1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct file_ra_state; 39 struct user_struct; 40 struct writeback_control; 41 struct bdi_writeback; 42 struct pt_regs; 43 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 /* 102 * Architectures that support memory tagging (assigning tags to memory regions, 103 * embedding these tags into addresses that point to these memory regions, and 104 * checking that the memory and the pointer tags match on memory accesses) 105 * redefine this macro to strip tags from pointers. 106 * It's defined as noop for arcitectures that don't support memory tagging. 107 */ 108 #ifndef untagged_addr 109 #define untagged_addr(addr) (addr) 110 #endif 111 112 #ifndef __pa_symbol 113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114 #endif 115 116 #ifndef page_to_virt 117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118 #endif 119 120 #ifndef lm_alias 121 #define lm_alias(x) __va(__pa_symbol(x)) 122 #endif 123 124 /* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131 #ifndef mm_forbids_zeropage 132 #define mm_forbids_zeropage(X) (0) 133 #endif 134 135 /* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141 #if BITS_PER_LONG == 64 142 /* This function must be updated when the size of struct page grows above 80 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statments if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149 static inline void __mm_zero_struct_page(struct page *page) 150 { 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 80); 157 158 switch (sizeof(struct page)) { 159 case 80: 160 _pp[9] = 0; /* fallthrough */ 161 case 72: 162 _pp[8] = 0; /* fallthrough */ 163 case 64: 164 _pp[7] = 0; /* fallthrough */ 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215 216 /* to align the pointer to the (next) page boundary */ 217 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 218 219 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 220 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 221 222 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 223 224 /* 225 * Linux kernel virtual memory manager primitives. 226 * The idea being to have a "virtual" mm in the same way 227 * we have a virtual fs - giving a cleaner interface to the 228 * mm details, and allowing different kinds of memory mappings 229 * (from shared memory to executable loading to arbitrary 230 * mmap() functions). 231 */ 232 233 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 234 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 235 void vm_area_free(struct vm_area_struct *); 236 237 #ifndef CONFIG_MMU 238 extern struct rb_root nommu_region_tree; 239 extern struct rw_semaphore nommu_region_sem; 240 241 extern unsigned int kobjsize(const void *objp); 242 #endif 243 244 /* 245 * vm_flags in vm_area_struct, see mm_types.h. 246 * When changing, update also include/trace/events/mmflags.h 247 */ 248 #define VM_NONE 0x00000000 249 250 #define VM_READ 0x00000001 /* currently active flags */ 251 #define VM_WRITE 0x00000002 252 #define VM_EXEC 0x00000004 253 #define VM_SHARED 0x00000008 254 255 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 256 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 257 #define VM_MAYWRITE 0x00000020 258 #define VM_MAYEXEC 0x00000040 259 #define VM_MAYSHARE 0x00000080 260 261 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 262 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 263 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 264 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 265 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 266 267 #define VM_LOCKED 0x00002000 268 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 269 270 /* Used by sys_madvise() */ 271 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 272 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 273 274 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 275 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 276 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 277 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 278 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 279 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 280 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 281 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 282 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 283 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 284 285 #ifdef CONFIG_MEM_SOFT_DIRTY 286 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 287 #else 288 # define VM_SOFTDIRTY 0 289 #endif 290 291 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 292 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 293 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 294 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 295 296 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 297 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 299 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 300 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 302 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 303 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 304 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 305 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 306 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 307 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 308 309 #ifdef CONFIG_ARCH_HAS_PKEYS 310 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 311 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 312 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 313 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 314 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 315 #ifdef CONFIG_PPC 316 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 317 #else 318 # define VM_PKEY_BIT4 0 319 #endif 320 #endif /* CONFIG_ARCH_HAS_PKEYS */ 321 322 #if defined(CONFIG_X86) 323 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 324 #elif defined(CONFIG_PARISC) 325 # define VM_GROWSUP VM_ARCH_1 326 #elif defined(CONFIG_IA64) 327 # define VM_GROWSUP VM_ARCH_1 328 #elif defined(CONFIG_SPARC64) 329 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 330 # define VM_ARCH_CLEAR VM_SPARC_ADI 331 #elif defined(CONFIG_ARM64) 332 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 333 # define VM_ARCH_CLEAR VM_ARM64_BTI 334 #elif !defined(CONFIG_MMU) 335 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 336 #endif 337 338 #ifndef VM_GROWSUP 339 # define VM_GROWSUP VM_NONE 340 #endif 341 342 /* Bits set in the VMA until the stack is in its final location */ 343 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 344 345 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 346 347 /* Common data flag combinations */ 348 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 349 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 350 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 351 VM_MAYWRITE | VM_MAYEXEC) 352 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 353 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 354 355 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 356 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 357 #endif 358 359 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 360 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 361 #endif 362 363 #ifdef CONFIG_STACK_GROWSUP 364 #define VM_STACK VM_GROWSUP 365 #else 366 #define VM_STACK VM_GROWSDOWN 367 #endif 368 369 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 370 371 /* VMA basic access permission flags */ 372 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 373 374 375 /* 376 * Special vmas that are non-mergable, non-mlock()able. 377 */ 378 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 379 380 /* This mask prevents VMA from being scanned with khugepaged */ 381 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 382 383 /* This mask defines which mm->def_flags a process can inherit its parent */ 384 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 385 386 /* This mask is used to clear all the VMA flags used by mlock */ 387 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 388 389 /* Arch-specific flags to clear when updating VM flags on protection change */ 390 #ifndef VM_ARCH_CLEAR 391 # define VM_ARCH_CLEAR VM_NONE 392 #endif 393 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 394 395 /* 396 * mapping from the currently active vm_flags protection bits (the 397 * low four bits) to a page protection mask.. 398 */ 399 extern pgprot_t protection_map[16]; 400 401 /** 402 * Fault flag definitions. 403 * 404 * @FAULT_FLAG_WRITE: Fault was a write fault. 405 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 406 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 407 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 408 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 409 * @FAULT_FLAG_TRIED: The fault has been tried once. 410 * @FAULT_FLAG_USER: The fault originated in userspace. 411 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 412 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 413 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 414 * 415 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 416 * whether we would allow page faults to retry by specifying these two 417 * fault flags correctly. Currently there can be three legal combinations: 418 * 419 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 420 * this is the first try 421 * 422 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 423 * we've already tried at least once 424 * 425 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 426 * 427 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 428 * be used. Note that page faults can be allowed to retry for multiple times, 429 * in which case we'll have an initial fault with flags (a) then later on 430 * continuous faults with flags (b). We should always try to detect pending 431 * signals before a retry to make sure the continuous page faults can still be 432 * interrupted if necessary. 433 */ 434 #define FAULT_FLAG_WRITE 0x01 435 #define FAULT_FLAG_MKWRITE 0x02 436 #define FAULT_FLAG_ALLOW_RETRY 0x04 437 #define FAULT_FLAG_RETRY_NOWAIT 0x08 438 #define FAULT_FLAG_KILLABLE 0x10 439 #define FAULT_FLAG_TRIED 0x20 440 #define FAULT_FLAG_USER 0x40 441 #define FAULT_FLAG_REMOTE 0x80 442 #define FAULT_FLAG_INSTRUCTION 0x100 443 #define FAULT_FLAG_INTERRUPTIBLE 0x200 444 445 /* 446 * The default fault flags that should be used by most of the 447 * arch-specific page fault handlers. 448 */ 449 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 450 FAULT_FLAG_KILLABLE | \ 451 FAULT_FLAG_INTERRUPTIBLE) 452 453 /** 454 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 455 * 456 * This is mostly used for places where we want to try to avoid taking 457 * the mmap_lock for too long a time when waiting for another condition 458 * to change, in which case we can try to be polite to release the 459 * mmap_lock in the first round to avoid potential starvation of other 460 * processes that would also want the mmap_lock. 461 * 462 * Return: true if the page fault allows retry and this is the first 463 * attempt of the fault handling; false otherwise. 464 */ 465 static inline bool fault_flag_allow_retry_first(unsigned int flags) 466 { 467 return (flags & FAULT_FLAG_ALLOW_RETRY) && 468 (!(flags & FAULT_FLAG_TRIED)); 469 } 470 471 #define FAULT_FLAG_TRACE \ 472 { FAULT_FLAG_WRITE, "WRITE" }, \ 473 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 474 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 475 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 476 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 477 { FAULT_FLAG_TRIED, "TRIED" }, \ 478 { FAULT_FLAG_USER, "USER" }, \ 479 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 480 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 481 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 482 483 /* 484 * vm_fault is filled by the pagefault handler and passed to the vma's 485 * ->fault function. The vma's ->fault is responsible for returning a bitmask 486 * of VM_FAULT_xxx flags that give details about how the fault was handled. 487 * 488 * MM layer fills up gfp_mask for page allocations but fault handler might 489 * alter it if its implementation requires a different allocation context. 490 * 491 * pgoff should be used in favour of virtual_address, if possible. 492 */ 493 struct vm_fault { 494 struct vm_area_struct *vma; /* Target VMA */ 495 unsigned int flags; /* FAULT_FLAG_xxx flags */ 496 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 497 pgoff_t pgoff; /* Logical page offset based on vma */ 498 unsigned long address; /* Faulting virtual address */ 499 pmd_t *pmd; /* Pointer to pmd entry matching 500 * the 'address' */ 501 pud_t *pud; /* Pointer to pud entry matching 502 * the 'address' 503 */ 504 pte_t orig_pte; /* Value of PTE at the time of fault */ 505 506 struct page *cow_page; /* Page handler may use for COW fault */ 507 struct page *page; /* ->fault handlers should return a 508 * page here, unless VM_FAULT_NOPAGE 509 * is set (which is also implied by 510 * VM_FAULT_ERROR). 511 */ 512 /* These three entries are valid only while holding ptl lock */ 513 pte_t *pte; /* Pointer to pte entry matching 514 * the 'address'. NULL if the page 515 * table hasn't been allocated. 516 */ 517 spinlock_t *ptl; /* Page table lock. 518 * Protects pte page table if 'pte' 519 * is not NULL, otherwise pmd. 520 */ 521 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 522 * vm_ops->map_pages() calls 523 * alloc_set_pte() from atomic context. 524 * do_fault_around() pre-allocates 525 * page table to avoid allocation from 526 * atomic context. 527 */ 528 }; 529 530 /* page entry size for vm->huge_fault() */ 531 enum page_entry_size { 532 PE_SIZE_PTE = 0, 533 PE_SIZE_PMD, 534 PE_SIZE_PUD, 535 }; 536 537 /* 538 * These are the virtual MM functions - opening of an area, closing and 539 * unmapping it (needed to keep files on disk up-to-date etc), pointer 540 * to the functions called when a no-page or a wp-page exception occurs. 541 */ 542 struct vm_operations_struct { 543 void (*open)(struct vm_area_struct * area); 544 void (*close)(struct vm_area_struct * area); 545 int (*split)(struct vm_area_struct * area, unsigned long addr); 546 int (*mremap)(struct vm_area_struct * area); 547 vm_fault_t (*fault)(struct vm_fault *vmf); 548 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 549 enum page_entry_size pe_size); 550 void (*map_pages)(struct vm_fault *vmf, 551 pgoff_t start_pgoff, pgoff_t end_pgoff); 552 unsigned long (*pagesize)(struct vm_area_struct * area); 553 554 /* notification that a previously read-only page is about to become 555 * writable, if an error is returned it will cause a SIGBUS */ 556 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 557 558 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 559 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 560 561 /* called by access_process_vm when get_user_pages() fails, typically 562 * for use by special VMAs that can switch between memory and hardware 563 */ 564 int (*access)(struct vm_area_struct *vma, unsigned long addr, 565 void *buf, int len, int write); 566 567 /* Called by the /proc/PID/maps code to ask the vma whether it 568 * has a special name. Returning non-NULL will also cause this 569 * vma to be dumped unconditionally. */ 570 const char *(*name)(struct vm_area_struct *vma); 571 572 #ifdef CONFIG_NUMA 573 /* 574 * set_policy() op must add a reference to any non-NULL @new mempolicy 575 * to hold the policy upon return. Caller should pass NULL @new to 576 * remove a policy and fall back to surrounding context--i.e. do not 577 * install a MPOL_DEFAULT policy, nor the task or system default 578 * mempolicy. 579 */ 580 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 581 582 /* 583 * get_policy() op must add reference [mpol_get()] to any policy at 584 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 585 * in mm/mempolicy.c will do this automatically. 586 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 587 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 588 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 589 * must return NULL--i.e., do not "fallback" to task or system default 590 * policy. 591 */ 592 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 593 unsigned long addr); 594 #endif 595 /* 596 * Called by vm_normal_page() for special PTEs to find the 597 * page for @addr. This is useful if the default behavior 598 * (using pte_page()) would not find the correct page. 599 */ 600 struct page *(*find_special_page)(struct vm_area_struct *vma, 601 unsigned long addr); 602 }; 603 604 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 605 { 606 static const struct vm_operations_struct dummy_vm_ops = {}; 607 608 memset(vma, 0, sizeof(*vma)); 609 vma->vm_mm = mm; 610 vma->vm_ops = &dummy_vm_ops; 611 INIT_LIST_HEAD(&vma->anon_vma_chain); 612 } 613 614 static inline void vma_set_anonymous(struct vm_area_struct *vma) 615 { 616 vma->vm_ops = NULL; 617 } 618 619 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 620 { 621 return !vma->vm_ops; 622 } 623 624 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 625 { 626 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 627 628 if (!maybe_stack) 629 return false; 630 631 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 632 VM_STACK_INCOMPLETE_SETUP) 633 return true; 634 635 return false; 636 } 637 638 static inline bool vma_is_foreign(struct vm_area_struct *vma) 639 { 640 if (!current->mm) 641 return true; 642 643 if (current->mm != vma->vm_mm) 644 return true; 645 646 return false; 647 } 648 649 static inline bool vma_is_accessible(struct vm_area_struct *vma) 650 { 651 return vma->vm_flags & VM_ACCESS_FLAGS; 652 } 653 654 #ifdef CONFIG_SHMEM 655 /* 656 * The vma_is_shmem is not inline because it is used only by slow 657 * paths in userfault. 658 */ 659 bool vma_is_shmem(struct vm_area_struct *vma); 660 #else 661 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 662 #endif 663 664 int vma_is_stack_for_current(struct vm_area_struct *vma); 665 666 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 667 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 668 669 struct mmu_gather; 670 struct inode; 671 672 #include <linux/huge_mm.h> 673 674 /* 675 * Methods to modify the page usage count. 676 * 677 * What counts for a page usage: 678 * - cache mapping (page->mapping) 679 * - private data (page->private) 680 * - page mapped in a task's page tables, each mapping 681 * is counted separately 682 * 683 * Also, many kernel routines increase the page count before a critical 684 * routine so they can be sure the page doesn't go away from under them. 685 */ 686 687 /* 688 * Drop a ref, return true if the refcount fell to zero (the page has no users) 689 */ 690 static inline int put_page_testzero(struct page *page) 691 { 692 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 693 return page_ref_dec_and_test(page); 694 } 695 696 /* 697 * Try to grab a ref unless the page has a refcount of zero, return false if 698 * that is the case. 699 * This can be called when MMU is off so it must not access 700 * any of the virtual mappings. 701 */ 702 static inline int get_page_unless_zero(struct page *page) 703 { 704 return page_ref_add_unless(page, 1, 0); 705 } 706 707 extern int page_is_ram(unsigned long pfn); 708 709 enum { 710 REGION_INTERSECTS, 711 REGION_DISJOINT, 712 REGION_MIXED, 713 }; 714 715 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 716 unsigned long desc); 717 718 /* Support for virtually mapped pages */ 719 struct page *vmalloc_to_page(const void *addr); 720 unsigned long vmalloc_to_pfn(const void *addr); 721 722 /* 723 * Determine if an address is within the vmalloc range 724 * 725 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 726 * is no special casing required. 727 */ 728 729 #ifndef is_ioremap_addr 730 #define is_ioremap_addr(x) is_vmalloc_addr(x) 731 #endif 732 733 #ifdef CONFIG_MMU 734 extern bool is_vmalloc_addr(const void *x); 735 extern int is_vmalloc_or_module_addr(const void *x); 736 #else 737 static inline bool is_vmalloc_addr(const void *x) 738 { 739 return false; 740 } 741 static inline int is_vmalloc_or_module_addr(const void *x) 742 { 743 return 0; 744 } 745 #endif 746 747 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 748 static inline void *kvmalloc(size_t size, gfp_t flags) 749 { 750 return kvmalloc_node(size, flags, NUMA_NO_NODE); 751 } 752 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 753 { 754 return kvmalloc_node(size, flags | __GFP_ZERO, node); 755 } 756 static inline void *kvzalloc(size_t size, gfp_t flags) 757 { 758 return kvmalloc(size, flags | __GFP_ZERO); 759 } 760 761 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 762 { 763 size_t bytes; 764 765 if (unlikely(check_mul_overflow(n, size, &bytes))) 766 return NULL; 767 768 return kvmalloc(bytes, flags); 769 } 770 771 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 772 { 773 return kvmalloc_array(n, size, flags | __GFP_ZERO); 774 } 775 776 extern void kvfree(const void *addr); 777 extern void kvfree_sensitive(const void *addr, size_t len); 778 779 static inline int head_mapcount(struct page *head) 780 { 781 return atomic_read(compound_mapcount_ptr(head)) + 1; 782 } 783 784 /* 785 * Mapcount of compound page as a whole, does not include mapped sub-pages. 786 * 787 * Must be called only for compound pages or any their tail sub-pages. 788 */ 789 static inline int compound_mapcount(struct page *page) 790 { 791 VM_BUG_ON_PAGE(!PageCompound(page), page); 792 page = compound_head(page); 793 return head_mapcount(page); 794 } 795 796 /* 797 * The atomic page->_mapcount, starts from -1: so that transitions 798 * both from it and to it can be tracked, using atomic_inc_and_test 799 * and atomic_add_negative(-1). 800 */ 801 static inline void page_mapcount_reset(struct page *page) 802 { 803 atomic_set(&(page)->_mapcount, -1); 804 } 805 806 int __page_mapcount(struct page *page); 807 808 /* 809 * Mapcount of 0-order page; when compound sub-page, includes 810 * compound_mapcount(). 811 * 812 * Result is undefined for pages which cannot be mapped into userspace. 813 * For example SLAB or special types of pages. See function page_has_type(). 814 * They use this place in struct page differently. 815 */ 816 static inline int page_mapcount(struct page *page) 817 { 818 if (unlikely(PageCompound(page))) 819 return __page_mapcount(page); 820 return atomic_read(&page->_mapcount) + 1; 821 } 822 823 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 824 int total_mapcount(struct page *page); 825 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 826 #else 827 static inline int total_mapcount(struct page *page) 828 { 829 return page_mapcount(page); 830 } 831 static inline int page_trans_huge_mapcount(struct page *page, 832 int *total_mapcount) 833 { 834 int mapcount = page_mapcount(page); 835 if (total_mapcount) 836 *total_mapcount = mapcount; 837 return mapcount; 838 } 839 #endif 840 841 static inline struct page *virt_to_head_page(const void *x) 842 { 843 struct page *page = virt_to_page(x); 844 845 return compound_head(page); 846 } 847 848 void __put_page(struct page *page); 849 850 void put_pages_list(struct list_head *pages); 851 852 void split_page(struct page *page, unsigned int order); 853 854 /* 855 * Compound pages have a destructor function. Provide a 856 * prototype for that function and accessor functions. 857 * These are _only_ valid on the head of a compound page. 858 */ 859 typedef void compound_page_dtor(struct page *); 860 861 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 862 enum compound_dtor_id { 863 NULL_COMPOUND_DTOR, 864 COMPOUND_PAGE_DTOR, 865 #ifdef CONFIG_HUGETLB_PAGE 866 HUGETLB_PAGE_DTOR, 867 #endif 868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 869 TRANSHUGE_PAGE_DTOR, 870 #endif 871 NR_COMPOUND_DTORS, 872 }; 873 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 874 875 static inline void set_compound_page_dtor(struct page *page, 876 enum compound_dtor_id compound_dtor) 877 { 878 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 879 page[1].compound_dtor = compound_dtor; 880 } 881 882 static inline void destroy_compound_page(struct page *page) 883 { 884 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 885 compound_page_dtors[page[1].compound_dtor](page); 886 } 887 888 static inline unsigned int compound_order(struct page *page) 889 { 890 if (!PageHead(page)) 891 return 0; 892 return page[1].compound_order; 893 } 894 895 static inline bool hpage_pincount_available(struct page *page) 896 { 897 /* 898 * Can the page->hpage_pinned_refcount field be used? That field is in 899 * the 3rd page of the compound page, so the smallest (2-page) compound 900 * pages cannot support it. 901 */ 902 page = compound_head(page); 903 return PageCompound(page) && compound_order(page) > 1; 904 } 905 906 static inline int head_pincount(struct page *head) 907 { 908 return atomic_read(compound_pincount_ptr(head)); 909 } 910 911 static inline int compound_pincount(struct page *page) 912 { 913 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 914 page = compound_head(page); 915 return head_pincount(page); 916 } 917 918 static inline void set_compound_order(struct page *page, unsigned int order) 919 { 920 page[1].compound_order = order; 921 page[1].compound_nr = 1U << order; 922 } 923 924 /* Returns the number of pages in this potentially compound page. */ 925 static inline unsigned long compound_nr(struct page *page) 926 { 927 if (!PageHead(page)) 928 return 1; 929 return page[1].compound_nr; 930 } 931 932 /* Returns the number of bytes in this potentially compound page. */ 933 static inline unsigned long page_size(struct page *page) 934 { 935 return PAGE_SIZE << compound_order(page); 936 } 937 938 /* Returns the number of bits needed for the number of bytes in a page */ 939 static inline unsigned int page_shift(struct page *page) 940 { 941 return PAGE_SHIFT + compound_order(page); 942 } 943 944 void free_compound_page(struct page *page); 945 946 #ifdef CONFIG_MMU 947 /* 948 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 949 * servicing faults for write access. In the normal case, do always want 950 * pte_mkwrite. But get_user_pages can cause write faults for mappings 951 * that do not have writing enabled, when used by access_process_vm. 952 */ 953 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 954 { 955 if (likely(vma->vm_flags & VM_WRITE)) 956 pte = pte_mkwrite(pte); 957 return pte; 958 } 959 960 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 961 vm_fault_t finish_fault(struct vm_fault *vmf); 962 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 963 #endif 964 965 /* 966 * Multiple processes may "see" the same page. E.g. for untouched 967 * mappings of /dev/null, all processes see the same page full of 968 * zeroes, and text pages of executables and shared libraries have 969 * only one copy in memory, at most, normally. 970 * 971 * For the non-reserved pages, page_count(page) denotes a reference count. 972 * page_count() == 0 means the page is free. page->lru is then used for 973 * freelist management in the buddy allocator. 974 * page_count() > 0 means the page has been allocated. 975 * 976 * Pages are allocated by the slab allocator in order to provide memory 977 * to kmalloc and kmem_cache_alloc. In this case, the management of the 978 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 979 * unless a particular usage is carefully commented. (the responsibility of 980 * freeing the kmalloc memory is the caller's, of course). 981 * 982 * A page may be used by anyone else who does a __get_free_page(). 983 * In this case, page_count still tracks the references, and should only 984 * be used through the normal accessor functions. The top bits of page->flags 985 * and page->virtual store page management information, but all other fields 986 * are unused and could be used privately, carefully. The management of this 987 * page is the responsibility of the one who allocated it, and those who have 988 * subsequently been given references to it. 989 * 990 * The other pages (we may call them "pagecache pages") are completely 991 * managed by the Linux memory manager: I/O, buffers, swapping etc. 992 * The following discussion applies only to them. 993 * 994 * A pagecache page contains an opaque `private' member, which belongs to the 995 * page's address_space. Usually, this is the address of a circular list of 996 * the page's disk buffers. PG_private must be set to tell the VM to call 997 * into the filesystem to release these pages. 998 * 999 * A page may belong to an inode's memory mapping. In this case, page->mapping 1000 * is the pointer to the inode, and page->index is the file offset of the page, 1001 * in units of PAGE_SIZE. 1002 * 1003 * If pagecache pages are not associated with an inode, they are said to be 1004 * anonymous pages. These may become associated with the swapcache, and in that 1005 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1006 * 1007 * In either case (swapcache or inode backed), the pagecache itself holds one 1008 * reference to the page. Setting PG_private should also increment the 1009 * refcount. The each user mapping also has a reference to the page. 1010 * 1011 * The pagecache pages are stored in a per-mapping radix tree, which is 1012 * rooted at mapping->i_pages, and indexed by offset. 1013 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1014 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1015 * 1016 * All pagecache pages may be subject to I/O: 1017 * - inode pages may need to be read from disk, 1018 * - inode pages which have been modified and are MAP_SHARED may need 1019 * to be written back to the inode on disk, 1020 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1021 * modified may need to be swapped out to swap space and (later) to be read 1022 * back into memory. 1023 */ 1024 1025 /* 1026 * The zone field is never updated after free_area_init_core() 1027 * sets it, so none of the operations on it need to be atomic. 1028 */ 1029 1030 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1031 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1032 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1033 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1034 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1035 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1036 1037 /* 1038 * Define the bit shifts to access each section. For non-existent 1039 * sections we define the shift as 0; that plus a 0 mask ensures 1040 * the compiler will optimise away reference to them. 1041 */ 1042 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1043 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1044 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1045 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1046 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1047 1048 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1049 #ifdef NODE_NOT_IN_PAGE_FLAGS 1050 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1051 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1052 SECTIONS_PGOFF : ZONES_PGOFF) 1053 #else 1054 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1055 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1056 NODES_PGOFF : ZONES_PGOFF) 1057 #endif 1058 1059 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1060 1061 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1062 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1063 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1064 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1065 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1066 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1067 1068 static inline enum zone_type page_zonenum(const struct page *page) 1069 { 1070 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1071 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1072 } 1073 1074 #ifdef CONFIG_ZONE_DEVICE 1075 static inline bool is_zone_device_page(const struct page *page) 1076 { 1077 return page_zonenum(page) == ZONE_DEVICE; 1078 } 1079 extern void memmap_init_zone_device(struct zone *, unsigned long, 1080 unsigned long, struct dev_pagemap *); 1081 #else 1082 static inline bool is_zone_device_page(const struct page *page) 1083 { 1084 return false; 1085 } 1086 #endif 1087 1088 #ifdef CONFIG_DEV_PAGEMAP_OPS 1089 void free_devmap_managed_page(struct page *page); 1090 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1091 1092 static inline bool page_is_devmap_managed(struct page *page) 1093 { 1094 if (!static_branch_unlikely(&devmap_managed_key)) 1095 return false; 1096 if (!is_zone_device_page(page)) 1097 return false; 1098 switch (page->pgmap->type) { 1099 case MEMORY_DEVICE_PRIVATE: 1100 case MEMORY_DEVICE_FS_DAX: 1101 return true; 1102 default: 1103 break; 1104 } 1105 return false; 1106 } 1107 1108 void put_devmap_managed_page(struct page *page); 1109 1110 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1111 static inline bool page_is_devmap_managed(struct page *page) 1112 { 1113 return false; 1114 } 1115 1116 static inline void put_devmap_managed_page(struct page *page) 1117 { 1118 } 1119 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1120 1121 static inline bool is_device_private_page(const struct page *page) 1122 { 1123 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1124 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1125 is_zone_device_page(page) && 1126 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1127 } 1128 1129 static inline bool is_pci_p2pdma_page(const struct page *page) 1130 { 1131 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1132 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1133 is_zone_device_page(page) && 1134 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1135 } 1136 1137 /* 127: arbitrary random number, small enough to assemble well */ 1138 #define page_ref_zero_or_close_to_overflow(page) \ 1139 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1140 1141 static inline void get_page(struct page *page) 1142 { 1143 page = compound_head(page); 1144 /* 1145 * Getting a normal page or the head of a compound page 1146 * requires to already have an elevated page->_refcount. 1147 */ 1148 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1149 page_ref_inc(page); 1150 } 1151 1152 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1153 1154 static inline __must_check bool try_get_page(struct page *page) 1155 { 1156 page = compound_head(page); 1157 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1158 return false; 1159 page_ref_inc(page); 1160 return true; 1161 } 1162 1163 static inline void put_page(struct page *page) 1164 { 1165 page = compound_head(page); 1166 1167 /* 1168 * For devmap managed pages we need to catch refcount transition from 1169 * 2 to 1, when refcount reach one it means the page is free and we 1170 * need to inform the device driver through callback. See 1171 * include/linux/memremap.h and HMM for details. 1172 */ 1173 if (page_is_devmap_managed(page)) { 1174 put_devmap_managed_page(page); 1175 return; 1176 } 1177 1178 if (put_page_testzero(page)) 1179 __put_page(page); 1180 } 1181 1182 /* 1183 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1184 * the page's refcount so that two separate items are tracked: the original page 1185 * reference count, and also a new count of how many pin_user_pages() calls were 1186 * made against the page. ("gup-pinned" is another term for the latter). 1187 * 1188 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1189 * distinct from normal pages. As such, the unpin_user_page() call (and its 1190 * variants) must be used in order to release gup-pinned pages. 1191 * 1192 * Choice of value: 1193 * 1194 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1195 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1196 * simpler, due to the fact that adding an even power of two to the page 1197 * refcount has the effect of using only the upper N bits, for the code that 1198 * counts up using the bias value. This means that the lower bits are left for 1199 * the exclusive use of the original code that increments and decrements by one 1200 * (or at least, by much smaller values than the bias value). 1201 * 1202 * Of course, once the lower bits overflow into the upper bits (and this is 1203 * OK, because subtraction recovers the original values), then visual inspection 1204 * no longer suffices to directly view the separate counts. However, for normal 1205 * applications that don't have huge page reference counts, this won't be an 1206 * issue. 1207 * 1208 * Locking: the lockless algorithm described in page_cache_get_speculative() 1209 * and page_cache_gup_pin_speculative() provides safe operation for 1210 * get_user_pages and page_mkclean and other calls that race to set up page 1211 * table entries. 1212 */ 1213 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1214 1215 void unpin_user_page(struct page *page); 1216 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1217 bool make_dirty); 1218 void unpin_user_pages(struct page **pages, unsigned long npages); 1219 1220 /** 1221 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1222 * 1223 * This function checks if a page has been pinned via a call to 1224 * pin_user_pages*(). 1225 * 1226 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1227 * because it means "definitely not pinned for DMA", but true means "probably 1228 * pinned for DMA, but possibly a false positive due to having at least 1229 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1230 * 1231 * False positives are OK, because: a) it's unlikely for a page to get that many 1232 * refcounts, and b) all the callers of this routine are expected to be able to 1233 * deal gracefully with a false positive. 1234 * 1235 * For huge pages, the result will be exactly correct. That's because we have 1236 * more tracking data available: the 3rd struct page in the compound page is 1237 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1238 * scheme). 1239 * 1240 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1241 * 1242 * @page: pointer to page to be queried. 1243 * @Return: True, if it is likely that the page has been "dma-pinned". 1244 * False, if the page is definitely not dma-pinned. 1245 */ 1246 static inline bool page_maybe_dma_pinned(struct page *page) 1247 { 1248 if (hpage_pincount_available(page)) 1249 return compound_pincount(page) > 0; 1250 1251 /* 1252 * page_ref_count() is signed. If that refcount overflows, then 1253 * page_ref_count() returns a negative value, and callers will avoid 1254 * further incrementing the refcount. 1255 * 1256 * Here, for that overflow case, use the signed bit to count a little 1257 * bit higher via unsigned math, and thus still get an accurate result. 1258 */ 1259 return ((unsigned int)page_ref_count(compound_head(page))) >= 1260 GUP_PIN_COUNTING_BIAS; 1261 } 1262 1263 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1264 #define SECTION_IN_PAGE_FLAGS 1265 #endif 1266 1267 /* 1268 * The identification function is mainly used by the buddy allocator for 1269 * determining if two pages could be buddies. We are not really identifying 1270 * the zone since we could be using the section number id if we do not have 1271 * node id available in page flags. 1272 * We only guarantee that it will return the same value for two combinable 1273 * pages in a zone. 1274 */ 1275 static inline int page_zone_id(struct page *page) 1276 { 1277 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1278 } 1279 1280 #ifdef NODE_NOT_IN_PAGE_FLAGS 1281 extern int page_to_nid(const struct page *page); 1282 #else 1283 static inline int page_to_nid(const struct page *page) 1284 { 1285 struct page *p = (struct page *)page; 1286 1287 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1288 } 1289 #endif 1290 1291 #ifdef CONFIG_NUMA_BALANCING 1292 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1293 { 1294 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1295 } 1296 1297 static inline int cpupid_to_pid(int cpupid) 1298 { 1299 return cpupid & LAST__PID_MASK; 1300 } 1301 1302 static inline int cpupid_to_cpu(int cpupid) 1303 { 1304 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1305 } 1306 1307 static inline int cpupid_to_nid(int cpupid) 1308 { 1309 return cpu_to_node(cpupid_to_cpu(cpupid)); 1310 } 1311 1312 static inline bool cpupid_pid_unset(int cpupid) 1313 { 1314 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1315 } 1316 1317 static inline bool cpupid_cpu_unset(int cpupid) 1318 { 1319 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1320 } 1321 1322 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1323 { 1324 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1325 } 1326 1327 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1328 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1329 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1330 { 1331 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1332 } 1333 1334 static inline int page_cpupid_last(struct page *page) 1335 { 1336 return page->_last_cpupid; 1337 } 1338 static inline void page_cpupid_reset_last(struct page *page) 1339 { 1340 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1341 } 1342 #else 1343 static inline int page_cpupid_last(struct page *page) 1344 { 1345 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1346 } 1347 1348 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1349 1350 static inline void page_cpupid_reset_last(struct page *page) 1351 { 1352 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1353 } 1354 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1355 #else /* !CONFIG_NUMA_BALANCING */ 1356 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1357 { 1358 return page_to_nid(page); /* XXX */ 1359 } 1360 1361 static inline int page_cpupid_last(struct page *page) 1362 { 1363 return page_to_nid(page); /* XXX */ 1364 } 1365 1366 static inline int cpupid_to_nid(int cpupid) 1367 { 1368 return -1; 1369 } 1370 1371 static inline int cpupid_to_pid(int cpupid) 1372 { 1373 return -1; 1374 } 1375 1376 static inline int cpupid_to_cpu(int cpupid) 1377 { 1378 return -1; 1379 } 1380 1381 static inline int cpu_pid_to_cpupid(int nid, int pid) 1382 { 1383 return -1; 1384 } 1385 1386 static inline bool cpupid_pid_unset(int cpupid) 1387 { 1388 return true; 1389 } 1390 1391 static inline void page_cpupid_reset_last(struct page *page) 1392 { 1393 } 1394 1395 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1396 { 1397 return false; 1398 } 1399 #endif /* CONFIG_NUMA_BALANCING */ 1400 1401 #ifdef CONFIG_KASAN_SW_TAGS 1402 static inline u8 page_kasan_tag(const struct page *page) 1403 { 1404 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1405 } 1406 1407 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1408 { 1409 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1410 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1411 } 1412 1413 static inline void page_kasan_tag_reset(struct page *page) 1414 { 1415 page_kasan_tag_set(page, 0xff); 1416 } 1417 #else 1418 static inline u8 page_kasan_tag(const struct page *page) 1419 { 1420 return 0xff; 1421 } 1422 1423 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1424 static inline void page_kasan_tag_reset(struct page *page) { } 1425 #endif 1426 1427 static inline struct zone *page_zone(const struct page *page) 1428 { 1429 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1430 } 1431 1432 static inline pg_data_t *page_pgdat(const struct page *page) 1433 { 1434 return NODE_DATA(page_to_nid(page)); 1435 } 1436 1437 #ifdef SECTION_IN_PAGE_FLAGS 1438 static inline void set_page_section(struct page *page, unsigned long section) 1439 { 1440 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1441 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1442 } 1443 1444 static inline unsigned long page_to_section(const struct page *page) 1445 { 1446 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1447 } 1448 #endif 1449 1450 static inline void set_page_zone(struct page *page, enum zone_type zone) 1451 { 1452 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1453 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1454 } 1455 1456 static inline void set_page_node(struct page *page, unsigned long node) 1457 { 1458 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1459 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1460 } 1461 1462 static inline void set_page_links(struct page *page, enum zone_type zone, 1463 unsigned long node, unsigned long pfn) 1464 { 1465 set_page_zone(page, zone); 1466 set_page_node(page, node); 1467 #ifdef SECTION_IN_PAGE_FLAGS 1468 set_page_section(page, pfn_to_section_nr(pfn)); 1469 #endif 1470 } 1471 1472 #ifdef CONFIG_MEMCG 1473 static inline struct mem_cgroup *page_memcg(struct page *page) 1474 { 1475 return page->mem_cgroup; 1476 } 1477 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1478 { 1479 WARN_ON_ONCE(!rcu_read_lock_held()); 1480 return READ_ONCE(page->mem_cgroup); 1481 } 1482 #else 1483 static inline struct mem_cgroup *page_memcg(struct page *page) 1484 { 1485 return NULL; 1486 } 1487 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1488 { 1489 WARN_ON_ONCE(!rcu_read_lock_held()); 1490 return NULL; 1491 } 1492 #endif 1493 1494 /* 1495 * Some inline functions in vmstat.h depend on page_zone() 1496 */ 1497 #include <linux/vmstat.h> 1498 1499 static __always_inline void *lowmem_page_address(const struct page *page) 1500 { 1501 return page_to_virt(page); 1502 } 1503 1504 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1505 #define HASHED_PAGE_VIRTUAL 1506 #endif 1507 1508 #if defined(WANT_PAGE_VIRTUAL) 1509 static inline void *page_address(const struct page *page) 1510 { 1511 return page->virtual; 1512 } 1513 static inline void set_page_address(struct page *page, void *address) 1514 { 1515 page->virtual = address; 1516 } 1517 #define page_address_init() do { } while(0) 1518 #endif 1519 1520 #if defined(HASHED_PAGE_VIRTUAL) 1521 void *page_address(const struct page *page); 1522 void set_page_address(struct page *page, void *virtual); 1523 void page_address_init(void); 1524 #endif 1525 1526 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1527 #define page_address(page) lowmem_page_address(page) 1528 #define set_page_address(page, address) do { } while(0) 1529 #define page_address_init() do { } while(0) 1530 #endif 1531 1532 extern void *page_rmapping(struct page *page); 1533 extern struct anon_vma *page_anon_vma(struct page *page); 1534 extern struct address_space *page_mapping(struct page *page); 1535 1536 extern struct address_space *__page_file_mapping(struct page *); 1537 1538 static inline 1539 struct address_space *page_file_mapping(struct page *page) 1540 { 1541 if (unlikely(PageSwapCache(page))) 1542 return __page_file_mapping(page); 1543 1544 return page->mapping; 1545 } 1546 1547 extern pgoff_t __page_file_index(struct page *page); 1548 1549 /* 1550 * Return the pagecache index of the passed page. Regular pagecache pages 1551 * use ->index whereas swapcache pages use swp_offset(->private) 1552 */ 1553 static inline pgoff_t page_index(struct page *page) 1554 { 1555 if (unlikely(PageSwapCache(page))) 1556 return __page_file_index(page); 1557 return page->index; 1558 } 1559 1560 bool page_mapped(struct page *page); 1561 struct address_space *page_mapping(struct page *page); 1562 struct address_space *page_mapping_file(struct page *page); 1563 1564 /* 1565 * Return true only if the page has been allocated with 1566 * ALLOC_NO_WATERMARKS and the low watermark was not 1567 * met implying that the system is under some pressure. 1568 */ 1569 static inline bool page_is_pfmemalloc(struct page *page) 1570 { 1571 /* 1572 * Page index cannot be this large so this must be 1573 * a pfmemalloc page. 1574 */ 1575 return page->index == -1UL; 1576 } 1577 1578 /* 1579 * Only to be called by the page allocator on a freshly allocated 1580 * page. 1581 */ 1582 static inline void set_page_pfmemalloc(struct page *page) 1583 { 1584 page->index = -1UL; 1585 } 1586 1587 static inline void clear_page_pfmemalloc(struct page *page) 1588 { 1589 page->index = 0; 1590 } 1591 1592 /* 1593 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1594 */ 1595 extern void pagefault_out_of_memory(void); 1596 1597 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1598 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1599 1600 /* 1601 * Flags passed to show_mem() and show_free_areas() to suppress output in 1602 * various contexts. 1603 */ 1604 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1605 1606 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1607 1608 #ifdef CONFIG_MMU 1609 extern bool can_do_mlock(void); 1610 #else 1611 static inline bool can_do_mlock(void) { return false; } 1612 #endif 1613 extern int user_shm_lock(size_t, struct user_struct *); 1614 extern void user_shm_unlock(size_t, struct user_struct *); 1615 1616 /* 1617 * Parameter block passed down to zap_pte_range in exceptional cases. 1618 */ 1619 struct zap_details { 1620 struct address_space *check_mapping; /* Check page->mapping if set */ 1621 pgoff_t first_index; /* Lowest page->index to unmap */ 1622 pgoff_t last_index; /* Highest page->index to unmap */ 1623 }; 1624 1625 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1626 pte_t pte); 1627 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1628 pmd_t pmd); 1629 1630 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1631 unsigned long size); 1632 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1633 unsigned long size); 1634 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1635 unsigned long start, unsigned long end); 1636 1637 struct mmu_notifier_range; 1638 1639 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1640 unsigned long end, unsigned long floor, unsigned long ceiling); 1641 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1642 struct vm_area_struct *vma); 1643 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1644 struct mmu_notifier_range *range, 1645 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1646 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1647 unsigned long *pfn); 1648 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1649 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1650 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1651 void *buf, int len, int write); 1652 1653 extern void truncate_pagecache(struct inode *inode, loff_t new); 1654 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1655 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1656 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1657 int truncate_inode_page(struct address_space *mapping, struct page *page); 1658 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1659 int invalidate_inode_page(struct page *page); 1660 1661 #ifdef CONFIG_MMU 1662 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1663 unsigned long address, unsigned int flags, 1664 struct pt_regs *regs); 1665 extern int fixup_user_fault(struct mm_struct *mm, 1666 unsigned long address, unsigned int fault_flags, 1667 bool *unlocked); 1668 void unmap_mapping_pages(struct address_space *mapping, 1669 pgoff_t start, pgoff_t nr, bool even_cows); 1670 void unmap_mapping_range(struct address_space *mapping, 1671 loff_t const holebegin, loff_t const holelen, int even_cows); 1672 #else 1673 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1674 unsigned long address, unsigned int flags, 1675 struct pt_regs *regs) 1676 { 1677 /* should never happen if there's no MMU */ 1678 BUG(); 1679 return VM_FAULT_SIGBUS; 1680 } 1681 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1682 unsigned int fault_flags, bool *unlocked) 1683 { 1684 /* should never happen if there's no MMU */ 1685 BUG(); 1686 return -EFAULT; 1687 } 1688 static inline void unmap_mapping_pages(struct address_space *mapping, 1689 pgoff_t start, pgoff_t nr, bool even_cows) { } 1690 static inline void unmap_mapping_range(struct address_space *mapping, 1691 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1692 #endif 1693 1694 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1695 loff_t const holebegin, loff_t const holelen) 1696 { 1697 unmap_mapping_range(mapping, holebegin, holelen, 0); 1698 } 1699 1700 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1701 void *buf, int len, unsigned int gup_flags); 1702 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1703 void *buf, int len, unsigned int gup_flags); 1704 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1705 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1706 1707 long get_user_pages_remote(struct mm_struct *mm, 1708 unsigned long start, unsigned long nr_pages, 1709 unsigned int gup_flags, struct page **pages, 1710 struct vm_area_struct **vmas, int *locked); 1711 long pin_user_pages_remote(struct mm_struct *mm, 1712 unsigned long start, unsigned long nr_pages, 1713 unsigned int gup_flags, struct page **pages, 1714 struct vm_area_struct **vmas, int *locked); 1715 long get_user_pages(unsigned long start, unsigned long nr_pages, 1716 unsigned int gup_flags, struct page **pages, 1717 struct vm_area_struct **vmas); 1718 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1719 unsigned int gup_flags, struct page **pages, 1720 struct vm_area_struct **vmas); 1721 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1722 unsigned int gup_flags, struct page **pages, int *locked); 1723 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1724 unsigned int gup_flags, struct page **pages, int *locked); 1725 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1726 struct page **pages, unsigned int gup_flags); 1727 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1728 struct page **pages, unsigned int gup_flags); 1729 1730 int get_user_pages_fast(unsigned long start, int nr_pages, 1731 unsigned int gup_flags, struct page **pages); 1732 int pin_user_pages_fast(unsigned long start, int nr_pages, 1733 unsigned int gup_flags, struct page **pages); 1734 1735 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1736 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1737 struct task_struct *task, bool bypass_rlim); 1738 1739 /* Container for pinned pfns / pages */ 1740 struct frame_vector { 1741 unsigned int nr_allocated; /* Number of frames we have space for */ 1742 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1743 bool got_ref; /* Did we pin pages by getting page ref? */ 1744 bool is_pfns; /* Does array contain pages or pfns? */ 1745 void *ptrs[]; /* Array of pinned pfns / pages. Use 1746 * pfns_vector_pages() or pfns_vector_pfns() 1747 * for access */ 1748 }; 1749 1750 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1751 void frame_vector_destroy(struct frame_vector *vec); 1752 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1753 unsigned int gup_flags, struct frame_vector *vec); 1754 void put_vaddr_frames(struct frame_vector *vec); 1755 int frame_vector_to_pages(struct frame_vector *vec); 1756 void frame_vector_to_pfns(struct frame_vector *vec); 1757 1758 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1759 { 1760 return vec->nr_frames; 1761 } 1762 1763 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1764 { 1765 if (vec->is_pfns) { 1766 int err = frame_vector_to_pages(vec); 1767 1768 if (err) 1769 return ERR_PTR(err); 1770 } 1771 return (struct page **)(vec->ptrs); 1772 } 1773 1774 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1775 { 1776 if (!vec->is_pfns) 1777 frame_vector_to_pfns(vec); 1778 return (unsigned long *)(vec->ptrs); 1779 } 1780 1781 struct kvec; 1782 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1783 struct page **pages); 1784 int get_kernel_page(unsigned long start, int write, struct page **pages); 1785 struct page *get_dump_page(unsigned long addr); 1786 1787 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1788 extern void do_invalidatepage(struct page *page, unsigned int offset, 1789 unsigned int length); 1790 1791 void __set_page_dirty(struct page *, struct address_space *, int warn); 1792 int __set_page_dirty_nobuffers(struct page *page); 1793 int __set_page_dirty_no_writeback(struct page *page); 1794 int redirty_page_for_writepage(struct writeback_control *wbc, 1795 struct page *page); 1796 void account_page_dirtied(struct page *page, struct address_space *mapping); 1797 void account_page_cleaned(struct page *page, struct address_space *mapping, 1798 struct bdi_writeback *wb); 1799 int set_page_dirty(struct page *page); 1800 int set_page_dirty_lock(struct page *page); 1801 void __cancel_dirty_page(struct page *page); 1802 static inline void cancel_dirty_page(struct page *page) 1803 { 1804 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1805 if (PageDirty(page)) 1806 __cancel_dirty_page(page); 1807 } 1808 int clear_page_dirty_for_io(struct page *page); 1809 1810 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1811 1812 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1813 unsigned long old_addr, struct vm_area_struct *new_vma, 1814 unsigned long new_addr, unsigned long len, 1815 bool need_rmap_locks); 1816 1817 /* 1818 * Flags used by change_protection(). For now we make it a bitmap so 1819 * that we can pass in multiple flags just like parameters. However 1820 * for now all the callers are only use one of the flags at the same 1821 * time. 1822 */ 1823 /* Whether we should allow dirty bit accounting */ 1824 #define MM_CP_DIRTY_ACCT (1UL << 0) 1825 /* Whether this protection change is for NUMA hints */ 1826 #define MM_CP_PROT_NUMA (1UL << 1) 1827 /* Whether this change is for write protecting */ 1828 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1829 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1830 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1831 MM_CP_UFFD_WP_RESOLVE) 1832 1833 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1834 unsigned long end, pgprot_t newprot, 1835 unsigned long cp_flags); 1836 extern int mprotect_fixup(struct vm_area_struct *vma, 1837 struct vm_area_struct **pprev, unsigned long start, 1838 unsigned long end, unsigned long newflags); 1839 1840 /* 1841 * doesn't attempt to fault and will return short. 1842 */ 1843 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1844 unsigned int gup_flags, struct page **pages); 1845 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1846 unsigned int gup_flags, struct page **pages); 1847 1848 static inline bool get_user_page_fast_only(unsigned long addr, 1849 unsigned int gup_flags, struct page **pagep) 1850 { 1851 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1852 } 1853 /* 1854 * per-process(per-mm_struct) statistics. 1855 */ 1856 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1857 { 1858 long val = atomic_long_read(&mm->rss_stat.count[member]); 1859 1860 #ifdef SPLIT_RSS_COUNTING 1861 /* 1862 * counter is updated in asynchronous manner and may go to minus. 1863 * But it's never be expected number for users. 1864 */ 1865 if (val < 0) 1866 val = 0; 1867 #endif 1868 return (unsigned long)val; 1869 } 1870 1871 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1872 1873 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1874 { 1875 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1876 1877 mm_trace_rss_stat(mm, member, count); 1878 } 1879 1880 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1881 { 1882 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1883 1884 mm_trace_rss_stat(mm, member, count); 1885 } 1886 1887 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1888 { 1889 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1890 1891 mm_trace_rss_stat(mm, member, count); 1892 } 1893 1894 /* Optimized variant when page is already known not to be PageAnon */ 1895 static inline int mm_counter_file(struct page *page) 1896 { 1897 if (PageSwapBacked(page)) 1898 return MM_SHMEMPAGES; 1899 return MM_FILEPAGES; 1900 } 1901 1902 static inline int mm_counter(struct page *page) 1903 { 1904 if (PageAnon(page)) 1905 return MM_ANONPAGES; 1906 return mm_counter_file(page); 1907 } 1908 1909 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1910 { 1911 return get_mm_counter(mm, MM_FILEPAGES) + 1912 get_mm_counter(mm, MM_ANONPAGES) + 1913 get_mm_counter(mm, MM_SHMEMPAGES); 1914 } 1915 1916 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1917 { 1918 return max(mm->hiwater_rss, get_mm_rss(mm)); 1919 } 1920 1921 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1922 { 1923 return max(mm->hiwater_vm, mm->total_vm); 1924 } 1925 1926 static inline void update_hiwater_rss(struct mm_struct *mm) 1927 { 1928 unsigned long _rss = get_mm_rss(mm); 1929 1930 if ((mm)->hiwater_rss < _rss) 1931 (mm)->hiwater_rss = _rss; 1932 } 1933 1934 static inline void update_hiwater_vm(struct mm_struct *mm) 1935 { 1936 if (mm->hiwater_vm < mm->total_vm) 1937 mm->hiwater_vm = mm->total_vm; 1938 } 1939 1940 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1941 { 1942 mm->hiwater_rss = get_mm_rss(mm); 1943 } 1944 1945 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1946 struct mm_struct *mm) 1947 { 1948 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1949 1950 if (*maxrss < hiwater_rss) 1951 *maxrss = hiwater_rss; 1952 } 1953 1954 #if defined(SPLIT_RSS_COUNTING) 1955 void sync_mm_rss(struct mm_struct *mm); 1956 #else 1957 static inline void sync_mm_rss(struct mm_struct *mm) 1958 { 1959 } 1960 #endif 1961 1962 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1963 static inline int pte_special(pte_t pte) 1964 { 1965 return 0; 1966 } 1967 1968 static inline pte_t pte_mkspecial(pte_t pte) 1969 { 1970 return pte; 1971 } 1972 #endif 1973 1974 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1975 static inline int pte_devmap(pte_t pte) 1976 { 1977 return 0; 1978 } 1979 #endif 1980 1981 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1982 1983 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1984 spinlock_t **ptl); 1985 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1986 spinlock_t **ptl) 1987 { 1988 pte_t *ptep; 1989 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1990 return ptep; 1991 } 1992 1993 #ifdef __PAGETABLE_P4D_FOLDED 1994 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1995 unsigned long address) 1996 { 1997 return 0; 1998 } 1999 #else 2000 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2001 #endif 2002 2003 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2004 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2005 unsigned long address) 2006 { 2007 return 0; 2008 } 2009 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2010 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2011 2012 #else 2013 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2014 2015 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2016 { 2017 if (mm_pud_folded(mm)) 2018 return; 2019 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2020 } 2021 2022 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2023 { 2024 if (mm_pud_folded(mm)) 2025 return; 2026 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2027 } 2028 #endif 2029 2030 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2031 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2032 unsigned long address) 2033 { 2034 return 0; 2035 } 2036 2037 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2038 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2039 2040 #else 2041 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2042 2043 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2044 { 2045 if (mm_pmd_folded(mm)) 2046 return; 2047 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2048 } 2049 2050 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2051 { 2052 if (mm_pmd_folded(mm)) 2053 return; 2054 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2055 } 2056 #endif 2057 2058 #ifdef CONFIG_MMU 2059 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2060 { 2061 atomic_long_set(&mm->pgtables_bytes, 0); 2062 } 2063 2064 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2065 { 2066 return atomic_long_read(&mm->pgtables_bytes); 2067 } 2068 2069 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2070 { 2071 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2072 } 2073 2074 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2075 { 2076 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2077 } 2078 #else 2079 2080 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2081 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2082 { 2083 return 0; 2084 } 2085 2086 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2087 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2088 #endif 2089 2090 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2091 int __pte_alloc_kernel(pmd_t *pmd); 2092 2093 #if defined(CONFIG_MMU) 2094 2095 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2096 unsigned long address) 2097 { 2098 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2099 NULL : p4d_offset(pgd, address); 2100 } 2101 2102 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2103 unsigned long address) 2104 { 2105 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2106 NULL : pud_offset(p4d, address); 2107 } 2108 2109 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2110 { 2111 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2112 NULL: pmd_offset(pud, address); 2113 } 2114 #endif /* CONFIG_MMU */ 2115 2116 #if USE_SPLIT_PTE_PTLOCKS 2117 #if ALLOC_SPLIT_PTLOCKS 2118 void __init ptlock_cache_init(void); 2119 extern bool ptlock_alloc(struct page *page); 2120 extern void ptlock_free(struct page *page); 2121 2122 static inline spinlock_t *ptlock_ptr(struct page *page) 2123 { 2124 return page->ptl; 2125 } 2126 #else /* ALLOC_SPLIT_PTLOCKS */ 2127 static inline void ptlock_cache_init(void) 2128 { 2129 } 2130 2131 static inline bool ptlock_alloc(struct page *page) 2132 { 2133 return true; 2134 } 2135 2136 static inline void ptlock_free(struct page *page) 2137 { 2138 } 2139 2140 static inline spinlock_t *ptlock_ptr(struct page *page) 2141 { 2142 return &page->ptl; 2143 } 2144 #endif /* ALLOC_SPLIT_PTLOCKS */ 2145 2146 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2147 { 2148 return ptlock_ptr(pmd_page(*pmd)); 2149 } 2150 2151 static inline bool ptlock_init(struct page *page) 2152 { 2153 /* 2154 * prep_new_page() initialize page->private (and therefore page->ptl) 2155 * with 0. Make sure nobody took it in use in between. 2156 * 2157 * It can happen if arch try to use slab for page table allocation: 2158 * slab code uses page->slab_cache, which share storage with page->ptl. 2159 */ 2160 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2161 if (!ptlock_alloc(page)) 2162 return false; 2163 spin_lock_init(ptlock_ptr(page)); 2164 return true; 2165 } 2166 2167 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2168 /* 2169 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2170 */ 2171 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2172 { 2173 return &mm->page_table_lock; 2174 } 2175 static inline void ptlock_cache_init(void) {} 2176 static inline bool ptlock_init(struct page *page) { return true; } 2177 static inline void ptlock_free(struct page *page) {} 2178 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2179 2180 static inline void pgtable_init(void) 2181 { 2182 ptlock_cache_init(); 2183 pgtable_cache_init(); 2184 } 2185 2186 static inline bool pgtable_pte_page_ctor(struct page *page) 2187 { 2188 if (!ptlock_init(page)) 2189 return false; 2190 __SetPageTable(page); 2191 inc_zone_page_state(page, NR_PAGETABLE); 2192 return true; 2193 } 2194 2195 static inline void pgtable_pte_page_dtor(struct page *page) 2196 { 2197 ptlock_free(page); 2198 __ClearPageTable(page); 2199 dec_zone_page_state(page, NR_PAGETABLE); 2200 } 2201 2202 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2203 ({ \ 2204 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2205 pte_t *__pte = pte_offset_map(pmd, address); \ 2206 *(ptlp) = __ptl; \ 2207 spin_lock(__ptl); \ 2208 __pte; \ 2209 }) 2210 2211 #define pte_unmap_unlock(pte, ptl) do { \ 2212 spin_unlock(ptl); \ 2213 pte_unmap(pte); \ 2214 } while (0) 2215 2216 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2217 2218 #define pte_alloc_map(mm, pmd, address) \ 2219 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2220 2221 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2222 (pte_alloc(mm, pmd) ? \ 2223 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2224 2225 #define pte_alloc_kernel(pmd, address) \ 2226 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2227 NULL: pte_offset_kernel(pmd, address)) 2228 2229 #if USE_SPLIT_PMD_PTLOCKS 2230 2231 static struct page *pmd_to_page(pmd_t *pmd) 2232 { 2233 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2234 return virt_to_page((void *)((unsigned long) pmd & mask)); 2235 } 2236 2237 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2238 { 2239 return ptlock_ptr(pmd_to_page(pmd)); 2240 } 2241 2242 static inline bool pgtable_pmd_page_ctor(struct page *page) 2243 { 2244 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2245 page->pmd_huge_pte = NULL; 2246 #endif 2247 return ptlock_init(page); 2248 } 2249 2250 static inline void pgtable_pmd_page_dtor(struct page *page) 2251 { 2252 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2253 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2254 #endif 2255 ptlock_free(page); 2256 } 2257 2258 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2259 2260 #else 2261 2262 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2263 { 2264 return &mm->page_table_lock; 2265 } 2266 2267 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2268 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2269 2270 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2271 2272 #endif 2273 2274 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2275 { 2276 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2277 spin_lock(ptl); 2278 return ptl; 2279 } 2280 2281 /* 2282 * No scalability reason to split PUD locks yet, but follow the same pattern 2283 * as the PMD locks to make it easier if we decide to. The VM should not be 2284 * considered ready to switch to split PUD locks yet; there may be places 2285 * which need to be converted from page_table_lock. 2286 */ 2287 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2288 { 2289 return &mm->page_table_lock; 2290 } 2291 2292 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2293 { 2294 spinlock_t *ptl = pud_lockptr(mm, pud); 2295 2296 spin_lock(ptl); 2297 return ptl; 2298 } 2299 2300 extern void __init pagecache_init(void); 2301 extern void __init free_area_init_memoryless_node(int nid); 2302 extern void free_initmem(void); 2303 2304 /* 2305 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2306 * into the buddy system. The freed pages will be poisoned with pattern 2307 * "poison" if it's within range [0, UCHAR_MAX]. 2308 * Return pages freed into the buddy system. 2309 */ 2310 extern unsigned long free_reserved_area(void *start, void *end, 2311 int poison, const char *s); 2312 2313 #ifdef CONFIG_HIGHMEM 2314 /* 2315 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2316 * and totalram_pages. 2317 */ 2318 extern void free_highmem_page(struct page *page); 2319 #endif 2320 2321 extern void adjust_managed_page_count(struct page *page, long count); 2322 extern void mem_init_print_info(const char *str); 2323 2324 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2325 2326 /* Free the reserved page into the buddy system, so it gets managed. */ 2327 static inline void __free_reserved_page(struct page *page) 2328 { 2329 ClearPageReserved(page); 2330 init_page_count(page); 2331 __free_page(page); 2332 } 2333 2334 static inline void free_reserved_page(struct page *page) 2335 { 2336 __free_reserved_page(page); 2337 adjust_managed_page_count(page, 1); 2338 } 2339 2340 static inline void mark_page_reserved(struct page *page) 2341 { 2342 SetPageReserved(page); 2343 adjust_managed_page_count(page, -1); 2344 } 2345 2346 /* 2347 * Default method to free all the __init memory into the buddy system. 2348 * The freed pages will be poisoned with pattern "poison" if it's within 2349 * range [0, UCHAR_MAX]. 2350 * Return pages freed into the buddy system. 2351 */ 2352 static inline unsigned long free_initmem_default(int poison) 2353 { 2354 extern char __init_begin[], __init_end[]; 2355 2356 return free_reserved_area(&__init_begin, &__init_end, 2357 poison, "unused kernel"); 2358 } 2359 2360 static inline unsigned long get_num_physpages(void) 2361 { 2362 int nid; 2363 unsigned long phys_pages = 0; 2364 2365 for_each_online_node(nid) 2366 phys_pages += node_present_pages(nid); 2367 2368 return phys_pages; 2369 } 2370 2371 /* 2372 * Using memblock node mappings, an architecture may initialise its 2373 * zones, allocate the backing mem_map and account for memory holes in an 2374 * architecture independent manner. 2375 * 2376 * An architecture is expected to register range of page frames backed by 2377 * physical memory with memblock_add[_node]() before calling 2378 * free_area_init() passing in the PFN each zone ends at. At a basic 2379 * usage, an architecture is expected to do something like 2380 * 2381 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2382 * max_highmem_pfn}; 2383 * for_each_valid_physical_page_range() 2384 * memblock_add_node(base, size, nid) 2385 * free_area_init(max_zone_pfns); 2386 */ 2387 void free_area_init(unsigned long *max_zone_pfn); 2388 unsigned long node_map_pfn_alignment(void); 2389 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2390 unsigned long end_pfn); 2391 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2392 unsigned long end_pfn); 2393 extern void get_pfn_range_for_nid(unsigned int nid, 2394 unsigned long *start_pfn, unsigned long *end_pfn); 2395 extern unsigned long find_min_pfn_with_active_regions(void); 2396 2397 #ifndef CONFIG_NEED_MULTIPLE_NODES 2398 static inline int early_pfn_to_nid(unsigned long pfn) 2399 { 2400 return 0; 2401 } 2402 #else 2403 /* please see mm/page_alloc.c */ 2404 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2405 /* there is a per-arch backend function. */ 2406 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2407 struct mminit_pfnnid_cache *state); 2408 #endif 2409 2410 extern void set_dma_reserve(unsigned long new_dma_reserve); 2411 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2412 enum memmap_context, struct vmem_altmap *); 2413 extern void setup_per_zone_wmarks(void); 2414 extern int __meminit init_per_zone_wmark_min(void); 2415 extern void mem_init(void); 2416 extern void __init mmap_init(void); 2417 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2418 extern long si_mem_available(void); 2419 extern void si_meminfo(struct sysinfo * val); 2420 extern void si_meminfo_node(struct sysinfo *val, int nid); 2421 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2422 extern unsigned long arch_reserved_kernel_pages(void); 2423 #endif 2424 2425 extern __printf(3, 4) 2426 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2427 2428 extern void setup_per_cpu_pageset(void); 2429 2430 /* page_alloc.c */ 2431 extern int min_free_kbytes; 2432 extern int watermark_boost_factor; 2433 extern int watermark_scale_factor; 2434 extern bool arch_has_descending_max_zone_pfns(void); 2435 2436 /* nommu.c */ 2437 extern atomic_long_t mmap_pages_allocated; 2438 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2439 2440 /* interval_tree.c */ 2441 void vma_interval_tree_insert(struct vm_area_struct *node, 2442 struct rb_root_cached *root); 2443 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2444 struct vm_area_struct *prev, 2445 struct rb_root_cached *root); 2446 void vma_interval_tree_remove(struct vm_area_struct *node, 2447 struct rb_root_cached *root); 2448 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2449 unsigned long start, unsigned long last); 2450 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2451 unsigned long start, unsigned long last); 2452 2453 #define vma_interval_tree_foreach(vma, root, start, last) \ 2454 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2455 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2456 2457 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2458 struct rb_root_cached *root); 2459 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2460 struct rb_root_cached *root); 2461 struct anon_vma_chain * 2462 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2463 unsigned long start, unsigned long last); 2464 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2465 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2466 #ifdef CONFIG_DEBUG_VM_RB 2467 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2468 #endif 2469 2470 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2471 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2472 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2473 2474 /* mmap.c */ 2475 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2476 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2477 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2478 struct vm_area_struct *expand); 2479 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2480 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2481 { 2482 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2483 } 2484 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2485 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2486 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2487 struct mempolicy *, struct vm_userfaultfd_ctx); 2488 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2489 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2490 unsigned long addr, int new_below); 2491 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2492 unsigned long addr, int new_below); 2493 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2494 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2495 struct rb_node **, struct rb_node *); 2496 extern void unlink_file_vma(struct vm_area_struct *); 2497 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2498 unsigned long addr, unsigned long len, pgoff_t pgoff, 2499 bool *need_rmap_locks); 2500 extern void exit_mmap(struct mm_struct *); 2501 2502 static inline int check_data_rlimit(unsigned long rlim, 2503 unsigned long new, 2504 unsigned long start, 2505 unsigned long end_data, 2506 unsigned long start_data) 2507 { 2508 if (rlim < RLIM_INFINITY) { 2509 if (((new - start) + (end_data - start_data)) > rlim) 2510 return -ENOSPC; 2511 } 2512 2513 return 0; 2514 } 2515 2516 extern int mm_take_all_locks(struct mm_struct *mm); 2517 extern void mm_drop_all_locks(struct mm_struct *mm); 2518 2519 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2520 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2521 extern struct file *get_task_exe_file(struct task_struct *task); 2522 2523 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2524 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2525 2526 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2527 const struct vm_special_mapping *sm); 2528 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2529 unsigned long addr, unsigned long len, 2530 unsigned long flags, 2531 const struct vm_special_mapping *spec); 2532 /* This is an obsolete alternative to _install_special_mapping. */ 2533 extern int install_special_mapping(struct mm_struct *mm, 2534 unsigned long addr, unsigned long len, 2535 unsigned long flags, struct page **pages); 2536 2537 unsigned long randomize_stack_top(unsigned long stack_top); 2538 2539 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2540 2541 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2542 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2543 struct list_head *uf); 2544 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2545 unsigned long len, unsigned long prot, unsigned long flags, 2546 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2547 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2548 struct list_head *uf, bool downgrade); 2549 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2550 struct list_head *uf); 2551 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2552 2553 #ifdef CONFIG_MMU 2554 extern int __mm_populate(unsigned long addr, unsigned long len, 2555 int ignore_errors); 2556 static inline void mm_populate(unsigned long addr, unsigned long len) 2557 { 2558 /* Ignore errors */ 2559 (void) __mm_populate(addr, len, 1); 2560 } 2561 #else 2562 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2563 #endif 2564 2565 /* These take the mm semaphore themselves */ 2566 extern int __must_check vm_brk(unsigned long, unsigned long); 2567 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2568 extern int vm_munmap(unsigned long, size_t); 2569 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2570 unsigned long, unsigned long, 2571 unsigned long, unsigned long); 2572 2573 struct vm_unmapped_area_info { 2574 #define VM_UNMAPPED_AREA_TOPDOWN 1 2575 unsigned long flags; 2576 unsigned long length; 2577 unsigned long low_limit; 2578 unsigned long high_limit; 2579 unsigned long align_mask; 2580 unsigned long align_offset; 2581 }; 2582 2583 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2584 2585 /* truncate.c */ 2586 extern void truncate_inode_pages(struct address_space *, loff_t); 2587 extern void truncate_inode_pages_range(struct address_space *, 2588 loff_t lstart, loff_t lend); 2589 extern void truncate_inode_pages_final(struct address_space *); 2590 2591 /* generic vm_area_ops exported for stackable file systems */ 2592 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2593 extern void filemap_map_pages(struct vm_fault *vmf, 2594 pgoff_t start_pgoff, pgoff_t end_pgoff); 2595 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2596 2597 /* mm/page-writeback.c */ 2598 int __must_check write_one_page(struct page *page); 2599 void task_dirty_inc(struct task_struct *tsk); 2600 2601 extern unsigned long stack_guard_gap; 2602 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2603 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2604 2605 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2606 extern int expand_downwards(struct vm_area_struct *vma, 2607 unsigned long address); 2608 #if VM_GROWSUP 2609 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2610 #else 2611 #define expand_upwards(vma, address) (0) 2612 #endif 2613 2614 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2615 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2616 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2617 struct vm_area_struct **pprev); 2618 2619 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2620 NULL if none. Assume start_addr < end_addr. */ 2621 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2622 { 2623 struct vm_area_struct * vma = find_vma(mm,start_addr); 2624 2625 if (vma && end_addr <= vma->vm_start) 2626 vma = NULL; 2627 return vma; 2628 } 2629 2630 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2631 { 2632 unsigned long vm_start = vma->vm_start; 2633 2634 if (vma->vm_flags & VM_GROWSDOWN) { 2635 vm_start -= stack_guard_gap; 2636 if (vm_start > vma->vm_start) 2637 vm_start = 0; 2638 } 2639 return vm_start; 2640 } 2641 2642 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2643 { 2644 unsigned long vm_end = vma->vm_end; 2645 2646 if (vma->vm_flags & VM_GROWSUP) { 2647 vm_end += stack_guard_gap; 2648 if (vm_end < vma->vm_end) 2649 vm_end = -PAGE_SIZE; 2650 } 2651 return vm_end; 2652 } 2653 2654 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2655 { 2656 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2657 } 2658 2659 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2660 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2661 unsigned long vm_start, unsigned long vm_end) 2662 { 2663 struct vm_area_struct *vma = find_vma(mm, vm_start); 2664 2665 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2666 vma = NULL; 2667 2668 return vma; 2669 } 2670 2671 static inline bool range_in_vma(struct vm_area_struct *vma, 2672 unsigned long start, unsigned long end) 2673 { 2674 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2675 } 2676 2677 #ifdef CONFIG_MMU 2678 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2679 void vma_set_page_prot(struct vm_area_struct *vma); 2680 #else 2681 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2682 { 2683 return __pgprot(0); 2684 } 2685 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2686 { 2687 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2688 } 2689 #endif 2690 2691 #ifdef CONFIG_NUMA_BALANCING 2692 unsigned long change_prot_numa(struct vm_area_struct *vma, 2693 unsigned long start, unsigned long end); 2694 #endif 2695 2696 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2697 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2698 unsigned long pfn, unsigned long size, pgprot_t); 2699 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2700 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2701 struct page **pages, unsigned long *num); 2702 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2703 unsigned long num); 2704 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2705 unsigned long num); 2706 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2707 unsigned long pfn); 2708 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2709 unsigned long pfn, pgprot_t pgprot); 2710 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2711 pfn_t pfn); 2712 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2713 pfn_t pfn, pgprot_t pgprot); 2714 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2715 unsigned long addr, pfn_t pfn); 2716 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2717 2718 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2719 unsigned long addr, struct page *page) 2720 { 2721 int err = vm_insert_page(vma, addr, page); 2722 2723 if (err == -ENOMEM) 2724 return VM_FAULT_OOM; 2725 if (err < 0 && err != -EBUSY) 2726 return VM_FAULT_SIGBUS; 2727 2728 return VM_FAULT_NOPAGE; 2729 } 2730 2731 static inline vm_fault_t vmf_error(int err) 2732 { 2733 if (err == -ENOMEM) 2734 return VM_FAULT_OOM; 2735 return VM_FAULT_SIGBUS; 2736 } 2737 2738 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2739 unsigned int foll_flags); 2740 2741 #define FOLL_WRITE 0x01 /* check pte is writable */ 2742 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2743 #define FOLL_GET 0x04 /* do get_page on page */ 2744 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2745 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2746 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2747 * and return without waiting upon it */ 2748 #define FOLL_POPULATE 0x40 /* fault in page */ 2749 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2750 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2751 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2752 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2753 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2754 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2755 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2756 #define FOLL_COW 0x4000 /* internal GUP flag */ 2757 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2758 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2759 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2760 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2761 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2762 2763 /* 2764 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2765 * other. Here is what they mean, and how to use them: 2766 * 2767 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2768 * period _often_ under userspace control. This is in contrast to 2769 * iov_iter_get_pages(), whose usages are transient. 2770 * 2771 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2772 * lifetime enforced by the filesystem and we need guarantees that longterm 2773 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2774 * the filesystem. Ideas for this coordination include revoking the longterm 2775 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2776 * added after the problem with filesystems was found FS DAX VMAs are 2777 * specifically failed. Filesystem pages are still subject to bugs and use of 2778 * FOLL_LONGTERM should be avoided on those pages. 2779 * 2780 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2781 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2782 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2783 * is due to an incompatibility with the FS DAX check and 2784 * FAULT_FLAG_ALLOW_RETRY. 2785 * 2786 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2787 * that region. And so, CMA attempts to migrate the page before pinning, when 2788 * FOLL_LONGTERM is specified. 2789 * 2790 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2791 * but an additional pin counting system) will be invoked. This is intended for 2792 * anything that gets a page reference and then touches page data (for example, 2793 * Direct IO). This lets the filesystem know that some non-file-system entity is 2794 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2795 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2796 * a call to unpin_user_page(). 2797 * 2798 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2799 * and separate refcounting mechanisms, however, and that means that each has 2800 * its own acquire and release mechanisms: 2801 * 2802 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2803 * 2804 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2805 * 2806 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2807 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2808 * calls applied to them, and that's perfectly OK. This is a constraint on the 2809 * callers, not on the pages.) 2810 * 2811 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2812 * directly by the caller. That's in order to help avoid mismatches when 2813 * releasing pages: get_user_pages*() pages must be released via put_page(), 2814 * while pin_user_pages*() pages must be released via unpin_user_page(). 2815 * 2816 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2817 */ 2818 2819 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2820 { 2821 if (vm_fault & VM_FAULT_OOM) 2822 return -ENOMEM; 2823 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2824 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2825 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2826 return -EFAULT; 2827 return 0; 2828 } 2829 2830 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2831 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2832 unsigned long size, pte_fn_t fn, void *data); 2833 extern int apply_to_existing_page_range(struct mm_struct *mm, 2834 unsigned long address, unsigned long size, 2835 pte_fn_t fn, void *data); 2836 2837 #ifdef CONFIG_PAGE_POISONING 2838 extern bool page_poisoning_enabled(void); 2839 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2840 #else 2841 static inline bool page_poisoning_enabled(void) { return false; } 2842 static inline void kernel_poison_pages(struct page *page, int numpages, 2843 int enable) { } 2844 #endif 2845 2846 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2847 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2848 #else 2849 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2850 #endif 2851 static inline bool want_init_on_alloc(gfp_t flags) 2852 { 2853 if (static_branch_unlikely(&init_on_alloc) && 2854 !page_poisoning_enabled()) 2855 return true; 2856 return flags & __GFP_ZERO; 2857 } 2858 2859 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2860 DECLARE_STATIC_KEY_TRUE(init_on_free); 2861 #else 2862 DECLARE_STATIC_KEY_FALSE(init_on_free); 2863 #endif 2864 static inline bool want_init_on_free(void) 2865 { 2866 return static_branch_unlikely(&init_on_free) && 2867 !page_poisoning_enabled(); 2868 } 2869 2870 #ifdef CONFIG_DEBUG_PAGEALLOC 2871 extern void init_debug_pagealloc(void); 2872 #else 2873 static inline void init_debug_pagealloc(void) {} 2874 #endif 2875 extern bool _debug_pagealloc_enabled_early; 2876 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2877 2878 static inline bool debug_pagealloc_enabled(void) 2879 { 2880 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2881 _debug_pagealloc_enabled_early; 2882 } 2883 2884 /* 2885 * For use in fast paths after init_debug_pagealloc() has run, or when a 2886 * false negative result is not harmful when called too early. 2887 */ 2888 static inline bool debug_pagealloc_enabled_static(void) 2889 { 2890 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2891 return false; 2892 2893 return static_branch_unlikely(&_debug_pagealloc_enabled); 2894 } 2895 2896 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2897 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2898 2899 /* 2900 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2901 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2902 */ 2903 static inline void 2904 kernel_map_pages(struct page *page, int numpages, int enable) 2905 { 2906 __kernel_map_pages(page, numpages, enable); 2907 } 2908 #ifdef CONFIG_HIBERNATION 2909 extern bool kernel_page_present(struct page *page); 2910 #endif /* CONFIG_HIBERNATION */ 2911 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2912 static inline void 2913 kernel_map_pages(struct page *page, int numpages, int enable) {} 2914 #ifdef CONFIG_HIBERNATION 2915 static inline bool kernel_page_present(struct page *page) { return true; } 2916 #endif /* CONFIG_HIBERNATION */ 2917 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2918 2919 #ifdef __HAVE_ARCH_GATE_AREA 2920 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2921 extern int in_gate_area_no_mm(unsigned long addr); 2922 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2923 #else 2924 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2925 { 2926 return NULL; 2927 } 2928 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2929 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2930 { 2931 return 0; 2932 } 2933 #endif /* __HAVE_ARCH_GATE_AREA */ 2934 2935 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2936 2937 #ifdef CONFIG_SYSCTL 2938 extern int sysctl_drop_caches; 2939 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2940 loff_t *); 2941 #endif 2942 2943 void drop_slab(void); 2944 void drop_slab_node(int nid); 2945 2946 #ifndef CONFIG_MMU 2947 #define randomize_va_space 0 2948 #else 2949 extern int randomize_va_space; 2950 #endif 2951 2952 const char * arch_vma_name(struct vm_area_struct *vma); 2953 #ifdef CONFIG_MMU 2954 void print_vma_addr(char *prefix, unsigned long rip); 2955 #else 2956 static inline void print_vma_addr(char *prefix, unsigned long rip) 2957 { 2958 } 2959 #endif 2960 2961 void *sparse_buffer_alloc(unsigned long size); 2962 struct page * __populate_section_memmap(unsigned long pfn, 2963 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2964 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2965 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2966 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2967 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2968 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 2969 struct vmem_altmap *altmap); 2970 void *vmemmap_alloc_block(unsigned long size, int node); 2971 struct vmem_altmap; 2972 void *vmemmap_alloc_block_buf(unsigned long size, int node, 2973 struct vmem_altmap *altmap); 2974 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2975 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2976 int node, struct vmem_altmap *altmap); 2977 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2978 struct vmem_altmap *altmap); 2979 void vmemmap_populate_print_last(void); 2980 #ifdef CONFIG_MEMORY_HOTPLUG 2981 void vmemmap_free(unsigned long start, unsigned long end, 2982 struct vmem_altmap *altmap); 2983 #endif 2984 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2985 unsigned long nr_pages); 2986 2987 enum mf_flags { 2988 MF_COUNT_INCREASED = 1 << 0, 2989 MF_ACTION_REQUIRED = 1 << 1, 2990 MF_MUST_KILL = 1 << 2, 2991 MF_SOFT_OFFLINE = 1 << 3, 2992 }; 2993 extern int memory_failure(unsigned long pfn, int flags); 2994 extern void memory_failure_queue(unsigned long pfn, int flags); 2995 extern void memory_failure_queue_kick(int cpu); 2996 extern int unpoison_memory(unsigned long pfn); 2997 extern int get_hwpoison_page(struct page *page); 2998 #define put_hwpoison_page(page) put_page(page) 2999 extern int sysctl_memory_failure_early_kill; 3000 extern int sysctl_memory_failure_recovery; 3001 extern void shake_page(struct page *p, int access); 3002 extern atomic_long_t num_poisoned_pages __read_mostly; 3003 extern int soft_offline_page(unsigned long pfn, int flags); 3004 3005 3006 /* 3007 * Error handlers for various types of pages. 3008 */ 3009 enum mf_result { 3010 MF_IGNORED, /* Error: cannot be handled */ 3011 MF_FAILED, /* Error: handling failed */ 3012 MF_DELAYED, /* Will be handled later */ 3013 MF_RECOVERED, /* Successfully recovered */ 3014 }; 3015 3016 enum mf_action_page_type { 3017 MF_MSG_KERNEL, 3018 MF_MSG_KERNEL_HIGH_ORDER, 3019 MF_MSG_SLAB, 3020 MF_MSG_DIFFERENT_COMPOUND, 3021 MF_MSG_POISONED_HUGE, 3022 MF_MSG_HUGE, 3023 MF_MSG_FREE_HUGE, 3024 MF_MSG_NON_PMD_HUGE, 3025 MF_MSG_UNMAP_FAILED, 3026 MF_MSG_DIRTY_SWAPCACHE, 3027 MF_MSG_CLEAN_SWAPCACHE, 3028 MF_MSG_DIRTY_MLOCKED_LRU, 3029 MF_MSG_CLEAN_MLOCKED_LRU, 3030 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3031 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3032 MF_MSG_DIRTY_LRU, 3033 MF_MSG_CLEAN_LRU, 3034 MF_MSG_TRUNCATED_LRU, 3035 MF_MSG_BUDDY, 3036 MF_MSG_BUDDY_2ND, 3037 MF_MSG_DAX, 3038 MF_MSG_UNKNOWN, 3039 }; 3040 3041 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3042 extern void clear_huge_page(struct page *page, 3043 unsigned long addr_hint, 3044 unsigned int pages_per_huge_page); 3045 extern void copy_user_huge_page(struct page *dst, struct page *src, 3046 unsigned long addr_hint, 3047 struct vm_area_struct *vma, 3048 unsigned int pages_per_huge_page); 3049 extern long copy_huge_page_from_user(struct page *dst_page, 3050 const void __user *usr_src, 3051 unsigned int pages_per_huge_page, 3052 bool allow_pagefault); 3053 3054 /** 3055 * vma_is_special_huge - Are transhuge page-table entries considered special? 3056 * @vma: Pointer to the struct vm_area_struct to consider 3057 * 3058 * Whether transhuge page-table entries are considered "special" following 3059 * the definition in vm_normal_page(). 3060 * 3061 * Return: true if transhuge page-table entries should be considered special, 3062 * false otherwise. 3063 */ 3064 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3065 { 3066 return vma_is_dax(vma) || (vma->vm_file && 3067 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3068 } 3069 3070 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3071 3072 #ifdef CONFIG_DEBUG_PAGEALLOC 3073 extern unsigned int _debug_guardpage_minorder; 3074 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3075 3076 static inline unsigned int debug_guardpage_minorder(void) 3077 { 3078 return _debug_guardpage_minorder; 3079 } 3080 3081 static inline bool debug_guardpage_enabled(void) 3082 { 3083 return static_branch_unlikely(&_debug_guardpage_enabled); 3084 } 3085 3086 static inline bool page_is_guard(struct page *page) 3087 { 3088 if (!debug_guardpage_enabled()) 3089 return false; 3090 3091 return PageGuard(page); 3092 } 3093 #else 3094 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3095 static inline bool debug_guardpage_enabled(void) { return false; } 3096 static inline bool page_is_guard(struct page *page) { return false; } 3097 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3098 3099 #if MAX_NUMNODES > 1 3100 void __init setup_nr_node_ids(void); 3101 #else 3102 static inline void setup_nr_node_ids(void) {} 3103 #endif 3104 3105 extern int memcmp_pages(struct page *page1, struct page *page2); 3106 3107 static inline int pages_identical(struct page *page1, struct page *page2) 3108 { 3109 return !memcmp_pages(page1, page2); 3110 } 3111 3112 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3113 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3114 pgoff_t first_index, pgoff_t nr, 3115 pgoff_t bitmap_pgoff, 3116 unsigned long *bitmap, 3117 pgoff_t *start, 3118 pgoff_t *end); 3119 3120 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3121 pgoff_t first_index, pgoff_t nr); 3122 #endif 3123 3124 extern int sysctl_nr_trim_pages; 3125 3126 #endif /* __KERNEL__ */ 3127 #endif /* _LINUX_MM_H */ 3128