2377 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2378 static inline int task_mm_cid(struct task_struct *t) 2379 { 2380 /* 2381 * Use the processor id as a fall-back when the mm cid feature is 2382 * disabled. This provides functional per-cpu data structure accesses 2383 * in user-space, althrough it won't provide the memory usage benefits. 2384 */ 2385 return raw_smp_processor_id(); 2386 } 2387 #endif 2388 2389 #ifdef CONFIG_MMU 2390 extern bool can_do_mlock(void); 2391 #else 2392 static inline bool can_do_mlock(void) { return false; } 2393 #endif 2394 extern int user_shm_lock(size_t, struct ucounts *); 2395 extern void user_shm_unlock(size_t, struct ucounts *); 2396 2397 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2398 pte_t pte); 2399 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2400 pte_t pte); 2401 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2402 unsigned long addr, pmd_t pmd); 2403 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2404 pmd_t pmd); 2405 2406 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2407 unsigned long size); 2408 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2409 unsigned long size, struct zap_details *details); 2410 static inline void zap_vma_pages(struct vm_area_struct *vma) 2411 { 2412 zap_page_range_single(vma, vma->vm_start, 2413 vma->vm_end - vma->vm_start, NULL); 2414 } 2415 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2416 struct vm_area_struct *start_vma, unsigned long start, 2417 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2418 2419 struct mmu_notifier_range; 2420 2421 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2422 unsigned long end, unsigned long floor, unsigned long ceiling); 2423 int 2424 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2425 int follow_pte(struct mm_struct *mm, unsigned long address, 2426 pte_t **ptepp, spinlock_t **ptlp); 2427 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2428 void *buf, int len, int write); 2429 2430 extern void truncate_pagecache(struct inode *inode, loff_t new); 2431 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2432 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2433 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2434 int generic_error_remove_folio(struct address_space *mapping, 2435 struct folio *folio); 2436 2437 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2438 unsigned long address, struct pt_regs *regs); 2439 2440 #ifdef CONFIG_MMU 2441 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2442 unsigned long address, unsigned int flags, 2443 struct pt_regs *regs); 2444 extern int fixup_user_fault(struct mm_struct *mm, 2445 unsigned long address, unsigned int fault_flags, 2446 bool *unlocked); 2447 void unmap_mapping_pages(struct address_space *mapping, 2448 pgoff_t start, pgoff_t nr, bool even_cows); 2449 void unmap_mapping_range(struct address_space *mapping, 2450 loff_t const holebegin, loff_t const holelen, int even_cows); 2451 #else 2452 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2453 unsigned long address, unsigned int flags, 2454 struct pt_regs *regs) 2455 { 2456 /* should never happen if there's no MMU */ 2457 BUG(); 2458 return VM_FAULT_SIGBUS; 2459 } 2460 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2461 unsigned int fault_flags, bool *unlocked) 2462 { 2463 /* should never happen if there's no MMU */ 2464 BUG(); 2465 return -EFAULT; 2466 } 2467 static inline void unmap_mapping_pages(struct address_space *mapping, 2468 pgoff_t start, pgoff_t nr, bool even_cows) { } 2469 static inline void unmap_mapping_range(struct address_space *mapping, 2470 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2471 #endif 2472 2473 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2474 loff_t const holebegin, loff_t const holelen) 2475 { 2476 unmap_mapping_range(mapping, holebegin, holelen, 0); 2477 } 2478 2479 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2480 unsigned long addr); 2481 2482 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2483 void *buf, int len, unsigned int gup_flags); 2484 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2485 void *buf, int len, unsigned int gup_flags); 2486 2487 long get_user_pages_remote(struct mm_struct *mm, 2488 unsigned long start, unsigned long nr_pages, 2489 unsigned int gup_flags, struct page **pages, 2490 int *locked); 2491 long pin_user_pages_remote(struct mm_struct *mm, 2492 unsigned long start, unsigned long nr_pages, 2493 unsigned int gup_flags, struct page **pages, 2494 int *locked); 2495 2496 /* 2497 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2498 */ 2499 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2500 unsigned long addr, 2501 int gup_flags, 2502 struct vm_area_struct **vmap) 2503 { 2504 struct page *page; 2505 struct vm_area_struct *vma; 2506 int got; 2507 2508 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2509 return ERR_PTR(-EINVAL); 2510 2511 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2512 2513 if (got < 0) 2514 return ERR_PTR(got); 2515 2516 vma = vma_lookup(mm, addr); 2517 if (WARN_ON_ONCE(!vma)) { 2518 put_page(page); 2519 return ERR_PTR(-EINVAL); 2520 } 2521 2522 *vmap = vma; 2523 return page; 2524 } 2525 2526 long get_user_pages(unsigned long start, unsigned long nr_pages, 2527 unsigned int gup_flags, struct page **pages); 2528 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2529 unsigned int gup_flags, struct page **pages); 2530 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2531 struct page **pages, unsigned int gup_flags); 2532 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2533 struct page **pages, unsigned int gup_flags); 2534 2535 int get_user_pages_fast(unsigned long start, int nr_pages, 2536 unsigned int gup_flags, struct page **pages); 2537 int pin_user_pages_fast(unsigned long start, int nr_pages, 2538 unsigned int gup_flags, struct page **pages); 2539 void folio_add_pin(struct folio *folio); 2540 2541 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2542 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2543 struct task_struct *task, bool bypass_rlim); 2544 2545 struct kvec; 2546 struct page *get_dump_page(unsigned long addr); 2547 2548 bool folio_mark_dirty(struct folio *folio); 2549 bool set_page_dirty(struct page *page); 2550 int set_page_dirty_lock(struct page *page); 2551 2552 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2553 2554 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2555 unsigned long old_addr, struct vm_area_struct *new_vma, 2556 unsigned long new_addr, unsigned long len, 2557 bool need_rmap_locks, bool for_stack); 2558 2559 /* 2560 * Flags used by change_protection(). For now we make it a bitmap so 2561 * that we can pass in multiple flags just like parameters. However 2562 * for now all the callers are only use one of the flags at the same 2563 * time. 2564 */ 2565 /* 2566 * Whether we should manually check if we can map individual PTEs writable, 2567 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2568 * PTEs automatically in a writable mapping. 2569 */ 2570 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2571 /* Whether this protection change is for NUMA hints */ 2572 #define MM_CP_PROT_NUMA (1UL << 1) 2573 /* Whether this change is for write protecting */ 2574 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2575 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2576 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2577 MM_CP_UFFD_WP_RESOLVE) 2578 2579 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2580 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2581 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2582 { 2583 /* 2584 * We want to check manually if we can change individual PTEs writable 2585 * if we can't do that automatically for all PTEs in a mapping. For 2586 * private mappings, that's always the case when we have write 2587 * permissions as we properly have to handle COW. 2588 */ 2589 if (vma->vm_flags & VM_SHARED) 2590 return vma_wants_writenotify(vma, vma->vm_page_prot); 2591 return !!(vma->vm_flags & VM_WRITE); 2592 2593 } 2594 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2595 pte_t pte); 2596 extern long change_protection(struct mmu_gather *tlb, 2597 struct vm_area_struct *vma, unsigned long start, 2598 unsigned long end, unsigned long cp_flags); 2599 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2600 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2601 unsigned long start, unsigned long end, unsigned long newflags); 2602 2603 /* 2604 * doesn't attempt to fault and will return short. 2605 */ 2606 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2607 unsigned int gup_flags, struct page **pages); 2608 2609 static inline bool get_user_page_fast_only(unsigned long addr, 2610 unsigned int gup_flags, struct page **pagep) 2611 { 2612 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2613 } 2614 /* 2615 * per-process(per-mm_struct) statistics. 2616 */ 2617 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2618 { 2619 return percpu_counter_read_positive(&mm->rss_stat[member]); 2620 } 2621 2622 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2623 2624 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2625 { 2626 percpu_counter_add(&mm->rss_stat[member], value); 2627 2628 mm_trace_rss_stat(mm, member); 2629 } 2630 2631 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2632 { 2633 percpu_counter_inc(&mm->rss_stat[member]); 2634 2635 mm_trace_rss_stat(mm, member); 2636 } 2637 2638 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2639 { 2640 percpu_counter_dec(&mm->rss_stat[member]); 2641 2642 mm_trace_rss_stat(mm, member); 2643 } 2644 2645 /* Optimized variant when folio is already known not to be anon */ 2646 static inline int mm_counter_file(struct folio *folio) 2647 { 2648 if (folio_test_swapbacked(folio)) 2649 return MM_SHMEMPAGES; 2650 return MM_FILEPAGES; 2651 } 2652 2653 static inline int mm_counter(struct folio *folio) 2654 { 2655 if (folio_test_anon(folio)) 2656 return MM_ANONPAGES; 2657 return mm_counter_file(folio); 2658 } 2659 2660 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2661 { 2662 return get_mm_counter(mm, MM_FILEPAGES) + 2663 get_mm_counter(mm, MM_ANONPAGES) + 2664 get_mm_counter(mm, MM_SHMEMPAGES); 2665 } 2666 2667 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2668 { 2669 return max(mm->hiwater_rss, get_mm_rss(mm)); 2670 } 2671 2672 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2673 { 2674 return max(mm->hiwater_vm, mm->total_vm); 2675 } 2676 2677 static inline void update_hiwater_rss(struct mm_struct *mm) 2678 { 2679 unsigned long _rss = get_mm_rss(mm); 2680 2681 if ((mm)->hiwater_rss < _rss) 2682 (mm)->hiwater_rss = _rss; 2683 } 2684 2685 static inline void update_hiwater_vm(struct mm_struct *mm) 2686 { 2687 if (mm->hiwater_vm < mm->total_vm) 2688 mm->hiwater_vm = mm->total_vm; 2689 } 2690 2691 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2692 { 2693 mm->hiwater_rss = get_mm_rss(mm); 2694 } 2695 2696 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2697 struct mm_struct *mm) 2698 { 2699 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2700 2701 if (*maxrss < hiwater_rss) 2702 *maxrss = hiwater_rss; 2703 } 2704 2705 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2706 static inline int pte_special(pte_t pte) 2707 { 2708 return 0; 2709 } 2710 2711 static inline pte_t pte_mkspecial(pte_t pte) 2712 { 2713 return pte; 2714 } 2715 #endif 2716 2717 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2718 static inline int pte_devmap(pte_t pte) 2719 { 2720 return 0; 2721 } 2722 #endif 2723 2724 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2725 spinlock_t **ptl); 2726 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2727 spinlock_t **ptl) 2728 { 2729 pte_t *ptep; 2730 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2731 return ptep; 2732 } 2733 2734 #ifdef __PAGETABLE_P4D_FOLDED 2735 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2736 unsigned long address) 2737 { 2738 return 0; 2739 } 2740 #else 2741 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2742 #endif 2743 2744 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2745 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2746 unsigned long address) 2747 { 2748 return 0; 2749 } 2750 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2751 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2752 2753 #else 2754 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2755 2756 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2757 { 2758 if (mm_pud_folded(mm)) 2759 return; 2760 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2761 } 2762 2763 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2764 { 2765 if (mm_pud_folded(mm)) 2766 return; 2767 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2768 } 2769 #endif 2770 2771 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2772 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2773 unsigned long address) 2774 { 2775 return 0; 2776 } 2777 2778 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2779 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2780 2781 #else 2782 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2783 2784 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2785 { 2786 if (mm_pmd_folded(mm)) 2787 return; 2788 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2789 } 2790 2791 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2792 { 2793 if (mm_pmd_folded(mm)) 2794 return; 2795 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2796 } 2797 #endif 2798 2799 #ifdef CONFIG_MMU 2800 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2801 { 2802 atomic_long_set(&mm->pgtables_bytes, 0); 2803 } 2804 2805 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2806 { 2807 return atomic_long_read(&mm->pgtables_bytes); 2808 } 2809 2810 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2811 { 2812 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2813 } 2814 2815 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2816 { 2817 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2818 } 2819 #else 2820 2821 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2822 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2823 { 2824 return 0; 2825 } 2826 2827 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2828 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2829 #endif 2830 2831 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2832 int __pte_alloc_kernel(pmd_t *pmd); 2833 2834 #if defined(CONFIG_MMU) 2835 2836 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2837 unsigned long address) 2838 { 2839 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2840 NULL : p4d_offset(pgd, address); 2841 } 2842 2843 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2844 unsigned long address) 2845 { 2846 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2847 NULL : pud_offset(p4d, address); 2848 } 2849 2850 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2851 { 2852 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2853 NULL: pmd_offset(pud, address); 2854 } 2855 #endif /* CONFIG_MMU */ 2856 2857 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2858 { 2859 return page_ptdesc(virt_to_page(x)); 2860 } 2861 2862 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2863 { 2864 return page_to_virt(ptdesc_page(pt)); 2865 } 2866 2867 static inline void *ptdesc_address(const struct ptdesc *pt) 2868 { 2869 return folio_address(ptdesc_folio(pt)); 2870 } 2871 2872 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2873 { 2874 return folio_test_reserved(ptdesc_folio(pt)); 2875 } 2876 2877 /** 2878 * pagetable_alloc - Allocate pagetables 2879 * @gfp: GFP flags 2880 * @order: desired pagetable order 2881 * 2882 * pagetable_alloc allocates memory for page tables as well as a page table 2883 * descriptor to describe that memory. 2884 * 2885 * Return: The ptdesc describing the allocated page tables. 2886 */ 2887 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order) 2888 { 2889 struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order); 2890 2891 return page_ptdesc(page); 2892 } 2893 #define pagetable_alloc(...) alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__)) 2894 2895 /** 2896 * pagetable_free - Free pagetables 2897 * @pt: The page table descriptor 2898 * 2899 * pagetable_free frees the memory of all page tables described by a page 2900 * table descriptor and the memory for the descriptor itself. 2901 */ 2902 static inline void pagetable_free(struct ptdesc *pt) 2903 { 2904 struct page *page = ptdesc_page(pt); 2905 2906 __free_pages(page, compound_order(page)); 2907 } 2908 2909 #if USE_SPLIT_PTE_PTLOCKS 2910 #if ALLOC_SPLIT_PTLOCKS 2911 void __init ptlock_cache_init(void); 2912 bool ptlock_alloc(struct ptdesc *ptdesc); 2913 void ptlock_free(struct ptdesc *ptdesc); 2914 2915 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2916 { 2917 return ptdesc->ptl; 2918 } 2919 #else /* ALLOC_SPLIT_PTLOCKS */ 2920 static inline void ptlock_cache_init(void) 2921 { 2922 } 2923 2924 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2925 { 2926 return true; 2927 } 2928 2929 static inline void ptlock_free(struct ptdesc *ptdesc) 2930 { 2931 } 2932 2933 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2934 { 2935 return &ptdesc->ptl; 2936 } 2937 #endif /* ALLOC_SPLIT_PTLOCKS */ 2938 2939 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2940 { 2941 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2942 } 2943 2944 static inline bool ptlock_init(struct ptdesc *ptdesc) 2945 { 2946 /* 2947 * prep_new_page() initialize page->private (and therefore page->ptl) 2948 * with 0. Make sure nobody took it in use in between. 2949 * 2950 * It can happen if arch try to use slab for page table allocation: 2951 * slab code uses page->slab_cache, which share storage with page->ptl. 2952 */ 2953 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2954 if (!ptlock_alloc(ptdesc)) 2955 return false; 2956 spin_lock_init(ptlock_ptr(ptdesc)); 2957 return true; 2958 } 2959 2960 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2961 /* 2962 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2963 */ 2964 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2965 { 2966 return &mm->page_table_lock; 2967 } 2968 static inline void ptlock_cache_init(void) {} 2969 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2970 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2971 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2972 2973 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2974 { 2975 struct folio *folio = ptdesc_folio(ptdesc); 2976 2977 if (!ptlock_init(ptdesc)) 2978 return false; 2979 __folio_set_pgtable(folio); 2980 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2981 return true; 2982 } 2983 2984 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2985 { 2986 struct folio *folio = ptdesc_folio(ptdesc); 2987 2988 ptlock_free(ptdesc); 2989 __folio_clear_pgtable(folio); 2990 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2991 } 2992 2993 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2994 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2995 { 2996 return __pte_offset_map(pmd, addr, NULL); 2997 } 2998 2999 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3000 unsigned long addr, spinlock_t **ptlp); 3001 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 3002 unsigned long addr, spinlock_t **ptlp) 3003 { 3004 pte_t *pte; 3005 3006 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 3007 return pte; 3008 } 3009 3010 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 3011 unsigned long addr, spinlock_t **ptlp); 3012 3013 #define pte_unmap_unlock(pte, ptl) do { \ 3014 spin_unlock(ptl); \ 3015 pte_unmap(pte); \ 3016 } while (0) 3017 3018 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 3019 3020 #define pte_alloc_map(mm, pmd, address) \ 3021 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 3022 3023 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 3024 (pte_alloc(mm, pmd) ? \ 3025 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 3026 3027 #define pte_alloc_kernel(pmd, address) \ 3028 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3029 NULL: pte_offset_kernel(pmd, address)) 3030 3031 #if USE_SPLIT_PMD_PTLOCKS 3032 3033 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3034 { 3035 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3036 return virt_to_page((void *)((unsigned long) pmd & mask)); 3037 } 3038 3039 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3040 { 3041 return page_ptdesc(pmd_pgtable_page(pmd)); 3042 } 3043 3044 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3045 { 3046 return ptlock_ptr(pmd_ptdesc(pmd)); 3047 } 3048 3049 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3050 { 3051 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3052 ptdesc->pmd_huge_pte = NULL; 3053 #endif 3054 return ptlock_init(ptdesc); 3055 } 3056 3057 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3058 { 3059 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3060 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3061 #endif 3062 ptlock_free(ptdesc); 3063 } 3064 3065 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3066 3067 #else 3068 3069 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3070 { 3071 return &mm->page_table_lock; 3072 } 3073 3074 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3075 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3076 3077 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3078 3079 #endif 3080 3081 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3082 { 3083 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3084 spin_lock(ptl); 3085 return ptl; 3086 } 3087 3088 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3089 { 3090 struct folio *folio = ptdesc_folio(ptdesc); 3091 3092 if (!pmd_ptlock_init(ptdesc)) 3093 return false; 3094 __folio_set_pgtable(folio); 3095 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3096 return true; 3097 } 3098 3099 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3100 { 3101 struct folio *folio = ptdesc_folio(ptdesc); 3102 3103 pmd_ptlock_free(ptdesc); 3104 __folio_clear_pgtable(folio); 3105 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3106 } 3107 3108 /* 3109 * No scalability reason to split PUD locks yet, but follow the same pattern 3110 * as the PMD locks to make it easier if we decide to. The VM should not be 3111 * considered ready to switch to split PUD locks yet; there may be places 3112 * which need to be converted from page_table_lock. 3113 */ 3114 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3115 { 3116 return &mm->page_table_lock; 3117 } 3118 3119 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3120 { 3121 spinlock_t *ptl = pud_lockptr(mm, pud); 3122 3123 spin_lock(ptl); 3124 return ptl; 3125 } 3126 3127 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3128 { 3129 struct folio *folio = ptdesc_folio(ptdesc); 3130 3131 __folio_set_pgtable(folio); 3132 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3133 } 3134 3135 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3136 { 3137 struct folio *folio = ptdesc_folio(ptdesc); 3138 3139 __folio_clear_pgtable(folio); 3140 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3141 } 3142 3143 extern void __init pagecache_init(void); 3144 extern void free_initmem(void); 3145 3146 /* 3147 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3148 * into the buddy system. The freed pages will be poisoned with pattern 3149 * "poison" if it's within range [0, UCHAR_MAX]. 3150 * Return pages freed into the buddy system. 3151 */ 3152 extern unsigned long free_reserved_area(void *start, void *end, 3153 int poison, const char *s); 3154 3155 extern void adjust_managed_page_count(struct page *page, long count); 3156 3157 extern void reserve_bootmem_region(phys_addr_t start, 3158 phys_addr_t end, int nid); 3159 3160 /* Free the reserved page into the buddy system, so it gets managed. */ 3161 static inline void free_reserved_page(struct page *page) 3162 { 3163 if (mem_alloc_profiling_enabled()) { 3164 union codetag_ref *ref = get_page_tag_ref(page); 3165 3166 if (ref) { 3167 set_codetag_empty(ref); 3168 put_page_tag_ref(ref); 3169 } 3170 } 3171 ClearPageReserved(page); 3172 init_page_count(page); 3173 __free_page(page); 3174 adjust_managed_page_count(page, 1); 3175 } 3176 #define free_highmem_page(page) free_reserved_page(page) 3177 3178 static inline void mark_page_reserved(struct page *page) 3179 { 3180 SetPageReserved(page); 3181 adjust_managed_page_count(page, -1); 3182 } 3183 3184 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3185 { 3186 free_reserved_page(ptdesc_page(pt)); 3187 } 3188 3189 /* 3190 * Default method to free all the __init memory into the buddy system. 3191 * The freed pages will be poisoned with pattern "poison" if it's within 3192 * range [0, UCHAR_MAX]. 3193 * Return pages freed into the buddy system. 3194 */ 3195 static inline unsigned long free_initmem_default(int poison) 3196 { 3197 extern char __init_begin[], __init_end[]; 3198 3199 return free_reserved_area(&__init_begin, &__init_end, 3200 poison, "unused kernel image (initmem)"); 3201 } 3202 3203 static inline unsigned long get_num_physpages(void) 3204 { 3205 int nid; 3206 unsigned long phys_pages = 0; 3207 3208 for_each_online_node(nid) 3209 phys_pages += node_present_pages(nid); 3210 3211 return phys_pages; 3212 } 3213 3214 /* 3215 * Using memblock node mappings, an architecture may initialise its 3216 * zones, allocate the backing mem_map and account for memory holes in an 3217 * architecture independent manner. 3218 * 3219 * An architecture is expected to register range of page frames backed by 3220 * physical memory with memblock_add[_node]() before calling 3221 * free_area_init() passing in the PFN each zone ends at. At a basic 3222 * usage, an architecture is expected to do something like 3223 * 3224 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3225 * max_highmem_pfn}; 3226 * for_each_valid_physical_page_range() 3227 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3228 * free_area_init(max_zone_pfns); 3229 */ 3230 void free_area_init(unsigned long *max_zone_pfn); 3231 unsigned long node_map_pfn_alignment(void); 3232 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3233 unsigned long end_pfn); 3234 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3235 unsigned long end_pfn); 3236 extern void get_pfn_range_for_nid(unsigned int nid, 3237 unsigned long *start_pfn, unsigned long *end_pfn); 3238 3239 #ifndef CONFIG_NUMA 3240 static inline int early_pfn_to_nid(unsigned long pfn) 3241 { 3242 return 0; 3243 } 3244 #else 3245 /* please see mm/page_alloc.c */ 3246 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3247 #endif 3248 3249 extern void mem_init(void); 3250 extern void __init mmap_init(void); 3251 3252 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3253 static inline void show_mem(void) 3254 { 3255 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3256 } 3257 extern long si_mem_available(void); 3258 extern void si_meminfo(struct sysinfo * val); 3259 extern void si_meminfo_node(struct sysinfo *val, int nid); 3260 3261 extern __printf(3, 4) 3262 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3263 3264 extern void setup_per_cpu_pageset(void); 3265 3266 /* nommu.c */ 3267 extern atomic_long_t mmap_pages_allocated; 3268 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3269 3270 /* interval_tree.c */ 3271 void vma_interval_tree_insert(struct vm_area_struct *node, 3272 struct rb_root_cached *root); 3273 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3274 struct vm_area_struct *prev, 3275 struct rb_root_cached *root); 3276 void vma_interval_tree_remove(struct vm_area_struct *node, 3277 struct rb_root_cached *root); 3278 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3279 unsigned long start, unsigned long last); 3280 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3281 unsigned long start, unsigned long last); 3282 3283 #define vma_interval_tree_foreach(vma, root, start, last) \ 3284 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3285 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3286 3287 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3288 struct rb_root_cached *root); 3289 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3290 struct rb_root_cached *root); 3291 struct anon_vma_chain * 3292 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3293 unsigned long start, unsigned long last); 3294 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3295 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3296 #ifdef CONFIG_DEBUG_VM_RB 3297 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3298 #endif 3299 3300 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3301 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3302 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3303 3304 /* mmap.c */ 3305 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3306 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3307 unsigned long start, unsigned long end, pgoff_t pgoff, 3308 struct vm_area_struct *next); 3309 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3310 unsigned long start, unsigned long end, pgoff_t pgoff); 3311 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3312 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3313 extern void unlink_file_vma(struct vm_area_struct *); 3314 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3315 unsigned long addr, unsigned long len, pgoff_t pgoff, 3316 bool *need_rmap_locks); 3317 extern void exit_mmap(struct mm_struct *); 3318 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3319 struct vm_area_struct *prev, 3320 struct vm_area_struct *vma, 3321 unsigned long start, unsigned long end, 3322 unsigned long vm_flags, 3323 struct mempolicy *policy, 3324 struct vm_userfaultfd_ctx uffd_ctx, 3325 struct anon_vma_name *anon_name); 3326 3327 /* We are about to modify the VMA's flags. */ 3328 static inline struct vm_area_struct 3329 *vma_modify_flags(struct vma_iterator *vmi, 3330 struct vm_area_struct *prev, 3331 struct vm_area_struct *vma, 3332 unsigned long start, unsigned long end, 3333 unsigned long new_flags) 3334 { 3335 return vma_modify(vmi, prev, vma, start, end, new_flags, 3336 vma_policy(vma), vma->vm_userfaultfd_ctx, 3337 anon_vma_name(vma)); 3338 } 3339 3340 /* We are about to modify the VMA's flags and/or anon_name. */ 3341 static inline struct vm_area_struct 3342 *vma_modify_flags_name(struct vma_iterator *vmi, 3343 struct vm_area_struct *prev, 3344 struct vm_area_struct *vma, 3345 unsigned long start, 3346 unsigned long end, 3347 unsigned long new_flags, 3348 struct anon_vma_name *new_name) 3349 { 3350 return vma_modify(vmi, prev, vma, start, end, new_flags, 3351 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3352 } 3353 3354 /* We are about to modify the VMA's memory policy. */ 3355 static inline struct vm_area_struct 3356 *vma_modify_policy(struct vma_iterator *vmi, 3357 struct vm_area_struct *prev, 3358 struct vm_area_struct *vma, 3359 unsigned long start, unsigned long end, 3360 struct mempolicy *new_pol) 3361 { 3362 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3363 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3364 } 3365 3366 /* We are about to modify the VMA's flags and/or uffd context. */ 3367 static inline struct vm_area_struct 3368 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3369 struct vm_area_struct *prev, 3370 struct vm_area_struct *vma, 3371 unsigned long start, unsigned long end, 3372 unsigned long new_flags, 3373 struct vm_userfaultfd_ctx new_ctx) 3374 { 3375 return vma_modify(vmi, prev, vma, start, end, new_flags, 3376 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3377 } 3378 3379 static inline int check_data_rlimit(unsigned long rlim, 3380 unsigned long new, 3381 unsigned long start, 3382 unsigned long end_data, 3383 unsigned long start_data) 3384 { 3385 if (rlim < RLIM_INFINITY) { 3386 if (((new - start) + (end_data - start_data)) > rlim) 3387 return -ENOSPC; 3388 } 3389 3390 return 0; 3391 } 3392 3393 extern int mm_take_all_locks(struct mm_struct *mm); 3394 extern void mm_drop_all_locks(struct mm_struct *mm); 3395 3396 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3397 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3398 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3399 extern struct file *get_task_exe_file(struct task_struct *task); 3400 3401 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3402 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3403 3404 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3405 const struct vm_special_mapping *sm); 3406 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3407 unsigned long addr, unsigned long len, 3408 unsigned long flags, 3409 const struct vm_special_mapping *spec); 3410 /* This is an obsolete alternative to _install_special_mapping. */ 3411 extern int install_special_mapping(struct mm_struct *mm, 3412 unsigned long addr, unsigned long len, 3413 unsigned long flags, struct page **pages); 3414 3415 unsigned long randomize_stack_top(unsigned long stack_top); 3416 unsigned long randomize_page(unsigned long start, unsigned long range); 3417 3418 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3419 3420 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3421 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3422 struct list_head *uf); 3423 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3424 unsigned long len, unsigned long prot, unsigned long flags, 3425 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3426 struct list_head *uf); 3427 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3428 unsigned long start, size_t len, struct list_head *uf, 3429 bool unlock); 3430 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3431 struct list_head *uf); 3432 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3433 3434 #ifdef CONFIG_MMU 3435 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3436 unsigned long start, unsigned long end, 3437 struct list_head *uf, bool unlock); 3438 extern int __mm_populate(unsigned long addr, unsigned long len, 3439 int ignore_errors); 3440 static inline void mm_populate(unsigned long addr, unsigned long len) 3441 { 3442 /* Ignore errors */ 3443 (void) __mm_populate(addr, len, 1); 3444 } 3445 #else 3446 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3447 #endif 3448 3449 /* This takes the mm semaphore itself */ 3450 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3451 extern int vm_munmap(unsigned long, size_t); 3452 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3453 unsigned long, unsigned long, 3454 unsigned long, unsigned long); 3455 3456 struct vm_unmapped_area_info { 3457 #define VM_UNMAPPED_AREA_TOPDOWN 1 3458 unsigned long flags; 3459 unsigned long length; 3460 unsigned long low_limit; 3461 unsigned long high_limit; 3462 unsigned long align_mask; 3463 unsigned long align_offset; 3464 }; 3465 3466 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3467 3468 /* truncate.c */ 3469 extern void truncate_inode_pages(struct address_space *, loff_t); 3470 extern void truncate_inode_pages_range(struct address_space *, 3471 loff_t lstart, loff_t lend); 3472 extern void truncate_inode_pages_final(struct address_space *); 3473 3474 /* generic vm_area_ops exported for stackable file systems */ 3475 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3476 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3477 pgoff_t start_pgoff, pgoff_t end_pgoff); 3478 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3479 3480 extern unsigned long stack_guard_gap; 3481 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3482 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3483 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3484 3485 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3486 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3487 3488 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3489 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3490 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3491 struct vm_area_struct **pprev); 3492 3493 /* 3494 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3495 * NULL if none. Assume start_addr < end_addr. 3496 */ 3497 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3498 unsigned long start_addr, unsigned long end_addr); 3499 3500 /** 3501 * vma_lookup() - Find a VMA at a specific address 3502 * @mm: The process address space. 3503 * @addr: The user address. 3504 * 3505 * Return: The vm_area_struct at the given address, %NULL otherwise. 3506 */ 3507 static inline 3508 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3509 { 3510 return mtree_load(&mm->mm_mt, addr); 3511 } 3512 3513 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3514 { 3515 if (vma->vm_flags & VM_GROWSDOWN) 3516 return stack_guard_gap; 3517 3518 /* See reasoning around the VM_SHADOW_STACK definition */ 3519 if (vma->vm_flags & VM_SHADOW_STACK) 3520 return PAGE_SIZE; 3521 3522 return 0; 3523 } 3524 3525 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3526 { 3527 unsigned long gap = stack_guard_start_gap(vma); 3528 unsigned long vm_start = vma->vm_start; 3529 3530 vm_start -= gap; 3531 if (vm_start > vma->vm_start) 3532 vm_start = 0; 3533 return vm_start; 3534 } 3535 3536 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3537 { 3538 unsigned long vm_end = vma->vm_end; 3539 3540 if (vma->vm_flags & VM_GROWSUP) { 3541 vm_end += stack_guard_gap; 3542 if (vm_end < vma->vm_end) 3543 vm_end = -PAGE_SIZE; 3544 } 3545 return vm_end; 3546 } 3547 3548 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3549 { 3550 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3551 } 3552 3553 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3554 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3555 unsigned long vm_start, unsigned long vm_end) 3556 { 3557 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3558 3559 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3560 vma = NULL; 3561 3562 return vma; 3563 } 3564 3565 static inline bool range_in_vma(struct vm_area_struct *vma, 3566 unsigned long start, unsigned long end) 3567 { 3568 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3569 } 3570 3571 #ifdef CONFIG_MMU 3572 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3573 void vma_set_page_prot(struct vm_area_struct *vma); 3574 #else 3575 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3576 { 3577 return __pgprot(0); 3578 } 3579 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3580 { 3581 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3582 } 3583 #endif 3584 3585 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3586 3587 #ifdef CONFIG_NUMA_BALANCING 3588 unsigned long change_prot_numa(struct vm_area_struct *vma, 3589 unsigned long start, unsigned long end); 3590 #endif 3591 3592 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3593 unsigned long addr); 3594 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3595 unsigned long pfn, unsigned long size, pgprot_t); 3596 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3597 unsigned long pfn, unsigned long size, pgprot_t prot); 3598 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3599 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3600 struct page **pages, unsigned long *num); 3601 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3602 unsigned long num); 3603 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3604 unsigned long num); 3605 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3606 unsigned long pfn); 3607 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3608 unsigned long pfn, pgprot_t pgprot); 3609 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3610 pfn_t pfn); 3611 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3612 unsigned long addr, pfn_t pfn); 3613 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3614 3615 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3616 unsigned long addr, struct page *page) 3617 { 3618 int err = vm_insert_page(vma, addr, page); 3619 3620 if (err == -ENOMEM) 3621 return VM_FAULT_OOM; 3622 if (err < 0 && err != -EBUSY) 3623 return VM_FAULT_SIGBUS; 3624 3625 return VM_FAULT_NOPAGE; 3626 } 3627 3628 #ifndef io_remap_pfn_range 3629 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3630 unsigned long addr, unsigned long pfn, 3631 unsigned long size, pgprot_t prot) 3632 { 3633 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3634 } 3635 #endif 3636 3637 static inline vm_fault_t vmf_error(int err) 3638 { 3639 if (err == -ENOMEM) 3640 return VM_FAULT_OOM; 3641 else if (err == -EHWPOISON) 3642 return VM_FAULT_HWPOISON; 3643 return VM_FAULT_SIGBUS; 3644 } 3645 3646 /* 3647 * Convert errno to return value for ->page_mkwrite() calls. 3648 * 3649 * This should eventually be merged with vmf_error() above, but will need a 3650 * careful audit of all vmf_error() callers. 3651 */ 3652 static inline vm_fault_t vmf_fs_error(int err) 3653 { 3654 if (err == 0) 3655 return VM_FAULT_LOCKED; 3656 if (err == -EFAULT || err == -EAGAIN) 3657 return VM_FAULT_NOPAGE; 3658 if (err == -ENOMEM) 3659 return VM_FAULT_OOM; 3660 /* -ENOSPC, -EDQUOT, -EIO ... */ 3661 return VM_FAULT_SIGBUS; 3662 } 3663 3664 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3665 unsigned int foll_flags); 3666 3667 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3668 { 3669 if (vm_fault & VM_FAULT_OOM) 3670 return -ENOMEM; 3671 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3672 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3673 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3674 return -EFAULT; 3675 return 0; 3676 } 3677 3678 /* 3679 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3680 * a (NUMA hinting) fault is required. 3681 */ 3682 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3683 unsigned int flags) 3684 { 3685 /* 3686 * If callers don't want to honor NUMA hinting faults, no need to 3687 * determine if we would actually have to trigger a NUMA hinting fault. 3688 */ 3689 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3690 return true; 3691 3692 /* 3693 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3694 * 3695 * Requiring a fault here even for inaccessible VMAs would mean that 3696 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3697 * refuses to process NUMA hinting faults in inaccessible VMAs. 3698 */ 3699 return !vma_is_accessible(vma); 3700 } 3701 3702 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3703 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3704 unsigned long size, pte_fn_t fn, void *data); 3705 extern int apply_to_existing_page_range(struct mm_struct *mm, 3706 unsigned long address, unsigned long size, 3707 pte_fn_t fn, void *data); 3708 3709 #ifdef CONFIG_PAGE_POISONING 3710 extern void __kernel_poison_pages(struct page *page, int numpages); 3711 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3712 extern bool _page_poisoning_enabled_early; 3713 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3714 static inline bool page_poisoning_enabled(void) 3715 { 3716 return _page_poisoning_enabled_early; 3717 } 3718 /* 3719 * For use in fast paths after init_mem_debugging() has run, or when a 3720 * false negative result is not harmful when called too early. 3721 */ 3722 static inline bool page_poisoning_enabled_static(void) 3723 { 3724 return static_branch_unlikely(&_page_poisoning_enabled); 3725 } 3726 static inline void kernel_poison_pages(struct page *page, int numpages) 3727 { 3728 if (page_poisoning_enabled_static()) 3729 __kernel_poison_pages(page, numpages); 3730 } 3731 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3732 { 3733 if (page_poisoning_enabled_static()) 3734 __kernel_unpoison_pages(page, numpages); 3735 } 3736 #else 3737 static inline bool page_poisoning_enabled(void) { return false; } 3738 static inline bool page_poisoning_enabled_static(void) { return false; } 3739 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3740 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3741 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3742 #endif 3743 3744 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3745 static inline bool want_init_on_alloc(gfp_t flags) 3746 { 3747 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3748 &init_on_alloc)) 3749 return true; 3750 return flags & __GFP_ZERO; 3751 } 3752 3753 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3754 static inline bool want_init_on_free(void) 3755 { 3756 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3757 &init_on_free); 3758 } 3759 3760 extern bool _debug_pagealloc_enabled_early; 3761 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3762 3763 static inline bool debug_pagealloc_enabled(void) 3764 { 3765 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3766 _debug_pagealloc_enabled_early; 3767 } 3768 3769 /* 3770 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3771 * or when a false negative result is not harmful when called too early. 3772 */ 3773 static inline bool debug_pagealloc_enabled_static(void) 3774 { 3775 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3776 return false; 3777 3778 return static_branch_unlikely(&_debug_pagealloc_enabled); 3779 } 3780 3781 /* 3782 * To support DEBUG_PAGEALLOC architecture must ensure that 3783 * __kernel_map_pages() never fails 3784 */ 3785 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3786 #ifdef CONFIG_DEBUG_PAGEALLOC 3787 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3788 { 3789 if (debug_pagealloc_enabled_static()) 3790 __kernel_map_pages(page, numpages, 1); 3791 } 3792 3793 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3794 { 3795 if (debug_pagealloc_enabled_static()) 3796 __kernel_map_pages(page, numpages, 0); 3797 } 3798 3799 extern unsigned int _debug_guardpage_minorder; 3800 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3801 3802 static inline unsigned int debug_guardpage_minorder(void) 3803 { 3804 return _debug_guardpage_minorder; 3805 } 3806 3807 static inline bool debug_guardpage_enabled(void) 3808 { 3809 return static_branch_unlikely(&_debug_guardpage_enabled); 3810 } 3811 3812 static inline bool page_is_guard(struct page *page) 3813 { 3814 if (!debug_guardpage_enabled()) 3815 return false; 3816 3817 return PageGuard(page); 3818 } 3819 3820 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order); 3821 static inline bool set_page_guard(struct zone *zone, struct page *page, 3822 unsigned int order) 3823 { 3824 if (!debug_guardpage_enabled()) 3825 return false; 3826 return __set_page_guard(zone, page, order); 3827 } 3828 3829 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order); 3830 static inline void clear_page_guard(struct zone *zone, struct page *page, 3831 unsigned int order) 3832 { 3833 if (!debug_guardpage_enabled()) 3834 return; 3835 __clear_page_guard(zone, page, order); 3836 } 3837 3838 #else /* CONFIG_DEBUG_PAGEALLOC */ 3839 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3840 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3841 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3842 static inline bool debug_guardpage_enabled(void) { return false; } 3843 static inline bool page_is_guard(struct page *page) { return false; } 3844 static inline bool set_page_guard(struct zone *zone, struct page *page, 3845 unsigned int order) { return false; } 3846 static inline void clear_page_guard(struct zone *zone, struct page *page, 3847 unsigned int order) {} 3848 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3849 3850 #ifdef __HAVE_ARCH_GATE_AREA 3851 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3852 extern int in_gate_area_no_mm(unsigned long addr); 3853 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3854 #else 3855 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3856 { 3857 return NULL; 3858 } 3859 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3860 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3861 { 3862 return 0; 3863 } 3864 #endif /* __HAVE_ARCH_GATE_AREA */ 3865 3866 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3867 3868 #ifdef CONFIG_SYSCTL 3869 extern int sysctl_drop_caches; 3870 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3871 loff_t *); 3872 #endif 3873 3874 void drop_slab(void); 3875 3876 #ifndef CONFIG_MMU 3877 #define randomize_va_space 0 3878 #else 3879 extern int randomize_va_space; 3880 #endif 3881 3882 const char * arch_vma_name(struct vm_area_struct *vma); 3883 #ifdef CONFIG_MMU 3884 void print_vma_addr(char *prefix, unsigned long rip); 3885 #else 3886 static inline void print_vma_addr(char *prefix, unsigned long rip) 3887 { 3888 } 3889 #endif 3890 3891 void *sparse_buffer_alloc(unsigned long size); 3892 struct page * __populate_section_memmap(unsigned long pfn, 3893 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3894 struct dev_pagemap *pgmap); 3895 void pmd_init(void *addr); 3896 void pud_init(void *addr); 3897 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3898 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3899 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3900 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3901 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3902 struct vmem_altmap *altmap, struct page *reuse); 3903 void *vmemmap_alloc_block(unsigned long size, int node); 3904 struct vmem_altmap; 3905 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3906 struct vmem_altmap *altmap); 3907 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3908 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3909 unsigned long addr, unsigned long next); 3910 int vmemmap_check_pmd(pmd_t *pmd, int node, 3911 unsigned long addr, unsigned long next); 3912 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3913 int node, struct vmem_altmap *altmap); 3914 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3915 int node, struct vmem_altmap *altmap); 3916 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3917 struct vmem_altmap *altmap); 3918 void vmemmap_populate_print_last(void); 3919 #ifdef CONFIG_MEMORY_HOTPLUG 3920 void vmemmap_free(unsigned long start, unsigned long end, 3921 struct vmem_altmap *altmap); 3922 #endif 3923 3924 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3925 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3926 { 3927 /* number of pfns from base where pfn_to_page() is valid */ 3928 if (altmap) 3929 return altmap->reserve + altmap->free; 3930 return 0; 3931 } 3932 3933 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3934 unsigned long nr_pfns) 3935 { 3936 altmap->alloc -= nr_pfns; 3937 } 3938 #else 3939 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3940 { 3941 return 0; 3942 } 3943 3944 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3945 unsigned long nr_pfns) 3946 { 3947 } 3948 #endif 3949 3950 #define VMEMMAP_RESERVE_NR 2 3951 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3952 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3953 struct dev_pagemap *pgmap) 3954 { 3955 unsigned long nr_pages; 3956 unsigned long nr_vmemmap_pages; 3957 3958 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3959 return false; 3960 3961 nr_pages = pgmap_vmemmap_nr(pgmap); 3962 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3963 /* 3964 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3965 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3966 */ 3967 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3968 } 3969 /* 3970 * If we don't have an architecture override, use the generic rule 3971 */ 3972 #ifndef vmemmap_can_optimize 3973 #define vmemmap_can_optimize __vmemmap_can_optimize 3974 #endif 3975 3976 #else 3977 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3978 struct dev_pagemap *pgmap) 3979 { 3980 return false; 3981 } 3982 #endif 3983 3984 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3985 unsigned long nr_pages); 3986 3987 enum mf_flags { 3988 MF_COUNT_INCREASED = 1 << 0, 3989 MF_ACTION_REQUIRED = 1 << 1, 3990 MF_MUST_KILL = 1 << 2, 3991 MF_SOFT_OFFLINE = 1 << 3, 3992 MF_UNPOISON = 1 << 4, 3993 MF_SW_SIMULATED = 1 << 5, 3994 MF_NO_RETRY = 1 << 6, 3995 MF_MEM_PRE_REMOVE = 1 << 7, 3996 }; 3997 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3998 unsigned long count, int mf_flags); 3999 extern int memory_failure(unsigned long pfn, int flags); 4000 extern void memory_failure_queue_kick(int cpu); 4001 extern int unpoison_memory(unsigned long pfn); 4002 extern void shake_page(struct page *p); 4003 extern atomic_long_t num_poisoned_pages __read_mostly; 4004 extern int soft_offline_page(unsigned long pfn, int flags); 4005 #ifdef CONFIG_MEMORY_FAILURE 4006 /* 4007 * Sysfs entries for memory failure handling statistics. 4008 */ 4009 extern const struct attribute_group memory_failure_attr_group; 4010 extern void memory_failure_queue(unsigned long pfn, int flags); 4011 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4012 bool *migratable_cleared); 4013 void num_poisoned_pages_inc(unsigned long pfn); 4014 void num_poisoned_pages_sub(unsigned long pfn, long i); 4015 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 4016 #else 4017 static inline void memory_failure_queue(unsigned long pfn, int flags) 4018 { 4019 } 4020 4021 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 4022 bool *migratable_cleared) 4023 { 4024 return 0; 4025 } 4026 4027 static inline void num_poisoned_pages_inc(unsigned long pfn) 4028 { 4029 } 4030 4031 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4032 { 4033 } 4034 #endif 4035 4036 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 4037 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 4038 struct vm_area_struct *vma, struct list_head *to_kill, 4039 unsigned long ksm_addr); 4040 #endif 4041 4042 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4043 extern void memblk_nr_poison_inc(unsigned long pfn); 4044 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4045 #else 4046 static inline void memblk_nr_poison_inc(unsigned long pfn) 4047 { 4048 } 4049 4050 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4051 { 4052 } 4053 #endif 4054 4055 #ifndef arch_memory_failure 4056 static inline int arch_memory_failure(unsigned long pfn, int flags) 4057 { 4058 return -ENXIO; 4059 } 4060 #endif 4061 4062 #ifndef arch_is_platform_page 4063 static inline bool arch_is_platform_page(u64 paddr) 4064 { 4065 return false; 4066 } 4067 #endif 4068 4069 /* 4070 * Error handlers for various types of pages. 4071 */ 4072 enum mf_result { 4073 MF_IGNORED, /* Error: cannot be handled */ 4074 MF_FAILED, /* Error: handling failed */ 4075 MF_DELAYED, /* Will be handled later */ 4076 MF_RECOVERED, /* Successfully recovered */ 4077 }; 4078 4079 enum mf_action_page_type { 4080 MF_MSG_KERNEL, 4081 MF_MSG_KERNEL_HIGH_ORDER, 4082 MF_MSG_SLAB, 4083 MF_MSG_DIFFERENT_COMPOUND, 4084 MF_MSG_HUGE, 4085 MF_MSG_FREE_HUGE, 4086 MF_MSG_UNMAP_FAILED, 4087 MF_MSG_DIRTY_SWAPCACHE, 4088 MF_MSG_CLEAN_SWAPCACHE, 4089 MF_MSG_DIRTY_MLOCKED_LRU, 4090 MF_MSG_CLEAN_MLOCKED_LRU, 4091 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4092 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4093 MF_MSG_DIRTY_LRU, 4094 MF_MSG_CLEAN_LRU, 4095 MF_MSG_TRUNCATED_LRU, 4096 MF_MSG_BUDDY, 4097 MF_MSG_DAX, 4098 MF_MSG_UNSPLIT_THP, 4099 MF_MSG_UNKNOWN, 4100 }; 4101 4102 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4103 extern void clear_huge_page(struct page *page, 4104 unsigned long addr_hint, 4105 unsigned int pages_per_huge_page); 4106 int copy_user_large_folio(struct folio *dst, struct folio *src, 4107 unsigned long addr_hint, 4108 struct vm_area_struct *vma); 4109 long copy_folio_from_user(struct folio *dst_folio, 4110 const void __user *usr_src, 4111 bool allow_pagefault); 4112 4113 /** 4114 * vma_is_special_huge - Are transhuge page-table entries considered special? 4115 * @vma: Pointer to the struct vm_area_struct to consider 4116 * 4117 * Whether transhuge page-table entries are considered "special" following 4118 * the definition in vm_normal_page(). 4119 * 4120 * Return: true if transhuge page-table entries should be considered special, 4121 * false otherwise. 4122 */ 4123 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4124 { 4125 return vma_is_dax(vma) || (vma->vm_file && 4126 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4127 } 4128 4129 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4130 4131 #if MAX_NUMNODES > 1 4132 void __init setup_nr_node_ids(void); 4133 #else 4134 static inline void setup_nr_node_ids(void) {} 4135 #endif 4136 4137 extern int memcmp_pages(struct page *page1, struct page *page2); 4138 4139 static inline int pages_identical(struct page *page1, struct page *page2) 4140 { 4141 return !memcmp_pages(page1, page2); 4142 } 4143 4144 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4145 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4146 pgoff_t first_index, pgoff_t nr, 4147 pgoff_t bitmap_pgoff, 4148 unsigned long *bitmap, 4149 pgoff_t *start, 4150 pgoff_t *end); 4151 4152 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4153 pgoff_t first_index, pgoff_t nr); 4154 #endif 4155 4156 extern int sysctl_nr_trim_pages; 4157 4158 #ifdef CONFIG_PRINTK 4159 void mem_dump_obj(void *object); 4160 #else 4161 static inline void mem_dump_obj(void *object) {} 4162 #endif 4163 4164 /** 4165 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4166 * handle them. 4167 * @seals: the seals to check 4168 * @vma: the vma to operate on 4169 * 4170 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4171 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4172 */ 4173 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4174 { 4175 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4176 /* 4177 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4178 * write seals are active. 4179 */ 4180 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4181 return -EPERM; 4182 4183 /* 4184 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4185 * MAP_SHARED and read-only, take care to not allow mprotect to 4186 * revert protections on such mappings. Do this only for shared 4187 * mappings. For private mappings, don't need to mask 4188 * VM_MAYWRITE as we still want them to be COW-writable. 4189 */ 4190 if (vma->vm_flags & VM_SHARED) 4191 vm_flags_clear(vma, VM_MAYWRITE); 4192 } 4193 4194 return 0; 4195 } 4196 4197 #ifdef CONFIG_ANON_VMA_NAME 4198 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4199 unsigned long len_in, 4200 struct anon_vma_name *anon_name); 4201 #else 4202 static inline int 4203 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4204 unsigned long len_in, struct anon_vma_name *anon_name) { 4205 return 0; 4206 } 4207 #endif 4208 4209 #ifdef CONFIG_UNACCEPTED_MEMORY 4210 4211 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4212 void accept_memory(phys_addr_t start, phys_addr_t end); 4213 4214 #else 4215 4216 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4217 phys_addr_t end) 4218 { 4219 return false; 4220 } 4221 4222 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4223 { 4224 } 4225 4226 #endif 4227 4228 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4229 { 4230 phys_addr_t paddr = pfn << PAGE_SHIFT; 4231 4232 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4233 } 4234 4235 #endif /* _LINUX_MM_H */ 4236