1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36 extern unsigned long max_mapnr; 37 38 static inline void set_max_mapnr(unsigned long limit) 39 { 40 max_mapnr = limit; 41 } 42 #else 43 static inline void set_max_mapnr(unsigned long limit) { } 44 #endif 45 46 extern unsigned long totalram_pages; 47 extern void * high_memory; 48 extern int page_cluster; 49 50 #ifdef CONFIG_SYSCTL 51 extern int sysctl_legacy_va_layout; 52 #else 53 #define sysctl_legacy_va_layout 0 54 #endif 55 56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57 extern const int mmap_rnd_bits_min; 58 extern const int mmap_rnd_bits_max; 59 extern int mmap_rnd_bits __read_mostly; 60 #endif 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62 extern const int mmap_rnd_compat_bits_min; 63 extern const int mmap_rnd_compat_bits_max; 64 extern int mmap_rnd_compat_bits __read_mostly; 65 #endif 66 67 #include <asm/page.h> 68 #include <asm/pgtable.h> 69 #include <asm/processor.h> 70 71 #ifndef __pa_symbol 72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73 #endif 74 75 #ifndef page_to_virt 76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77 #endif 78 79 /* 80 * To prevent common memory management code establishing 81 * a zero page mapping on a read fault. 82 * This macro should be defined within <asm/pgtable.h>. 83 * s390 does this to prevent multiplexing of hardware bits 84 * related to the physical page in case of virtualization. 85 */ 86 #ifndef mm_forbids_zeropage 87 #define mm_forbids_zeropage(X) (0) 88 #endif 89 90 /* 91 * Default maximum number of active map areas, this limits the number of vmas 92 * per mm struct. Users can overwrite this number by sysctl but there is a 93 * problem. 94 * 95 * When a program's coredump is generated as ELF format, a section is created 96 * per a vma. In ELF, the number of sections is represented in unsigned short. 97 * This means the number of sections should be smaller than 65535 at coredump. 98 * Because the kernel adds some informative sections to a image of program at 99 * generating coredump, we need some margin. The number of extra sections is 100 * 1-3 now and depends on arch. We use "5" as safe margin, here. 101 * 102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 103 * not a hard limit any more. Although some userspace tools can be surprised by 104 * that. 105 */ 106 #define MAPCOUNT_ELF_CORE_MARGIN (5) 107 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 108 109 extern int sysctl_max_map_count; 110 111 extern unsigned long sysctl_user_reserve_kbytes; 112 extern unsigned long sysctl_admin_reserve_kbytes; 113 114 extern int sysctl_overcommit_memory; 115 extern int sysctl_overcommit_ratio; 116 extern unsigned long sysctl_overcommit_kbytes; 117 118 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 119 size_t *, loff_t *); 120 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 121 size_t *, loff_t *); 122 123 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 124 125 /* to align the pointer to the (next) page boundary */ 126 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 127 128 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 129 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 130 131 /* 132 * Linux kernel virtual memory manager primitives. 133 * The idea being to have a "virtual" mm in the same way 134 * we have a virtual fs - giving a cleaner interface to the 135 * mm details, and allowing different kinds of memory mappings 136 * (from shared memory to executable loading to arbitrary 137 * mmap() functions). 138 */ 139 140 extern struct kmem_cache *vm_area_cachep; 141 142 #ifndef CONFIG_MMU 143 extern struct rb_root nommu_region_tree; 144 extern struct rw_semaphore nommu_region_sem; 145 146 extern unsigned int kobjsize(const void *objp); 147 #endif 148 149 /* 150 * vm_flags in vm_area_struct, see mm_types.h. 151 * When changing, update also include/trace/events/mmflags.h 152 */ 153 #define VM_NONE 0x00000000 154 155 #define VM_READ 0x00000001 /* currently active flags */ 156 #define VM_WRITE 0x00000002 157 #define VM_EXEC 0x00000004 158 #define VM_SHARED 0x00000008 159 160 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 161 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 162 #define VM_MAYWRITE 0x00000020 163 #define VM_MAYEXEC 0x00000040 164 #define VM_MAYSHARE 0x00000080 165 166 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 167 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 168 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 169 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 170 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 171 172 #define VM_LOCKED 0x00002000 173 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 174 175 /* Used by sys_madvise() */ 176 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 177 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 178 179 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 180 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 181 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 182 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 183 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 184 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 185 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 186 #define VM_ARCH_2 0x02000000 187 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 188 189 #ifdef CONFIG_MEM_SOFT_DIRTY 190 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 191 #else 192 # define VM_SOFTDIRTY 0 193 #endif 194 195 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 196 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 197 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 198 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 199 200 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 201 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 202 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 203 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 204 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 205 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 206 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 207 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 208 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 209 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 210 211 #if defined(CONFIG_X86) 212 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 213 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 214 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 215 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 216 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 217 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 218 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 219 #endif 220 #elif defined(CONFIG_PPC) 221 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 222 #elif defined(CONFIG_PARISC) 223 # define VM_GROWSUP VM_ARCH_1 224 #elif defined(CONFIG_METAG) 225 # define VM_GROWSUP VM_ARCH_1 226 #elif defined(CONFIG_IA64) 227 # define VM_GROWSUP VM_ARCH_1 228 #elif !defined(CONFIG_MMU) 229 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 230 #endif 231 232 #if defined(CONFIG_X86) 233 /* MPX specific bounds table or bounds directory */ 234 # define VM_MPX VM_ARCH_2 235 #endif 236 237 #ifndef VM_GROWSUP 238 # define VM_GROWSUP VM_NONE 239 #endif 240 241 /* Bits set in the VMA until the stack is in its final location */ 242 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 243 244 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 245 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 246 #endif 247 248 #ifdef CONFIG_STACK_GROWSUP 249 #define VM_STACK VM_GROWSUP 250 #else 251 #define VM_STACK VM_GROWSDOWN 252 #endif 253 254 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 255 256 /* 257 * Special vmas that are non-mergable, non-mlock()able. 258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 259 */ 260 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 261 262 /* This mask defines which mm->def_flags a process can inherit its parent */ 263 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 264 265 /* This mask is used to clear all the VMA flags used by mlock */ 266 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 267 268 /* 269 * mapping from the currently active vm_flags protection bits (the 270 * low four bits) to a page protection mask.. 271 */ 272 extern pgprot_t protection_map[16]; 273 274 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 275 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 276 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 277 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 278 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 279 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 280 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 281 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 282 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 283 284 /* 285 * vm_fault is filled by the the pagefault handler and passed to the vma's 286 * ->fault function. The vma's ->fault is responsible for returning a bitmask 287 * of VM_FAULT_xxx flags that give details about how the fault was handled. 288 * 289 * MM layer fills up gfp_mask for page allocations but fault handler might 290 * alter it if its implementation requires a different allocation context. 291 * 292 * pgoff should be used in favour of virtual_address, if possible. 293 */ 294 struct vm_fault { 295 unsigned int flags; /* FAULT_FLAG_xxx flags */ 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 297 pgoff_t pgoff; /* Logical page offset based on vma */ 298 void __user *virtual_address; /* Faulting virtual address */ 299 300 struct page *cow_page; /* Handler may choose to COW */ 301 struct page *page; /* ->fault handlers should return a 302 * page here, unless VM_FAULT_NOPAGE 303 * is set (which is also implied by 304 * VM_FAULT_ERROR). 305 */ 306 /* for ->map_pages() only */ 307 pgoff_t max_pgoff; /* map pages for offset from pgoff till 308 * max_pgoff inclusive */ 309 pte_t *pte; /* pte entry associated with ->pgoff */ 310 }; 311 312 /* 313 * These are the virtual MM functions - opening of an area, closing and 314 * unmapping it (needed to keep files on disk up-to-date etc), pointer 315 * to the functions called when a no-page or a wp-page exception occurs. 316 */ 317 struct vm_operations_struct { 318 void (*open)(struct vm_area_struct * area); 319 void (*close)(struct vm_area_struct * area); 320 int (*mremap)(struct vm_area_struct * area); 321 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 322 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 323 pmd_t *, unsigned int flags); 324 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 325 326 /* notification that a previously read-only page is about to become 327 * writable, if an error is returned it will cause a SIGBUS */ 328 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 329 330 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 331 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 332 333 /* called by access_process_vm when get_user_pages() fails, typically 334 * for use by special VMAs that can switch between memory and hardware 335 */ 336 int (*access)(struct vm_area_struct *vma, unsigned long addr, 337 void *buf, int len, int write); 338 339 /* Called by the /proc/PID/maps code to ask the vma whether it 340 * has a special name. Returning non-NULL will also cause this 341 * vma to be dumped unconditionally. */ 342 const char *(*name)(struct vm_area_struct *vma); 343 344 #ifdef CONFIG_NUMA 345 /* 346 * set_policy() op must add a reference to any non-NULL @new mempolicy 347 * to hold the policy upon return. Caller should pass NULL @new to 348 * remove a policy and fall back to surrounding context--i.e. do not 349 * install a MPOL_DEFAULT policy, nor the task or system default 350 * mempolicy. 351 */ 352 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 353 354 /* 355 * get_policy() op must add reference [mpol_get()] to any policy at 356 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 357 * in mm/mempolicy.c will do this automatically. 358 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 359 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 360 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 361 * must return NULL--i.e., do not "fallback" to task or system default 362 * policy. 363 */ 364 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 365 unsigned long addr); 366 #endif 367 /* 368 * Called by vm_normal_page() for special PTEs to find the 369 * page for @addr. This is useful if the default behavior 370 * (using pte_page()) would not find the correct page. 371 */ 372 struct page *(*find_special_page)(struct vm_area_struct *vma, 373 unsigned long addr); 374 }; 375 376 struct mmu_gather; 377 struct inode; 378 379 #define page_private(page) ((page)->private) 380 #define set_page_private(page, v) ((page)->private = (v)) 381 382 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 383 static inline int pmd_devmap(pmd_t pmd) 384 { 385 return 0; 386 } 387 #endif 388 389 /* 390 * FIXME: take this include out, include page-flags.h in 391 * files which need it (119 of them) 392 */ 393 #include <linux/page-flags.h> 394 #include <linux/huge_mm.h> 395 396 /* 397 * Methods to modify the page usage count. 398 * 399 * What counts for a page usage: 400 * - cache mapping (page->mapping) 401 * - private data (page->private) 402 * - page mapped in a task's page tables, each mapping 403 * is counted separately 404 * 405 * Also, many kernel routines increase the page count before a critical 406 * routine so they can be sure the page doesn't go away from under them. 407 */ 408 409 /* 410 * Drop a ref, return true if the refcount fell to zero (the page has no users) 411 */ 412 static inline int put_page_testzero(struct page *page) 413 { 414 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 415 return page_ref_dec_and_test(page); 416 } 417 418 /* 419 * Try to grab a ref unless the page has a refcount of zero, return false if 420 * that is the case. 421 * This can be called when MMU is off so it must not access 422 * any of the virtual mappings. 423 */ 424 static inline int get_page_unless_zero(struct page *page) 425 { 426 return page_ref_add_unless(page, 1, 0); 427 } 428 429 extern int page_is_ram(unsigned long pfn); 430 431 enum { 432 REGION_INTERSECTS, 433 REGION_DISJOINT, 434 REGION_MIXED, 435 }; 436 437 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 438 unsigned long desc); 439 440 /* Support for virtually mapped pages */ 441 struct page *vmalloc_to_page(const void *addr); 442 unsigned long vmalloc_to_pfn(const void *addr); 443 444 /* 445 * Determine if an address is within the vmalloc range 446 * 447 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 448 * is no special casing required. 449 */ 450 static inline bool is_vmalloc_addr(const void *x) 451 { 452 #ifdef CONFIG_MMU 453 unsigned long addr = (unsigned long)x; 454 455 return addr >= VMALLOC_START && addr < VMALLOC_END; 456 #else 457 return false; 458 #endif 459 } 460 #ifdef CONFIG_MMU 461 extern int is_vmalloc_or_module_addr(const void *x); 462 #else 463 static inline int is_vmalloc_or_module_addr(const void *x) 464 { 465 return 0; 466 } 467 #endif 468 469 extern void kvfree(const void *addr); 470 471 static inline atomic_t *compound_mapcount_ptr(struct page *page) 472 { 473 return &page[1].compound_mapcount; 474 } 475 476 static inline int compound_mapcount(struct page *page) 477 { 478 VM_BUG_ON_PAGE(!PageCompound(page), page); 479 page = compound_head(page); 480 return atomic_read(compound_mapcount_ptr(page)) + 1; 481 } 482 483 /* 484 * The atomic page->_mapcount, starts from -1: so that transitions 485 * both from it and to it can be tracked, using atomic_inc_and_test 486 * and atomic_add_negative(-1). 487 */ 488 static inline void page_mapcount_reset(struct page *page) 489 { 490 atomic_set(&(page)->_mapcount, -1); 491 } 492 493 int __page_mapcount(struct page *page); 494 495 static inline int page_mapcount(struct page *page) 496 { 497 VM_BUG_ON_PAGE(PageSlab(page), page); 498 499 if (unlikely(PageCompound(page))) 500 return __page_mapcount(page); 501 return atomic_read(&page->_mapcount) + 1; 502 } 503 504 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 505 int total_mapcount(struct page *page); 506 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 507 #else 508 static inline int total_mapcount(struct page *page) 509 { 510 return page_mapcount(page); 511 } 512 static inline int page_trans_huge_mapcount(struct page *page, 513 int *total_mapcount) 514 { 515 int mapcount = page_mapcount(page); 516 if (total_mapcount) 517 *total_mapcount = mapcount; 518 return mapcount; 519 } 520 #endif 521 522 static inline struct page *virt_to_head_page(const void *x) 523 { 524 struct page *page = virt_to_page(x); 525 526 return compound_head(page); 527 } 528 529 void __put_page(struct page *page); 530 531 void put_pages_list(struct list_head *pages); 532 533 void split_page(struct page *page, unsigned int order); 534 int split_free_page(struct page *page); 535 536 /* 537 * Compound pages have a destructor function. Provide a 538 * prototype for that function and accessor functions. 539 * These are _only_ valid on the head of a compound page. 540 */ 541 typedef void compound_page_dtor(struct page *); 542 543 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 544 enum compound_dtor_id { 545 NULL_COMPOUND_DTOR, 546 COMPOUND_PAGE_DTOR, 547 #ifdef CONFIG_HUGETLB_PAGE 548 HUGETLB_PAGE_DTOR, 549 #endif 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 TRANSHUGE_PAGE_DTOR, 552 #endif 553 NR_COMPOUND_DTORS, 554 }; 555 extern compound_page_dtor * const compound_page_dtors[]; 556 557 static inline void set_compound_page_dtor(struct page *page, 558 enum compound_dtor_id compound_dtor) 559 { 560 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 561 page[1].compound_dtor = compound_dtor; 562 } 563 564 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 565 { 566 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 567 return compound_page_dtors[page[1].compound_dtor]; 568 } 569 570 static inline unsigned int compound_order(struct page *page) 571 { 572 if (!PageHead(page)) 573 return 0; 574 return page[1].compound_order; 575 } 576 577 static inline void set_compound_order(struct page *page, unsigned int order) 578 { 579 page[1].compound_order = order; 580 } 581 582 void free_compound_page(struct page *page); 583 584 #ifdef CONFIG_MMU 585 /* 586 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 587 * servicing faults for write access. In the normal case, do always want 588 * pte_mkwrite. But get_user_pages can cause write faults for mappings 589 * that do not have writing enabled, when used by access_process_vm. 590 */ 591 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 592 { 593 if (likely(vma->vm_flags & VM_WRITE)) 594 pte = pte_mkwrite(pte); 595 return pte; 596 } 597 598 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 599 struct page *page, pte_t *pte, bool write, bool anon, bool old); 600 #endif 601 602 /* 603 * Multiple processes may "see" the same page. E.g. for untouched 604 * mappings of /dev/null, all processes see the same page full of 605 * zeroes, and text pages of executables and shared libraries have 606 * only one copy in memory, at most, normally. 607 * 608 * For the non-reserved pages, page_count(page) denotes a reference count. 609 * page_count() == 0 means the page is free. page->lru is then used for 610 * freelist management in the buddy allocator. 611 * page_count() > 0 means the page has been allocated. 612 * 613 * Pages are allocated by the slab allocator in order to provide memory 614 * to kmalloc and kmem_cache_alloc. In this case, the management of the 615 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 616 * unless a particular usage is carefully commented. (the responsibility of 617 * freeing the kmalloc memory is the caller's, of course). 618 * 619 * A page may be used by anyone else who does a __get_free_page(). 620 * In this case, page_count still tracks the references, and should only 621 * be used through the normal accessor functions. The top bits of page->flags 622 * and page->virtual store page management information, but all other fields 623 * are unused and could be used privately, carefully. The management of this 624 * page is the responsibility of the one who allocated it, and those who have 625 * subsequently been given references to it. 626 * 627 * The other pages (we may call them "pagecache pages") are completely 628 * managed by the Linux memory manager: I/O, buffers, swapping etc. 629 * The following discussion applies only to them. 630 * 631 * A pagecache page contains an opaque `private' member, which belongs to the 632 * page's address_space. Usually, this is the address of a circular list of 633 * the page's disk buffers. PG_private must be set to tell the VM to call 634 * into the filesystem to release these pages. 635 * 636 * A page may belong to an inode's memory mapping. In this case, page->mapping 637 * is the pointer to the inode, and page->index is the file offset of the page, 638 * in units of PAGE_SIZE. 639 * 640 * If pagecache pages are not associated with an inode, they are said to be 641 * anonymous pages. These may become associated with the swapcache, and in that 642 * case PG_swapcache is set, and page->private is an offset into the swapcache. 643 * 644 * In either case (swapcache or inode backed), the pagecache itself holds one 645 * reference to the page. Setting PG_private should also increment the 646 * refcount. The each user mapping also has a reference to the page. 647 * 648 * The pagecache pages are stored in a per-mapping radix tree, which is 649 * rooted at mapping->page_tree, and indexed by offset. 650 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 651 * lists, we instead now tag pages as dirty/writeback in the radix tree. 652 * 653 * All pagecache pages may be subject to I/O: 654 * - inode pages may need to be read from disk, 655 * - inode pages which have been modified and are MAP_SHARED may need 656 * to be written back to the inode on disk, 657 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 658 * modified may need to be swapped out to swap space and (later) to be read 659 * back into memory. 660 */ 661 662 /* 663 * The zone field is never updated after free_area_init_core() 664 * sets it, so none of the operations on it need to be atomic. 665 */ 666 667 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 668 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 669 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 670 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 671 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 672 673 /* 674 * Define the bit shifts to access each section. For non-existent 675 * sections we define the shift as 0; that plus a 0 mask ensures 676 * the compiler will optimise away reference to them. 677 */ 678 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 679 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 680 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 681 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 682 683 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 684 #ifdef NODE_NOT_IN_PAGE_FLAGS 685 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 686 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 687 SECTIONS_PGOFF : ZONES_PGOFF) 688 #else 689 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 690 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 691 NODES_PGOFF : ZONES_PGOFF) 692 #endif 693 694 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 695 696 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 697 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 698 #endif 699 700 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 701 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 702 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 703 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 704 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 705 706 static inline enum zone_type page_zonenum(const struct page *page) 707 { 708 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 709 } 710 711 #ifdef CONFIG_ZONE_DEVICE 712 void get_zone_device_page(struct page *page); 713 void put_zone_device_page(struct page *page); 714 static inline bool is_zone_device_page(const struct page *page) 715 { 716 return page_zonenum(page) == ZONE_DEVICE; 717 } 718 #else 719 static inline void get_zone_device_page(struct page *page) 720 { 721 } 722 static inline void put_zone_device_page(struct page *page) 723 { 724 } 725 static inline bool is_zone_device_page(const struct page *page) 726 { 727 return false; 728 } 729 #endif 730 731 static inline void get_page(struct page *page) 732 { 733 page = compound_head(page); 734 /* 735 * Getting a normal page or the head of a compound page 736 * requires to already have an elevated page->_refcount. 737 */ 738 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 739 page_ref_inc(page); 740 741 if (unlikely(is_zone_device_page(page))) 742 get_zone_device_page(page); 743 } 744 745 static inline void put_page(struct page *page) 746 { 747 page = compound_head(page); 748 749 if (put_page_testzero(page)) 750 __put_page(page); 751 752 if (unlikely(is_zone_device_page(page))) 753 put_zone_device_page(page); 754 } 755 756 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 757 #define SECTION_IN_PAGE_FLAGS 758 #endif 759 760 /* 761 * The identification function is mainly used by the buddy allocator for 762 * determining if two pages could be buddies. We are not really identifying 763 * the zone since we could be using the section number id if we do not have 764 * node id available in page flags. 765 * We only guarantee that it will return the same value for two combinable 766 * pages in a zone. 767 */ 768 static inline int page_zone_id(struct page *page) 769 { 770 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 771 } 772 773 static inline int zone_to_nid(struct zone *zone) 774 { 775 #ifdef CONFIG_NUMA 776 return zone->node; 777 #else 778 return 0; 779 #endif 780 } 781 782 #ifdef NODE_NOT_IN_PAGE_FLAGS 783 extern int page_to_nid(const struct page *page); 784 #else 785 static inline int page_to_nid(const struct page *page) 786 { 787 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 788 } 789 #endif 790 791 #ifdef CONFIG_NUMA_BALANCING 792 static inline int cpu_pid_to_cpupid(int cpu, int pid) 793 { 794 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 795 } 796 797 static inline int cpupid_to_pid(int cpupid) 798 { 799 return cpupid & LAST__PID_MASK; 800 } 801 802 static inline int cpupid_to_cpu(int cpupid) 803 { 804 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 805 } 806 807 static inline int cpupid_to_nid(int cpupid) 808 { 809 return cpu_to_node(cpupid_to_cpu(cpupid)); 810 } 811 812 static inline bool cpupid_pid_unset(int cpupid) 813 { 814 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 815 } 816 817 static inline bool cpupid_cpu_unset(int cpupid) 818 { 819 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 820 } 821 822 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 823 { 824 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 825 } 826 827 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 828 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 829 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 830 { 831 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 832 } 833 834 static inline int page_cpupid_last(struct page *page) 835 { 836 return page->_last_cpupid; 837 } 838 static inline void page_cpupid_reset_last(struct page *page) 839 { 840 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 841 } 842 #else 843 static inline int page_cpupid_last(struct page *page) 844 { 845 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 846 } 847 848 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 849 850 static inline void page_cpupid_reset_last(struct page *page) 851 { 852 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 853 } 854 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 855 #else /* !CONFIG_NUMA_BALANCING */ 856 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 857 { 858 return page_to_nid(page); /* XXX */ 859 } 860 861 static inline int page_cpupid_last(struct page *page) 862 { 863 return page_to_nid(page); /* XXX */ 864 } 865 866 static inline int cpupid_to_nid(int cpupid) 867 { 868 return -1; 869 } 870 871 static inline int cpupid_to_pid(int cpupid) 872 { 873 return -1; 874 } 875 876 static inline int cpupid_to_cpu(int cpupid) 877 { 878 return -1; 879 } 880 881 static inline int cpu_pid_to_cpupid(int nid, int pid) 882 { 883 return -1; 884 } 885 886 static inline bool cpupid_pid_unset(int cpupid) 887 { 888 return 1; 889 } 890 891 static inline void page_cpupid_reset_last(struct page *page) 892 { 893 } 894 895 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 896 { 897 return false; 898 } 899 #endif /* CONFIG_NUMA_BALANCING */ 900 901 static inline struct zone *page_zone(const struct page *page) 902 { 903 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 904 } 905 906 #ifdef SECTION_IN_PAGE_FLAGS 907 static inline void set_page_section(struct page *page, unsigned long section) 908 { 909 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 910 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 911 } 912 913 static inline unsigned long page_to_section(const struct page *page) 914 { 915 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 916 } 917 #endif 918 919 static inline void set_page_zone(struct page *page, enum zone_type zone) 920 { 921 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 922 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 923 } 924 925 static inline void set_page_node(struct page *page, unsigned long node) 926 { 927 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 928 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 929 } 930 931 static inline void set_page_links(struct page *page, enum zone_type zone, 932 unsigned long node, unsigned long pfn) 933 { 934 set_page_zone(page, zone); 935 set_page_node(page, node); 936 #ifdef SECTION_IN_PAGE_FLAGS 937 set_page_section(page, pfn_to_section_nr(pfn)); 938 #endif 939 } 940 941 #ifdef CONFIG_MEMCG 942 static inline struct mem_cgroup *page_memcg(struct page *page) 943 { 944 return page->mem_cgroup; 945 } 946 #else 947 static inline struct mem_cgroup *page_memcg(struct page *page) 948 { 949 return NULL; 950 } 951 #endif 952 953 /* 954 * Some inline functions in vmstat.h depend on page_zone() 955 */ 956 #include <linux/vmstat.h> 957 958 static __always_inline void *lowmem_page_address(const struct page *page) 959 { 960 return page_to_virt(page); 961 } 962 963 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 964 #define HASHED_PAGE_VIRTUAL 965 #endif 966 967 #if defined(WANT_PAGE_VIRTUAL) 968 static inline void *page_address(const struct page *page) 969 { 970 return page->virtual; 971 } 972 static inline void set_page_address(struct page *page, void *address) 973 { 974 page->virtual = address; 975 } 976 #define page_address_init() do { } while(0) 977 #endif 978 979 #if defined(HASHED_PAGE_VIRTUAL) 980 void *page_address(const struct page *page); 981 void set_page_address(struct page *page, void *virtual); 982 void page_address_init(void); 983 #endif 984 985 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 986 #define page_address(page) lowmem_page_address(page) 987 #define set_page_address(page, address) do { } while(0) 988 #define page_address_init() do { } while(0) 989 #endif 990 991 extern void *page_rmapping(struct page *page); 992 extern struct anon_vma *page_anon_vma(struct page *page); 993 extern struct address_space *page_mapping(struct page *page); 994 995 extern struct address_space *__page_file_mapping(struct page *); 996 997 static inline 998 struct address_space *page_file_mapping(struct page *page) 999 { 1000 if (unlikely(PageSwapCache(page))) 1001 return __page_file_mapping(page); 1002 1003 return page->mapping; 1004 } 1005 1006 /* 1007 * Return the pagecache index of the passed page. Regular pagecache pages 1008 * use ->index whereas swapcache pages use ->private 1009 */ 1010 static inline pgoff_t page_index(struct page *page) 1011 { 1012 if (unlikely(PageSwapCache(page))) 1013 return page_private(page); 1014 return page->index; 1015 } 1016 1017 extern pgoff_t __page_file_index(struct page *page); 1018 1019 /* 1020 * Return the file index of the page. Regular pagecache pages use ->index 1021 * whereas swapcache pages use swp_offset(->private) 1022 */ 1023 static inline pgoff_t page_file_index(struct page *page) 1024 { 1025 if (unlikely(PageSwapCache(page))) 1026 return __page_file_index(page); 1027 1028 return page->index; 1029 } 1030 1031 bool page_mapped(struct page *page); 1032 1033 /* 1034 * Return true only if the page has been allocated with 1035 * ALLOC_NO_WATERMARKS and the low watermark was not 1036 * met implying that the system is under some pressure. 1037 */ 1038 static inline bool page_is_pfmemalloc(struct page *page) 1039 { 1040 /* 1041 * Page index cannot be this large so this must be 1042 * a pfmemalloc page. 1043 */ 1044 return page->index == -1UL; 1045 } 1046 1047 /* 1048 * Only to be called by the page allocator on a freshly allocated 1049 * page. 1050 */ 1051 static inline void set_page_pfmemalloc(struct page *page) 1052 { 1053 page->index = -1UL; 1054 } 1055 1056 static inline void clear_page_pfmemalloc(struct page *page) 1057 { 1058 page->index = 0; 1059 } 1060 1061 /* 1062 * Different kinds of faults, as returned by handle_mm_fault(). 1063 * Used to decide whether a process gets delivered SIGBUS or 1064 * just gets major/minor fault counters bumped up. 1065 */ 1066 1067 #define VM_FAULT_OOM 0x0001 1068 #define VM_FAULT_SIGBUS 0x0002 1069 #define VM_FAULT_MAJOR 0x0004 1070 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1071 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1072 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1073 #define VM_FAULT_SIGSEGV 0x0040 1074 1075 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1076 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1077 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1078 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1079 1080 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1081 1082 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1083 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1084 VM_FAULT_FALLBACK) 1085 1086 /* Encode hstate index for a hwpoisoned large page */ 1087 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1088 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1089 1090 /* 1091 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1092 */ 1093 extern void pagefault_out_of_memory(void); 1094 1095 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1096 1097 /* 1098 * Flags passed to show_mem() and show_free_areas() to suppress output in 1099 * various contexts. 1100 */ 1101 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1102 1103 extern void show_free_areas(unsigned int flags); 1104 extern bool skip_free_areas_node(unsigned int flags, int nid); 1105 1106 int shmem_zero_setup(struct vm_area_struct *); 1107 #ifdef CONFIG_SHMEM 1108 bool shmem_mapping(struct address_space *mapping); 1109 #else 1110 static inline bool shmem_mapping(struct address_space *mapping) 1111 { 1112 return false; 1113 } 1114 #endif 1115 1116 extern bool can_do_mlock(void); 1117 extern int user_shm_lock(size_t, struct user_struct *); 1118 extern void user_shm_unlock(size_t, struct user_struct *); 1119 1120 /* 1121 * Parameter block passed down to zap_pte_range in exceptional cases. 1122 */ 1123 struct zap_details { 1124 struct address_space *check_mapping; /* Check page->mapping if set */ 1125 pgoff_t first_index; /* Lowest page->index to unmap */ 1126 pgoff_t last_index; /* Highest page->index to unmap */ 1127 bool ignore_dirty; /* Ignore dirty pages */ 1128 bool check_swap_entries; /* Check also swap entries */ 1129 }; 1130 1131 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1132 pte_t pte); 1133 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1134 pmd_t pmd); 1135 1136 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1137 unsigned long size); 1138 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1139 unsigned long size, struct zap_details *); 1140 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1141 unsigned long start, unsigned long end); 1142 1143 /** 1144 * mm_walk - callbacks for walk_page_range 1145 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1146 * this handler is required to be able to handle 1147 * pmd_trans_huge() pmds. They may simply choose to 1148 * split_huge_page() instead of handling it explicitly. 1149 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1150 * @pte_hole: if set, called for each hole at all levels 1151 * @hugetlb_entry: if set, called for each hugetlb entry 1152 * @test_walk: caller specific callback function to determine whether 1153 * we walk over the current vma or not. A positive returned 1154 * value means "do page table walk over the current vma," 1155 * and a negative one means "abort current page table walk 1156 * right now." 0 means "skip the current vma." 1157 * @mm: mm_struct representing the target process of page table walk 1158 * @vma: vma currently walked (NULL if walking outside vmas) 1159 * @private: private data for callbacks' usage 1160 * 1161 * (see the comment on walk_page_range() for more details) 1162 */ 1163 struct mm_walk { 1164 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1165 unsigned long next, struct mm_walk *walk); 1166 int (*pte_entry)(pte_t *pte, unsigned long addr, 1167 unsigned long next, struct mm_walk *walk); 1168 int (*pte_hole)(unsigned long addr, unsigned long next, 1169 struct mm_walk *walk); 1170 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1171 unsigned long addr, unsigned long next, 1172 struct mm_walk *walk); 1173 int (*test_walk)(unsigned long addr, unsigned long next, 1174 struct mm_walk *walk); 1175 struct mm_struct *mm; 1176 struct vm_area_struct *vma; 1177 void *private; 1178 }; 1179 1180 int walk_page_range(unsigned long addr, unsigned long end, 1181 struct mm_walk *walk); 1182 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1183 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1184 unsigned long end, unsigned long floor, unsigned long ceiling); 1185 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1186 struct vm_area_struct *vma); 1187 void unmap_mapping_range(struct address_space *mapping, 1188 loff_t const holebegin, loff_t const holelen, int even_cows); 1189 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1190 unsigned long *pfn); 1191 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1192 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1193 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1194 void *buf, int len, int write); 1195 1196 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1197 loff_t const holebegin, loff_t const holelen) 1198 { 1199 unmap_mapping_range(mapping, holebegin, holelen, 0); 1200 } 1201 1202 extern void truncate_pagecache(struct inode *inode, loff_t new); 1203 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1204 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1205 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1206 int truncate_inode_page(struct address_space *mapping, struct page *page); 1207 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1208 int invalidate_inode_page(struct page *page); 1209 1210 #ifdef CONFIG_MMU 1211 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1212 unsigned long address, unsigned int flags); 1213 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1214 unsigned long address, unsigned int fault_flags, 1215 bool *unlocked); 1216 #else 1217 static inline int handle_mm_fault(struct mm_struct *mm, 1218 struct vm_area_struct *vma, unsigned long address, 1219 unsigned int flags) 1220 { 1221 /* should never happen if there's no MMU */ 1222 BUG(); 1223 return VM_FAULT_SIGBUS; 1224 } 1225 static inline int fixup_user_fault(struct task_struct *tsk, 1226 struct mm_struct *mm, unsigned long address, 1227 unsigned int fault_flags, bool *unlocked) 1228 { 1229 /* should never happen if there's no MMU */ 1230 BUG(); 1231 return -EFAULT; 1232 } 1233 #endif 1234 1235 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1236 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1237 void *buf, int len, int write); 1238 1239 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1240 unsigned long start, unsigned long nr_pages, 1241 unsigned int foll_flags, struct page **pages, 1242 struct vm_area_struct **vmas, int *nonblocking); 1243 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1244 unsigned long start, unsigned long nr_pages, 1245 int write, int force, struct page **pages, 1246 struct vm_area_struct **vmas); 1247 long get_user_pages(unsigned long start, unsigned long nr_pages, 1248 int write, int force, struct page **pages, 1249 struct vm_area_struct **vmas); 1250 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1251 int write, int force, struct page **pages, int *locked); 1252 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1253 unsigned long start, unsigned long nr_pages, 1254 int write, int force, struct page **pages, 1255 unsigned int gup_flags); 1256 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1257 int write, int force, struct page **pages); 1258 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1259 struct page **pages); 1260 1261 /* Container for pinned pfns / pages */ 1262 struct frame_vector { 1263 unsigned int nr_allocated; /* Number of frames we have space for */ 1264 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1265 bool got_ref; /* Did we pin pages by getting page ref? */ 1266 bool is_pfns; /* Does array contain pages or pfns? */ 1267 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1268 * pfns_vector_pages() or pfns_vector_pfns() 1269 * for access */ 1270 }; 1271 1272 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1273 void frame_vector_destroy(struct frame_vector *vec); 1274 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1275 bool write, bool force, struct frame_vector *vec); 1276 void put_vaddr_frames(struct frame_vector *vec); 1277 int frame_vector_to_pages(struct frame_vector *vec); 1278 void frame_vector_to_pfns(struct frame_vector *vec); 1279 1280 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1281 { 1282 return vec->nr_frames; 1283 } 1284 1285 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1286 { 1287 if (vec->is_pfns) { 1288 int err = frame_vector_to_pages(vec); 1289 1290 if (err) 1291 return ERR_PTR(err); 1292 } 1293 return (struct page **)(vec->ptrs); 1294 } 1295 1296 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1297 { 1298 if (!vec->is_pfns) 1299 frame_vector_to_pfns(vec); 1300 return (unsigned long *)(vec->ptrs); 1301 } 1302 1303 struct kvec; 1304 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1305 struct page **pages); 1306 int get_kernel_page(unsigned long start, int write, struct page **pages); 1307 struct page *get_dump_page(unsigned long addr); 1308 1309 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1310 extern void do_invalidatepage(struct page *page, unsigned int offset, 1311 unsigned int length); 1312 1313 int __set_page_dirty_nobuffers(struct page *page); 1314 int __set_page_dirty_no_writeback(struct page *page); 1315 int redirty_page_for_writepage(struct writeback_control *wbc, 1316 struct page *page); 1317 void account_page_dirtied(struct page *page, struct address_space *mapping); 1318 void account_page_cleaned(struct page *page, struct address_space *mapping, 1319 struct bdi_writeback *wb); 1320 int set_page_dirty(struct page *page); 1321 int set_page_dirty_lock(struct page *page); 1322 void cancel_dirty_page(struct page *page); 1323 int clear_page_dirty_for_io(struct page *page); 1324 1325 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1326 1327 /* Is the vma a continuation of the stack vma above it? */ 1328 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1329 { 1330 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1331 } 1332 1333 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1334 { 1335 return !vma->vm_ops; 1336 } 1337 1338 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1339 unsigned long addr) 1340 { 1341 return (vma->vm_flags & VM_GROWSDOWN) && 1342 (vma->vm_start == addr) && 1343 !vma_growsdown(vma->vm_prev, addr); 1344 } 1345 1346 /* Is the vma a continuation of the stack vma below it? */ 1347 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1348 { 1349 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1350 } 1351 1352 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1353 unsigned long addr) 1354 { 1355 return (vma->vm_flags & VM_GROWSUP) && 1356 (vma->vm_end == addr) && 1357 !vma_growsup(vma->vm_next, addr); 1358 } 1359 1360 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1361 1362 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1363 unsigned long old_addr, struct vm_area_struct *new_vma, 1364 unsigned long new_addr, unsigned long len, 1365 bool need_rmap_locks); 1366 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1367 unsigned long end, pgprot_t newprot, 1368 int dirty_accountable, int prot_numa); 1369 extern int mprotect_fixup(struct vm_area_struct *vma, 1370 struct vm_area_struct **pprev, unsigned long start, 1371 unsigned long end, unsigned long newflags); 1372 1373 /* 1374 * doesn't attempt to fault and will return short. 1375 */ 1376 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1377 struct page **pages); 1378 /* 1379 * per-process(per-mm_struct) statistics. 1380 */ 1381 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1382 { 1383 long val = atomic_long_read(&mm->rss_stat.count[member]); 1384 1385 #ifdef SPLIT_RSS_COUNTING 1386 /* 1387 * counter is updated in asynchronous manner and may go to minus. 1388 * But it's never be expected number for users. 1389 */ 1390 if (val < 0) 1391 val = 0; 1392 #endif 1393 return (unsigned long)val; 1394 } 1395 1396 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1397 { 1398 atomic_long_add(value, &mm->rss_stat.count[member]); 1399 } 1400 1401 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1402 { 1403 atomic_long_inc(&mm->rss_stat.count[member]); 1404 } 1405 1406 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1407 { 1408 atomic_long_dec(&mm->rss_stat.count[member]); 1409 } 1410 1411 /* Optimized variant when page is already known not to be PageAnon */ 1412 static inline int mm_counter_file(struct page *page) 1413 { 1414 if (PageSwapBacked(page)) 1415 return MM_SHMEMPAGES; 1416 return MM_FILEPAGES; 1417 } 1418 1419 static inline int mm_counter(struct page *page) 1420 { 1421 if (PageAnon(page)) 1422 return MM_ANONPAGES; 1423 return mm_counter_file(page); 1424 } 1425 1426 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1427 { 1428 return get_mm_counter(mm, MM_FILEPAGES) + 1429 get_mm_counter(mm, MM_ANONPAGES) + 1430 get_mm_counter(mm, MM_SHMEMPAGES); 1431 } 1432 1433 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1434 { 1435 return max(mm->hiwater_rss, get_mm_rss(mm)); 1436 } 1437 1438 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1439 { 1440 return max(mm->hiwater_vm, mm->total_vm); 1441 } 1442 1443 static inline void update_hiwater_rss(struct mm_struct *mm) 1444 { 1445 unsigned long _rss = get_mm_rss(mm); 1446 1447 if ((mm)->hiwater_rss < _rss) 1448 (mm)->hiwater_rss = _rss; 1449 } 1450 1451 static inline void update_hiwater_vm(struct mm_struct *mm) 1452 { 1453 if (mm->hiwater_vm < mm->total_vm) 1454 mm->hiwater_vm = mm->total_vm; 1455 } 1456 1457 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1458 { 1459 mm->hiwater_rss = get_mm_rss(mm); 1460 } 1461 1462 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1463 struct mm_struct *mm) 1464 { 1465 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1466 1467 if (*maxrss < hiwater_rss) 1468 *maxrss = hiwater_rss; 1469 } 1470 1471 #if defined(SPLIT_RSS_COUNTING) 1472 void sync_mm_rss(struct mm_struct *mm); 1473 #else 1474 static inline void sync_mm_rss(struct mm_struct *mm) 1475 { 1476 } 1477 #endif 1478 1479 #ifndef __HAVE_ARCH_PTE_DEVMAP 1480 static inline int pte_devmap(pte_t pte) 1481 { 1482 return 0; 1483 } 1484 #endif 1485 1486 int vma_wants_writenotify(struct vm_area_struct *vma); 1487 1488 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1489 spinlock_t **ptl); 1490 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1491 spinlock_t **ptl) 1492 { 1493 pte_t *ptep; 1494 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1495 return ptep; 1496 } 1497 1498 #ifdef __PAGETABLE_PUD_FOLDED 1499 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1500 unsigned long address) 1501 { 1502 return 0; 1503 } 1504 #else 1505 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1506 #endif 1507 1508 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1509 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1510 unsigned long address) 1511 { 1512 return 0; 1513 } 1514 1515 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1516 1517 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1518 { 1519 return 0; 1520 } 1521 1522 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1523 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1524 1525 #else 1526 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1527 1528 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1529 { 1530 atomic_long_set(&mm->nr_pmds, 0); 1531 } 1532 1533 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1534 { 1535 return atomic_long_read(&mm->nr_pmds); 1536 } 1537 1538 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1539 { 1540 atomic_long_inc(&mm->nr_pmds); 1541 } 1542 1543 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1544 { 1545 atomic_long_dec(&mm->nr_pmds); 1546 } 1547 #endif 1548 1549 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1550 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1551 1552 /* 1553 * The following ifdef needed to get the 4level-fixup.h header to work. 1554 * Remove it when 4level-fixup.h has been removed. 1555 */ 1556 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1557 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1558 { 1559 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1560 NULL: pud_offset(pgd, address); 1561 } 1562 1563 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1564 { 1565 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1566 NULL: pmd_offset(pud, address); 1567 } 1568 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1569 1570 #if USE_SPLIT_PTE_PTLOCKS 1571 #if ALLOC_SPLIT_PTLOCKS 1572 void __init ptlock_cache_init(void); 1573 extern bool ptlock_alloc(struct page *page); 1574 extern void ptlock_free(struct page *page); 1575 1576 static inline spinlock_t *ptlock_ptr(struct page *page) 1577 { 1578 return page->ptl; 1579 } 1580 #else /* ALLOC_SPLIT_PTLOCKS */ 1581 static inline void ptlock_cache_init(void) 1582 { 1583 } 1584 1585 static inline bool ptlock_alloc(struct page *page) 1586 { 1587 return true; 1588 } 1589 1590 static inline void ptlock_free(struct page *page) 1591 { 1592 } 1593 1594 static inline spinlock_t *ptlock_ptr(struct page *page) 1595 { 1596 return &page->ptl; 1597 } 1598 #endif /* ALLOC_SPLIT_PTLOCKS */ 1599 1600 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1601 { 1602 return ptlock_ptr(pmd_page(*pmd)); 1603 } 1604 1605 static inline bool ptlock_init(struct page *page) 1606 { 1607 /* 1608 * prep_new_page() initialize page->private (and therefore page->ptl) 1609 * with 0. Make sure nobody took it in use in between. 1610 * 1611 * It can happen if arch try to use slab for page table allocation: 1612 * slab code uses page->slab_cache, which share storage with page->ptl. 1613 */ 1614 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1615 if (!ptlock_alloc(page)) 1616 return false; 1617 spin_lock_init(ptlock_ptr(page)); 1618 return true; 1619 } 1620 1621 /* Reset page->mapping so free_pages_check won't complain. */ 1622 static inline void pte_lock_deinit(struct page *page) 1623 { 1624 page->mapping = NULL; 1625 ptlock_free(page); 1626 } 1627 1628 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1629 /* 1630 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1631 */ 1632 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1633 { 1634 return &mm->page_table_lock; 1635 } 1636 static inline void ptlock_cache_init(void) {} 1637 static inline bool ptlock_init(struct page *page) { return true; } 1638 static inline void pte_lock_deinit(struct page *page) {} 1639 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1640 1641 static inline void pgtable_init(void) 1642 { 1643 ptlock_cache_init(); 1644 pgtable_cache_init(); 1645 } 1646 1647 static inline bool pgtable_page_ctor(struct page *page) 1648 { 1649 if (!ptlock_init(page)) 1650 return false; 1651 inc_zone_page_state(page, NR_PAGETABLE); 1652 return true; 1653 } 1654 1655 static inline void pgtable_page_dtor(struct page *page) 1656 { 1657 pte_lock_deinit(page); 1658 dec_zone_page_state(page, NR_PAGETABLE); 1659 } 1660 1661 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1662 ({ \ 1663 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1664 pte_t *__pte = pte_offset_map(pmd, address); \ 1665 *(ptlp) = __ptl; \ 1666 spin_lock(__ptl); \ 1667 __pte; \ 1668 }) 1669 1670 #define pte_unmap_unlock(pte, ptl) do { \ 1671 spin_unlock(ptl); \ 1672 pte_unmap(pte); \ 1673 } while (0) 1674 1675 #define pte_alloc(mm, pmd, address) \ 1676 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1677 1678 #define pte_alloc_map(mm, pmd, address) \ 1679 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1680 1681 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1682 (pte_alloc(mm, pmd, address) ? \ 1683 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1684 1685 #define pte_alloc_kernel(pmd, address) \ 1686 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1687 NULL: pte_offset_kernel(pmd, address)) 1688 1689 #if USE_SPLIT_PMD_PTLOCKS 1690 1691 static struct page *pmd_to_page(pmd_t *pmd) 1692 { 1693 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1694 return virt_to_page((void *)((unsigned long) pmd & mask)); 1695 } 1696 1697 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1698 { 1699 return ptlock_ptr(pmd_to_page(pmd)); 1700 } 1701 1702 static inline bool pgtable_pmd_page_ctor(struct page *page) 1703 { 1704 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1705 page->pmd_huge_pte = NULL; 1706 #endif 1707 return ptlock_init(page); 1708 } 1709 1710 static inline void pgtable_pmd_page_dtor(struct page *page) 1711 { 1712 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1713 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1714 #endif 1715 ptlock_free(page); 1716 } 1717 1718 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1719 1720 #else 1721 1722 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1723 { 1724 return &mm->page_table_lock; 1725 } 1726 1727 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1728 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1729 1730 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1731 1732 #endif 1733 1734 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1735 { 1736 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1737 spin_lock(ptl); 1738 return ptl; 1739 } 1740 1741 extern void free_area_init(unsigned long * zones_size); 1742 extern void free_area_init_node(int nid, unsigned long * zones_size, 1743 unsigned long zone_start_pfn, unsigned long *zholes_size); 1744 extern void free_initmem(void); 1745 1746 /* 1747 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1748 * into the buddy system. The freed pages will be poisoned with pattern 1749 * "poison" if it's within range [0, UCHAR_MAX]. 1750 * Return pages freed into the buddy system. 1751 */ 1752 extern unsigned long free_reserved_area(void *start, void *end, 1753 int poison, char *s); 1754 1755 #ifdef CONFIG_HIGHMEM 1756 /* 1757 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1758 * and totalram_pages. 1759 */ 1760 extern void free_highmem_page(struct page *page); 1761 #endif 1762 1763 extern void adjust_managed_page_count(struct page *page, long count); 1764 extern void mem_init_print_info(const char *str); 1765 1766 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1767 1768 /* Free the reserved page into the buddy system, so it gets managed. */ 1769 static inline void __free_reserved_page(struct page *page) 1770 { 1771 ClearPageReserved(page); 1772 init_page_count(page); 1773 __free_page(page); 1774 } 1775 1776 static inline void free_reserved_page(struct page *page) 1777 { 1778 __free_reserved_page(page); 1779 adjust_managed_page_count(page, 1); 1780 } 1781 1782 static inline void mark_page_reserved(struct page *page) 1783 { 1784 SetPageReserved(page); 1785 adjust_managed_page_count(page, -1); 1786 } 1787 1788 /* 1789 * Default method to free all the __init memory into the buddy system. 1790 * The freed pages will be poisoned with pattern "poison" if it's within 1791 * range [0, UCHAR_MAX]. 1792 * Return pages freed into the buddy system. 1793 */ 1794 static inline unsigned long free_initmem_default(int poison) 1795 { 1796 extern char __init_begin[], __init_end[]; 1797 1798 return free_reserved_area(&__init_begin, &__init_end, 1799 poison, "unused kernel"); 1800 } 1801 1802 static inline unsigned long get_num_physpages(void) 1803 { 1804 int nid; 1805 unsigned long phys_pages = 0; 1806 1807 for_each_online_node(nid) 1808 phys_pages += node_present_pages(nid); 1809 1810 return phys_pages; 1811 } 1812 1813 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1814 /* 1815 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1816 * zones, allocate the backing mem_map and account for memory holes in a more 1817 * architecture independent manner. This is a substitute for creating the 1818 * zone_sizes[] and zholes_size[] arrays and passing them to 1819 * free_area_init_node() 1820 * 1821 * An architecture is expected to register range of page frames backed by 1822 * physical memory with memblock_add[_node]() before calling 1823 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1824 * usage, an architecture is expected to do something like 1825 * 1826 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1827 * max_highmem_pfn}; 1828 * for_each_valid_physical_page_range() 1829 * memblock_add_node(base, size, nid) 1830 * free_area_init_nodes(max_zone_pfns); 1831 * 1832 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1833 * registered physical page range. Similarly 1834 * sparse_memory_present_with_active_regions() calls memory_present() for 1835 * each range when SPARSEMEM is enabled. 1836 * 1837 * See mm/page_alloc.c for more information on each function exposed by 1838 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1839 */ 1840 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1841 unsigned long node_map_pfn_alignment(void); 1842 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1843 unsigned long end_pfn); 1844 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1845 unsigned long end_pfn); 1846 extern void get_pfn_range_for_nid(unsigned int nid, 1847 unsigned long *start_pfn, unsigned long *end_pfn); 1848 extern unsigned long find_min_pfn_with_active_regions(void); 1849 extern void free_bootmem_with_active_regions(int nid, 1850 unsigned long max_low_pfn); 1851 extern void sparse_memory_present_with_active_regions(int nid); 1852 1853 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1854 1855 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1856 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1857 static inline int __early_pfn_to_nid(unsigned long pfn, 1858 struct mminit_pfnnid_cache *state) 1859 { 1860 return 0; 1861 } 1862 #else 1863 /* please see mm/page_alloc.c */ 1864 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1865 /* there is a per-arch backend function. */ 1866 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1867 struct mminit_pfnnid_cache *state); 1868 #endif 1869 1870 extern void set_dma_reserve(unsigned long new_dma_reserve); 1871 extern void memmap_init_zone(unsigned long, int, unsigned long, 1872 unsigned long, enum memmap_context); 1873 extern void setup_per_zone_wmarks(void); 1874 extern int __meminit init_per_zone_wmark_min(void); 1875 extern void mem_init(void); 1876 extern void __init mmap_init(void); 1877 extern void show_mem(unsigned int flags); 1878 extern long si_mem_available(void); 1879 extern void si_meminfo(struct sysinfo * val); 1880 extern void si_meminfo_node(struct sysinfo *val, int nid); 1881 1882 extern __printf(3, 4) 1883 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1884 const char *fmt, ...); 1885 1886 extern void setup_per_cpu_pageset(void); 1887 1888 extern void zone_pcp_update(struct zone *zone); 1889 extern void zone_pcp_reset(struct zone *zone); 1890 1891 /* page_alloc.c */ 1892 extern int min_free_kbytes; 1893 extern int watermark_scale_factor; 1894 1895 /* nommu.c */ 1896 extern atomic_long_t mmap_pages_allocated; 1897 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1898 1899 /* interval_tree.c */ 1900 void vma_interval_tree_insert(struct vm_area_struct *node, 1901 struct rb_root *root); 1902 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1903 struct vm_area_struct *prev, 1904 struct rb_root *root); 1905 void vma_interval_tree_remove(struct vm_area_struct *node, 1906 struct rb_root *root); 1907 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1908 unsigned long start, unsigned long last); 1909 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1910 unsigned long start, unsigned long last); 1911 1912 #define vma_interval_tree_foreach(vma, root, start, last) \ 1913 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1914 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1915 1916 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1917 struct rb_root *root); 1918 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1919 struct rb_root *root); 1920 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1921 struct rb_root *root, unsigned long start, unsigned long last); 1922 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1923 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1924 #ifdef CONFIG_DEBUG_VM_RB 1925 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1926 #endif 1927 1928 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1929 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1930 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1931 1932 /* mmap.c */ 1933 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1934 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1935 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1936 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1937 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1938 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1939 struct mempolicy *, struct vm_userfaultfd_ctx); 1940 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1941 extern int split_vma(struct mm_struct *, 1942 struct vm_area_struct *, unsigned long addr, int new_below); 1943 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1944 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1945 struct rb_node **, struct rb_node *); 1946 extern void unlink_file_vma(struct vm_area_struct *); 1947 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1948 unsigned long addr, unsigned long len, pgoff_t pgoff, 1949 bool *need_rmap_locks); 1950 extern void exit_mmap(struct mm_struct *); 1951 1952 static inline int check_data_rlimit(unsigned long rlim, 1953 unsigned long new, 1954 unsigned long start, 1955 unsigned long end_data, 1956 unsigned long start_data) 1957 { 1958 if (rlim < RLIM_INFINITY) { 1959 if (((new - start) + (end_data - start_data)) > rlim) 1960 return -ENOSPC; 1961 } 1962 1963 return 0; 1964 } 1965 1966 extern int mm_take_all_locks(struct mm_struct *mm); 1967 extern void mm_drop_all_locks(struct mm_struct *mm); 1968 1969 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1970 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1971 1972 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 1973 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 1974 1975 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1976 unsigned long addr, unsigned long len, 1977 unsigned long flags, 1978 const struct vm_special_mapping *spec); 1979 /* This is an obsolete alternative to _install_special_mapping. */ 1980 extern int install_special_mapping(struct mm_struct *mm, 1981 unsigned long addr, unsigned long len, 1982 unsigned long flags, struct page **pages); 1983 1984 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1985 1986 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1987 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1988 extern unsigned long do_mmap(struct file *file, unsigned long addr, 1989 unsigned long len, unsigned long prot, unsigned long flags, 1990 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 1991 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1992 1993 static inline unsigned long 1994 do_mmap_pgoff(struct file *file, unsigned long addr, 1995 unsigned long len, unsigned long prot, unsigned long flags, 1996 unsigned long pgoff, unsigned long *populate) 1997 { 1998 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 1999 } 2000 2001 #ifdef CONFIG_MMU 2002 extern int __mm_populate(unsigned long addr, unsigned long len, 2003 int ignore_errors); 2004 static inline void mm_populate(unsigned long addr, unsigned long len) 2005 { 2006 /* Ignore errors */ 2007 (void) __mm_populate(addr, len, 1); 2008 } 2009 #else 2010 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2011 #endif 2012 2013 /* These take the mm semaphore themselves */ 2014 extern unsigned long __must_check vm_brk(unsigned long, unsigned long); 2015 extern int vm_munmap(unsigned long, size_t); 2016 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2017 unsigned long, unsigned long, 2018 unsigned long, unsigned long); 2019 2020 struct vm_unmapped_area_info { 2021 #define VM_UNMAPPED_AREA_TOPDOWN 1 2022 unsigned long flags; 2023 unsigned long length; 2024 unsigned long low_limit; 2025 unsigned long high_limit; 2026 unsigned long align_mask; 2027 unsigned long align_offset; 2028 }; 2029 2030 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2031 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2032 2033 /* 2034 * Search for an unmapped address range. 2035 * 2036 * We are looking for a range that: 2037 * - does not intersect with any VMA; 2038 * - is contained within the [low_limit, high_limit) interval; 2039 * - is at least the desired size. 2040 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2041 */ 2042 static inline unsigned long 2043 vm_unmapped_area(struct vm_unmapped_area_info *info) 2044 { 2045 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2046 return unmapped_area_topdown(info); 2047 else 2048 return unmapped_area(info); 2049 } 2050 2051 /* truncate.c */ 2052 extern void truncate_inode_pages(struct address_space *, loff_t); 2053 extern void truncate_inode_pages_range(struct address_space *, 2054 loff_t lstart, loff_t lend); 2055 extern void truncate_inode_pages_final(struct address_space *); 2056 2057 /* generic vm_area_ops exported for stackable file systems */ 2058 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2059 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2060 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2061 2062 /* mm/page-writeback.c */ 2063 int write_one_page(struct page *page, int wait); 2064 void task_dirty_inc(struct task_struct *tsk); 2065 2066 /* readahead.c */ 2067 #define VM_MAX_READAHEAD 128 /* kbytes */ 2068 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2069 2070 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2071 pgoff_t offset, unsigned long nr_to_read); 2072 2073 void page_cache_sync_readahead(struct address_space *mapping, 2074 struct file_ra_state *ra, 2075 struct file *filp, 2076 pgoff_t offset, 2077 unsigned long size); 2078 2079 void page_cache_async_readahead(struct address_space *mapping, 2080 struct file_ra_state *ra, 2081 struct file *filp, 2082 struct page *pg, 2083 pgoff_t offset, 2084 unsigned long size); 2085 2086 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2087 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2088 2089 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2090 extern int expand_downwards(struct vm_area_struct *vma, 2091 unsigned long address); 2092 #if VM_GROWSUP 2093 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2094 #else 2095 #define expand_upwards(vma, address) (0) 2096 #endif 2097 2098 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2099 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2100 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2101 struct vm_area_struct **pprev); 2102 2103 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2104 NULL if none. Assume start_addr < end_addr. */ 2105 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2106 { 2107 struct vm_area_struct * vma = find_vma(mm,start_addr); 2108 2109 if (vma && end_addr <= vma->vm_start) 2110 vma = NULL; 2111 return vma; 2112 } 2113 2114 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2115 { 2116 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2117 } 2118 2119 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2120 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2121 unsigned long vm_start, unsigned long vm_end) 2122 { 2123 struct vm_area_struct *vma = find_vma(mm, vm_start); 2124 2125 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2126 vma = NULL; 2127 2128 return vma; 2129 } 2130 2131 #ifdef CONFIG_MMU 2132 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2133 void vma_set_page_prot(struct vm_area_struct *vma); 2134 #else 2135 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2136 { 2137 return __pgprot(0); 2138 } 2139 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2140 { 2141 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2142 } 2143 #endif 2144 2145 #ifdef CONFIG_NUMA_BALANCING 2146 unsigned long change_prot_numa(struct vm_area_struct *vma, 2147 unsigned long start, unsigned long end); 2148 #endif 2149 2150 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2151 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2152 unsigned long pfn, unsigned long size, pgprot_t); 2153 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2154 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2155 unsigned long pfn); 2156 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2157 unsigned long pfn, pgprot_t pgprot); 2158 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2159 pfn_t pfn); 2160 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2161 2162 2163 struct page *follow_page_mask(struct vm_area_struct *vma, 2164 unsigned long address, unsigned int foll_flags, 2165 unsigned int *page_mask); 2166 2167 static inline struct page *follow_page(struct vm_area_struct *vma, 2168 unsigned long address, unsigned int foll_flags) 2169 { 2170 unsigned int unused_page_mask; 2171 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2172 } 2173 2174 #define FOLL_WRITE 0x01 /* check pte is writable */ 2175 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2176 #define FOLL_GET 0x04 /* do get_page on page */ 2177 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2178 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2179 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2180 * and return without waiting upon it */ 2181 #define FOLL_POPULATE 0x40 /* fault in page */ 2182 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2183 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2184 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2185 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2186 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2187 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2188 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2189 2190 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2191 void *data); 2192 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2193 unsigned long size, pte_fn_t fn, void *data); 2194 2195 2196 #ifdef CONFIG_PAGE_POISONING 2197 extern bool page_poisoning_enabled(void); 2198 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2199 extern bool page_is_poisoned(struct page *page); 2200 #else 2201 static inline bool page_poisoning_enabled(void) { return false; } 2202 static inline void kernel_poison_pages(struct page *page, int numpages, 2203 int enable) { } 2204 static inline bool page_is_poisoned(struct page *page) { return false; } 2205 #endif 2206 2207 #ifdef CONFIG_DEBUG_PAGEALLOC 2208 extern bool _debug_pagealloc_enabled; 2209 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2210 2211 static inline bool debug_pagealloc_enabled(void) 2212 { 2213 return _debug_pagealloc_enabled; 2214 } 2215 2216 static inline void 2217 kernel_map_pages(struct page *page, int numpages, int enable) 2218 { 2219 if (!debug_pagealloc_enabled()) 2220 return; 2221 2222 __kernel_map_pages(page, numpages, enable); 2223 } 2224 #ifdef CONFIG_HIBERNATION 2225 extern bool kernel_page_present(struct page *page); 2226 #endif /* CONFIG_HIBERNATION */ 2227 #else /* CONFIG_DEBUG_PAGEALLOC */ 2228 static inline void 2229 kernel_map_pages(struct page *page, int numpages, int enable) {} 2230 #ifdef CONFIG_HIBERNATION 2231 static inline bool kernel_page_present(struct page *page) { return true; } 2232 #endif /* CONFIG_HIBERNATION */ 2233 static inline bool debug_pagealloc_enabled(void) 2234 { 2235 return false; 2236 } 2237 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2238 2239 #ifdef __HAVE_ARCH_GATE_AREA 2240 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2241 extern int in_gate_area_no_mm(unsigned long addr); 2242 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2243 #else 2244 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2245 { 2246 return NULL; 2247 } 2248 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2249 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2250 { 2251 return 0; 2252 } 2253 #endif /* __HAVE_ARCH_GATE_AREA */ 2254 2255 #ifdef CONFIG_SYSCTL 2256 extern int sysctl_drop_caches; 2257 int drop_caches_sysctl_handler(struct ctl_table *, int, 2258 void __user *, size_t *, loff_t *); 2259 #endif 2260 2261 void drop_slab(void); 2262 void drop_slab_node(int nid); 2263 2264 #ifndef CONFIG_MMU 2265 #define randomize_va_space 0 2266 #else 2267 extern int randomize_va_space; 2268 #endif 2269 2270 const char * arch_vma_name(struct vm_area_struct *vma); 2271 void print_vma_addr(char *prefix, unsigned long rip); 2272 2273 void sparse_mem_maps_populate_node(struct page **map_map, 2274 unsigned long pnum_begin, 2275 unsigned long pnum_end, 2276 unsigned long map_count, 2277 int nodeid); 2278 2279 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2280 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2281 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2282 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2283 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2284 void *vmemmap_alloc_block(unsigned long size, int node); 2285 struct vmem_altmap; 2286 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2287 struct vmem_altmap *altmap); 2288 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2289 { 2290 return __vmemmap_alloc_block_buf(size, node, NULL); 2291 } 2292 2293 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2294 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2295 int node); 2296 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2297 void vmemmap_populate_print_last(void); 2298 #ifdef CONFIG_MEMORY_HOTPLUG 2299 void vmemmap_free(unsigned long start, unsigned long end); 2300 #endif 2301 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2302 unsigned long size); 2303 2304 enum mf_flags { 2305 MF_COUNT_INCREASED = 1 << 0, 2306 MF_ACTION_REQUIRED = 1 << 1, 2307 MF_MUST_KILL = 1 << 2, 2308 MF_SOFT_OFFLINE = 1 << 3, 2309 }; 2310 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2311 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2312 extern int unpoison_memory(unsigned long pfn); 2313 extern int get_hwpoison_page(struct page *page); 2314 #define put_hwpoison_page(page) put_page(page) 2315 extern int sysctl_memory_failure_early_kill; 2316 extern int sysctl_memory_failure_recovery; 2317 extern void shake_page(struct page *p, int access); 2318 extern atomic_long_t num_poisoned_pages; 2319 extern int soft_offline_page(struct page *page, int flags); 2320 2321 2322 /* 2323 * Error handlers for various types of pages. 2324 */ 2325 enum mf_result { 2326 MF_IGNORED, /* Error: cannot be handled */ 2327 MF_FAILED, /* Error: handling failed */ 2328 MF_DELAYED, /* Will be handled later */ 2329 MF_RECOVERED, /* Successfully recovered */ 2330 }; 2331 2332 enum mf_action_page_type { 2333 MF_MSG_KERNEL, 2334 MF_MSG_KERNEL_HIGH_ORDER, 2335 MF_MSG_SLAB, 2336 MF_MSG_DIFFERENT_COMPOUND, 2337 MF_MSG_POISONED_HUGE, 2338 MF_MSG_HUGE, 2339 MF_MSG_FREE_HUGE, 2340 MF_MSG_UNMAP_FAILED, 2341 MF_MSG_DIRTY_SWAPCACHE, 2342 MF_MSG_CLEAN_SWAPCACHE, 2343 MF_MSG_DIRTY_MLOCKED_LRU, 2344 MF_MSG_CLEAN_MLOCKED_LRU, 2345 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2346 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2347 MF_MSG_DIRTY_LRU, 2348 MF_MSG_CLEAN_LRU, 2349 MF_MSG_TRUNCATED_LRU, 2350 MF_MSG_BUDDY, 2351 MF_MSG_BUDDY_2ND, 2352 MF_MSG_UNKNOWN, 2353 }; 2354 2355 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2356 extern void clear_huge_page(struct page *page, 2357 unsigned long addr, 2358 unsigned int pages_per_huge_page); 2359 extern void copy_user_huge_page(struct page *dst, struct page *src, 2360 unsigned long addr, struct vm_area_struct *vma, 2361 unsigned int pages_per_huge_page); 2362 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2363 2364 extern struct page_ext_operations debug_guardpage_ops; 2365 extern struct page_ext_operations page_poisoning_ops; 2366 2367 #ifdef CONFIG_DEBUG_PAGEALLOC 2368 extern unsigned int _debug_guardpage_minorder; 2369 extern bool _debug_guardpage_enabled; 2370 2371 static inline unsigned int debug_guardpage_minorder(void) 2372 { 2373 return _debug_guardpage_minorder; 2374 } 2375 2376 static inline bool debug_guardpage_enabled(void) 2377 { 2378 return _debug_guardpage_enabled; 2379 } 2380 2381 static inline bool page_is_guard(struct page *page) 2382 { 2383 struct page_ext *page_ext; 2384 2385 if (!debug_guardpage_enabled()) 2386 return false; 2387 2388 page_ext = lookup_page_ext(page); 2389 if (unlikely(!page_ext)) 2390 return false; 2391 2392 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2393 } 2394 #else 2395 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2396 static inline bool debug_guardpage_enabled(void) { return false; } 2397 static inline bool page_is_guard(struct page *page) { return false; } 2398 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2399 2400 #if MAX_NUMNODES > 1 2401 void __init setup_nr_node_ids(void); 2402 #else 2403 static inline void setup_nr_node_ids(void) {} 2404 #endif 2405 2406 #endif /* __KERNEL__ */ 2407 #endif /* _LINUX_MM_H */ 2408