xref: /linux-6.15/include/linux/mm.h (revision dcb8cbb5)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328 
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
333 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4  0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341 
342 #if defined(CONFIG_X86)
343 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP	VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP	VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR	VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR	VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
358 #endif
359 
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
363 #else
364 # define VM_MTE		VM_NONE
365 # define VM_MTE_ALLOWED	VM_NONE
366 #endif
367 
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP	VM_NONE
370 #endif
371 
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT	37
374 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR		VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378 
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
381 
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383 
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
388 				 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
390 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391 
392 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
394 #endif
395 
396 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399 
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK	VM_GROWSUP
402 #else
403 #define VM_STACK	VM_GROWSDOWN
404 #endif
405 
406 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407 
408 /* VMA basic access permission flags */
409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410 
411 
412 /*
413  * Special vmas that are non-mergable, non-mlock()able.
414  */
415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
416 
417 /* This mask prevents VMA from being scanned with khugepaged */
418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419 
420 /* This mask defines which mm->def_flags a process can inherit its parent */
421 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
422 
423 /* This mask represents all the VMA flag bits used by mlock */
424 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
425 
426 /* Arch-specific flags to clear when updating VM flags on protection change */
427 #ifndef VM_ARCH_CLEAR
428 # define VM_ARCH_CLEAR	VM_NONE
429 #endif
430 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431 
432 /*
433  * mapping from the currently active vm_flags protection bits (the
434  * low four bits) to a page protection mask..
435  */
436 
437 /*
438  * The default fault flags that should be used by most of the
439  * arch-specific page fault handlers.
440  */
441 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
442 			     FAULT_FLAG_KILLABLE | \
443 			     FAULT_FLAG_INTERRUPTIBLE)
444 
445 /**
446  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
447  * @flags: Fault flags.
448  *
449  * This is mostly used for places where we want to try to avoid taking
450  * the mmap_lock for too long a time when waiting for another condition
451  * to change, in which case we can try to be polite to release the
452  * mmap_lock in the first round to avoid potential starvation of other
453  * processes that would also want the mmap_lock.
454  *
455  * Return: true if the page fault allows retry and this is the first
456  * attempt of the fault handling; false otherwise.
457  */
458 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
459 {
460 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
461 	    (!(flags & FAULT_FLAG_TRIED));
462 }
463 
464 #define FAULT_FLAG_TRACE \
465 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
466 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
467 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
468 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
469 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
470 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
471 	{ FAULT_FLAG_USER,		"USER" }, \
472 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
473 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
474 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
475 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
476 
477 /*
478  * vm_fault is filled by the pagefault handler and passed to the vma's
479  * ->fault function. The vma's ->fault is responsible for returning a bitmask
480  * of VM_FAULT_xxx flags that give details about how the fault was handled.
481  *
482  * MM layer fills up gfp_mask for page allocations but fault handler might
483  * alter it if its implementation requires a different allocation context.
484  *
485  * pgoff should be used in favour of virtual_address, if possible.
486  */
487 struct vm_fault {
488 	const struct {
489 		struct vm_area_struct *vma;	/* Target VMA */
490 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
491 		pgoff_t pgoff;			/* Logical page offset based on vma */
492 		unsigned long address;		/* Faulting virtual address - masked */
493 		unsigned long real_address;	/* Faulting virtual address - unmasked */
494 	};
495 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
496 					 * XXX: should really be 'const' */
497 	pmd_t *pmd;			/* Pointer to pmd entry matching
498 					 * the 'address' */
499 	pud_t *pud;			/* Pointer to pud entry matching
500 					 * the 'address'
501 					 */
502 	union {
503 		pte_t orig_pte;		/* Value of PTE at the time of fault */
504 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
505 					 * used by PMD fault only.
506 					 */
507 	};
508 
509 	struct page *cow_page;		/* Page handler may use for COW fault */
510 	struct page *page;		/* ->fault handlers should return a
511 					 * page here, unless VM_FAULT_NOPAGE
512 					 * is set (which is also implied by
513 					 * VM_FAULT_ERROR).
514 					 */
515 	/* These three entries are valid only while holding ptl lock */
516 	pte_t *pte;			/* Pointer to pte entry matching
517 					 * the 'address'. NULL if the page
518 					 * table hasn't been allocated.
519 					 */
520 	spinlock_t *ptl;		/* Page table lock.
521 					 * Protects pte page table if 'pte'
522 					 * is not NULL, otherwise pmd.
523 					 */
524 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
525 					 * vm_ops->map_pages() sets up a page
526 					 * table from atomic context.
527 					 * do_fault_around() pre-allocates
528 					 * page table to avoid allocation from
529 					 * atomic context.
530 					 */
531 };
532 
533 /* page entry size for vm->huge_fault() */
534 enum page_entry_size {
535 	PE_SIZE_PTE = 0,
536 	PE_SIZE_PMD,
537 	PE_SIZE_PUD,
538 };
539 
540 /*
541  * These are the virtual MM functions - opening of an area, closing and
542  * unmapping it (needed to keep files on disk up-to-date etc), pointer
543  * to the functions called when a no-page or a wp-page exception occurs.
544  */
545 struct vm_operations_struct {
546 	void (*open)(struct vm_area_struct * area);
547 	/**
548 	 * @close: Called when the VMA is being removed from the MM.
549 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
550 	 */
551 	void (*close)(struct vm_area_struct * area);
552 	/* Called any time before splitting to check if it's allowed */
553 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
554 	int (*mremap)(struct vm_area_struct *area);
555 	/*
556 	 * Called by mprotect() to make driver-specific permission
557 	 * checks before mprotect() is finalised.   The VMA must not
558 	 * be modified.  Returns 0 if mprotect() can proceed.
559 	 */
560 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 			unsigned long end, unsigned long newflags);
562 	vm_fault_t (*fault)(struct vm_fault *vmf);
563 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 			enum page_entry_size pe_size);
565 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
566 			pgoff_t start_pgoff, pgoff_t end_pgoff);
567 	unsigned long (*pagesize)(struct vm_area_struct * area);
568 
569 	/* notification that a previously read-only page is about to become
570 	 * writable, if an error is returned it will cause a SIGBUS */
571 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572 
573 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575 
576 	/* called by access_process_vm when get_user_pages() fails, typically
577 	 * for use by special VMAs. See also generic_access_phys() for a generic
578 	 * implementation useful for any iomem mapping.
579 	 */
580 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 		      void *buf, int len, int write);
582 
583 	/* Called by the /proc/PID/maps code to ask the vma whether it
584 	 * has a special name.  Returning non-NULL will also cause this
585 	 * vma to be dumped unconditionally. */
586 	const char *(*name)(struct vm_area_struct *vma);
587 
588 #ifdef CONFIG_NUMA
589 	/*
590 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 	 * to hold the policy upon return.  Caller should pass NULL @new to
592 	 * remove a policy and fall back to surrounding context--i.e. do not
593 	 * install a MPOL_DEFAULT policy, nor the task or system default
594 	 * mempolicy.
595 	 */
596 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
597 
598 	/*
599 	 * get_policy() op must add reference [mpol_get()] to any policy at
600 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
601 	 * in mm/mempolicy.c will do this automatically.
602 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
603 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
604 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 	 * must return NULL--i.e., do not "fallback" to task or system default
606 	 * policy.
607 	 */
608 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 					unsigned long addr);
610 #endif
611 	/*
612 	 * Called by vm_normal_page() for special PTEs to find the
613 	 * page for @addr.  This is useful if the default behavior
614 	 * (using pte_page()) would not find the correct page.
615 	 */
616 	struct page *(*find_special_page)(struct vm_area_struct *vma,
617 					  unsigned long addr);
618 };
619 
620 #ifdef CONFIG_NUMA_BALANCING
621 static inline void vma_numab_state_init(struct vm_area_struct *vma)
622 {
623 	vma->numab_state = NULL;
624 }
625 static inline void vma_numab_state_free(struct vm_area_struct *vma)
626 {
627 	kfree(vma->numab_state);
628 }
629 #else
630 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
631 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
632 #endif /* CONFIG_NUMA_BALANCING */
633 
634 #ifdef CONFIG_PER_VMA_LOCK
635 /*
636  * Try to read-lock a vma. The function is allowed to occasionally yield false
637  * locked result to avoid performance overhead, in which case we fall back to
638  * using mmap_lock. The function should never yield false unlocked result.
639  */
640 static inline bool vma_start_read(struct vm_area_struct *vma)
641 {
642 	/* Check before locking. A race might cause false locked result. */
643 	if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
644 		return false;
645 
646 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
647 		return false;
648 
649 	/*
650 	 * Overflow might produce false locked result.
651 	 * False unlocked result is impossible because we modify and check
652 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
653 	 * modification invalidates all existing locks.
654 	 */
655 	if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
656 		up_read(&vma->vm_lock->lock);
657 		return false;
658 	}
659 	return true;
660 }
661 
662 static inline void vma_end_read(struct vm_area_struct *vma)
663 {
664 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
665 	up_read(&vma->vm_lock->lock);
666 	rcu_read_unlock();
667 }
668 
669 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
670 {
671 	mmap_assert_write_locked(vma->vm_mm);
672 
673 	/*
674 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
675 	 * mm->mm_lock_seq can't be concurrently modified.
676 	 */
677 	*mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
678 	return (vma->vm_lock_seq == *mm_lock_seq);
679 }
680 
681 static inline void vma_start_write(struct vm_area_struct *vma)
682 {
683 	int mm_lock_seq;
684 
685 	if (__is_vma_write_locked(vma, &mm_lock_seq))
686 		return;
687 
688 	down_write(&vma->vm_lock->lock);
689 	vma->vm_lock_seq = mm_lock_seq;
690 	up_write(&vma->vm_lock->lock);
691 }
692 
693 static inline bool vma_try_start_write(struct vm_area_struct *vma)
694 {
695 	int mm_lock_seq;
696 
697 	if (__is_vma_write_locked(vma, &mm_lock_seq))
698 		return true;
699 
700 	if (!down_write_trylock(&vma->vm_lock->lock))
701 		return false;
702 
703 	vma->vm_lock_seq = mm_lock_seq;
704 	up_write(&vma->vm_lock->lock);
705 	return true;
706 }
707 
708 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
709 {
710 	int mm_lock_seq;
711 
712 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
713 }
714 
715 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
716 {
717 	/* When detaching vma should be write-locked */
718 	if (detached)
719 		vma_assert_write_locked(vma);
720 	vma->detached = detached;
721 }
722 
723 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
724 					  unsigned long address);
725 
726 #else /* CONFIG_PER_VMA_LOCK */
727 
728 static inline void vma_init_lock(struct vm_area_struct *vma) {}
729 static inline bool vma_start_read(struct vm_area_struct *vma)
730 		{ return false; }
731 static inline void vma_end_read(struct vm_area_struct *vma) {}
732 static inline void vma_start_write(struct vm_area_struct *vma) {}
733 static inline bool vma_try_start_write(struct vm_area_struct *vma)
734 		{ return true; }
735 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
736 static inline void vma_mark_detached(struct vm_area_struct *vma,
737 				     bool detached) {}
738 
739 #endif /* CONFIG_PER_VMA_LOCK */
740 
741 /*
742  * WARNING: vma_init does not initialize vma->vm_lock.
743  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
744  */
745 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
746 {
747 	static const struct vm_operations_struct dummy_vm_ops = {};
748 
749 	memset(vma, 0, sizeof(*vma));
750 	vma->vm_mm = mm;
751 	vma->vm_ops = &dummy_vm_ops;
752 	INIT_LIST_HEAD(&vma->anon_vma_chain);
753 	vma_mark_detached(vma, false);
754 	vma_numab_state_init(vma);
755 }
756 
757 /* Use when VMA is not part of the VMA tree and needs no locking */
758 static inline void vm_flags_init(struct vm_area_struct *vma,
759 				 vm_flags_t flags)
760 {
761 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
762 }
763 
764 /* Use when VMA is part of the VMA tree and modifications need coordination */
765 static inline void vm_flags_reset(struct vm_area_struct *vma,
766 				  vm_flags_t flags)
767 {
768 	vma_start_write(vma);
769 	vm_flags_init(vma, flags);
770 }
771 
772 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
773 				       vm_flags_t flags)
774 {
775 	vma_start_write(vma);
776 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
777 }
778 
779 static inline void vm_flags_set(struct vm_area_struct *vma,
780 				vm_flags_t flags)
781 {
782 	vma_start_write(vma);
783 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
784 }
785 
786 static inline void vm_flags_clear(struct vm_area_struct *vma,
787 				  vm_flags_t flags)
788 {
789 	vma_start_write(vma);
790 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
791 }
792 
793 /*
794  * Use only if VMA is not part of the VMA tree or has no other users and
795  * therefore needs no locking.
796  */
797 static inline void __vm_flags_mod(struct vm_area_struct *vma,
798 				  vm_flags_t set, vm_flags_t clear)
799 {
800 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
801 }
802 
803 /*
804  * Use only when the order of set/clear operations is unimportant, otherwise
805  * use vm_flags_{set|clear} explicitly.
806  */
807 static inline void vm_flags_mod(struct vm_area_struct *vma,
808 				vm_flags_t set, vm_flags_t clear)
809 {
810 	vma_start_write(vma);
811 	__vm_flags_mod(vma, set, clear);
812 }
813 
814 static inline void vma_set_anonymous(struct vm_area_struct *vma)
815 {
816 	vma->vm_ops = NULL;
817 }
818 
819 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
820 {
821 	return !vma->vm_ops;
822 }
823 
824 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
825 {
826 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
827 
828 	if (!maybe_stack)
829 		return false;
830 
831 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
832 						VM_STACK_INCOMPLETE_SETUP)
833 		return true;
834 
835 	return false;
836 }
837 
838 static inline bool vma_is_foreign(struct vm_area_struct *vma)
839 {
840 	if (!current->mm)
841 		return true;
842 
843 	if (current->mm != vma->vm_mm)
844 		return true;
845 
846 	return false;
847 }
848 
849 static inline bool vma_is_accessible(struct vm_area_struct *vma)
850 {
851 	return vma->vm_flags & VM_ACCESS_FLAGS;
852 }
853 
854 static inline
855 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856 {
857 	return mas_find(&vmi->mas, max - 1);
858 }
859 
860 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861 {
862 	/*
863 	 * Uses mas_find() to get the first VMA when the iterator starts.
864 	 * Calling mas_next() could skip the first entry.
865 	 */
866 	return mas_find(&vmi->mas, ULONG_MAX);
867 }
868 
869 static inline
870 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
871 {
872 	return mas_next_range(&vmi->mas, ULONG_MAX);
873 }
874 
875 
876 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
877 {
878 	return mas_prev(&vmi->mas, 0);
879 }
880 
881 static inline
882 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
883 {
884 	return mas_prev_range(&vmi->mas, 0);
885 }
886 
887 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
888 {
889 	return vmi->mas.index;
890 }
891 
892 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
893 {
894 	return vmi->mas.last + 1;
895 }
896 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
897 				      unsigned long count)
898 {
899 	return mas_expected_entries(&vmi->mas, count);
900 }
901 
902 /* Free any unused preallocations */
903 static inline void vma_iter_free(struct vma_iterator *vmi)
904 {
905 	mas_destroy(&vmi->mas);
906 }
907 
908 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
909 				      struct vm_area_struct *vma)
910 {
911 	vmi->mas.index = vma->vm_start;
912 	vmi->mas.last = vma->vm_end - 1;
913 	mas_store(&vmi->mas, vma);
914 	if (unlikely(mas_is_err(&vmi->mas)))
915 		return -ENOMEM;
916 
917 	return 0;
918 }
919 
920 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
921 {
922 	mas_pause(&vmi->mas);
923 }
924 
925 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
926 {
927 	mas_set(&vmi->mas, addr);
928 }
929 
930 #define for_each_vma(__vmi, __vma)					\
931 	while (((__vma) = vma_next(&(__vmi))) != NULL)
932 
933 /* The MM code likes to work with exclusive end addresses */
934 #define for_each_vma_range(__vmi, __vma, __end)				\
935 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
936 
937 #ifdef CONFIG_SHMEM
938 /*
939  * The vma_is_shmem is not inline because it is used only by slow
940  * paths in userfault.
941  */
942 bool vma_is_shmem(struct vm_area_struct *vma);
943 bool vma_is_anon_shmem(struct vm_area_struct *vma);
944 #else
945 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
946 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
947 #endif
948 
949 int vma_is_stack_for_current(struct vm_area_struct *vma);
950 
951 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
952 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
953 
954 struct mmu_gather;
955 struct inode;
956 
957 /*
958  * compound_order() can be called without holding a reference, which means
959  * that niceties like page_folio() don't work.  These callers should be
960  * prepared to handle wild return values.  For example, PG_head may be
961  * set before _folio_order is initialised, or this may be a tail page.
962  * See compaction.c for some good examples.
963  */
964 static inline unsigned int compound_order(struct page *page)
965 {
966 	struct folio *folio = (struct folio *)page;
967 
968 	if (!test_bit(PG_head, &folio->flags))
969 		return 0;
970 	return folio->_folio_order;
971 }
972 
973 /**
974  * folio_order - The allocation order of a folio.
975  * @folio: The folio.
976  *
977  * A folio is composed of 2^order pages.  See get_order() for the definition
978  * of order.
979  *
980  * Return: The order of the folio.
981  */
982 static inline unsigned int folio_order(struct folio *folio)
983 {
984 	if (!folio_test_large(folio))
985 		return 0;
986 	return folio->_folio_order;
987 }
988 
989 #include <linux/huge_mm.h>
990 
991 /*
992  * Methods to modify the page usage count.
993  *
994  * What counts for a page usage:
995  * - cache mapping   (page->mapping)
996  * - private data    (page->private)
997  * - page mapped in a task's page tables, each mapping
998  *   is counted separately
999  *
1000  * Also, many kernel routines increase the page count before a critical
1001  * routine so they can be sure the page doesn't go away from under them.
1002  */
1003 
1004 /*
1005  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1006  */
1007 static inline int put_page_testzero(struct page *page)
1008 {
1009 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1010 	return page_ref_dec_and_test(page);
1011 }
1012 
1013 static inline int folio_put_testzero(struct folio *folio)
1014 {
1015 	return put_page_testzero(&folio->page);
1016 }
1017 
1018 /*
1019  * Try to grab a ref unless the page has a refcount of zero, return false if
1020  * that is the case.
1021  * This can be called when MMU is off so it must not access
1022  * any of the virtual mappings.
1023  */
1024 static inline bool get_page_unless_zero(struct page *page)
1025 {
1026 	return page_ref_add_unless(page, 1, 0);
1027 }
1028 
1029 static inline struct folio *folio_get_nontail_page(struct page *page)
1030 {
1031 	if (unlikely(!get_page_unless_zero(page)))
1032 		return NULL;
1033 	return (struct folio *)page;
1034 }
1035 
1036 extern int page_is_ram(unsigned long pfn);
1037 
1038 enum {
1039 	REGION_INTERSECTS,
1040 	REGION_DISJOINT,
1041 	REGION_MIXED,
1042 };
1043 
1044 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1045 		      unsigned long desc);
1046 
1047 /* Support for virtually mapped pages */
1048 struct page *vmalloc_to_page(const void *addr);
1049 unsigned long vmalloc_to_pfn(const void *addr);
1050 
1051 /*
1052  * Determine if an address is within the vmalloc range
1053  *
1054  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1055  * is no special casing required.
1056  */
1057 
1058 #ifndef is_ioremap_addr
1059 #define is_ioremap_addr(x) is_vmalloc_addr(x)
1060 #endif
1061 
1062 #ifdef CONFIG_MMU
1063 extern bool is_vmalloc_addr(const void *x);
1064 extern int is_vmalloc_or_module_addr(const void *x);
1065 #else
1066 static inline bool is_vmalloc_addr(const void *x)
1067 {
1068 	return false;
1069 }
1070 static inline int is_vmalloc_or_module_addr(const void *x)
1071 {
1072 	return 0;
1073 }
1074 #endif
1075 
1076 /*
1077  * How many times the entire folio is mapped as a single unit (eg by a
1078  * PMD or PUD entry).  This is probably not what you want, except for
1079  * debugging purposes - it does not include PTE-mapped sub-pages; look
1080  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1081  */
1082 static inline int folio_entire_mapcount(struct folio *folio)
1083 {
1084 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1085 	return atomic_read(&folio->_entire_mapcount) + 1;
1086 }
1087 
1088 /*
1089  * The atomic page->_mapcount, starts from -1: so that transitions
1090  * both from it and to it can be tracked, using atomic_inc_and_test
1091  * and atomic_add_negative(-1).
1092  */
1093 static inline void page_mapcount_reset(struct page *page)
1094 {
1095 	atomic_set(&(page)->_mapcount, -1);
1096 }
1097 
1098 /**
1099  * page_mapcount() - Number of times this precise page is mapped.
1100  * @page: The page.
1101  *
1102  * The number of times this page is mapped.  If this page is part of
1103  * a large folio, it includes the number of times this page is mapped
1104  * as part of that folio.
1105  *
1106  * The result is undefined for pages which cannot be mapped into userspace.
1107  * For example SLAB or special types of pages. See function page_has_type().
1108  * They use this field in struct page differently.
1109  */
1110 static inline int page_mapcount(struct page *page)
1111 {
1112 	int mapcount = atomic_read(&page->_mapcount) + 1;
1113 
1114 	if (unlikely(PageCompound(page)))
1115 		mapcount += folio_entire_mapcount(page_folio(page));
1116 
1117 	return mapcount;
1118 }
1119 
1120 int folio_total_mapcount(struct folio *folio);
1121 
1122 /**
1123  * folio_mapcount() - Calculate the number of mappings of this folio.
1124  * @folio: The folio.
1125  *
1126  * A large folio tracks both how many times the entire folio is mapped,
1127  * and how many times each individual page in the folio is mapped.
1128  * This function calculates the total number of times the folio is
1129  * mapped.
1130  *
1131  * Return: The number of times this folio is mapped.
1132  */
1133 static inline int folio_mapcount(struct folio *folio)
1134 {
1135 	if (likely(!folio_test_large(folio)))
1136 		return atomic_read(&folio->_mapcount) + 1;
1137 	return folio_total_mapcount(folio);
1138 }
1139 
1140 static inline int total_mapcount(struct page *page)
1141 {
1142 	if (likely(!PageCompound(page)))
1143 		return atomic_read(&page->_mapcount) + 1;
1144 	return folio_total_mapcount(page_folio(page));
1145 }
1146 
1147 static inline bool folio_large_is_mapped(struct folio *folio)
1148 {
1149 	/*
1150 	 * Reading _entire_mapcount below could be omitted if hugetlb
1151 	 * participated in incrementing nr_pages_mapped when compound mapped.
1152 	 */
1153 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1154 		atomic_read(&folio->_entire_mapcount) >= 0;
1155 }
1156 
1157 /**
1158  * folio_mapped - Is this folio mapped into userspace?
1159  * @folio: The folio.
1160  *
1161  * Return: True if any page in this folio is referenced by user page tables.
1162  */
1163 static inline bool folio_mapped(struct folio *folio)
1164 {
1165 	if (likely(!folio_test_large(folio)))
1166 		return atomic_read(&folio->_mapcount) >= 0;
1167 	return folio_large_is_mapped(folio);
1168 }
1169 
1170 /*
1171  * Return true if this page is mapped into pagetables.
1172  * For compound page it returns true if any sub-page of compound page is mapped,
1173  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1174  */
1175 static inline bool page_mapped(struct page *page)
1176 {
1177 	if (likely(!PageCompound(page)))
1178 		return atomic_read(&page->_mapcount) >= 0;
1179 	return folio_large_is_mapped(page_folio(page));
1180 }
1181 
1182 static inline struct page *virt_to_head_page(const void *x)
1183 {
1184 	struct page *page = virt_to_page(x);
1185 
1186 	return compound_head(page);
1187 }
1188 
1189 static inline struct folio *virt_to_folio(const void *x)
1190 {
1191 	struct page *page = virt_to_page(x);
1192 
1193 	return page_folio(page);
1194 }
1195 
1196 void __folio_put(struct folio *folio);
1197 
1198 void put_pages_list(struct list_head *pages);
1199 
1200 void split_page(struct page *page, unsigned int order);
1201 void folio_copy(struct folio *dst, struct folio *src);
1202 
1203 unsigned long nr_free_buffer_pages(void);
1204 
1205 /*
1206  * Compound pages have a destructor function.  Provide a
1207  * prototype for that function and accessor functions.
1208  * These are _only_ valid on the head of a compound page.
1209  */
1210 typedef void compound_page_dtor(struct page *);
1211 
1212 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1213 enum compound_dtor_id {
1214 	NULL_COMPOUND_DTOR,
1215 	COMPOUND_PAGE_DTOR,
1216 #ifdef CONFIG_HUGETLB_PAGE
1217 	HUGETLB_PAGE_DTOR,
1218 #endif
1219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1220 	TRANSHUGE_PAGE_DTOR,
1221 #endif
1222 	NR_COMPOUND_DTORS,
1223 };
1224 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
1225 
1226 static inline void set_compound_page_dtor(struct page *page,
1227 		enum compound_dtor_id compound_dtor)
1228 {
1229 	struct folio *folio = (struct folio *)page;
1230 
1231 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1232 	VM_BUG_ON_PAGE(!PageHead(page), page);
1233 	folio->_folio_dtor = compound_dtor;
1234 }
1235 
1236 static inline void folio_set_compound_dtor(struct folio *folio,
1237 		enum compound_dtor_id compound_dtor)
1238 {
1239 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1240 	folio->_folio_dtor = compound_dtor;
1241 }
1242 
1243 void destroy_large_folio(struct folio *folio);
1244 
1245 static inline void set_compound_order(struct page *page, unsigned int order)
1246 {
1247 	struct folio *folio = (struct folio *)page;
1248 
1249 	folio->_folio_order = order;
1250 #ifdef CONFIG_64BIT
1251 	folio->_folio_nr_pages = 1U << order;
1252 #endif
1253 }
1254 
1255 /* Returns the number of bytes in this potentially compound page. */
1256 static inline unsigned long page_size(struct page *page)
1257 {
1258 	return PAGE_SIZE << compound_order(page);
1259 }
1260 
1261 /* Returns the number of bits needed for the number of bytes in a page */
1262 static inline unsigned int page_shift(struct page *page)
1263 {
1264 	return PAGE_SHIFT + compound_order(page);
1265 }
1266 
1267 /**
1268  * thp_order - Order of a transparent huge page.
1269  * @page: Head page of a transparent huge page.
1270  */
1271 static inline unsigned int thp_order(struct page *page)
1272 {
1273 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1274 	return compound_order(page);
1275 }
1276 
1277 /**
1278  * thp_size - Size of a transparent huge page.
1279  * @page: Head page of a transparent huge page.
1280  *
1281  * Return: Number of bytes in this page.
1282  */
1283 static inline unsigned long thp_size(struct page *page)
1284 {
1285 	return PAGE_SIZE << thp_order(page);
1286 }
1287 
1288 void free_compound_page(struct page *page);
1289 
1290 #ifdef CONFIG_MMU
1291 /*
1292  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1293  * servicing faults for write access.  In the normal case, do always want
1294  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1295  * that do not have writing enabled, when used by access_process_vm.
1296  */
1297 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1298 {
1299 	if (likely(vma->vm_flags & VM_WRITE))
1300 		pte = pte_mkwrite(pte);
1301 	return pte;
1302 }
1303 
1304 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1305 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1306 
1307 vm_fault_t finish_fault(struct vm_fault *vmf);
1308 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1309 #endif
1310 
1311 /*
1312  * Multiple processes may "see" the same page. E.g. for untouched
1313  * mappings of /dev/null, all processes see the same page full of
1314  * zeroes, and text pages of executables and shared libraries have
1315  * only one copy in memory, at most, normally.
1316  *
1317  * For the non-reserved pages, page_count(page) denotes a reference count.
1318  *   page_count() == 0 means the page is free. page->lru is then used for
1319  *   freelist management in the buddy allocator.
1320  *   page_count() > 0  means the page has been allocated.
1321  *
1322  * Pages are allocated by the slab allocator in order to provide memory
1323  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1324  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1325  * unless a particular usage is carefully commented. (the responsibility of
1326  * freeing the kmalloc memory is the caller's, of course).
1327  *
1328  * A page may be used by anyone else who does a __get_free_page().
1329  * In this case, page_count still tracks the references, and should only
1330  * be used through the normal accessor functions. The top bits of page->flags
1331  * and page->virtual store page management information, but all other fields
1332  * are unused and could be used privately, carefully. The management of this
1333  * page is the responsibility of the one who allocated it, and those who have
1334  * subsequently been given references to it.
1335  *
1336  * The other pages (we may call them "pagecache pages") are completely
1337  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1338  * The following discussion applies only to them.
1339  *
1340  * A pagecache page contains an opaque `private' member, which belongs to the
1341  * page's address_space. Usually, this is the address of a circular list of
1342  * the page's disk buffers. PG_private must be set to tell the VM to call
1343  * into the filesystem to release these pages.
1344  *
1345  * A page may belong to an inode's memory mapping. In this case, page->mapping
1346  * is the pointer to the inode, and page->index is the file offset of the page,
1347  * in units of PAGE_SIZE.
1348  *
1349  * If pagecache pages are not associated with an inode, they are said to be
1350  * anonymous pages. These may become associated with the swapcache, and in that
1351  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1352  *
1353  * In either case (swapcache or inode backed), the pagecache itself holds one
1354  * reference to the page. Setting PG_private should also increment the
1355  * refcount. The each user mapping also has a reference to the page.
1356  *
1357  * The pagecache pages are stored in a per-mapping radix tree, which is
1358  * rooted at mapping->i_pages, and indexed by offset.
1359  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1360  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1361  *
1362  * All pagecache pages may be subject to I/O:
1363  * - inode pages may need to be read from disk,
1364  * - inode pages which have been modified and are MAP_SHARED may need
1365  *   to be written back to the inode on disk,
1366  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1367  *   modified may need to be swapped out to swap space and (later) to be read
1368  *   back into memory.
1369  */
1370 
1371 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1372 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1373 
1374 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1375 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1376 {
1377 	if (!static_branch_unlikely(&devmap_managed_key))
1378 		return false;
1379 	if (!is_zone_device_page(page))
1380 		return false;
1381 	return __put_devmap_managed_page_refs(page, refs);
1382 }
1383 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1384 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1385 {
1386 	return false;
1387 }
1388 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1389 
1390 static inline bool put_devmap_managed_page(struct page *page)
1391 {
1392 	return put_devmap_managed_page_refs(page, 1);
1393 }
1394 
1395 /* 127: arbitrary random number, small enough to assemble well */
1396 #define folio_ref_zero_or_close_to_overflow(folio) \
1397 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1398 
1399 /**
1400  * folio_get - Increment the reference count on a folio.
1401  * @folio: The folio.
1402  *
1403  * Context: May be called in any context, as long as you know that
1404  * you have a refcount on the folio.  If you do not already have one,
1405  * folio_try_get() may be the right interface for you to use.
1406  */
1407 static inline void folio_get(struct folio *folio)
1408 {
1409 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1410 	folio_ref_inc(folio);
1411 }
1412 
1413 static inline void get_page(struct page *page)
1414 {
1415 	folio_get(page_folio(page));
1416 }
1417 
1418 static inline __must_check bool try_get_page(struct page *page)
1419 {
1420 	page = compound_head(page);
1421 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1422 		return false;
1423 	page_ref_inc(page);
1424 	return true;
1425 }
1426 
1427 /**
1428  * folio_put - Decrement the reference count on a folio.
1429  * @folio: The folio.
1430  *
1431  * If the folio's reference count reaches zero, the memory will be
1432  * released back to the page allocator and may be used by another
1433  * allocation immediately.  Do not access the memory or the struct folio
1434  * after calling folio_put() unless you can be sure that it wasn't the
1435  * last reference.
1436  *
1437  * Context: May be called in process or interrupt context, but not in NMI
1438  * context.  May be called while holding a spinlock.
1439  */
1440 static inline void folio_put(struct folio *folio)
1441 {
1442 	if (folio_put_testzero(folio))
1443 		__folio_put(folio);
1444 }
1445 
1446 /**
1447  * folio_put_refs - Reduce the reference count on a folio.
1448  * @folio: The folio.
1449  * @refs: The amount to subtract from the folio's reference count.
1450  *
1451  * If the folio's reference count reaches zero, the memory will be
1452  * released back to the page allocator and may be used by another
1453  * allocation immediately.  Do not access the memory or the struct folio
1454  * after calling folio_put_refs() unless you can be sure that these weren't
1455  * the last references.
1456  *
1457  * Context: May be called in process or interrupt context, but not in NMI
1458  * context.  May be called while holding a spinlock.
1459  */
1460 static inline void folio_put_refs(struct folio *folio, int refs)
1461 {
1462 	if (folio_ref_sub_and_test(folio, refs))
1463 		__folio_put(folio);
1464 }
1465 
1466 /*
1467  * union release_pages_arg - an array of pages or folios
1468  *
1469  * release_pages() releases a simple array of multiple pages, and
1470  * accepts various different forms of said page array: either
1471  * a regular old boring array of pages, an array of folios, or
1472  * an array of encoded page pointers.
1473  *
1474  * The transparent union syntax for this kind of "any of these
1475  * argument types" is all kinds of ugly, so look away.
1476  */
1477 typedef union {
1478 	struct page **pages;
1479 	struct folio **folios;
1480 	struct encoded_page **encoded_pages;
1481 } release_pages_arg __attribute__ ((__transparent_union__));
1482 
1483 void release_pages(release_pages_arg, int nr);
1484 
1485 /**
1486  * folios_put - Decrement the reference count on an array of folios.
1487  * @folios: The folios.
1488  * @nr: How many folios there are.
1489  *
1490  * Like folio_put(), but for an array of folios.  This is more efficient
1491  * than writing the loop yourself as it will optimise the locks which
1492  * need to be taken if the folios are freed.
1493  *
1494  * Context: May be called in process or interrupt context, but not in NMI
1495  * context.  May be called while holding a spinlock.
1496  */
1497 static inline void folios_put(struct folio **folios, unsigned int nr)
1498 {
1499 	release_pages(folios, nr);
1500 }
1501 
1502 static inline void put_page(struct page *page)
1503 {
1504 	struct folio *folio = page_folio(page);
1505 
1506 	/*
1507 	 * For some devmap managed pages we need to catch refcount transition
1508 	 * from 2 to 1:
1509 	 */
1510 	if (put_devmap_managed_page(&folio->page))
1511 		return;
1512 	folio_put(folio);
1513 }
1514 
1515 /*
1516  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1517  * the page's refcount so that two separate items are tracked: the original page
1518  * reference count, and also a new count of how many pin_user_pages() calls were
1519  * made against the page. ("gup-pinned" is another term for the latter).
1520  *
1521  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1522  * distinct from normal pages. As such, the unpin_user_page() call (and its
1523  * variants) must be used in order to release gup-pinned pages.
1524  *
1525  * Choice of value:
1526  *
1527  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1528  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1529  * simpler, due to the fact that adding an even power of two to the page
1530  * refcount has the effect of using only the upper N bits, for the code that
1531  * counts up using the bias value. This means that the lower bits are left for
1532  * the exclusive use of the original code that increments and decrements by one
1533  * (or at least, by much smaller values than the bias value).
1534  *
1535  * Of course, once the lower bits overflow into the upper bits (and this is
1536  * OK, because subtraction recovers the original values), then visual inspection
1537  * no longer suffices to directly view the separate counts. However, for normal
1538  * applications that don't have huge page reference counts, this won't be an
1539  * issue.
1540  *
1541  * Locking: the lockless algorithm described in folio_try_get_rcu()
1542  * provides safe operation for get_user_pages(), page_mkclean() and
1543  * other calls that race to set up page table entries.
1544  */
1545 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1546 
1547 void unpin_user_page(struct page *page);
1548 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1549 				 bool make_dirty);
1550 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1551 				      bool make_dirty);
1552 void unpin_user_pages(struct page **pages, unsigned long npages);
1553 
1554 static inline bool is_cow_mapping(vm_flags_t flags)
1555 {
1556 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1557 }
1558 
1559 #ifndef CONFIG_MMU
1560 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1561 {
1562 	/*
1563 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1564 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1565 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1566 	 * underlying memory if ptrace is active, so this is only possible if
1567 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1568 	 * write permissions later.
1569 	 */
1570 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1571 }
1572 #endif
1573 
1574 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1575 #define SECTION_IN_PAGE_FLAGS
1576 #endif
1577 
1578 /*
1579  * The identification function is mainly used by the buddy allocator for
1580  * determining if two pages could be buddies. We are not really identifying
1581  * the zone since we could be using the section number id if we do not have
1582  * node id available in page flags.
1583  * We only guarantee that it will return the same value for two combinable
1584  * pages in a zone.
1585  */
1586 static inline int page_zone_id(struct page *page)
1587 {
1588 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1589 }
1590 
1591 #ifdef NODE_NOT_IN_PAGE_FLAGS
1592 extern int page_to_nid(const struct page *page);
1593 #else
1594 static inline int page_to_nid(const struct page *page)
1595 {
1596 	struct page *p = (struct page *)page;
1597 
1598 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1599 }
1600 #endif
1601 
1602 static inline int folio_nid(const struct folio *folio)
1603 {
1604 	return page_to_nid(&folio->page);
1605 }
1606 
1607 #ifdef CONFIG_NUMA_BALANCING
1608 /* page access time bits needs to hold at least 4 seconds */
1609 #define PAGE_ACCESS_TIME_MIN_BITS	12
1610 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1611 #define PAGE_ACCESS_TIME_BUCKETS				\
1612 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1613 #else
1614 #define PAGE_ACCESS_TIME_BUCKETS	0
1615 #endif
1616 
1617 #define PAGE_ACCESS_TIME_MASK				\
1618 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1619 
1620 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1621 {
1622 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1623 }
1624 
1625 static inline int cpupid_to_pid(int cpupid)
1626 {
1627 	return cpupid & LAST__PID_MASK;
1628 }
1629 
1630 static inline int cpupid_to_cpu(int cpupid)
1631 {
1632 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1633 }
1634 
1635 static inline int cpupid_to_nid(int cpupid)
1636 {
1637 	return cpu_to_node(cpupid_to_cpu(cpupid));
1638 }
1639 
1640 static inline bool cpupid_pid_unset(int cpupid)
1641 {
1642 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1643 }
1644 
1645 static inline bool cpupid_cpu_unset(int cpupid)
1646 {
1647 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1648 }
1649 
1650 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1651 {
1652 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1653 }
1654 
1655 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1656 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1657 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1658 {
1659 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1660 }
1661 
1662 static inline int page_cpupid_last(struct page *page)
1663 {
1664 	return page->_last_cpupid;
1665 }
1666 static inline void page_cpupid_reset_last(struct page *page)
1667 {
1668 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1669 }
1670 #else
1671 static inline int page_cpupid_last(struct page *page)
1672 {
1673 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1674 }
1675 
1676 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1677 
1678 static inline void page_cpupid_reset_last(struct page *page)
1679 {
1680 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1681 }
1682 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1683 
1684 static inline int xchg_page_access_time(struct page *page, int time)
1685 {
1686 	int last_time;
1687 
1688 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1689 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1690 }
1691 
1692 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1693 {
1694 	unsigned int pid_bit;
1695 
1696 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1697 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1698 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1699 	}
1700 }
1701 #else /* !CONFIG_NUMA_BALANCING */
1702 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1703 {
1704 	return page_to_nid(page); /* XXX */
1705 }
1706 
1707 static inline int xchg_page_access_time(struct page *page, int time)
1708 {
1709 	return 0;
1710 }
1711 
1712 static inline int page_cpupid_last(struct page *page)
1713 {
1714 	return page_to_nid(page); /* XXX */
1715 }
1716 
1717 static inline int cpupid_to_nid(int cpupid)
1718 {
1719 	return -1;
1720 }
1721 
1722 static inline int cpupid_to_pid(int cpupid)
1723 {
1724 	return -1;
1725 }
1726 
1727 static inline int cpupid_to_cpu(int cpupid)
1728 {
1729 	return -1;
1730 }
1731 
1732 static inline int cpu_pid_to_cpupid(int nid, int pid)
1733 {
1734 	return -1;
1735 }
1736 
1737 static inline bool cpupid_pid_unset(int cpupid)
1738 {
1739 	return true;
1740 }
1741 
1742 static inline void page_cpupid_reset_last(struct page *page)
1743 {
1744 }
1745 
1746 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1747 {
1748 	return false;
1749 }
1750 
1751 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1752 {
1753 }
1754 #endif /* CONFIG_NUMA_BALANCING */
1755 
1756 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1757 
1758 /*
1759  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1760  * setting tags for all pages to native kernel tag value 0xff, as the default
1761  * value 0x00 maps to 0xff.
1762  */
1763 
1764 static inline u8 page_kasan_tag(const struct page *page)
1765 {
1766 	u8 tag = 0xff;
1767 
1768 	if (kasan_enabled()) {
1769 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1770 		tag ^= 0xff;
1771 	}
1772 
1773 	return tag;
1774 }
1775 
1776 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1777 {
1778 	unsigned long old_flags, flags;
1779 
1780 	if (!kasan_enabled())
1781 		return;
1782 
1783 	tag ^= 0xff;
1784 	old_flags = READ_ONCE(page->flags);
1785 	do {
1786 		flags = old_flags;
1787 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1788 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1789 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1790 }
1791 
1792 static inline void page_kasan_tag_reset(struct page *page)
1793 {
1794 	if (kasan_enabled())
1795 		page_kasan_tag_set(page, 0xff);
1796 }
1797 
1798 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1799 
1800 static inline u8 page_kasan_tag(const struct page *page)
1801 {
1802 	return 0xff;
1803 }
1804 
1805 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1806 static inline void page_kasan_tag_reset(struct page *page) { }
1807 
1808 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1809 
1810 static inline struct zone *page_zone(const struct page *page)
1811 {
1812 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1813 }
1814 
1815 static inline pg_data_t *page_pgdat(const struct page *page)
1816 {
1817 	return NODE_DATA(page_to_nid(page));
1818 }
1819 
1820 static inline struct zone *folio_zone(const struct folio *folio)
1821 {
1822 	return page_zone(&folio->page);
1823 }
1824 
1825 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1826 {
1827 	return page_pgdat(&folio->page);
1828 }
1829 
1830 #ifdef SECTION_IN_PAGE_FLAGS
1831 static inline void set_page_section(struct page *page, unsigned long section)
1832 {
1833 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1834 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1835 }
1836 
1837 static inline unsigned long page_to_section(const struct page *page)
1838 {
1839 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1840 }
1841 #endif
1842 
1843 /**
1844  * folio_pfn - Return the Page Frame Number of a folio.
1845  * @folio: The folio.
1846  *
1847  * A folio may contain multiple pages.  The pages have consecutive
1848  * Page Frame Numbers.
1849  *
1850  * Return: The Page Frame Number of the first page in the folio.
1851  */
1852 static inline unsigned long folio_pfn(struct folio *folio)
1853 {
1854 	return page_to_pfn(&folio->page);
1855 }
1856 
1857 static inline struct folio *pfn_folio(unsigned long pfn)
1858 {
1859 	return page_folio(pfn_to_page(pfn));
1860 }
1861 
1862 /**
1863  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1864  * @folio: The folio.
1865  *
1866  * This function checks if a folio has been pinned via a call to
1867  * a function in the pin_user_pages() family.
1868  *
1869  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1870  * because it means "definitely not pinned for DMA", but true means "probably
1871  * pinned for DMA, but possibly a false positive due to having at least
1872  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1873  *
1874  * False positives are OK, because: a) it's unlikely for a folio to
1875  * get that many refcounts, and b) all the callers of this routine are
1876  * expected to be able to deal gracefully with a false positive.
1877  *
1878  * For large folios, the result will be exactly correct. That's because
1879  * we have more tracking data available: the _pincount field is used
1880  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1881  *
1882  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1883  *
1884  * Return: True, if it is likely that the page has been "dma-pinned".
1885  * False, if the page is definitely not dma-pinned.
1886  */
1887 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1888 {
1889 	if (folio_test_large(folio))
1890 		return atomic_read(&folio->_pincount) > 0;
1891 
1892 	/*
1893 	 * folio_ref_count() is signed. If that refcount overflows, then
1894 	 * folio_ref_count() returns a negative value, and callers will avoid
1895 	 * further incrementing the refcount.
1896 	 *
1897 	 * Here, for that overflow case, use the sign bit to count a little
1898 	 * bit higher via unsigned math, and thus still get an accurate result.
1899 	 */
1900 	return ((unsigned int)folio_ref_count(folio)) >=
1901 		GUP_PIN_COUNTING_BIAS;
1902 }
1903 
1904 static inline bool page_maybe_dma_pinned(struct page *page)
1905 {
1906 	return folio_maybe_dma_pinned(page_folio(page));
1907 }
1908 
1909 /*
1910  * This should most likely only be called during fork() to see whether we
1911  * should break the cow immediately for an anon page on the src mm.
1912  *
1913  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1914  */
1915 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1916 					  struct page *page)
1917 {
1918 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1919 
1920 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1921 		return false;
1922 
1923 	return page_maybe_dma_pinned(page);
1924 }
1925 
1926 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1927 #ifdef CONFIG_MIGRATION
1928 static inline bool is_longterm_pinnable_page(struct page *page)
1929 {
1930 #ifdef CONFIG_CMA
1931 	int mt = get_pageblock_migratetype(page);
1932 
1933 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1934 		return false;
1935 #endif
1936 	/* The zero page may always be pinned */
1937 	if (is_zero_pfn(page_to_pfn(page)))
1938 		return true;
1939 
1940 	/* Coherent device memory must always allow eviction. */
1941 	if (is_device_coherent_page(page))
1942 		return false;
1943 
1944 	/* Otherwise, non-movable zone pages can be pinned. */
1945 	return !is_zone_movable_page(page);
1946 }
1947 #else
1948 static inline bool is_longterm_pinnable_page(struct page *page)
1949 {
1950 	return true;
1951 }
1952 #endif
1953 
1954 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1955 {
1956 	return is_longterm_pinnable_page(&folio->page);
1957 }
1958 
1959 static inline void set_page_zone(struct page *page, enum zone_type zone)
1960 {
1961 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1962 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1963 }
1964 
1965 static inline void set_page_node(struct page *page, unsigned long node)
1966 {
1967 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1968 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1969 }
1970 
1971 static inline void set_page_links(struct page *page, enum zone_type zone,
1972 	unsigned long node, unsigned long pfn)
1973 {
1974 	set_page_zone(page, zone);
1975 	set_page_node(page, node);
1976 #ifdef SECTION_IN_PAGE_FLAGS
1977 	set_page_section(page, pfn_to_section_nr(pfn));
1978 #endif
1979 }
1980 
1981 /**
1982  * folio_nr_pages - The number of pages in the folio.
1983  * @folio: The folio.
1984  *
1985  * Return: A positive power of two.
1986  */
1987 static inline long folio_nr_pages(struct folio *folio)
1988 {
1989 	if (!folio_test_large(folio))
1990 		return 1;
1991 #ifdef CONFIG_64BIT
1992 	return folio->_folio_nr_pages;
1993 #else
1994 	return 1L << folio->_folio_order;
1995 #endif
1996 }
1997 
1998 /*
1999  * compound_nr() returns the number of pages in this potentially compound
2000  * page.  compound_nr() can be called on a tail page, and is defined to
2001  * return 1 in that case.
2002  */
2003 static inline unsigned long compound_nr(struct page *page)
2004 {
2005 	struct folio *folio = (struct folio *)page;
2006 
2007 	if (!test_bit(PG_head, &folio->flags))
2008 		return 1;
2009 #ifdef CONFIG_64BIT
2010 	return folio->_folio_nr_pages;
2011 #else
2012 	return 1L << folio->_folio_order;
2013 #endif
2014 }
2015 
2016 /**
2017  * thp_nr_pages - The number of regular pages in this huge page.
2018  * @page: The head page of a huge page.
2019  */
2020 static inline int thp_nr_pages(struct page *page)
2021 {
2022 	return folio_nr_pages((struct folio *)page);
2023 }
2024 
2025 /**
2026  * folio_next - Move to the next physical folio.
2027  * @folio: The folio we're currently operating on.
2028  *
2029  * If you have physically contiguous memory which may span more than
2030  * one folio (eg a &struct bio_vec), use this function to move from one
2031  * folio to the next.  Do not use it if the memory is only virtually
2032  * contiguous as the folios are almost certainly not adjacent to each
2033  * other.  This is the folio equivalent to writing ``page++``.
2034  *
2035  * Context: We assume that the folios are refcounted and/or locked at a
2036  * higher level and do not adjust the reference counts.
2037  * Return: The next struct folio.
2038  */
2039 static inline struct folio *folio_next(struct folio *folio)
2040 {
2041 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2042 }
2043 
2044 /**
2045  * folio_shift - The size of the memory described by this folio.
2046  * @folio: The folio.
2047  *
2048  * A folio represents a number of bytes which is a power-of-two in size.
2049  * This function tells you which power-of-two the folio is.  See also
2050  * folio_size() and folio_order().
2051  *
2052  * Context: The caller should have a reference on the folio to prevent
2053  * it from being split.  It is not necessary for the folio to be locked.
2054  * Return: The base-2 logarithm of the size of this folio.
2055  */
2056 static inline unsigned int folio_shift(struct folio *folio)
2057 {
2058 	return PAGE_SHIFT + folio_order(folio);
2059 }
2060 
2061 /**
2062  * folio_size - The number of bytes in a folio.
2063  * @folio: The folio.
2064  *
2065  * Context: The caller should have a reference on the folio to prevent
2066  * it from being split.  It is not necessary for the folio to be locked.
2067  * Return: The number of bytes in this folio.
2068  */
2069 static inline size_t folio_size(struct folio *folio)
2070 {
2071 	return PAGE_SIZE << folio_order(folio);
2072 }
2073 
2074 /**
2075  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2076  * @folio: The folio.
2077  *
2078  * folio_estimated_sharers() aims to serve as a function to efficiently
2079  * estimate the number of processes sharing a folio. This is done by
2080  * looking at the precise mapcount of the first subpage in the folio, and
2081  * assuming the other subpages are the same. This may not be true for large
2082  * folios. If you want exact mapcounts for exact calculations, look at
2083  * page_mapcount() or folio_total_mapcount().
2084  *
2085  * Return: The estimated number of processes sharing a folio.
2086  */
2087 static inline int folio_estimated_sharers(struct folio *folio)
2088 {
2089 	return page_mapcount(folio_page(folio, 0));
2090 }
2091 
2092 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2093 static inline int arch_make_page_accessible(struct page *page)
2094 {
2095 	return 0;
2096 }
2097 #endif
2098 
2099 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2100 static inline int arch_make_folio_accessible(struct folio *folio)
2101 {
2102 	int ret;
2103 	long i, nr = folio_nr_pages(folio);
2104 
2105 	for (i = 0; i < nr; i++) {
2106 		ret = arch_make_page_accessible(folio_page(folio, i));
2107 		if (ret)
2108 			break;
2109 	}
2110 
2111 	return ret;
2112 }
2113 #endif
2114 
2115 /*
2116  * Some inline functions in vmstat.h depend on page_zone()
2117  */
2118 #include <linux/vmstat.h>
2119 
2120 static __always_inline void *lowmem_page_address(const struct page *page)
2121 {
2122 	return page_to_virt(page);
2123 }
2124 
2125 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2126 #define HASHED_PAGE_VIRTUAL
2127 #endif
2128 
2129 #if defined(WANT_PAGE_VIRTUAL)
2130 static inline void *page_address(const struct page *page)
2131 {
2132 	return page->virtual;
2133 }
2134 static inline void set_page_address(struct page *page, void *address)
2135 {
2136 	page->virtual = address;
2137 }
2138 #define page_address_init()  do { } while(0)
2139 #endif
2140 
2141 #if defined(HASHED_PAGE_VIRTUAL)
2142 void *page_address(const struct page *page);
2143 void set_page_address(struct page *page, void *virtual);
2144 void page_address_init(void);
2145 #endif
2146 
2147 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2148 #define page_address(page) lowmem_page_address(page)
2149 #define set_page_address(page, address)  do { } while(0)
2150 #define page_address_init()  do { } while(0)
2151 #endif
2152 
2153 static inline void *folio_address(const struct folio *folio)
2154 {
2155 	return page_address(&folio->page);
2156 }
2157 
2158 extern void *page_rmapping(struct page *page);
2159 extern pgoff_t __page_file_index(struct page *page);
2160 
2161 /*
2162  * Return the pagecache index of the passed page.  Regular pagecache pages
2163  * use ->index whereas swapcache pages use swp_offset(->private)
2164  */
2165 static inline pgoff_t page_index(struct page *page)
2166 {
2167 	if (unlikely(PageSwapCache(page)))
2168 		return __page_file_index(page);
2169 	return page->index;
2170 }
2171 
2172 /*
2173  * Return true only if the page has been allocated with
2174  * ALLOC_NO_WATERMARKS and the low watermark was not
2175  * met implying that the system is under some pressure.
2176  */
2177 static inline bool page_is_pfmemalloc(const struct page *page)
2178 {
2179 	/*
2180 	 * lru.next has bit 1 set if the page is allocated from the
2181 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2182 	 * they do not need to preserve that information.
2183 	 */
2184 	return (uintptr_t)page->lru.next & BIT(1);
2185 }
2186 
2187 /*
2188  * Return true only if the folio has been allocated with
2189  * ALLOC_NO_WATERMARKS and the low watermark was not
2190  * met implying that the system is under some pressure.
2191  */
2192 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2193 {
2194 	/*
2195 	 * lru.next has bit 1 set if the page is allocated from the
2196 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2197 	 * they do not need to preserve that information.
2198 	 */
2199 	return (uintptr_t)folio->lru.next & BIT(1);
2200 }
2201 
2202 /*
2203  * Only to be called by the page allocator on a freshly allocated
2204  * page.
2205  */
2206 static inline void set_page_pfmemalloc(struct page *page)
2207 {
2208 	page->lru.next = (void *)BIT(1);
2209 }
2210 
2211 static inline void clear_page_pfmemalloc(struct page *page)
2212 {
2213 	page->lru.next = NULL;
2214 }
2215 
2216 /*
2217  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2218  */
2219 extern void pagefault_out_of_memory(void);
2220 
2221 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2222 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2223 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2224 
2225 /*
2226  * Flags passed to show_mem() and show_free_areas() to suppress output in
2227  * various contexts.
2228  */
2229 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
2230 
2231 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2232 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2233 {
2234 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2235 }
2236 
2237 /*
2238  * Parameter block passed down to zap_pte_range in exceptional cases.
2239  */
2240 struct zap_details {
2241 	struct folio *single_folio;	/* Locked folio to be unmapped */
2242 	bool even_cows;			/* Zap COWed private pages too? */
2243 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2244 };
2245 
2246 /*
2247  * Whether to drop the pte markers, for example, the uffd-wp information for
2248  * file-backed memory.  This should only be specified when we will completely
2249  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2250  * default, the flag is not set.
2251  */
2252 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2253 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2254 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2255 
2256 #ifdef CONFIG_SCHED_MM_CID
2257 void sched_mm_cid_before_execve(struct task_struct *t);
2258 void sched_mm_cid_after_execve(struct task_struct *t);
2259 void sched_mm_cid_fork(struct task_struct *t);
2260 void sched_mm_cid_exit_signals(struct task_struct *t);
2261 static inline int task_mm_cid(struct task_struct *t)
2262 {
2263 	return t->mm_cid;
2264 }
2265 #else
2266 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2267 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2268 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2269 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2270 static inline int task_mm_cid(struct task_struct *t)
2271 {
2272 	/*
2273 	 * Use the processor id as a fall-back when the mm cid feature is
2274 	 * disabled. This provides functional per-cpu data structure accesses
2275 	 * in user-space, althrough it won't provide the memory usage benefits.
2276 	 */
2277 	return raw_smp_processor_id();
2278 }
2279 #endif
2280 
2281 #ifdef CONFIG_MMU
2282 extern bool can_do_mlock(void);
2283 #else
2284 static inline bool can_do_mlock(void) { return false; }
2285 #endif
2286 extern int user_shm_lock(size_t, struct ucounts *);
2287 extern void user_shm_unlock(size_t, struct ucounts *);
2288 
2289 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2290 			     pte_t pte);
2291 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2292 			     pte_t pte);
2293 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2294 				pmd_t pmd);
2295 
2296 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2297 		  unsigned long size);
2298 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2299 			   unsigned long size, struct zap_details *details);
2300 static inline void zap_vma_pages(struct vm_area_struct *vma)
2301 {
2302 	zap_page_range_single(vma, vma->vm_start,
2303 			      vma->vm_end - vma->vm_start, NULL);
2304 }
2305 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2306 		struct vm_area_struct *start_vma, unsigned long start,
2307 		unsigned long end, bool mm_wr_locked);
2308 
2309 struct mmu_notifier_range;
2310 
2311 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2312 		unsigned long end, unsigned long floor, unsigned long ceiling);
2313 int
2314 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2315 int follow_pte(struct mm_struct *mm, unsigned long address,
2316 	       pte_t **ptepp, spinlock_t **ptlp);
2317 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2318 	unsigned long *pfn);
2319 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2320 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2321 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2322 			void *buf, int len, int write);
2323 
2324 extern void truncate_pagecache(struct inode *inode, loff_t new);
2325 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2326 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2327 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2328 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2329 
2330 #ifdef CONFIG_MMU
2331 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2332 				  unsigned long address, unsigned int flags,
2333 				  struct pt_regs *regs);
2334 extern int fixup_user_fault(struct mm_struct *mm,
2335 			    unsigned long address, unsigned int fault_flags,
2336 			    bool *unlocked);
2337 void unmap_mapping_pages(struct address_space *mapping,
2338 		pgoff_t start, pgoff_t nr, bool even_cows);
2339 void unmap_mapping_range(struct address_space *mapping,
2340 		loff_t const holebegin, loff_t const holelen, int even_cows);
2341 #else
2342 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2343 					 unsigned long address, unsigned int flags,
2344 					 struct pt_regs *regs)
2345 {
2346 	/* should never happen if there's no MMU */
2347 	BUG();
2348 	return VM_FAULT_SIGBUS;
2349 }
2350 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2351 		unsigned int fault_flags, bool *unlocked)
2352 {
2353 	/* should never happen if there's no MMU */
2354 	BUG();
2355 	return -EFAULT;
2356 }
2357 static inline void unmap_mapping_pages(struct address_space *mapping,
2358 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2359 static inline void unmap_mapping_range(struct address_space *mapping,
2360 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2361 #endif
2362 
2363 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2364 		loff_t const holebegin, loff_t const holelen)
2365 {
2366 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2367 }
2368 
2369 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2370 						unsigned long addr);
2371 
2372 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2373 		void *buf, int len, unsigned int gup_flags);
2374 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2375 		void *buf, int len, unsigned int gup_flags);
2376 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2377 			      void *buf, int len, unsigned int gup_flags);
2378 
2379 long get_user_pages_remote(struct mm_struct *mm,
2380 			   unsigned long start, unsigned long nr_pages,
2381 			   unsigned int gup_flags, struct page **pages,
2382 			   int *locked);
2383 long pin_user_pages_remote(struct mm_struct *mm,
2384 			   unsigned long start, unsigned long nr_pages,
2385 			   unsigned int gup_flags, struct page **pages,
2386 			   int *locked);
2387 
2388 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2389 						    unsigned long addr,
2390 						    int gup_flags,
2391 						    struct vm_area_struct **vmap)
2392 {
2393 	struct page *page;
2394 	struct vm_area_struct *vma;
2395 	int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2396 
2397 	if (got < 0)
2398 		return ERR_PTR(got);
2399 	if (got == 0)
2400 		return NULL;
2401 
2402 	vma = vma_lookup(mm, addr);
2403 	if (WARN_ON_ONCE(!vma)) {
2404 		put_page(page);
2405 		return ERR_PTR(-EINVAL);
2406 	}
2407 
2408 	*vmap = vma;
2409 	return page;
2410 }
2411 
2412 long get_user_pages(unsigned long start, unsigned long nr_pages,
2413 		    unsigned int gup_flags, struct page **pages);
2414 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2415 		    unsigned int gup_flags, struct page **pages);
2416 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2417 		    struct page **pages, unsigned int gup_flags);
2418 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2419 		    struct page **pages, unsigned int gup_flags);
2420 
2421 int get_user_pages_fast(unsigned long start, int nr_pages,
2422 			unsigned int gup_flags, struct page **pages);
2423 int pin_user_pages_fast(unsigned long start, int nr_pages,
2424 			unsigned int gup_flags, struct page **pages);
2425 
2426 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2427 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2428 			struct task_struct *task, bool bypass_rlim);
2429 
2430 struct kvec;
2431 struct page *get_dump_page(unsigned long addr);
2432 
2433 bool folio_mark_dirty(struct folio *folio);
2434 bool set_page_dirty(struct page *page);
2435 int set_page_dirty_lock(struct page *page);
2436 
2437 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2438 
2439 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2440 		unsigned long old_addr, struct vm_area_struct *new_vma,
2441 		unsigned long new_addr, unsigned long len,
2442 		bool need_rmap_locks);
2443 
2444 /*
2445  * Flags used by change_protection().  For now we make it a bitmap so
2446  * that we can pass in multiple flags just like parameters.  However
2447  * for now all the callers are only use one of the flags at the same
2448  * time.
2449  */
2450 /*
2451  * Whether we should manually check if we can map individual PTEs writable,
2452  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2453  * PTEs automatically in a writable mapping.
2454  */
2455 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2456 /* Whether this protection change is for NUMA hints */
2457 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2458 /* Whether this change is for write protecting */
2459 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2460 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2461 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2462 					    MM_CP_UFFD_WP_RESOLVE)
2463 
2464 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2465 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2466 {
2467 	/*
2468 	 * We want to check manually if we can change individual PTEs writable
2469 	 * if we can't do that automatically for all PTEs in a mapping. For
2470 	 * private mappings, that's always the case when we have write
2471 	 * permissions as we properly have to handle COW.
2472 	 */
2473 	if (vma->vm_flags & VM_SHARED)
2474 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2475 	return !!(vma->vm_flags & VM_WRITE);
2476 
2477 }
2478 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2479 			     pte_t pte);
2480 extern long change_protection(struct mmu_gather *tlb,
2481 			      struct vm_area_struct *vma, unsigned long start,
2482 			      unsigned long end, unsigned long cp_flags);
2483 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2484 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2485 	  unsigned long start, unsigned long end, unsigned long newflags);
2486 
2487 /*
2488  * doesn't attempt to fault and will return short.
2489  */
2490 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2491 			     unsigned int gup_flags, struct page **pages);
2492 
2493 static inline bool get_user_page_fast_only(unsigned long addr,
2494 			unsigned int gup_flags, struct page **pagep)
2495 {
2496 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2497 }
2498 /*
2499  * per-process(per-mm_struct) statistics.
2500  */
2501 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2502 {
2503 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2504 }
2505 
2506 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2507 
2508 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2509 {
2510 	percpu_counter_add(&mm->rss_stat[member], value);
2511 
2512 	mm_trace_rss_stat(mm, member);
2513 }
2514 
2515 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2516 {
2517 	percpu_counter_inc(&mm->rss_stat[member]);
2518 
2519 	mm_trace_rss_stat(mm, member);
2520 }
2521 
2522 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2523 {
2524 	percpu_counter_dec(&mm->rss_stat[member]);
2525 
2526 	mm_trace_rss_stat(mm, member);
2527 }
2528 
2529 /* Optimized variant when page is already known not to be PageAnon */
2530 static inline int mm_counter_file(struct page *page)
2531 {
2532 	if (PageSwapBacked(page))
2533 		return MM_SHMEMPAGES;
2534 	return MM_FILEPAGES;
2535 }
2536 
2537 static inline int mm_counter(struct page *page)
2538 {
2539 	if (PageAnon(page))
2540 		return MM_ANONPAGES;
2541 	return mm_counter_file(page);
2542 }
2543 
2544 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2545 {
2546 	return get_mm_counter(mm, MM_FILEPAGES) +
2547 		get_mm_counter(mm, MM_ANONPAGES) +
2548 		get_mm_counter(mm, MM_SHMEMPAGES);
2549 }
2550 
2551 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2552 {
2553 	return max(mm->hiwater_rss, get_mm_rss(mm));
2554 }
2555 
2556 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2557 {
2558 	return max(mm->hiwater_vm, mm->total_vm);
2559 }
2560 
2561 static inline void update_hiwater_rss(struct mm_struct *mm)
2562 {
2563 	unsigned long _rss = get_mm_rss(mm);
2564 
2565 	if ((mm)->hiwater_rss < _rss)
2566 		(mm)->hiwater_rss = _rss;
2567 }
2568 
2569 static inline void update_hiwater_vm(struct mm_struct *mm)
2570 {
2571 	if (mm->hiwater_vm < mm->total_vm)
2572 		mm->hiwater_vm = mm->total_vm;
2573 }
2574 
2575 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2576 {
2577 	mm->hiwater_rss = get_mm_rss(mm);
2578 }
2579 
2580 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2581 					 struct mm_struct *mm)
2582 {
2583 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2584 
2585 	if (*maxrss < hiwater_rss)
2586 		*maxrss = hiwater_rss;
2587 }
2588 
2589 #if defined(SPLIT_RSS_COUNTING)
2590 void sync_mm_rss(struct mm_struct *mm);
2591 #else
2592 static inline void sync_mm_rss(struct mm_struct *mm)
2593 {
2594 }
2595 #endif
2596 
2597 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2598 static inline int pte_special(pte_t pte)
2599 {
2600 	return 0;
2601 }
2602 
2603 static inline pte_t pte_mkspecial(pte_t pte)
2604 {
2605 	return pte;
2606 }
2607 #endif
2608 
2609 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2610 static inline int pte_devmap(pte_t pte)
2611 {
2612 	return 0;
2613 }
2614 #endif
2615 
2616 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2617 			       spinlock_t **ptl);
2618 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2619 				    spinlock_t **ptl)
2620 {
2621 	pte_t *ptep;
2622 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2623 	return ptep;
2624 }
2625 
2626 #ifdef __PAGETABLE_P4D_FOLDED
2627 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2628 						unsigned long address)
2629 {
2630 	return 0;
2631 }
2632 #else
2633 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2634 #endif
2635 
2636 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2637 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2638 						unsigned long address)
2639 {
2640 	return 0;
2641 }
2642 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2643 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2644 
2645 #else
2646 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2647 
2648 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2649 {
2650 	if (mm_pud_folded(mm))
2651 		return;
2652 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2653 }
2654 
2655 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2656 {
2657 	if (mm_pud_folded(mm))
2658 		return;
2659 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2660 }
2661 #endif
2662 
2663 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2664 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2665 						unsigned long address)
2666 {
2667 	return 0;
2668 }
2669 
2670 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2671 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2672 
2673 #else
2674 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2675 
2676 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2677 {
2678 	if (mm_pmd_folded(mm))
2679 		return;
2680 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2681 }
2682 
2683 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2684 {
2685 	if (mm_pmd_folded(mm))
2686 		return;
2687 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2688 }
2689 #endif
2690 
2691 #ifdef CONFIG_MMU
2692 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2693 {
2694 	atomic_long_set(&mm->pgtables_bytes, 0);
2695 }
2696 
2697 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2698 {
2699 	return atomic_long_read(&mm->pgtables_bytes);
2700 }
2701 
2702 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2703 {
2704 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2705 }
2706 
2707 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2708 {
2709 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2710 }
2711 #else
2712 
2713 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2714 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2715 {
2716 	return 0;
2717 }
2718 
2719 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2720 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2721 #endif
2722 
2723 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2724 int __pte_alloc_kernel(pmd_t *pmd);
2725 
2726 #if defined(CONFIG_MMU)
2727 
2728 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2729 		unsigned long address)
2730 {
2731 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2732 		NULL : p4d_offset(pgd, address);
2733 }
2734 
2735 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2736 		unsigned long address)
2737 {
2738 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2739 		NULL : pud_offset(p4d, address);
2740 }
2741 
2742 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2743 {
2744 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2745 		NULL: pmd_offset(pud, address);
2746 }
2747 #endif /* CONFIG_MMU */
2748 
2749 #if USE_SPLIT_PTE_PTLOCKS
2750 #if ALLOC_SPLIT_PTLOCKS
2751 void __init ptlock_cache_init(void);
2752 extern bool ptlock_alloc(struct page *page);
2753 extern void ptlock_free(struct page *page);
2754 
2755 static inline spinlock_t *ptlock_ptr(struct page *page)
2756 {
2757 	return page->ptl;
2758 }
2759 #else /* ALLOC_SPLIT_PTLOCKS */
2760 static inline void ptlock_cache_init(void)
2761 {
2762 }
2763 
2764 static inline bool ptlock_alloc(struct page *page)
2765 {
2766 	return true;
2767 }
2768 
2769 static inline void ptlock_free(struct page *page)
2770 {
2771 }
2772 
2773 static inline spinlock_t *ptlock_ptr(struct page *page)
2774 {
2775 	return &page->ptl;
2776 }
2777 #endif /* ALLOC_SPLIT_PTLOCKS */
2778 
2779 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2780 {
2781 	return ptlock_ptr(pmd_page(*pmd));
2782 }
2783 
2784 static inline bool ptlock_init(struct page *page)
2785 {
2786 	/*
2787 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2788 	 * with 0. Make sure nobody took it in use in between.
2789 	 *
2790 	 * It can happen if arch try to use slab for page table allocation:
2791 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2792 	 */
2793 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2794 	if (!ptlock_alloc(page))
2795 		return false;
2796 	spin_lock_init(ptlock_ptr(page));
2797 	return true;
2798 }
2799 
2800 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2801 /*
2802  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2803  */
2804 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2805 {
2806 	return &mm->page_table_lock;
2807 }
2808 static inline void ptlock_cache_init(void) {}
2809 static inline bool ptlock_init(struct page *page) { return true; }
2810 static inline void ptlock_free(struct page *page) {}
2811 #endif /* USE_SPLIT_PTE_PTLOCKS */
2812 
2813 static inline bool pgtable_pte_page_ctor(struct page *page)
2814 {
2815 	if (!ptlock_init(page))
2816 		return false;
2817 	__SetPageTable(page);
2818 	inc_lruvec_page_state(page, NR_PAGETABLE);
2819 	return true;
2820 }
2821 
2822 static inline void pgtable_pte_page_dtor(struct page *page)
2823 {
2824 	ptlock_free(page);
2825 	__ClearPageTable(page);
2826 	dec_lruvec_page_state(page, NR_PAGETABLE);
2827 }
2828 
2829 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2830 ({							\
2831 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2832 	pte_t *__pte = pte_offset_map(pmd, address);	\
2833 	*(ptlp) = __ptl;				\
2834 	spin_lock(__ptl);				\
2835 	__pte;						\
2836 })
2837 
2838 #define pte_unmap_unlock(pte, ptl)	do {		\
2839 	spin_unlock(ptl);				\
2840 	pte_unmap(pte);					\
2841 } while (0)
2842 
2843 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2844 
2845 #define pte_alloc_map(mm, pmd, address)			\
2846 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2847 
2848 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2849 	(pte_alloc(mm, pmd) ?			\
2850 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2851 
2852 #define pte_alloc_kernel(pmd, address)			\
2853 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2854 		NULL: pte_offset_kernel(pmd, address))
2855 
2856 #if USE_SPLIT_PMD_PTLOCKS
2857 
2858 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2859 {
2860 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2861 	return virt_to_page((void *)((unsigned long) pmd & mask));
2862 }
2863 
2864 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2865 {
2866 	return ptlock_ptr(pmd_pgtable_page(pmd));
2867 }
2868 
2869 static inline bool pmd_ptlock_init(struct page *page)
2870 {
2871 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2872 	page->pmd_huge_pte = NULL;
2873 #endif
2874 	return ptlock_init(page);
2875 }
2876 
2877 static inline void pmd_ptlock_free(struct page *page)
2878 {
2879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2880 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2881 #endif
2882 	ptlock_free(page);
2883 }
2884 
2885 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2886 
2887 #else
2888 
2889 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2890 {
2891 	return &mm->page_table_lock;
2892 }
2893 
2894 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2895 static inline void pmd_ptlock_free(struct page *page) {}
2896 
2897 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2898 
2899 #endif
2900 
2901 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2902 {
2903 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2904 	spin_lock(ptl);
2905 	return ptl;
2906 }
2907 
2908 static inline bool pgtable_pmd_page_ctor(struct page *page)
2909 {
2910 	if (!pmd_ptlock_init(page))
2911 		return false;
2912 	__SetPageTable(page);
2913 	inc_lruvec_page_state(page, NR_PAGETABLE);
2914 	return true;
2915 }
2916 
2917 static inline void pgtable_pmd_page_dtor(struct page *page)
2918 {
2919 	pmd_ptlock_free(page);
2920 	__ClearPageTable(page);
2921 	dec_lruvec_page_state(page, NR_PAGETABLE);
2922 }
2923 
2924 /*
2925  * No scalability reason to split PUD locks yet, but follow the same pattern
2926  * as the PMD locks to make it easier if we decide to.  The VM should not be
2927  * considered ready to switch to split PUD locks yet; there may be places
2928  * which need to be converted from page_table_lock.
2929  */
2930 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2931 {
2932 	return &mm->page_table_lock;
2933 }
2934 
2935 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2936 {
2937 	spinlock_t *ptl = pud_lockptr(mm, pud);
2938 
2939 	spin_lock(ptl);
2940 	return ptl;
2941 }
2942 
2943 extern void __init pagecache_init(void);
2944 extern void free_initmem(void);
2945 
2946 /*
2947  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2948  * into the buddy system. The freed pages will be poisoned with pattern
2949  * "poison" if it's within range [0, UCHAR_MAX].
2950  * Return pages freed into the buddy system.
2951  */
2952 extern unsigned long free_reserved_area(void *start, void *end,
2953 					int poison, const char *s);
2954 
2955 extern void adjust_managed_page_count(struct page *page, long count);
2956 
2957 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2958 
2959 /* Free the reserved page into the buddy system, so it gets managed. */
2960 static inline void free_reserved_page(struct page *page)
2961 {
2962 	ClearPageReserved(page);
2963 	init_page_count(page);
2964 	__free_page(page);
2965 	adjust_managed_page_count(page, 1);
2966 }
2967 #define free_highmem_page(page) free_reserved_page(page)
2968 
2969 static inline void mark_page_reserved(struct page *page)
2970 {
2971 	SetPageReserved(page);
2972 	adjust_managed_page_count(page, -1);
2973 }
2974 
2975 /*
2976  * Default method to free all the __init memory into the buddy system.
2977  * The freed pages will be poisoned with pattern "poison" if it's within
2978  * range [0, UCHAR_MAX].
2979  * Return pages freed into the buddy system.
2980  */
2981 static inline unsigned long free_initmem_default(int poison)
2982 {
2983 	extern char __init_begin[], __init_end[];
2984 
2985 	return free_reserved_area(&__init_begin, &__init_end,
2986 				  poison, "unused kernel image (initmem)");
2987 }
2988 
2989 static inline unsigned long get_num_physpages(void)
2990 {
2991 	int nid;
2992 	unsigned long phys_pages = 0;
2993 
2994 	for_each_online_node(nid)
2995 		phys_pages += node_present_pages(nid);
2996 
2997 	return phys_pages;
2998 }
2999 
3000 /*
3001  * Using memblock node mappings, an architecture may initialise its
3002  * zones, allocate the backing mem_map and account for memory holes in an
3003  * architecture independent manner.
3004  *
3005  * An architecture is expected to register range of page frames backed by
3006  * physical memory with memblock_add[_node]() before calling
3007  * free_area_init() passing in the PFN each zone ends at. At a basic
3008  * usage, an architecture is expected to do something like
3009  *
3010  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3011  * 							 max_highmem_pfn};
3012  * for_each_valid_physical_page_range()
3013  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3014  * free_area_init(max_zone_pfns);
3015  */
3016 void free_area_init(unsigned long *max_zone_pfn);
3017 unsigned long node_map_pfn_alignment(void);
3018 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3019 						unsigned long end_pfn);
3020 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3021 						unsigned long end_pfn);
3022 extern void get_pfn_range_for_nid(unsigned int nid,
3023 			unsigned long *start_pfn, unsigned long *end_pfn);
3024 
3025 #ifndef CONFIG_NUMA
3026 static inline int early_pfn_to_nid(unsigned long pfn)
3027 {
3028 	return 0;
3029 }
3030 #else
3031 /* please see mm/page_alloc.c */
3032 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3033 #endif
3034 
3035 extern void set_dma_reserve(unsigned long new_dma_reserve);
3036 extern void mem_init(void);
3037 extern void __init mmap_init(void);
3038 
3039 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3040 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3041 {
3042 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3043 }
3044 extern long si_mem_available(void);
3045 extern void si_meminfo(struct sysinfo * val);
3046 extern void si_meminfo_node(struct sysinfo *val, int nid);
3047 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3048 extern unsigned long arch_reserved_kernel_pages(void);
3049 #endif
3050 
3051 extern __printf(3, 4)
3052 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3053 
3054 extern void setup_per_cpu_pageset(void);
3055 
3056 /* nommu.c */
3057 extern atomic_long_t mmap_pages_allocated;
3058 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3059 
3060 /* interval_tree.c */
3061 void vma_interval_tree_insert(struct vm_area_struct *node,
3062 			      struct rb_root_cached *root);
3063 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3064 				    struct vm_area_struct *prev,
3065 				    struct rb_root_cached *root);
3066 void vma_interval_tree_remove(struct vm_area_struct *node,
3067 			      struct rb_root_cached *root);
3068 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3069 				unsigned long start, unsigned long last);
3070 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3071 				unsigned long start, unsigned long last);
3072 
3073 #define vma_interval_tree_foreach(vma, root, start, last)		\
3074 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3075 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3076 
3077 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3078 				   struct rb_root_cached *root);
3079 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3080 				   struct rb_root_cached *root);
3081 struct anon_vma_chain *
3082 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3083 				  unsigned long start, unsigned long last);
3084 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3085 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3086 #ifdef CONFIG_DEBUG_VM_RB
3087 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3088 #endif
3089 
3090 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3091 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3092 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3093 
3094 /* mmap.c */
3095 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3096 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3097 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3098 		      struct vm_area_struct *next);
3099 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3100 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3101 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3102 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3103 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3104 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3105 	struct anon_vma_name *);
3106 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3107 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3108 		       unsigned long addr, int new_below);
3109 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3110 			 unsigned long addr, int new_below);
3111 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3112 extern void unlink_file_vma(struct vm_area_struct *);
3113 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3114 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3115 	bool *need_rmap_locks);
3116 extern void exit_mmap(struct mm_struct *);
3117 
3118 static inline int check_data_rlimit(unsigned long rlim,
3119 				    unsigned long new,
3120 				    unsigned long start,
3121 				    unsigned long end_data,
3122 				    unsigned long start_data)
3123 {
3124 	if (rlim < RLIM_INFINITY) {
3125 		if (((new - start) + (end_data - start_data)) > rlim)
3126 			return -ENOSPC;
3127 	}
3128 
3129 	return 0;
3130 }
3131 
3132 extern int mm_take_all_locks(struct mm_struct *mm);
3133 extern void mm_drop_all_locks(struct mm_struct *mm);
3134 
3135 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3136 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3137 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3138 extern struct file *get_task_exe_file(struct task_struct *task);
3139 
3140 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3141 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3142 
3143 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3144 				   const struct vm_special_mapping *sm);
3145 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3146 				   unsigned long addr, unsigned long len,
3147 				   unsigned long flags,
3148 				   const struct vm_special_mapping *spec);
3149 /* This is an obsolete alternative to _install_special_mapping. */
3150 extern int install_special_mapping(struct mm_struct *mm,
3151 				   unsigned long addr, unsigned long len,
3152 				   unsigned long flags, struct page **pages);
3153 
3154 unsigned long randomize_stack_top(unsigned long stack_top);
3155 unsigned long randomize_page(unsigned long start, unsigned long range);
3156 
3157 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3158 
3159 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3160 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3161 	struct list_head *uf);
3162 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3163 	unsigned long len, unsigned long prot, unsigned long flags,
3164 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3165 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3166 			 unsigned long start, size_t len, struct list_head *uf,
3167 			 bool downgrade);
3168 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3169 		     struct list_head *uf);
3170 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3171 
3172 #ifdef CONFIG_MMU
3173 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3174 			 unsigned long start, unsigned long end,
3175 			 struct list_head *uf, bool downgrade);
3176 extern int __mm_populate(unsigned long addr, unsigned long len,
3177 			 int ignore_errors);
3178 static inline void mm_populate(unsigned long addr, unsigned long len)
3179 {
3180 	/* Ignore errors */
3181 	(void) __mm_populate(addr, len, 1);
3182 }
3183 #else
3184 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3185 #endif
3186 
3187 /* These take the mm semaphore themselves */
3188 extern int __must_check vm_brk(unsigned long, unsigned long);
3189 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3190 extern int vm_munmap(unsigned long, size_t);
3191 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3192         unsigned long, unsigned long,
3193         unsigned long, unsigned long);
3194 
3195 struct vm_unmapped_area_info {
3196 #define VM_UNMAPPED_AREA_TOPDOWN 1
3197 	unsigned long flags;
3198 	unsigned long length;
3199 	unsigned long low_limit;
3200 	unsigned long high_limit;
3201 	unsigned long align_mask;
3202 	unsigned long align_offset;
3203 };
3204 
3205 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3206 
3207 /* truncate.c */
3208 extern void truncate_inode_pages(struct address_space *, loff_t);
3209 extern void truncate_inode_pages_range(struct address_space *,
3210 				       loff_t lstart, loff_t lend);
3211 extern void truncate_inode_pages_final(struct address_space *);
3212 
3213 /* generic vm_area_ops exported for stackable file systems */
3214 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3215 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3216 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3217 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3218 
3219 extern unsigned long stack_guard_gap;
3220 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3221 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
3222 
3223 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3224 extern int expand_downwards(struct vm_area_struct *vma,
3225 		unsigned long address);
3226 #if VM_GROWSUP
3227 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
3228 #else
3229   #define expand_upwards(vma, address) (0)
3230 #endif
3231 
3232 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3233 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3234 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3235 					     struct vm_area_struct **pprev);
3236 
3237 /*
3238  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3239  * NULL if none.  Assume start_addr < end_addr.
3240  */
3241 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3242 			unsigned long start_addr, unsigned long end_addr);
3243 
3244 /**
3245  * vma_lookup() - Find a VMA at a specific address
3246  * @mm: The process address space.
3247  * @addr: The user address.
3248  *
3249  * Return: The vm_area_struct at the given address, %NULL otherwise.
3250  */
3251 static inline
3252 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3253 {
3254 	return mtree_load(&mm->mm_mt, addr);
3255 }
3256 
3257 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3258 {
3259 	unsigned long vm_start = vma->vm_start;
3260 
3261 	if (vma->vm_flags & VM_GROWSDOWN) {
3262 		vm_start -= stack_guard_gap;
3263 		if (vm_start > vma->vm_start)
3264 			vm_start = 0;
3265 	}
3266 	return vm_start;
3267 }
3268 
3269 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3270 {
3271 	unsigned long vm_end = vma->vm_end;
3272 
3273 	if (vma->vm_flags & VM_GROWSUP) {
3274 		vm_end += stack_guard_gap;
3275 		if (vm_end < vma->vm_end)
3276 			vm_end = -PAGE_SIZE;
3277 	}
3278 	return vm_end;
3279 }
3280 
3281 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3282 {
3283 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3284 }
3285 
3286 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3287 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3288 				unsigned long vm_start, unsigned long vm_end)
3289 {
3290 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3291 
3292 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3293 		vma = NULL;
3294 
3295 	return vma;
3296 }
3297 
3298 static inline bool range_in_vma(struct vm_area_struct *vma,
3299 				unsigned long start, unsigned long end)
3300 {
3301 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3302 }
3303 
3304 #ifdef CONFIG_MMU
3305 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3306 void vma_set_page_prot(struct vm_area_struct *vma);
3307 #else
3308 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3309 {
3310 	return __pgprot(0);
3311 }
3312 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3313 {
3314 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3315 }
3316 #endif
3317 
3318 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3319 
3320 #ifdef CONFIG_NUMA_BALANCING
3321 unsigned long change_prot_numa(struct vm_area_struct *vma,
3322 			unsigned long start, unsigned long end);
3323 #endif
3324 
3325 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3326 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3327 			unsigned long pfn, unsigned long size, pgprot_t);
3328 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3329 		unsigned long pfn, unsigned long size, pgprot_t prot);
3330 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3331 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3332 			struct page **pages, unsigned long *num);
3333 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3334 				unsigned long num);
3335 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3336 				unsigned long num);
3337 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3338 			unsigned long pfn);
3339 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3340 			unsigned long pfn, pgprot_t pgprot);
3341 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3342 			pfn_t pfn);
3343 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3344 		unsigned long addr, pfn_t pfn);
3345 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3346 
3347 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3348 				unsigned long addr, struct page *page)
3349 {
3350 	int err = vm_insert_page(vma, addr, page);
3351 
3352 	if (err == -ENOMEM)
3353 		return VM_FAULT_OOM;
3354 	if (err < 0 && err != -EBUSY)
3355 		return VM_FAULT_SIGBUS;
3356 
3357 	return VM_FAULT_NOPAGE;
3358 }
3359 
3360 #ifndef io_remap_pfn_range
3361 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3362 				     unsigned long addr, unsigned long pfn,
3363 				     unsigned long size, pgprot_t prot)
3364 {
3365 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3366 }
3367 #endif
3368 
3369 static inline vm_fault_t vmf_error(int err)
3370 {
3371 	if (err == -ENOMEM)
3372 		return VM_FAULT_OOM;
3373 	return VM_FAULT_SIGBUS;
3374 }
3375 
3376 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3377 			 unsigned int foll_flags);
3378 
3379 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3380 {
3381 	if (vm_fault & VM_FAULT_OOM)
3382 		return -ENOMEM;
3383 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3384 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3385 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3386 		return -EFAULT;
3387 	return 0;
3388 }
3389 
3390 /*
3391  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3392  * a (NUMA hinting) fault is required.
3393  */
3394 static inline bool gup_can_follow_protnone(unsigned int flags)
3395 {
3396 	/*
3397 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3398 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3399 	 * application behaviour and we should avoid triggering NUMA hinting
3400 	 * faults.
3401 	 */
3402 	return flags & FOLL_FORCE;
3403 }
3404 
3405 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3406 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3407 			       unsigned long size, pte_fn_t fn, void *data);
3408 extern int apply_to_existing_page_range(struct mm_struct *mm,
3409 				   unsigned long address, unsigned long size,
3410 				   pte_fn_t fn, void *data);
3411 
3412 #ifdef CONFIG_PAGE_POISONING
3413 extern void __kernel_poison_pages(struct page *page, int numpages);
3414 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3415 extern bool _page_poisoning_enabled_early;
3416 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3417 static inline bool page_poisoning_enabled(void)
3418 {
3419 	return _page_poisoning_enabled_early;
3420 }
3421 /*
3422  * For use in fast paths after init_mem_debugging() has run, or when a
3423  * false negative result is not harmful when called too early.
3424  */
3425 static inline bool page_poisoning_enabled_static(void)
3426 {
3427 	return static_branch_unlikely(&_page_poisoning_enabled);
3428 }
3429 static inline void kernel_poison_pages(struct page *page, int numpages)
3430 {
3431 	if (page_poisoning_enabled_static())
3432 		__kernel_poison_pages(page, numpages);
3433 }
3434 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3435 {
3436 	if (page_poisoning_enabled_static())
3437 		__kernel_unpoison_pages(page, numpages);
3438 }
3439 #else
3440 static inline bool page_poisoning_enabled(void) { return false; }
3441 static inline bool page_poisoning_enabled_static(void) { return false; }
3442 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3443 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3444 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3445 #endif
3446 
3447 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3448 static inline bool want_init_on_alloc(gfp_t flags)
3449 {
3450 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3451 				&init_on_alloc))
3452 		return true;
3453 	return flags & __GFP_ZERO;
3454 }
3455 
3456 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3457 static inline bool want_init_on_free(void)
3458 {
3459 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3460 				   &init_on_free);
3461 }
3462 
3463 extern bool _debug_pagealloc_enabled_early;
3464 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3465 
3466 static inline bool debug_pagealloc_enabled(void)
3467 {
3468 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3469 		_debug_pagealloc_enabled_early;
3470 }
3471 
3472 /*
3473  * For use in fast paths after init_debug_pagealloc() has run, or when a
3474  * false negative result is not harmful when called too early.
3475  */
3476 static inline bool debug_pagealloc_enabled_static(void)
3477 {
3478 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3479 		return false;
3480 
3481 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3482 }
3483 
3484 #ifdef CONFIG_DEBUG_PAGEALLOC
3485 /*
3486  * To support DEBUG_PAGEALLOC architecture must ensure that
3487  * __kernel_map_pages() never fails
3488  */
3489 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3490 
3491 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3492 {
3493 	if (debug_pagealloc_enabled_static())
3494 		__kernel_map_pages(page, numpages, 1);
3495 }
3496 
3497 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3498 {
3499 	if (debug_pagealloc_enabled_static())
3500 		__kernel_map_pages(page, numpages, 0);
3501 }
3502 
3503 extern unsigned int _debug_guardpage_minorder;
3504 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3505 
3506 static inline unsigned int debug_guardpage_minorder(void)
3507 {
3508 	return _debug_guardpage_minorder;
3509 }
3510 
3511 static inline bool debug_guardpage_enabled(void)
3512 {
3513 	return static_branch_unlikely(&_debug_guardpage_enabled);
3514 }
3515 
3516 static inline bool page_is_guard(struct page *page)
3517 {
3518 	if (!debug_guardpage_enabled())
3519 		return false;
3520 
3521 	return PageGuard(page);
3522 }
3523 
3524 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3525 		      int migratetype);
3526 static inline bool set_page_guard(struct zone *zone, struct page *page,
3527 				  unsigned int order, int migratetype)
3528 {
3529 	if (!debug_guardpage_enabled())
3530 		return false;
3531 	return __set_page_guard(zone, page, order, migratetype);
3532 }
3533 
3534 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3535 			int migratetype);
3536 static inline void clear_page_guard(struct zone *zone, struct page *page,
3537 				    unsigned int order, int migratetype)
3538 {
3539 	if (!debug_guardpage_enabled())
3540 		return;
3541 	__clear_page_guard(zone, page, order, migratetype);
3542 }
3543 
3544 #else	/* CONFIG_DEBUG_PAGEALLOC */
3545 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3546 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3547 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3548 static inline bool debug_guardpage_enabled(void) { return false; }
3549 static inline bool page_is_guard(struct page *page) { return false; }
3550 static inline bool set_page_guard(struct zone *zone, struct page *page,
3551 			unsigned int order, int migratetype) { return false; }
3552 static inline void clear_page_guard(struct zone *zone, struct page *page,
3553 				unsigned int order, int migratetype) {}
3554 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3555 
3556 #ifdef __HAVE_ARCH_GATE_AREA
3557 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3558 extern int in_gate_area_no_mm(unsigned long addr);
3559 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3560 #else
3561 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3562 {
3563 	return NULL;
3564 }
3565 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3566 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3567 {
3568 	return 0;
3569 }
3570 #endif	/* __HAVE_ARCH_GATE_AREA */
3571 
3572 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3573 
3574 #ifdef CONFIG_SYSCTL
3575 extern int sysctl_drop_caches;
3576 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3577 		loff_t *);
3578 #endif
3579 
3580 void drop_slab(void);
3581 
3582 #ifndef CONFIG_MMU
3583 #define randomize_va_space 0
3584 #else
3585 extern int randomize_va_space;
3586 #endif
3587 
3588 const char * arch_vma_name(struct vm_area_struct *vma);
3589 #ifdef CONFIG_MMU
3590 void print_vma_addr(char *prefix, unsigned long rip);
3591 #else
3592 static inline void print_vma_addr(char *prefix, unsigned long rip)
3593 {
3594 }
3595 #endif
3596 
3597 void *sparse_buffer_alloc(unsigned long size);
3598 struct page * __populate_section_memmap(unsigned long pfn,
3599 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3600 		struct dev_pagemap *pgmap);
3601 void pmd_init(void *addr);
3602 void pud_init(void *addr);
3603 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3604 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3605 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3606 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3607 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3608 			    struct vmem_altmap *altmap, struct page *reuse);
3609 void *vmemmap_alloc_block(unsigned long size, int node);
3610 struct vmem_altmap;
3611 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3612 			      struct vmem_altmap *altmap);
3613 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3614 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3615 		     unsigned long addr, unsigned long next);
3616 int vmemmap_check_pmd(pmd_t *pmd, int node,
3617 		      unsigned long addr, unsigned long next);
3618 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3619 			       int node, struct vmem_altmap *altmap);
3620 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3621 			       int node, struct vmem_altmap *altmap);
3622 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3623 		struct vmem_altmap *altmap);
3624 void vmemmap_populate_print_last(void);
3625 #ifdef CONFIG_MEMORY_HOTPLUG
3626 void vmemmap_free(unsigned long start, unsigned long end,
3627 		struct vmem_altmap *altmap);
3628 #endif
3629 
3630 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3631 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3632 					   struct dev_pagemap *pgmap)
3633 {
3634 	return is_power_of_2(sizeof(struct page)) &&
3635 		pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3636 }
3637 #else
3638 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3639 					   struct dev_pagemap *pgmap)
3640 {
3641 	return false;
3642 }
3643 #endif
3644 
3645 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3646 				  unsigned long nr_pages);
3647 
3648 enum mf_flags {
3649 	MF_COUNT_INCREASED = 1 << 0,
3650 	MF_ACTION_REQUIRED = 1 << 1,
3651 	MF_MUST_KILL = 1 << 2,
3652 	MF_SOFT_OFFLINE = 1 << 3,
3653 	MF_UNPOISON = 1 << 4,
3654 	MF_SW_SIMULATED = 1 << 5,
3655 	MF_NO_RETRY = 1 << 6,
3656 };
3657 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3658 		      unsigned long count, int mf_flags);
3659 extern int memory_failure(unsigned long pfn, int flags);
3660 extern void memory_failure_queue_kick(int cpu);
3661 extern int unpoison_memory(unsigned long pfn);
3662 extern void shake_page(struct page *p);
3663 extern atomic_long_t num_poisoned_pages __read_mostly;
3664 extern int soft_offline_page(unsigned long pfn, int flags);
3665 #ifdef CONFIG_MEMORY_FAILURE
3666 /*
3667  * Sysfs entries for memory failure handling statistics.
3668  */
3669 extern const struct attribute_group memory_failure_attr_group;
3670 extern void memory_failure_queue(unsigned long pfn, int flags);
3671 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3672 					bool *migratable_cleared);
3673 void num_poisoned_pages_inc(unsigned long pfn);
3674 void num_poisoned_pages_sub(unsigned long pfn, long i);
3675 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3676 #else
3677 static inline void memory_failure_queue(unsigned long pfn, int flags)
3678 {
3679 }
3680 
3681 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3682 					bool *migratable_cleared)
3683 {
3684 	return 0;
3685 }
3686 
3687 static inline void num_poisoned_pages_inc(unsigned long pfn)
3688 {
3689 }
3690 
3691 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3692 {
3693 }
3694 #endif
3695 
3696 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3697 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3698 		     struct vm_area_struct *vma, struct list_head *to_kill,
3699 		     unsigned long ksm_addr);
3700 #endif
3701 
3702 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3703 extern void memblk_nr_poison_inc(unsigned long pfn);
3704 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3705 #else
3706 static inline void memblk_nr_poison_inc(unsigned long pfn)
3707 {
3708 }
3709 
3710 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3711 {
3712 }
3713 #endif
3714 
3715 #ifndef arch_memory_failure
3716 static inline int arch_memory_failure(unsigned long pfn, int flags)
3717 {
3718 	return -ENXIO;
3719 }
3720 #endif
3721 
3722 #ifndef arch_is_platform_page
3723 static inline bool arch_is_platform_page(u64 paddr)
3724 {
3725 	return false;
3726 }
3727 #endif
3728 
3729 /*
3730  * Error handlers for various types of pages.
3731  */
3732 enum mf_result {
3733 	MF_IGNORED,	/* Error: cannot be handled */
3734 	MF_FAILED,	/* Error: handling failed */
3735 	MF_DELAYED,	/* Will be handled later */
3736 	MF_RECOVERED,	/* Successfully recovered */
3737 };
3738 
3739 enum mf_action_page_type {
3740 	MF_MSG_KERNEL,
3741 	MF_MSG_KERNEL_HIGH_ORDER,
3742 	MF_MSG_SLAB,
3743 	MF_MSG_DIFFERENT_COMPOUND,
3744 	MF_MSG_HUGE,
3745 	MF_MSG_FREE_HUGE,
3746 	MF_MSG_UNMAP_FAILED,
3747 	MF_MSG_DIRTY_SWAPCACHE,
3748 	MF_MSG_CLEAN_SWAPCACHE,
3749 	MF_MSG_DIRTY_MLOCKED_LRU,
3750 	MF_MSG_CLEAN_MLOCKED_LRU,
3751 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3752 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3753 	MF_MSG_DIRTY_LRU,
3754 	MF_MSG_CLEAN_LRU,
3755 	MF_MSG_TRUNCATED_LRU,
3756 	MF_MSG_BUDDY,
3757 	MF_MSG_DAX,
3758 	MF_MSG_UNSPLIT_THP,
3759 	MF_MSG_UNKNOWN,
3760 };
3761 
3762 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3763 extern void clear_huge_page(struct page *page,
3764 			    unsigned long addr_hint,
3765 			    unsigned int pages_per_huge_page);
3766 int copy_user_large_folio(struct folio *dst, struct folio *src,
3767 			  unsigned long addr_hint,
3768 			  struct vm_area_struct *vma);
3769 long copy_folio_from_user(struct folio *dst_folio,
3770 			   const void __user *usr_src,
3771 			   bool allow_pagefault);
3772 
3773 /**
3774  * vma_is_special_huge - Are transhuge page-table entries considered special?
3775  * @vma: Pointer to the struct vm_area_struct to consider
3776  *
3777  * Whether transhuge page-table entries are considered "special" following
3778  * the definition in vm_normal_page().
3779  *
3780  * Return: true if transhuge page-table entries should be considered special,
3781  * false otherwise.
3782  */
3783 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3784 {
3785 	return vma_is_dax(vma) || (vma->vm_file &&
3786 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3787 }
3788 
3789 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3790 
3791 #if MAX_NUMNODES > 1
3792 void __init setup_nr_node_ids(void);
3793 #else
3794 static inline void setup_nr_node_ids(void) {}
3795 #endif
3796 
3797 extern int memcmp_pages(struct page *page1, struct page *page2);
3798 
3799 static inline int pages_identical(struct page *page1, struct page *page2)
3800 {
3801 	return !memcmp_pages(page1, page2);
3802 }
3803 
3804 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3805 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3806 						pgoff_t first_index, pgoff_t nr,
3807 						pgoff_t bitmap_pgoff,
3808 						unsigned long *bitmap,
3809 						pgoff_t *start,
3810 						pgoff_t *end);
3811 
3812 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3813 				      pgoff_t first_index, pgoff_t nr);
3814 #endif
3815 
3816 extern int sysctl_nr_trim_pages;
3817 
3818 #ifdef CONFIG_PRINTK
3819 void mem_dump_obj(void *object);
3820 #else
3821 static inline void mem_dump_obj(void *object) {}
3822 #endif
3823 
3824 /**
3825  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3826  * @seals: the seals to check
3827  * @vma: the vma to operate on
3828  *
3829  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3830  * the vma flags.  Return 0 if check pass, or <0 for errors.
3831  */
3832 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3833 {
3834 	if (seals & F_SEAL_FUTURE_WRITE) {
3835 		/*
3836 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3837 		 * "future write" seal active.
3838 		 */
3839 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3840 			return -EPERM;
3841 
3842 		/*
3843 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3844 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3845 		 * revert protections on such mappings. Do this only for shared
3846 		 * mappings. For private mappings, don't need to mask
3847 		 * VM_MAYWRITE as we still want them to be COW-writable.
3848 		 */
3849 		if (vma->vm_flags & VM_SHARED)
3850 			vm_flags_clear(vma, VM_MAYWRITE);
3851 	}
3852 
3853 	return 0;
3854 }
3855 
3856 #ifdef CONFIG_ANON_VMA_NAME
3857 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3858 			  unsigned long len_in,
3859 			  struct anon_vma_name *anon_name);
3860 #else
3861 static inline int
3862 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3863 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3864 	return 0;
3865 }
3866 #endif
3867 
3868 #endif /* _LINUX_MM_H */
3869