xref: /linux-6.15/include/linux/mm.h (revision dca6b414)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26 
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34 
35 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37 
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 	max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45 
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49 
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55 
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66 
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70 
71 #ifndef __pa_symbol
72 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74 
75 #ifndef page_to_virt
76 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78 
79 /*
80  * To prevent common memory management code establishing
81  * a zero page mapping on a read fault.
82  * This macro should be defined within <asm/pgtable.h>.
83  * s390 does this to prevent multiplexing of hardware bits
84  * related to the physical page in case of virtualization.
85  */
86 #ifndef mm_forbids_zeropage
87 #define mm_forbids_zeropage(X)	(0)
88 #endif
89 
90 /*
91  * Default maximum number of active map areas, this limits the number of vmas
92  * per mm struct. Users can overwrite this number by sysctl but there is a
93  * problem.
94  *
95  * When a program's coredump is generated as ELF format, a section is created
96  * per a vma. In ELF, the number of sections is represented in unsigned short.
97  * This means the number of sections should be smaller than 65535 at coredump.
98  * Because the kernel adds some informative sections to a image of program at
99  * generating coredump, we need some margin. The number of extra sections is
100  * 1-3 now and depends on arch. We use "5" as safe margin, here.
101  *
102  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103  * not a hard limit any more. Although some userspace tools can be surprised by
104  * that.
105  */
106 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
107 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108 
109 extern int sysctl_max_map_count;
110 
111 extern unsigned long sysctl_user_reserve_kbytes;
112 extern unsigned long sysctl_admin_reserve_kbytes;
113 
114 extern int sysctl_overcommit_memory;
115 extern int sysctl_overcommit_ratio;
116 extern unsigned long sysctl_overcommit_kbytes;
117 
118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 				    size_t *, loff_t *);
120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 				    size_t *, loff_t *);
122 
123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124 
125 /* to align the pointer to the (next) page boundary */
126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127 
128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130 
131 /*
132  * Linux kernel virtual memory manager primitives.
133  * The idea being to have a "virtual" mm in the same way
134  * we have a virtual fs - giving a cleaner interface to the
135  * mm details, and allowing different kinds of memory mappings
136  * (from shared memory to executable loading to arbitrary
137  * mmap() functions).
138  */
139 
140 extern struct kmem_cache *vm_area_cachep;
141 
142 #ifndef CONFIG_MMU
143 extern struct rb_root nommu_region_tree;
144 extern struct rw_semaphore nommu_region_sem;
145 
146 extern unsigned int kobjsize(const void *objp);
147 #endif
148 
149 /*
150  * vm_flags in vm_area_struct, see mm_types.h.
151  * When changing, update also include/trace/events/mmflags.h
152  */
153 #define VM_NONE		0x00000000
154 
155 #define VM_READ		0x00000001	/* currently active flags */
156 #define VM_WRITE	0x00000002
157 #define VM_EXEC		0x00000004
158 #define VM_SHARED	0x00000008
159 
160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
161 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
162 #define VM_MAYWRITE	0x00000020
163 #define VM_MAYEXEC	0x00000040
164 #define VM_MAYSHARE	0x00000080
165 
166 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
167 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
168 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
169 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
170 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
171 
172 #define VM_LOCKED	0x00002000
173 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
174 
175 					/* Used by sys_madvise() */
176 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
177 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
178 
179 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
180 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
181 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
182 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
183 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
184 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
185 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
186 #define VM_ARCH_2	0x02000000
187 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
188 
189 #ifdef CONFIG_MEM_SOFT_DIRTY
190 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
191 #else
192 # define VM_SOFTDIRTY	0
193 #endif
194 
195 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
196 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
197 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
198 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
199 
200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
202 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
203 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
204 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
205 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
206 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
207 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
208 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210 
211 #if defined(CONFIG_X86)
212 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
215 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
216 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1
217 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
218 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
219 #endif
220 #elif defined(CONFIG_PPC)
221 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
222 #elif defined(CONFIG_PARISC)
223 # define VM_GROWSUP	VM_ARCH_1
224 #elif defined(CONFIG_METAG)
225 # define VM_GROWSUP	VM_ARCH_1
226 #elif defined(CONFIG_IA64)
227 # define VM_GROWSUP	VM_ARCH_1
228 #elif !defined(CONFIG_MMU)
229 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
230 #endif
231 
232 #if defined(CONFIG_X86)
233 /* MPX specific bounds table or bounds directory */
234 # define VM_MPX		VM_ARCH_2
235 #endif
236 
237 #ifndef VM_GROWSUP
238 # define VM_GROWSUP	VM_NONE
239 #endif
240 
241 /* Bits set in the VMA until the stack is in its final location */
242 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
243 
244 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246 #endif
247 
248 #ifdef CONFIG_STACK_GROWSUP
249 #define VM_STACK	VM_GROWSUP
250 #else
251 #define VM_STACK	VM_GROWSDOWN
252 #endif
253 
254 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255 
256 /*
257  * Special vmas that are non-mergable, non-mlock()able.
258  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
259  */
260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
261 
262 /* This mask defines which mm->def_flags a process can inherit its parent */
263 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
264 
265 /* This mask is used to clear all the VMA flags used by mlock */
266 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
267 
268 /*
269  * mapping from the currently active vm_flags protection bits (the
270  * low four bits) to a page protection mask..
271  */
272 extern pgprot_t protection_map[16];
273 
274 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
275 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
276 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
277 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
278 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
279 #define FAULT_FLAG_TRIED	0x20	/* Second try */
280 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
281 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
282 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
283 
284 /*
285  * vm_fault is filled by the the pagefault handler and passed to the vma's
286  * ->fault function. The vma's ->fault is responsible for returning a bitmask
287  * of VM_FAULT_xxx flags that give details about how the fault was handled.
288  *
289  * MM layer fills up gfp_mask for page allocations but fault handler might
290  * alter it if its implementation requires a different allocation context.
291  *
292  * pgoff should be used in favour of virtual_address, if possible.
293  */
294 struct vm_fault {
295 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
296 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
297 	pgoff_t pgoff;			/* Logical page offset based on vma */
298 	void __user *virtual_address;	/* Faulting virtual address */
299 
300 	struct page *cow_page;		/* Handler may choose to COW */
301 	struct page *page;		/* ->fault handlers should return a
302 					 * page here, unless VM_FAULT_NOPAGE
303 					 * is set (which is also implied by
304 					 * VM_FAULT_ERROR).
305 					 */
306 	/* for ->map_pages() only */
307 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
308 					 * max_pgoff inclusive */
309 	pte_t *pte;			/* pte entry associated with ->pgoff */
310 };
311 
312 /*
313  * These are the virtual MM functions - opening of an area, closing and
314  * unmapping it (needed to keep files on disk up-to-date etc), pointer
315  * to the functions called when a no-page or a wp-page exception occurs.
316  */
317 struct vm_operations_struct {
318 	void (*open)(struct vm_area_struct * area);
319 	void (*close)(struct vm_area_struct * area);
320 	int (*mremap)(struct vm_area_struct * area);
321 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
322 	int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
323 						pmd_t *, unsigned int flags);
324 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
325 
326 	/* notification that a previously read-only page is about to become
327 	 * writable, if an error is returned it will cause a SIGBUS */
328 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
329 
330 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
331 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
332 
333 	/* called by access_process_vm when get_user_pages() fails, typically
334 	 * for use by special VMAs that can switch between memory and hardware
335 	 */
336 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
337 		      void *buf, int len, int write);
338 
339 	/* Called by the /proc/PID/maps code to ask the vma whether it
340 	 * has a special name.  Returning non-NULL will also cause this
341 	 * vma to be dumped unconditionally. */
342 	const char *(*name)(struct vm_area_struct *vma);
343 
344 #ifdef CONFIG_NUMA
345 	/*
346 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
347 	 * to hold the policy upon return.  Caller should pass NULL @new to
348 	 * remove a policy and fall back to surrounding context--i.e. do not
349 	 * install a MPOL_DEFAULT policy, nor the task or system default
350 	 * mempolicy.
351 	 */
352 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
353 
354 	/*
355 	 * get_policy() op must add reference [mpol_get()] to any policy at
356 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
357 	 * in mm/mempolicy.c will do this automatically.
358 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
359 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
360 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
361 	 * must return NULL--i.e., do not "fallback" to task or system default
362 	 * policy.
363 	 */
364 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
365 					unsigned long addr);
366 #endif
367 	/*
368 	 * Called by vm_normal_page() for special PTEs to find the
369 	 * page for @addr.  This is useful if the default behavior
370 	 * (using pte_page()) would not find the correct page.
371 	 */
372 	struct page *(*find_special_page)(struct vm_area_struct *vma,
373 					  unsigned long addr);
374 };
375 
376 struct mmu_gather;
377 struct inode;
378 
379 #define page_private(page)		((page)->private)
380 #define set_page_private(page, v)	((page)->private = (v))
381 
382 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
383 static inline int pmd_devmap(pmd_t pmd)
384 {
385 	return 0;
386 }
387 #endif
388 
389 /*
390  * FIXME: take this include out, include page-flags.h in
391  * files which need it (119 of them)
392  */
393 #include <linux/page-flags.h>
394 #include <linux/huge_mm.h>
395 
396 /*
397  * Methods to modify the page usage count.
398  *
399  * What counts for a page usage:
400  * - cache mapping   (page->mapping)
401  * - private data    (page->private)
402  * - page mapped in a task's page tables, each mapping
403  *   is counted separately
404  *
405  * Also, many kernel routines increase the page count before a critical
406  * routine so they can be sure the page doesn't go away from under them.
407  */
408 
409 /*
410  * Drop a ref, return true if the refcount fell to zero (the page has no users)
411  */
412 static inline int put_page_testzero(struct page *page)
413 {
414 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
415 	return page_ref_dec_and_test(page);
416 }
417 
418 /*
419  * Try to grab a ref unless the page has a refcount of zero, return false if
420  * that is the case.
421  * This can be called when MMU is off so it must not access
422  * any of the virtual mappings.
423  */
424 static inline int get_page_unless_zero(struct page *page)
425 {
426 	return page_ref_add_unless(page, 1, 0);
427 }
428 
429 extern int page_is_ram(unsigned long pfn);
430 
431 enum {
432 	REGION_INTERSECTS,
433 	REGION_DISJOINT,
434 	REGION_MIXED,
435 };
436 
437 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
438 		      unsigned long desc);
439 
440 /* Support for virtually mapped pages */
441 struct page *vmalloc_to_page(const void *addr);
442 unsigned long vmalloc_to_pfn(const void *addr);
443 
444 /*
445  * Determine if an address is within the vmalloc range
446  *
447  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
448  * is no special casing required.
449  */
450 static inline bool is_vmalloc_addr(const void *x)
451 {
452 #ifdef CONFIG_MMU
453 	unsigned long addr = (unsigned long)x;
454 
455 	return addr >= VMALLOC_START && addr < VMALLOC_END;
456 #else
457 	return false;
458 #endif
459 }
460 #ifdef CONFIG_MMU
461 extern int is_vmalloc_or_module_addr(const void *x);
462 #else
463 static inline int is_vmalloc_or_module_addr(const void *x)
464 {
465 	return 0;
466 }
467 #endif
468 
469 extern void kvfree(const void *addr);
470 
471 static inline atomic_t *compound_mapcount_ptr(struct page *page)
472 {
473 	return &page[1].compound_mapcount;
474 }
475 
476 static inline int compound_mapcount(struct page *page)
477 {
478 	VM_BUG_ON_PAGE(!PageCompound(page), page);
479 	page = compound_head(page);
480 	return atomic_read(compound_mapcount_ptr(page)) + 1;
481 }
482 
483 /*
484  * The atomic page->_mapcount, starts from -1: so that transitions
485  * both from it and to it can be tracked, using atomic_inc_and_test
486  * and atomic_add_negative(-1).
487  */
488 static inline void page_mapcount_reset(struct page *page)
489 {
490 	atomic_set(&(page)->_mapcount, -1);
491 }
492 
493 int __page_mapcount(struct page *page);
494 
495 static inline int page_mapcount(struct page *page)
496 {
497 	VM_BUG_ON_PAGE(PageSlab(page), page);
498 
499 	if (unlikely(PageCompound(page)))
500 		return __page_mapcount(page);
501 	return atomic_read(&page->_mapcount) + 1;
502 }
503 
504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
505 int total_mapcount(struct page *page);
506 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
507 #else
508 static inline int total_mapcount(struct page *page)
509 {
510 	return page_mapcount(page);
511 }
512 static inline int page_trans_huge_mapcount(struct page *page,
513 					   int *total_mapcount)
514 {
515 	int mapcount = page_mapcount(page);
516 	if (total_mapcount)
517 		*total_mapcount = mapcount;
518 	return mapcount;
519 }
520 #endif
521 
522 static inline struct page *virt_to_head_page(const void *x)
523 {
524 	struct page *page = virt_to_page(x);
525 
526 	return compound_head(page);
527 }
528 
529 void __put_page(struct page *page);
530 
531 void put_pages_list(struct list_head *pages);
532 
533 void split_page(struct page *page, unsigned int order);
534 int split_free_page(struct page *page);
535 
536 /*
537  * Compound pages have a destructor function.  Provide a
538  * prototype for that function and accessor functions.
539  * These are _only_ valid on the head of a compound page.
540  */
541 typedef void compound_page_dtor(struct page *);
542 
543 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
544 enum compound_dtor_id {
545 	NULL_COMPOUND_DTOR,
546 	COMPOUND_PAGE_DTOR,
547 #ifdef CONFIG_HUGETLB_PAGE
548 	HUGETLB_PAGE_DTOR,
549 #endif
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 	TRANSHUGE_PAGE_DTOR,
552 #endif
553 	NR_COMPOUND_DTORS,
554 };
555 extern compound_page_dtor * const compound_page_dtors[];
556 
557 static inline void set_compound_page_dtor(struct page *page,
558 		enum compound_dtor_id compound_dtor)
559 {
560 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
561 	page[1].compound_dtor = compound_dtor;
562 }
563 
564 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
565 {
566 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
567 	return compound_page_dtors[page[1].compound_dtor];
568 }
569 
570 static inline unsigned int compound_order(struct page *page)
571 {
572 	if (!PageHead(page))
573 		return 0;
574 	return page[1].compound_order;
575 }
576 
577 static inline void set_compound_order(struct page *page, unsigned int order)
578 {
579 	page[1].compound_order = order;
580 }
581 
582 void free_compound_page(struct page *page);
583 
584 #ifdef CONFIG_MMU
585 /*
586  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
587  * servicing faults for write access.  In the normal case, do always want
588  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
589  * that do not have writing enabled, when used by access_process_vm.
590  */
591 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
592 {
593 	if (likely(vma->vm_flags & VM_WRITE))
594 		pte = pte_mkwrite(pte);
595 	return pte;
596 }
597 
598 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
599 		struct page *page, pte_t *pte, bool write, bool anon, bool old);
600 #endif
601 
602 /*
603  * Multiple processes may "see" the same page. E.g. for untouched
604  * mappings of /dev/null, all processes see the same page full of
605  * zeroes, and text pages of executables and shared libraries have
606  * only one copy in memory, at most, normally.
607  *
608  * For the non-reserved pages, page_count(page) denotes a reference count.
609  *   page_count() == 0 means the page is free. page->lru is then used for
610  *   freelist management in the buddy allocator.
611  *   page_count() > 0  means the page has been allocated.
612  *
613  * Pages are allocated by the slab allocator in order to provide memory
614  * to kmalloc and kmem_cache_alloc. In this case, the management of the
615  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
616  * unless a particular usage is carefully commented. (the responsibility of
617  * freeing the kmalloc memory is the caller's, of course).
618  *
619  * A page may be used by anyone else who does a __get_free_page().
620  * In this case, page_count still tracks the references, and should only
621  * be used through the normal accessor functions. The top bits of page->flags
622  * and page->virtual store page management information, but all other fields
623  * are unused and could be used privately, carefully. The management of this
624  * page is the responsibility of the one who allocated it, and those who have
625  * subsequently been given references to it.
626  *
627  * The other pages (we may call them "pagecache pages") are completely
628  * managed by the Linux memory manager: I/O, buffers, swapping etc.
629  * The following discussion applies only to them.
630  *
631  * A pagecache page contains an opaque `private' member, which belongs to the
632  * page's address_space. Usually, this is the address of a circular list of
633  * the page's disk buffers. PG_private must be set to tell the VM to call
634  * into the filesystem to release these pages.
635  *
636  * A page may belong to an inode's memory mapping. In this case, page->mapping
637  * is the pointer to the inode, and page->index is the file offset of the page,
638  * in units of PAGE_SIZE.
639  *
640  * If pagecache pages are not associated with an inode, they are said to be
641  * anonymous pages. These may become associated with the swapcache, and in that
642  * case PG_swapcache is set, and page->private is an offset into the swapcache.
643  *
644  * In either case (swapcache or inode backed), the pagecache itself holds one
645  * reference to the page. Setting PG_private should also increment the
646  * refcount. The each user mapping also has a reference to the page.
647  *
648  * The pagecache pages are stored in a per-mapping radix tree, which is
649  * rooted at mapping->page_tree, and indexed by offset.
650  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
651  * lists, we instead now tag pages as dirty/writeback in the radix tree.
652  *
653  * All pagecache pages may be subject to I/O:
654  * - inode pages may need to be read from disk,
655  * - inode pages which have been modified and are MAP_SHARED may need
656  *   to be written back to the inode on disk,
657  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
658  *   modified may need to be swapped out to swap space and (later) to be read
659  *   back into memory.
660  */
661 
662 /*
663  * The zone field is never updated after free_area_init_core()
664  * sets it, so none of the operations on it need to be atomic.
665  */
666 
667 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
668 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
669 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
670 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
671 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
672 
673 /*
674  * Define the bit shifts to access each section.  For non-existent
675  * sections we define the shift as 0; that plus a 0 mask ensures
676  * the compiler will optimise away reference to them.
677  */
678 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
679 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
680 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
681 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
682 
683 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
684 #ifdef NODE_NOT_IN_PAGE_FLAGS
685 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
686 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
687 						SECTIONS_PGOFF : ZONES_PGOFF)
688 #else
689 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
690 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
691 						NODES_PGOFF : ZONES_PGOFF)
692 #endif
693 
694 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
695 
696 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
697 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
698 #endif
699 
700 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
701 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
702 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
703 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
704 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
705 
706 static inline enum zone_type page_zonenum(const struct page *page)
707 {
708 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
709 }
710 
711 #ifdef CONFIG_ZONE_DEVICE
712 void get_zone_device_page(struct page *page);
713 void put_zone_device_page(struct page *page);
714 static inline bool is_zone_device_page(const struct page *page)
715 {
716 	return page_zonenum(page) == ZONE_DEVICE;
717 }
718 #else
719 static inline void get_zone_device_page(struct page *page)
720 {
721 }
722 static inline void put_zone_device_page(struct page *page)
723 {
724 }
725 static inline bool is_zone_device_page(const struct page *page)
726 {
727 	return false;
728 }
729 #endif
730 
731 static inline void get_page(struct page *page)
732 {
733 	page = compound_head(page);
734 	/*
735 	 * Getting a normal page or the head of a compound page
736 	 * requires to already have an elevated page->_refcount.
737 	 */
738 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
739 	page_ref_inc(page);
740 
741 	if (unlikely(is_zone_device_page(page)))
742 		get_zone_device_page(page);
743 }
744 
745 static inline void put_page(struct page *page)
746 {
747 	page = compound_head(page);
748 
749 	if (put_page_testzero(page))
750 		__put_page(page);
751 
752 	if (unlikely(is_zone_device_page(page)))
753 		put_zone_device_page(page);
754 }
755 
756 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
757 #define SECTION_IN_PAGE_FLAGS
758 #endif
759 
760 /*
761  * The identification function is mainly used by the buddy allocator for
762  * determining if two pages could be buddies. We are not really identifying
763  * the zone since we could be using the section number id if we do not have
764  * node id available in page flags.
765  * We only guarantee that it will return the same value for two combinable
766  * pages in a zone.
767  */
768 static inline int page_zone_id(struct page *page)
769 {
770 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
771 }
772 
773 static inline int zone_to_nid(struct zone *zone)
774 {
775 #ifdef CONFIG_NUMA
776 	return zone->node;
777 #else
778 	return 0;
779 #endif
780 }
781 
782 #ifdef NODE_NOT_IN_PAGE_FLAGS
783 extern int page_to_nid(const struct page *page);
784 #else
785 static inline int page_to_nid(const struct page *page)
786 {
787 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
788 }
789 #endif
790 
791 #ifdef CONFIG_NUMA_BALANCING
792 static inline int cpu_pid_to_cpupid(int cpu, int pid)
793 {
794 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
795 }
796 
797 static inline int cpupid_to_pid(int cpupid)
798 {
799 	return cpupid & LAST__PID_MASK;
800 }
801 
802 static inline int cpupid_to_cpu(int cpupid)
803 {
804 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
805 }
806 
807 static inline int cpupid_to_nid(int cpupid)
808 {
809 	return cpu_to_node(cpupid_to_cpu(cpupid));
810 }
811 
812 static inline bool cpupid_pid_unset(int cpupid)
813 {
814 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
815 }
816 
817 static inline bool cpupid_cpu_unset(int cpupid)
818 {
819 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
820 }
821 
822 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
823 {
824 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
825 }
826 
827 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
828 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
829 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
830 {
831 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
832 }
833 
834 static inline int page_cpupid_last(struct page *page)
835 {
836 	return page->_last_cpupid;
837 }
838 static inline void page_cpupid_reset_last(struct page *page)
839 {
840 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
841 }
842 #else
843 static inline int page_cpupid_last(struct page *page)
844 {
845 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
846 }
847 
848 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
849 
850 static inline void page_cpupid_reset_last(struct page *page)
851 {
852 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
853 }
854 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
855 #else /* !CONFIG_NUMA_BALANCING */
856 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
857 {
858 	return page_to_nid(page); /* XXX */
859 }
860 
861 static inline int page_cpupid_last(struct page *page)
862 {
863 	return page_to_nid(page); /* XXX */
864 }
865 
866 static inline int cpupid_to_nid(int cpupid)
867 {
868 	return -1;
869 }
870 
871 static inline int cpupid_to_pid(int cpupid)
872 {
873 	return -1;
874 }
875 
876 static inline int cpupid_to_cpu(int cpupid)
877 {
878 	return -1;
879 }
880 
881 static inline int cpu_pid_to_cpupid(int nid, int pid)
882 {
883 	return -1;
884 }
885 
886 static inline bool cpupid_pid_unset(int cpupid)
887 {
888 	return 1;
889 }
890 
891 static inline void page_cpupid_reset_last(struct page *page)
892 {
893 }
894 
895 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
896 {
897 	return false;
898 }
899 #endif /* CONFIG_NUMA_BALANCING */
900 
901 static inline struct zone *page_zone(const struct page *page)
902 {
903 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
904 }
905 
906 #ifdef SECTION_IN_PAGE_FLAGS
907 static inline void set_page_section(struct page *page, unsigned long section)
908 {
909 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
910 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
911 }
912 
913 static inline unsigned long page_to_section(const struct page *page)
914 {
915 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
916 }
917 #endif
918 
919 static inline void set_page_zone(struct page *page, enum zone_type zone)
920 {
921 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
922 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
923 }
924 
925 static inline void set_page_node(struct page *page, unsigned long node)
926 {
927 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
928 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
929 }
930 
931 static inline void set_page_links(struct page *page, enum zone_type zone,
932 	unsigned long node, unsigned long pfn)
933 {
934 	set_page_zone(page, zone);
935 	set_page_node(page, node);
936 #ifdef SECTION_IN_PAGE_FLAGS
937 	set_page_section(page, pfn_to_section_nr(pfn));
938 #endif
939 }
940 
941 #ifdef CONFIG_MEMCG
942 static inline struct mem_cgroup *page_memcg(struct page *page)
943 {
944 	return page->mem_cgroup;
945 }
946 #else
947 static inline struct mem_cgroup *page_memcg(struct page *page)
948 {
949 	return NULL;
950 }
951 #endif
952 
953 /*
954  * Some inline functions in vmstat.h depend on page_zone()
955  */
956 #include <linux/vmstat.h>
957 
958 static __always_inline void *lowmem_page_address(const struct page *page)
959 {
960 	return page_to_virt(page);
961 }
962 
963 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
964 #define HASHED_PAGE_VIRTUAL
965 #endif
966 
967 #if defined(WANT_PAGE_VIRTUAL)
968 static inline void *page_address(const struct page *page)
969 {
970 	return page->virtual;
971 }
972 static inline void set_page_address(struct page *page, void *address)
973 {
974 	page->virtual = address;
975 }
976 #define page_address_init()  do { } while(0)
977 #endif
978 
979 #if defined(HASHED_PAGE_VIRTUAL)
980 void *page_address(const struct page *page);
981 void set_page_address(struct page *page, void *virtual);
982 void page_address_init(void);
983 #endif
984 
985 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
986 #define page_address(page) lowmem_page_address(page)
987 #define set_page_address(page, address)  do { } while(0)
988 #define page_address_init()  do { } while(0)
989 #endif
990 
991 extern void *page_rmapping(struct page *page);
992 extern struct anon_vma *page_anon_vma(struct page *page);
993 extern struct address_space *page_mapping(struct page *page);
994 
995 extern struct address_space *__page_file_mapping(struct page *);
996 
997 static inline
998 struct address_space *page_file_mapping(struct page *page)
999 {
1000 	if (unlikely(PageSwapCache(page)))
1001 		return __page_file_mapping(page);
1002 
1003 	return page->mapping;
1004 }
1005 
1006 /*
1007  * Return the pagecache index of the passed page.  Regular pagecache pages
1008  * use ->index whereas swapcache pages use ->private
1009  */
1010 static inline pgoff_t page_index(struct page *page)
1011 {
1012 	if (unlikely(PageSwapCache(page)))
1013 		return page_private(page);
1014 	return page->index;
1015 }
1016 
1017 extern pgoff_t __page_file_index(struct page *page);
1018 
1019 /*
1020  * Return the file index of the page. Regular pagecache pages use ->index
1021  * whereas swapcache pages use swp_offset(->private)
1022  */
1023 static inline pgoff_t page_file_index(struct page *page)
1024 {
1025 	if (unlikely(PageSwapCache(page)))
1026 		return __page_file_index(page);
1027 
1028 	return page->index;
1029 }
1030 
1031 bool page_mapped(struct page *page);
1032 
1033 /*
1034  * Return true only if the page has been allocated with
1035  * ALLOC_NO_WATERMARKS and the low watermark was not
1036  * met implying that the system is under some pressure.
1037  */
1038 static inline bool page_is_pfmemalloc(struct page *page)
1039 {
1040 	/*
1041 	 * Page index cannot be this large so this must be
1042 	 * a pfmemalloc page.
1043 	 */
1044 	return page->index == -1UL;
1045 }
1046 
1047 /*
1048  * Only to be called by the page allocator on a freshly allocated
1049  * page.
1050  */
1051 static inline void set_page_pfmemalloc(struct page *page)
1052 {
1053 	page->index = -1UL;
1054 }
1055 
1056 static inline void clear_page_pfmemalloc(struct page *page)
1057 {
1058 	page->index = 0;
1059 }
1060 
1061 /*
1062  * Different kinds of faults, as returned by handle_mm_fault().
1063  * Used to decide whether a process gets delivered SIGBUS or
1064  * just gets major/minor fault counters bumped up.
1065  */
1066 
1067 #define VM_FAULT_OOM	0x0001
1068 #define VM_FAULT_SIGBUS	0x0002
1069 #define VM_FAULT_MAJOR	0x0004
1070 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1071 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1072 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1073 #define VM_FAULT_SIGSEGV 0x0040
1074 
1075 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1076 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1077 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1078 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1079 
1080 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1081 
1082 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1083 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1084 			 VM_FAULT_FALLBACK)
1085 
1086 /* Encode hstate index for a hwpoisoned large page */
1087 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1088 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1089 
1090 /*
1091  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1092  */
1093 extern void pagefault_out_of_memory(void);
1094 
1095 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1096 
1097 /*
1098  * Flags passed to show_mem() and show_free_areas() to suppress output in
1099  * various contexts.
1100  */
1101 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1102 
1103 extern void show_free_areas(unsigned int flags);
1104 extern bool skip_free_areas_node(unsigned int flags, int nid);
1105 
1106 int shmem_zero_setup(struct vm_area_struct *);
1107 #ifdef CONFIG_SHMEM
1108 bool shmem_mapping(struct address_space *mapping);
1109 #else
1110 static inline bool shmem_mapping(struct address_space *mapping)
1111 {
1112 	return false;
1113 }
1114 #endif
1115 
1116 extern bool can_do_mlock(void);
1117 extern int user_shm_lock(size_t, struct user_struct *);
1118 extern void user_shm_unlock(size_t, struct user_struct *);
1119 
1120 /*
1121  * Parameter block passed down to zap_pte_range in exceptional cases.
1122  */
1123 struct zap_details {
1124 	struct address_space *check_mapping;	/* Check page->mapping if set */
1125 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1126 	pgoff_t last_index;			/* Highest page->index to unmap */
1127 	bool ignore_dirty;			/* Ignore dirty pages */
1128 	bool check_swap_entries;		/* Check also swap entries */
1129 };
1130 
1131 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1132 		pte_t pte);
1133 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1134 				pmd_t pmd);
1135 
1136 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1137 		unsigned long size);
1138 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1139 		unsigned long size, struct zap_details *);
1140 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1141 		unsigned long start, unsigned long end);
1142 
1143 /**
1144  * mm_walk - callbacks for walk_page_range
1145  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1146  *	       this handler is required to be able to handle
1147  *	       pmd_trans_huge() pmds.  They may simply choose to
1148  *	       split_huge_page() instead of handling it explicitly.
1149  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1150  * @pte_hole: if set, called for each hole at all levels
1151  * @hugetlb_entry: if set, called for each hugetlb entry
1152  * @test_walk: caller specific callback function to determine whether
1153  *             we walk over the current vma or not. A positive returned
1154  *             value means "do page table walk over the current vma,"
1155  *             and a negative one means "abort current page table walk
1156  *             right now." 0 means "skip the current vma."
1157  * @mm:        mm_struct representing the target process of page table walk
1158  * @vma:       vma currently walked (NULL if walking outside vmas)
1159  * @private:   private data for callbacks' usage
1160  *
1161  * (see the comment on walk_page_range() for more details)
1162  */
1163 struct mm_walk {
1164 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1165 			 unsigned long next, struct mm_walk *walk);
1166 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1167 			 unsigned long next, struct mm_walk *walk);
1168 	int (*pte_hole)(unsigned long addr, unsigned long next,
1169 			struct mm_walk *walk);
1170 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1171 			     unsigned long addr, unsigned long next,
1172 			     struct mm_walk *walk);
1173 	int (*test_walk)(unsigned long addr, unsigned long next,
1174 			struct mm_walk *walk);
1175 	struct mm_struct *mm;
1176 	struct vm_area_struct *vma;
1177 	void *private;
1178 };
1179 
1180 int walk_page_range(unsigned long addr, unsigned long end,
1181 		struct mm_walk *walk);
1182 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1183 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1184 		unsigned long end, unsigned long floor, unsigned long ceiling);
1185 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1186 			struct vm_area_struct *vma);
1187 void unmap_mapping_range(struct address_space *mapping,
1188 		loff_t const holebegin, loff_t const holelen, int even_cows);
1189 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1190 	unsigned long *pfn);
1191 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1192 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1193 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1194 			void *buf, int len, int write);
1195 
1196 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1197 		loff_t const holebegin, loff_t const holelen)
1198 {
1199 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1200 }
1201 
1202 extern void truncate_pagecache(struct inode *inode, loff_t new);
1203 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1204 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1205 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1206 int truncate_inode_page(struct address_space *mapping, struct page *page);
1207 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1208 int invalidate_inode_page(struct page *page);
1209 
1210 #ifdef CONFIG_MMU
1211 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1212 			unsigned long address, unsigned int flags);
1213 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1214 			    unsigned long address, unsigned int fault_flags,
1215 			    bool *unlocked);
1216 #else
1217 static inline int handle_mm_fault(struct mm_struct *mm,
1218 			struct vm_area_struct *vma, unsigned long address,
1219 			unsigned int flags)
1220 {
1221 	/* should never happen if there's no MMU */
1222 	BUG();
1223 	return VM_FAULT_SIGBUS;
1224 }
1225 static inline int fixup_user_fault(struct task_struct *tsk,
1226 		struct mm_struct *mm, unsigned long address,
1227 		unsigned int fault_flags, bool *unlocked)
1228 {
1229 	/* should never happen if there's no MMU */
1230 	BUG();
1231 	return -EFAULT;
1232 }
1233 #endif
1234 
1235 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1236 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1237 		void *buf, int len, int write);
1238 
1239 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1240 		      unsigned long start, unsigned long nr_pages,
1241 		      unsigned int foll_flags, struct page **pages,
1242 		      struct vm_area_struct **vmas, int *nonblocking);
1243 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1244 			    unsigned long start, unsigned long nr_pages,
1245 			    int write, int force, struct page **pages,
1246 			    struct vm_area_struct **vmas);
1247 long get_user_pages(unsigned long start, unsigned long nr_pages,
1248 			    int write, int force, struct page **pages,
1249 			    struct vm_area_struct **vmas);
1250 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1251 		    int write, int force, struct page **pages, int *locked);
1252 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1253 			       unsigned long start, unsigned long nr_pages,
1254 			       int write, int force, struct page **pages,
1255 			       unsigned int gup_flags);
1256 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1257 		    int write, int force, struct page **pages);
1258 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1259 			struct page **pages);
1260 
1261 /* Container for pinned pfns / pages */
1262 struct frame_vector {
1263 	unsigned int nr_allocated;	/* Number of frames we have space for */
1264 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1265 	bool got_ref;		/* Did we pin pages by getting page ref? */
1266 	bool is_pfns;		/* Does array contain pages or pfns? */
1267 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1268 				 * pfns_vector_pages() or pfns_vector_pfns()
1269 				 * for access */
1270 };
1271 
1272 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1273 void frame_vector_destroy(struct frame_vector *vec);
1274 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1275 		     bool write, bool force, struct frame_vector *vec);
1276 void put_vaddr_frames(struct frame_vector *vec);
1277 int frame_vector_to_pages(struct frame_vector *vec);
1278 void frame_vector_to_pfns(struct frame_vector *vec);
1279 
1280 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1281 {
1282 	return vec->nr_frames;
1283 }
1284 
1285 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1286 {
1287 	if (vec->is_pfns) {
1288 		int err = frame_vector_to_pages(vec);
1289 
1290 		if (err)
1291 			return ERR_PTR(err);
1292 	}
1293 	return (struct page **)(vec->ptrs);
1294 }
1295 
1296 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1297 {
1298 	if (!vec->is_pfns)
1299 		frame_vector_to_pfns(vec);
1300 	return (unsigned long *)(vec->ptrs);
1301 }
1302 
1303 struct kvec;
1304 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1305 			struct page **pages);
1306 int get_kernel_page(unsigned long start, int write, struct page **pages);
1307 struct page *get_dump_page(unsigned long addr);
1308 
1309 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1310 extern void do_invalidatepage(struct page *page, unsigned int offset,
1311 			      unsigned int length);
1312 
1313 int __set_page_dirty_nobuffers(struct page *page);
1314 int __set_page_dirty_no_writeback(struct page *page);
1315 int redirty_page_for_writepage(struct writeback_control *wbc,
1316 				struct page *page);
1317 void account_page_dirtied(struct page *page, struct address_space *mapping);
1318 void account_page_cleaned(struct page *page, struct address_space *mapping,
1319 			  struct bdi_writeback *wb);
1320 int set_page_dirty(struct page *page);
1321 int set_page_dirty_lock(struct page *page);
1322 void cancel_dirty_page(struct page *page);
1323 int clear_page_dirty_for_io(struct page *page);
1324 
1325 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1326 
1327 /* Is the vma a continuation of the stack vma above it? */
1328 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1329 {
1330 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1331 }
1332 
1333 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1334 {
1335 	return !vma->vm_ops;
1336 }
1337 
1338 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1339 					     unsigned long addr)
1340 {
1341 	return (vma->vm_flags & VM_GROWSDOWN) &&
1342 		(vma->vm_start == addr) &&
1343 		!vma_growsdown(vma->vm_prev, addr);
1344 }
1345 
1346 /* Is the vma a continuation of the stack vma below it? */
1347 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1348 {
1349 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1350 }
1351 
1352 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1353 					   unsigned long addr)
1354 {
1355 	return (vma->vm_flags & VM_GROWSUP) &&
1356 		(vma->vm_end == addr) &&
1357 		!vma_growsup(vma->vm_next, addr);
1358 }
1359 
1360 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
1361 
1362 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1363 		unsigned long old_addr, struct vm_area_struct *new_vma,
1364 		unsigned long new_addr, unsigned long len,
1365 		bool need_rmap_locks);
1366 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1367 			      unsigned long end, pgprot_t newprot,
1368 			      int dirty_accountable, int prot_numa);
1369 extern int mprotect_fixup(struct vm_area_struct *vma,
1370 			  struct vm_area_struct **pprev, unsigned long start,
1371 			  unsigned long end, unsigned long newflags);
1372 
1373 /*
1374  * doesn't attempt to fault and will return short.
1375  */
1376 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1377 			  struct page **pages);
1378 /*
1379  * per-process(per-mm_struct) statistics.
1380  */
1381 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1382 {
1383 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1384 
1385 #ifdef SPLIT_RSS_COUNTING
1386 	/*
1387 	 * counter is updated in asynchronous manner and may go to minus.
1388 	 * But it's never be expected number for users.
1389 	 */
1390 	if (val < 0)
1391 		val = 0;
1392 #endif
1393 	return (unsigned long)val;
1394 }
1395 
1396 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1397 {
1398 	atomic_long_add(value, &mm->rss_stat.count[member]);
1399 }
1400 
1401 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1402 {
1403 	atomic_long_inc(&mm->rss_stat.count[member]);
1404 }
1405 
1406 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1407 {
1408 	atomic_long_dec(&mm->rss_stat.count[member]);
1409 }
1410 
1411 /* Optimized variant when page is already known not to be PageAnon */
1412 static inline int mm_counter_file(struct page *page)
1413 {
1414 	if (PageSwapBacked(page))
1415 		return MM_SHMEMPAGES;
1416 	return MM_FILEPAGES;
1417 }
1418 
1419 static inline int mm_counter(struct page *page)
1420 {
1421 	if (PageAnon(page))
1422 		return MM_ANONPAGES;
1423 	return mm_counter_file(page);
1424 }
1425 
1426 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1427 {
1428 	return get_mm_counter(mm, MM_FILEPAGES) +
1429 		get_mm_counter(mm, MM_ANONPAGES) +
1430 		get_mm_counter(mm, MM_SHMEMPAGES);
1431 }
1432 
1433 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1434 {
1435 	return max(mm->hiwater_rss, get_mm_rss(mm));
1436 }
1437 
1438 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1439 {
1440 	return max(mm->hiwater_vm, mm->total_vm);
1441 }
1442 
1443 static inline void update_hiwater_rss(struct mm_struct *mm)
1444 {
1445 	unsigned long _rss = get_mm_rss(mm);
1446 
1447 	if ((mm)->hiwater_rss < _rss)
1448 		(mm)->hiwater_rss = _rss;
1449 }
1450 
1451 static inline void update_hiwater_vm(struct mm_struct *mm)
1452 {
1453 	if (mm->hiwater_vm < mm->total_vm)
1454 		mm->hiwater_vm = mm->total_vm;
1455 }
1456 
1457 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1458 {
1459 	mm->hiwater_rss = get_mm_rss(mm);
1460 }
1461 
1462 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1463 					 struct mm_struct *mm)
1464 {
1465 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1466 
1467 	if (*maxrss < hiwater_rss)
1468 		*maxrss = hiwater_rss;
1469 }
1470 
1471 #if defined(SPLIT_RSS_COUNTING)
1472 void sync_mm_rss(struct mm_struct *mm);
1473 #else
1474 static inline void sync_mm_rss(struct mm_struct *mm)
1475 {
1476 }
1477 #endif
1478 
1479 #ifndef __HAVE_ARCH_PTE_DEVMAP
1480 static inline int pte_devmap(pte_t pte)
1481 {
1482 	return 0;
1483 }
1484 #endif
1485 
1486 int vma_wants_writenotify(struct vm_area_struct *vma);
1487 
1488 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1489 			       spinlock_t **ptl);
1490 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1491 				    spinlock_t **ptl)
1492 {
1493 	pte_t *ptep;
1494 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1495 	return ptep;
1496 }
1497 
1498 #ifdef __PAGETABLE_PUD_FOLDED
1499 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1500 						unsigned long address)
1501 {
1502 	return 0;
1503 }
1504 #else
1505 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1506 #endif
1507 
1508 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1509 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1510 						unsigned long address)
1511 {
1512 	return 0;
1513 }
1514 
1515 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1516 
1517 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1518 {
1519 	return 0;
1520 }
1521 
1522 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1523 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1524 
1525 #else
1526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1527 
1528 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1529 {
1530 	atomic_long_set(&mm->nr_pmds, 0);
1531 }
1532 
1533 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1534 {
1535 	return atomic_long_read(&mm->nr_pmds);
1536 }
1537 
1538 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1539 {
1540 	atomic_long_inc(&mm->nr_pmds);
1541 }
1542 
1543 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1544 {
1545 	atomic_long_dec(&mm->nr_pmds);
1546 }
1547 #endif
1548 
1549 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1550 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1551 
1552 /*
1553  * The following ifdef needed to get the 4level-fixup.h header to work.
1554  * Remove it when 4level-fixup.h has been removed.
1555  */
1556 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1557 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1558 {
1559 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1560 		NULL: pud_offset(pgd, address);
1561 }
1562 
1563 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1564 {
1565 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1566 		NULL: pmd_offset(pud, address);
1567 }
1568 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1569 
1570 #if USE_SPLIT_PTE_PTLOCKS
1571 #if ALLOC_SPLIT_PTLOCKS
1572 void __init ptlock_cache_init(void);
1573 extern bool ptlock_alloc(struct page *page);
1574 extern void ptlock_free(struct page *page);
1575 
1576 static inline spinlock_t *ptlock_ptr(struct page *page)
1577 {
1578 	return page->ptl;
1579 }
1580 #else /* ALLOC_SPLIT_PTLOCKS */
1581 static inline void ptlock_cache_init(void)
1582 {
1583 }
1584 
1585 static inline bool ptlock_alloc(struct page *page)
1586 {
1587 	return true;
1588 }
1589 
1590 static inline void ptlock_free(struct page *page)
1591 {
1592 }
1593 
1594 static inline spinlock_t *ptlock_ptr(struct page *page)
1595 {
1596 	return &page->ptl;
1597 }
1598 #endif /* ALLOC_SPLIT_PTLOCKS */
1599 
1600 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1601 {
1602 	return ptlock_ptr(pmd_page(*pmd));
1603 }
1604 
1605 static inline bool ptlock_init(struct page *page)
1606 {
1607 	/*
1608 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1609 	 * with 0. Make sure nobody took it in use in between.
1610 	 *
1611 	 * It can happen if arch try to use slab for page table allocation:
1612 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1613 	 */
1614 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1615 	if (!ptlock_alloc(page))
1616 		return false;
1617 	spin_lock_init(ptlock_ptr(page));
1618 	return true;
1619 }
1620 
1621 /* Reset page->mapping so free_pages_check won't complain. */
1622 static inline void pte_lock_deinit(struct page *page)
1623 {
1624 	page->mapping = NULL;
1625 	ptlock_free(page);
1626 }
1627 
1628 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1629 /*
1630  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1631  */
1632 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1633 {
1634 	return &mm->page_table_lock;
1635 }
1636 static inline void ptlock_cache_init(void) {}
1637 static inline bool ptlock_init(struct page *page) { return true; }
1638 static inline void pte_lock_deinit(struct page *page) {}
1639 #endif /* USE_SPLIT_PTE_PTLOCKS */
1640 
1641 static inline void pgtable_init(void)
1642 {
1643 	ptlock_cache_init();
1644 	pgtable_cache_init();
1645 }
1646 
1647 static inline bool pgtable_page_ctor(struct page *page)
1648 {
1649 	if (!ptlock_init(page))
1650 		return false;
1651 	inc_zone_page_state(page, NR_PAGETABLE);
1652 	return true;
1653 }
1654 
1655 static inline void pgtable_page_dtor(struct page *page)
1656 {
1657 	pte_lock_deinit(page);
1658 	dec_zone_page_state(page, NR_PAGETABLE);
1659 }
1660 
1661 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1662 ({							\
1663 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1664 	pte_t *__pte = pte_offset_map(pmd, address);	\
1665 	*(ptlp) = __ptl;				\
1666 	spin_lock(__ptl);				\
1667 	__pte;						\
1668 })
1669 
1670 #define pte_unmap_unlock(pte, ptl)	do {		\
1671 	spin_unlock(ptl);				\
1672 	pte_unmap(pte);					\
1673 } while (0)
1674 
1675 #define pte_alloc(mm, pmd, address)			\
1676 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1677 
1678 #define pte_alloc_map(mm, pmd, address)			\
1679 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1680 
1681 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1682 	(pte_alloc(mm, pmd, address) ?			\
1683 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1684 
1685 #define pte_alloc_kernel(pmd, address)			\
1686 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1687 		NULL: pte_offset_kernel(pmd, address))
1688 
1689 #if USE_SPLIT_PMD_PTLOCKS
1690 
1691 static struct page *pmd_to_page(pmd_t *pmd)
1692 {
1693 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1694 	return virt_to_page((void *)((unsigned long) pmd & mask));
1695 }
1696 
1697 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1698 {
1699 	return ptlock_ptr(pmd_to_page(pmd));
1700 }
1701 
1702 static inline bool pgtable_pmd_page_ctor(struct page *page)
1703 {
1704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1705 	page->pmd_huge_pte = NULL;
1706 #endif
1707 	return ptlock_init(page);
1708 }
1709 
1710 static inline void pgtable_pmd_page_dtor(struct page *page)
1711 {
1712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1713 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1714 #endif
1715 	ptlock_free(page);
1716 }
1717 
1718 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1719 
1720 #else
1721 
1722 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1723 {
1724 	return &mm->page_table_lock;
1725 }
1726 
1727 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1728 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1729 
1730 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1731 
1732 #endif
1733 
1734 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1735 {
1736 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1737 	spin_lock(ptl);
1738 	return ptl;
1739 }
1740 
1741 extern void free_area_init(unsigned long * zones_size);
1742 extern void free_area_init_node(int nid, unsigned long * zones_size,
1743 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1744 extern void free_initmem(void);
1745 
1746 /*
1747  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1748  * into the buddy system. The freed pages will be poisoned with pattern
1749  * "poison" if it's within range [0, UCHAR_MAX].
1750  * Return pages freed into the buddy system.
1751  */
1752 extern unsigned long free_reserved_area(void *start, void *end,
1753 					int poison, char *s);
1754 
1755 #ifdef	CONFIG_HIGHMEM
1756 /*
1757  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1758  * and totalram_pages.
1759  */
1760 extern void free_highmem_page(struct page *page);
1761 #endif
1762 
1763 extern void adjust_managed_page_count(struct page *page, long count);
1764 extern void mem_init_print_info(const char *str);
1765 
1766 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1767 
1768 /* Free the reserved page into the buddy system, so it gets managed. */
1769 static inline void __free_reserved_page(struct page *page)
1770 {
1771 	ClearPageReserved(page);
1772 	init_page_count(page);
1773 	__free_page(page);
1774 }
1775 
1776 static inline void free_reserved_page(struct page *page)
1777 {
1778 	__free_reserved_page(page);
1779 	adjust_managed_page_count(page, 1);
1780 }
1781 
1782 static inline void mark_page_reserved(struct page *page)
1783 {
1784 	SetPageReserved(page);
1785 	adjust_managed_page_count(page, -1);
1786 }
1787 
1788 /*
1789  * Default method to free all the __init memory into the buddy system.
1790  * The freed pages will be poisoned with pattern "poison" if it's within
1791  * range [0, UCHAR_MAX].
1792  * Return pages freed into the buddy system.
1793  */
1794 static inline unsigned long free_initmem_default(int poison)
1795 {
1796 	extern char __init_begin[], __init_end[];
1797 
1798 	return free_reserved_area(&__init_begin, &__init_end,
1799 				  poison, "unused kernel");
1800 }
1801 
1802 static inline unsigned long get_num_physpages(void)
1803 {
1804 	int nid;
1805 	unsigned long phys_pages = 0;
1806 
1807 	for_each_online_node(nid)
1808 		phys_pages += node_present_pages(nid);
1809 
1810 	return phys_pages;
1811 }
1812 
1813 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1814 /*
1815  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1816  * zones, allocate the backing mem_map and account for memory holes in a more
1817  * architecture independent manner. This is a substitute for creating the
1818  * zone_sizes[] and zholes_size[] arrays and passing them to
1819  * free_area_init_node()
1820  *
1821  * An architecture is expected to register range of page frames backed by
1822  * physical memory with memblock_add[_node]() before calling
1823  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1824  * usage, an architecture is expected to do something like
1825  *
1826  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1827  * 							 max_highmem_pfn};
1828  * for_each_valid_physical_page_range()
1829  * 	memblock_add_node(base, size, nid)
1830  * free_area_init_nodes(max_zone_pfns);
1831  *
1832  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1833  * registered physical page range.  Similarly
1834  * sparse_memory_present_with_active_regions() calls memory_present() for
1835  * each range when SPARSEMEM is enabled.
1836  *
1837  * See mm/page_alloc.c for more information on each function exposed by
1838  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1839  */
1840 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1841 unsigned long node_map_pfn_alignment(void);
1842 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1843 						unsigned long end_pfn);
1844 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1845 						unsigned long end_pfn);
1846 extern void get_pfn_range_for_nid(unsigned int nid,
1847 			unsigned long *start_pfn, unsigned long *end_pfn);
1848 extern unsigned long find_min_pfn_with_active_regions(void);
1849 extern void free_bootmem_with_active_regions(int nid,
1850 						unsigned long max_low_pfn);
1851 extern void sparse_memory_present_with_active_regions(int nid);
1852 
1853 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1854 
1855 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1856     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1857 static inline int __early_pfn_to_nid(unsigned long pfn,
1858 					struct mminit_pfnnid_cache *state)
1859 {
1860 	return 0;
1861 }
1862 #else
1863 /* please see mm/page_alloc.c */
1864 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1865 /* there is a per-arch backend function. */
1866 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1867 					struct mminit_pfnnid_cache *state);
1868 #endif
1869 
1870 extern void set_dma_reserve(unsigned long new_dma_reserve);
1871 extern void memmap_init_zone(unsigned long, int, unsigned long,
1872 				unsigned long, enum memmap_context);
1873 extern void setup_per_zone_wmarks(void);
1874 extern int __meminit init_per_zone_wmark_min(void);
1875 extern void mem_init(void);
1876 extern void __init mmap_init(void);
1877 extern void show_mem(unsigned int flags);
1878 extern long si_mem_available(void);
1879 extern void si_meminfo(struct sysinfo * val);
1880 extern void si_meminfo_node(struct sysinfo *val, int nid);
1881 
1882 extern __printf(3, 4)
1883 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1884 		const char *fmt, ...);
1885 
1886 extern void setup_per_cpu_pageset(void);
1887 
1888 extern void zone_pcp_update(struct zone *zone);
1889 extern void zone_pcp_reset(struct zone *zone);
1890 
1891 /* page_alloc.c */
1892 extern int min_free_kbytes;
1893 extern int watermark_scale_factor;
1894 
1895 /* nommu.c */
1896 extern atomic_long_t mmap_pages_allocated;
1897 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1898 
1899 /* interval_tree.c */
1900 void vma_interval_tree_insert(struct vm_area_struct *node,
1901 			      struct rb_root *root);
1902 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1903 				    struct vm_area_struct *prev,
1904 				    struct rb_root *root);
1905 void vma_interval_tree_remove(struct vm_area_struct *node,
1906 			      struct rb_root *root);
1907 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1908 				unsigned long start, unsigned long last);
1909 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1910 				unsigned long start, unsigned long last);
1911 
1912 #define vma_interval_tree_foreach(vma, root, start, last)		\
1913 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1914 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1915 
1916 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1917 				   struct rb_root *root);
1918 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1919 				   struct rb_root *root);
1920 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1921 	struct rb_root *root, unsigned long start, unsigned long last);
1922 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1923 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1924 #ifdef CONFIG_DEBUG_VM_RB
1925 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1926 #endif
1927 
1928 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1929 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1930 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1931 
1932 /* mmap.c */
1933 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1934 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1935 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1936 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1937 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1938 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1939 	struct mempolicy *, struct vm_userfaultfd_ctx);
1940 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1941 extern int split_vma(struct mm_struct *,
1942 	struct vm_area_struct *, unsigned long addr, int new_below);
1943 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1944 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1945 	struct rb_node **, struct rb_node *);
1946 extern void unlink_file_vma(struct vm_area_struct *);
1947 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1948 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1949 	bool *need_rmap_locks);
1950 extern void exit_mmap(struct mm_struct *);
1951 
1952 static inline int check_data_rlimit(unsigned long rlim,
1953 				    unsigned long new,
1954 				    unsigned long start,
1955 				    unsigned long end_data,
1956 				    unsigned long start_data)
1957 {
1958 	if (rlim < RLIM_INFINITY) {
1959 		if (((new - start) + (end_data - start_data)) > rlim)
1960 			return -ENOSPC;
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 extern int mm_take_all_locks(struct mm_struct *mm);
1967 extern void mm_drop_all_locks(struct mm_struct *mm);
1968 
1969 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1970 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1971 
1972 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1973 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1974 
1975 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1976 				   unsigned long addr, unsigned long len,
1977 				   unsigned long flags,
1978 				   const struct vm_special_mapping *spec);
1979 /* This is an obsolete alternative to _install_special_mapping. */
1980 extern int install_special_mapping(struct mm_struct *mm,
1981 				   unsigned long addr, unsigned long len,
1982 				   unsigned long flags, struct page **pages);
1983 
1984 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1985 
1986 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1987 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1988 extern unsigned long do_mmap(struct file *file, unsigned long addr,
1989 	unsigned long len, unsigned long prot, unsigned long flags,
1990 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1991 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1992 
1993 static inline unsigned long
1994 do_mmap_pgoff(struct file *file, unsigned long addr,
1995 	unsigned long len, unsigned long prot, unsigned long flags,
1996 	unsigned long pgoff, unsigned long *populate)
1997 {
1998 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1999 }
2000 
2001 #ifdef CONFIG_MMU
2002 extern int __mm_populate(unsigned long addr, unsigned long len,
2003 			 int ignore_errors);
2004 static inline void mm_populate(unsigned long addr, unsigned long len)
2005 {
2006 	/* Ignore errors */
2007 	(void) __mm_populate(addr, len, 1);
2008 }
2009 #else
2010 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2011 #endif
2012 
2013 /* These take the mm semaphore themselves */
2014 extern unsigned long __must_check vm_brk(unsigned long, unsigned long);
2015 extern int vm_munmap(unsigned long, size_t);
2016 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2017         unsigned long, unsigned long,
2018         unsigned long, unsigned long);
2019 
2020 struct vm_unmapped_area_info {
2021 #define VM_UNMAPPED_AREA_TOPDOWN 1
2022 	unsigned long flags;
2023 	unsigned long length;
2024 	unsigned long low_limit;
2025 	unsigned long high_limit;
2026 	unsigned long align_mask;
2027 	unsigned long align_offset;
2028 };
2029 
2030 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2031 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2032 
2033 /*
2034  * Search for an unmapped address range.
2035  *
2036  * We are looking for a range that:
2037  * - does not intersect with any VMA;
2038  * - is contained within the [low_limit, high_limit) interval;
2039  * - is at least the desired size.
2040  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2041  */
2042 static inline unsigned long
2043 vm_unmapped_area(struct vm_unmapped_area_info *info)
2044 {
2045 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2046 		return unmapped_area_topdown(info);
2047 	else
2048 		return unmapped_area(info);
2049 }
2050 
2051 /* truncate.c */
2052 extern void truncate_inode_pages(struct address_space *, loff_t);
2053 extern void truncate_inode_pages_range(struct address_space *,
2054 				       loff_t lstart, loff_t lend);
2055 extern void truncate_inode_pages_final(struct address_space *);
2056 
2057 /* generic vm_area_ops exported for stackable file systems */
2058 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
2059 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
2060 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2061 
2062 /* mm/page-writeback.c */
2063 int write_one_page(struct page *page, int wait);
2064 void task_dirty_inc(struct task_struct *tsk);
2065 
2066 /* readahead.c */
2067 #define VM_MAX_READAHEAD	128	/* kbytes */
2068 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2069 
2070 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2071 			pgoff_t offset, unsigned long nr_to_read);
2072 
2073 void page_cache_sync_readahead(struct address_space *mapping,
2074 			       struct file_ra_state *ra,
2075 			       struct file *filp,
2076 			       pgoff_t offset,
2077 			       unsigned long size);
2078 
2079 void page_cache_async_readahead(struct address_space *mapping,
2080 				struct file_ra_state *ra,
2081 				struct file *filp,
2082 				struct page *pg,
2083 				pgoff_t offset,
2084 				unsigned long size);
2085 
2086 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2087 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2088 
2089 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2090 extern int expand_downwards(struct vm_area_struct *vma,
2091 		unsigned long address);
2092 #if VM_GROWSUP
2093 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2094 #else
2095   #define expand_upwards(vma, address) (0)
2096 #endif
2097 
2098 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2099 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2100 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2101 					     struct vm_area_struct **pprev);
2102 
2103 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2104    NULL if none.  Assume start_addr < end_addr. */
2105 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2106 {
2107 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2108 
2109 	if (vma && end_addr <= vma->vm_start)
2110 		vma = NULL;
2111 	return vma;
2112 }
2113 
2114 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2115 {
2116 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2117 }
2118 
2119 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2120 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2121 				unsigned long vm_start, unsigned long vm_end)
2122 {
2123 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2124 
2125 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2126 		vma = NULL;
2127 
2128 	return vma;
2129 }
2130 
2131 #ifdef CONFIG_MMU
2132 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2133 void vma_set_page_prot(struct vm_area_struct *vma);
2134 #else
2135 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2136 {
2137 	return __pgprot(0);
2138 }
2139 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2140 {
2141 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2142 }
2143 #endif
2144 
2145 #ifdef CONFIG_NUMA_BALANCING
2146 unsigned long change_prot_numa(struct vm_area_struct *vma,
2147 			unsigned long start, unsigned long end);
2148 #endif
2149 
2150 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2151 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2152 			unsigned long pfn, unsigned long size, pgprot_t);
2153 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2154 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2155 			unsigned long pfn);
2156 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2157 			unsigned long pfn, pgprot_t pgprot);
2158 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2159 			pfn_t pfn);
2160 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2161 
2162 
2163 struct page *follow_page_mask(struct vm_area_struct *vma,
2164 			      unsigned long address, unsigned int foll_flags,
2165 			      unsigned int *page_mask);
2166 
2167 static inline struct page *follow_page(struct vm_area_struct *vma,
2168 		unsigned long address, unsigned int foll_flags)
2169 {
2170 	unsigned int unused_page_mask;
2171 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2172 }
2173 
2174 #define FOLL_WRITE	0x01	/* check pte is writable */
2175 #define FOLL_TOUCH	0x02	/* mark page accessed */
2176 #define FOLL_GET	0x04	/* do get_page on page */
2177 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2178 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2179 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2180 				 * and return without waiting upon it */
2181 #define FOLL_POPULATE	0x40	/* fault in page */
2182 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2183 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2184 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2185 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2186 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2187 #define FOLL_MLOCK	0x1000	/* lock present pages */
2188 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2189 
2190 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2191 			void *data);
2192 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2193 			       unsigned long size, pte_fn_t fn, void *data);
2194 
2195 
2196 #ifdef CONFIG_PAGE_POISONING
2197 extern bool page_poisoning_enabled(void);
2198 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2199 extern bool page_is_poisoned(struct page *page);
2200 #else
2201 static inline bool page_poisoning_enabled(void) { return false; }
2202 static inline void kernel_poison_pages(struct page *page, int numpages,
2203 					int enable) { }
2204 static inline bool page_is_poisoned(struct page *page) { return false; }
2205 #endif
2206 
2207 #ifdef CONFIG_DEBUG_PAGEALLOC
2208 extern bool _debug_pagealloc_enabled;
2209 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2210 
2211 static inline bool debug_pagealloc_enabled(void)
2212 {
2213 	return _debug_pagealloc_enabled;
2214 }
2215 
2216 static inline void
2217 kernel_map_pages(struct page *page, int numpages, int enable)
2218 {
2219 	if (!debug_pagealloc_enabled())
2220 		return;
2221 
2222 	__kernel_map_pages(page, numpages, enable);
2223 }
2224 #ifdef CONFIG_HIBERNATION
2225 extern bool kernel_page_present(struct page *page);
2226 #endif	/* CONFIG_HIBERNATION */
2227 #else	/* CONFIG_DEBUG_PAGEALLOC */
2228 static inline void
2229 kernel_map_pages(struct page *page, int numpages, int enable) {}
2230 #ifdef CONFIG_HIBERNATION
2231 static inline bool kernel_page_present(struct page *page) { return true; }
2232 #endif	/* CONFIG_HIBERNATION */
2233 static inline bool debug_pagealloc_enabled(void)
2234 {
2235 	return false;
2236 }
2237 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2238 
2239 #ifdef __HAVE_ARCH_GATE_AREA
2240 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2241 extern int in_gate_area_no_mm(unsigned long addr);
2242 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2243 #else
2244 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2245 {
2246 	return NULL;
2247 }
2248 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2249 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2250 {
2251 	return 0;
2252 }
2253 #endif	/* __HAVE_ARCH_GATE_AREA */
2254 
2255 #ifdef CONFIG_SYSCTL
2256 extern int sysctl_drop_caches;
2257 int drop_caches_sysctl_handler(struct ctl_table *, int,
2258 					void __user *, size_t *, loff_t *);
2259 #endif
2260 
2261 void drop_slab(void);
2262 void drop_slab_node(int nid);
2263 
2264 #ifndef CONFIG_MMU
2265 #define randomize_va_space 0
2266 #else
2267 extern int randomize_va_space;
2268 #endif
2269 
2270 const char * arch_vma_name(struct vm_area_struct *vma);
2271 void print_vma_addr(char *prefix, unsigned long rip);
2272 
2273 void sparse_mem_maps_populate_node(struct page **map_map,
2274 				   unsigned long pnum_begin,
2275 				   unsigned long pnum_end,
2276 				   unsigned long map_count,
2277 				   int nodeid);
2278 
2279 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2280 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2281 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2282 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2283 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2284 void *vmemmap_alloc_block(unsigned long size, int node);
2285 struct vmem_altmap;
2286 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2287 		struct vmem_altmap *altmap);
2288 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2289 {
2290 	return __vmemmap_alloc_block_buf(size, node, NULL);
2291 }
2292 
2293 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2294 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2295 			       int node);
2296 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2297 void vmemmap_populate_print_last(void);
2298 #ifdef CONFIG_MEMORY_HOTPLUG
2299 void vmemmap_free(unsigned long start, unsigned long end);
2300 #endif
2301 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2302 				  unsigned long size);
2303 
2304 enum mf_flags {
2305 	MF_COUNT_INCREASED = 1 << 0,
2306 	MF_ACTION_REQUIRED = 1 << 1,
2307 	MF_MUST_KILL = 1 << 2,
2308 	MF_SOFT_OFFLINE = 1 << 3,
2309 };
2310 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2311 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2312 extern int unpoison_memory(unsigned long pfn);
2313 extern int get_hwpoison_page(struct page *page);
2314 #define put_hwpoison_page(page)	put_page(page)
2315 extern int sysctl_memory_failure_early_kill;
2316 extern int sysctl_memory_failure_recovery;
2317 extern void shake_page(struct page *p, int access);
2318 extern atomic_long_t num_poisoned_pages;
2319 extern int soft_offline_page(struct page *page, int flags);
2320 
2321 
2322 /*
2323  * Error handlers for various types of pages.
2324  */
2325 enum mf_result {
2326 	MF_IGNORED,	/* Error: cannot be handled */
2327 	MF_FAILED,	/* Error: handling failed */
2328 	MF_DELAYED,	/* Will be handled later */
2329 	MF_RECOVERED,	/* Successfully recovered */
2330 };
2331 
2332 enum mf_action_page_type {
2333 	MF_MSG_KERNEL,
2334 	MF_MSG_KERNEL_HIGH_ORDER,
2335 	MF_MSG_SLAB,
2336 	MF_MSG_DIFFERENT_COMPOUND,
2337 	MF_MSG_POISONED_HUGE,
2338 	MF_MSG_HUGE,
2339 	MF_MSG_FREE_HUGE,
2340 	MF_MSG_UNMAP_FAILED,
2341 	MF_MSG_DIRTY_SWAPCACHE,
2342 	MF_MSG_CLEAN_SWAPCACHE,
2343 	MF_MSG_DIRTY_MLOCKED_LRU,
2344 	MF_MSG_CLEAN_MLOCKED_LRU,
2345 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2346 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2347 	MF_MSG_DIRTY_LRU,
2348 	MF_MSG_CLEAN_LRU,
2349 	MF_MSG_TRUNCATED_LRU,
2350 	MF_MSG_BUDDY,
2351 	MF_MSG_BUDDY_2ND,
2352 	MF_MSG_UNKNOWN,
2353 };
2354 
2355 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2356 extern void clear_huge_page(struct page *page,
2357 			    unsigned long addr,
2358 			    unsigned int pages_per_huge_page);
2359 extern void copy_user_huge_page(struct page *dst, struct page *src,
2360 				unsigned long addr, struct vm_area_struct *vma,
2361 				unsigned int pages_per_huge_page);
2362 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2363 
2364 extern struct page_ext_operations debug_guardpage_ops;
2365 extern struct page_ext_operations page_poisoning_ops;
2366 
2367 #ifdef CONFIG_DEBUG_PAGEALLOC
2368 extern unsigned int _debug_guardpage_minorder;
2369 extern bool _debug_guardpage_enabled;
2370 
2371 static inline unsigned int debug_guardpage_minorder(void)
2372 {
2373 	return _debug_guardpage_minorder;
2374 }
2375 
2376 static inline bool debug_guardpage_enabled(void)
2377 {
2378 	return _debug_guardpage_enabled;
2379 }
2380 
2381 static inline bool page_is_guard(struct page *page)
2382 {
2383 	struct page_ext *page_ext;
2384 
2385 	if (!debug_guardpage_enabled())
2386 		return false;
2387 
2388 	page_ext = lookup_page_ext(page);
2389 	if (unlikely(!page_ext))
2390 		return false;
2391 
2392 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2393 }
2394 #else
2395 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2396 static inline bool debug_guardpage_enabled(void) { return false; }
2397 static inline bool page_is_guard(struct page *page) { return false; }
2398 #endif /* CONFIG_DEBUG_PAGEALLOC */
2399 
2400 #if MAX_NUMNODES > 1
2401 void __init setup_nr_node_ids(void);
2402 #else
2403 static inline void setup_nr_node_ids(void) {}
2404 #endif
2405 
2406 #endif /* __KERNEL__ */
2407 #endif /* _LINUX_MM_H */
2408