1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36 extern unsigned long max_mapnr; 37 38 static inline void set_max_mapnr(unsigned long limit) 39 { 40 max_mapnr = limit; 41 } 42 #else 43 static inline void set_max_mapnr(unsigned long limit) { } 44 #endif 45 46 extern unsigned long totalram_pages; 47 extern void * high_memory; 48 extern int page_cluster; 49 50 #ifdef CONFIG_SYSCTL 51 extern int sysctl_legacy_va_layout; 52 #else 53 #define sysctl_legacy_va_layout 0 54 #endif 55 56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57 extern const int mmap_rnd_bits_min; 58 extern const int mmap_rnd_bits_max; 59 extern int mmap_rnd_bits __read_mostly; 60 #endif 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62 extern const int mmap_rnd_compat_bits_min; 63 extern const int mmap_rnd_compat_bits_max; 64 extern int mmap_rnd_compat_bits __read_mostly; 65 #endif 66 67 #include <asm/page.h> 68 #include <asm/pgtable.h> 69 #include <asm/processor.h> 70 71 #ifndef __pa_symbol 72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73 #endif 74 75 /* 76 * To prevent common memory management code establishing 77 * a zero page mapping on a read fault. 78 * This macro should be defined within <asm/pgtable.h>. 79 * s390 does this to prevent multiplexing of hardware bits 80 * related to the physical page in case of virtualization. 81 */ 82 #ifndef mm_forbids_zeropage 83 #define mm_forbids_zeropage(X) (0) 84 #endif 85 86 /* 87 * Default maximum number of active map areas, this limits the number of vmas 88 * per mm struct. Users can overwrite this number by sysctl but there is a 89 * problem. 90 * 91 * When a program's coredump is generated as ELF format, a section is created 92 * per a vma. In ELF, the number of sections is represented in unsigned short. 93 * This means the number of sections should be smaller than 65535 at coredump. 94 * Because the kernel adds some informative sections to a image of program at 95 * generating coredump, we need some margin. The number of extra sections is 96 * 1-3 now and depends on arch. We use "5" as safe margin, here. 97 * 98 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 99 * not a hard limit any more. Although some userspace tools can be surprised by 100 * that. 101 */ 102 #define MAPCOUNT_ELF_CORE_MARGIN (5) 103 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 104 105 extern int sysctl_max_map_count; 106 107 extern unsigned long sysctl_user_reserve_kbytes; 108 extern unsigned long sysctl_admin_reserve_kbytes; 109 110 extern int sysctl_overcommit_memory; 111 extern int sysctl_overcommit_ratio; 112 extern unsigned long sysctl_overcommit_kbytes; 113 114 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 115 size_t *, loff_t *); 116 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 117 size_t *, loff_t *); 118 119 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 120 121 /* to align the pointer to the (next) page boundary */ 122 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 123 124 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 125 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 126 127 /* 128 * Linux kernel virtual memory manager primitives. 129 * The idea being to have a "virtual" mm in the same way 130 * we have a virtual fs - giving a cleaner interface to the 131 * mm details, and allowing different kinds of memory mappings 132 * (from shared memory to executable loading to arbitrary 133 * mmap() functions). 134 */ 135 136 extern struct kmem_cache *vm_area_cachep; 137 138 #ifndef CONFIG_MMU 139 extern struct rb_root nommu_region_tree; 140 extern struct rw_semaphore nommu_region_sem; 141 142 extern unsigned int kobjsize(const void *objp); 143 #endif 144 145 /* 146 * vm_flags in vm_area_struct, see mm_types.h. 147 * When changing, update also include/trace/events/mmflags.h 148 */ 149 #define VM_NONE 0x00000000 150 151 #define VM_READ 0x00000001 /* currently active flags */ 152 #define VM_WRITE 0x00000002 153 #define VM_EXEC 0x00000004 154 #define VM_SHARED 0x00000008 155 156 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 157 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 158 #define VM_MAYWRITE 0x00000020 159 #define VM_MAYEXEC 0x00000040 160 #define VM_MAYSHARE 0x00000080 161 162 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 163 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 164 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 165 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 166 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 167 168 #define VM_LOCKED 0x00002000 169 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 170 171 /* Used by sys_madvise() */ 172 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 173 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 174 175 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 176 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 177 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 178 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 179 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 180 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 181 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 182 #define VM_ARCH_2 0x02000000 183 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 184 185 #ifdef CONFIG_MEM_SOFT_DIRTY 186 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 187 #else 188 # define VM_SOFTDIRTY 0 189 #endif 190 191 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 192 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 193 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 194 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 195 196 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 197 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 198 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 199 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 200 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 201 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 202 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 203 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 204 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 205 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 206 207 #if defined(CONFIG_X86) 208 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 209 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 210 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 211 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 212 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 213 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 214 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 215 #endif 216 #elif defined(CONFIG_PPC) 217 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 218 #elif defined(CONFIG_PARISC) 219 # define VM_GROWSUP VM_ARCH_1 220 #elif defined(CONFIG_METAG) 221 # define VM_GROWSUP VM_ARCH_1 222 #elif defined(CONFIG_IA64) 223 # define VM_GROWSUP VM_ARCH_1 224 #elif !defined(CONFIG_MMU) 225 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 226 #endif 227 228 #if defined(CONFIG_X86) 229 /* MPX specific bounds table or bounds directory */ 230 # define VM_MPX VM_ARCH_2 231 #endif 232 233 #ifndef VM_GROWSUP 234 # define VM_GROWSUP VM_NONE 235 #endif 236 237 /* Bits set in the VMA until the stack is in its final location */ 238 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 239 240 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 241 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 242 #endif 243 244 #ifdef CONFIG_STACK_GROWSUP 245 #define VM_STACK VM_GROWSUP 246 #else 247 #define VM_STACK VM_GROWSDOWN 248 #endif 249 250 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 251 252 /* 253 * Special vmas that are non-mergable, non-mlock()able. 254 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 255 */ 256 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 257 258 /* This mask defines which mm->def_flags a process can inherit its parent */ 259 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 260 261 /* This mask is used to clear all the VMA flags used by mlock */ 262 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 263 264 /* 265 * mapping from the currently active vm_flags protection bits (the 266 * low four bits) to a page protection mask.. 267 */ 268 extern pgprot_t protection_map[16]; 269 270 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 271 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 272 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 273 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 274 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 275 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 276 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 277 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 278 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 279 280 /* 281 * vm_fault is filled by the the pagefault handler and passed to the vma's 282 * ->fault function. The vma's ->fault is responsible for returning a bitmask 283 * of VM_FAULT_xxx flags that give details about how the fault was handled. 284 * 285 * MM layer fills up gfp_mask for page allocations but fault handler might 286 * alter it if its implementation requires a different allocation context. 287 * 288 * pgoff should be used in favour of virtual_address, if possible. 289 */ 290 struct vm_fault { 291 unsigned int flags; /* FAULT_FLAG_xxx flags */ 292 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 293 pgoff_t pgoff; /* Logical page offset based on vma */ 294 void __user *virtual_address; /* Faulting virtual address */ 295 296 struct page *cow_page; /* Handler may choose to COW */ 297 struct page *page; /* ->fault handlers should return a 298 * page here, unless VM_FAULT_NOPAGE 299 * is set (which is also implied by 300 * VM_FAULT_ERROR). 301 */ 302 /* for ->map_pages() only */ 303 pgoff_t max_pgoff; /* map pages for offset from pgoff till 304 * max_pgoff inclusive */ 305 pte_t *pte; /* pte entry associated with ->pgoff */ 306 }; 307 308 /* 309 * These are the virtual MM functions - opening of an area, closing and 310 * unmapping it (needed to keep files on disk up-to-date etc), pointer 311 * to the functions called when a no-page or a wp-page exception occurs. 312 */ 313 struct vm_operations_struct { 314 void (*open)(struct vm_area_struct * area); 315 void (*close)(struct vm_area_struct * area); 316 int (*mremap)(struct vm_area_struct * area); 317 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 318 int (*pmd_fault)(struct vm_area_struct *, unsigned long address, 319 pmd_t *, unsigned int flags); 320 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 321 322 /* notification that a previously read-only page is about to become 323 * writable, if an error is returned it will cause a SIGBUS */ 324 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 325 326 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 327 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 328 329 /* called by access_process_vm when get_user_pages() fails, typically 330 * for use by special VMAs that can switch between memory and hardware 331 */ 332 int (*access)(struct vm_area_struct *vma, unsigned long addr, 333 void *buf, int len, int write); 334 335 /* Called by the /proc/PID/maps code to ask the vma whether it 336 * has a special name. Returning non-NULL will also cause this 337 * vma to be dumped unconditionally. */ 338 const char *(*name)(struct vm_area_struct *vma); 339 340 #ifdef CONFIG_NUMA 341 /* 342 * set_policy() op must add a reference to any non-NULL @new mempolicy 343 * to hold the policy upon return. Caller should pass NULL @new to 344 * remove a policy and fall back to surrounding context--i.e. do not 345 * install a MPOL_DEFAULT policy, nor the task or system default 346 * mempolicy. 347 */ 348 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 349 350 /* 351 * get_policy() op must add reference [mpol_get()] to any policy at 352 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 353 * in mm/mempolicy.c will do this automatically. 354 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 355 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 356 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 357 * must return NULL--i.e., do not "fallback" to task or system default 358 * policy. 359 */ 360 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 361 unsigned long addr); 362 #endif 363 /* 364 * Called by vm_normal_page() for special PTEs to find the 365 * page for @addr. This is useful if the default behavior 366 * (using pte_page()) would not find the correct page. 367 */ 368 struct page *(*find_special_page)(struct vm_area_struct *vma, 369 unsigned long addr); 370 }; 371 372 struct mmu_gather; 373 struct inode; 374 375 #define page_private(page) ((page)->private) 376 #define set_page_private(page, v) ((page)->private = (v)) 377 378 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 379 static inline int pmd_devmap(pmd_t pmd) 380 { 381 return 0; 382 } 383 #endif 384 385 /* 386 * FIXME: take this include out, include page-flags.h in 387 * files which need it (119 of them) 388 */ 389 #include <linux/page-flags.h> 390 #include <linux/huge_mm.h> 391 392 /* 393 * Methods to modify the page usage count. 394 * 395 * What counts for a page usage: 396 * - cache mapping (page->mapping) 397 * - private data (page->private) 398 * - page mapped in a task's page tables, each mapping 399 * is counted separately 400 * 401 * Also, many kernel routines increase the page count before a critical 402 * routine so they can be sure the page doesn't go away from under them. 403 */ 404 405 /* 406 * Drop a ref, return true if the refcount fell to zero (the page has no users) 407 */ 408 static inline int put_page_testzero(struct page *page) 409 { 410 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 411 return page_ref_dec_and_test(page); 412 } 413 414 /* 415 * Try to grab a ref unless the page has a refcount of zero, return false if 416 * that is the case. 417 * This can be called when MMU is off so it must not access 418 * any of the virtual mappings. 419 */ 420 static inline int get_page_unless_zero(struct page *page) 421 { 422 return page_ref_add_unless(page, 1, 0); 423 } 424 425 extern int page_is_ram(unsigned long pfn); 426 427 enum { 428 REGION_INTERSECTS, 429 REGION_DISJOINT, 430 REGION_MIXED, 431 }; 432 433 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 434 unsigned long desc); 435 436 /* Support for virtually mapped pages */ 437 struct page *vmalloc_to_page(const void *addr); 438 unsigned long vmalloc_to_pfn(const void *addr); 439 440 /* 441 * Determine if an address is within the vmalloc range 442 * 443 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 444 * is no special casing required. 445 */ 446 static inline int is_vmalloc_addr(const void *x) 447 { 448 #ifdef CONFIG_MMU 449 unsigned long addr = (unsigned long)x; 450 451 return addr >= VMALLOC_START && addr < VMALLOC_END; 452 #else 453 return 0; 454 #endif 455 } 456 #ifdef CONFIG_MMU 457 extern int is_vmalloc_or_module_addr(const void *x); 458 #else 459 static inline int is_vmalloc_or_module_addr(const void *x) 460 { 461 return 0; 462 } 463 #endif 464 465 extern void kvfree(const void *addr); 466 467 static inline atomic_t *compound_mapcount_ptr(struct page *page) 468 { 469 return &page[1].compound_mapcount; 470 } 471 472 static inline int compound_mapcount(struct page *page) 473 { 474 if (!PageCompound(page)) 475 return 0; 476 page = compound_head(page); 477 return atomic_read(compound_mapcount_ptr(page)) + 1; 478 } 479 480 /* 481 * The atomic page->_mapcount, starts from -1: so that transitions 482 * both from it and to it can be tracked, using atomic_inc_and_test 483 * and atomic_add_negative(-1). 484 */ 485 static inline void page_mapcount_reset(struct page *page) 486 { 487 atomic_set(&(page)->_mapcount, -1); 488 } 489 490 int __page_mapcount(struct page *page); 491 492 static inline int page_mapcount(struct page *page) 493 { 494 VM_BUG_ON_PAGE(PageSlab(page), page); 495 496 if (unlikely(PageCompound(page))) 497 return __page_mapcount(page); 498 return atomic_read(&page->_mapcount) + 1; 499 } 500 501 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 502 int total_mapcount(struct page *page); 503 #else 504 static inline int total_mapcount(struct page *page) 505 { 506 return page_mapcount(page); 507 } 508 #endif 509 510 static inline struct page *virt_to_head_page(const void *x) 511 { 512 struct page *page = virt_to_page(x); 513 514 return compound_head(page); 515 } 516 517 void __put_page(struct page *page); 518 519 void put_pages_list(struct list_head *pages); 520 521 void split_page(struct page *page, unsigned int order); 522 int split_free_page(struct page *page); 523 524 /* 525 * Compound pages have a destructor function. Provide a 526 * prototype for that function and accessor functions. 527 * These are _only_ valid on the head of a compound page. 528 */ 529 typedef void compound_page_dtor(struct page *); 530 531 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 532 enum compound_dtor_id { 533 NULL_COMPOUND_DTOR, 534 COMPOUND_PAGE_DTOR, 535 #ifdef CONFIG_HUGETLB_PAGE 536 HUGETLB_PAGE_DTOR, 537 #endif 538 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 539 TRANSHUGE_PAGE_DTOR, 540 #endif 541 NR_COMPOUND_DTORS, 542 }; 543 extern compound_page_dtor * const compound_page_dtors[]; 544 545 static inline void set_compound_page_dtor(struct page *page, 546 enum compound_dtor_id compound_dtor) 547 { 548 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 549 page[1].compound_dtor = compound_dtor; 550 } 551 552 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 553 { 554 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 555 return compound_page_dtors[page[1].compound_dtor]; 556 } 557 558 static inline unsigned int compound_order(struct page *page) 559 { 560 if (!PageHead(page)) 561 return 0; 562 return page[1].compound_order; 563 } 564 565 static inline void set_compound_order(struct page *page, unsigned int order) 566 { 567 page[1].compound_order = order; 568 } 569 570 void free_compound_page(struct page *page); 571 572 #ifdef CONFIG_MMU 573 /* 574 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 575 * servicing faults for write access. In the normal case, do always want 576 * pte_mkwrite. But get_user_pages can cause write faults for mappings 577 * that do not have writing enabled, when used by access_process_vm. 578 */ 579 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 580 { 581 if (likely(vma->vm_flags & VM_WRITE)) 582 pte = pte_mkwrite(pte); 583 return pte; 584 } 585 586 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 587 struct page *page, pte_t *pte, bool write, bool anon); 588 #endif 589 590 /* 591 * Multiple processes may "see" the same page. E.g. for untouched 592 * mappings of /dev/null, all processes see the same page full of 593 * zeroes, and text pages of executables and shared libraries have 594 * only one copy in memory, at most, normally. 595 * 596 * For the non-reserved pages, page_count(page) denotes a reference count. 597 * page_count() == 0 means the page is free. page->lru is then used for 598 * freelist management in the buddy allocator. 599 * page_count() > 0 means the page has been allocated. 600 * 601 * Pages are allocated by the slab allocator in order to provide memory 602 * to kmalloc and kmem_cache_alloc. In this case, the management of the 603 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 604 * unless a particular usage is carefully commented. (the responsibility of 605 * freeing the kmalloc memory is the caller's, of course). 606 * 607 * A page may be used by anyone else who does a __get_free_page(). 608 * In this case, page_count still tracks the references, and should only 609 * be used through the normal accessor functions. The top bits of page->flags 610 * and page->virtual store page management information, but all other fields 611 * are unused and could be used privately, carefully. The management of this 612 * page is the responsibility of the one who allocated it, and those who have 613 * subsequently been given references to it. 614 * 615 * The other pages (we may call them "pagecache pages") are completely 616 * managed by the Linux memory manager: I/O, buffers, swapping etc. 617 * The following discussion applies only to them. 618 * 619 * A pagecache page contains an opaque `private' member, which belongs to the 620 * page's address_space. Usually, this is the address of a circular list of 621 * the page's disk buffers. PG_private must be set to tell the VM to call 622 * into the filesystem to release these pages. 623 * 624 * A page may belong to an inode's memory mapping. In this case, page->mapping 625 * is the pointer to the inode, and page->index is the file offset of the page, 626 * in units of PAGE_SIZE. 627 * 628 * If pagecache pages are not associated with an inode, they are said to be 629 * anonymous pages. These may become associated with the swapcache, and in that 630 * case PG_swapcache is set, and page->private is an offset into the swapcache. 631 * 632 * In either case (swapcache or inode backed), the pagecache itself holds one 633 * reference to the page. Setting PG_private should also increment the 634 * refcount. The each user mapping also has a reference to the page. 635 * 636 * The pagecache pages are stored in a per-mapping radix tree, which is 637 * rooted at mapping->page_tree, and indexed by offset. 638 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 639 * lists, we instead now tag pages as dirty/writeback in the radix tree. 640 * 641 * All pagecache pages may be subject to I/O: 642 * - inode pages may need to be read from disk, 643 * - inode pages which have been modified and are MAP_SHARED may need 644 * to be written back to the inode on disk, 645 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 646 * modified may need to be swapped out to swap space and (later) to be read 647 * back into memory. 648 */ 649 650 /* 651 * The zone field is never updated after free_area_init_core() 652 * sets it, so none of the operations on it need to be atomic. 653 */ 654 655 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 656 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 657 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 658 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 659 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 660 661 /* 662 * Define the bit shifts to access each section. For non-existent 663 * sections we define the shift as 0; that plus a 0 mask ensures 664 * the compiler will optimise away reference to them. 665 */ 666 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 667 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 668 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 669 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 670 671 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 672 #ifdef NODE_NOT_IN_PAGE_FLAGS 673 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 674 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 675 SECTIONS_PGOFF : ZONES_PGOFF) 676 #else 677 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 678 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 679 NODES_PGOFF : ZONES_PGOFF) 680 #endif 681 682 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 683 684 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 685 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 686 #endif 687 688 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 689 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 690 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 691 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 692 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 693 694 static inline enum zone_type page_zonenum(const struct page *page) 695 { 696 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 697 } 698 699 #ifdef CONFIG_ZONE_DEVICE 700 void get_zone_device_page(struct page *page); 701 void put_zone_device_page(struct page *page); 702 static inline bool is_zone_device_page(const struct page *page) 703 { 704 return page_zonenum(page) == ZONE_DEVICE; 705 } 706 #else 707 static inline void get_zone_device_page(struct page *page) 708 { 709 } 710 static inline void put_zone_device_page(struct page *page) 711 { 712 } 713 static inline bool is_zone_device_page(const struct page *page) 714 { 715 return false; 716 } 717 #endif 718 719 static inline void get_page(struct page *page) 720 { 721 page = compound_head(page); 722 /* 723 * Getting a normal page or the head of a compound page 724 * requires to already have an elevated page->_count. 725 */ 726 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 727 page_ref_inc(page); 728 729 if (unlikely(is_zone_device_page(page))) 730 get_zone_device_page(page); 731 } 732 733 static inline void put_page(struct page *page) 734 { 735 page = compound_head(page); 736 737 if (put_page_testzero(page)) 738 __put_page(page); 739 740 if (unlikely(is_zone_device_page(page))) 741 put_zone_device_page(page); 742 } 743 744 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 745 #define SECTION_IN_PAGE_FLAGS 746 #endif 747 748 /* 749 * The identification function is mainly used by the buddy allocator for 750 * determining if two pages could be buddies. We are not really identifying 751 * the zone since we could be using the section number id if we do not have 752 * node id available in page flags. 753 * We only guarantee that it will return the same value for two combinable 754 * pages in a zone. 755 */ 756 static inline int page_zone_id(struct page *page) 757 { 758 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 759 } 760 761 static inline int zone_to_nid(struct zone *zone) 762 { 763 #ifdef CONFIG_NUMA 764 return zone->node; 765 #else 766 return 0; 767 #endif 768 } 769 770 #ifdef NODE_NOT_IN_PAGE_FLAGS 771 extern int page_to_nid(const struct page *page); 772 #else 773 static inline int page_to_nid(const struct page *page) 774 { 775 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 776 } 777 #endif 778 779 #ifdef CONFIG_NUMA_BALANCING 780 static inline int cpu_pid_to_cpupid(int cpu, int pid) 781 { 782 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 783 } 784 785 static inline int cpupid_to_pid(int cpupid) 786 { 787 return cpupid & LAST__PID_MASK; 788 } 789 790 static inline int cpupid_to_cpu(int cpupid) 791 { 792 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 793 } 794 795 static inline int cpupid_to_nid(int cpupid) 796 { 797 return cpu_to_node(cpupid_to_cpu(cpupid)); 798 } 799 800 static inline bool cpupid_pid_unset(int cpupid) 801 { 802 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 803 } 804 805 static inline bool cpupid_cpu_unset(int cpupid) 806 { 807 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 808 } 809 810 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 811 { 812 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 813 } 814 815 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 816 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 817 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 818 { 819 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 820 } 821 822 static inline int page_cpupid_last(struct page *page) 823 { 824 return page->_last_cpupid; 825 } 826 static inline void page_cpupid_reset_last(struct page *page) 827 { 828 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 829 } 830 #else 831 static inline int page_cpupid_last(struct page *page) 832 { 833 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 834 } 835 836 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 837 838 static inline void page_cpupid_reset_last(struct page *page) 839 { 840 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 841 842 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 843 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 844 } 845 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 846 #else /* !CONFIG_NUMA_BALANCING */ 847 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 848 { 849 return page_to_nid(page); /* XXX */ 850 } 851 852 static inline int page_cpupid_last(struct page *page) 853 { 854 return page_to_nid(page); /* XXX */ 855 } 856 857 static inline int cpupid_to_nid(int cpupid) 858 { 859 return -1; 860 } 861 862 static inline int cpupid_to_pid(int cpupid) 863 { 864 return -1; 865 } 866 867 static inline int cpupid_to_cpu(int cpupid) 868 { 869 return -1; 870 } 871 872 static inline int cpu_pid_to_cpupid(int nid, int pid) 873 { 874 return -1; 875 } 876 877 static inline bool cpupid_pid_unset(int cpupid) 878 { 879 return 1; 880 } 881 882 static inline void page_cpupid_reset_last(struct page *page) 883 { 884 } 885 886 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 887 { 888 return false; 889 } 890 #endif /* CONFIG_NUMA_BALANCING */ 891 892 static inline struct zone *page_zone(const struct page *page) 893 { 894 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 895 } 896 897 #ifdef SECTION_IN_PAGE_FLAGS 898 static inline void set_page_section(struct page *page, unsigned long section) 899 { 900 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 901 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 902 } 903 904 static inline unsigned long page_to_section(const struct page *page) 905 { 906 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 907 } 908 #endif 909 910 static inline void set_page_zone(struct page *page, enum zone_type zone) 911 { 912 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 913 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 914 } 915 916 static inline void set_page_node(struct page *page, unsigned long node) 917 { 918 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 919 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 920 } 921 922 static inline void set_page_links(struct page *page, enum zone_type zone, 923 unsigned long node, unsigned long pfn) 924 { 925 set_page_zone(page, zone); 926 set_page_node(page, node); 927 #ifdef SECTION_IN_PAGE_FLAGS 928 set_page_section(page, pfn_to_section_nr(pfn)); 929 #endif 930 } 931 932 #ifdef CONFIG_MEMCG 933 static inline struct mem_cgroup *page_memcg(struct page *page) 934 { 935 return page->mem_cgroup; 936 } 937 #else 938 static inline struct mem_cgroup *page_memcg(struct page *page) 939 { 940 return NULL; 941 } 942 #endif 943 944 /* 945 * Some inline functions in vmstat.h depend on page_zone() 946 */ 947 #include <linux/vmstat.h> 948 949 static __always_inline void *lowmem_page_address(const struct page *page) 950 { 951 return __va(PFN_PHYS(page_to_pfn(page))); 952 } 953 954 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 955 #define HASHED_PAGE_VIRTUAL 956 #endif 957 958 #if defined(WANT_PAGE_VIRTUAL) 959 static inline void *page_address(const struct page *page) 960 { 961 return page->virtual; 962 } 963 static inline void set_page_address(struct page *page, void *address) 964 { 965 page->virtual = address; 966 } 967 #define page_address_init() do { } while(0) 968 #endif 969 970 #if defined(HASHED_PAGE_VIRTUAL) 971 void *page_address(const struct page *page); 972 void set_page_address(struct page *page, void *virtual); 973 void page_address_init(void); 974 #endif 975 976 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 977 #define page_address(page) lowmem_page_address(page) 978 #define set_page_address(page, address) do { } while(0) 979 #define page_address_init() do { } while(0) 980 #endif 981 982 extern void *page_rmapping(struct page *page); 983 extern struct anon_vma *page_anon_vma(struct page *page); 984 extern struct address_space *page_mapping(struct page *page); 985 986 extern struct address_space *__page_file_mapping(struct page *); 987 988 static inline 989 struct address_space *page_file_mapping(struct page *page) 990 { 991 if (unlikely(PageSwapCache(page))) 992 return __page_file_mapping(page); 993 994 return page->mapping; 995 } 996 997 /* 998 * Return the pagecache index of the passed page. Regular pagecache pages 999 * use ->index whereas swapcache pages use ->private 1000 */ 1001 static inline pgoff_t page_index(struct page *page) 1002 { 1003 if (unlikely(PageSwapCache(page))) 1004 return page_private(page); 1005 return page->index; 1006 } 1007 1008 extern pgoff_t __page_file_index(struct page *page); 1009 1010 /* 1011 * Return the file index of the page. Regular pagecache pages use ->index 1012 * whereas swapcache pages use swp_offset(->private) 1013 */ 1014 static inline pgoff_t page_file_index(struct page *page) 1015 { 1016 if (unlikely(PageSwapCache(page))) 1017 return __page_file_index(page); 1018 1019 return page->index; 1020 } 1021 1022 /* 1023 * Return true if this page is mapped into pagetables. 1024 * For compound page it returns true if any subpage of compound page is mapped. 1025 */ 1026 static inline bool page_mapped(struct page *page) 1027 { 1028 int i; 1029 if (likely(!PageCompound(page))) 1030 return atomic_read(&page->_mapcount) >= 0; 1031 page = compound_head(page); 1032 if (atomic_read(compound_mapcount_ptr(page)) >= 0) 1033 return true; 1034 for (i = 0; i < hpage_nr_pages(page); i++) { 1035 if (atomic_read(&page[i]._mapcount) >= 0) 1036 return true; 1037 } 1038 return false; 1039 } 1040 1041 /* 1042 * Return true only if the page has been allocated with 1043 * ALLOC_NO_WATERMARKS and the low watermark was not 1044 * met implying that the system is under some pressure. 1045 */ 1046 static inline bool page_is_pfmemalloc(struct page *page) 1047 { 1048 /* 1049 * Page index cannot be this large so this must be 1050 * a pfmemalloc page. 1051 */ 1052 return page->index == -1UL; 1053 } 1054 1055 /* 1056 * Only to be called by the page allocator on a freshly allocated 1057 * page. 1058 */ 1059 static inline void set_page_pfmemalloc(struct page *page) 1060 { 1061 page->index = -1UL; 1062 } 1063 1064 static inline void clear_page_pfmemalloc(struct page *page) 1065 { 1066 page->index = 0; 1067 } 1068 1069 /* 1070 * Different kinds of faults, as returned by handle_mm_fault(). 1071 * Used to decide whether a process gets delivered SIGBUS or 1072 * just gets major/minor fault counters bumped up. 1073 */ 1074 1075 #define VM_FAULT_OOM 0x0001 1076 #define VM_FAULT_SIGBUS 0x0002 1077 #define VM_FAULT_MAJOR 0x0004 1078 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1079 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1080 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1081 #define VM_FAULT_SIGSEGV 0x0040 1082 1083 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1084 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1085 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1086 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1087 1088 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1089 1090 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1091 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1092 VM_FAULT_FALLBACK) 1093 1094 /* Encode hstate index for a hwpoisoned large page */ 1095 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1096 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1097 1098 /* 1099 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1100 */ 1101 extern void pagefault_out_of_memory(void); 1102 1103 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1104 1105 /* 1106 * Flags passed to show_mem() and show_free_areas() to suppress output in 1107 * various contexts. 1108 */ 1109 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1110 1111 extern void show_free_areas(unsigned int flags); 1112 extern bool skip_free_areas_node(unsigned int flags, int nid); 1113 1114 int shmem_zero_setup(struct vm_area_struct *); 1115 #ifdef CONFIG_SHMEM 1116 bool shmem_mapping(struct address_space *mapping); 1117 #else 1118 static inline bool shmem_mapping(struct address_space *mapping) 1119 { 1120 return false; 1121 } 1122 #endif 1123 1124 extern bool can_do_mlock(void); 1125 extern int user_shm_lock(size_t, struct user_struct *); 1126 extern void user_shm_unlock(size_t, struct user_struct *); 1127 1128 /* 1129 * Parameter block passed down to zap_pte_range in exceptional cases. 1130 */ 1131 struct zap_details { 1132 struct address_space *check_mapping; /* Check page->mapping if set */ 1133 pgoff_t first_index; /* Lowest page->index to unmap */ 1134 pgoff_t last_index; /* Highest page->index to unmap */ 1135 bool ignore_dirty; /* Ignore dirty pages */ 1136 bool check_swap_entries; /* Check also swap entries */ 1137 }; 1138 1139 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1140 pte_t pte); 1141 1142 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1143 unsigned long size); 1144 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1145 unsigned long size, struct zap_details *); 1146 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1147 unsigned long start, unsigned long end); 1148 1149 /** 1150 * mm_walk - callbacks for walk_page_range 1151 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1152 * this handler is required to be able to handle 1153 * pmd_trans_huge() pmds. They may simply choose to 1154 * split_huge_page() instead of handling it explicitly. 1155 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1156 * @pte_hole: if set, called for each hole at all levels 1157 * @hugetlb_entry: if set, called for each hugetlb entry 1158 * @test_walk: caller specific callback function to determine whether 1159 * we walk over the current vma or not. A positive returned 1160 * value means "do page table walk over the current vma," 1161 * and a negative one means "abort current page table walk 1162 * right now." 0 means "skip the current vma." 1163 * @mm: mm_struct representing the target process of page table walk 1164 * @vma: vma currently walked (NULL if walking outside vmas) 1165 * @private: private data for callbacks' usage 1166 * 1167 * (see the comment on walk_page_range() for more details) 1168 */ 1169 struct mm_walk { 1170 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1171 unsigned long next, struct mm_walk *walk); 1172 int (*pte_entry)(pte_t *pte, unsigned long addr, 1173 unsigned long next, struct mm_walk *walk); 1174 int (*pte_hole)(unsigned long addr, unsigned long next, 1175 struct mm_walk *walk); 1176 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1177 unsigned long addr, unsigned long next, 1178 struct mm_walk *walk); 1179 int (*test_walk)(unsigned long addr, unsigned long next, 1180 struct mm_walk *walk); 1181 struct mm_struct *mm; 1182 struct vm_area_struct *vma; 1183 void *private; 1184 }; 1185 1186 int walk_page_range(unsigned long addr, unsigned long end, 1187 struct mm_walk *walk); 1188 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1189 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1190 unsigned long end, unsigned long floor, unsigned long ceiling); 1191 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1192 struct vm_area_struct *vma); 1193 void unmap_mapping_range(struct address_space *mapping, 1194 loff_t const holebegin, loff_t const holelen, int even_cows); 1195 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1196 unsigned long *pfn); 1197 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1198 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1199 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1200 void *buf, int len, int write); 1201 1202 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1203 loff_t const holebegin, loff_t const holelen) 1204 { 1205 unmap_mapping_range(mapping, holebegin, holelen, 0); 1206 } 1207 1208 extern void truncate_pagecache(struct inode *inode, loff_t new); 1209 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1210 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1211 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1212 int truncate_inode_page(struct address_space *mapping, struct page *page); 1213 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1214 int invalidate_inode_page(struct page *page); 1215 1216 #ifdef CONFIG_MMU 1217 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1218 unsigned long address, unsigned int flags); 1219 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1220 unsigned long address, unsigned int fault_flags, 1221 bool *unlocked); 1222 #else 1223 static inline int handle_mm_fault(struct mm_struct *mm, 1224 struct vm_area_struct *vma, unsigned long address, 1225 unsigned int flags) 1226 { 1227 /* should never happen if there's no MMU */ 1228 BUG(); 1229 return VM_FAULT_SIGBUS; 1230 } 1231 static inline int fixup_user_fault(struct task_struct *tsk, 1232 struct mm_struct *mm, unsigned long address, 1233 unsigned int fault_flags, bool *unlocked) 1234 { 1235 /* should never happen if there's no MMU */ 1236 BUG(); 1237 return -EFAULT; 1238 } 1239 #endif 1240 1241 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1242 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1243 void *buf, int len, int write); 1244 1245 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1246 unsigned long start, unsigned long nr_pages, 1247 unsigned int foll_flags, struct page **pages, 1248 struct vm_area_struct **vmas, int *nonblocking); 1249 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1250 unsigned long start, unsigned long nr_pages, 1251 int write, int force, struct page **pages, 1252 struct vm_area_struct **vmas); 1253 long get_user_pages6(unsigned long start, unsigned long nr_pages, 1254 int write, int force, struct page **pages, 1255 struct vm_area_struct **vmas); 1256 long get_user_pages_locked6(unsigned long start, unsigned long nr_pages, 1257 int write, int force, struct page **pages, int *locked); 1258 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1259 unsigned long start, unsigned long nr_pages, 1260 int write, int force, struct page **pages, 1261 unsigned int gup_flags); 1262 long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages, 1263 int write, int force, struct page **pages); 1264 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1265 struct page **pages); 1266 1267 /* suppress warnings from use in EXPORT_SYMBOL() */ 1268 #ifndef __DISABLE_GUP_DEPRECATED 1269 #define __gup_deprecated __deprecated 1270 #else 1271 #define __gup_deprecated 1272 #endif 1273 /* 1274 * These macros provide backward-compatibility with the old 1275 * get_user_pages() variants which took tsk/mm. These 1276 * functions/macros provide both compile-time __deprecated so we 1277 * can catch old-style use and not break the build. The actual 1278 * functions also have WARN_ON()s to let us know at runtime if 1279 * the get_user_pages() should have been the "remote" variant. 1280 * 1281 * These are hideous, but temporary. 1282 * 1283 * If you run into one of these __deprecated warnings, look 1284 * at how you are calling get_user_pages(). If you are calling 1285 * it with current/current->mm as the first two arguments, 1286 * simply remove those arguments. The behavior will be the same 1287 * as it is now. If you are calling it on another task, use 1288 * get_user_pages_remote() instead. 1289 * 1290 * Any questions? Ask Dave Hansen <[email protected]> 1291 */ 1292 long 1293 __gup_deprecated 1294 get_user_pages8(struct task_struct *tsk, struct mm_struct *mm, 1295 unsigned long start, unsigned long nr_pages, 1296 int write, int force, struct page **pages, 1297 struct vm_area_struct **vmas); 1298 #define GUP_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages, ...) \ 1299 get_user_pages 1300 #define get_user_pages(...) GUP_MACRO(__VA_ARGS__, \ 1301 get_user_pages8, x, \ 1302 get_user_pages6, x, x, x, x, x)(__VA_ARGS__) 1303 1304 __gup_deprecated 1305 long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm, 1306 unsigned long start, unsigned long nr_pages, 1307 int write, int force, struct page **pages, 1308 int *locked); 1309 #define GUPL_MACRO(_1, _2, _3, _4, _5, _6, _7, _8, get_user_pages_locked, ...) \ 1310 get_user_pages_locked 1311 #define get_user_pages_locked(...) GUPL_MACRO(__VA_ARGS__, \ 1312 get_user_pages_locked8, x, \ 1313 get_user_pages_locked6, x, x, x, x)(__VA_ARGS__) 1314 1315 __gup_deprecated 1316 long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm, 1317 unsigned long start, unsigned long nr_pages, 1318 int write, int force, struct page **pages); 1319 #define GUPU_MACRO(_1, _2, _3, _4, _5, _6, _7, get_user_pages_unlocked, ...) \ 1320 get_user_pages_unlocked 1321 #define get_user_pages_unlocked(...) GUPU_MACRO(__VA_ARGS__, \ 1322 get_user_pages_unlocked7, x, \ 1323 get_user_pages_unlocked5, x, x, x, x)(__VA_ARGS__) 1324 1325 /* Container for pinned pfns / pages */ 1326 struct frame_vector { 1327 unsigned int nr_allocated; /* Number of frames we have space for */ 1328 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1329 bool got_ref; /* Did we pin pages by getting page ref? */ 1330 bool is_pfns; /* Does array contain pages or pfns? */ 1331 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1332 * pfns_vector_pages() or pfns_vector_pfns() 1333 * for access */ 1334 }; 1335 1336 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1337 void frame_vector_destroy(struct frame_vector *vec); 1338 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1339 bool write, bool force, struct frame_vector *vec); 1340 void put_vaddr_frames(struct frame_vector *vec); 1341 int frame_vector_to_pages(struct frame_vector *vec); 1342 void frame_vector_to_pfns(struct frame_vector *vec); 1343 1344 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1345 { 1346 return vec->nr_frames; 1347 } 1348 1349 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1350 { 1351 if (vec->is_pfns) { 1352 int err = frame_vector_to_pages(vec); 1353 1354 if (err) 1355 return ERR_PTR(err); 1356 } 1357 return (struct page **)(vec->ptrs); 1358 } 1359 1360 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1361 { 1362 if (!vec->is_pfns) 1363 frame_vector_to_pfns(vec); 1364 return (unsigned long *)(vec->ptrs); 1365 } 1366 1367 struct kvec; 1368 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1369 struct page **pages); 1370 int get_kernel_page(unsigned long start, int write, struct page **pages); 1371 struct page *get_dump_page(unsigned long addr); 1372 1373 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1374 extern void do_invalidatepage(struct page *page, unsigned int offset, 1375 unsigned int length); 1376 1377 int __set_page_dirty_nobuffers(struct page *page); 1378 int __set_page_dirty_no_writeback(struct page *page); 1379 int redirty_page_for_writepage(struct writeback_control *wbc, 1380 struct page *page); 1381 void account_page_dirtied(struct page *page, struct address_space *mapping); 1382 void account_page_cleaned(struct page *page, struct address_space *mapping, 1383 struct bdi_writeback *wb); 1384 int set_page_dirty(struct page *page); 1385 int set_page_dirty_lock(struct page *page); 1386 void cancel_dirty_page(struct page *page); 1387 int clear_page_dirty_for_io(struct page *page); 1388 1389 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1390 1391 /* Is the vma a continuation of the stack vma above it? */ 1392 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1393 { 1394 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1395 } 1396 1397 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1398 { 1399 return !vma->vm_ops; 1400 } 1401 1402 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1403 unsigned long addr) 1404 { 1405 return (vma->vm_flags & VM_GROWSDOWN) && 1406 (vma->vm_start == addr) && 1407 !vma_growsdown(vma->vm_prev, addr); 1408 } 1409 1410 /* Is the vma a continuation of the stack vma below it? */ 1411 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1412 { 1413 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1414 } 1415 1416 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1417 unsigned long addr) 1418 { 1419 return (vma->vm_flags & VM_GROWSUP) && 1420 (vma->vm_end == addr) && 1421 !vma_growsup(vma->vm_next, addr); 1422 } 1423 1424 int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t); 1425 1426 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1427 unsigned long old_addr, struct vm_area_struct *new_vma, 1428 unsigned long new_addr, unsigned long len, 1429 bool need_rmap_locks); 1430 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1431 unsigned long end, pgprot_t newprot, 1432 int dirty_accountable, int prot_numa); 1433 extern int mprotect_fixup(struct vm_area_struct *vma, 1434 struct vm_area_struct **pprev, unsigned long start, 1435 unsigned long end, unsigned long newflags); 1436 1437 /* 1438 * doesn't attempt to fault and will return short. 1439 */ 1440 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1441 struct page **pages); 1442 /* 1443 * per-process(per-mm_struct) statistics. 1444 */ 1445 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1446 { 1447 long val = atomic_long_read(&mm->rss_stat.count[member]); 1448 1449 #ifdef SPLIT_RSS_COUNTING 1450 /* 1451 * counter is updated in asynchronous manner and may go to minus. 1452 * But it's never be expected number for users. 1453 */ 1454 if (val < 0) 1455 val = 0; 1456 #endif 1457 return (unsigned long)val; 1458 } 1459 1460 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1461 { 1462 atomic_long_add(value, &mm->rss_stat.count[member]); 1463 } 1464 1465 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1466 { 1467 atomic_long_inc(&mm->rss_stat.count[member]); 1468 } 1469 1470 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1471 { 1472 atomic_long_dec(&mm->rss_stat.count[member]); 1473 } 1474 1475 /* Optimized variant when page is already known not to be PageAnon */ 1476 static inline int mm_counter_file(struct page *page) 1477 { 1478 if (PageSwapBacked(page)) 1479 return MM_SHMEMPAGES; 1480 return MM_FILEPAGES; 1481 } 1482 1483 static inline int mm_counter(struct page *page) 1484 { 1485 if (PageAnon(page)) 1486 return MM_ANONPAGES; 1487 return mm_counter_file(page); 1488 } 1489 1490 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1491 { 1492 return get_mm_counter(mm, MM_FILEPAGES) + 1493 get_mm_counter(mm, MM_ANONPAGES) + 1494 get_mm_counter(mm, MM_SHMEMPAGES); 1495 } 1496 1497 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1498 { 1499 return max(mm->hiwater_rss, get_mm_rss(mm)); 1500 } 1501 1502 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1503 { 1504 return max(mm->hiwater_vm, mm->total_vm); 1505 } 1506 1507 static inline void update_hiwater_rss(struct mm_struct *mm) 1508 { 1509 unsigned long _rss = get_mm_rss(mm); 1510 1511 if ((mm)->hiwater_rss < _rss) 1512 (mm)->hiwater_rss = _rss; 1513 } 1514 1515 static inline void update_hiwater_vm(struct mm_struct *mm) 1516 { 1517 if (mm->hiwater_vm < mm->total_vm) 1518 mm->hiwater_vm = mm->total_vm; 1519 } 1520 1521 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1522 { 1523 mm->hiwater_rss = get_mm_rss(mm); 1524 } 1525 1526 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1527 struct mm_struct *mm) 1528 { 1529 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1530 1531 if (*maxrss < hiwater_rss) 1532 *maxrss = hiwater_rss; 1533 } 1534 1535 #if defined(SPLIT_RSS_COUNTING) 1536 void sync_mm_rss(struct mm_struct *mm); 1537 #else 1538 static inline void sync_mm_rss(struct mm_struct *mm) 1539 { 1540 } 1541 #endif 1542 1543 #ifndef __HAVE_ARCH_PTE_DEVMAP 1544 static inline int pte_devmap(pte_t pte) 1545 { 1546 return 0; 1547 } 1548 #endif 1549 1550 int vma_wants_writenotify(struct vm_area_struct *vma); 1551 1552 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1553 spinlock_t **ptl); 1554 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1555 spinlock_t **ptl) 1556 { 1557 pte_t *ptep; 1558 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1559 return ptep; 1560 } 1561 1562 #ifdef __PAGETABLE_PUD_FOLDED 1563 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1564 unsigned long address) 1565 { 1566 return 0; 1567 } 1568 #else 1569 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1570 #endif 1571 1572 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1573 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1574 unsigned long address) 1575 { 1576 return 0; 1577 } 1578 1579 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1580 1581 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1582 { 1583 return 0; 1584 } 1585 1586 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1587 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1588 1589 #else 1590 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1591 1592 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1593 { 1594 atomic_long_set(&mm->nr_pmds, 0); 1595 } 1596 1597 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1598 { 1599 return atomic_long_read(&mm->nr_pmds); 1600 } 1601 1602 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1603 { 1604 atomic_long_inc(&mm->nr_pmds); 1605 } 1606 1607 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1608 { 1609 atomic_long_dec(&mm->nr_pmds); 1610 } 1611 #endif 1612 1613 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1614 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1615 1616 /* 1617 * The following ifdef needed to get the 4level-fixup.h header to work. 1618 * Remove it when 4level-fixup.h has been removed. 1619 */ 1620 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1621 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1622 { 1623 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1624 NULL: pud_offset(pgd, address); 1625 } 1626 1627 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1628 { 1629 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1630 NULL: pmd_offset(pud, address); 1631 } 1632 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1633 1634 #if USE_SPLIT_PTE_PTLOCKS 1635 #if ALLOC_SPLIT_PTLOCKS 1636 void __init ptlock_cache_init(void); 1637 extern bool ptlock_alloc(struct page *page); 1638 extern void ptlock_free(struct page *page); 1639 1640 static inline spinlock_t *ptlock_ptr(struct page *page) 1641 { 1642 return page->ptl; 1643 } 1644 #else /* ALLOC_SPLIT_PTLOCKS */ 1645 static inline void ptlock_cache_init(void) 1646 { 1647 } 1648 1649 static inline bool ptlock_alloc(struct page *page) 1650 { 1651 return true; 1652 } 1653 1654 static inline void ptlock_free(struct page *page) 1655 { 1656 } 1657 1658 static inline spinlock_t *ptlock_ptr(struct page *page) 1659 { 1660 return &page->ptl; 1661 } 1662 #endif /* ALLOC_SPLIT_PTLOCKS */ 1663 1664 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1665 { 1666 return ptlock_ptr(pmd_page(*pmd)); 1667 } 1668 1669 static inline bool ptlock_init(struct page *page) 1670 { 1671 /* 1672 * prep_new_page() initialize page->private (and therefore page->ptl) 1673 * with 0. Make sure nobody took it in use in between. 1674 * 1675 * It can happen if arch try to use slab for page table allocation: 1676 * slab code uses page->slab_cache, which share storage with page->ptl. 1677 */ 1678 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1679 if (!ptlock_alloc(page)) 1680 return false; 1681 spin_lock_init(ptlock_ptr(page)); 1682 return true; 1683 } 1684 1685 /* Reset page->mapping so free_pages_check won't complain. */ 1686 static inline void pte_lock_deinit(struct page *page) 1687 { 1688 page->mapping = NULL; 1689 ptlock_free(page); 1690 } 1691 1692 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1693 /* 1694 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1695 */ 1696 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1697 { 1698 return &mm->page_table_lock; 1699 } 1700 static inline void ptlock_cache_init(void) {} 1701 static inline bool ptlock_init(struct page *page) { return true; } 1702 static inline void pte_lock_deinit(struct page *page) {} 1703 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1704 1705 static inline void pgtable_init(void) 1706 { 1707 ptlock_cache_init(); 1708 pgtable_cache_init(); 1709 } 1710 1711 static inline bool pgtable_page_ctor(struct page *page) 1712 { 1713 if (!ptlock_init(page)) 1714 return false; 1715 inc_zone_page_state(page, NR_PAGETABLE); 1716 return true; 1717 } 1718 1719 static inline void pgtable_page_dtor(struct page *page) 1720 { 1721 pte_lock_deinit(page); 1722 dec_zone_page_state(page, NR_PAGETABLE); 1723 } 1724 1725 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1726 ({ \ 1727 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1728 pte_t *__pte = pte_offset_map(pmd, address); \ 1729 *(ptlp) = __ptl; \ 1730 spin_lock(__ptl); \ 1731 __pte; \ 1732 }) 1733 1734 #define pte_unmap_unlock(pte, ptl) do { \ 1735 spin_unlock(ptl); \ 1736 pte_unmap(pte); \ 1737 } while (0) 1738 1739 #define pte_alloc(mm, pmd, address) \ 1740 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1741 1742 #define pte_alloc_map(mm, pmd, address) \ 1743 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1744 1745 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1746 (pte_alloc(mm, pmd, address) ? \ 1747 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1748 1749 #define pte_alloc_kernel(pmd, address) \ 1750 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1751 NULL: pte_offset_kernel(pmd, address)) 1752 1753 #if USE_SPLIT_PMD_PTLOCKS 1754 1755 static struct page *pmd_to_page(pmd_t *pmd) 1756 { 1757 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1758 return virt_to_page((void *)((unsigned long) pmd & mask)); 1759 } 1760 1761 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1762 { 1763 return ptlock_ptr(pmd_to_page(pmd)); 1764 } 1765 1766 static inline bool pgtable_pmd_page_ctor(struct page *page) 1767 { 1768 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1769 page->pmd_huge_pte = NULL; 1770 #endif 1771 return ptlock_init(page); 1772 } 1773 1774 static inline void pgtable_pmd_page_dtor(struct page *page) 1775 { 1776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1777 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1778 #endif 1779 ptlock_free(page); 1780 } 1781 1782 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1783 1784 #else 1785 1786 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1787 { 1788 return &mm->page_table_lock; 1789 } 1790 1791 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1792 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1793 1794 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1795 1796 #endif 1797 1798 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1799 { 1800 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1801 spin_lock(ptl); 1802 return ptl; 1803 } 1804 1805 extern void free_area_init(unsigned long * zones_size); 1806 extern void free_area_init_node(int nid, unsigned long * zones_size, 1807 unsigned long zone_start_pfn, unsigned long *zholes_size); 1808 extern void free_initmem(void); 1809 1810 /* 1811 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1812 * into the buddy system. The freed pages will be poisoned with pattern 1813 * "poison" if it's within range [0, UCHAR_MAX]. 1814 * Return pages freed into the buddy system. 1815 */ 1816 extern unsigned long free_reserved_area(void *start, void *end, 1817 int poison, char *s); 1818 1819 #ifdef CONFIG_HIGHMEM 1820 /* 1821 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1822 * and totalram_pages. 1823 */ 1824 extern void free_highmem_page(struct page *page); 1825 #endif 1826 1827 extern void adjust_managed_page_count(struct page *page, long count); 1828 extern void mem_init_print_info(const char *str); 1829 1830 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1831 1832 /* Free the reserved page into the buddy system, so it gets managed. */ 1833 static inline void __free_reserved_page(struct page *page) 1834 { 1835 ClearPageReserved(page); 1836 init_page_count(page); 1837 __free_page(page); 1838 } 1839 1840 static inline void free_reserved_page(struct page *page) 1841 { 1842 __free_reserved_page(page); 1843 adjust_managed_page_count(page, 1); 1844 } 1845 1846 static inline void mark_page_reserved(struct page *page) 1847 { 1848 SetPageReserved(page); 1849 adjust_managed_page_count(page, -1); 1850 } 1851 1852 /* 1853 * Default method to free all the __init memory into the buddy system. 1854 * The freed pages will be poisoned with pattern "poison" if it's within 1855 * range [0, UCHAR_MAX]. 1856 * Return pages freed into the buddy system. 1857 */ 1858 static inline unsigned long free_initmem_default(int poison) 1859 { 1860 extern char __init_begin[], __init_end[]; 1861 1862 return free_reserved_area(&__init_begin, &__init_end, 1863 poison, "unused kernel"); 1864 } 1865 1866 static inline unsigned long get_num_physpages(void) 1867 { 1868 int nid; 1869 unsigned long phys_pages = 0; 1870 1871 for_each_online_node(nid) 1872 phys_pages += node_present_pages(nid); 1873 1874 return phys_pages; 1875 } 1876 1877 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1878 /* 1879 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1880 * zones, allocate the backing mem_map and account for memory holes in a more 1881 * architecture independent manner. This is a substitute for creating the 1882 * zone_sizes[] and zholes_size[] arrays and passing them to 1883 * free_area_init_node() 1884 * 1885 * An architecture is expected to register range of page frames backed by 1886 * physical memory with memblock_add[_node]() before calling 1887 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1888 * usage, an architecture is expected to do something like 1889 * 1890 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1891 * max_highmem_pfn}; 1892 * for_each_valid_physical_page_range() 1893 * memblock_add_node(base, size, nid) 1894 * free_area_init_nodes(max_zone_pfns); 1895 * 1896 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1897 * registered physical page range. Similarly 1898 * sparse_memory_present_with_active_regions() calls memory_present() for 1899 * each range when SPARSEMEM is enabled. 1900 * 1901 * See mm/page_alloc.c for more information on each function exposed by 1902 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1903 */ 1904 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1905 unsigned long node_map_pfn_alignment(void); 1906 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1907 unsigned long end_pfn); 1908 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1909 unsigned long end_pfn); 1910 extern void get_pfn_range_for_nid(unsigned int nid, 1911 unsigned long *start_pfn, unsigned long *end_pfn); 1912 extern unsigned long find_min_pfn_with_active_regions(void); 1913 extern void free_bootmem_with_active_regions(int nid, 1914 unsigned long max_low_pfn); 1915 extern void sparse_memory_present_with_active_regions(int nid); 1916 1917 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1918 1919 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1920 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1921 static inline int __early_pfn_to_nid(unsigned long pfn, 1922 struct mminit_pfnnid_cache *state) 1923 { 1924 return 0; 1925 } 1926 #else 1927 /* please see mm/page_alloc.c */ 1928 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1929 /* there is a per-arch backend function. */ 1930 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1931 struct mminit_pfnnid_cache *state); 1932 #endif 1933 1934 extern void set_dma_reserve(unsigned long new_dma_reserve); 1935 extern void memmap_init_zone(unsigned long, int, unsigned long, 1936 unsigned long, enum memmap_context); 1937 extern void setup_per_zone_wmarks(void); 1938 extern int __meminit init_per_zone_wmark_min(void); 1939 extern void mem_init(void); 1940 extern void __init mmap_init(void); 1941 extern void show_mem(unsigned int flags); 1942 extern long si_mem_available(void); 1943 extern void si_meminfo(struct sysinfo * val); 1944 extern void si_meminfo_node(struct sysinfo *val, int nid); 1945 1946 extern __printf(3, 4) 1947 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, 1948 const char *fmt, ...); 1949 1950 extern void setup_per_cpu_pageset(void); 1951 1952 extern void zone_pcp_update(struct zone *zone); 1953 extern void zone_pcp_reset(struct zone *zone); 1954 1955 /* page_alloc.c */ 1956 extern int min_free_kbytes; 1957 extern int watermark_scale_factor; 1958 1959 /* nommu.c */ 1960 extern atomic_long_t mmap_pages_allocated; 1961 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1962 1963 /* interval_tree.c */ 1964 void vma_interval_tree_insert(struct vm_area_struct *node, 1965 struct rb_root *root); 1966 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1967 struct vm_area_struct *prev, 1968 struct rb_root *root); 1969 void vma_interval_tree_remove(struct vm_area_struct *node, 1970 struct rb_root *root); 1971 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1972 unsigned long start, unsigned long last); 1973 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1974 unsigned long start, unsigned long last); 1975 1976 #define vma_interval_tree_foreach(vma, root, start, last) \ 1977 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1978 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1979 1980 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1981 struct rb_root *root); 1982 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1983 struct rb_root *root); 1984 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1985 struct rb_root *root, unsigned long start, unsigned long last); 1986 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1987 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1988 #ifdef CONFIG_DEBUG_VM_RB 1989 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1990 #endif 1991 1992 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1993 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1994 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1995 1996 /* mmap.c */ 1997 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1998 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1999 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 2000 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2001 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2002 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2003 struct mempolicy *, struct vm_userfaultfd_ctx); 2004 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2005 extern int split_vma(struct mm_struct *, 2006 struct vm_area_struct *, unsigned long addr, int new_below); 2007 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2008 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2009 struct rb_node **, struct rb_node *); 2010 extern void unlink_file_vma(struct vm_area_struct *); 2011 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2012 unsigned long addr, unsigned long len, pgoff_t pgoff, 2013 bool *need_rmap_locks); 2014 extern void exit_mmap(struct mm_struct *); 2015 2016 static inline int check_data_rlimit(unsigned long rlim, 2017 unsigned long new, 2018 unsigned long start, 2019 unsigned long end_data, 2020 unsigned long start_data) 2021 { 2022 if (rlim < RLIM_INFINITY) { 2023 if (((new - start) + (end_data - start_data)) > rlim) 2024 return -ENOSPC; 2025 } 2026 2027 return 0; 2028 } 2029 2030 extern int mm_take_all_locks(struct mm_struct *mm); 2031 extern void mm_drop_all_locks(struct mm_struct *mm); 2032 2033 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2034 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2035 2036 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2037 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2038 2039 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2040 unsigned long addr, unsigned long len, 2041 unsigned long flags, 2042 const struct vm_special_mapping *spec); 2043 /* This is an obsolete alternative to _install_special_mapping. */ 2044 extern int install_special_mapping(struct mm_struct *mm, 2045 unsigned long addr, unsigned long len, 2046 unsigned long flags, struct page **pages); 2047 2048 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2049 2050 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2051 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 2052 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2053 unsigned long len, unsigned long prot, unsigned long flags, 2054 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate); 2055 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 2056 2057 static inline unsigned long 2058 do_mmap_pgoff(struct file *file, unsigned long addr, 2059 unsigned long len, unsigned long prot, unsigned long flags, 2060 unsigned long pgoff, unsigned long *populate) 2061 { 2062 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate); 2063 } 2064 2065 #ifdef CONFIG_MMU 2066 extern int __mm_populate(unsigned long addr, unsigned long len, 2067 int ignore_errors); 2068 static inline void mm_populate(unsigned long addr, unsigned long len) 2069 { 2070 /* Ignore errors */ 2071 (void) __mm_populate(addr, len, 1); 2072 } 2073 #else 2074 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2075 #endif 2076 2077 /* These take the mm semaphore themselves */ 2078 extern unsigned long vm_brk(unsigned long, unsigned long); 2079 extern int vm_munmap(unsigned long, size_t); 2080 extern unsigned long vm_mmap(struct file *, unsigned long, 2081 unsigned long, unsigned long, 2082 unsigned long, unsigned long); 2083 2084 struct vm_unmapped_area_info { 2085 #define VM_UNMAPPED_AREA_TOPDOWN 1 2086 unsigned long flags; 2087 unsigned long length; 2088 unsigned long low_limit; 2089 unsigned long high_limit; 2090 unsigned long align_mask; 2091 unsigned long align_offset; 2092 }; 2093 2094 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2095 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2096 2097 /* 2098 * Search for an unmapped address range. 2099 * 2100 * We are looking for a range that: 2101 * - does not intersect with any VMA; 2102 * - is contained within the [low_limit, high_limit) interval; 2103 * - is at least the desired size. 2104 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2105 */ 2106 static inline unsigned long 2107 vm_unmapped_area(struct vm_unmapped_area_info *info) 2108 { 2109 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2110 return unmapped_area_topdown(info); 2111 else 2112 return unmapped_area(info); 2113 } 2114 2115 /* truncate.c */ 2116 extern void truncate_inode_pages(struct address_space *, loff_t); 2117 extern void truncate_inode_pages_range(struct address_space *, 2118 loff_t lstart, loff_t lend); 2119 extern void truncate_inode_pages_final(struct address_space *); 2120 2121 /* generic vm_area_ops exported for stackable file systems */ 2122 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 2123 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 2124 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 2125 2126 /* mm/page-writeback.c */ 2127 int write_one_page(struct page *page, int wait); 2128 void task_dirty_inc(struct task_struct *tsk); 2129 2130 /* readahead.c */ 2131 #define VM_MAX_READAHEAD 128 /* kbytes */ 2132 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2133 2134 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2135 pgoff_t offset, unsigned long nr_to_read); 2136 2137 void page_cache_sync_readahead(struct address_space *mapping, 2138 struct file_ra_state *ra, 2139 struct file *filp, 2140 pgoff_t offset, 2141 unsigned long size); 2142 2143 void page_cache_async_readahead(struct address_space *mapping, 2144 struct file_ra_state *ra, 2145 struct file *filp, 2146 struct page *pg, 2147 pgoff_t offset, 2148 unsigned long size); 2149 2150 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2151 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2152 2153 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2154 extern int expand_downwards(struct vm_area_struct *vma, 2155 unsigned long address); 2156 #if VM_GROWSUP 2157 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2158 #else 2159 #define expand_upwards(vma, address) (0) 2160 #endif 2161 2162 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2163 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2164 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2165 struct vm_area_struct **pprev); 2166 2167 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2168 NULL if none. Assume start_addr < end_addr. */ 2169 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2170 { 2171 struct vm_area_struct * vma = find_vma(mm,start_addr); 2172 2173 if (vma && end_addr <= vma->vm_start) 2174 vma = NULL; 2175 return vma; 2176 } 2177 2178 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2179 { 2180 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2181 } 2182 2183 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2184 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2185 unsigned long vm_start, unsigned long vm_end) 2186 { 2187 struct vm_area_struct *vma = find_vma(mm, vm_start); 2188 2189 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2190 vma = NULL; 2191 2192 return vma; 2193 } 2194 2195 #ifdef CONFIG_MMU 2196 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2197 void vma_set_page_prot(struct vm_area_struct *vma); 2198 #else 2199 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2200 { 2201 return __pgprot(0); 2202 } 2203 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2204 { 2205 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2206 } 2207 #endif 2208 2209 #ifdef CONFIG_NUMA_BALANCING 2210 unsigned long change_prot_numa(struct vm_area_struct *vma, 2211 unsigned long start, unsigned long end); 2212 #endif 2213 2214 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2215 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2216 unsigned long pfn, unsigned long size, pgprot_t); 2217 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2218 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2219 unsigned long pfn); 2220 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2221 unsigned long pfn, pgprot_t pgprot); 2222 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2223 pfn_t pfn); 2224 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2225 2226 2227 struct page *follow_page_mask(struct vm_area_struct *vma, 2228 unsigned long address, unsigned int foll_flags, 2229 unsigned int *page_mask); 2230 2231 static inline struct page *follow_page(struct vm_area_struct *vma, 2232 unsigned long address, unsigned int foll_flags) 2233 { 2234 unsigned int unused_page_mask; 2235 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2236 } 2237 2238 #define FOLL_WRITE 0x01 /* check pte is writable */ 2239 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2240 #define FOLL_GET 0x04 /* do get_page on page */ 2241 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2242 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2243 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2244 * and return without waiting upon it */ 2245 #define FOLL_POPULATE 0x40 /* fault in page */ 2246 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2247 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2248 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2249 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2250 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2251 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2252 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2253 2254 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2255 void *data); 2256 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2257 unsigned long size, pte_fn_t fn, void *data); 2258 2259 2260 #ifdef CONFIG_PAGE_POISONING 2261 extern bool page_poisoning_enabled(void); 2262 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2263 extern bool page_is_poisoned(struct page *page); 2264 #else 2265 static inline bool page_poisoning_enabled(void) { return false; } 2266 static inline void kernel_poison_pages(struct page *page, int numpages, 2267 int enable) { } 2268 static inline bool page_is_poisoned(struct page *page) { return false; } 2269 #endif 2270 2271 #ifdef CONFIG_DEBUG_PAGEALLOC 2272 extern bool _debug_pagealloc_enabled; 2273 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2274 2275 static inline bool debug_pagealloc_enabled(void) 2276 { 2277 return _debug_pagealloc_enabled; 2278 } 2279 2280 static inline void 2281 kernel_map_pages(struct page *page, int numpages, int enable) 2282 { 2283 if (!debug_pagealloc_enabled()) 2284 return; 2285 2286 __kernel_map_pages(page, numpages, enable); 2287 } 2288 #ifdef CONFIG_HIBERNATION 2289 extern bool kernel_page_present(struct page *page); 2290 #endif /* CONFIG_HIBERNATION */ 2291 #else /* CONFIG_DEBUG_PAGEALLOC */ 2292 static inline void 2293 kernel_map_pages(struct page *page, int numpages, int enable) {} 2294 #ifdef CONFIG_HIBERNATION 2295 static inline bool kernel_page_present(struct page *page) { return true; } 2296 #endif /* CONFIG_HIBERNATION */ 2297 static inline bool debug_pagealloc_enabled(void) 2298 { 2299 return false; 2300 } 2301 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2302 2303 #ifdef __HAVE_ARCH_GATE_AREA 2304 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2305 extern int in_gate_area_no_mm(unsigned long addr); 2306 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2307 #else 2308 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2309 { 2310 return NULL; 2311 } 2312 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2313 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2314 { 2315 return 0; 2316 } 2317 #endif /* __HAVE_ARCH_GATE_AREA */ 2318 2319 #ifdef CONFIG_SYSCTL 2320 extern int sysctl_drop_caches; 2321 int drop_caches_sysctl_handler(struct ctl_table *, int, 2322 void __user *, size_t *, loff_t *); 2323 #endif 2324 2325 void drop_slab(void); 2326 void drop_slab_node(int nid); 2327 2328 #ifndef CONFIG_MMU 2329 #define randomize_va_space 0 2330 #else 2331 extern int randomize_va_space; 2332 #endif 2333 2334 const char * arch_vma_name(struct vm_area_struct *vma); 2335 void print_vma_addr(char *prefix, unsigned long rip); 2336 2337 void sparse_mem_maps_populate_node(struct page **map_map, 2338 unsigned long pnum_begin, 2339 unsigned long pnum_end, 2340 unsigned long map_count, 2341 int nodeid); 2342 2343 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2344 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2345 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2346 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2347 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2348 void *vmemmap_alloc_block(unsigned long size, int node); 2349 struct vmem_altmap; 2350 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2351 struct vmem_altmap *altmap); 2352 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2353 { 2354 return __vmemmap_alloc_block_buf(size, node, NULL); 2355 } 2356 2357 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2358 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2359 int node); 2360 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2361 void vmemmap_populate_print_last(void); 2362 #ifdef CONFIG_MEMORY_HOTPLUG 2363 void vmemmap_free(unsigned long start, unsigned long end); 2364 #endif 2365 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2366 unsigned long size); 2367 2368 enum mf_flags { 2369 MF_COUNT_INCREASED = 1 << 0, 2370 MF_ACTION_REQUIRED = 1 << 1, 2371 MF_MUST_KILL = 1 << 2, 2372 MF_SOFT_OFFLINE = 1 << 3, 2373 }; 2374 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2375 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2376 extern int unpoison_memory(unsigned long pfn); 2377 extern int get_hwpoison_page(struct page *page); 2378 #define put_hwpoison_page(page) put_page(page) 2379 extern int sysctl_memory_failure_early_kill; 2380 extern int sysctl_memory_failure_recovery; 2381 extern void shake_page(struct page *p, int access); 2382 extern atomic_long_t num_poisoned_pages; 2383 extern int soft_offline_page(struct page *page, int flags); 2384 2385 2386 /* 2387 * Error handlers for various types of pages. 2388 */ 2389 enum mf_result { 2390 MF_IGNORED, /* Error: cannot be handled */ 2391 MF_FAILED, /* Error: handling failed */ 2392 MF_DELAYED, /* Will be handled later */ 2393 MF_RECOVERED, /* Successfully recovered */ 2394 }; 2395 2396 enum mf_action_page_type { 2397 MF_MSG_KERNEL, 2398 MF_MSG_KERNEL_HIGH_ORDER, 2399 MF_MSG_SLAB, 2400 MF_MSG_DIFFERENT_COMPOUND, 2401 MF_MSG_POISONED_HUGE, 2402 MF_MSG_HUGE, 2403 MF_MSG_FREE_HUGE, 2404 MF_MSG_UNMAP_FAILED, 2405 MF_MSG_DIRTY_SWAPCACHE, 2406 MF_MSG_CLEAN_SWAPCACHE, 2407 MF_MSG_DIRTY_MLOCKED_LRU, 2408 MF_MSG_CLEAN_MLOCKED_LRU, 2409 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2410 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2411 MF_MSG_DIRTY_LRU, 2412 MF_MSG_CLEAN_LRU, 2413 MF_MSG_TRUNCATED_LRU, 2414 MF_MSG_BUDDY, 2415 MF_MSG_BUDDY_2ND, 2416 MF_MSG_UNKNOWN, 2417 }; 2418 2419 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2420 extern void clear_huge_page(struct page *page, 2421 unsigned long addr, 2422 unsigned int pages_per_huge_page); 2423 extern void copy_user_huge_page(struct page *dst, struct page *src, 2424 unsigned long addr, struct vm_area_struct *vma, 2425 unsigned int pages_per_huge_page); 2426 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2427 2428 extern struct page_ext_operations debug_guardpage_ops; 2429 extern struct page_ext_operations page_poisoning_ops; 2430 2431 #ifdef CONFIG_DEBUG_PAGEALLOC 2432 extern unsigned int _debug_guardpage_minorder; 2433 extern bool _debug_guardpage_enabled; 2434 2435 static inline unsigned int debug_guardpage_minorder(void) 2436 { 2437 return _debug_guardpage_minorder; 2438 } 2439 2440 static inline bool debug_guardpage_enabled(void) 2441 { 2442 return _debug_guardpage_enabled; 2443 } 2444 2445 static inline bool page_is_guard(struct page *page) 2446 { 2447 struct page_ext *page_ext; 2448 2449 if (!debug_guardpage_enabled()) 2450 return false; 2451 2452 page_ext = lookup_page_ext(page); 2453 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2454 } 2455 #else 2456 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2457 static inline bool debug_guardpage_enabled(void) { return false; } 2458 static inline bool page_is_guard(struct page *page) { return false; } 2459 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2460 2461 #if MAX_NUMNODES > 1 2462 void __init setup_nr_node_ids(void); 2463 #else 2464 static inline void setup_nr_node_ids(void) {} 2465 #endif 2466 2467 #endif /* __KERNEL__ */ 2468 #endif /* _LINUX_MM_H */ 2469