xref: /linux-6.15/include/linux/mm.h (revision dbcfe5ec)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct user_struct;
37 struct pt_regs;
38 
39 extern int sysctl_page_lock_unfairness;
40 
41 void init_mm_internals(void);
42 
43 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45 
46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 	max_mapnr = limit;
49 }
50 #else
51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53 
54 extern atomic_long_t _totalram_pages;
55 static inline unsigned long totalram_pages(void)
56 {
57 	return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_inc(void)
61 {
62 	atomic_long_inc(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_dec(void)
66 {
67 	atomic_long_dec(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_add(long count)
71 {
72 	atomic_long_add(count, &_totalram_pages);
73 }
74 
75 extern void * high_memory;
76 extern int page_cluster;
77 
78 #ifdef CONFIG_SYSCTL
79 extern int sysctl_legacy_va_layout;
80 #else
81 #define sysctl_legacy_va_layout 0
82 #endif
83 
84 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85 extern const int mmap_rnd_bits_min;
86 extern const int mmap_rnd_bits_max;
87 extern int mmap_rnd_bits __read_mostly;
88 #endif
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90 extern const int mmap_rnd_compat_bits_min;
91 extern const int mmap_rnd_compat_bits_max;
92 extern int mmap_rnd_compat_bits __read_mostly;
93 #endif
94 
95 #include <asm/page.h>
96 #include <asm/processor.h>
97 
98 /*
99  * Architectures that support memory tagging (assigning tags to memory regions,
100  * embedding these tags into addresses that point to these memory regions, and
101  * checking that the memory and the pointer tags match on memory accesses)
102  * redefine this macro to strip tags from pointers.
103  * It's defined as noop for architectures that don't support memory tagging.
104  */
105 #ifndef untagged_addr
106 #define untagged_addr(addr) (addr)
107 #endif
108 
109 #ifndef __pa_symbol
110 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
111 #endif
112 
113 #ifndef page_to_virt
114 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
115 #endif
116 
117 #ifndef lm_alias
118 #define lm_alias(x)	__va(__pa_symbol(x))
119 #endif
120 
121 /*
122  * To prevent common memory management code establishing
123  * a zero page mapping on a read fault.
124  * This macro should be defined within <asm/pgtable.h>.
125  * s390 does this to prevent multiplexing of hardware bits
126  * related to the physical page in case of virtualization.
127  */
128 #ifndef mm_forbids_zeropage
129 #define mm_forbids_zeropage(X)	(0)
130 #endif
131 
132 /*
133  * On some architectures it is expensive to call memset() for small sizes.
134  * If an architecture decides to implement their own version of
135  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136  * define their own version of this macro in <asm/pgtable.h>
137  */
138 #if BITS_PER_LONG == 64
139 /* This function must be updated when the size of struct page grows above 80
140  * or reduces below 56. The idea that compiler optimizes out switch()
141  * statement, and only leaves move/store instructions. Also the compiler can
142  * combine write statements if they are both assignments and can be reordered,
143  * this can result in several of the writes here being dropped.
144  */
145 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146 static inline void __mm_zero_struct_page(struct page *page)
147 {
148 	unsigned long *_pp = (void *)page;
149 
150 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 	BUILD_BUG_ON(sizeof(struct page) & 7);
152 	BUILD_BUG_ON(sizeof(struct page) < 56);
153 	BUILD_BUG_ON(sizeof(struct page) > 80);
154 
155 	switch (sizeof(struct page)) {
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
232 static inline struct folio *lru_to_folio(struct list_head *head)
233 {
234 	return list_entry((head)->prev, struct folio, lru);
235 }
236 
237 void setup_initial_init_mm(void *start_code, void *end_code,
238 			   void *end_data, void *brk);
239 
240 /*
241  * Linux kernel virtual memory manager primitives.
242  * The idea being to have a "virtual" mm in the same way
243  * we have a virtual fs - giving a cleaner interface to the
244  * mm details, and allowing different kinds of memory mappings
245  * (from shared memory to executable loading to arbitrary
246  * mmap() functions).
247  */
248 
249 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
250 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251 void vm_area_free(struct vm_area_struct *);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
279 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
280 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
281 
282 #define VM_LOCKED	0x00002000
283 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
284 
285 					/* Used by sys_madvise() */
286 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
287 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
288 
289 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
290 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
291 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
292 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
293 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
294 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
295 #define VM_SYNC		0x00800000	/* Synchronous page faults */
296 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
297 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
298 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
299 
300 #ifdef CONFIG_MEM_SOFT_DIRTY
301 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
302 #else
303 # define VM_SOFTDIRTY	0
304 #endif
305 
306 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
307 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
308 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
309 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
310 
311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
318 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
319 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
320 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
321 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
322 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
323 
324 #ifdef CONFIG_ARCH_HAS_PKEYS
325 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
326 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
327 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
328 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
329 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
330 #ifdef CONFIG_PPC
331 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
332 #else
333 # define VM_PKEY_BIT4  0
334 #endif
335 #endif /* CONFIG_ARCH_HAS_PKEYS */
336 
337 #if defined(CONFIG_X86)
338 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
339 #elif defined(CONFIG_PPC)
340 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
341 #elif defined(CONFIG_PARISC)
342 # define VM_GROWSUP	VM_ARCH_1
343 #elif defined(CONFIG_IA64)
344 # define VM_GROWSUP	VM_ARCH_1
345 #elif defined(CONFIG_SPARC64)
346 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
347 # define VM_ARCH_CLEAR	VM_SPARC_ADI
348 #elif defined(CONFIG_ARM64)
349 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
350 # define VM_ARCH_CLEAR	VM_ARM64_BTI
351 #elif !defined(CONFIG_MMU)
352 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
353 #endif
354 
355 #if defined(CONFIG_ARM64_MTE)
356 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
357 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
358 #else
359 # define VM_MTE		VM_NONE
360 # define VM_MTE_ALLOWED	VM_NONE
361 #endif
362 
363 #ifndef VM_GROWSUP
364 # define VM_GROWSUP	VM_NONE
365 #endif
366 
367 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
368 # define VM_UFFD_MINOR_BIT	37
369 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
370 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
371 # define VM_UFFD_MINOR		VM_NONE
372 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
373 
374 /* Bits set in the VMA until the stack is in its final location */
375 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
376 
377 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
378 
379 /* Common data flag combinations */
380 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
381 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
383 				 VM_MAYWRITE | VM_MAYEXEC)
384 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
385 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386 
387 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
388 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
389 #endif
390 
391 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
392 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
393 #endif
394 
395 #ifdef CONFIG_STACK_GROWSUP
396 #define VM_STACK	VM_GROWSUP
397 #else
398 #define VM_STACK	VM_GROWSDOWN
399 #endif
400 
401 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
402 
403 /* VMA basic access permission flags */
404 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
405 
406 
407 /*
408  * Special vmas that are non-mergable, non-mlock()able.
409  */
410 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
411 
412 /* This mask prevents VMA from being scanned with khugepaged */
413 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
414 
415 /* This mask defines which mm->def_flags a process can inherit its parent */
416 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
417 
418 /* This mask is used to clear all the VMA flags used by mlock */
419 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
420 
421 /* Arch-specific flags to clear when updating VM flags on protection change */
422 #ifndef VM_ARCH_CLEAR
423 # define VM_ARCH_CLEAR	VM_NONE
424 #endif
425 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
426 
427 /*
428  * mapping from the currently active vm_flags protection bits (the
429  * low four bits) to a page protection mask..
430  */
431 
432 /*
433  * The default fault flags that should be used by most of the
434  * arch-specific page fault handlers.
435  */
436 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
437 			     FAULT_FLAG_KILLABLE | \
438 			     FAULT_FLAG_INTERRUPTIBLE)
439 
440 /**
441  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
442  * @flags: Fault flags.
443  *
444  * This is mostly used for places where we want to try to avoid taking
445  * the mmap_lock for too long a time when waiting for another condition
446  * to change, in which case we can try to be polite to release the
447  * mmap_lock in the first round to avoid potential starvation of other
448  * processes that would also want the mmap_lock.
449  *
450  * Return: true if the page fault allows retry and this is the first
451  * attempt of the fault handling; false otherwise.
452  */
453 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
454 {
455 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
456 	    (!(flags & FAULT_FLAG_TRIED));
457 }
458 
459 #define FAULT_FLAG_TRACE \
460 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
461 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
462 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
463 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
464 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
465 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
466 	{ FAULT_FLAG_USER,		"USER" }, \
467 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
468 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
469 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
470 
471 /*
472  * vm_fault is filled by the pagefault handler and passed to the vma's
473  * ->fault function. The vma's ->fault is responsible for returning a bitmask
474  * of VM_FAULT_xxx flags that give details about how the fault was handled.
475  *
476  * MM layer fills up gfp_mask for page allocations but fault handler might
477  * alter it if its implementation requires a different allocation context.
478  *
479  * pgoff should be used in favour of virtual_address, if possible.
480  */
481 struct vm_fault {
482 	const struct {
483 		struct vm_area_struct *vma;	/* Target VMA */
484 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
485 		pgoff_t pgoff;			/* Logical page offset based on vma */
486 		unsigned long address;		/* Faulting virtual address - masked */
487 		unsigned long real_address;	/* Faulting virtual address - unmasked */
488 	};
489 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
490 					 * XXX: should really be 'const' */
491 	pmd_t *pmd;			/* Pointer to pmd entry matching
492 					 * the 'address' */
493 	pud_t *pud;			/* Pointer to pud entry matching
494 					 * the 'address'
495 					 */
496 	union {
497 		pte_t orig_pte;		/* Value of PTE at the time of fault */
498 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
499 					 * used by PMD fault only.
500 					 */
501 	};
502 
503 	struct page *cow_page;		/* Page handler may use for COW fault */
504 	struct page *page;		/* ->fault handlers should return a
505 					 * page here, unless VM_FAULT_NOPAGE
506 					 * is set (which is also implied by
507 					 * VM_FAULT_ERROR).
508 					 */
509 	/* These three entries are valid only while holding ptl lock */
510 	pte_t *pte;			/* Pointer to pte entry matching
511 					 * the 'address'. NULL if the page
512 					 * table hasn't been allocated.
513 					 */
514 	spinlock_t *ptl;		/* Page table lock.
515 					 * Protects pte page table if 'pte'
516 					 * is not NULL, otherwise pmd.
517 					 */
518 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
519 					 * vm_ops->map_pages() sets up a page
520 					 * table from atomic context.
521 					 * do_fault_around() pre-allocates
522 					 * page table to avoid allocation from
523 					 * atomic context.
524 					 */
525 };
526 
527 /* page entry size for vm->huge_fault() */
528 enum page_entry_size {
529 	PE_SIZE_PTE = 0,
530 	PE_SIZE_PMD,
531 	PE_SIZE_PUD,
532 };
533 
534 /*
535  * These are the virtual MM functions - opening of an area, closing and
536  * unmapping it (needed to keep files on disk up-to-date etc), pointer
537  * to the functions called when a no-page or a wp-page exception occurs.
538  */
539 struct vm_operations_struct {
540 	void (*open)(struct vm_area_struct * area);
541 	/**
542 	 * @close: Called when the VMA is being removed from the MM.
543 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
544 	 */
545 	void (*close)(struct vm_area_struct * area);
546 	/* Called any time before splitting to check if it's allowed */
547 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
548 	int (*mremap)(struct vm_area_struct *area);
549 	/*
550 	 * Called by mprotect() to make driver-specific permission
551 	 * checks before mprotect() is finalised.   The VMA must not
552 	 * be modified.  Returns 0 if eprotect() can proceed.
553 	 */
554 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
555 			unsigned long end, unsigned long newflags);
556 	vm_fault_t (*fault)(struct vm_fault *vmf);
557 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
558 			enum page_entry_size pe_size);
559 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
560 			pgoff_t start_pgoff, pgoff_t end_pgoff);
561 	unsigned long (*pagesize)(struct vm_area_struct * area);
562 
563 	/* notification that a previously read-only page is about to become
564 	 * writable, if an error is returned it will cause a SIGBUS */
565 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
566 
567 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
568 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
569 
570 	/* called by access_process_vm when get_user_pages() fails, typically
571 	 * for use by special VMAs. See also generic_access_phys() for a generic
572 	 * implementation useful for any iomem mapping.
573 	 */
574 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
575 		      void *buf, int len, int write);
576 
577 	/* Called by the /proc/PID/maps code to ask the vma whether it
578 	 * has a special name.  Returning non-NULL will also cause this
579 	 * vma to be dumped unconditionally. */
580 	const char *(*name)(struct vm_area_struct *vma);
581 
582 #ifdef CONFIG_NUMA
583 	/*
584 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
585 	 * to hold the policy upon return.  Caller should pass NULL @new to
586 	 * remove a policy and fall back to surrounding context--i.e. do not
587 	 * install a MPOL_DEFAULT policy, nor the task or system default
588 	 * mempolicy.
589 	 */
590 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
591 
592 	/*
593 	 * get_policy() op must add reference [mpol_get()] to any policy at
594 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
595 	 * in mm/mempolicy.c will do this automatically.
596 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
597 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
598 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
599 	 * must return NULL--i.e., do not "fallback" to task or system default
600 	 * policy.
601 	 */
602 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 					unsigned long addr);
604 #endif
605 	/*
606 	 * Called by vm_normal_page() for special PTEs to find the
607 	 * page for @addr.  This is useful if the default behavior
608 	 * (using pte_page()) would not find the correct page.
609 	 */
610 	struct page *(*find_special_page)(struct vm_area_struct *vma,
611 					  unsigned long addr);
612 };
613 
614 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
615 {
616 	static const struct vm_operations_struct dummy_vm_ops = {};
617 
618 	memset(vma, 0, sizeof(*vma));
619 	vma->vm_mm = mm;
620 	vma->vm_ops = &dummy_vm_ops;
621 	INIT_LIST_HEAD(&vma->anon_vma_chain);
622 }
623 
624 static inline void vma_set_anonymous(struct vm_area_struct *vma)
625 {
626 	vma->vm_ops = NULL;
627 }
628 
629 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
630 {
631 	return !vma->vm_ops;
632 }
633 
634 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
635 {
636 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
637 
638 	if (!maybe_stack)
639 		return false;
640 
641 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
642 						VM_STACK_INCOMPLETE_SETUP)
643 		return true;
644 
645 	return false;
646 }
647 
648 static inline bool vma_is_foreign(struct vm_area_struct *vma)
649 {
650 	if (!current->mm)
651 		return true;
652 
653 	if (current->mm != vma->vm_mm)
654 		return true;
655 
656 	return false;
657 }
658 
659 static inline bool vma_is_accessible(struct vm_area_struct *vma)
660 {
661 	return vma->vm_flags & VM_ACCESS_FLAGS;
662 }
663 
664 #ifdef CONFIG_SHMEM
665 /*
666  * The vma_is_shmem is not inline because it is used only by slow
667  * paths in userfault.
668  */
669 bool vma_is_shmem(struct vm_area_struct *vma);
670 #else
671 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
672 #endif
673 
674 int vma_is_stack_for_current(struct vm_area_struct *vma);
675 
676 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
677 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
678 
679 struct mmu_gather;
680 struct inode;
681 
682 static inline unsigned int compound_order(struct page *page)
683 {
684 	if (!PageHead(page))
685 		return 0;
686 	return page[1].compound_order;
687 }
688 
689 /**
690  * folio_order - The allocation order of a folio.
691  * @folio: The folio.
692  *
693  * A folio is composed of 2^order pages.  See get_order() for the definition
694  * of order.
695  *
696  * Return: The order of the folio.
697  */
698 static inline unsigned int folio_order(struct folio *folio)
699 {
700 	return compound_order(&folio->page);
701 }
702 
703 #include <linux/huge_mm.h>
704 
705 /*
706  * Methods to modify the page usage count.
707  *
708  * What counts for a page usage:
709  * - cache mapping   (page->mapping)
710  * - private data    (page->private)
711  * - page mapped in a task's page tables, each mapping
712  *   is counted separately
713  *
714  * Also, many kernel routines increase the page count before a critical
715  * routine so they can be sure the page doesn't go away from under them.
716  */
717 
718 /*
719  * Drop a ref, return true if the refcount fell to zero (the page has no users)
720  */
721 static inline int put_page_testzero(struct page *page)
722 {
723 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
724 	return page_ref_dec_and_test(page);
725 }
726 
727 static inline int folio_put_testzero(struct folio *folio)
728 {
729 	return put_page_testzero(&folio->page);
730 }
731 
732 /*
733  * Try to grab a ref unless the page has a refcount of zero, return false if
734  * that is the case.
735  * This can be called when MMU is off so it must not access
736  * any of the virtual mappings.
737  */
738 static inline bool get_page_unless_zero(struct page *page)
739 {
740 	return page_ref_add_unless(page, 1, 0);
741 }
742 
743 extern int page_is_ram(unsigned long pfn);
744 
745 enum {
746 	REGION_INTERSECTS,
747 	REGION_DISJOINT,
748 	REGION_MIXED,
749 };
750 
751 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
752 		      unsigned long desc);
753 
754 /* Support for virtually mapped pages */
755 struct page *vmalloc_to_page(const void *addr);
756 unsigned long vmalloc_to_pfn(const void *addr);
757 
758 /*
759  * Determine if an address is within the vmalloc range
760  *
761  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
762  * is no special casing required.
763  */
764 
765 #ifndef is_ioremap_addr
766 #define is_ioremap_addr(x) is_vmalloc_addr(x)
767 #endif
768 
769 #ifdef CONFIG_MMU
770 extern bool is_vmalloc_addr(const void *x);
771 extern int is_vmalloc_or_module_addr(const void *x);
772 #else
773 static inline bool is_vmalloc_addr(const void *x)
774 {
775 	return false;
776 }
777 static inline int is_vmalloc_or_module_addr(const void *x)
778 {
779 	return 0;
780 }
781 #endif
782 
783 /*
784  * How many times the entire folio is mapped as a single unit (eg by a
785  * PMD or PUD entry).  This is probably not what you want, except for
786  * debugging purposes; look at folio_mapcount() or page_mapcount()
787  * instead.
788  */
789 static inline int folio_entire_mapcount(struct folio *folio)
790 {
791 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
792 	return atomic_read(folio_mapcount_ptr(folio)) + 1;
793 }
794 
795 /*
796  * Mapcount of compound page as a whole, does not include mapped sub-pages.
797  *
798  * Must be called only for compound pages.
799  */
800 static inline int compound_mapcount(struct page *page)
801 {
802 	return folio_entire_mapcount(page_folio(page));
803 }
804 
805 /*
806  * The atomic page->_mapcount, starts from -1: so that transitions
807  * both from it and to it can be tracked, using atomic_inc_and_test
808  * and atomic_add_negative(-1).
809  */
810 static inline void page_mapcount_reset(struct page *page)
811 {
812 	atomic_set(&(page)->_mapcount, -1);
813 }
814 
815 int __page_mapcount(struct page *page);
816 
817 /*
818  * Mapcount of 0-order page; when compound sub-page, includes
819  * compound_mapcount().
820  *
821  * Result is undefined for pages which cannot be mapped into userspace.
822  * For example SLAB or special types of pages. See function page_has_type().
823  * They use this place in struct page differently.
824  */
825 static inline int page_mapcount(struct page *page)
826 {
827 	if (unlikely(PageCompound(page)))
828 		return __page_mapcount(page);
829 	return atomic_read(&page->_mapcount) + 1;
830 }
831 
832 int folio_mapcount(struct folio *folio);
833 
834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
835 static inline int total_mapcount(struct page *page)
836 {
837 	return folio_mapcount(page_folio(page));
838 }
839 
840 #else
841 static inline int total_mapcount(struct page *page)
842 {
843 	return page_mapcount(page);
844 }
845 #endif
846 
847 static inline struct page *virt_to_head_page(const void *x)
848 {
849 	struct page *page = virt_to_page(x);
850 
851 	return compound_head(page);
852 }
853 
854 static inline struct folio *virt_to_folio(const void *x)
855 {
856 	struct page *page = virt_to_page(x);
857 
858 	return page_folio(page);
859 }
860 
861 void __folio_put(struct folio *folio);
862 
863 void put_pages_list(struct list_head *pages);
864 
865 void split_page(struct page *page, unsigned int order);
866 void folio_copy(struct folio *dst, struct folio *src);
867 
868 unsigned long nr_free_buffer_pages(void);
869 
870 /*
871  * Compound pages have a destructor function.  Provide a
872  * prototype for that function and accessor functions.
873  * These are _only_ valid on the head of a compound page.
874  */
875 typedef void compound_page_dtor(struct page *);
876 
877 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
878 enum compound_dtor_id {
879 	NULL_COMPOUND_DTOR,
880 	COMPOUND_PAGE_DTOR,
881 #ifdef CONFIG_HUGETLB_PAGE
882 	HUGETLB_PAGE_DTOR,
883 #endif
884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
885 	TRANSHUGE_PAGE_DTOR,
886 #endif
887 	NR_COMPOUND_DTORS,
888 };
889 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
890 
891 static inline void set_compound_page_dtor(struct page *page,
892 		enum compound_dtor_id compound_dtor)
893 {
894 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
895 	page[1].compound_dtor = compound_dtor;
896 }
897 
898 void destroy_large_folio(struct folio *folio);
899 
900 static inline int head_compound_pincount(struct page *head)
901 {
902 	return atomic_read(compound_pincount_ptr(head));
903 }
904 
905 static inline void set_compound_order(struct page *page, unsigned int order)
906 {
907 	page[1].compound_order = order;
908 #ifdef CONFIG_64BIT
909 	page[1].compound_nr = 1U << order;
910 #endif
911 }
912 
913 /* Returns the number of pages in this potentially compound page. */
914 static inline unsigned long compound_nr(struct page *page)
915 {
916 	if (!PageHead(page))
917 		return 1;
918 #ifdef CONFIG_64BIT
919 	return page[1].compound_nr;
920 #else
921 	return 1UL << compound_order(page);
922 #endif
923 }
924 
925 /* Returns the number of bytes in this potentially compound page. */
926 static inline unsigned long page_size(struct page *page)
927 {
928 	return PAGE_SIZE << compound_order(page);
929 }
930 
931 /* Returns the number of bits needed for the number of bytes in a page */
932 static inline unsigned int page_shift(struct page *page)
933 {
934 	return PAGE_SHIFT + compound_order(page);
935 }
936 
937 /**
938  * thp_order - Order of a transparent huge page.
939  * @page: Head page of a transparent huge page.
940  */
941 static inline unsigned int thp_order(struct page *page)
942 {
943 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
944 	return compound_order(page);
945 }
946 
947 /**
948  * thp_nr_pages - The number of regular pages in this huge page.
949  * @page: The head page of a huge page.
950  */
951 static inline int thp_nr_pages(struct page *page)
952 {
953 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
954 	return compound_nr(page);
955 }
956 
957 /**
958  * thp_size - Size of a transparent huge page.
959  * @page: Head page of a transparent huge page.
960  *
961  * Return: Number of bytes in this page.
962  */
963 static inline unsigned long thp_size(struct page *page)
964 {
965 	return PAGE_SIZE << thp_order(page);
966 }
967 
968 void free_compound_page(struct page *page);
969 
970 #ifdef CONFIG_MMU
971 /*
972  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
973  * servicing faults for write access.  In the normal case, do always want
974  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
975  * that do not have writing enabled, when used by access_process_vm.
976  */
977 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
978 {
979 	if (likely(vma->vm_flags & VM_WRITE))
980 		pte = pte_mkwrite(pte);
981 	return pte;
982 }
983 
984 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
985 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
986 
987 vm_fault_t finish_fault(struct vm_fault *vmf);
988 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
989 #endif
990 
991 /*
992  * Multiple processes may "see" the same page. E.g. for untouched
993  * mappings of /dev/null, all processes see the same page full of
994  * zeroes, and text pages of executables and shared libraries have
995  * only one copy in memory, at most, normally.
996  *
997  * For the non-reserved pages, page_count(page) denotes a reference count.
998  *   page_count() == 0 means the page is free. page->lru is then used for
999  *   freelist management in the buddy allocator.
1000  *   page_count() > 0  means the page has been allocated.
1001  *
1002  * Pages are allocated by the slab allocator in order to provide memory
1003  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1004  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1005  * unless a particular usage is carefully commented. (the responsibility of
1006  * freeing the kmalloc memory is the caller's, of course).
1007  *
1008  * A page may be used by anyone else who does a __get_free_page().
1009  * In this case, page_count still tracks the references, and should only
1010  * be used through the normal accessor functions. The top bits of page->flags
1011  * and page->virtual store page management information, but all other fields
1012  * are unused and could be used privately, carefully. The management of this
1013  * page is the responsibility of the one who allocated it, and those who have
1014  * subsequently been given references to it.
1015  *
1016  * The other pages (we may call them "pagecache pages") are completely
1017  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1018  * The following discussion applies only to them.
1019  *
1020  * A pagecache page contains an opaque `private' member, which belongs to the
1021  * page's address_space. Usually, this is the address of a circular list of
1022  * the page's disk buffers. PG_private must be set to tell the VM to call
1023  * into the filesystem to release these pages.
1024  *
1025  * A page may belong to an inode's memory mapping. In this case, page->mapping
1026  * is the pointer to the inode, and page->index is the file offset of the page,
1027  * in units of PAGE_SIZE.
1028  *
1029  * If pagecache pages are not associated with an inode, they are said to be
1030  * anonymous pages. These may become associated with the swapcache, and in that
1031  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1032  *
1033  * In either case (swapcache or inode backed), the pagecache itself holds one
1034  * reference to the page. Setting PG_private should also increment the
1035  * refcount. The each user mapping also has a reference to the page.
1036  *
1037  * The pagecache pages are stored in a per-mapping radix tree, which is
1038  * rooted at mapping->i_pages, and indexed by offset.
1039  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1040  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1041  *
1042  * All pagecache pages may be subject to I/O:
1043  * - inode pages may need to be read from disk,
1044  * - inode pages which have been modified and are MAP_SHARED may need
1045  *   to be written back to the inode on disk,
1046  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1047  *   modified may need to be swapped out to swap space and (later) to be read
1048  *   back into memory.
1049  */
1050 
1051 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1052 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1053 
1054 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1055 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1056 {
1057 	if (!static_branch_unlikely(&devmap_managed_key))
1058 		return false;
1059 	if (!is_zone_device_page(page))
1060 		return false;
1061 	return __put_devmap_managed_page_refs(page, refs);
1062 }
1063 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1064 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1065 {
1066 	return false;
1067 }
1068 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1069 
1070 static inline bool put_devmap_managed_page(struct page *page)
1071 {
1072 	return put_devmap_managed_page_refs(page, 1);
1073 }
1074 
1075 /* 127: arbitrary random number, small enough to assemble well */
1076 #define folio_ref_zero_or_close_to_overflow(folio) \
1077 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1078 
1079 /**
1080  * folio_get - Increment the reference count on a folio.
1081  * @folio: The folio.
1082  *
1083  * Context: May be called in any context, as long as you know that
1084  * you have a refcount on the folio.  If you do not already have one,
1085  * folio_try_get() may be the right interface for you to use.
1086  */
1087 static inline void folio_get(struct folio *folio)
1088 {
1089 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1090 	folio_ref_inc(folio);
1091 }
1092 
1093 static inline void get_page(struct page *page)
1094 {
1095 	folio_get(page_folio(page));
1096 }
1097 
1098 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1099 
1100 static inline __must_check bool try_get_page(struct page *page)
1101 {
1102 	page = compound_head(page);
1103 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1104 		return false;
1105 	page_ref_inc(page);
1106 	return true;
1107 }
1108 
1109 /**
1110  * folio_put - Decrement the reference count on a folio.
1111  * @folio: The folio.
1112  *
1113  * If the folio's reference count reaches zero, the memory will be
1114  * released back to the page allocator and may be used by another
1115  * allocation immediately.  Do not access the memory or the struct folio
1116  * after calling folio_put() unless you can be sure that it wasn't the
1117  * last reference.
1118  *
1119  * Context: May be called in process or interrupt context, but not in NMI
1120  * context.  May be called while holding a spinlock.
1121  */
1122 static inline void folio_put(struct folio *folio)
1123 {
1124 	if (folio_put_testzero(folio))
1125 		__folio_put(folio);
1126 }
1127 
1128 /**
1129  * folio_put_refs - Reduce the reference count on a folio.
1130  * @folio: The folio.
1131  * @refs: The amount to subtract from the folio's reference count.
1132  *
1133  * If the folio's reference count reaches zero, the memory will be
1134  * released back to the page allocator and may be used by another
1135  * allocation immediately.  Do not access the memory or the struct folio
1136  * after calling folio_put_refs() unless you can be sure that these weren't
1137  * the last references.
1138  *
1139  * Context: May be called in process or interrupt context, but not in NMI
1140  * context.  May be called while holding a spinlock.
1141  */
1142 static inline void folio_put_refs(struct folio *folio, int refs)
1143 {
1144 	if (folio_ref_sub_and_test(folio, refs))
1145 		__folio_put(folio);
1146 }
1147 
1148 void release_pages(struct page **pages, int nr);
1149 
1150 /**
1151  * folios_put - Decrement the reference count on an array of folios.
1152  * @folios: The folios.
1153  * @nr: How many folios there are.
1154  *
1155  * Like folio_put(), but for an array of folios.  This is more efficient
1156  * than writing the loop yourself as it will optimise the locks which
1157  * need to be taken if the folios are freed.
1158  *
1159  * Context: May be called in process or interrupt context, but not in NMI
1160  * context.  May be called while holding a spinlock.
1161  */
1162 static inline void folios_put(struct folio **folios, unsigned int nr)
1163 {
1164 	release_pages((struct page **)folios, nr);
1165 }
1166 
1167 static inline void put_page(struct page *page)
1168 {
1169 	struct folio *folio = page_folio(page);
1170 
1171 	/*
1172 	 * For some devmap managed pages we need to catch refcount transition
1173 	 * from 2 to 1:
1174 	 */
1175 	if (put_devmap_managed_page(&folio->page))
1176 		return;
1177 	folio_put(folio);
1178 }
1179 
1180 /*
1181  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1182  * the page's refcount so that two separate items are tracked: the original page
1183  * reference count, and also a new count of how many pin_user_pages() calls were
1184  * made against the page. ("gup-pinned" is another term for the latter).
1185  *
1186  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1187  * distinct from normal pages. As such, the unpin_user_page() call (and its
1188  * variants) must be used in order to release gup-pinned pages.
1189  *
1190  * Choice of value:
1191  *
1192  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1193  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1194  * simpler, due to the fact that adding an even power of two to the page
1195  * refcount has the effect of using only the upper N bits, for the code that
1196  * counts up using the bias value. This means that the lower bits are left for
1197  * the exclusive use of the original code that increments and decrements by one
1198  * (or at least, by much smaller values than the bias value).
1199  *
1200  * Of course, once the lower bits overflow into the upper bits (and this is
1201  * OK, because subtraction recovers the original values), then visual inspection
1202  * no longer suffices to directly view the separate counts. However, for normal
1203  * applications that don't have huge page reference counts, this won't be an
1204  * issue.
1205  *
1206  * Locking: the lockless algorithm described in folio_try_get_rcu()
1207  * provides safe operation for get_user_pages(), page_mkclean() and
1208  * other calls that race to set up page table entries.
1209  */
1210 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1211 
1212 void unpin_user_page(struct page *page);
1213 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1214 				 bool make_dirty);
1215 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1216 				      bool make_dirty);
1217 void unpin_user_pages(struct page **pages, unsigned long npages);
1218 
1219 static inline bool is_cow_mapping(vm_flags_t flags)
1220 {
1221 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1222 }
1223 
1224 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1225 #define SECTION_IN_PAGE_FLAGS
1226 #endif
1227 
1228 /*
1229  * The identification function is mainly used by the buddy allocator for
1230  * determining if two pages could be buddies. We are not really identifying
1231  * the zone since we could be using the section number id if we do not have
1232  * node id available in page flags.
1233  * We only guarantee that it will return the same value for two combinable
1234  * pages in a zone.
1235  */
1236 static inline int page_zone_id(struct page *page)
1237 {
1238 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1239 }
1240 
1241 #ifdef NODE_NOT_IN_PAGE_FLAGS
1242 extern int page_to_nid(const struct page *page);
1243 #else
1244 static inline int page_to_nid(const struct page *page)
1245 {
1246 	struct page *p = (struct page *)page;
1247 
1248 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1249 }
1250 #endif
1251 
1252 static inline int folio_nid(const struct folio *folio)
1253 {
1254 	return page_to_nid(&folio->page);
1255 }
1256 
1257 #ifdef CONFIG_NUMA_BALANCING
1258 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1259 {
1260 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1261 }
1262 
1263 static inline int cpupid_to_pid(int cpupid)
1264 {
1265 	return cpupid & LAST__PID_MASK;
1266 }
1267 
1268 static inline int cpupid_to_cpu(int cpupid)
1269 {
1270 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1271 }
1272 
1273 static inline int cpupid_to_nid(int cpupid)
1274 {
1275 	return cpu_to_node(cpupid_to_cpu(cpupid));
1276 }
1277 
1278 static inline bool cpupid_pid_unset(int cpupid)
1279 {
1280 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1281 }
1282 
1283 static inline bool cpupid_cpu_unset(int cpupid)
1284 {
1285 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1286 }
1287 
1288 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1289 {
1290 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1291 }
1292 
1293 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1294 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1295 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1296 {
1297 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1298 }
1299 
1300 static inline int page_cpupid_last(struct page *page)
1301 {
1302 	return page->_last_cpupid;
1303 }
1304 static inline void page_cpupid_reset_last(struct page *page)
1305 {
1306 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1307 }
1308 #else
1309 static inline int page_cpupid_last(struct page *page)
1310 {
1311 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1312 }
1313 
1314 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1315 
1316 static inline void page_cpupid_reset_last(struct page *page)
1317 {
1318 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1319 }
1320 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1321 #else /* !CONFIG_NUMA_BALANCING */
1322 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1323 {
1324 	return page_to_nid(page); /* XXX */
1325 }
1326 
1327 static inline int page_cpupid_last(struct page *page)
1328 {
1329 	return page_to_nid(page); /* XXX */
1330 }
1331 
1332 static inline int cpupid_to_nid(int cpupid)
1333 {
1334 	return -1;
1335 }
1336 
1337 static inline int cpupid_to_pid(int cpupid)
1338 {
1339 	return -1;
1340 }
1341 
1342 static inline int cpupid_to_cpu(int cpupid)
1343 {
1344 	return -1;
1345 }
1346 
1347 static inline int cpu_pid_to_cpupid(int nid, int pid)
1348 {
1349 	return -1;
1350 }
1351 
1352 static inline bool cpupid_pid_unset(int cpupid)
1353 {
1354 	return true;
1355 }
1356 
1357 static inline void page_cpupid_reset_last(struct page *page)
1358 {
1359 }
1360 
1361 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1362 {
1363 	return false;
1364 }
1365 #endif /* CONFIG_NUMA_BALANCING */
1366 
1367 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1368 
1369 /*
1370  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1371  * setting tags for all pages to native kernel tag value 0xff, as the default
1372  * value 0x00 maps to 0xff.
1373  */
1374 
1375 static inline u8 page_kasan_tag(const struct page *page)
1376 {
1377 	u8 tag = 0xff;
1378 
1379 	if (kasan_enabled()) {
1380 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1381 		tag ^= 0xff;
1382 	}
1383 
1384 	return tag;
1385 }
1386 
1387 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1388 {
1389 	unsigned long old_flags, flags;
1390 
1391 	if (!kasan_enabled())
1392 		return;
1393 
1394 	tag ^= 0xff;
1395 	old_flags = READ_ONCE(page->flags);
1396 	do {
1397 		flags = old_flags;
1398 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1399 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1400 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1401 }
1402 
1403 static inline void page_kasan_tag_reset(struct page *page)
1404 {
1405 	if (kasan_enabled())
1406 		page_kasan_tag_set(page, 0xff);
1407 }
1408 
1409 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1410 
1411 static inline u8 page_kasan_tag(const struct page *page)
1412 {
1413 	return 0xff;
1414 }
1415 
1416 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1417 static inline void page_kasan_tag_reset(struct page *page) { }
1418 
1419 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1420 
1421 static inline struct zone *page_zone(const struct page *page)
1422 {
1423 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1424 }
1425 
1426 static inline pg_data_t *page_pgdat(const struct page *page)
1427 {
1428 	return NODE_DATA(page_to_nid(page));
1429 }
1430 
1431 static inline struct zone *folio_zone(const struct folio *folio)
1432 {
1433 	return page_zone(&folio->page);
1434 }
1435 
1436 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1437 {
1438 	return page_pgdat(&folio->page);
1439 }
1440 
1441 #ifdef SECTION_IN_PAGE_FLAGS
1442 static inline void set_page_section(struct page *page, unsigned long section)
1443 {
1444 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1445 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1446 }
1447 
1448 static inline unsigned long page_to_section(const struct page *page)
1449 {
1450 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1451 }
1452 #endif
1453 
1454 /**
1455  * folio_pfn - Return the Page Frame Number of a folio.
1456  * @folio: The folio.
1457  *
1458  * A folio may contain multiple pages.  The pages have consecutive
1459  * Page Frame Numbers.
1460  *
1461  * Return: The Page Frame Number of the first page in the folio.
1462  */
1463 static inline unsigned long folio_pfn(struct folio *folio)
1464 {
1465 	return page_to_pfn(&folio->page);
1466 }
1467 
1468 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1469 {
1470 	return &folio_page(folio, 1)->compound_pincount;
1471 }
1472 
1473 /**
1474  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1475  * @folio: The folio.
1476  *
1477  * This function checks if a folio has been pinned via a call to
1478  * a function in the pin_user_pages() family.
1479  *
1480  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1481  * because it means "definitely not pinned for DMA", but true means "probably
1482  * pinned for DMA, but possibly a false positive due to having at least
1483  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1484  *
1485  * False positives are OK, because: a) it's unlikely for a folio to
1486  * get that many refcounts, and b) all the callers of this routine are
1487  * expected to be able to deal gracefully with a false positive.
1488  *
1489  * For large folios, the result will be exactly correct. That's because
1490  * we have more tracking data available: the compound_pincount is used
1491  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1492  *
1493  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1494  *
1495  * Return: True, if it is likely that the page has been "dma-pinned".
1496  * False, if the page is definitely not dma-pinned.
1497  */
1498 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1499 {
1500 	if (folio_test_large(folio))
1501 		return atomic_read(folio_pincount_ptr(folio)) > 0;
1502 
1503 	/*
1504 	 * folio_ref_count() is signed. If that refcount overflows, then
1505 	 * folio_ref_count() returns a negative value, and callers will avoid
1506 	 * further incrementing the refcount.
1507 	 *
1508 	 * Here, for that overflow case, use the sign bit to count a little
1509 	 * bit higher via unsigned math, and thus still get an accurate result.
1510 	 */
1511 	return ((unsigned int)folio_ref_count(folio)) >=
1512 		GUP_PIN_COUNTING_BIAS;
1513 }
1514 
1515 static inline bool page_maybe_dma_pinned(struct page *page)
1516 {
1517 	return folio_maybe_dma_pinned(page_folio(page));
1518 }
1519 
1520 /*
1521  * This should most likely only be called during fork() to see whether we
1522  * should break the cow immediately for an anon page on the src mm.
1523  *
1524  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1525  */
1526 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1527 					  struct page *page)
1528 {
1529 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1530 
1531 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1532 		return false;
1533 
1534 	return page_maybe_dma_pinned(page);
1535 }
1536 
1537 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1538 #ifdef CONFIG_MIGRATION
1539 static inline bool is_longterm_pinnable_page(struct page *page)
1540 {
1541 #ifdef CONFIG_CMA
1542 	int mt = get_pageblock_migratetype(page);
1543 
1544 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1545 		return false;
1546 #endif
1547 	return !(is_device_coherent_page(page) ||
1548 		 is_zone_movable_page(page) ||
1549 		 is_zero_pfn(page_to_pfn(page)));
1550 }
1551 #else
1552 static inline bool is_longterm_pinnable_page(struct page *page)
1553 {
1554 	return true;
1555 }
1556 #endif
1557 
1558 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1559 {
1560 	return is_longterm_pinnable_page(&folio->page);
1561 }
1562 
1563 static inline void set_page_zone(struct page *page, enum zone_type zone)
1564 {
1565 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1566 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1567 }
1568 
1569 static inline void set_page_node(struct page *page, unsigned long node)
1570 {
1571 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1572 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1573 }
1574 
1575 static inline void set_page_links(struct page *page, enum zone_type zone,
1576 	unsigned long node, unsigned long pfn)
1577 {
1578 	set_page_zone(page, zone);
1579 	set_page_node(page, node);
1580 #ifdef SECTION_IN_PAGE_FLAGS
1581 	set_page_section(page, pfn_to_section_nr(pfn));
1582 #endif
1583 }
1584 
1585 /**
1586  * folio_nr_pages - The number of pages in the folio.
1587  * @folio: The folio.
1588  *
1589  * Return: A positive power of two.
1590  */
1591 static inline long folio_nr_pages(struct folio *folio)
1592 {
1593 	return compound_nr(&folio->page);
1594 }
1595 
1596 /**
1597  * folio_next - Move to the next physical folio.
1598  * @folio: The folio we're currently operating on.
1599  *
1600  * If you have physically contiguous memory which may span more than
1601  * one folio (eg a &struct bio_vec), use this function to move from one
1602  * folio to the next.  Do not use it if the memory is only virtually
1603  * contiguous as the folios are almost certainly not adjacent to each
1604  * other.  This is the folio equivalent to writing ``page++``.
1605  *
1606  * Context: We assume that the folios are refcounted and/or locked at a
1607  * higher level and do not adjust the reference counts.
1608  * Return: The next struct folio.
1609  */
1610 static inline struct folio *folio_next(struct folio *folio)
1611 {
1612 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1613 }
1614 
1615 /**
1616  * folio_shift - The size of the memory described by this folio.
1617  * @folio: The folio.
1618  *
1619  * A folio represents a number of bytes which is a power-of-two in size.
1620  * This function tells you which power-of-two the folio is.  See also
1621  * folio_size() and folio_order().
1622  *
1623  * Context: The caller should have a reference on the folio to prevent
1624  * it from being split.  It is not necessary for the folio to be locked.
1625  * Return: The base-2 logarithm of the size of this folio.
1626  */
1627 static inline unsigned int folio_shift(struct folio *folio)
1628 {
1629 	return PAGE_SHIFT + folio_order(folio);
1630 }
1631 
1632 /**
1633  * folio_size - The number of bytes in a folio.
1634  * @folio: The folio.
1635  *
1636  * Context: The caller should have a reference on the folio to prevent
1637  * it from being split.  It is not necessary for the folio to be locked.
1638  * Return: The number of bytes in this folio.
1639  */
1640 static inline size_t folio_size(struct folio *folio)
1641 {
1642 	return PAGE_SIZE << folio_order(folio);
1643 }
1644 
1645 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1646 static inline int arch_make_page_accessible(struct page *page)
1647 {
1648 	return 0;
1649 }
1650 #endif
1651 
1652 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1653 static inline int arch_make_folio_accessible(struct folio *folio)
1654 {
1655 	int ret;
1656 	long i, nr = folio_nr_pages(folio);
1657 
1658 	for (i = 0; i < nr; i++) {
1659 		ret = arch_make_page_accessible(folio_page(folio, i));
1660 		if (ret)
1661 			break;
1662 	}
1663 
1664 	return ret;
1665 }
1666 #endif
1667 
1668 /*
1669  * Some inline functions in vmstat.h depend on page_zone()
1670  */
1671 #include <linux/vmstat.h>
1672 
1673 static __always_inline void *lowmem_page_address(const struct page *page)
1674 {
1675 	return page_to_virt(page);
1676 }
1677 
1678 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1679 #define HASHED_PAGE_VIRTUAL
1680 #endif
1681 
1682 #if defined(WANT_PAGE_VIRTUAL)
1683 static inline void *page_address(const struct page *page)
1684 {
1685 	return page->virtual;
1686 }
1687 static inline void set_page_address(struct page *page, void *address)
1688 {
1689 	page->virtual = address;
1690 }
1691 #define page_address_init()  do { } while(0)
1692 #endif
1693 
1694 #if defined(HASHED_PAGE_VIRTUAL)
1695 void *page_address(const struct page *page);
1696 void set_page_address(struct page *page, void *virtual);
1697 void page_address_init(void);
1698 #endif
1699 
1700 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1701 #define page_address(page) lowmem_page_address(page)
1702 #define set_page_address(page, address)  do { } while(0)
1703 #define page_address_init()  do { } while(0)
1704 #endif
1705 
1706 static inline void *folio_address(const struct folio *folio)
1707 {
1708 	return page_address(&folio->page);
1709 }
1710 
1711 extern void *page_rmapping(struct page *page);
1712 extern pgoff_t __page_file_index(struct page *page);
1713 
1714 /*
1715  * Return the pagecache index of the passed page.  Regular pagecache pages
1716  * use ->index whereas swapcache pages use swp_offset(->private)
1717  */
1718 static inline pgoff_t page_index(struct page *page)
1719 {
1720 	if (unlikely(PageSwapCache(page)))
1721 		return __page_file_index(page);
1722 	return page->index;
1723 }
1724 
1725 bool page_mapped(struct page *page);
1726 bool folio_mapped(struct folio *folio);
1727 
1728 /*
1729  * Return true only if the page has been allocated with
1730  * ALLOC_NO_WATERMARKS and the low watermark was not
1731  * met implying that the system is under some pressure.
1732  */
1733 static inline bool page_is_pfmemalloc(const struct page *page)
1734 {
1735 	/*
1736 	 * lru.next has bit 1 set if the page is allocated from the
1737 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1738 	 * they do not need to preserve that information.
1739 	 */
1740 	return (uintptr_t)page->lru.next & BIT(1);
1741 }
1742 
1743 /*
1744  * Only to be called by the page allocator on a freshly allocated
1745  * page.
1746  */
1747 static inline void set_page_pfmemalloc(struct page *page)
1748 {
1749 	page->lru.next = (void *)BIT(1);
1750 }
1751 
1752 static inline void clear_page_pfmemalloc(struct page *page)
1753 {
1754 	page->lru.next = NULL;
1755 }
1756 
1757 /*
1758  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1759  */
1760 extern void pagefault_out_of_memory(void);
1761 
1762 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1763 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1764 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1765 
1766 /*
1767  * Flags passed to show_mem() and show_free_areas() to suppress output in
1768  * various contexts.
1769  */
1770 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1771 
1772 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1773 
1774 #ifdef CONFIG_MMU
1775 extern bool can_do_mlock(void);
1776 #else
1777 static inline bool can_do_mlock(void) { return false; }
1778 #endif
1779 extern int user_shm_lock(size_t, struct ucounts *);
1780 extern void user_shm_unlock(size_t, struct ucounts *);
1781 
1782 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1783 			     pte_t pte);
1784 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1785 				pmd_t pmd);
1786 
1787 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1788 		  unsigned long size);
1789 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1790 		    unsigned long size);
1791 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1792 		unsigned long start, unsigned long end);
1793 
1794 struct mmu_notifier_range;
1795 
1796 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1797 		unsigned long end, unsigned long floor, unsigned long ceiling);
1798 int
1799 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1800 int follow_pte(struct mm_struct *mm, unsigned long address,
1801 	       pte_t **ptepp, spinlock_t **ptlp);
1802 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1803 	unsigned long *pfn);
1804 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1805 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1806 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1807 			void *buf, int len, int write);
1808 
1809 extern void truncate_pagecache(struct inode *inode, loff_t new);
1810 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1811 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1812 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1813 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1814 
1815 #ifdef CONFIG_MMU
1816 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1817 				  unsigned long address, unsigned int flags,
1818 				  struct pt_regs *regs);
1819 extern int fixup_user_fault(struct mm_struct *mm,
1820 			    unsigned long address, unsigned int fault_flags,
1821 			    bool *unlocked);
1822 void unmap_mapping_pages(struct address_space *mapping,
1823 		pgoff_t start, pgoff_t nr, bool even_cows);
1824 void unmap_mapping_range(struct address_space *mapping,
1825 		loff_t const holebegin, loff_t const holelen, int even_cows);
1826 #else
1827 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1828 					 unsigned long address, unsigned int flags,
1829 					 struct pt_regs *regs)
1830 {
1831 	/* should never happen if there's no MMU */
1832 	BUG();
1833 	return VM_FAULT_SIGBUS;
1834 }
1835 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1836 		unsigned int fault_flags, bool *unlocked)
1837 {
1838 	/* should never happen if there's no MMU */
1839 	BUG();
1840 	return -EFAULT;
1841 }
1842 static inline void unmap_mapping_pages(struct address_space *mapping,
1843 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1844 static inline void unmap_mapping_range(struct address_space *mapping,
1845 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1846 #endif
1847 
1848 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1849 		loff_t const holebegin, loff_t const holelen)
1850 {
1851 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1852 }
1853 
1854 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1855 		void *buf, int len, unsigned int gup_flags);
1856 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1857 		void *buf, int len, unsigned int gup_flags);
1858 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1859 			      void *buf, int len, unsigned int gup_flags);
1860 
1861 long get_user_pages_remote(struct mm_struct *mm,
1862 			    unsigned long start, unsigned long nr_pages,
1863 			    unsigned int gup_flags, struct page **pages,
1864 			    struct vm_area_struct **vmas, int *locked);
1865 long pin_user_pages_remote(struct mm_struct *mm,
1866 			   unsigned long start, unsigned long nr_pages,
1867 			   unsigned int gup_flags, struct page **pages,
1868 			   struct vm_area_struct **vmas, int *locked);
1869 long get_user_pages(unsigned long start, unsigned long nr_pages,
1870 			    unsigned int gup_flags, struct page **pages,
1871 			    struct vm_area_struct **vmas);
1872 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1873 		    unsigned int gup_flags, struct page **pages,
1874 		    struct vm_area_struct **vmas);
1875 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1876 		    struct page **pages, unsigned int gup_flags);
1877 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1878 		    struct page **pages, unsigned int gup_flags);
1879 
1880 int get_user_pages_fast(unsigned long start, int nr_pages,
1881 			unsigned int gup_flags, struct page **pages);
1882 int pin_user_pages_fast(unsigned long start, int nr_pages,
1883 			unsigned int gup_flags, struct page **pages);
1884 
1885 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1886 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1887 			struct task_struct *task, bool bypass_rlim);
1888 
1889 struct kvec;
1890 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1891 			struct page **pages);
1892 struct page *get_dump_page(unsigned long addr);
1893 
1894 bool folio_mark_dirty(struct folio *folio);
1895 bool set_page_dirty(struct page *page);
1896 int set_page_dirty_lock(struct page *page);
1897 
1898 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1899 
1900 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1901 		unsigned long old_addr, struct vm_area_struct *new_vma,
1902 		unsigned long new_addr, unsigned long len,
1903 		bool need_rmap_locks);
1904 
1905 /*
1906  * Flags used by change_protection().  For now we make it a bitmap so
1907  * that we can pass in multiple flags just like parameters.  However
1908  * for now all the callers are only use one of the flags at the same
1909  * time.
1910  */
1911 /*
1912  * Whether we should manually check if we can map individual PTEs writable,
1913  * because something (e.g., COW, uffd-wp) blocks that from happening for all
1914  * PTEs automatically in a writable mapping.
1915  */
1916 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
1917 /* Whether this protection change is for NUMA hints */
1918 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1919 /* Whether this change is for write protecting */
1920 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1921 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1922 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1923 					    MM_CP_UFFD_WP_RESOLVE)
1924 
1925 extern unsigned long change_protection(struct mmu_gather *tlb,
1926 			      struct vm_area_struct *vma, unsigned long start,
1927 			      unsigned long end, pgprot_t newprot,
1928 			      unsigned long cp_flags);
1929 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
1930 			  struct vm_area_struct **pprev, unsigned long start,
1931 			  unsigned long end, unsigned long newflags);
1932 
1933 /*
1934  * doesn't attempt to fault and will return short.
1935  */
1936 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1937 			     unsigned int gup_flags, struct page **pages);
1938 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1939 			     unsigned int gup_flags, struct page **pages);
1940 
1941 static inline bool get_user_page_fast_only(unsigned long addr,
1942 			unsigned int gup_flags, struct page **pagep)
1943 {
1944 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1945 }
1946 /*
1947  * per-process(per-mm_struct) statistics.
1948  */
1949 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1950 {
1951 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1952 
1953 #ifdef SPLIT_RSS_COUNTING
1954 	/*
1955 	 * counter is updated in asynchronous manner and may go to minus.
1956 	 * But it's never be expected number for users.
1957 	 */
1958 	if (val < 0)
1959 		val = 0;
1960 #endif
1961 	return (unsigned long)val;
1962 }
1963 
1964 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1965 
1966 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1967 {
1968 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1969 
1970 	mm_trace_rss_stat(mm, member, count);
1971 }
1972 
1973 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1974 {
1975 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1976 
1977 	mm_trace_rss_stat(mm, member, count);
1978 }
1979 
1980 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1981 {
1982 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1983 
1984 	mm_trace_rss_stat(mm, member, count);
1985 }
1986 
1987 /* Optimized variant when page is already known not to be PageAnon */
1988 static inline int mm_counter_file(struct page *page)
1989 {
1990 	if (PageSwapBacked(page))
1991 		return MM_SHMEMPAGES;
1992 	return MM_FILEPAGES;
1993 }
1994 
1995 static inline int mm_counter(struct page *page)
1996 {
1997 	if (PageAnon(page))
1998 		return MM_ANONPAGES;
1999 	return mm_counter_file(page);
2000 }
2001 
2002 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2003 {
2004 	return get_mm_counter(mm, MM_FILEPAGES) +
2005 		get_mm_counter(mm, MM_ANONPAGES) +
2006 		get_mm_counter(mm, MM_SHMEMPAGES);
2007 }
2008 
2009 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2010 {
2011 	return max(mm->hiwater_rss, get_mm_rss(mm));
2012 }
2013 
2014 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2015 {
2016 	return max(mm->hiwater_vm, mm->total_vm);
2017 }
2018 
2019 static inline void update_hiwater_rss(struct mm_struct *mm)
2020 {
2021 	unsigned long _rss = get_mm_rss(mm);
2022 
2023 	if ((mm)->hiwater_rss < _rss)
2024 		(mm)->hiwater_rss = _rss;
2025 }
2026 
2027 static inline void update_hiwater_vm(struct mm_struct *mm)
2028 {
2029 	if (mm->hiwater_vm < mm->total_vm)
2030 		mm->hiwater_vm = mm->total_vm;
2031 }
2032 
2033 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2034 {
2035 	mm->hiwater_rss = get_mm_rss(mm);
2036 }
2037 
2038 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2039 					 struct mm_struct *mm)
2040 {
2041 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2042 
2043 	if (*maxrss < hiwater_rss)
2044 		*maxrss = hiwater_rss;
2045 }
2046 
2047 #if defined(SPLIT_RSS_COUNTING)
2048 void sync_mm_rss(struct mm_struct *mm);
2049 #else
2050 static inline void sync_mm_rss(struct mm_struct *mm)
2051 {
2052 }
2053 #endif
2054 
2055 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2056 static inline int pte_special(pte_t pte)
2057 {
2058 	return 0;
2059 }
2060 
2061 static inline pte_t pte_mkspecial(pte_t pte)
2062 {
2063 	return pte;
2064 }
2065 #endif
2066 
2067 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2068 static inline int pte_devmap(pte_t pte)
2069 {
2070 	return 0;
2071 }
2072 #endif
2073 
2074 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2075 
2076 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2077 			       spinlock_t **ptl);
2078 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2079 				    spinlock_t **ptl)
2080 {
2081 	pte_t *ptep;
2082 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2083 	return ptep;
2084 }
2085 
2086 #ifdef __PAGETABLE_P4D_FOLDED
2087 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2088 						unsigned long address)
2089 {
2090 	return 0;
2091 }
2092 #else
2093 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2094 #endif
2095 
2096 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2097 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2098 						unsigned long address)
2099 {
2100 	return 0;
2101 }
2102 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2103 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2104 
2105 #else
2106 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2107 
2108 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2109 {
2110 	if (mm_pud_folded(mm))
2111 		return;
2112 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2113 }
2114 
2115 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2116 {
2117 	if (mm_pud_folded(mm))
2118 		return;
2119 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2120 }
2121 #endif
2122 
2123 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2124 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2125 						unsigned long address)
2126 {
2127 	return 0;
2128 }
2129 
2130 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2131 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2132 
2133 #else
2134 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2135 
2136 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2137 {
2138 	if (mm_pmd_folded(mm))
2139 		return;
2140 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2141 }
2142 
2143 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2144 {
2145 	if (mm_pmd_folded(mm))
2146 		return;
2147 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2148 }
2149 #endif
2150 
2151 #ifdef CONFIG_MMU
2152 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2153 {
2154 	atomic_long_set(&mm->pgtables_bytes, 0);
2155 }
2156 
2157 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2158 {
2159 	return atomic_long_read(&mm->pgtables_bytes);
2160 }
2161 
2162 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2163 {
2164 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2165 }
2166 
2167 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2168 {
2169 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2170 }
2171 #else
2172 
2173 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2174 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2175 {
2176 	return 0;
2177 }
2178 
2179 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2180 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2181 #endif
2182 
2183 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2184 int __pte_alloc_kernel(pmd_t *pmd);
2185 
2186 #if defined(CONFIG_MMU)
2187 
2188 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2189 		unsigned long address)
2190 {
2191 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2192 		NULL : p4d_offset(pgd, address);
2193 }
2194 
2195 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2196 		unsigned long address)
2197 {
2198 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2199 		NULL : pud_offset(p4d, address);
2200 }
2201 
2202 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2203 {
2204 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2205 		NULL: pmd_offset(pud, address);
2206 }
2207 #endif /* CONFIG_MMU */
2208 
2209 #if USE_SPLIT_PTE_PTLOCKS
2210 #if ALLOC_SPLIT_PTLOCKS
2211 void __init ptlock_cache_init(void);
2212 extern bool ptlock_alloc(struct page *page);
2213 extern void ptlock_free(struct page *page);
2214 
2215 static inline spinlock_t *ptlock_ptr(struct page *page)
2216 {
2217 	return page->ptl;
2218 }
2219 #else /* ALLOC_SPLIT_PTLOCKS */
2220 static inline void ptlock_cache_init(void)
2221 {
2222 }
2223 
2224 static inline bool ptlock_alloc(struct page *page)
2225 {
2226 	return true;
2227 }
2228 
2229 static inline void ptlock_free(struct page *page)
2230 {
2231 }
2232 
2233 static inline spinlock_t *ptlock_ptr(struct page *page)
2234 {
2235 	return &page->ptl;
2236 }
2237 #endif /* ALLOC_SPLIT_PTLOCKS */
2238 
2239 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2240 {
2241 	return ptlock_ptr(pmd_page(*pmd));
2242 }
2243 
2244 static inline bool ptlock_init(struct page *page)
2245 {
2246 	/*
2247 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2248 	 * with 0. Make sure nobody took it in use in between.
2249 	 *
2250 	 * It can happen if arch try to use slab for page table allocation:
2251 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2252 	 */
2253 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2254 	if (!ptlock_alloc(page))
2255 		return false;
2256 	spin_lock_init(ptlock_ptr(page));
2257 	return true;
2258 }
2259 
2260 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2261 /*
2262  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2263  */
2264 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2265 {
2266 	return &mm->page_table_lock;
2267 }
2268 static inline void ptlock_cache_init(void) {}
2269 static inline bool ptlock_init(struct page *page) { return true; }
2270 static inline void ptlock_free(struct page *page) {}
2271 #endif /* USE_SPLIT_PTE_PTLOCKS */
2272 
2273 static inline void pgtable_init(void)
2274 {
2275 	ptlock_cache_init();
2276 	pgtable_cache_init();
2277 }
2278 
2279 static inline bool pgtable_pte_page_ctor(struct page *page)
2280 {
2281 	if (!ptlock_init(page))
2282 		return false;
2283 	__SetPageTable(page);
2284 	inc_lruvec_page_state(page, NR_PAGETABLE);
2285 	return true;
2286 }
2287 
2288 static inline void pgtable_pte_page_dtor(struct page *page)
2289 {
2290 	ptlock_free(page);
2291 	__ClearPageTable(page);
2292 	dec_lruvec_page_state(page, NR_PAGETABLE);
2293 }
2294 
2295 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2296 ({							\
2297 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2298 	pte_t *__pte = pte_offset_map(pmd, address);	\
2299 	*(ptlp) = __ptl;				\
2300 	spin_lock(__ptl);				\
2301 	__pte;						\
2302 })
2303 
2304 #define pte_unmap_unlock(pte, ptl)	do {		\
2305 	spin_unlock(ptl);				\
2306 	pte_unmap(pte);					\
2307 } while (0)
2308 
2309 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2310 
2311 #define pte_alloc_map(mm, pmd, address)			\
2312 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2313 
2314 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2315 	(pte_alloc(mm, pmd) ?			\
2316 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2317 
2318 #define pte_alloc_kernel(pmd, address)			\
2319 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2320 		NULL: pte_offset_kernel(pmd, address))
2321 
2322 #if USE_SPLIT_PMD_PTLOCKS
2323 
2324 static struct page *pmd_to_page(pmd_t *pmd)
2325 {
2326 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2327 	return virt_to_page((void *)((unsigned long) pmd & mask));
2328 }
2329 
2330 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2331 {
2332 	return ptlock_ptr(pmd_to_page(pmd));
2333 }
2334 
2335 static inline bool pmd_ptlock_init(struct page *page)
2336 {
2337 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2338 	page->pmd_huge_pte = NULL;
2339 #endif
2340 	return ptlock_init(page);
2341 }
2342 
2343 static inline void pmd_ptlock_free(struct page *page)
2344 {
2345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2346 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2347 #endif
2348 	ptlock_free(page);
2349 }
2350 
2351 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2352 
2353 #else
2354 
2355 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2356 {
2357 	return &mm->page_table_lock;
2358 }
2359 
2360 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2361 static inline void pmd_ptlock_free(struct page *page) {}
2362 
2363 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2364 
2365 #endif
2366 
2367 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2368 {
2369 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2370 	spin_lock(ptl);
2371 	return ptl;
2372 }
2373 
2374 static inline bool pgtable_pmd_page_ctor(struct page *page)
2375 {
2376 	if (!pmd_ptlock_init(page))
2377 		return false;
2378 	__SetPageTable(page);
2379 	inc_lruvec_page_state(page, NR_PAGETABLE);
2380 	return true;
2381 }
2382 
2383 static inline void pgtable_pmd_page_dtor(struct page *page)
2384 {
2385 	pmd_ptlock_free(page);
2386 	__ClearPageTable(page);
2387 	dec_lruvec_page_state(page, NR_PAGETABLE);
2388 }
2389 
2390 /*
2391  * No scalability reason to split PUD locks yet, but follow the same pattern
2392  * as the PMD locks to make it easier if we decide to.  The VM should not be
2393  * considered ready to switch to split PUD locks yet; there may be places
2394  * which need to be converted from page_table_lock.
2395  */
2396 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2397 {
2398 	return &mm->page_table_lock;
2399 }
2400 
2401 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2402 {
2403 	spinlock_t *ptl = pud_lockptr(mm, pud);
2404 
2405 	spin_lock(ptl);
2406 	return ptl;
2407 }
2408 
2409 extern void __init pagecache_init(void);
2410 extern void free_initmem(void);
2411 
2412 /*
2413  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2414  * into the buddy system. The freed pages will be poisoned with pattern
2415  * "poison" if it's within range [0, UCHAR_MAX].
2416  * Return pages freed into the buddy system.
2417  */
2418 extern unsigned long free_reserved_area(void *start, void *end,
2419 					int poison, const char *s);
2420 
2421 extern void adjust_managed_page_count(struct page *page, long count);
2422 extern void mem_init_print_info(void);
2423 
2424 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2425 
2426 /* Free the reserved page into the buddy system, so it gets managed. */
2427 static inline void free_reserved_page(struct page *page)
2428 {
2429 	ClearPageReserved(page);
2430 	init_page_count(page);
2431 	__free_page(page);
2432 	adjust_managed_page_count(page, 1);
2433 }
2434 #define free_highmem_page(page) free_reserved_page(page)
2435 
2436 static inline void mark_page_reserved(struct page *page)
2437 {
2438 	SetPageReserved(page);
2439 	adjust_managed_page_count(page, -1);
2440 }
2441 
2442 /*
2443  * Default method to free all the __init memory into the buddy system.
2444  * The freed pages will be poisoned with pattern "poison" if it's within
2445  * range [0, UCHAR_MAX].
2446  * Return pages freed into the buddy system.
2447  */
2448 static inline unsigned long free_initmem_default(int poison)
2449 {
2450 	extern char __init_begin[], __init_end[];
2451 
2452 	return free_reserved_area(&__init_begin, &__init_end,
2453 				  poison, "unused kernel image (initmem)");
2454 }
2455 
2456 static inline unsigned long get_num_physpages(void)
2457 {
2458 	int nid;
2459 	unsigned long phys_pages = 0;
2460 
2461 	for_each_online_node(nid)
2462 		phys_pages += node_present_pages(nid);
2463 
2464 	return phys_pages;
2465 }
2466 
2467 /*
2468  * Using memblock node mappings, an architecture may initialise its
2469  * zones, allocate the backing mem_map and account for memory holes in an
2470  * architecture independent manner.
2471  *
2472  * An architecture is expected to register range of page frames backed by
2473  * physical memory with memblock_add[_node]() before calling
2474  * free_area_init() passing in the PFN each zone ends at. At a basic
2475  * usage, an architecture is expected to do something like
2476  *
2477  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2478  * 							 max_highmem_pfn};
2479  * for_each_valid_physical_page_range()
2480  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2481  * free_area_init(max_zone_pfns);
2482  */
2483 void free_area_init(unsigned long *max_zone_pfn);
2484 unsigned long node_map_pfn_alignment(void);
2485 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2486 						unsigned long end_pfn);
2487 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2488 						unsigned long end_pfn);
2489 extern void get_pfn_range_for_nid(unsigned int nid,
2490 			unsigned long *start_pfn, unsigned long *end_pfn);
2491 extern unsigned long find_min_pfn_with_active_regions(void);
2492 
2493 #ifndef CONFIG_NUMA
2494 static inline int early_pfn_to_nid(unsigned long pfn)
2495 {
2496 	return 0;
2497 }
2498 #else
2499 /* please see mm/page_alloc.c */
2500 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2501 #endif
2502 
2503 extern void set_dma_reserve(unsigned long new_dma_reserve);
2504 extern void memmap_init_range(unsigned long, int, unsigned long,
2505 		unsigned long, unsigned long, enum meminit_context,
2506 		struct vmem_altmap *, int migratetype);
2507 extern void setup_per_zone_wmarks(void);
2508 extern void calculate_min_free_kbytes(void);
2509 extern int __meminit init_per_zone_wmark_min(void);
2510 extern void mem_init(void);
2511 extern void __init mmap_init(void);
2512 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2513 extern long si_mem_available(void);
2514 extern void si_meminfo(struct sysinfo * val);
2515 extern void si_meminfo_node(struct sysinfo *val, int nid);
2516 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2517 extern unsigned long arch_reserved_kernel_pages(void);
2518 #endif
2519 
2520 extern __printf(3, 4)
2521 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2522 
2523 extern void setup_per_cpu_pageset(void);
2524 
2525 /* page_alloc.c */
2526 extern int min_free_kbytes;
2527 extern int watermark_boost_factor;
2528 extern int watermark_scale_factor;
2529 extern bool arch_has_descending_max_zone_pfns(void);
2530 
2531 /* nommu.c */
2532 extern atomic_long_t mmap_pages_allocated;
2533 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2534 
2535 /* interval_tree.c */
2536 void vma_interval_tree_insert(struct vm_area_struct *node,
2537 			      struct rb_root_cached *root);
2538 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2539 				    struct vm_area_struct *prev,
2540 				    struct rb_root_cached *root);
2541 void vma_interval_tree_remove(struct vm_area_struct *node,
2542 			      struct rb_root_cached *root);
2543 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2544 				unsigned long start, unsigned long last);
2545 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2546 				unsigned long start, unsigned long last);
2547 
2548 #define vma_interval_tree_foreach(vma, root, start, last)		\
2549 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2550 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2551 
2552 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2553 				   struct rb_root_cached *root);
2554 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2555 				   struct rb_root_cached *root);
2556 struct anon_vma_chain *
2557 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2558 				  unsigned long start, unsigned long last);
2559 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2560 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2561 #ifdef CONFIG_DEBUG_VM_RB
2562 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2563 #endif
2564 
2565 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2566 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2567 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2568 
2569 /* mmap.c */
2570 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2571 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2572 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2573 	struct vm_area_struct *expand);
2574 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2575 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2576 {
2577 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2578 }
2579 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2580 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2581 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2582 	struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2583 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2584 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2585 	unsigned long addr, int new_below);
2586 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2587 	unsigned long addr, int new_below);
2588 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2589 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2590 	struct rb_node **, struct rb_node *);
2591 extern void unlink_file_vma(struct vm_area_struct *);
2592 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2593 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2594 	bool *need_rmap_locks);
2595 extern void exit_mmap(struct mm_struct *);
2596 
2597 static inline int check_data_rlimit(unsigned long rlim,
2598 				    unsigned long new,
2599 				    unsigned long start,
2600 				    unsigned long end_data,
2601 				    unsigned long start_data)
2602 {
2603 	if (rlim < RLIM_INFINITY) {
2604 		if (((new - start) + (end_data - start_data)) > rlim)
2605 			return -ENOSPC;
2606 	}
2607 
2608 	return 0;
2609 }
2610 
2611 extern int mm_take_all_locks(struct mm_struct *mm);
2612 extern void mm_drop_all_locks(struct mm_struct *mm);
2613 
2614 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2615 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2616 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2617 extern struct file *get_task_exe_file(struct task_struct *task);
2618 
2619 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2620 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2621 
2622 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2623 				   const struct vm_special_mapping *sm);
2624 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2625 				   unsigned long addr, unsigned long len,
2626 				   unsigned long flags,
2627 				   const struct vm_special_mapping *spec);
2628 /* This is an obsolete alternative to _install_special_mapping. */
2629 extern int install_special_mapping(struct mm_struct *mm,
2630 				   unsigned long addr, unsigned long len,
2631 				   unsigned long flags, struct page **pages);
2632 
2633 unsigned long randomize_stack_top(unsigned long stack_top);
2634 unsigned long randomize_page(unsigned long start, unsigned long range);
2635 
2636 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2637 
2638 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2639 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2640 	struct list_head *uf);
2641 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2642 	unsigned long len, unsigned long prot, unsigned long flags,
2643 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2644 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2645 		       struct list_head *uf, bool downgrade);
2646 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2647 		     struct list_head *uf);
2648 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2649 
2650 #ifdef CONFIG_MMU
2651 extern int __mm_populate(unsigned long addr, unsigned long len,
2652 			 int ignore_errors);
2653 static inline void mm_populate(unsigned long addr, unsigned long len)
2654 {
2655 	/* Ignore errors */
2656 	(void) __mm_populate(addr, len, 1);
2657 }
2658 #else
2659 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2660 #endif
2661 
2662 /* These take the mm semaphore themselves */
2663 extern int __must_check vm_brk(unsigned long, unsigned long);
2664 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2665 extern int vm_munmap(unsigned long, size_t);
2666 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2667         unsigned long, unsigned long,
2668         unsigned long, unsigned long);
2669 
2670 struct vm_unmapped_area_info {
2671 #define VM_UNMAPPED_AREA_TOPDOWN 1
2672 	unsigned long flags;
2673 	unsigned long length;
2674 	unsigned long low_limit;
2675 	unsigned long high_limit;
2676 	unsigned long align_mask;
2677 	unsigned long align_offset;
2678 };
2679 
2680 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2681 
2682 /* truncate.c */
2683 extern void truncate_inode_pages(struct address_space *, loff_t);
2684 extern void truncate_inode_pages_range(struct address_space *,
2685 				       loff_t lstart, loff_t lend);
2686 extern void truncate_inode_pages_final(struct address_space *);
2687 
2688 /* generic vm_area_ops exported for stackable file systems */
2689 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2690 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2691 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2692 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2693 
2694 extern unsigned long stack_guard_gap;
2695 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2696 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2697 
2698 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2699 extern int expand_downwards(struct vm_area_struct *vma,
2700 		unsigned long address);
2701 #if VM_GROWSUP
2702 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2703 #else
2704   #define expand_upwards(vma, address) (0)
2705 #endif
2706 
2707 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2708 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2709 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2710 					     struct vm_area_struct **pprev);
2711 
2712 /**
2713  * find_vma_intersection() - Look up the first VMA which intersects the interval
2714  * @mm: The process address space.
2715  * @start_addr: The inclusive start user address.
2716  * @end_addr: The exclusive end user address.
2717  *
2718  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2719  * start_addr < end_addr.
2720  */
2721 static inline
2722 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2723 					     unsigned long start_addr,
2724 					     unsigned long end_addr)
2725 {
2726 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2727 
2728 	if (vma && end_addr <= vma->vm_start)
2729 		vma = NULL;
2730 	return vma;
2731 }
2732 
2733 /**
2734  * vma_lookup() - Find a VMA at a specific address
2735  * @mm: The process address space.
2736  * @addr: The user address.
2737  *
2738  * Return: The vm_area_struct at the given address, %NULL otherwise.
2739  */
2740 static inline
2741 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2742 {
2743 	struct vm_area_struct *vma = find_vma(mm, addr);
2744 
2745 	if (vma && addr < vma->vm_start)
2746 		vma = NULL;
2747 
2748 	return vma;
2749 }
2750 
2751 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2752 {
2753 	unsigned long vm_start = vma->vm_start;
2754 
2755 	if (vma->vm_flags & VM_GROWSDOWN) {
2756 		vm_start -= stack_guard_gap;
2757 		if (vm_start > vma->vm_start)
2758 			vm_start = 0;
2759 	}
2760 	return vm_start;
2761 }
2762 
2763 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2764 {
2765 	unsigned long vm_end = vma->vm_end;
2766 
2767 	if (vma->vm_flags & VM_GROWSUP) {
2768 		vm_end += stack_guard_gap;
2769 		if (vm_end < vma->vm_end)
2770 			vm_end = -PAGE_SIZE;
2771 	}
2772 	return vm_end;
2773 }
2774 
2775 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2776 {
2777 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2778 }
2779 
2780 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2781 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2782 				unsigned long vm_start, unsigned long vm_end)
2783 {
2784 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2785 
2786 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2787 		vma = NULL;
2788 
2789 	return vma;
2790 }
2791 
2792 static inline bool range_in_vma(struct vm_area_struct *vma,
2793 				unsigned long start, unsigned long end)
2794 {
2795 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2796 }
2797 
2798 #ifdef CONFIG_MMU
2799 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2800 void vma_set_page_prot(struct vm_area_struct *vma);
2801 #else
2802 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2803 {
2804 	return __pgprot(0);
2805 }
2806 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2807 {
2808 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2809 }
2810 #endif
2811 
2812 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2813 
2814 #ifdef CONFIG_NUMA_BALANCING
2815 unsigned long change_prot_numa(struct vm_area_struct *vma,
2816 			unsigned long start, unsigned long end);
2817 #endif
2818 
2819 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2820 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2821 			unsigned long pfn, unsigned long size, pgprot_t);
2822 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2823 		unsigned long pfn, unsigned long size, pgprot_t prot);
2824 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2825 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2826 			struct page **pages, unsigned long *num);
2827 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2828 				unsigned long num);
2829 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2830 				unsigned long num);
2831 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2832 			unsigned long pfn);
2833 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2834 			unsigned long pfn, pgprot_t pgprot);
2835 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2836 			pfn_t pfn);
2837 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2838 			pfn_t pfn, pgprot_t pgprot);
2839 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2840 		unsigned long addr, pfn_t pfn);
2841 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2842 
2843 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2844 				unsigned long addr, struct page *page)
2845 {
2846 	int err = vm_insert_page(vma, addr, page);
2847 
2848 	if (err == -ENOMEM)
2849 		return VM_FAULT_OOM;
2850 	if (err < 0 && err != -EBUSY)
2851 		return VM_FAULT_SIGBUS;
2852 
2853 	return VM_FAULT_NOPAGE;
2854 }
2855 
2856 #ifndef io_remap_pfn_range
2857 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2858 				     unsigned long addr, unsigned long pfn,
2859 				     unsigned long size, pgprot_t prot)
2860 {
2861 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2862 }
2863 #endif
2864 
2865 static inline vm_fault_t vmf_error(int err)
2866 {
2867 	if (err == -ENOMEM)
2868 		return VM_FAULT_OOM;
2869 	return VM_FAULT_SIGBUS;
2870 }
2871 
2872 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2873 			 unsigned int foll_flags);
2874 
2875 #define FOLL_WRITE	0x01	/* check pte is writable */
2876 #define FOLL_TOUCH	0x02	/* mark page accessed */
2877 #define FOLL_GET	0x04	/* do get_page on page */
2878 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2879 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2880 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2881 				 * and return without waiting upon it */
2882 #define FOLL_NOFAULT	0x80	/* do not fault in pages */
2883 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2884 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2885 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2886 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2887 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2888 #define FOLL_ANON	0x8000	/* don't do file mappings */
2889 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2890 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2891 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2892 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2893 
2894 /*
2895  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2896  * other. Here is what they mean, and how to use them:
2897  *
2898  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2899  * period _often_ under userspace control.  This is in contrast to
2900  * iov_iter_get_pages(), whose usages are transient.
2901  *
2902  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2903  * lifetime enforced by the filesystem and we need guarantees that longterm
2904  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2905  * the filesystem.  Ideas for this coordination include revoking the longterm
2906  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2907  * added after the problem with filesystems was found FS DAX VMAs are
2908  * specifically failed.  Filesystem pages are still subject to bugs and use of
2909  * FOLL_LONGTERM should be avoided on those pages.
2910  *
2911  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2912  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2913  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2914  * is due to an incompatibility with the FS DAX check and
2915  * FAULT_FLAG_ALLOW_RETRY.
2916  *
2917  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2918  * that region.  And so, CMA attempts to migrate the page before pinning, when
2919  * FOLL_LONGTERM is specified.
2920  *
2921  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2922  * but an additional pin counting system) will be invoked. This is intended for
2923  * anything that gets a page reference and then touches page data (for example,
2924  * Direct IO). This lets the filesystem know that some non-file-system entity is
2925  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2926  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2927  * a call to unpin_user_page().
2928  *
2929  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2930  * and separate refcounting mechanisms, however, and that means that each has
2931  * its own acquire and release mechanisms:
2932  *
2933  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2934  *
2935  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2936  *
2937  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2938  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2939  * calls applied to them, and that's perfectly OK. This is a constraint on the
2940  * callers, not on the pages.)
2941  *
2942  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2943  * directly by the caller. That's in order to help avoid mismatches when
2944  * releasing pages: get_user_pages*() pages must be released via put_page(),
2945  * while pin_user_pages*() pages must be released via unpin_user_page().
2946  *
2947  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2948  */
2949 
2950 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2951 {
2952 	if (vm_fault & VM_FAULT_OOM)
2953 		return -ENOMEM;
2954 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2955 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2956 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2957 		return -EFAULT;
2958 	return 0;
2959 }
2960 
2961 /*
2962  * Indicates for which pages that are write-protected in the page table,
2963  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
2964  * GUP pin will remain consistent with the pages mapped into the page tables
2965  * of the MM.
2966  *
2967  * Temporary unmapping of PageAnonExclusive() pages or clearing of
2968  * PageAnonExclusive() has to protect against concurrent GUP:
2969  * * Ordinary GUP: Using the PT lock
2970  * * GUP-fast and fork(): mm->write_protect_seq
2971  * * GUP-fast and KSM or temporary unmapping (swap, migration):
2972  *   clear/invalidate+flush of the page table entry
2973  *
2974  * Must be called with the (sub)page that's actually referenced via the
2975  * page table entry, which might not necessarily be the head page for a
2976  * PTE-mapped THP.
2977  */
2978 static inline bool gup_must_unshare(unsigned int flags, struct page *page)
2979 {
2980 	/*
2981 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
2982 	 * has to be writable -- and if it references (part of) an anonymous
2983 	 * folio, that part is required to be marked exclusive.
2984 	 */
2985 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
2986 		return false;
2987 	/*
2988 	 * Note: PageAnon(page) is stable until the page is actually getting
2989 	 * freed.
2990 	 */
2991 	if (!PageAnon(page))
2992 		return false;
2993 	/*
2994 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
2995 	 * cannot get pinned.
2996 	 */
2997 	return !PageAnonExclusive(page);
2998 }
2999 
3000 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3001 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3002 			       unsigned long size, pte_fn_t fn, void *data);
3003 extern int apply_to_existing_page_range(struct mm_struct *mm,
3004 				   unsigned long address, unsigned long size,
3005 				   pte_fn_t fn, void *data);
3006 
3007 extern void init_mem_debugging_and_hardening(void);
3008 #ifdef CONFIG_PAGE_POISONING
3009 extern void __kernel_poison_pages(struct page *page, int numpages);
3010 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3011 extern bool _page_poisoning_enabled_early;
3012 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3013 static inline bool page_poisoning_enabled(void)
3014 {
3015 	return _page_poisoning_enabled_early;
3016 }
3017 /*
3018  * For use in fast paths after init_mem_debugging() has run, or when a
3019  * false negative result is not harmful when called too early.
3020  */
3021 static inline bool page_poisoning_enabled_static(void)
3022 {
3023 	return static_branch_unlikely(&_page_poisoning_enabled);
3024 }
3025 static inline void kernel_poison_pages(struct page *page, int numpages)
3026 {
3027 	if (page_poisoning_enabled_static())
3028 		__kernel_poison_pages(page, numpages);
3029 }
3030 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3031 {
3032 	if (page_poisoning_enabled_static())
3033 		__kernel_unpoison_pages(page, numpages);
3034 }
3035 #else
3036 static inline bool page_poisoning_enabled(void) { return false; }
3037 static inline bool page_poisoning_enabled_static(void) { return false; }
3038 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3039 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3040 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3041 #endif
3042 
3043 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3044 static inline bool want_init_on_alloc(gfp_t flags)
3045 {
3046 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3047 				&init_on_alloc))
3048 		return true;
3049 	return flags & __GFP_ZERO;
3050 }
3051 
3052 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3053 static inline bool want_init_on_free(void)
3054 {
3055 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3056 				   &init_on_free);
3057 }
3058 
3059 extern bool _debug_pagealloc_enabled_early;
3060 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3061 
3062 static inline bool debug_pagealloc_enabled(void)
3063 {
3064 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3065 		_debug_pagealloc_enabled_early;
3066 }
3067 
3068 /*
3069  * For use in fast paths after init_debug_pagealloc() has run, or when a
3070  * false negative result is not harmful when called too early.
3071  */
3072 static inline bool debug_pagealloc_enabled_static(void)
3073 {
3074 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3075 		return false;
3076 
3077 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3078 }
3079 
3080 #ifdef CONFIG_DEBUG_PAGEALLOC
3081 /*
3082  * To support DEBUG_PAGEALLOC architecture must ensure that
3083  * __kernel_map_pages() never fails
3084  */
3085 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3086 
3087 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3088 {
3089 	if (debug_pagealloc_enabled_static())
3090 		__kernel_map_pages(page, numpages, 1);
3091 }
3092 
3093 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3094 {
3095 	if (debug_pagealloc_enabled_static())
3096 		__kernel_map_pages(page, numpages, 0);
3097 }
3098 #else	/* CONFIG_DEBUG_PAGEALLOC */
3099 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3100 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3101 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3102 
3103 #ifdef __HAVE_ARCH_GATE_AREA
3104 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3105 extern int in_gate_area_no_mm(unsigned long addr);
3106 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3107 #else
3108 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3109 {
3110 	return NULL;
3111 }
3112 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3113 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3114 {
3115 	return 0;
3116 }
3117 #endif	/* __HAVE_ARCH_GATE_AREA */
3118 
3119 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3120 
3121 #ifdef CONFIG_SYSCTL
3122 extern int sysctl_drop_caches;
3123 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3124 		loff_t *);
3125 #endif
3126 
3127 void drop_slab(void);
3128 
3129 #ifndef CONFIG_MMU
3130 #define randomize_va_space 0
3131 #else
3132 extern int randomize_va_space;
3133 #endif
3134 
3135 const char * arch_vma_name(struct vm_area_struct *vma);
3136 #ifdef CONFIG_MMU
3137 void print_vma_addr(char *prefix, unsigned long rip);
3138 #else
3139 static inline void print_vma_addr(char *prefix, unsigned long rip)
3140 {
3141 }
3142 #endif
3143 
3144 void *sparse_buffer_alloc(unsigned long size);
3145 struct page * __populate_section_memmap(unsigned long pfn,
3146 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3147 		struct dev_pagemap *pgmap);
3148 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3149 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3150 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3151 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3152 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3153 			    struct vmem_altmap *altmap, struct page *reuse);
3154 void *vmemmap_alloc_block(unsigned long size, int node);
3155 struct vmem_altmap;
3156 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3157 			      struct vmem_altmap *altmap);
3158 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3159 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3160 			       int node, struct vmem_altmap *altmap);
3161 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3162 		struct vmem_altmap *altmap);
3163 void vmemmap_populate_print_last(void);
3164 #ifdef CONFIG_MEMORY_HOTPLUG
3165 void vmemmap_free(unsigned long start, unsigned long end,
3166 		struct vmem_altmap *altmap);
3167 #endif
3168 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3169 				  unsigned long nr_pages);
3170 
3171 enum mf_flags {
3172 	MF_COUNT_INCREASED = 1 << 0,
3173 	MF_ACTION_REQUIRED = 1 << 1,
3174 	MF_MUST_KILL = 1 << 2,
3175 	MF_SOFT_OFFLINE = 1 << 3,
3176 	MF_UNPOISON = 1 << 4,
3177 	MF_SW_SIMULATED = 1 << 5,
3178 	MF_NO_RETRY = 1 << 6,
3179 };
3180 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3181 		      unsigned long count, int mf_flags);
3182 extern int memory_failure(unsigned long pfn, int flags);
3183 extern void memory_failure_queue(unsigned long pfn, int flags);
3184 extern void memory_failure_queue_kick(int cpu);
3185 extern int unpoison_memory(unsigned long pfn);
3186 extern int sysctl_memory_failure_early_kill;
3187 extern int sysctl_memory_failure_recovery;
3188 extern void shake_page(struct page *p);
3189 extern atomic_long_t num_poisoned_pages __read_mostly;
3190 extern int soft_offline_page(unsigned long pfn, int flags);
3191 #ifdef CONFIG_MEMORY_FAILURE
3192 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3193 #else
3194 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3195 {
3196 	return 0;
3197 }
3198 #endif
3199 
3200 #ifndef arch_memory_failure
3201 static inline int arch_memory_failure(unsigned long pfn, int flags)
3202 {
3203 	return -ENXIO;
3204 }
3205 #endif
3206 
3207 #ifndef arch_is_platform_page
3208 static inline bool arch_is_platform_page(u64 paddr)
3209 {
3210 	return false;
3211 }
3212 #endif
3213 
3214 /*
3215  * Error handlers for various types of pages.
3216  */
3217 enum mf_result {
3218 	MF_IGNORED,	/* Error: cannot be handled */
3219 	MF_FAILED,	/* Error: handling failed */
3220 	MF_DELAYED,	/* Will be handled later */
3221 	MF_RECOVERED,	/* Successfully recovered */
3222 };
3223 
3224 enum mf_action_page_type {
3225 	MF_MSG_KERNEL,
3226 	MF_MSG_KERNEL_HIGH_ORDER,
3227 	MF_MSG_SLAB,
3228 	MF_MSG_DIFFERENT_COMPOUND,
3229 	MF_MSG_HUGE,
3230 	MF_MSG_FREE_HUGE,
3231 	MF_MSG_UNMAP_FAILED,
3232 	MF_MSG_DIRTY_SWAPCACHE,
3233 	MF_MSG_CLEAN_SWAPCACHE,
3234 	MF_MSG_DIRTY_MLOCKED_LRU,
3235 	MF_MSG_CLEAN_MLOCKED_LRU,
3236 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3237 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3238 	MF_MSG_DIRTY_LRU,
3239 	MF_MSG_CLEAN_LRU,
3240 	MF_MSG_TRUNCATED_LRU,
3241 	MF_MSG_BUDDY,
3242 	MF_MSG_DAX,
3243 	MF_MSG_UNSPLIT_THP,
3244 	MF_MSG_UNKNOWN,
3245 };
3246 
3247 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3248 extern void clear_huge_page(struct page *page,
3249 			    unsigned long addr_hint,
3250 			    unsigned int pages_per_huge_page);
3251 extern void copy_user_huge_page(struct page *dst, struct page *src,
3252 				unsigned long addr_hint,
3253 				struct vm_area_struct *vma,
3254 				unsigned int pages_per_huge_page);
3255 extern long copy_huge_page_from_user(struct page *dst_page,
3256 				const void __user *usr_src,
3257 				unsigned int pages_per_huge_page,
3258 				bool allow_pagefault);
3259 
3260 /**
3261  * vma_is_special_huge - Are transhuge page-table entries considered special?
3262  * @vma: Pointer to the struct vm_area_struct to consider
3263  *
3264  * Whether transhuge page-table entries are considered "special" following
3265  * the definition in vm_normal_page().
3266  *
3267  * Return: true if transhuge page-table entries should be considered special,
3268  * false otherwise.
3269  */
3270 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3271 {
3272 	return vma_is_dax(vma) || (vma->vm_file &&
3273 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3274 }
3275 
3276 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3277 
3278 #ifdef CONFIG_DEBUG_PAGEALLOC
3279 extern unsigned int _debug_guardpage_minorder;
3280 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3281 
3282 static inline unsigned int debug_guardpage_minorder(void)
3283 {
3284 	return _debug_guardpage_minorder;
3285 }
3286 
3287 static inline bool debug_guardpage_enabled(void)
3288 {
3289 	return static_branch_unlikely(&_debug_guardpage_enabled);
3290 }
3291 
3292 static inline bool page_is_guard(struct page *page)
3293 {
3294 	if (!debug_guardpage_enabled())
3295 		return false;
3296 
3297 	return PageGuard(page);
3298 }
3299 #else
3300 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3301 static inline bool debug_guardpage_enabled(void) { return false; }
3302 static inline bool page_is_guard(struct page *page) { return false; }
3303 #endif /* CONFIG_DEBUG_PAGEALLOC */
3304 
3305 #if MAX_NUMNODES > 1
3306 void __init setup_nr_node_ids(void);
3307 #else
3308 static inline void setup_nr_node_ids(void) {}
3309 #endif
3310 
3311 extern int memcmp_pages(struct page *page1, struct page *page2);
3312 
3313 static inline int pages_identical(struct page *page1, struct page *page2)
3314 {
3315 	return !memcmp_pages(page1, page2);
3316 }
3317 
3318 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3319 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3320 						pgoff_t first_index, pgoff_t nr,
3321 						pgoff_t bitmap_pgoff,
3322 						unsigned long *bitmap,
3323 						pgoff_t *start,
3324 						pgoff_t *end);
3325 
3326 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3327 				      pgoff_t first_index, pgoff_t nr);
3328 #endif
3329 
3330 extern int sysctl_nr_trim_pages;
3331 
3332 #ifdef CONFIG_PRINTK
3333 void mem_dump_obj(void *object);
3334 #else
3335 static inline void mem_dump_obj(void *object) {}
3336 #endif
3337 
3338 /**
3339  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3340  * @seals: the seals to check
3341  * @vma: the vma to operate on
3342  *
3343  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3344  * the vma flags.  Return 0 if check pass, or <0 for errors.
3345  */
3346 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3347 {
3348 	if (seals & F_SEAL_FUTURE_WRITE) {
3349 		/*
3350 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3351 		 * "future write" seal active.
3352 		 */
3353 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3354 			return -EPERM;
3355 
3356 		/*
3357 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3358 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3359 		 * revert protections on such mappings. Do this only for shared
3360 		 * mappings. For private mappings, don't need to mask
3361 		 * VM_MAYWRITE as we still want them to be COW-writable.
3362 		 */
3363 		if (vma->vm_flags & VM_SHARED)
3364 			vma->vm_flags &= ~(VM_MAYWRITE);
3365 	}
3366 
3367 	return 0;
3368 }
3369 
3370 #ifdef CONFIG_ANON_VMA_NAME
3371 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3372 			  unsigned long len_in,
3373 			  struct anon_vma_name *anon_name);
3374 #else
3375 static inline int
3376 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3377 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3378 	return 0;
3379 }
3380 #endif
3381 
3382 /*
3383  * Whether to drop the pte markers, for example, the uffd-wp information for
3384  * file-backed memory.  This should only be specified when we will completely
3385  * drop the page in the mm, either by truncation or unmapping of the vma.  By
3386  * default, the flag is not set.
3387  */
3388 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
3389 
3390 #endif /* _LINUX_MM_H */
3391