1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329 #ifdef CONFIG_ARCH_HAS_PKEYS 330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #ifdef CONFIG_PPC 336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337 #else 338 # define VM_PKEY_BIT4 0 339 #endif 340 #endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342 #if defined(CONFIG_X86) 343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344 #elif defined(CONFIG_PPC) 345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346 #elif defined(CONFIG_PARISC) 347 # define VM_GROWSUP VM_ARCH_1 348 #elif defined(CONFIG_IA64) 349 # define VM_GROWSUP VM_ARCH_1 350 #elif defined(CONFIG_SPARC64) 351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352 # define VM_ARCH_CLEAR VM_SPARC_ADI 353 #elif defined(CONFIG_ARM64) 354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355 # define VM_ARCH_CLEAR VM_ARM64_BTI 356 #elif !defined(CONFIG_MMU) 357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358 #endif 359 360 #if defined(CONFIG_ARM64_MTE) 361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363 #else 364 # define VM_MTE VM_NONE 365 # define VM_MTE_ALLOWED VM_NONE 366 #endif 367 368 #ifndef VM_GROWSUP 369 # define VM_GROWSUP VM_NONE 370 #endif 371 372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373 # define VM_UFFD_MINOR_BIT 37 374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376 # define VM_UFFD_MINOR VM_NONE 377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379 /* Bits set in the VMA until the stack is in its final location */ 380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 381 382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384 /* Common data flag combinations */ 385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394 #endif 395 396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398 #endif 399 400 #ifdef CONFIG_STACK_GROWSUP 401 #define VM_STACK VM_GROWSUP 402 #else 403 #define VM_STACK VM_GROWSDOWN 404 #endif 405 406 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 407 408 /* VMA basic access permission flags */ 409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 410 411 412 /* 413 * Special vmas that are non-mergable, non-mlock()able. 414 */ 415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 416 417 /* This mask prevents VMA from being scanned with khugepaged */ 418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 419 420 /* This mask defines which mm->def_flags a process can inherit its parent */ 421 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 422 423 /* This mask represents all the VMA flag bits used by mlock */ 424 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 425 426 /* Arch-specific flags to clear when updating VM flags on protection change */ 427 #ifndef VM_ARCH_CLEAR 428 # define VM_ARCH_CLEAR VM_NONE 429 #endif 430 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 431 432 /* 433 * mapping from the currently active vm_flags protection bits (the 434 * low four bits) to a page protection mask.. 435 */ 436 437 /* 438 * The default fault flags that should be used by most of the 439 * arch-specific page fault handlers. 440 */ 441 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 442 FAULT_FLAG_KILLABLE | \ 443 FAULT_FLAG_INTERRUPTIBLE) 444 445 /** 446 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 447 * @flags: Fault flags. 448 * 449 * This is mostly used for places where we want to try to avoid taking 450 * the mmap_lock for too long a time when waiting for another condition 451 * to change, in which case we can try to be polite to release the 452 * mmap_lock in the first round to avoid potential starvation of other 453 * processes that would also want the mmap_lock. 454 * 455 * Return: true if the page fault allows retry and this is the first 456 * attempt of the fault handling; false otherwise. 457 */ 458 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 459 { 460 return (flags & FAULT_FLAG_ALLOW_RETRY) && 461 (!(flags & FAULT_FLAG_TRIED)); 462 } 463 464 #define FAULT_FLAG_TRACE \ 465 { FAULT_FLAG_WRITE, "WRITE" }, \ 466 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 467 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 468 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 469 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 470 { FAULT_FLAG_TRIED, "TRIED" }, \ 471 { FAULT_FLAG_USER, "USER" }, \ 472 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 473 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 474 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 475 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 476 477 /* 478 * vm_fault is filled by the pagefault handler and passed to the vma's 479 * ->fault function. The vma's ->fault is responsible for returning a bitmask 480 * of VM_FAULT_xxx flags that give details about how the fault was handled. 481 * 482 * MM layer fills up gfp_mask for page allocations but fault handler might 483 * alter it if its implementation requires a different allocation context. 484 * 485 * pgoff should be used in favour of virtual_address, if possible. 486 */ 487 struct vm_fault { 488 const struct { 489 struct vm_area_struct *vma; /* Target VMA */ 490 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 491 pgoff_t pgoff; /* Logical page offset based on vma */ 492 unsigned long address; /* Faulting virtual address - masked */ 493 unsigned long real_address; /* Faulting virtual address - unmasked */ 494 }; 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags 496 * XXX: should really be 'const' */ 497 pmd_t *pmd; /* Pointer to pmd entry matching 498 * the 'address' */ 499 pud_t *pud; /* Pointer to pud entry matching 500 * the 'address' 501 */ 502 union { 503 pte_t orig_pte; /* Value of PTE at the time of fault */ 504 pmd_t orig_pmd; /* Value of PMD at the time of fault, 505 * used by PMD fault only. 506 */ 507 }; 508 509 struct page *cow_page; /* Page handler may use for COW fault */ 510 struct page *page; /* ->fault handlers should return a 511 * page here, unless VM_FAULT_NOPAGE 512 * is set (which is also implied by 513 * VM_FAULT_ERROR). 514 */ 515 /* These three entries are valid only while holding ptl lock */ 516 pte_t *pte; /* Pointer to pte entry matching 517 * the 'address'. NULL if the page 518 * table hasn't been allocated. 519 */ 520 spinlock_t *ptl; /* Page table lock. 521 * Protects pte page table if 'pte' 522 * is not NULL, otherwise pmd. 523 */ 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 525 * vm_ops->map_pages() sets up a page 526 * table from atomic context. 527 * do_fault_around() pre-allocates 528 * page table to avoid allocation from 529 * atomic context. 530 */ 531 }; 532 533 /* page entry size for vm->huge_fault() */ 534 enum page_entry_size { 535 PE_SIZE_PTE = 0, 536 PE_SIZE_PMD, 537 PE_SIZE_PUD, 538 }; 539 540 /* 541 * These are the virtual MM functions - opening of an area, closing and 542 * unmapping it (needed to keep files on disk up-to-date etc), pointer 543 * to the functions called when a no-page or a wp-page exception occurs. 544 */ 545 struct vm_operations_struct { 546 void (*open)(struct vm_area_struct * area); 547 /** 548 * @close: Called when the VMA is being removed from the MM. 549 * Context: User context. May sleep. Caller holds mmap_lock. 550 */ 551 void (*close)(struct vm_area_struct * area); 552 /* Called any time before splitting to check if it's allowed */ 553 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 554 int (*mremap)(struct vm_area_struct *area); 555 /* 556 * Called by mprotect() to make driver-specific permission 557 * checks before mprotect() is finalised. The VMA must not 558 * be modified. Returns 0 if mprotect() can proceed. 559 */ 560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 561 unsigned long end, unsigned long newflags); 562 vm_fault_t (*fault)(struct vm_fault *vmf); 563 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 564 enum page_entry_size pe_size); 565 vm_fault_t (*map_pages)(struct vm_fault *vmf, 566 pgoff_t start_pgoff, pgoff_t end_pgoff); 567 unsigned long (*pagesize)(struct vm_area_struct * area); 568 569 /* notification that a previously read-only page is about to become 570 * writable, if an error is returned it will cause a SIGBUS */ 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 572 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 575 576 /* called by access_process_vm when get_user_pages() fails, typically 577 * for use by special VMAs. See also generic_access_phys() for a generic 578 * implementation useful for any iomem mapping. 579 */ 580 int (*access)(struct vm_area_struct *vma, unsigned long addr, 581 void *buf, int len, int write); 582 583 /* Called by the /proc/PID/maps code to ask the vma whether it 584 * has a special name. Returning non-NULL will also cause this 585 * vma to be dumped unconditionally. */ 586 const char *(*name)(struct vm_area_struct *vma); 587 588 #ifdef CONFIG_NUMA 589 /* 590 * set_policy() op must add a reference to any non-NULL @new mempolicy 591 * to hold the policy upon return. Caller should pass NULL @new to 592 * remove a policy and fall back to surrounding context--i.e. do not 593 * install a MPOL_DEFAULT policy, nor the task or system default 594 * mempolicy. 595 */ 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 597 598 /* 599 * get_policy() op must add reference [mpol_get()] to any policy at 600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 601 * in mm/mempolicy.c will do this automatically. 602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 605 * must return NULL--i.e., do not "fallback" to task or system default 606 * policy. 607 */ 608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 609 unsigned long addr); 610 #endif 611 /* 612 * Called by vm_normal_page() for special PTEs to find the 613 * page for @addr. This is useful if the default behavior 614 * (using pte_page()) would not find the correct page. 615 */ 616 struct page *(*find_special_page)(struct vm_area_struct *vma, 617 unsigned long addr); 618 }; 619 620 #ifdef CONFIG_NUMA_BALANCING 621 static inline void vma_numab_state_init(struct vm_area_struct *vma) 622 { 623 vma->numab_state = NULL; 624 } 625 static inline void vma_numab_state_free(struct vm_area_struct *vma) 626 { 627 kfree(vma->numab_state); 628 } 629 #else 630 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 631 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 632 #endif /* CONFIG_NUMA_BALANCING */ 633 634 #ifdef CONFIG_PER_VMA_LOCK 635 /* 636 * Try to read-lock a vma. The function is allowed to occasionally yield false 637 * locked result to avoid performance overhead, in which case we fall back to 638 * using mmap_lock. The function should never yield false unlocked result. 639 */ 640 static inline bool vma_start_read(struct vm_area_struct *vma) 641 { 642 /* Check before locking. A race might cause false locked result. */ 643 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq)) 644 return false; 645 646 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 647 return false; 648 649 /* 650 * Overflow might produce false locked result. 651 * False unlocked result is impossible because we modify and check 652 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 653 * modification invalidates all existing locks. 654 */ 655 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) { 656 up_read(&vma->vm_lock->lock); 657 return false; 658 } 659 return true; 660 } 661 662 static inline void vma_end_read(struct vm_area_struct *vma) 663 { 664 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 665 up_read(&vma->vm_lock->lock); 666 rcu_read_unlock(); 667 } 668 669 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 670 { 671 mmap_assert_write_locked(vma->vm_mm); 672 673 /* 674 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 675 * mm->mm_lock_seq can't be concurrently modified. 676 */ 677 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq); 678 return (vma->vm_lock_seq == *mm_lock_seq); 679 } 680 681 static inline void vma_start_write(struct vm_area_struct *vma) 682 { 683 int mm_lock_seq; 684 685 if (__is_vma_write_locked(vma, &mm_lock_seq)) 686 return; 687 688 down_write(&vma->vm_lock->lock); 689 vma->vm_lock_seq = mm_lock_seq; 690 up_write(&vma->vm_lock->lock); 691 } 692 693 static inline bool vma_try_start_write(struct vm_area_struct *vma) 694 { 695 int mm_lock_seq; 696 697 if (__is_vma_write_locked(vma, &mm_lock_seq)) 698 return true; 699 700 if (!down_write_trylock(&vma->vm_lock->lock)) 701 return false; 702 703 vma->vm_lock_seq = mm_lock_seq; 704 up_write(&vma->vm_lock->lock); 705 return true; 706 } 707 708 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 709 { 710 int mm_lock_seq; 711 712 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 713 } 714 715 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 716 { 717 /* When detaching vma should be write-locked */ 718 if (detached) 719 vma_assert_write_locked(vma); 720 vma->detached = detached; 721 } 722 723 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 724 unsigned long address); 725 726 #else /* CONFIG_PER_VMA_LOCK */ 727 728 static inline void vma_init_lock(struct vm_area_struct *vma) {} 729 static inline bool vma_start_read(struct vm_area_struct *vma) 730 { return false; } 731 static inline void vma_end_read(struct vm_area_struct *vma) {} 732 static inline void vma_start_write(struct vm_area_struct *vma) {} 733 static inline bool vma_try_start_write(struct vm_area_struct *vma) 734 { return true; } 735 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {} 736 static inline void vma_mark_detached(struct vm_area_struct *vma, 737 bool detached) {} 738 739 #endif /* CONFIG_PER_VMA_LOCK */ 740 741 /* 742 * WARNING: vma_init does not initialize vma->vm_lock. 743 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 744 */ 745 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 746 { 747 static const struct vm_operations_struct dummy_vm_ops = {}; 748 749 memset(vma, 0, sizeof(*vma)); 750 vma->vm_mm = mm; 751 vma->vm_ops = &dummy_vm_ops; 752 INIT_LIST_HEAD(&vma->anon_vma_chain); 753 vma_mark_detached(vma, false); 754 vma_numab_state_init(vma); 755 } 756 757 /* Use when VMA is not part of the VMA tree and needs no locking */ 758 static inline void vm_flags_init(struct vm_area_struct *vma, 759 vm_flags_t flags) 760 { 761 ACCESS_PRIVATE(vma, __vm_flags) = flags; 762 } 763 764 /* Use when VMA is part of the VMA tree and modifications need coordination */ 765 static inline void vm_flags_reset(struct vm_area_struct *vma, 766 vm_flags_t flags) 767 { 768 vma_start_write(vma); 769 vm_flags_init(vma, flags); 770 } 771 772 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 773 vm_flags_t flags) 774 { 775 vma_start_write(vma); 776 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 777 } 778 779 static inline void vm_flags_set(struct vm_area_struct *vma, 780 vm_flags_t flags) 781 { 782 vma_start_write(vma); 783 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 784 } 785 786 static inline void vm_flags_clear(struct vm_area_struct *vma, 787 vm_flags_t flags) 788 { 789 vma_start_write(vma); 790 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 791 } 792 793 /* 794 * Use only if VMA is not part of the VMA tree or has no other users and 795 * therefore needs no locking. 796 */ 797 static inline void __vm_flags_mod(struct vm_area_struct *vma, 798 vm_flags_t set, vm_flags_t clear) 799 { 800 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 801 } 802 803 /* 804 * Use only when the order of set/clear operations is unimportant, otherwise 805 * use vm_flags_{set|clear} explicitly. 806 */ 807 static inline void vm_flags_mod(struct vm_area_struct *vma, 808 vm_flags_t set, vm_flags_t clear) 809 { 810 vma_start_write(vma); 811 __vm_flags_mod(vma, set, clear); 812 } 813 814 static inline void vma_set_anonymous(struct vm_area_struct *vma) 815 { 816 vma->vm_ops = NULL; 817 } 818 819 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 820 { 821 return !vma->vm_ops; 822 } 823 824 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 825 { 826 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 827 828 if (!maybe_stack) 829 return false; 830 831 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 832 VM_STACK_INCOMPLETE_SETUP) 833 return true; 834 835 return false; 836 } 837 838 static inline bool vma_is_foreign(struct vm_area_struct *vma) 839 { 840 if (!current->mm) 841 return true; 842 843 if (current->mm != vma->vm_mm) 844 return true; 845 846 return false; 847 } 848 849 static inline bool vma_is_accessible(struct vm_area_struct *vma) 850 { 851 return vma->vm_flags & VM_ACCESS_FLAGS; 852 } 853 854 static inline 855 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 856 { 857 return mas_find(&vmi->mas, max - 1); 858 } 859 860 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 861 { 862 /* 863 * Uses mas_find() to get the first VMA when the iterator starts. 864 * Calling mas_next() could skip the first entry. 865 */ 866 return mas_find(&vmi->mas, ULONG_MAX); 867 } 868 869 static inline 870 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 871 { 872 return mas_next_range(&vmi->mas, ULONG_MAX); 873 } 874 875 876 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 877 { 878 return mas_prev(&vmi->mas, 0); 879 } 880 881 static inline 882 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 883 { 884 return mas_prev_range(&vmi->mas, 0); 885 } 886 887 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 888 { 889 return vmi->mas.index; 890 } 891 892 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 893 { 894 return vmi->mas.last + 1; 895 } 896 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 897 unsigned long count) 898 { 899 return mas_expected_entries(&vmi->mas, count); 900 } 901 902 /* Free any unused preallocations */ 903 static inline void vma_iter_free(struct vma_iterator *vmi) 904 { 905 mas_destroy(&vmi->mas); 906 } 907 908 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 909 struct vm_area_struct *vma) 910 { 911 vmi->mas.index = vma->vm_start; 912 vmi->mas.last = vma->vm_end - 1; 913 mas_store(&vmi->mas, vma); 914 if (unlikely(mas_is_err(&vmi->mas))) 915 return -ENOMEM; 916 917 return 0; 918 } 919 920 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 921 { 922 mas_pause(&vmi->mas); 923 } 924 925 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 926 { 927 mas_set(&vmi->mas, addr); 928 } 929 930 #define for_each_vma(__vmi, __vma) \ 931 while (((__vma) = vma_next(&(__vmi))) != NULL) 932 933 /* The MM code likes to work with exclusive end addresses */ 934 #define for_each_vma_range(__vmi, __vma, __end) \ 935 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 936 937 #ifdef CONFIG_SHMEM 938 /* 939 * The vma_is_shmem is not inline because it is used only by slow 940 * paths in userfault. 941 */ 942 bool vma_is_shmem(struct vm_area_struct *vma); 943 bool vma_is_anon_shmem(struct vm_area_struct *vma); 944 #else 945 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 946 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 947 #endif 948 949 int vma_is_stack_for_current(struct vm_area_struct *vma); 950 951 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 952 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 953 954 struct mmu_gather; 955 struct inode; 956 957 /* 958 * compound_order() can be called without holding a reference, which means 959 * that niceties like page_folio() don't work. These callers should be 960 * prepared to handle wild return values. For example, PG_head may be 961 * set before _folio_order is initialised, or this may be a tail page. 962 * See compaction.c for some good examples. 963 */ 964 static inline unsigned int compound_order(struct page *page) 965 { 966 struct folio *folio = (struct folio *)page; 967 968 if (!test_bit(PG_head, &folio->flags)) 969 return 0; 970 return folio->_folio_order; 971 } 972 973 /** 974 * folio_order - The allocation order of a folio. 975 * @folio: The folio. 976 * 977 * A folio is composed of 2^order pages. See get_order() for the definition 978 * of order. 979 * 980 * Return: The order of the folio. 981 */ 982 static inline unsigned int folio_order(struct folio *folio) 983 { 984 if (!folio_test_large(folio)) 985 return 0; 986 return folio->_folio_order; 987 } 988 989 #include <linux/huge_mm.h> 990 991 /* 992 * Methods to modify the page usage count. 993 * 994 * What counts for a page usage: 995 * - cache mapping (page->mapping) 996 * - private data (page->private) 997 * - page mapped in a task's page tables, each mapping 998 * is counted separately 999 * 1000 * Also, many kernel routines increase the page count before a critical 1001 * routine so they can be sure the page doesn't go away from under them. 1002 */ 1003 1004 /* 1005 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1006 */ 1007 static inline int put_page_testzero(struct page *page) 1008 { 1009 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1010 return page_ref_dec_and_test(page); 1011 } 1012 1013 static inline int folio_put_testzero(struct folio *folio) 1014 { 1015 return put_page_testzero(&folio->page); 1016 } 1017 1018 /* 1019 * Try to grab a ref unless the page has a refcount of zero, return false if 1020 * that is the case. 1021 * This can be called when MMU is off so it must not access 1022 * any of the virtual mappings. 1023 */ 1024 static inline bool get_page_unless_zero(struct page *page) 1025 { 1026 return page_ref_add_unless(page, 1, 0); 1027 } 1028 1029 static inline struct folio *folio_get_nontail_page(struct page *page) 1030 { 1031 if (unlikely(!get_page_unless_zero(page))) 1032 return NULL; 1033 return (struct folio *)page; 1034 } 1035 1036 extern int page_is_ram(unsigned long pfn); 1037 1038 enum { 1039 REGION_INTERSECTS, 1040 REGION_DISJOINT, 1041 REGION_MIXED, 1042 }; 1043 1044 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1045 unsigned long desc); 1046 1047 /* Support for virtually mapped pages */ 1048 struct page *vmalloc_to_page(const void *addr); 1049 unsigned long vmalloc_to_pfn(const void *addr); 1050 1051 /* 1052 * Determine if an address is within the vmalloc range 1053 * 1054 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1055 * is no special casing required. 1056 */ 1057 1058 #ifndef is_ioremap_addr 1059 #define is_ioremap_addr(x) is_vmalloc_addr(x) 1060 #endif 1061 1062 #ifdef CONFIG_MMU 1063 extern bool is_vmalloc_addr(const void *x); 1064 extern int is_vmalloc_or_module_addr(const void *x); 1065 #else 1066 static inline bool is_vmalloc_addr(const void *x) 1067 { 1068 return false; 1069 } 1070 static inline int is_vmalloc_or_module_addr(const void *x) 1071 { 1072 return 0; 1073 } 1074 #endif 1075 1076 /* 1077 * How many times the entire folio is mapped as a single unit (eg by a 1078 * PMD or PUD entry). This is probably not what you want, except for 1079 * debugging purposes - it does not include PTE-mapped sub-pages; look 1080 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1081 */ 1082 static inline int folio_entire_mapcount(struct folio *folio) 1083 { 1084 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1085 return atomic_read(&folio->_entire_mapcount) + 1; 1086 } 1087 1088 /* 1089 * The atomic page->_mapcount, starts from -1: so that transitions 1090 * both from it and to it can be tracked, using atomic_inc_and_test 1091 * and atomic_add_negative(-1). 1092 */ 1093 static inline void page_mapcount_reset(struct page *page) 1094 { 1095 atomic_set(&(page)->_mapcount, -1); 1096 } 1097 1098 /** 1099 * page_mapcount() - Number of times this precise page is mapped. 1100 * @page: The page. 1101 * 1102 * The number of times this page is mapped. If this page is part of 1103 * a large folio, it includes the number of times this page is mapped 1104 * as part of that folio. 1105 * 1106 * The result is undefined for pages which cannot be mapped into userspace. 1107 * For example SLAB or special types of pages. See function page_has_type(). 1108 * They use this field in struct page differently. 1109 */ 1110 static inline int page_mapcount(struct page *page) 1111 { 1112 int mapcount = atomic_read(&page->_mapcount) + 1; 1113 1114 if (unlikely(PageCompound(page))) 1115 mapcount += folio_entire_mapcount(page_folio(page)); 1116 1117 return mapcount; 1118 } 1119 1120 int folio_total_mapcount(struct folio *folio); 1121 1122 /** 1123 * folio_mapcount() - Calculate the number of mappings of this folio. 1124 * @folio: The folio. 1125 * 1126 * A large folio tracks both how many times the entire folio is mapped, 1127 * and how many times each individual page in the folio is mapped. 1128 * This function calculates the total number of times the folio is 1129 * mapped. 1130 * 1131 * Return: The number of times this folio is mapped. 1132 */ 1133 static inline int folio_mapcount(struct folio *folio) 1134 { 1135 if (likely(!folio_test_large(folio))) 1136 return atomic_read(&folio->_mapcount) + 1; 1137 return folio_total_mapcount(folio); 1138 } 1139 1140 static inline int total_mapcount(struct page *page) 1141 { 1142 if (likely(!PageCompound(page))) 1143 return atomic_read(&page->_mapcount) + 1; 1144 return folio_total_mapcount(page_folio(page)); 1145 } 1146 1147 static inline bool folio_large_is_mapped(struct folio *folio) 1148 { 1149 /* 1150 * Reading _entire_mapcount below could be omitted if hugetlb 1151 * participated in incrementing nr_pages_mapped when compound mapped. 1152 */ 1153 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1154 atomic_read(&folio->_entire_mapcount) >= 0; 1155 } 1156 1157 /** 1158 * folio_mapped - Is this folio mapped into userspace? 1159 * @folio: The folio. 1160 * 1161 * Return: True if any page in this folio is referenced by user page tables. 1162 */ 1163 static inline bool folio_mapped(struct folio *folio) 1164 { 1165 if (likely(!folio_test_large(folio))) 1166 return atomic_read(&folio->_mapcount) >= 0; 1167 return folio_large_is_mapped(folio); 1168 } 1169 1170 /* 1171 * Return true if this page is mapped into pagetables. 1172 * For compound page it returns true if any sub-page of compound page is mapped, 1173 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1174 */ 1175 static inline bool page_mapped(struct page *page) 1176 { 1177 if (likely(!PageCompound(page))) 1178 return atomic_read(&page->_mapcount) >= 0; 1179 return folio_large_is_mapped(page_folio(page)); 1180 } 1181 1182 static inline struct page *virt_to_head_page(const void *x) 1183 { 1184 struct page *page = virt_to_page(x); 1185 1186 return compound_head(page); 1187 } 1188 1189 static inline struct folio *virt_to_folio(const void *x) 1190 { 1191 struct page *page = virt_to_page(x); 1192 1193 return page_folio(page); 1194 } 1195 1196 void __folio_put(struct folio *folio); 1197 1198 void put_pages_list(struct list_head *pages); 1199 1200 void split_page(struct page *page, unsigned int order); 1201 void folio_copy(struct folio *dst, struct folio *src); 1202 1203 unsigned long nr_free_buffer_pages(void); 1204 1205 /* 1206 * Compound pages have a destructor function. Provide a 1207 * prototype for that function and accessor functions. 1208 * These are _only_ valid on the head of a compound page. 1209 */ 1210 typedef void compound_page_dtor(struct page *); 1211 1212 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 1213 enum compound_dtor_id { 1214 NULL_COMPOUND_DTOR, 1215 COMPOUND_PAGE_DTOR, 1216 #ifdef CONFIG_HUGETLB_PAGE 1217 HUGETLB_PAGE_DTOR, 1218 #endif 1219 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1220 TRANSHUGE_PAGE_DTOR, 1221 #endif 1222 NR_COMPOUND_DTORS, 1223 }; 1224 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 1225 1226 static inline void set_compound_page_dtor(struct page *page, 1227 enum compound_dtor_id compound_dtor) 1228 { 1229 struct folio *folio = (struct folio *)page; 1230 1231 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 1232 VM_BUG_ON_PAGE(!PageHead(page), page); 1233 folio->_folio_dtor = compound_dtor; 1234 } 1235 1236 static inline void folio_set_compound_dtor(struct folio *folio, 1237 enum compound_dtor_id compound_dtor) 1238 { 1239 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1240 folio->_folio_dtor = compound_dtor; 1241 } 1242 1243 void destroy_large_folio(struct folio *folio); 1244 1245 static inline void set_compound_order(struct page *page, unsigned int order) 1246 { 1247 struct folio *folio = (struct folio *)page; 1248 1249 folio->_folio_order = order; 1250 #ifdef CONFIG_64BIT 1251 folio->_folio_nr_pages = 1U << order; 1252 #endif 1253 } 1254 1255 /* Returns the number of bytes in this potentially compound page. */ 1256 static inline unsigned long page_size(struct page *page) 1257 { 1258 return PAGE_SIZE << compound_order(page); 1259 } 1260 1261 /* Returns the number of bits needed for the number of bytes in a page */ 1262 static inline unsigned int page_shift(struct page *page) 1263 { 1264 return PAGE_SHIFT + compound_order(page); 1265 } 1266 1267 /** 1268 * thp_order - Order of a transparent huge page. 1269 * @page: Head page of a transparent huge page. 1270 */ 1271 static inline unsigned int thp_order(struct page *page) 1272 { 1273 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1274 return compound_order(page); 1275 } 1276 1277 /** 1278 * thp_size - Size of a transparent huge page. 1279 * @page: Head page of a transparent huge page. 1280 * 1281 * Return: Number of bytes in this page. 1282 */ 1283 static inline unsigned long thp_size(struct page *page) 1284 { 1285 return PAGE_SIZE << thp_order(page); 1286 } 1287 1288 void free_compound_page(struct page *page); 1289 1290 #ifdef CONFIG_MMU 1291 /* 1292 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1293 * servicing faults for write access. In the normal case, do always want 1294 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1295 * that do not have writing enabled, when used by access_process_vm. 1296 */ 1297 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1298 { 1299 if (likely(vma->vm_flags & VM_WRITE)) 1300 pte = pte_mkwrite(pte); 1301 return pte; 1302 } 1303 1304 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1305 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1306 1307 vm_fault_t finish_fault(struct vm_fault *vmf); 1308 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1309 #endif 1310 1311 /* 1312 * Multiple processes may "see" the same page. E.g. for untouched 1313 * mappings of /dev/null, all processes see the same page full of 1314 * zeroes, and text pages of executables and shared libraries have 1315 * only one copy in memory, at most, normally. 1316 * 1317 * For the non-reserved pages, page_count(page) denotes a reference count. 1318 * page_count() == 0 means the page is free. page->lru is then used for 1319 * freelist management in the buddy allocator. 1320 * page_count() > 0 means the page has been allocated. 1321 * 1322 * Pages are allocated by the slab allocator in order to provide memory 1323 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1324 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1325 * unless a particular usage is carefully commented. (the responsibility of 1326 * freeing the kmalloc memory is the caller's, of course). 1327 * 1328 * A page may be used by anyone else who does a __get_free_page(). 1329 * In this case, page_count still tracks the references, and should only 1330 * be used through the normal accessor functions. The top bits of page->flags 1331 * and page->virtual store page management information, but all other fields 1332 * are unused and could be used privately, carefully. The management of this 1333 * page is the responsibility of the one who allocated it, and those who have 1334 * subsequently been given references to it. 1335 * 1336 * The other pages (we may call them "pagecache pages") are completely 1337 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1338 * The following discussion applies only to them. 1339 * 1340 * A pagecache page contains an opaque `private' member, which belongs to the 1341 * page's address_space. Usually, this is the address of a circular list of 1342 * the page's disk buffers. PG_private must be set to tell the VM to call 1343 * into the filesystem to release these pages. 1344 * 1345 * A page may belong to an inode's memory mapping. In this case, page->mapping 1346 * is the pointer to the inode, and page->index is the file offset of the page, 1347 * in units of PAGE_SIZE. 1348 * 1349 * If pagecache pages are not associated with an inode, they are said to be 1350 * anonymous pages. These may become associated with the swapcache, and in that 1351 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1352 * 1353 * In either case (swapcache or inode backed), the pagecache itself holds one 1354 * reference to the page. Setting PG_private should also increment the 1355 * refcount. The each user mapping also has a reference to the page. 1356 * 1357 * The pagecache pages are stored in a per-mapping radix tree, which is 1358 * rooted at mapping->i_pages, and indexed by offset. 1359 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1360 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1361 * 1362 * All pagecache pages may be subject to I/O: 1363 * - inode pages may need to be read from disk, 1364 * - inode pages which have been modified and are MAP_SHARED may need 1365 * to be written back to the inode on disk, 1366 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1367 * modified may need to be swapped out to swap space and (later) to be read 1368 * back into memory. 1369 */ 1370 1371 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1372 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1373 1374 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1375 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1376 { 1377 if (!static_branch_unlikely(&devmap_managed_key)) 1378 return false; 1379 if (!is_zone_device_page(page)) 1380 return false; 1381 return __put_devmap_managed_page_refs(page, refs); 1382 } 1383 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1384 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1385 { 1386 return false; 1387 } 1388 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1389 1390 static inline bool put_devmap_managed_page(struct page *page) 1391 { 1392 return put_devmap_managed_page_refs(page, 1); 1393 } 1394 1395 /* 127: arbitrary random number, small enough to assemble well */ 1396 #define folio_ref_zero_or_close_to_overflow(folio) \ 1397 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1398 1399 /** 1400 * folio_get - Increment the reference count on a folio. 1401 * @folio: The folio. 1402 * 1403 * Context: May be called in any context, as long as you know that 1404 * you have a refcount on the folio. If you do not already have one, 1405 * folio_try_get() may be the right interface for you to use. 1406 */ 1407 static inline void folio_get(struct folio *folio) 1408 { 1409 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1410 folio_ref_inc(folio); 1411 } 1412 1413 static inline void get_page(struct page *page) 1414 { 1415 folio_get(page_folio(page)); 1416 } 1417 1418 static inline __must_check bool try_get_page(struct page *page) 1419 { 1420 page = compound_head(page); 1421 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1422 return false; 1423 page_ref_inc(page); 1424 return true; 1425 } 1426 1427 /** 1428 * folio_put - Decrement the reference count on a folio. 1429 * @folio: The folio. 1430 * 1431 * If the folio's reference count reaches zero, the memory will be 1432 * released back to the page allocator and may be used by another 1433 * allocation immediately. Do not access the memory or the struct folio 1434 * after calling folio_put() unless you can be sure that it wasn't the 1435 * last reference. 1436 * 1437 * Context: May be called in process or interrupt context, but not in NMI 1438 * context. May be called while holding a spinlock. 1439 */ 1440 static inline void folio_put(struct folio *folio) 1441 { 1442 if (folio_put_testzero(folio)) 1443 __folio_put(folio); 1444 } 1445 1446 /** 1447 * folio_put_refs - Reduce the reference count on a folio. 1448 * @folio: The folio. 1449 * @refs: The amount to subtract from the folio's reference count. 1450 * 1451 * If the folio's reference count reaches zero, the memory will be 1452 * released back to the page allocator and may be used by another 1453 * allocation immediately. Do not access the memory or the struct folio 1454 * after calling folio_put_refs() unless you can be sure that these weren't 1455 * the last references. 1456 * 1457 * Context: May be called in process or interrupt context, but not in NMI 1458 * context. May be called while holding a spinlock. 1459 */ 1460 static inline void folio_put_refs(struct folio *folio, int refs) 1461 { 1462 if (folio_ref_sub_and_test(folio, refs)) 1463 __folio_put(folio); 1464 } 1465 1466 /* 1467 * union release_pages_arg - an array of pages or folios 1468 * 1469 * release_pages() releases a simple array of multiple pages, and 1470 * accepts various different forms of said page array: either 1471 * a regular old boring array of pages, an array of folios, or 1472 * an array of encoded page pointers. 1473 * 1474 * The transparent union syntax for this kind of "any of these 1475 * argument types" is all kinds of ugly, so look away. 1476 */ 1477 typedef union { 1478 struct page **pages; 1479 struct folio **folios; 1480 struct encoded_page **encoded_pages; 1481 } release_pages_arg __attribute__ ((__transparent_union__)); 1482 1483 void release_pages(release_pages_arg, int nr); 1484 1485 /** 1486 * folios_put - Decrement the reference count on an array of folios. 1487 * @folios: The folios. 1488 * @nr: How many folios there are. 1489 * 1490 * Like folio_put(), but for an array of folios. This is more efficient 1491 * than writing the loop yourself as it will optimise the locks which 1492 * need to be taken if the folios are freed. 1493 * 1494 * Context: May be called in process or interrupt context, but not in NMI 1495 * context. May be called while holding a spinlock. 1496 */ 1497 static inline void folios_put(struct folio **folios, unsigned int nr) 1498 { 1499 release_pages(folios, nr); 1500 } 1501 1502 static inline void put_page(struct page *page) 1503 { 1504 struct folio *folio = page_folio(page); 1505 1506 /* 1507 * For some devmap managed pages we need to catch refcount transition 1508 * from 2 to 1: 1509 */ 1510 if (put_devmap_managed_page(&folio->page)) 1511 return; 1512 folio_put(folio); 1513 } 1514 1515 /* 1516 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1517 * the page's refcount so that two separate items are tracked: the original page 1518 * reference count, and also a new count of how many pin_user_pages() calls were 1519 * made against the page. ("gup-pinned" is another term for the latter). 1520 * 1521 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1522 * distinct from normal pages. As such, the unpin_user_page() call (and its 1523 * variants) must be used in order to release gup-pinned pages. 1524 * 1525 * Choice of value: 1526 * 1527 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1528 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1529 * simpler, due to the fact that adding an even power of two to the page 1530 * refcount has the effect of using only the upper N bits, for the code that 1531 * counts up using the bias value. This means that the lower bits are left for 1532 * the exclusive use of the original code that increments and decrements by one 1533 * (or at least, by much smaller values than the bias value). 1534 * 1535 * Of course, once the lower bits overflow into the upper bits (and this is 1536 * OK, because subtraction recovers the original values), then visual inspection 1537 * no longer suffices to directly view the separate counts. However, for normal 1538 * applications that don't have huge page reference counts, this won't be an 1539 * issue. 1540 * 1541 * Locking: the lockless algorithm described in folio_try_get_rcu() 1542 * provides safe operation for get_user_pages(), page_mkclean() and 1543 * other calls that race to set up page table entries. 1544 */ 1545 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1546 1547 void unpin_user_page(struct page *page); 1548 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1549 bool make_dirty); 1550 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1551 bool make_dirty); 1552 void unpin_user_pages(struct page **pages, unsigned long npages); 1553 1554 static inline bool is_cow_mapping(vm_flags_t flags) 1555 { 1556 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1557 } 1558 1559 #ifndef CONFIG_MMU 1560 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1561 { 1562 /* 1563 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1564 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1565 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1566 * underlying memory if ptrace is active, so this is only possible if 1567 * ptrace does not apply. Note that there is no mprotect() to upgrade 1568 * write permissions later. 1569 */ 1570 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1571 } 1572 #endif 1573 1574 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1575 #define SECTION_IN_PAGE_FLAGS 1576 #endif 1577 1578 /* 1579 * The identification function is mainly used by the buddy allocator for 1580 * determining if two pages could be buddies. We are not really identifying 1581 * the zone since we could be using the section number id if we do not have 1582 * node id available in page flags. 1583 * We only guarantee that it will return the same value for two combinable 1584 * pages in a zone. 1585 */ 1586 static inline int page_zone_id(struct page *page) 1587 { 1588 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1589 } 1590 1591 #ifdef NODE_NOT_IN_PAGE_FLAGS 1592 extern int page_to_nid(const struct page *page); 1593 #else 1594 static inline int page_to_nid(const struct page *page) 1595 { 1596 struct page *p = (struct page *)page; 1597 1598 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1599 } 1600 #endif 1601 1602 static inline int folio_nid(const struct folio *folio) 1603 { 1604 return page_to_nid(&folio->page); 1605 } 1606 1607 #ifdef CONFIG_NUMA_BALANCING 1608 /* page access time bits needs to hold at least 4 seconds */ 1609 #define PAGE_ACCESS_TIME_MIN_BITS 12 1610 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1611 #define PAGE_ACCESS_TIME_BUCKETS \ 1612 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1613 #else 1614 #define PAGE_ACCESS_TIME_BUCKETS 0 1615 #endif 1616 1617 #define PAGE_ACCESS_TIME_MASK \ 1618 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1619 1620 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1621 { 1622 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1623 } 1624 1625 static inline int cpupid_to_pid(int cpupid) 1626 { 1627 return cpupid & LAST__PID_MASK; 1628 } 1629 1630 static inline int cpupid_to_cpu(int cpupid) 1631 { 1632 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1633 } 1634 1635 static inline int cpupid_to_nid(int cpupid) 1636 { 1637 return cpu_to_node(cpupid_to_cpu(cpupid)); 1638 } 1639 1640 static inline bool cpupid_pid_unset(int cpupid) 1641 { 1642 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1643 } 1644 1645 static inline bool cpupid_cpu_unset(int cpupid) 1646 { 1647 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1648 } 1649 1650 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1651 { 1652 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1653 } 1654 1655 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1656 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1657 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1658 { 1659 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1660 } 1661 1662 static inline int page_cpupid_last(struct page *page) 1663 { 1664 return page->_last_cpupid; 1665 } 1666 static inline void page_cpupid_reset_last(struct page *page) 1667 { 1668 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1669 } 1670 #else 1671 static inline int page_cpupid_last(struct page *page) 1672 { 1673 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1674 } 1675 1676 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1677 1678 static inline void page_cpupid_reset_last(struct page *page) 1679 { 1680 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1681 } 1682 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1683 1684 static inline int xchg_page_access_time(struct page *page, int time) 1685 { 1686 int last_time; 1687 1688 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1689 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1690 } 1691 1692 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1693 { 1694 unsigned int pid_bit; 1695 1696 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1697 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1698 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1699 } 1700 } 1701 #else /* !CONFIG_NUMA_BALANCING */ 1702 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1703 { 1704 return page_to_nid(page); /* XXX */ 1705 } 1706 1707 static inline int xchg_page_access_time(struct page *page, int time) 1708 { 1709 return 0; 1710 } 1711 1712 static inline int page_cpupid_last(struct page *page) 1713 { 1714 return page_to_nid(page); /* XXX */ 1715 } 1716 1717 static inline int cpupid_to_nid(int cpupid) 1718 { 1719 return -1; 1720 } 1721 1722 static inline int cpupid_to_pid(int cpupid) 1723 { 1724 return -1; 1725 } 1726 1727 static inline int cpupid_to_cpu(int cpupid) 1728 { 1729 return -1; 1730 } 1731 1732 static inline int cpu_pid_to_cpupid(int nid, int pid) 1733 { 1734 return -1; 1735 } 1736 1737 static inline bool cpupid_pid_unset(int cpupid) 1738 { 1739 return true; 1740 } 1741 1742 static inline void page_cpupid_reset_last(struct page *page) 1743 { 1744 } 1745 1746 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1747 { 1748 return false; 1749 } 1750 1751 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1752 { 1753 } 1754 #endif /* CONFIG_NUMA_BALANCING */ 1755 1756 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1757 1758 /* 1759 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1760 * setting tags for all pages to native kernel tag value 0xff, as the default 1761 * value 0x00 maps to 0xff. 1762 */ 1763 1764 static inline u8 page_kasan_tag(const struct page *page) 1765 { 1766 u8 tag = 0xff; 1767 1768 if (kasan_enabled()) { 1769 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1770 tag ^= 0xff; 1771 } 1772 1773 return tag; 1774 } 1775 1776 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1777 { 1778 unsigned long old_flags, flags; 1779 1780 if (!kasan_enabled()) 1781 return; 1782 1783 tag ^= 0xff; 1784 old_flags = READ_ONCE(page->flags); 1785 do { 1786 flags = old_flags; 1787 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1788 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1789 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1790 } 1791 1792 static inline void page_kasan_tag_reset(struct page *page) 1793 { 1794 if (kasan_enabled()) 1795 page_kasan_tag_set(page, 0xff); 1796 } 1797 1798 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1799 1800 static inline u8 page_kasan_tag(const struct page *page) 1801 { 1802 return 0xff; 1803 } 1804 1805 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1806 static inline void page_kasan_tag_reset(struct page *page) { } 1807 1808 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1809 1810 static inline struct zone *page_zone(const struct page *page) 1811 { 1812 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1813 } 1814 1815 static inline pg_data_t *page_pgdat(const struct page *page) 1816 { 1817 return NODE_DATA(page_to_nid(page)); 1818 } 1819 1820 static inline struct zone *folio_zone(const struct folio *folio) 1821 { 1822 return page_zone(&folio->page); 1823 } 1824 1825 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1826 { 1827 return page_pgdat(&folio->page); 1828 } 1829 1830 #ifdef SECTION_IN_PAGE_FLAGS 1831 static inline void set_page_section(struct page *page, unsigned long section) 1832 { 1833 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1834 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1835 } 1836 1837 static inline unsigned long page_to_section(const struct page *page) 1838 { 1839 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1840 } 1841 #endif 1842 1843 /** 1844 * folio_pfn - Return the Page Frame Number of a folio. 1845 * @folio: The folio. 1846 * 1847 * A folio may contain multiple pages. The pages have consecutive 1848 * Page Frame Numbers. 1849 * 1850 * Return: The Page Frame Number of the first page in the folio. 1851 */ 1852 static inline unsigned long folio_pfn(struct folio *folio) 1853 { 1854 return page_to_pfn(&folio->page); 1855 } 1856 1857 static inline struct folio *pfn_folio(unsigned long pfn) 1858 { 1859 return page_folio(pfn_to_page(pfn)); 1860 } 1861 1862 /** 1863 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1864 * @folio: The folio. 1865 * 1866 * This function checks if a folio has been pinned via a call to 1867 * a function in the pin_user_pages() family. 1868 * 1869 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1870 * because it means "definitely not pinned for DMA", but true means "probably 1871 * pinned for DMA, but possibly a false positive due to having at least 1872 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1873 * 1874 * False positives are OK, because: a) it's unlikely for a folio to 1875 * get that many refcounts, and b) all the callers of this routine are 1876 * expected to be able to deal gracefully with a false positive. 1877 * 1878 * For large folios, the result will be exactly correct. That's because 1879 * we have more tracking data available: the _pincount field is used 1880 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1881 * 1882 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1883 * 1884 * Return: True, if it is likely that the page has been "dma-pinned". 1885 * False, if the page is definitely not dma-pinned. 1886 */ 1887 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1888 { 1889 if (folio_test_large(folio)) 1890 return atomic_read(&folio->_pincount) > 0; 1891 1892 /* 1893 * folio_ref_count() is signed. If that refcount overflows, then 1894 * folio_ref_count() returns a negative value, and callers will avoid 1895 * further incrementing the refcount. 1896 * 1897 * Here, for that overflow case, use the sign bit to count a little 1898 * bit higher via unsigned math, and thus still get an accurate result. 1899 */ 1900 return ((unsigned int)folio_ref_count(folio)) >= 1901 GUP_PIN_COUNTING_BIAS; 1902 } 1903 1904 static inline bool page_maybe_dma_pinned(struct page *page) 1905 { 1906 return folio_maybe_dma_pinned(page_folio(page)); 1907 } 1908 1909 /* 1910 * This should most likely only be called during fork() to see whether we 1911 * should break the cow immediately for an anon page on the src mm. 1912 * 1913 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1914 */ 1915 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1916 struct page *page) 1917 { 1918 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1919 1920 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1921 return false; 1922 1923 return page_maybe_dma_pinned(page); 1924 } 1925 1926 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1927 #ifdef CONFIG_MIGRATION 1928 static inline bool is_longterm_pinnable_page(struct page *page) 1929 { 1930 #ifdef CONFIG_CMA 1931 int mt = get_pageblock_migratetype(page); 1932 1933 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1934 return false; 1935 #endif 1936 /* The zero page may always be pinned */ 1937 if (is_zero_pfn(page_to_pfn(page))) 1938 return true; 1939 1940 /* Coherent device memory must always allow eviction. */ 1941 if (is_device_coherent_page(page)) 1942 return false; 1943 1944 /* Otherwise, non-movable zone pages can be pinned. */ 1945 return !is_zone_movable_page(page); 1946 } 1947 #else 1948 static inline bool is_longterm_pinnable_page(struct page *page) 1949 { 1950 return true; 1951 } 1952 #endif 1953 1954 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1955 { 1956 return is_longterm_pinnable_page(&folio->page); 1957 } 1958 1959 static inline void set_page_zone(struct page *page, enum zone_type zone) 1960 { 1961 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1962 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1963 } 1964 1965 static inline void set_page_node(struct page *page, unsigned long node) 1966 { 1967 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1968 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1969 } 1970 1971 static inline void set_page_links(struct page *page, enum zone_type zone, 1972 unsigned long node, unsigned long pfn) 1973 { 1974 set_page_zone(page, zone); 1975 set_page_node(page, node); 1976 #ifdef SECTION_IN_PAGE_FLAGS 1977 set_page_section(page, pfn_to_section_nr(pfn)); 1978 #endif 1979 } 1980 1981 /** 1982 * folio_nr_pages - The number of pages in the folio. 1983 * @folio: The folio. 1984 * 1985 * Return: A positive power of two. 1986 */ 1987 static inline long folio_nr_pages(struct folio *folio) 1988 { 1989 if (!folio_test_large(folio)) 1990 return 1; 1991 #ifdef CONFIG_64BIT 1992 return folio->_folio_nr_pages; 1993 #else 1994 return 1L << folio->_folio_order; 1995 #endif 1996 } 1997 1998 /* 1999 * compound_nr() returns the number of pages in this potentially compound 2000 * page. compound_nr() can be called on a tail page, and is defined to 2001 * return 1 in that case. 2002 */ 2003 static inline unsigned long compound_nr(struct page *page) 2004 { 2005 struct folio *folio = (struct folio *)page; 2006 2007 if (!test_bit(PG_head, &folio->flags)) 2008 return 1; 2009 #ifdef CONFIG_64BIT 2010 return folio->_folio_nr_pages; 2011 #else 2012 return 1L << folio->_folio_order; 2013 #endif 2014 } 2015 2016 /** 2017 * thp_nr_pages - The number of regular pages in this huge page. 2018 * @page: The head page of a huge page. 2019 */ 2020 static inline int thp_nr_pages(struct page *page) 2021 { 2022 return folio_nr_pages((struct folio *)page); 2023 } 2024 2025 /** 2026 * folio_next - Move to the next physical folio. 2027 * @folio: The folio we're currently operating on. 2028 * 2029 * If you have physically contiguous memory which may span more than 2030 * one folio (eg a &struct bio_vec), use this function to move from one 2031 * folio to the next. Do not use it if the memory is only virtually 2032 * contiguous as the folios are almost certainly not adjacent to each 2033 * other. This is the folio equivalent to writing ``page++``. 2034 * 2035 * Context: We assume that the folios are refcounted and/or locked at a 2036 * higher level and do not adjust the reference counts. 2037 * Return: The next struct folio. 2038 */ 2039 static inline struct folio *folio_next(struct folio *folio) 2040 { 2041 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2042 } 2043 2044 /** 2045 * folio_shift - The size of the memory described by this folio. 2046 * @folio: The folio. 2047 * 2048 * A folio represents a number of bytes which is a power-of-two in size. 2049 * This function tells you which power-of-two the folio is. See also 2050 * folio_size() and folio_order(). 2051 * 2052 * Context: The caller should have a reference on the folio to prevent 2053 * it from being split. It is not necessary for the folio to be locked. 2054 * Return: The base-2 logarithm of the size of this folio. 2055 */ 2056 static inline unsigned int folio_shift(struct folio *folio) 2057 { 2058 return PAGE_SHIFT + folio_order(folio); 2059 } 2060 2061 /** 2062 * folio_size - The number of bytes in a folio. 2063 * @folio: The folio. 2064 * 2065 * Context: The caller should have a reference on the folio to prevent 2066 * it from being split. It is not necessary for the folio to be locked. 2067 * Return: The number of bytes in this folio. 2068 */ 2069 static inline size_t folio_size(struct folio *folio) 2070 { 2071 return PAGE_SIZE << folio_order(folio); 2072 } 2073 2074 /** 2075 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2076 * @folio: The folio. 2077 * 2078 * folio_estimated_sharers() aims to serve as a function to efficiently 2079 * estimate the number of processes sharing a folio. This is done by 2080 * looking at the precise mapcount of the first subpage in the folio, and 2081 * assuming the other subpages are the same. This may not be true for large 2082 * folios. If you want exact mapcounts for exact calculations, look at 2083 * page_mapcount() or folio_total_mapcount(). 2084 * 2085 * Return: The estimated number of processes sharing a folio. 2086 */ 2087 static inline int folio_estimated_sharers(struct folio *folio) 2088 { 2089 return page_mapcount(folio_page(folio, 0)); 2090 } 2091 2092 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2093 static inline int arch_make_page_accessible(struct page *page) 2094 { 2095 return 0; 2096 } 2097 #endif 2098 2099 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2100 static inline int arch_make_folio_accessible(struct folio *folio) 2101 { 2102 int ret; 2103 long i, nr = folio_nr_pages(folio); 2104 2105 for (i = 0; i < nr; i++) { 2106 ret = arch_make_page_accessible(folio_page(folio, i)); 2107 if (ret) 2108 break; 2109 } 2110 2111 return ret; 2112 } 2113 #endif 2114 2115 /* 2116 * Some inline functions in vmstat.h depend on page_zone() 2117 */ 2118 #include <linux/vmstat.h> 2119 2120 static __always_inline void *lowmem_page_address(const struct page *page) 2121 { 2122 return page_to_virt(page); 2123 } 2124 2125 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2126 #define HASHED_PAGE_VIRTUAL 2127 #endif 2128 2129 #if defined(WANT_PAGE_VIRTUAL) 2130 static inline void *page_address(const struct page *page) 2131 { 2132 return page->virtual; 2133 } 2134 static inline void set_page_address(struct page *page, void *address) 2135 { 2136 page->virtual = address; 2137 } 2138 #define page_address_init() do { } while(0) 2139 #endif 2140 2141 #if defined(HASHED_PAGE_VIRTUAL) 2142 void *page_address(const struct page *page); 2143 void set_page_address(struct page *page, void *virtual); 2144 void page_address_init(void); 2145 #endif 2146 2147 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2148 #define page_address(page) lowmem_page_address(page) 2149 #define set_page_address(page, address) do { } while(0) 2150 #define page_address_init() do { } while(0) 2151 #endif 2152 2153 static inline void *folio_address(const struct folio *folio) 2154 { 2155 return page_address(&folio->page); 2156 } 2157 2158 extern void *page_rmapping(struct page *page); 2159 extern pgoff_t __page_file_index(struct page *page); 2160 2161 /* 2162 * Return the pagecache index of the passed page. Regular pagecache pages 2163 * use ->index whereas swapcache pages use swp_offset(->private) 2164 */ 2165 static inline pgoff_t page_index(struct page *page) 2166 { 2167 if (unlikely(PageSwapCache(page))) 2168 return __page_file_index(page); 2169 return page->index; 2170 } 2171 2172 /* 2173 * Return true only if the page has been allocated with 2174 * ALLOC_NO_WATERMARKS and the low watermark was not 2175 * met implying that the system is under some pressure. 2176 */ 2177 static inline bool page_is_pfmemalloc(const struct page *page) 2178 { 2179 /* 2180 * lru.next has bit 1 set if the page is allocated from the 2181 * pfmemalloc reserves. Callers may simply overwrite it if 2182 * they do not need to preserve that information. 2183 */ 2184 return (uintptr_t)page->lru.next & BIT(1); 2185 } 2186 2187 /* 2188 * Return true only if the folio has been allocated with 2189 * ALLOC_NO_WATERMARKS and the low watermark was not 2190 * met implying that the system is under some pressure. 2191 */ 2192 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2193 { 2194 /* 2195 * lru.next has bit 1 set if the page is allocated from the 2196 * pfmemalloc reserves. Callers may simply overwrite it if 2197 * they do not need to preserve that information. 2198 */ 2199 return (uintptr_t)folio->lru.next & BIT(1); 2200 } 2201 2202 /* 2203 * Only to be called by the page allocator on a freshly allocated 2204 * page. 2205 */ 2206 static inline void set_page_pfmemalloc(struct page *page) 2207 { 2208 page->lru.next = (void *)BIT(1); 2209 } 2210 2211 static inline void clear_page_pfmemalloc(struct page *page) 2212 { 2213 page->lru.next = NULL; 2214 } 2215 2216 /* 2217 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2218 */ 2219 extern void pagefault_out_of_memory(void); 2220 2221 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2222 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2223 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2224 2225 /* 2226 * Flags passed to show_mem() and show_free_areas() to suppress output in 2227 * various contexts. 2228 */ 2229 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 2230 2231 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2232 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 2233 { 2234 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 2235 } 2236 2237 /* 2238 * Parameter block passed down to zap_pte_range in exceptional cases. 2239 */ 2240 struct zap_details { 2241 struct folio *single_folio; /* Locked folio to be unmapped */ 2242 bool even_cows; /* Zap COWed private pages too? */ 2243 zap_flags_t zap_flags; /* Extra flags for zapping */ 2244 }; 2245 2246 /* 2247 * Whether to drop the pte markers, for example, the uffd-wp information for 2248 * file-backed memory. This should only be specified when we will completely 2249 * drop the page in the mm, either by truncation or unmapping of the vma. By 2250 * default, the flag is not set. 2251 */ 2252 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2253 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2254 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2255 2256 #ifdef CONFIG_SCHED_MM_CID 2257 void sched_mm_cid_before_execve(struct task_struct *t); 2258 void sched_mm_cid_after_execve(struct task_struct *t); 2259 void sched_mm_cid_fork(struct task_struct *t); 2260 void sched_mm_cid_exit_signals(struct task_struct *t); 2261 static inline int task_mm_cid(struct task_struct *t) 2262 { 2263 return t->mm_cid; 2264 } 2265 #else 2266 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2267 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2268 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2269 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2270 static inline int task_mm_cid(struct task_struct *t) 2271 { 2272 /* 2273 * Use the processor id as a fall-back when the mm cid feature is 2274 * disabled. This provides functional per-cpu data structure accesses 2275 * in user-space, althrough it won't provide the memory usage benefits. 2276 */ 2277 return raw_smp_processor_id(); 2278 } 2279 #endif 2280 2281 #ifdef CONFIG_MMU 2282 extern bool can_do_mlock(void); 2283 #else 2284 static inline bool can_do_mlock(void) { return false; } 2285 #endif 2286 extern int user_shm_lock(size_t, struct ucounts *); 2287 extern void user_shm_unlock(size_t, struct ucounts *); 2288 2289 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2290 pte_t pte); 2291 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2292 pte_t pte); 2293 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2294 pmd_t pmd); 2295 2296 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2297 unsigned long size); 2298 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2299 unsigned long size, struct zap_details *details); 2300 static inline void zap_vma_pages(struct vm_area_struct *vma) 2301 { 2302 zap_page_range_single(vma, vma->vm_start, 2303 vma->vm_end - vma->vm_start, NULL); 2304 } 2305 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2306 struct vm_area_struct *start_vma, unsigned long start, 2307 unsigned long end, bool mm_wr_locked); 2308 2309 struct mmu_notifier_range; 2310 2311 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2312 unsigned long end, unsigned long floor, unsigned long ceiling); 2313 int 2314 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2315 int follow_pte(struct mm_struct *mm, unsigned long address, 2316 pte_t **ptepp, spinlock_t **ptlp); 2317 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2318 unsigned long *pfn); 2319 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2320 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2321 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2322 void *buf, int len, int write); 2323 2324 extern void truncate_pagecache(struct inode *inode, loff_t new); 2325 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2326 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2327 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2328 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2329 2330 #ifdef CONFIG_MMU 2331 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2332 unsigned long address, unsigned int flags, 2333 struct pt_regs *regs); 2334 extern int fixup_user_fault(struct mm_struct *mm, 2335 unsigned long address, unsigned int fault_flags, 2336 bool *unlocked); 2337 void unmap_mapping_pages(struct address_space *mapping, 2338 pgoff_t start, pgoff_t nr, bool even_cows); 2339 void unmap_mapping_range(struct address_space *mapping, 2340 loff_t const holebegin, loff_t const holelen, int even_cows); 2341 #else 2342 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2343 unsigned long address, unsigned int flags, 2344 struct pt_regs *regs) 2345 { 2346 /* should never happen if there's no MMU */ 2347 BUG(); 2348 return VM_FAULT_SIGBUS; 2349 } 2350 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2351 unsigned int fault_flags, bool *unlocked) 2352 { 2353 /* should never happen if there's no MMU */ 2354 BUG(); 2355 return -EFAULT; 2356 } 2357 static inline void unmap_mapping_pages(struct address_space *mapping, 2358 pgoff_t start, pgoff_t nr, bool even_cows) { } 2359 static inline void unmap_mapping_range(struct address_space *mapping, 2360 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2361 #endif 2362 2363 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2364 loff_t const holebegin, loff_t const holelen) 2365 { 2366 unmap_mapping_range(mapping, holebegin, holelen, 0); 2367 } 2368 2369 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2370 unsigned long addr); 2371 2372 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2373 void *buf, int len, unsigned int gup_flags); 2374 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2375 void *buf, int len, unsigned int gup_flags); 2376 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2377 void *buf, int len, unsigned int gup_flags); 2378 2379 long get_user_pages_remote(struct mm_struct *mm, 2380 unsigned long start, unsigned long nr_pages, 2381 unsigned int gup_flags, struct page **pages, 2382 int *locked); 2383 long pin_user_pages_remote(struct mm_struct *mm, 2384 unsigned long start, unsigned long nr_pages, 2385 unsigned int gup_flags, struct page **pages, 2386 int *locked); 2387 2388 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2389 unsigned long addr, 2390 int gup_flags, 2391 struct vm_area_struct **vmap) 2392 { 2393 struct page *page; 2394 struct vm_area_struct *vma; 2395 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2396 2397 if (got < 0) 2398 return ERR_PTR(got); 2399 if (got == 0) 2400 return NULL; 2401 2402 vma = vma_lookup(mm, addr); 2403 if (WARN_ON_ONCE(!vma)) { 2404 put_page(page); 2405 return ERR_PTR(-EINVAL); 2406 } 2407 2408 *vmap = vma; 2409 return page; 2410 } 2411 2412 long get_user_pages(unsigned long start, unsigned long nr_pages, 2413 unsigned int gup_flags, struct page **pages); 2414 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2415 unsigned int gup_flags, struct page **pages); 2416 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2417 struct page **pages, unsigned int gup_flags); 2418 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2419 struct page **pages, unsigned int gup_flags); 2420 2421 int get_user_pages_fast(unsigned long start, int nr_pages, 2422 unsigned int gup_flags, struct page **pages); 2423 int pin_user_pages_fast(unsigned long start, int nr_pages, 2424 unsigned int gup_flags, struct page **pages); 2425 2426 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2427 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2428 struct task_struct *task, bool bypass_rlim); 2429 2430 struct kvec; 2431 struct page *get_dump_page(unsigned long addr); 2432 2433 bool folio_mark_dirty(struct folio *folio); 2434 bool set_page_dirty(struct page *page); 2435 int set_page_dirty_lock(struct page *page); 2436 2437 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2438 2439 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2440 unsigned long old_addr, struct vm_area_struct *new_vma, 2441 unsigned long new_addr, unsigned long len, 2442 bool need_rmap_locks); 2443 2444 /* 2445 * Flags used by change_protection(). For now we make it a bitmap so 2446 * that we can pass in multiple flags just like parameters. However 2447 * for now all the callers are only use one of the flags at the same 2448 * time. 2449 */ 2450 /* 2451 * Whether we should manually check if we can map individual PTEs writable, 2452 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2453 * PTEs automatically in a writable mapping. 2454 */ 2455 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2456 /* Whether this protection change is for NUMA hints */ 2457 #define MM_CP_PROT_NUMA (1UL << 1) 2458 /* Whether this change is for write protecting */ 2459 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2460 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2461 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2462 MM_CP_UFFD_WP_RESOLVE) 2463 2464 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2465 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2466 { 2467 /* 2468 * We want to check manually if we can change individual PTEs writable 2469 * if we can't do that automatically for all PTEs in a mapping. For 2470 * private mappings, that's always the case when we have write 2471 * permissions as we properly have to handle COW. 2472 */ 2473 if (vma->vm_flags & VM_SHARED) 2474 return vma_wants_writenotify(vma, vma->vm_page_prot); 2475 return !!(vma->vm_flags & VM_WRITE); 2476 2477 } 2478 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2479 pte_t pte); 2480 extern long change_protection(struct mmu_gather *tlb, 2481 struct vm_area_struct *vma, unsigned long start, 2482 unsigned long end, unsigned long cp_flags); 2483 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2484 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2485 unsigned long start, unsigned long end, unsigned long newflags); 2486 2487 /* 2488 * doesn't attempt to fault and will return short. 2489 */ 2490 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2491 unsigned int gup_flags, struct page **pages); 2492 2493 static inline bool get_user_page_fast_only(unsigned long addr, 2494 unsigned int gup_flags, struct page **pagep) 2495 { 2496 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2497 } 2498 /* 2499 * per-process(per-mm_struct) statistics. 2500 */ 2501 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2502 { 2503 return percpu_counter_read_positive(&mm->rss_stat[member]); 2504 } 2505 2506 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2507 2508 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2509 { 2510 percpu_counter_add(&mm->rss_stat[member], value); 2511 2512 mm_trace_rss_stat(mm, member); 2513 } 2514 2515 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2516 { 2517 percpu_counter_inc(&mm->rss_stat[member]); 2518 2519 mm_trace_rss_stat(mm, member); 2520 } 2521 2522 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2523 { 2524 percpu_counter_dec(&mm->rss_stat[member]); 2525 2526 mm_trace_rss_stat(mm, member); 2527 } 2528 2529 /* Optimized variant when page is already known not to be PageAnon */ 2530 static inline int mm_counter_file(struct page *page) 2531 { 2532 if (PageSwapBacked(page)) 2533 return MM_SHMEMPAGES; 2534 return MM_FILEPAGES; 2535 } 2536 2537 static inline int mm_counter(struct page *page) 2538 { 2539 if (PageAnon(page)) 2540 return MM_ANONPAGES; 2541 return mm_counter_file(page); 2542 } 2543 2544 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2545 { 2546 return get_mm_counter(mm, MM_FILEPAGES) + 2547 get_mm_counter(mm, MM_ANONPAGES) + 2548 get_mm_counter(mm, MM_SHMEMPAGES); 2549 } 2550 2551 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2552 { 2553 return max(mm->hiwater_rss, get_mm_rss(mm)); 2554 } 2555 2556 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2557 { 2558 return max(mm->hiwater_vm, mm->total_vm); 2559 } 2560 2561 static inline void update_hiwater_rss(struct mm_struct *mm) 2562 { 2563 unsigned long _rss = get_mm_rss(mm); 2564 2565 if ((mm)->hiwater_rss < _rss) 2566 (mm)->hiwater_rss = _rss; 2567 } 2568 2569 static inline void update_hiwater_vm(struct mm_struct *mm) 2570 { 2571 if (mm->hiwater_vm < mm->total_vm) 2572 mm->hiwater_vm = mm->total_vm; 2573 } 2574 2575 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2576 { 2577 mm->hiwater_rss = get_mm_rss(mm); 2578 } 2579 2580 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2581 struct mm_struct *mm) 2582 { 2583 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2584 2585 if (*maxrss < hiwater_rss) 2586 *maxrss = hiwater_rss; 2587 } 2588 2589 #if defined(SPLIT_RSS_COUNTING) 2590 void sync_mm_rss(struct mm_struct *mm); 2591 #else 2592 static inline void sync_mm_rss(struct mm_struct *mm) 2593 { 2594 } 2595 #endif 2596 2597 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2598 static inline int pte_special(pte_t pte) 2599 { 2600 return 0; 2601 } 2602 2603 static inline pte_t pte_mkspecial(pte_t pte) 2604 { 2605 return pte; 2606 } 2607 #endif 2608 2609 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2610 static inline int pte_devmap(pte_t pte) 2611 { 2612 return 0; 2613 } 2614 #endif 2615 2616 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2617 spinlock_t **ptl); 2618 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2619 spinlock_t **ptl) 2620 { 2621 pte_t *ptep; 2622 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2623 return ptep; 2624 } 2625 2626 #ifdef __PAGETABLE_P4D_FOLDED 2627 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2628 unsigned long address) 2629 { 2630 return 0; 2631 } 2632 #else 2633 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2634 #endif 2635 2636 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2637 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2638 unsigned long address) 2639 { 2640 return 0; 2641 } 2642 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2643 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2644 2645 #else 2646 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2647 2648 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2649 { 2650 if (mm_pud_folded(mm)) 2651 return; 2652 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2653 } 2654 2655 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2656 { 2657 if (mm_pud_folded(mm)) 2658 return; 2659 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2660 } 2661 #endif 2662 2663 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2664 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2665 unsigned long address) 2666 { 2667 return 0; 2668 } 2669 2670 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2671 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2672 2673 #else 2674 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2675 2676 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2677 { 2678 if (mm_pmd_folded(mm)) 2679 return; 2680 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2681 } 2682 2683 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2684 { 2685 if (mm_pmd_folded(mm)) 2686 return; 2687 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2688 } 2689 #endif 2690 2691 #ifdef CONFIG_MMU 2692 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2693 { 2694 atomic_long_set(&mm->pgtables_bytes, 0); 2695 } 2696 2697 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2698 { 2699 return atomic_long_read(&mm->pgtables_bytes); 2700 } 2701 2702 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2703 { 2704 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2705 } 2706 2707 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2708 { 2709 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2710 } 2711 #else 2712 2713 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2714 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2715 { 2716 return 0; 2717 } 2718 2719 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2720 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2721 #endif 2722 2723 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2724 int __pte_alloc_kernel(pmd_t *pmd); 2725 2726 #if defined(CONFIG_MMU) 2727 2728 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2729 unsigned long address) 2730 { 2731 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2732 NULL : p4d_offset(pgd, address); 2733 } 2734 2735 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2736 unsigned long address) 2737 { 2738 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2739 NULL : pud_offset(p4d, address); 2740 } 2741 2742 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2743 { 2744 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2745 NULL: pmd_offset(pud, address); 2746 } 2747 #endif /* CONFIG_MMU */ 2748 2749 #if USE_SPLIT_PTE_PTLOCKS 2750 #if ALLOC_SPLIT_PTLOCKS 2751 void __init ptlock_cache_init(void); 2752 extern bool ptlock_alloc(struct page *page); 2753 extern void ptlock_free(struct page *page); 2754 2755 static inline spinlock_t *ptlock_ptr(struct page *page) 2756 { 2757 return page->ptl; 2758 } 2759 #else /* ALLOC_SPLIT_PTLOCKS */ 2760 static inline void ptlock_cache_init(void) 2761 { 2762 } 2763 2764 static inline bool ptlock_alloc(struct page *page) 2765 { 2766 return true; 2767 } 2768 2769 static inline void ptlock_free(struct page *page) 2770 { 2771 } 2772 2773 static inline spinlock_t *ptlock_ptr(struct page *page) 2774 { 2775 return &page->ptl; 2776 } 2777 #endif /* ALLOC_SPLIT_PTLOCKS */ 2778 2779 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2780 { 2781 return ptlock_ptr(pmd_page(*pmd)); 2782 } 2783 2784 static inline bool ptlock_init(struct page *page) 2785 { 2786 /* 2787 * prep_new_page() initialize page->private (and therefore page->ptl) 2788 * with 0. Make sure nobody took it in use in between. 2789 * 2790 * It can happen if arch try to use slab for page table allocation: 2791 * slab code uses page->slab_cache, which share storage with page->ptl. 2792 */ 2793 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2794 if (!ptlock_alloc(page)) 2795 return false; 2796 spin_lock_init(ptlock_ptr(page)); 2797 return true; 2798 } 2799 2800 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2801 /* 2802 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2803 */ 2804 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2805 { 2806 return &mm->page_table_lock; 2807 } 2808 static inline void ptlock_cache_init(void) {} 2809 static inline bool ptlock_init(struct page *page) { return true; } 2810 static inline void ptlock_free(struct page *page) {} 2811 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2812 2813 static inline bool pgtable_pte_page_ctor(struct page *page) 2814 { 2815 if (!ptlock_init(page)) 2816 return false; 2817 __SetPageTable(page); 2818 inc_lruvec_page_state(page, NR_PAGETABLE); 2819 return true; 2820 } 2821 2822 static inline void pgtable_pte_page_dtor(struct page *page) 2823 { 2824 ptlock_free(page); 2825 __ClearPageTable(page); 2826 dec_lruvec_page_state(page, NR_PAGETABLE); 2827 } 2828 2829 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2830 ({ \ 2831 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2832 pte_t *__pte = pte_offset_map(pmd, address); \ 2833 *(ptlp) = __ptl; \ 2834 spin_lock(__ptl); \ 2835 __pte; \ 2836 }) 2837 2838 #define pte_unmap_unlock(pte, ptl) do { \ 2839 spin_unlock(ptl); \ 2840 pte_unmap(pte); \ 2841 } while (0) 2842 2843 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2844 2845 #define pte_alloc_map(mm, pmd, address) \ 2846 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2847 2848 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2849 (pte_alloc(mm, pmd) ? \ 2850 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2851 2852 #define pte_alloc_kernel(pmd, address) \ 2853 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2854 NULL: pte_offset_kernel(pmd, address)) 2855 2856 #if USE_SPLIT_PMD_PTLOCKS 2857 2858 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2859 { 2860 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2861 return virt_to_page((void *)((unsigned long) pmd & mask)); 2862 } 2863 2864 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2865 { 2866 return ptlock_ptr(pmd_pgtable_page(pmd)); 2867 } 2868 2869 static inline bool pmd_ptlock_init(struct page *page) 2870 { 2871 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2872 page->pmd_huge_pte = NULL; 2873 #endif 2874 return ptlock_init(page); 2875 } 2876 2877 static inline void pmd_ptlock_free(struct page *page) 2878 { 2879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2880 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2881 #endif 2882 ptlock_free(page); 2883 } 2884 2885 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2886 2887 #else 2888 2889 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2890 { 2891 return &mm->page_table_lock; 2892 } 2893 2894 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2895 static inline void pmd_ptlock_free(struct page *page) {} 2896 2897 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2898 2899 #endif 2900 2901 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2902 { 2903 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2904 spin_lock(ptl); 2905 return ptl; 2906 } 2907 2908 static inline bool pgtable_pmd_page_ctor(struct page *page) 2909 { 2910 if (!pmd_ptlock_init(page)) 2911 return false; 2912 __SetPageTable(page); 2913 inc_lruvec_page_state(page, NR_PAGETABLE); 2914 return true; 2915 } 2916 2917 static inline void pgtable_pmd_page_dtor(struct page *page) 2918 { 2919 pmd_ptlock_free(page); 2920 __ClearPageTable(page); 2921 dec_lruvec_page_state(page, NR_PAGETABLE); 2922 } 2923 2924 /* 2925 * No scalability reason to split PUD locks yet, but follow the same pattern 2926 * as the PMD locks to make it easier if we decide to. The VM should not be 2927 * considered ready to switch to split PUD locks yet; there may be places 2928 * which need to be converted from page_table_lock. 2929 */ 2930 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2931 { 2932 return &mm->page_table_lock; 2933 } 2934 2935 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2936 { 2937 spinlock_t *ptl = pud_lockptr(mm, pud); 2938 2939 spin_lock(ptl); 2940 return ptl; 2941 } 2942 2943 extern void __init pagecache_init(void); 2944 extern void free_initmem(void); 2945 2946 /* 2947 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2948 * into the buddy system. The freed pages will be poisoned with pattern 2949 * "poison" if it's within range [0, UCHAR_MAX]. 2950 * Return pages freed into the buddy system. 2951 */ 2952 extern unsigned long free_reserved_area(void *start, void *end, 2953 int poison, const char *s); 2954 2955 extern void adjust_managed_page_count(struct page *page, long count); 2956 2957 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2958 2959 /* Free the reserved page into the buddy system, so it gets managed. */ 2960 static inline void free_reserved_page(struct page *page) 2961 { 2962 ClearPageReserved(page); 2963 init_page_count(page); 2964 __free_page(page); 2965 adjust_managed_page_count(page, 1); 2966 } 2967 #define free_highmem_page(page) free_reserved_page(page) 2968 2969 static inline void mark_page_reserved(struct page *page) 2970 { 2971 SetPageReserved(page); 2972 adjust_managed_page_count(page, -1); 2973 } 2974 2975 /* 2976 * Default method to free all the __init memory into the buddy system. 2977 * The freed pages will be poisoned with pattern "poison" if it's within 2978 * range [0, UCHAR_MAX]. 2979 * Return pages freed into the buddy system. 2980 */ 2981 static inline unsigned long free_initmem_default(int poison) 2982 { 2983 extern char __init_begin[], __init_end[]; 2984 2985 return free_reserved_area(&__init_begin, &__init_end, 2986 poison, "unused kernel image (initmem)"); 2987 } 2988 2989 static inline unsigned long get_num_physpages(void) 2990 { 2991 int nid; 2992 unsigned long phys_pages = 0; 2993 2994 for_each_online_node(nid) 2995 phys_pages += node_present_pages(nid); 2996 2997 return phys_pages; 2998 } 2999 3000 /* 3001 * Using memblock node mappings, an architecture may initialise its 3002 * zones, allocate the backing mem_map and account for memory holes in an 3003 * architecture independent manner. 3004 * 3005 * An architecture is expected to register range of page frames backed by 3006 * physical memory with memblock_add[_node]() before calling 3007 * free_area_init() passing in the PFN each zone ends at. At a basic 3008 * usage, an architecture is expected to do something like 3009 * 3010 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3011 * max_highmem_pfn}; 3012 * for_each_valid_physical_page_range() 3013 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3014 * free_area_init(max_zone_pfns); 3015 */ 3016 void free_area_init(unsigned long *max_zone_pfn); 3017 unsigned long node_map_pfn_alignment(void); 3018 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3019 unsigned long end_pfn); 3020 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3021 unsigned long end_pfn); 3022 extern void get_pfn_range_for_nid(unsigned int nid, 3023 unsigned long *start_pfn, unsigned long *end_pfn); 3024 3025 #ifndef CONFIG_NUMA 3026 static inline int early_pfn_to_nid(unsigned long pfn) 3027 { 3028 return 0; 3029 } 3030 #else 3031 /* please see mm/page_alloc.c */ 3032 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3033 #endif 3034 3035 extern void set_dma_reserve(unsigned long new_dma_reserve); 3036 extern void mem_init(void); 3037 extern void __init mmap_init(void); 3038 3039 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3040 static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 3041 { 3042 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 3043 } 3044 extern long si_mem_available(void); 3045 extern void si_meminfo(struct sysinfo * val); 3046 extern void si_meminfo_node(struct sysinfo *val, int nid); 3047 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3048 extern unsigned long arch_reserved_kernel_pages(void); 3049 #endif 3050 3051 extern __printf(3, 4) 3052 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3053 3054 extern void setup_per_cpu_pageset(void); 3055 3056 /* nommu.c */ 3057 extern atomic_long_t mmap_pages_allocated; 3058 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3059 3060 /* interval_tree.c */ 3061 void vma_interval_tree_insert(struct vm_area_struct *node, 3062 struct rb_root_cached *root); 3063 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3064 struct vm_area_struct *prev, 3065 struct rb_root_cached *root); 3066 void vma_interval_tree_remove(struct vm_area_struct *node, 3067 struct rb_root_cached *root); 3068 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3069 unsigned long start, unsigned long last); 3070 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3071 unsigned long start, unsigned long last); 3072 3073 #define vma_interval_tree_foreach(vma, root, start, last) \ 3074 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3075 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3076 3077 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3078 struct rb_root_cached *root); 3079 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3080 struct rb_root_cached *root); 3081 struct anon_vma_chain * 3082 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3083 unsigned long start, unsigned long last); 3084 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3085 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3086 #ifdef CONFIG_DEBUG_VM_RB 3087 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3088 #endif 3089 3090 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3091 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3092 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3093 3094 /* mmap.c */ 3095 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3096 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3097 unsigned long start, unsigned long end, pgoff_t pgoff, 3098 struct vm_area_struct *next); 3099 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3100 unsigned long start, unsigned long end, pgoff_t pgoff); 3101 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3102 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3103 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3104 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3105 struct anon_vma_name *); 3106 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3107 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3108 unsigned long addr, int new_below); 3109 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3110 unsigned long addr, int new_below); 3111 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3112 extern void unlink_file_vma(struct vm_area_struct *); 3113 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3114 unsigned long addr, unsigned long len, pgoff_t pgoff, 3115 bool *need_rmap_locks); 3116 extern void exit_mmap(struct mm_struct *); 3117 3118 static inline int check_data_rlimit(unsigned long rlim, 3119 unsigned long new, 3120 unsigned long start, 3121 unsigned long end_data, 3122 unsigned long start_data) 3123 { 3124 if (rlim < RLIM_INFINITY) { 3125 if (((new - start) + (end_data - start_data)) > rlim) 3126 return -ENOSPC; 3127 } 3128 3129 return 0; 3130 } 3131 3132 extern int mm_take_all_locks(struct mm_struct *mm); 3133 extern void mm_drop_all_locks(struct mm_struct *mm); 3134 3135 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3136 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3137 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3138 extern struct file *get_task_exe_file(struct task_struct *task); 3139 3140 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3141 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3142 3143 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3144 const struct vm_special_mapping *sm); 3145 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3146 unsigned long addr, unsigned long len, 3147 unsigned long flags, 3148 const struct vm_special_mapping *spec); 3149 /* This is an obsolete alternative to _install_special_mapping. */ 3150 extern int install_special_mapping(struct mm_struct *mm, 3151 unsigned long addr, unsigned long len, 3152 unsigned long flags, struct page **pages); 3153 3154 unsigned long randomize_stack_top(unsigned long stack_top); 3155 unsigned long randomize_page(unsigned long start, unsigned long range); 3156 3157 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3158 3159 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3160 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3161 struct list_head *uf); 3162 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3163 unsigned long len, unsigned long prot, unsigned long flags, 3164 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 3165 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3166 unsigned long start, size_t len, struct list_head *uf, 3167 bool downgrade); 3168 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3169 struct list_head *uf); 3170 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3171 3172 #ifdef CONFIG_MMU 3173 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3174 unsigned long start, unsigned long end, 3175 struct list_head *uf, bool downgrade); 3176 extern int __mm_populate(unsigned long addr, unsigned long len, 3177 int ignore_errors); 3178 static inline void mm_populate(unsigned long addr, unsigned long len) 3179 { 3180 /* Ignore errors */ 3181 (void) __mm_populate(addr, len, 1); 3182 } 3183 #else 3184 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3185 #endif 3186 3187 /* These take the mm semaphore themselves */ 3188 extern int __must_check vm_brk(unsigned long, unsigned long); 3189 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3190 extern int vm_munmap(unsigned long, size_t); 3191 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3192 unsigned long, unsigned long, 3193 unsigned long, unsigned long); 3194 3195 struct vm_unmapped_area_info { 3196 #define VM_UNMAPPED_AREA_TOPDOWN 1 3197 unsigned long flags; 3198 unsigned long length; 3199 unsigned long low_limit; 3200 unsigned long high_limit; 3201 unsigned long align_mask; 3202 unsigned long align_offset; 3203 }; 3204 3205 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3206 3207 /* truncate.c */ 3208 extern void truncate_inode_pages(struct address_space *, loff_t); 3209 extern void truncate_inode_pages_range(struct address_space *, 3210 loff_t lstart, loff_t lend); 3211 extern void truncate_inode_pages_final(struct address_space *); 3212 3213 /* generic vm_area_ops exported for stackable file systems */ 3214 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3215 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3216 pgoff_t start_pgoff, pgoff_t end_pgoff); 3217 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3218 3219 extern unsigned long stack_guard_gap; 3220 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3221 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 3222 3223 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3224 extern int expand_downwards(struct vm_area_struct *vma, 3225 unsigned long address); 3226 #if VM_GROWSUP 3227 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 3228 #else 3229 #define expand_upwards(vma, address) (0) 3230 #endif 3231 3232 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3233 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3234 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3235 struct vm_area_struct **pprev); 3236 3237 /* 3238 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3239 * NULL if none. Assume start_addr < end_addr. 3240 */ 3241 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3242 unsigned long start_addr, unsigned long end_addr); 3243 3244 /** 3245 * vma_lookup() - Find a VMA at a specific address 3246 * @mm: The process address space. 3247 * @addr: The user address. 3248 * 3249 * Return: The vm_area_struct at the given address, %NULL otherwise. 3250 */ 3251 static inline 3252 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3253 { 3254 return mtree_load(&mm->mm_mt, addr); 3255 } 3256 3257 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3258 { 3259 unsigned long vm_start = vma->vm_start; 3260 3261 if (vma->vm_flags & VM_GROWSDOWN) { 3262 vm_start -= stack_guard_gap; 3263 if (vm_start > vma->vm_start) 3264 vm_start = 0; 3265 } 3266 return vm_start; 3267 } 3268 3269 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3270 { 3271 unsigned long vm_end = vma->vm_end; 3272 3273 if (vma->vm_flags & VM_GROWSUP) { 3274 vm_end += stack_guard_gap; 3275 if (vm_end < vma->vm_end) 3276 vm_end = -PAGE_SIZE; 3277 } 3278 return vm_end; 3279 } 3280 3281 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3282 { 3283 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3284 } 3285 3286 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3287 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3288 unsigned long vm_start, unsigned long vm_end) 3289 { 3290 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3291 3292 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3293 vma = NULL; 3294 3295 return vma; 3296 } 3297 3298 static inline bool range_in_vma(struct vm_area_struct *vma, 3299 unsigned long start, unsigned long end) 3300 { 3301 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3302 } 3303 3304 #ifdef CONFIG_MMU 3305 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3306 void vma_set_page_prot(struct vm_area_struct *vma); 3307 #else 3308 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3309 { 3310 return __pgprot(0); 3311 } 3312 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3313 { 3314 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3315 } 3316 #endif 3317 3318 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3319 3320 #ifdef CONFIG_NUMA_BALANCING 3321 unsigned long change_prot_numa(struct vm_area_struct *vma, 3322 unsigned long start, unsigned long end); 3323 #endif 3324 3325 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 3326 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3327 unsigned long pfn, unsigned long size, pgprot_t); 3328 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3329 unsigned long pfn, unsigned long size, pgprot_t prot); 3330 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3331 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3332 struct page **pages, unsigned long *num); 3333 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3334 unsigned long num); 3335 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3336 unsigned long num); 3337 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3338 unsigned long pfn); 3339 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3340 unsigned long pfn, pgprot_t pgprot); 3341 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3342 pfn_t pfn); 3343 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3344 unsigned long addr, pfn_t pfn); 3345 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3346 3347 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3348 unsigned long addr, struct page *page) 3349 { 3350 int err = vm_insert_page(vma, addr, page); 3351 3352 if (err == -ENOMEM) 3353 return VM_FAULT_OOM; 3354 if (err < 0 && err != -EBUSY) 3355 return VM_FAULT_SIGBUS; 3356 3357 return VM_FAULT_NOPAGE; 3358 } 3359 3360 #ifndef io_remap_pfn_range 3361 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3362 unsigned long addr, unsigned long pfn, 3363 unsigned long size, pgprot_t prot) 3364 { 3365 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3366 } 3367 #endif 3368 3369 static inline vm_fault_t vmf_error(int err) 3370 { 3371 if (err == -ENOMEM) 3372 return VM_FAULT_OOM; 3373 return VM_FAULT_SIGBUS; 3374 } 3375 3376 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3377 unsigned int foll_flags); 3378 3379 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3380 { 3381 if (vm_fault & VM_FAULT_OOM) 3382 return -ENOMEM; 3383 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3384 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3385 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3386 return -EFAULT; 3387 return 0; 3388 } 3389 3390 /* 3391 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3392 * a (NUMA hinting) fault is required. 3393 */ 3394 static inline bool gup_can_follow_protnone(unsigned int flags) 3395 { 3396 /* 3397 * FOLL_FORCE has to be able to make progress even if the VMA is 3398 * inaccessible. Further, FOLL_FORCE access usually does not represent 3399 * application behaviour and we should avoid triggering NUMA hinting 3400 * faults. 3401 */ 3402 return flags & FOLL_FORCE; 3403 } 3404 3405 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3406 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3407 unsigned long size, pte_fn_t fn, void *data); 3408 extern int apply_to_existing_page_range(struct mm_struct *mm, 3409 unsigned long address, unsigned long size, 3410 pte_fn_t fn, void *data); 3411 3412 #ifdef CONFIG_PAGE_POISONING 3413 extern void __kernel_poison_pages(struct page *page, int numpages); 3414 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3415 extern bool _page_poisoning_enabled_early; 3416 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3417 static inline bool page_poisoning_enabled(void) 3418 { 3419 return _page_poisoning_enabled_early; 3420 } 3421 /* 3422 * For use in fast paths after init_mem_debugging() has run, or when a 3423 * false negative result is not harmful when called too early. 3424 */ 3425 static inline bool page_poisoning_enabled_static(void) 3426 { 3427 return static_branch_unlikely(&_page_poisoning_enabled); 3428 } 3429 static inline void kernel_poison_pages(struct page *page, int numpages) 3430 { 3431 if (page_poisoning_enabled_static()) 3432 __kernel_poison_pages(page, numpages); 3433 } 3434 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3435 { 3436 if (page_poisoning_enabled_static()) 3437 __kernel_unpoison_pages(page, numpages); 3438 } 3439 #else 3440 static inline bool page_poisoning_enabled(void) { return false; } 3441 static inline bool page_poisoning_enabled_static(void) { return false; } 3442 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3443 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3444 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3445 #endif 3446 3447 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3448 static inline bool want_init_on_alloc(gfp_t flags) 3449 { 3450 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3451 &init_on_alloc)) 3452 return true; 3453 return flags & __GFP_ZERO; 3454 } 3455 3456 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3457 static inline bool want_init_on_free(void) 3458 { 3459 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3460 &init_on_free); 3461 } 3462 3463 extern bool _debug_pagealloc_enabled_early; 3464 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3465 3466 static inline bool debug_pagealloc_enabled(void) 3467 { 3468 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3469 _debug_pagealloc_enabled_early; 3470 } 3471 3472 /* 3473 * For use in fast paths after init_debug_pagealloc() has run, or when a 3474 * false negative result is not harmful when called too early. 3475 */ 3476 static inline bool debug_pagealloc_enabled_static(void) 3477 { 3478 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3479 return false; 3480 3481 return static_branch_unlikely(&_debug_pagealloc_enabled); 3482 } 3483 3484 #ifdef CONFIG_DEBUG_PAGEALLOC 3485 /* 3486 * To support DEBUG_PAGEALLOC architecture must ensure that 3487 * __kernel_map_pages() never fails 3488 */ 3489 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3490 3491 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3492 { 3493 if (debug_pagealloc_enabled_static()) 3494 __kernel_map_pages(page, numpages, 1); 3495 } 3496 3497 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3498 { 3499 if (debug_pagealloc_enabled_static()) 3500 __kernel_map_pages(page, numpages, 0); 3501 } 3502 3503 extern unsigned int _debug_guardpage_minorder; 3504 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3505 3506 static inline unsigned int debug_guardpage_minorder(void) 3507 { 3508 return _debug_guardpage_minorder; 3509 } 3510 3511 static inline bool debug_guardpage_enabled(void) 3512 { 3513 return static_branch_unlikely(&_debug_guardpage_enabled); 3514 } 3515 3516 static inline bool page_is_guard(struct page *page) 3517 { 3518 if (!debug_guardpage_enabled()) 3519 return false; 3520 3521 return PageGuard(page); 3522 } 3523 3524 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3525 int migratetype); 3526 static inline bool set_page_guard(struct zone *zone, struct page *page, 3527 unsigned int order, int migratetype) 3528 { 3529 if (!debug_guardpage_enabled()) 3530 return false; 3531 return __set_page_guard(zone, page, order, migratetype); 3532 } 3533 3534 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3535 int migratetype); 3536 static inline void clear_page_guard(struct zone *zone, struct page *page, 3537 unsigned int order, int migratetype) 3538 { 3539 if (!debug_guardpage_enabled()) 3540 return; 3541 __clear_page_guard(zone, page, order, migratetype); 3542 } 3543 3544 #else /* CONFIG_DEBUG_PAGEALLOC */ 3545 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3546 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3547 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3548 static inline bool debug_guardpage_enabled(void) { return false; } 3549 static inline bool page_is_guard(struct page *page) { return false; } 3550 static inline bool set_page_guard(struct zone *zone, struct page *page, 3551 unsigned int order, int migratetype) { return false; } 3552 static inline void clear_page_guard(struct zone *zone, struct page *page, 3553 unsigned int order, int migratetype) {} 3554 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3555 3556 #ifdef __HAVE_ARCH_GATE_AREA 3557 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3558 extern int in_gate_area_no_mm(unsigned long addr); 3559 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3560 #else 3561 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3562 { 3563 return NULL; 3564 } 3565 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3566 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3567 { 3568 return 0; 3569 } 3570 #endif /* __HAVE_ARCH_GATE_AREA */ 3571 3572 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3573 3574 #ifdef CONFIG_SYSCTL 3575 extern int sysctl_drop_caches; 3576 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3577 loff_t *); 3578 #endif 3579 3580 void drop_slab(void); 3581 3582 #ifndef CONFIG_MMU 3583 #define randomize_va_space 0 3584 #else 3585 extern int randomize_va_space; 3586 #endif 3587 3588 const char * arch_vma_name(struct vm_area_struct *vma); 3589 #ifdef CONFIG_MMU 3590 void print_vma_addr(char *prefix, unsigned long rip); 3591 #else 3592 static inline void print_vma_addr(char *prefix, unsigned long rip) 3593 { 3594 } 3595 #endif 3596 3597 void *sparse_buffer_alloc(unsigned long size); 3598 struct page * __populate_section_memmap(unsigned long pfn, 3599 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3600 struct dev_pagemap *pgmap); 3601 void pmd_init(void *addr); 3602 void pud_init(void *addr); 3603 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3604 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3605 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3606 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3607 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3608 struct vmem_altmap *altmap, struct page *reuse); 3609 void *vmemmap_alloc_block(unsigned long size, int node); 3610 struct vmem_altmap; 3611 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3612 struct vmem_altmap *altmap); 3613 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3614 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3615 unsigned long addr, unsigned long next); 3616 int vmemmap_check_pmd(pmd_t *pmd, int node, 3617 unsigned long addr, unsigned long next); 3618 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3619 int node, struct vmem_altmap *altmap); 3620 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3621 int node, struct vmem_altmap *altmap); 3622 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3623 struct vmem_altmap *altmap); 3624 void vmemmap_populate_print_last(void); 3625 #ifdef CONFIG_MEMORY_HOTPLUG 3626 void vmemmap_free(unsigned long start, unsigned long end, 3627 struct vmem_altmap *altmap); 3628 #endif 3629 3630 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP 3631 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3632 struct dev_pagemap *pgmap) 3633 { 3634 return is_power_of_2(sizeof(struct page)) && 3635 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap; 3636 } 3637 #else 3638 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3639 struct dev_pagemap *pgmap) 3640 { 3641 return false; 3642 } 3643 #endif 3644 3645 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3646 unsigned long nr_pages); 3647 3648 enum mf_flags { 3649 MF_COUNT_INCREASED = 1 << 0, 3650 MF_ACTION_REQUIRED = 1 << 1, 3651 MF_MUST_KILL = 1 << 2, 3652 MF_SOFT_OFFLINE = 1 << 3, 3653 MF_UNPOISON = 1 << 4, 3654 MF_SW_SIMULATED = 1 << 5, 3655 MF_NO_RETRY = 1 << 6, 3656 }; 3657 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3658 unsigned long count, int mf_flags); 3659 extern int memory_failure(unsigned long pfn, int flags); 3660 extern void memory_failure_queue_kick(int cpu); 3661 extern int unpoison_memory(unsigned long pfn); 3662 extern void shake_page(struct page *p); 3663 extern atomic_long_t num_poisoned_pages __read_mostly; 3664 extern int soft_offline_page(unsigned long pfn, int flags); 3665 #ifdef CONFIG_MEMORY_FAILURE 3666 /* 3667 * Sysfs entries for memory failure handling statistics. 3668 */ 3669 extern const struct attribute_group memory_failure_attr_group; 3670 extern void memory_failure_queue(unsigned long pfn, int flags); 3671 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3672 bool *migratable_cleared); 3673 void num_poisoned_pages_inc(unsigned long pfn); 3674 void num_poisoned_pages_sub(unsigned long pfn, long i); 3675 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3676 #else 3677 static inline void memory_failure_queue(unsigned long pfn, int flags) 3678 { 3679 } 3680 3681 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3682 bool *migratable_cleared) 3683 { 3684 return 0; 3685 } 3686 3687 static inline void num_poisoned_pages_inc(unsigned long pfn) 3688 { 3689 } 3690 3691 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3692 { 3693 } 3694 #endif 3695 3696 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3697 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3698 struct vm_area_struct *vma, struct list_head *to_kill, 3699 unsigned long ksm_addr); 3700 #endif 3701 3702 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3703 extern void memblk_nr_poison_inc(unsigned long pfn); 3704 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3705 #else 3706 static inline void memblk_nr_poison_inc(unsigned long pfn) 3707 { 3708 } 3709 3710 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3711 { 3712 } 3713 #endif 3714 3715 #ifndef arch_memory_failure 3716 static inline int arch_memory_failure(unsigned long pfn, int flags) 3717 { 3718 return -ENXIO; 3719 } 3720 #endif 3721 3722 #ifndef arch_is_platform_page 3723 static inline bool arch_is_platform_page(u64 paddr) 3724 { 3725 return false; 3726 } 3727 #endif 3728 3729 /* 3730 * Error handlers for various types of pages. 3731 */ 3732 enum mf_result { 3733 MF_IGNORED, /* Error: cannot be handled */ 3734 MF_FAILED, /* Error: handling failed */ 3735 MF_DELAYED, /* Will be handled later */ 3736 MF_RECOVERED, /* Successfully recovered */ 3737 }; 3738 3739 enum mf_action_page_type { 3740 MF_MSG_KERNEL, 3741 MF_MSG_KERNEL_HIGH_ORDER, 3742 MF_MSG_SLAB, 3743 MF_MSG_DIFFERENT_COMPOUND, 3744 MF_MSG_HUGE, 3745 MF_MSG_FREE_HUGE, 3746 MF_MSG_UNMAP_FAILED, 3747 MF_MSG_DIRTY_SWAPCACHE, 3748 MF_MSG_CLEAN_SWAPCACHE, 3749 MF_MSG_DIRTY_MLOCKED_LRU, 3750 MF_MSG_CLEAN_MLOCKED_LRU, 3751 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3752 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3753 MF_MSG_DIRTY_LRU, 3754 MF_MSG_CLEAN_LRU, 3755 MF_MSG_TRUNCATED_LRU, 3756 MF_MSG_BUDDY, 3757 MF_MSG_DAX, 3758 MF_MSG_UNSPLIT_THP, 3759 MF_MSG_UNKNOWN, 3760 }; 3761 3762 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3763 extern void clear_huge_page(struct page *page, 3764 unsigned long addr_hint, 3765 unsigned int pages_per_huge_page); 3766 int copy_user_large_folio(struct folio *dst, struct folio *src, 3767 unsigned long addr_hint, 3768 struct vm_area_struct *vma); 3769 long copy_folio_from_user(struct folio *dst_folio, 3770 const void __user *usr_src, 3771 bool allow_pagefault); 3772 3773 /** 3774 * vma_is_special_huge - Are transhuge page-table entries considered special? 3775 * @vma: Pointer to the struct vm_area_struct to consider 3776 * 3777 * Whether transhuge page-table entries are considered "special" following 3778 * the definition in vm_normal_page(). 3779 * 3780 * Return: true if transhuge page-table entries should be considered special, 3781 * false otherwise. 3782 */ 3783 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3784 { 3785 return vma_is_dax(vma) || (vma->vm_file && 3786 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3787 } 3788 3789 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3790 3791 #if MAX_NUMNODES > 1 3792 void __init setup_nr_node_ids(void); 3793 #else 3794 static inline void setup_nr_node_ids(void) {} 3795 #endif 3796 3797 extern int memcmp_pages(struct page *page1, struct page *page2); 3798 3799 static inline int pages_identical(struct page *page1, struct page *page2) 3800 { 3801 return !memcmp_pages(page1, page2); 3802 } 3803 3804 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3805 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3806 pgoff_t first_index, pgoff_t nr, 3807 pgoff_t bitmap_pgoff, 3808 unsigned long *bitmap, 3809 pgoff_t *start, 3810 pgoff_t *end); 3811 3812 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3813 pgoff_t first_index, pgoff_t nr); 3814 #endif 3815 3816 extern int sysctl_nr_trim_pages; 3817 3818 #ifdef CONFIG_PRINTK 3819 void mem_dump_obj(void *object); 3820 #else 3821 static inline void mem_dump_obj(void *object) {} 3822 #endif 3823 3824 /** 3825 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3826 * @seals: the seals to check 3827 * @vma: the vma to operate on 3828 * 3829 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3830 * the vma flags. Return 0 if check pass, or <0 for errors. 3831 */ 3832 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3833 { 3834 if (seals & F_SEAL_FUTURE_WRITE) { 3835 /* 3836 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3837 * "future write" seal active. 3838 */ 3839 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3840 return -EPERM; 3841 3842 /* 3843 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3844 * MAP_SHARED and read-only, take care to not allow mprotect to 3845 * revert protections on such mappings. Do this only for shared 3846 * mappings. For private mappings, don't need to mask 3847 * VM_MAYWRITE as we still want them to be COW-writable. 3848 */ 3849 if (vma->vm_flags & VM_SHARED) 3850 vm_flags_clear(vma, VM_MAYWRITE); 3851 } 3852 3853 return 0; 3854 } 3855 3856 #ifdef CONFIG_ANON_VMA_NAME 3857 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3858 unsigned long len_in, 3859 struct anon_vma_name *anon_name); 3860 #else 3861 static inline int 3862 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3863 unsigned long len_in, struct anon_vma_name *anon_name) { 3864 return 0; 3865 } 3866 #endif 3867 3868 #endif /* _LINUX_MM_H */ 3869