xref: /linux-6.15/include/linux/mm.h (revision db08f69e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for arcitectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * To prevent common memory management code establishing
129  * a zero page mapping on a read fault.
130  * This macro should be defined within <asm/pgtable.h>.
131  * s390 does this to prevent multiplexing of hardware bits
132  * related to the physical page in case of virtualization.
133  */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X)	(0)
136 #endif
137 
138 /*
139  * On some architectures it is expensive to call memset() for small sizes.
140  * If an architecture decides to implement their own version of
141  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142  * define their own version of this macro in <asm/pgtable.h>
143  */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146  * or reduces below 56. The idea that compiler optimizes out switch()
147  * statement, and only leaves move/store instructions. Also the compiler can
148  * combine write statments if they are both assignments and can be reordered,
149  * this can result in several of the writes here being dropped.
150  */
151 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 	unsigned long *_pp = (void *)page;
155 
156 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 	BUILD_BUG_ON(sizeof(struct page) & 7);
158 	BUILD_BUG_ON(sizeof(struct page) < 56);
159 	BUILD_BUG_ON(sizeof(struct page) > 80);
160 
161 	switch (sizeof(struct page)) {
162 	case 80:
163 		_pp[9] = 0;
164 		fallthrough;
165 	case 72:
166 		_pp[8] = 0;
167 		fallthrough;
168 	case 64:
169 		_pp[7] = 0;
170 		fallthrough;
171 	case 56:
172 		_pp[6] = 0;
173 		_pp[5] = 0;
174 		_pp[4] = 0;
175 		_pp[3] = 0;
176 		_pp[2] = 0;
177 		_pp[1] = 0;
178 		_pp[0] = 0;
179 	}
180 }
181 #else
182 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184 
185 /*
186  * Default maximum number of active map areas, this limits the number of vmas
187  * per mm struct. Users can overwrite this number by sysctl but there is a
188  * problem.
189  *
190  * When a program's coredump is generated as ELF format, a section is created
191  * per a vma. In ELF, the number of sections is represented in unsigned short.
192  * This means the number of sections should be smaller than 65535 at coredump.
193  * Because the kernel adds some informative sections to a image of program at
194  * generating coredump, we need some margin. The number of extra sections is
195  * 1-3 now and depends on arch. We use "5" as safe margin, here.
196  *
197  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198  * not a hard limit any more. Although some userspace tools can be surprised by
199  * that.
200  */
201 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
202 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 
204 extern int sysctl_max_map_count;
205 
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208 
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212 
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 
220 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
226 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
227 
228 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
229 
230 /*
231  * Linux kernel virtual memory manager primitives.
232  * The idea being to have a "virtual" mm in the same way
233  * we have a virtual fs - giving a cleaner interface to the
234  * mm details, and allowing different kinds of memory mappings
235  * (from shared memory to executable loading to arbitrary
236  * mmap() functions).
237  */
238 
239 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
240 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
241 void vm_area_free(struct vm_area_struct *);
242 
243 #ifndef CONFIG_MMU
244 extern struct rb_root nommu_region_tree;
245 extern struct rw_semaphore nommu_region_sem;
246 
247 extern unsigned int kobjsize(const void *objp);
248 #endif
249 
250 /*
251  * vm_flags in vm_area_struct, see mm_types.h.
252  * When changing, update also include/trace/events/mmflags.h
253  */
254 #define VM_NONE		0x00000000
255 
256 #define VM_READ		0x00000001	/* currently active flags */
257 #define VM_WRITE	0x00000002
258 #define VM_EXEC		0x00000004
259 #define VM_SHARED	0x00000008
260 
261 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
262 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
263 #define VM_MAYWRITE	0x00000020
264 #define VM_MAYEXEC	0x00000040
265 #define VM_MAYSHARE	0x00000080
266 
267 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
268 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
269 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
270 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
271 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
272 
273 #define VM_LOCKED	0x00002000
274 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
275 
276 					/* Used by sys_madvise() */
277 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
278 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
279 
280 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
281 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
282 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
283 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
284 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
285 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
286 #define VM_SYNC		0x00800000	/* Synchronous page faults */
287 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
288 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
289 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
290 
291 #ifdef CONFIG_MEM_SOFT_DIRTY
292 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
293 #else
294 # define VM_SOFTDIRTY	0
295 #endif
296 
297 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
298 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
299 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
300 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
301 
302 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
303 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
304 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
305 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
306 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
307 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
308 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
309 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
310 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
311 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
312 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
313 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
314 
315 #ifdef CONFIG_ARCH_HAS_PKEYS
316 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
317 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
318 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
319 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
320 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
321 #ifdef CONFIG_PPC
322 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
323 #else
324 # define VM_PKEY_BIT4  0
325 #endif
326 #endif /* CONFIG_ARCH_HAS_PKEYS */
327 
328 #if defined(CONFIG_X86)
329 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
330 #elif defined(CONFIG_PPC)
331 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
332 #elif defined(CONFIG_PARISC)
333 # define VM_GROWSUP	VM_ARCH_1
334 #elif defined(CONFIG_IA64)
335 # define VM_GROWSUP	VM_ARCH_1
336 #elif defined(CONFIG_SPARC64)
337 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
338 # define VM_ARCH_CLEAR	VM_SPARC_ADI
339 #elif defined(CONFIG_ARM64)
340 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
341 # define VM_ARCH_CLEAR	VM_ARM64_BTI
342 #elif !defined(CONFIG_MMU)
343 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
344 #endif
345 
346 #if defined(CONFIG_ARM64_MTE)
347 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
348 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
349 #else
350 # define VM_MTE		VM_NONE
351 # define VM_MTE_ALLOWED	VM_NONE
352 #endif
353 
354 #ifndef VM_GROWSUP
355 # define VM_GROWSUP	VM_NONE
356 #endif
357 
358 /* Bits set in the VMA until the stack is in its final location */
359 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
360 
361 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
362 
363 /* Common data flag combinations */
364 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
365 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
366 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
367 				 VM_MAYWRITE | VM_MAYEXEC)
368 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
369 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
370 
371 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
372 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
373 #endif
374 
375 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
376 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
377 #endif
378 
379 #ifdef CONFIG_STACK_GROWSUP
380 #define VM_STACK	VM_GROWSUP
381 #else
382 #define VM_STACK	VM_GROWSDOWN
383 #endif
384 
385 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
386 
387 /* VMA basic access permission flags */
388 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
389 
390 
391 /*
392  * Special vmas that are non-mergable, non-mlock()able.
393  */
394 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
395 
396 /* This mask prevents VMA from being scanned with khugepaged */
397 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
398 
399 /* This mask defines which mm->def_flags a process can inherit its parent */
400 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
401 
402 /* This mask is used to clear all the VMA flags used by mlock */
403 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
404 
405 /* Arch-specific flags to clear when updating VM flags on protection change */
406 #ifndef VM_ARCH_CLEAR
407 # define VM_ARCH_CLEAR	VM_NONE
408 #endif
409 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
410 
411 /*
412  * mapping from the currently active vm_flags protection bits (the
413  * low four bits) to a page protection mask..
414  */
415 extern pgprot_t protection_map[16];
416 
417 /**
418  * Fault flag definitions.
419  *
420  * @FAULT_FLAG_WRITE: Fault was a write fault.
421  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
422  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
423  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
424  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
425  * @FAULT_FLAG_TRIED: The fault has been tried once.
426  * @FAULT_FLAG_USER: The fault originated in userspace.
427  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
428  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
429  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
430  *
431  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
432  * whether we would allow page faults to retry by specifying these two
433  * fault flags correctly.  Currently there can be three legal combinations:
434  *
435  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
436  *                              this is the first try
437  *
438  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
439  *                              we've already tried at least once
440  *
441  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
442  *
443  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
444  * be used.  Note that page faults can be allowed to retry for multiple times,
445  * in which case we'll have an initial fault with flags (a) then later on
446  * continuous faults with flags (b).  We should always try to detect pending
447  * signals before a retry to make sure the continuous page faults can still be
448  * interrupted if necessary.
449  */
450 #define FAULT_FLAG_WRITE			0x01
451 #define FAULT_FLAG_MKWRITE			0x02
452 #define FAULT_FLAG_ALLOW_RETRY			0x04
453 #define FAULT_FLAG_RETRY_NOWAIT			0x08
454 #define FAULT_FLAG_KILLABLE			0x10
455 #define FAULT_FLAG_TRIED			0x20
456 #define FAULT_FLAG_USER				0x40
457 #define FAULT_FLAG_REMOTE			0x80
458 #define FAULT_FLAG_INSTRUCTION  		0x100
459 #define FAULT_FLAG_INTERRUPTIBLE		0x200
460 
461 /*
462  * The default fault flags that should be used by most of the
463  * arch-specific page fault handlers.
464  */
465 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
466 			     FAULT_FLAG_KILLABLE | \
467 			     FAULT_FLAG_INTERRUPTIBLE)
468 
469 /**
470  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
471  *
472  * This is mostly used for places where we want to try to avoid taking
473  * the mmap_lock for too long a time when waiting for another condition
474  * to change, in which case we can try to be polite to release the
475  * mmap_lock in the first round to avoid potential starvation of other
476  * processes that would also want the mmap_lock.
477  *
478  * Return: true if the page fault allows retry and this is the first
479  * attempt of the fault handling; false otherwise.
480  */
481 static inline bool fault_flag_allow_retry_first(unsigned int flags)
482 {
483 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
484 	    (!(flags & FAULT_FLAG_TRIED));
485 }
486 
487 #define FAULT_FLAG_TRACE \
488 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
489 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
490 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
491 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
492 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
493 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
494 	{ FAULT_FLAG_USER,		"USER" }, \
495 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
496 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
497 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
498 
499 /*
500  * vm_fault is filled by the pagefault handler and passed to the vma's
501  * ->fault function. The vma's ->fault is responsible for returning a bitmask
502  * of VM_FAULT_xxx flags that give details about how the fault was handled.
503  *
504  * MM layer fills up gfp_mask for page allocations but fault handler might
505  * alter it if its implementation requires a different allocation context.
506  *
507  * pgoff should be used in favour of virtual_address, if possible.
508  */
509 struct vm_fault {
510 	struct vm_area_struct *vma;	/* Target VMA */
511 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
512 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
513 	pgoff_t pgoff;			/* Logical page offset based on vma */
514 	unsigned long address;		/* Faulting virtual address */
515 	pmd_t *pmd;			/* Pointer to pmd entry matching
516 					 * the 'address' */
517 	pud_t *pud;			/* Pointer to pud entry matching
518 					 * the 'address'
519 					 */
520 	pte_t orig_pte;			/* Value of PTE at the time of fault */
521 
522 	struct page *cow_page;		/* Page handler may use for COW fault */
523 	struct page *page;		/* ->fault handlers should return a
524 					 * page here, unless VM_FAULT_NOPAGE
525 					 * is set (which is also implied by
526 					 * VM_FAULT_ERROR).
527 					 */
528 	/* These three entries are valid only while holding ptl lock */
529 	pte_t *pte;			/* Pointer to pte entry matching
530 					 * the 'address'. NULL if the page
531 					 * table hasn't been allocated.
532 					 */
533 	spinlock_t *ptl;		/* Page table lock.
534 					 * Protects pte page table if 'pte'
535 					 * is not NULL, otherwise pmd.
536 					 */
537 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
538 					 * vm_ops->map_pages() calls
539 					 * alloc_set_pte() from atomic context.
540 					 * do_fault_around() pre-allocates
541 					 * page table to avoid allocation from
542 					 * atomic context.
543 					 */
544 };
545 
546 /* page entry size for vm->huge_fault() */
547 enum page_entry_size {
548 	PE_SIZE_PTE = 0,
549 	PE_SIZE_PMD,
550 	PE_SIZE_PUD,
551 };
552 
553 /*
554  * These are the virtual MM functions - opening of an area, closing and
555  * unmapping it (needed to keep files on disk up-to-date etc), pointer
556  * to the functions called when a no-page or a wp-page exception occurs.
557  */
558 struct vm_operations_struct {
559 	void (*open)(struct vm_area_struct * area);
560 	void (*close)(struct vm_area_struct * area);
561 	/* Called any time before splitting to check if it's allowed */
562 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
563 	int (*mremap)(struct vm_area_struct *area, unsigned long flags);
564 	/*
565 	 * Called by mprotect() to make driver-specific permission
566 	 * checks before mprotect() is finalised.   The VMA must not
567 	 * be modified.  Returns 0 if eprotect() can proceed.
568 	 */
569 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
570 			unsigned long end, unsigned long newflags);
571 	vm_fault_t (*fault)(struct vm_fault *vmf);
572 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
573 			enum page_entry_size pe_size);
574 	void (*map_pages)(struct vm_fault *vmf,
575 			pgoff_t start_pgoff, pgoff_t end_pgoff);
576 	unsigned long (*pagesize)(struct vm_area_struct * area);
577 
578 	/* notification that a previously read-only page is about to become
579 	 * writable, if an error is returned it will cause a SIGBUS */
580 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
581 
582 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
583 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
584 
585 	/* called by access_process_vm when get_user_pages() fails, typically
586 	 * for use by special VMAs that can switch between memory and hardware
587 	 */
588 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
589 		      void *buf, int len, int write);
590 
591 	/* Called by the /proc/PID/maps code to ask the vma whether it
592 	 * has a special name.  Returning non-NULL will also cause this
593 	 * vma to be dumped unconditionally. */
594 	const char *(*name)(struct vm_area_struct *vma);
595 
596 #ifdef CONFIG_NUMA
597 	/*
598 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
599 	 * to hold the policy upon return.  Caller should pass NULL @new to
600 	 * remove a policy and fall back to surrounding context--i.e. do not
601 	 * install a MPOL_DEFAULT policy, nor the task or system default
602 	 * mempolicy.
603 	 */
604 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
605 
606 	/*
607 	 * get_policy() op must add reference [mpol_get()] to any policy at
608 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
609 	 * in mm/mempolicy.c will do this automatically.
610 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
611 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
612 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
613 	 * must return NULL--i.e., do not "fallback" to task or system default
614 	 * policy.
615 	 */
616 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
617 					unsigned long addr);
618 #endif
619 	/*
620 	 * Called by vm_normal_page() for special PTEs to find the
621 	 * page for @addr.  This is useful if the default behavior
622 	 * (using pte_page()) would not find the correct page.
623 	 */
624 	struct page *(*find_special_page)(struct vm_area_struct *vma,
625 					  unsigned long addr);
626 };
627 
628 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
629 {
630 	static const struct vm_operations_struct dummy_vm_ops = {};
631 
632 	memset(vma, 0, sizeof(*vma));
633 	vma->vm_mm = mm;
634 	vma->vm_ops = &dummy_vm_ops;
635 	INIT_LIST_HEAD(&vma->anon_vma_chain);
636 }
637 
638 static inline void vma_set_anonymous(struct vm_area_struct *vma)
639 {
640 	vma->vm_ops = NULL;
641 }
642 
643 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
644 {
645 	return !vma->vm_ops;
646 }
647 
648 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
649 {
650 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
651 
652 	if (!maybe_stack)
653 		return false;
654 
655 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
656 						VM_STACK_INCOMPLETE_SETUP)
657 		return true;
658 
659 	return false;
660 }
661 
662 static inline bool vma_is_foreign(struct vm_area_struct *vma)
663 {
664 	if (!current->mm)
665 		return true;
666 
667 	if (current->mm != vma->vm_mm)
668 		return true;
669 
670 	return false;
671 }
672 
673 static inline bool vma_is_accessible(struct vm_area_struct *vma)
674 {
675 	return vma->vm_flags & VM_ACCESS_FLAGS;
676 }
677 
678 #ifdef CONFIG_SHMEM
679 /*
680  * The vma_is_shmem is not inline because it is used only by slow
681  * paths in userfault.
682  */
683 bool vma_is_shmem(struct vm_area_struct *vma);
684 #else
685 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
686 #endif
687 
688 int vma_is_stack_for_current(struct vm_area_struct *vma);
689 
690 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
691 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
692 
693 struct mmu_gather;
694 struct inode;
695 
696 #include <linux/huge_mm.h>
697 
698 /*
699  * Methods to modify the page usage count.
700  *
701  * What counts for a page usage:
702  * - cache mapping   (page->mapping)
703  * - private data    (page->private)
704  * - page mapped in a task's page tables, each mapping
705  *   is counted separately
706  *
707  * Also, many kernel routines increase the page count before a critical
708  * routine so they can be sure the page doesn't go away from under them.
709  */
710 
711 /*
712  * Drop a ref, return true if the refcount fell to zero (the page has no users)
713  */
714 static inline int put_page_testzero(struct page *page)
715 {
716 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
717 	return page_ref_dec_and_test(page);
718 }
719 
720 /*
721  * Try to grab a ref unless the page has a refcount of zero, return false if
722  * that is the case.
723  * This can be called when MMU is off so it must not access
724  * any of the virtual mappings.
725  */
726 static inline int get_page_unless_zero(struct page *page)
727 {
728 	return page_ref_add_unless(page, 1, 0);
729 }
730 
731 extern int page_is_ram(unsigned long pfn);
732 
733 enum {
734 	REGION_INTERSECTS,
735 	REGION_DISJOINT,
736 	REGION_MIXED,
737 };
738 
739 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
740 		      unsigned long desc);
741 
742 /* Support for virtually mapped pages */
743 struct page *vmalloc_to_page(const void *addr);
744 unsigned long vmalloc_to_pfn(const void *addr);
745 
746 /*
747  * Determine if an address is within the vmalloc range
748  *
749  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
750  * is no special casing required.
751  */
752 
753 #ifndef is_ioremap_addr
754 #define is_ioremap_addr(x) is_vmalloc_addr(x)
755 #endif
756 
757 #ifdef CONFIG_MMU
758 extern bool is_vmalloc_addr(const void *x);
759 extern int is_vmalloc_or_module_addr(const void *x);
760 #else
761 static inline bool is_vmalloc_addr(const void *x)
762 {
763 	return false;
764 }
765 static inline int is_vmalloc_or_module_addr(const void *x)
766 {
767 	return 0;
768 }
769 #endif
770 
771 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
772 static inline void *kvmalloc(size_t size, gfp_t flags)
773 {
774 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
775 }
776 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
777 {
778 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
779 }
780 static inline void *kvzalloc(size_t size, gfp_t flags)
781 {
782 	return kvmalloc(size, flags | __GFP_ZERO);
783 }
784 
785 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
786 {
787 	size_t bytes;
788 
789 	if (unlikely(check_mul_overflow(n, size, &bytes)))
790 		return NULL;
791 
792 	return kvmalloc(bytes, flags);
793 }
794 
795 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
796 {
797 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
798 }
799 
800 extern void kvfree(const void *addr);
801 extern void kvfree_sensitive(const void *addr, size_t len);
802 
803 static inline int head_compound_mapcount(struct page *head)
804 {
805 	return atomic_read(compound_mapcount_ptr(head)) + 1;
806 }
807 
808 /*
809  * Mapcount of compound page as a whole, does not include mapped sub-pages.
810  *
811  * Must be called only for compound pages or any their tail sub-pages.
812  */
813 static inline int compound_mapcount(struct page *page)
814 {
815 	VM_BUG_ON_PAGE(!PageCompound(page), page);
816 	page = compound_head(page);
817 	return head_compound_mapcount(page);
818 }
819 
820 /*
821  * The atomic page->_mapcount, starts from -1: so that transitions
822  * both from it and to it can be tracked, using atomic_inc_and_test
823  * and atomic_add_negative(-1).
824  */
825 static inline void page_mapcount_reset(struct page *page)
826 {
827 	atomic_set(&(page)->_mapcount, -1);
828 }
829 
830 int __page_mapcount(struct page *page);
831 
832 /*
833  * Mapcount of 0-order page; when compound sub-page, includes
834  * compound_mapcount().
835  *
836  * Result is undefined for pages which cannot be mapped into userspace.
837  * For example SLAB or special types of pages. See function page_has_type().
838  * They use this place in struct page differently.
839  */
840 static inline int page_mapcount(struct page *page)
841 {
842 	if (unlikely(PageCompound(page)))
843 		return __page_mapcount(page);
844 	return atomic_read(&page->_mapcount) + 1;
845 }
846 
847 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
848 int total_mapcount(struct page *page);
849 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
850 #else
851 static inline int total_mapcount(struct page *page)
852 {
853 	return page_mapcount(page);
854 }
855 static inline int page_trans_huge_mapcount(struct page *page,
856 					   int *total_mapcount)
857 {
858 	int mapcount = page_mapcount(page);
859 	if (total_mapcount)
860 		*total_mapcount = mapcount;
861 	return mapcount;
862 }
863 #endif
864 
865 static inline struct page *virt_to_head_page(const void *x)
866 {
867 	struct page *page = virt_to_page(x);
868 
869 	return compound_head(page);
870 }
871 
872 void __put_page(struct page *page);
873 
874 void put_pages_list(struct list_head *pages);
875 
876 void split_page(struct page *page, unsigned int order);
877 
878 /*
879  * Compound pages have a destructor function.  Provide a
880  * prototype for that function and accessor functions.
881  * These are _only_ valid on the head of a compound page.
882  */
883 typedef void compound_page_dtor(struct page *);
884 
885 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
886 enum compound_dtor_id {
887 	NULL_COMPOUND_DTOR,
888 	COMPOUND_PAGE_DTOR,
889 #ifdef CONFIG_HUGETLB_PAGE
890 	HUGETLB_PAGE_DTOR,
891 #endif
892 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
893 	TRANSHUGE_PAGE_DTOR,
894 #endif
895 	NR_COMPOUND_DTORS,
896 };
897 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
898 
899 static inline void set_compound_page_dtor(struct page *page,
900 		enum compound_dtor_id compound_dtor)
901 {
902 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
903 	page[1].compound_dtor = compound_dtor;
904 }
905 
906 static inline void destroy_compound_page(struct page *page)
907 {
908 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
909 	compound_page_dtors[page[1].compound_dtor](page);
910 }
911 
912 static inline unsigned int compound_order(struct page *page)
913 {
914 	if (!PageHead(page))
915 		return 0;
916 	return page[1].compound_order;
917 }
918 
919 static inline bool hpage_pincount_available(struct page *page)
920 {
921 	/*
922 	 * Can the page->hpage_pinned_refcount field be used? That field is in
923 	 * the 3rd page of the compound page, so the smallest (2-page) compound
924 	 * pages cannot support it.
925 	 */
926 	page = compound_head(page);
927 	return PageCompound(page) && compound_order(page) > 1;
928 }
929 
930 static inline int head_compound_pincount(struct page *head)
931 {
932 	return atomic_read(compound_pincount_ptr(head));
933 }
934 
935 static inline int compound_pincount(struct page *page)
936 {
937 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
938 	page = compound_head(page);
939 	return head_compound_pincount(page);
940 }
941 
942 static inline void set_compound_order(struct page *page, unsigned int order)
943 {
944 	page[1].compound_order = order;
945 	page[1].compound_nr = 1U << order;
946 }
947 
948 /* Returns the number of pages in this potentially compound page. */
949 static inline unsigned long compound_nr(struct page *page)
950 {
951 	if (!PageHead(page))
952 		return 1;
953 	return page[1].compound_nr;
954 }
955 
956 /* Returns the number of bytes in this potentially compound page. */
957 static inline unsigned long page_size(struct page *page)
958 {
959 	return PAGE_SIZE << compound_order(page);
960 }
961 
962 /* Returns the number of bits needed for the number of bytes in a page */
963 static inline unsigned int page_shift(struct page *page)
964 {
965 	return PAGE_SHIFT + compound_order(page);
966 }
967 
968 void free_compound_page(struct page *page);
969 
970 #ifdef CONFIG_MMU
971 /*
972  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
973  * servicing faults for write access.  In the normal case, do always want
974  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
975  * that do not have writing enabled, when used by access_process_vm.
976  */
977 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
978 {
979 	if (likely(vma->vm_flags & VM_WRITE))
980 		pte = pte_mkwrite(pte);
981 	return pte;
982 }
983 
984 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
985 vm_fault_t finish_fault(struct vm_fault *vmf);
986 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
987 #endif
988 
989 /*
990  * Multiple processes may "see" the same page. E.g. for untouched
991  * mappings of /dev/null, all processes see the same page full of
992  * zeroes, and text pages of executables and shared libraries have
993  * only one copy in memory, at most, normally.
994  *
995  * For the non-reserved pages, page_count(page) denotes a reference count.
996  *   page_count() == 0 means the page is free. page->lru is then used for
997  *   freelist management in the buddy allocator.
998  *   page_count() > 0  means the page has been allocated.
999  *
1000  * Pages are allocated by the slab allocator in order to provide memory
1001  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1002  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1003  * unless a particular usage is carefully commented. (the responsibility of
1004  * freeing the kmalloc memory is the caller's, of course).
1005  *
1006  * A page may be used by anyone else who does a __get_free_page().
1007  * In this case, page_count still tracks the references, and should only
1008  * be used through the normal accessor functions. The top bits of page->flags
1009  * and page->virtual store page management information, but all other fields
1010  * are unused and could be used privately, carefully. The management of this
1011  * page is the responsibility of the one who allocated it, and those who have
1012  * subsequently been given references to it.
1013  *
1014  * The other pages (we may call them "pagecache pages") are completely
1015  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1016  * The following discussion applies only to them.
1017  *
1018  * A pagecache page contains an opaque `private' member, which belongs to the
1019  * page's address_space. Usually, this is the address of a circular list of
1020  * the page's disk buffers. PG_private must be set to tell the VM to call
1021  * into the filesystem to release these pages.
1022  *
1023  * A page may belong to an inode's memory mapping. In this case, page->mapping
1024  * is the pointer to the inode, and page->index is the file offset of the page,
1025  * in units of PAGE_SIZE.
1026  *
1027  * If pagecache pages are not associated with an inode, they are said to be
1028  * anonymous pages. These may become associated with the swapcache, and in that
1029  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1030  *
1031  * In either case (swapcache or inode backed), the pagecache itself holds one
1032  * reference to the page. Setting PG_private should also increment the
1033  * refcount. The each user mapping also has a reference to the page.
1034  *
1035  * The pagecache pages are stored in a per-mapping radix tree, which is
1036  * rooted at mapping->i_pages, and indexed by offset.
1037  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1038  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1039  *
1040  * All pagecache pages may be subject to I/O:
1041  * - inode pages may need to be read from disk,
1042  * - inode pages which have been modified and are MAP_SHARED may need
1043  *   to be written back to the inode on disk,
1044  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1045  *   modified may need to be swapped out to swap space and (later) to be read
1046  *   back into memory.
1047  */
1048 
1049 /*
1050  * The zone field is never updated after free_area_init_core()
1051  * sets it, so none of the operations on it need to be atomic.
1052  */
1053 
1054 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1055 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1056 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1057 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1058 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1059 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1060 
1061 /*
1062  * Define the bit shifts to access each section.  For non-existent
1063  * sections we define the shift as 0; that plus a 0 mask ensures
1064  * the compiler will optimise away reference to them.
1065  */
1066 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1067 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1068 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1069 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1070 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1071 
1072 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1073 #ifdef NODE_NOT_IN_PAGE_FLAGS
1074 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1075 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1076 						SECTIONS_PGOFF : ZONES_PGOFF)
1077 #else
1078 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1079 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1080 						NODES_PGOFF : ZONES_PGOFF)
1081 #endif
1082 
1083 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1084 
1085 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1086 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1087 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1088 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1089 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1090 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1091 
1092 static inline enum zone_type page_zonenum(const struct page *page)
1093 {
1094 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1095 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1096 }
1097 
1098 #ifdef CONFIG_ZONE_DEVICE
1099 static inline bool is_zone_device_page(const struct page *page)
1100 {
1101 	return page_zonenum(page) == ZONE_DEVICE;
1102 }
1103 extern void memmap_init_zone_device(struct zone *, unsigned long,
1104 				    unsigned long, struct dev_pagemap *);
1105 #else
1106 static inline bool is_zone_device_page(const struct page *page)
1107 {
1108 	return false;
1109 }
1110 #endif
1111 
1112 #ifdef CONFIG_DEV_PAGEMAP_OPS
1113 void free_devmap_managed_page(struct page *page);
1114 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1115 
1116 static inline bool page_is_devmap_managed(struct page *page)
1117 {
1118 	if (!static_branch_unlikely(&devmap_managed_key))
1119 		return false;
1120 	if (!is_zone_device_page(page))
1121 		return false;
1122 	switch (page->pgmap->type) {
1123 	case MEMORY_DEVICE_PRIVATE:
1124 	case MEMORY_DEVICE_FS_DAX:
1125 		return true;
1126 	default:
1127 		break;
1128 	}
1129 	return false;
1130 }
1131 
1132 void put_devmap_managed_page(struct page *page);
1133 
1134 #else /* CONFIG_DEV_PAGEMAP_OPS */
1135 static inline bool page_is_devmap_managed(struct page *page)
1136 {
1137 	return false;
1138 }
1139 
1140 static inline void put_devmap_managed_page(struct page *page)
1141 {
1142 }
1143 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1144 
1145 static inline bool is_device_private_page(const struct page *page)
1146 {
1147 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1148 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1149 		is_zone_device_page(page) &&
1150 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1151 }
1152 
1153 static inline bool is_pci_p2pdma_page(const struct page *page)
1154 {
1155 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1156 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1157 		is_zone_device_page(page) &&
1158 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1159 }
1160 
1161 /* 127: arbitrary random number, small enough to assemble well */
1162 #define page_ref_zero_or_close_to_overflow(page) \
1163 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1164 
1165 static inline void get_page(struct page *page)
1166 {
1167 	page = compound_head(page);
1168 	/*
1169 	 * Getting a normal page or the head of a compound page
1170 	 * requires to already have an elevated page->_refcount.
1171 	 */
1172 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1173 	page_ref_inc(page);
1174 }
1175 
1176 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1177 
1178 static inline __must_check bool try_get_page(struct page *page)
1179 {
1180 	page = compound_head(page);
1181 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1182 		return false;
1183 	page_ref_inc(page);
1184 	return true;
1185 }
1186 
1187 static inline void put_page(struct page *page)
1188 {
1189 	page = compound_head(page);
1190 
1191 	/*
1192 	 * For devmap managed pages we need to catch refcount transition from
1193 	 * 2 to 1, when refcount reach one it means the page is free and we
1194 	 * need to inform the device driver through callback. See
1195 	 * include/linux/memremap.h and HMM for details.
1196 	 */
1197 	if (page_is_devmap_managed(page)) {
1198 		put_devmap_managed_page(page);
1199 		return;
1200 	}
1201 
1202 	if (put_page_testzero(page))
1203 		__put_page(page);
1204 }
1205 
1206 /*
1207  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1208  * the page's refcount so that two separate items are tracked: the original page
1209  * reference count, and also a new count of how many pin_user_pages() calls were
1210  * made against the page. ("gup-pinned" is another term for the latter).
1211  *
1212  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1213  * distinct from normal pages. As such, the unpin_user_page() call (and its
1214  * variants) must be used in order to release gup-pinned pages.
1215  *
1216  * Choice of value:
1217  *
1218  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1219  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1220  * simpler, due to the fact that adding an even power of two to the page
1221  * refcount has the effect of using only the upper N bits, for the code that
1222  * counts up using the bias value. This means that the lower bits are left for
1223  * the exclusive use of the original code that increments and decrements by one
1224  * (or at least, by much smaller values than the bias value).
1225  *
1226  * Of course, once the lower bits overflow into the upper bits (and this is
1227  * OK, because subtraction recovers the original values), then visual inspection
1228  * no longer suffices to directly view the separate counts. However, for normal
1229  * applications that don't have huge page reference counts, this won't be an
1230  * issue.
1231  *
1232  * Locking: the lockless algorithm described in page_cache_get_speculative()
1233  * and page_cache_gup_pin_speculative() provides safe operation for
1234  * get_user_pages and page_mkclean and other calls that race to set up page
1235  * table entries.
1236  */
1237 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1238 
1239 void unpin_user_page(struct page *page);
1240 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1241 				 bool make_dirty);
1242 void unpin_user_pages(struct page **pages, unsigned long npages);
1243 
1244 /**
1245  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1246  *
1247  * This function checks if a page has been pinned via a call to
1248  * pin_user_pages*().
1249  *
1250  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1251  * because it means "definitely not pinned for DMA", but true means "probably
1252  * pinned for DMA, but possibly a false positive due to having at least
1253  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1254  *
1255  * False positives are OK, because: a) it's unlikely for a page to get that many
1256  * refcounts, and b) all the callers of this routine are expected to be able to
1257  * deal gracefully with a false positive.
1258  *
1259  * For huge pages, the result will be exactly correct. That's because we have
1260  * more tracking data available: the 3rd struct page in the compound page is
1261  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1262  * scheme).
1263  *
1264  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1265  *
1266  * @page:	pointer to page to be queried.
1267  * @Return:	True, if it is likely that the page has been "dma-pinned".
1268  *		False, if the page is definitely not dma-pinned.
1269  */
1270 static inline bool page_maybe_dma_pinned(struct page *page)
1271 {
1272 	if (hpage_pincount_available(page))
1273 		return compound_pincount(page) > 0;
1274 
1275 	/*
1276 	 * page_ref_count() is signed. If that refcount overflows, then
1277 	 * page_ref_count() returns a negative value, and callers will avoid
1278 	 * further incrementing the refcount.
1279 	 *
1280 	 * Here, for that overflow case, use the signed bit to count a little
1281 	 * bit higher via unsigned math, and thus still get an accurate result.
1282 	 */
1283 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1284 		GUP_PIN_COUNTING_BIAS;
1285 }
1286 
1287 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1288 #define SECTION_IN_PAGE_FLAGS
1289 #endif
1290 
1291 /*
1292  * The identification function is mainly used by the buddy allocator for
1293  * determining if two pages could be buddies. We are not really identifying
1294  * the zone since we could be using the section number id if we do not have
1295  * node id available in page flags.
1296  * We only guarantee that it will return the same value for two combinable
1297  * pages in a zone.
1298  */
1299 static inline int page_zone_id(struct page *page)
1300 {
1301 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1302 }
1303 
1304 #ifdef NODE_NOT_IN_PAGE_FLAGS
1305 extern int page_to_nid(const struct page *page);
1306 #else
1307 static inline int page_to_nid(const struct page *page)
1308 {
1309 	struct page *p = (struct page *)page;
1310 
1311 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1312 }
1313 #endif
1314 
1315 #ifdef CONFIG_NUMA_BALANCING
1316 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1317 {
1318 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1319 }
1320 
1321 static inline int cpupid_to_pid(int cpupid)
1322 {
1323 	return cpupid & LAST__PID_MASK;
1324 }
1325 
1326 static inline int cpupid_to_cpu(int cpupid)
1327 {
1328 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1329 }
1330 
1331 static inline int cpupid_to_nid(int cpupid)
1332 {
1333 	return cpu_to_node(cpupid_to_cpu(cpupid));
1334 }
1335 
1336 static inline bool cpupid_pid_unset(int cpupid)
1337 {
1338 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1339 }
1340 
1341 static inline bool cpupid_cpu_unset(int cpupid)
1342 {
1343 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1344 }
1345 
1346 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1347 {
1348 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1349 }
1350 
1351 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1352 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1353 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1354 {
1355 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1356 }
1357 
1358 static inline int page_cpupid_last(struct page *page)
1359 {
1360 	return page->_last_cpupid;
1361 }
1362 static inline void page_cpupid_reset_last(struct page *page)
1363 {
1364 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1365 }
1366 #else
1367 static inline int page_cpupid_last(struct page *page)
1368 {
1369 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1370 }
1371 
1372 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1373 
1374 static inline void page_cpupid_reset_last(struct page *page)
1375 {
1376 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1377 }
1378 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1379 #else /* !CONFIG_NUMA_BALANCING */
1380 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1381 {
1382 	return page_to_nid(page); /* XXX */
1383 }
1384 
1385 static inline int page_cpupid_last(struct page *page)
1386 {
1387 	return page_to_nid(page); /* XXX */
1388 }
1389 
1390 static inline int cpupid_to_nid(int cpupid)
1391 {
1392 	return -1;
1393 }
1394 
1395 static inline int cpupid_to_pid(int cpupid)
1396 {
1397 	return -1;
1398 }
1399 
1400 static inline int cpupid_to_cpu(int cpupid)
1401 {
1402 	return -1;
1403 }
1404 
1405 static inline int cpu_pid_to_cpupid(int nid, int pid)
1406 {
1407 	return -1;
1408 }
1409 
1410 static inline bool cpupid_pid_unset(int cpupid)
1411 {
1412 	return true;
1413 }
1414 
1415 static inline void page_cpupid_reset_last(struct page *page)
1416 {
1417 }
1418 
1419 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1420 {
1421 	return false;
1422 }
1423 #endif /* CONFIG_NUMA_BALANCING */
1424 
1425 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1426 
1427 static inline u8 page_kasan_tag(const struct page *page)
1428 {
1429 	if (kasan_enabled())
1430 		return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1431 	return 0xff;
1432 }
1433 
1434 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1435 {
1436 	if (kasan_enabled()) {
1437 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1438 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1439 	}
1440 }
1441 
1442 static inline void page_kasan_tag_reset(struct page *page)
1443 {
1444 	if (kasan_enabled())
1445 		page_kasan_tag_set(page, 0xff);
1446 }
1447 
1448 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1449 
1450 static inline u8 page_kasan_tag(const struct page *page)
1451 {
1452 	return 0xff;
1453 }
1454 
1455 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1456 static inline void page_kasan_tag_reset(struct page *page) { }
1457 
1458 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1459 
1460 static inline struct zone *page_zone(const struct page *page)
1461 {
1462 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1463 }
1464 
1465 static inline pg_data_t *page_pgdat(const struct page *page)
1466 {
1467 	return NODE_DATA(page_to_nid(page));
1468 }
1469 
1470 #ifdef SECTION_IN_PAGE_FLAGS
1471 static inline void set_page_section(struct page *page, unsigned long section)
1472 {
1473 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1474 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1475 }
1476 
1477 static inline unsigned long page_to_section(const struct page *page)
1478 {
1479 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1480 }
1481 #endif
1482 
1483 static inline void set_page_zone(struct page *page, enum zone_type zone)
1484 {
1485 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1486 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1487 }
1488 
1489 static inline void set_page_node(struct page *page, unsigned long node)
1490 {
1491 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1492 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1493 }
1494 
1495 static inline void set_page_links(struct page *page, enum zone_type zone,
1496 	unsigned long node, unsigned long pfn)
1497 {
1498 	set_page_zone(page, zone);
1499 	set_page_node(page, node);
1500 #ifdef SECTION_IN_PAGE_FLAGS
1501 	set_page_section(page, pfn_to_section_nr(pfn));
1502 #endif
1503 }
1504 
1505 /*
1506  * Some inline functions in vmstat.h depend on page_zone()
1507  */
1508 #include <linux/vmstat.h>
1509 
1510 static __always_inline void *lowmem_page_address(const struct page *page)
1511 {
1512 	return page_to_virt(page);
1513 }
1514 
1515 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1516 #define HASHED_PAGE_VIRTUAL
1517 #endif
1518 
1519 #if defined(WANT_PAGE_VIRTUAL)
1520 static inline void *page_address(const struct page *page)
1521 {
1522 	return page->virtual;
1523 }
1524 static inline void set_page_address(struct page *page, void *address)
1525 {
1526 	page->virtual = address;
1527 }
1528 #define page_address_init()  do { } while(0)
1529 #endif
1530 
1531 #if defined(HASHED_PAGE_VIRTUAL)
1532 void *page_address(const struct page *page);
1533 void set_page_address(struct page *page, void *virtual);
1534 void page_address_init(void);
1535 #endif
1536 
1537 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1538 #define page_address(page) lowmem_page_address(page)
1539 #define set_page_address(page, address)  do { } while(0)
1540 #define page_address_init()  do { } while(0)
1541 #endif
1542 
1543 extern void *page_rmapping(struct page *page);
1544 extern struct anon_vma *page_anon_vma(struct page *page);
1545 extern struct address_space *page_mapping(struct page *page);
1546 
1547 extern struct address_space *__page_file_mapping(struct page *);
1548 
1549 static inline
1550 struct address_space *page_file_mapping(struct page *page)
1551 {
1552 	if (unlikely(PageSwapCache(page)))
1553 		return __page_file_mapping(page);
1554 
1555 	return page->mapping;
1556 }
1557 
1558 extern pgoff_t __page_file_index(struct page *page);
1559 
1560 /*
1561  * Return the pagecache index of the passed page.  Regular pagecache pages
1562  * use ->index whereas swapcache pages use swp_offset(->private)
1563  */
1564 static inline pgoff_t page_index(struct page *page)
1565 {
1566 	if (unlikely(PageSwapCache(page)))
1567 		return __page_file_index(page);
1568 	return page->index;
1569 }
1570 
1571 bool page_mapped(struct page *page);
1572 struct address_space *page_mapping(struct page *page);
1573 struct address_space *page_mapping_file(struct page *page);
1574 
1575 /*
1576  * Return true only if the page has been allocated with
1577  * ALLOC_NO_WATERMARKS and the low watermark was not
1578  * met implying that the system is under some pressure.
1579  */
1580 static inline bool page_is_pfmemalloc(struct page *page)
1581 {
1582 	/*
1583 	 * Page index cannot be this large so this must be
1584 	 * a pfmemalloc page.
1585 	 */
1586 	return page->index == -1UL;
1587 }
1588 
1589 /*
1590  * Only to be called by the page allocator on a freshly allocated
1591  * page.
1592  */
1593 static inline void set_page_pfmemalloc(struct page *page)
1594 {
1595 	page->index = -1UL;
1596 }
1597 
1598 static inline void clear_page_pfmemalloc(struct page *page)
1599 {
1600 	page->index = 0;
1601 }
1602 
1603 /*
1604  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1605  */
1606 extern void pagefault_out_of_memory(void);
1607 
1608 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1609 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1610 
1611 /*
1612  * Flags passed to show_mem() and show_free_areas() to suppress output in
1613  * various contexts.
1614  */
1615 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1616 
1617 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1618 
1619 #ifdef CONFIG_MMU
1620 extern bool can_do_mlock(void);
1621 #else
1622 static inline bool can_do_mlock(void) { return false; }
1623 #endif
1624 extern int user_shm_lock(size_t, struct user_struct *);
1625 extern void user_shm_unlock(size_t, struct user_struct *);
1626 
1627 /*
1628  * Parameter block passed down to zap_pte_range in exceptional cases.
1629  */
1630 struct zap_details {
1631 	struct address_space *check_mapping;	/* Check page->mapping if set */
1632 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1633 	pgoff_t last_index;			/* Highest page->index to unmap */
1634 };
1635 
1636 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1637 			     pte_t pte);
1638 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1639 				pmd_t pmd);
1640 
1641 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1642 		  unsigned long size);
1643 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1644 		    unsigned long size);
1645 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1646 		unsigned long start, unsigned long end);
1647 
1648 struct mmu_notifier_range;
1649 
1650 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1651 		unsigned long end, unsigned long floor, unsigned long ceiling);
1652 int
1653 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1654 int follow_pte(struct mm_struct *mm, unsigned long address,
1655 		struct mmu_notifier_range *range, pte_t **ptepp, pmd_t **pmdpp,
1656 		spinlock_t **ptlp);
1657 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1658 	unsigned long *pfn);
1659 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1660 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1661 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1662 			void *buf, int len, int write);
1663 
1664 extern void truncate_pagecache(struct inode *inode, loff_t new);
1665 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1666 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1667 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1668 int truncate_inode_page(struct address_space *mapping, struct page *page);
1669 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1670 int invalidate_inode_page(struct page *page);
1671 
1672 #ifdef CONFIG_MMU
1673 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1674 				  unsigned long address, unsigned int flags,
1675 				  struct pt_regs *regs);
1676 extern int fixup_user_fault(struct mm_struct *mm,
1677 			    unsigned long address, unsigned int fault_flags,
1678 			    bool *unlocked);
1679 void unmap_mapping_pages(struct address_space *mapping,
1680 		pgoff_t start, pgoff_t nr, bool even_cows);
1681 void unmap_mapping_range(struct address_space *mapping,
1682 		loff_t const holebegin, loff_t const holelen, int even_cows);
1683 #else
1684 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1685 					 unsigned long address, unsigned int flags,
1686 					 struct pt_regs *regs)
1687 {
1688 	/* should never happen if there's no MMU */
1689 	BUG();
1690 	return VM_FAULT_SIGBUS;
1691 }
1692 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1693 		unsigned int fault_flags, bool *unlocked)
1694 {
1695 	/* should never happen if there's no MMU */
1696 	BUG();
1697 	return -EFAULT;
1698 }
1699 static inline void unmap_mapping_pages(struct address_space *mapping,
1700 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1701 static inline void unmap_mapping_range(struct address_space *mapping,
1702 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1703 #endif
1704 
1705 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1706 		loff_t const holebegin, loff_t const holelen)
1707 {
1708 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1709 }
1710 
1711 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1712 		void *buf, int len, unsigned int gup_flags);
1713 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1714 		void *buf, int len, unsigned int gup_flags);
1715 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1716 			      void *buf, int len, unsigned int gup_flags);
1717 
1718 long get_user_pages_remote(struct mm_struct *mm,
1719 			    unsigned long start, unsigned long nr_pages,
1720 			    unsigned int gup_flags, struct page **pages,
1721 			    struct vm_area_struct **vmas, int *locked);
1722 long pin_user_pages_remote(struct mm_struct *mm,
1723 			   unsigned long start, unsigned long nr_pages,
1724 			   unsigned int gup_flags, struct page **pages,
1725 			   struct vm_area_struct **vmas, int *locked);
1726 long get_user_pages(unsigned long start, unsigned long nr_pages,
1727 			    unsigned int gup_flags, struct page **pages,
1728 			    struct vm_area_struct **vmas);
1729 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1730 		    unsigned int gup_flags, struct page **pages,
1731 		    struct vm_area_struct **vmas);
1732 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1733 		    unsigned int gup_flags, struct page **pages, int *locked);
1734 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1735 		    unsigned int gup_flags, struct page **pages, int *locked);
1736 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1737 		    struct page **pages, unsigned int gup_flags);
1738 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1739 		    struct page **pages, unsigned int gup_flags);
1740 
1741 int get_user_pages_fast(unsigned long start, int nr_pages,
1742 			unsigned int gup_flags, struct page **pages);
1743 int pin_user_pages_fast(unsigned long start, int nr_pages,
1744 			unsigned int gup_flags, struct page **pages);
1745 
1746 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1747 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1748 			struct task_struct *task, bool bypass_rlim);
1749 
1750 /* Container for pinned pfns / pages */
1751 struct frame_vector {
1752 	unsigned int nr_allocated;	/* Number of frames we have space for */
1753 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1754 	bool got_ref;		/* Did we pin pages by getting page ref? */
1755 	bool is_pfns;		/* Does array contain pages or pfns? */
1756 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1757 				 * pfns_vector_pages() or pfns_vector_pfns()
1758 				 * for access */
1759 };
1760 
1761 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1762 void frame_vector_destroy(struct frame_vector *vec);
1763 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1764 		     unsigned int gup_flags, struct frame_vector *vec);
1765 void put_vaddr_frames(struct frame_vector *vec);
1766 int frame_vector_to_pages(struct frame_vector *vec);
1767 void frame_vector_to_pfns(struct frame_vector *vec);
1768 
1769 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1770 {
1771 	return vec->nr_frames;
1772 }
1773 
1774 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1775 {
1776 	if (vec->is_pfns) {
1777 		int err = frame_vector_to_pages(vec);
1778 
1779 		if (err)
1780 			return ERR_PTR(err);
1781 	}
1782 	return (struct page **)(vec->ptrs);
1783 }
1784 
1785 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1786 {
1787 	if (!vec->is_pfns)
1788 		frame_vector_to_pfns(vec);
1789 	return (unsigned long *)(vec->ptrs);
1790 }
1791 
1792 struct kvec;
1793 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1794 			struct page **pages);
1795 int get_kernel_page(unsigned long start, int write, struct page **pages);
1796 struct page *get_dump_page(unsigned long addr);
1797 
1798 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1799 extern void do_invalidatepage(struct page *page, unsigned int offset,
1800 			      unsigned int length);
1801 
1802 void __set_page_dirty(struct page *, struct address_space *, int warn);
1803 int __set_page_dirty_nobuffers(struct page *page);
1804 int __set_page_dirty_no_writeback(struct page *page);
1805 int redirty_page_for_writepage(struct writeback_control *wbc,
1806 				struct page *page);
1807 void account_page_dirtied(struct page *page, struct address_space *mapping);
1808 void account_page_cleaned(struct page *page, struct address_space *mapping,
1809 			  struct bdi_writeback *wb);
1810 int set_page_dirty(struct page *page);
1811 int set_page_dirty_lock(struct page *page);
1812 void __cancel_dirty_page(struct page *page);
1813 static inline void cancel_dirty_page(struct page *page)
1814 {
1815 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1816 	if (PageDirty(page))
1817 		__cancel_dirty_page(page);
1818 }
1819 int clear_page_dirty_for_io(struct page *page);
1820 
1821 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1822 
1823 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1824 		unsigned long old_addr, struct vm_area_struct *new_vma,
1825 		unsigned long new_addr, unsigned long len,
1826 		bool need_rmap_locks);
1827 
1828 /*
1829  * Flags used by change_protection().  For now we make it a bitmap so
1830  * that we can pass in multiple flags just like parameters.  However
1831  * for now all the callers are only use one of the flags at the same
1832  * time.
1833  */
1834 /* Whether we should allow dirty bit accounting */
1835 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1836 /* Whether this protection change is for NUMA hints */
1837 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1838 /* Whether this change is for write protecting */
1839 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1840 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1841 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1842 					    MM_CP_UFFD_WP_RESOLVE)
1843 
1844 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1845 			      unsigned long end, pgprot_t newprot,
1846 			      unsigned long cp_flags);
1847 extern int mprotect_fixup(struct vm_area_struct *vma,
1848 			  struct vm_area_struct **pprev, unsigned long start,
1849 			  unsigned long end, unsigned long newflags);
1850 
1851 /*
1852  * doesn't attempt to fault and will return short.
1853  */
1854 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1855 			     unsigned int gup_flags, struct page **pages);
1856 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1857 			     unsigned int gup_flags, struct page **pages);
1858 
1859 static inline bool get_user_page_fast_only(unsigned long addr,
1860 			unsigned int gup_flags, struct page **pagep)
1861 {
1862 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1863 }
1864 /*
1865  * per-process(per-mm_struct) statistics.
1866  */
1867 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1868 {
1869 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1870 
1871 #ifdef SPLIT_RSS_COUNTING
1872 	/*
1873 	 * counter is updated in asynchronous manner and may go to minus.
1874 	 * But it's never be expected number for users.
1875 	 */
1876 	if (val < 0)
1877 		val = 0;
1878 #endif
1879 	return (unsigned long)val;
1880 }
1881 
1882 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1883 
1884 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1885 {
1886 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1887 
1888 	mm_trace_rss_stat(mm, member, count);
1889 }
1890 
1891 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1892 {
1893 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1894 
1895 	mm_trace_rss_stat(mm, member, count);
1896 }
1897 
1898 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1899 {
1900 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1901 
1902 	mm_trace_rss_stat(mm, member, count);
1903 }
1904 
1905 /* Optimized variant when page is already known not to be PageAnon */
1906 static inline int mm_counter_file(struct page *page)
1907 {
1908 	if (PageSwapBacked(page))
1909 		return MM_SHMEMPAGES;
1910 	return MM_FILEPAGES;
1911 }
1912 
1913 static inline int mm_counter(struct page *page)
1914 {
1915 	if (PageAnon(page))
1916 		return MM_ANONPAGES;
1917 	return mm_counter_file(page);
1918 }
1919 
1920 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1921 {
1922 	return get_mm_counter(mm, MM_FILEPAGES) +
1923 		get_mm_counter(mm, MM_ANONPAGES) +
1924 		get_mm_counter(mm, MM_SHMEMPAGES);
1925 }
1926 
1927 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1928 {
1929 	return max(mm->hiwater_rss, get_mm_rss(mm));
1930 }
1931 
1932 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1933 {
1934 	return max(mm->hiwater_vm, mm->total_vm);
1935 }
1936 
1937 static inline void update_hiwater_rss(struct mm_struct *mm)
1938 {
1939 	unsigned long _rss = get_mm_rss(mm);
1940 
1941 	if ((mm)->hiwater_rss < _rss)
1942 		(mm)->hiwater_rss = _rss;
1943 }
1944 
1945 static inline void update_hiwater_vm(struct mm_struct *mm)
1946 {
1947 	if (mm->hiwater_vm < mm->total_vm)
1948 		mm->hiwater_vm = mm->total_vm;
1949 }
1950 
1951 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1952 {
1953 	mm->hiwater_rss = get_mm_rss(mm);
1954 }
1955 
1956 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1957 					 struct mm_struct *mm)
1958 {
1959 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1960 
1961 	if (*maxrss < hiwater_rss)
1962 		*maxrss = hiwater_rss;
1963 }
1964 
1965 #if defined(SPLIT_RSS_COUNTING)
1966 void sync_mm_rss(struct mm_struct *mm);
1967 #else
1968 static inline void sync_mm_rss(struct mm_struct *mm)
1969 {
1970 }
1971 #endif
1972 
1973 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1974 static inline int pte_special(pte_t pte)
1975 {
1976 	return 0;
1977 }
1978 
1979 static inline pte_t pte_mkspecial(pte_t pte)
1980 {
1981 	return pte;
1982 }
1983 #endif
1984 
1985 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1986 static inline int pte_devmap(pte_t pte)
1987 {
1988 	return 0;
1989 }
1990 #endif
1991 
1992 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1993 
1994 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1995 			       spinlock_t **ptl);
1996 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1997 				    spinlock_t **ptl)
1998 {
1999 	pte_t *ptep;
2000 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2001 	return ptep;
2002 }
2003 
2004 #ifdef __PAGETABLE_P4D_FOLDED
2005 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2006 						unsigned long address)
2007 {
2008 	return 0;
2009 }
2010 #else
2011 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2012 #endif
2013 
2014 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2015 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2016 						unsigned long address)
2017 {
2018 	return 0;
2019 }
2020 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2021 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2022 
2023 #else
2024 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2025 
2026 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2027 {
2028 	if (mm_pud_folded(mm))
2029 		return;
2030 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2031 }
2032 
2033 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2034 {
2035 	if (mm_pud_folded(mm))
2036 		return;
2037 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2038 }
2039 #endif
2040 
2041 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2042 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2043 						unsigned long address)
2044 {
2045 	return 0;
2046 }
2047 
2048 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2049 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2050 
2051 #else
2052 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2053 
2054 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2055 {
2056 	if (mm_pmd_folded(mm))
2057 		return;
2058 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2059 }
2060 
2061 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2062 {
2063 	if (mm_pmd_folded(mm))
2064 		return;
2065 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2066 }
2067 #endif
2068 
2069 #ifdef CONFIG_MMU
2070 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2071 {
2072 	atomic_long_set(&mm->pgtables_bytes, 0);
2073 }
2074 
2075 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2076 {
2077 	return atomic_long_read(&mm->pgtables_bytes);
2078 }
2079 
2080 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2081 {
2082 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2083 }
2084 
2085 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2086 {
2087 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2088 }
2089 #else
2090 
2091 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2092 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2093 {
2094 	return 0;
2095 }
2096 
2097 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2098 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2099 #endif
2100 
2101 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2102 int __pte_alloc_kernel(pmd_t *pmd);
2103 
2104 #if defined(CONFIG_MMU)
2105 
2106 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2107 		unsigned long address)
2108 {
2109 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2110 		NULL : p4d_offset(pgd, address);
2111 }
2112 
2113 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2114 		unsigned long address)
2115 {
2116 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2117 		NULL : pud_offset(p4d, address);
2118 }
2119 
2120 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2121 {
2122 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2123 		NULL: pmd_offset(pud, address);
2124 }
2125 #endif /* CONFIG_MMU */
2126 
2127 #if USE_SPLIT_PTE_PTLOCKS
2128 #if ALLOC_SPLIT_PTLOCKS
2129 void __init ptlock_cache_init(void);
2130 extern bool ptlock_alloc(struct page *page);
2131 extern void ptlock_free(struct page *page);
2132 
2133 static inline spinlock_t *ptlock_ptr(struct page *page)
2134 {
2135 	return page->ptl;
2136 }
2137 #else /* ALLOC_SPLIT_PTLOCKS */
2138 static inline void ptlock_cache_init(void)
2139 {
2140 }
2141 
2142 static inline bool ptlock_alloc(struct page *page)
2143 {
2144 	return true;
2145 }
2146 
2147 static inline void ptlock_free(struct page *page)
2148 {
2149 }
2150 
2151 static inline spinlock_t *ptlock_ptr(struct page *page)
2152 {
2153 	return &page->ptl;
2154 }
2155 #endif /* ALLOC_SPLIT_PTLOCKS */
2156 
2157 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2158 {
2159 	return ptlock_ptr(pmd_page(*pmd));
2160 }
2161 
2162 static inline bool ptlock_init(struct page *page)
2163 {
2164 	/*
2165 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2166 	 * with 0. Make sure nobody took it in use in between.
2167 	 *
2168 	 * It can happen if arch try to use slab for page table allocation:
2169 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2170 	 */
2171 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2172 	if (!ptlock_alloc(page))
2173 		return false;
2174 	spin_lock_init(ptlock_ptr(page));
2175 	return true;
2176 }
2177 
2178 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2179 /*
2180  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2181  */
2182 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2183 {
2184 	return &mm->page_table_lock;
2185 }
2186 static inline void ptlock_cache_init(void) {}
2187 static inline bool ptlock_init(struct page *page) { return true; }
2188 static inline void ptlock_free(struct page *page) {}
2189 #endif /* USE_SPLIT_PTE_PTLOCKS */
2190 
2191 static inline void pgtable_init(void)
2192 {
2193 	ptlock_cache_init();
2194 	pgtable_cache_init();
2195 }
2196 
2197 static inline bool pgtable_pte_page_ctor(struct page *page)
2198 {
2199 	if (!ptlock_init(page))
2200 		return false;
2201 	__SetPageTable(page);
2202 	inc_lruvec_page_state(page, NR_PAGETABLE);
2203 	return true;
2204 }
2205 
2206 static inline void pgtable_pte_page_dtor(struct page *page)
2207 {
2208 	ptlock_free(page);
2209 	__ClearPageTable(page);
2210 	dec_lruvec_page_state(page, NR_PAGETABLE);
2211 }
2212 
2213 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2214 ({							\
2215 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2216 	pte_t *__pte = pte_offset_map(pmd, address);	\
2217 	*(ptlp) = __ptl;				\
2218 	spin_lock(__ptl);				\
2219 	__pte;						\
2220 })
2221 
2222 #define pte_unmap_unlock(pte, ptl)	do {		\
2223 	spin_unlock(ptl);				\
2224 	pte_unmap(pte);					\
2225 } while (0)
2226 
2227 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2228 
2229 #define pte_alloc_map(mm, pmd, address)			\
2230 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2231 
2232 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2233 	(pte_alloc(mm, pmd) ?			\
2234 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2235 
2236 #define pte_alloc_kernel(pmd, address)			\
2237 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2238 		NULL: pte_offset_kernel(pmd, address))
2239 
2240 #if USE_SPLIT_PMD_PTLOCKS
2241 
2242 static struct page *pmd_to_page(pmd_t *pmd)
2243 {
2244 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2245 	return virt_to_page((void *)((unsigned long) pmd & mask));
2246 }
2247 
2248 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2249 {
2250 	return ptlock_ptr(pmd_to_page(pmd));
2251 }
2252 
2253 static inline bool pmd_ptlock_init(struct page *page)
2254 {
2255 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2256 	page->pmd_huge_pte = NULL;
2257 #endif
2258 	return ptlock_init(page);
2259 }
2260 
2261 static inline void pmd_ptlock_free(struct page *page)
2262 {
2263 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2264 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2265 #endif
2266 	ptlock_free(page);
2267 }
2268 
2269 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2270 
2271 #else
2272 
2273 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2274 {
2275 	return &mm->page_table_lock;
2276 }
2277 
2278 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2279 static inline void pmd_ptlock_free(struct page *page) {}
2280 
2281 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2282 
2283 #endif
2284 
2285 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2286 {
2287 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2288 	spin_lock(ptl);
2289 	return ptl;
2290 }
2291 
2292 static inline bool pgtable_pmd_page_ctor(struct page *page)
2293 {
2294 	if (!pmd_ptlock_init(page))
2295 		return false;
2296 	__SetPageTable(page);
2297 	inc_lruvec_page_state(page, NR_PAGETABLE);
2298 	return true;
2299 }
2300 
2301 static inline void pgtable_pmd_page_dtor(struct page *page)
2302 {
2303 	pmd_ptlock_free(page);
2304 	__ClearPageTable(page);
2305 	dec_lruvec_page_state(page, NR_PAGETABLE);
2306 }
2307 
2308 /*
2309  * No scalability reason to split PUD locks yet, but follow the same pattern
2310  * as the PMD locks to make it easier if we decide to.  The VM should not be
2311  * considered ready to switch to split PUD locks yet; there may be places
2312  * which need to be converted from page_table_lock.
2313  */
2314 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2315 {
2316 	return &mm->page_table_lock;
2317 }
2318 
2319 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2320 {
2321 	spinlock_t *ptl = pud_lockptr(mm, pud);
2322 
2323 	spin_lock(ptl);
2324 	return ptl;
2325 }
2326 
2327 extern void __init pagecache_init(void);
2328 extern void __init free_area_init_memoryless_node(int nid);
2329 extern void free_initmem(void);
2330 
2331 /*
2332  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2333  * into the buddy system. The freed pages will be poisoned with pattern
2334  * "poison" if it's within range [0, UCHAR_MAX].
2335  * Return pages freed into the buddy system.
2336  */
2337 extern unsigned long free_reserved_area(void *start, void *end,
2338 					int poison, const char *s);
2339 
2340 #ifdef	CONFIG_HIGHMEM
2341 /*
2342  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2343  * and totalram_pages.
2344  */
2345 extern void free_highmem_page(struct page *page);
2346 #endif
2347 
2348 extern void adjust_managed_page_count(struct page *page, long count);
2349 extern void mem_init_print_info(const char *str);
2350 
2351 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2352 
2353 /* Free the reserved page into the buddy system, so it gets managed. */
2354 static inline void __free_reserved_page(struct page *page)
2355 {
2356 	ClearPageReserved(page);
2357 	init_page_count(page);
2358 	__free_page(page);
2359 }
2360 
2361 static inline void free_reserved_page(struct page *page)
2362 {
2363 	__free_reserved_page(page);
2364 	adjust_managed_page_count(page, 1);
2365 }
2366 
2367 static inline void mark_page_reserved(struct page *page)
2368 {
2369 	SetPageReserved(page);
2370 	adjust_managed_page_count(page, -1);
2371 }
2372 
2373 /*
2374  * Default method to free all the __init memory into the buddy system.
2375  * The freed pages will be poisoned with pattern "poison" if it's within
2376  * range [0, UCHAR_MAX].
2377  * Return pages freed into the buddy system.
2378  */
2379 static inline unsigned long free_initmem_default(int poison)
2380 {
2381 	extern char __init_begin[], __init_end[];
2382 
2383 	return free_reserved_area(&__init_begin, &__init_end,
2384 				  poison, "unused kernel");
2385 }
2386 
2387 static inline unsigned long get_num_physpages(void)
2388 {
2389 	int nid;
2390 	unsigned long phys_pages = 0;
2391 
2392 	for_each_online_node(nid)
2393 		phys_pages += node_present_pages(nid);
2394 
2395 	return phys_pages;
2396 }
2397 
2398 /*
2399  * Using memblock node mappings, an architecture may initialise its
2400  * zones, allocate the backing mem_map and account for memory holes in an
2401  * architecture independent manner.
2402  *
2403  * An architecture is expected to register range of page frames backed by
2404  * physical memory with memblock_add[_node]() before calling
2405  * free_area_init() passing in the PFN each zone ends at. At a basic
2406  * usage, an architecture is expected to do something like
2407  *
2408  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2409  * 							 max_highmem_pfn};
2410  * for_each_valid_physical_page_range()
2411  * 	memblock_add_node(base, size, nid)
2412  * free_area_init(max_zone_pfns);
2413  */
2414 void free_area_init(unsigned long *max_zone_pfn);
2415 unsigned long node_map_pfn_alignment(void);
2416 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2417 						unsigned long end_pfn);
2418 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2419 						unsigned long end_pfn);
2420 extern void get_pfn_range_for_nid(unsigned int nid,
2421 			unsigned long *start_pfn, unsigned long *end_pfn);
2422 extern unsigned long find_min_pfn_with_active_regions(void);
2423 
2424 #ifndef CONFIG_NEED_MULTIPLE_NODES
2425 static inline int early_pfn_to_nid(unsigned long pfn)
2426 {
2427 	return 0;
2428 }
2429 #else
2430 /* please see mm/page_alloc.c */
2431 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2432 #endif
2433 
2434 extern void set_dma_reserve(unsigned long new_dma_reserve);
2435 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2436 		enum meminit_context, struct vmem_altmap *, int migratetype);
2437 extern void setup_per_zone_wmarks(void);
2438 extern int __meminit init_per_zone_wmark_min(void);
2439 extern void mem_init(void);
2440 extern void __init mmap_init(void);
2441 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2442 extern long si_mem_available(void);
2443 extern void si_meminfo(struct sysinfo * val);
2444 extern void si_meminfo_node(struct sysinfo *val, int nid);
2445 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2446 extern unsigned long arch_reserved_kernel_pages(void);
2447 #endif
2448 
2449 extern __printf(3, 4)
2450 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2451 
2452 extern void setup_per_cpu_pageset(void);
2453 
2454 /* page_alloc.c */
2455 extern int min_free_kbytes;
2456 extern int watermark_boost_factor;
2457 extern int watermark_scale_factor;
2458 extern bool arch_has_descending_max_zone_pfns(void);
2459 
2460 /* nommu.c */
2461 extern atomic_long_t mmap_pages_allocated;
2462 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2463 
2464 /* interval_tree.c */
2465 void vma_interval_tree_insert(struct vm_area_struct *node,
2466 			      struct rb_root_cached *root);
2467 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2468 				    struct vm_area_struct *prev,
2469 				    struct rb_root_cached *root);
2470 void vma_interval_tree_remove(struct vm_area_struct *node,
2471 			      struct rb_root_cached *root);
2472 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2473 				unsigned long start, unsigned long last);
2474 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2475 				unsigned long start, unsigned long last);
2476 
2477 #define vma_interval_tree_foreach(vma, root, start, last)		\
2478 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2479 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2480 
2481 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2482 				   struct rb_root_cached *root);
2483 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2484 				   struct rb_root_cached *root);
2485 struct anon_vma_chain *
2486 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2487 				  unsigned long start, unsigned long last);
2488 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2489 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2490 #ifdef CONFIG_DEBUG_VM_RB
2491 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2492 #endif
2493 
2494 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2495 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2496 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2497 
2498 /* mmap.c */
2499 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2500 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2501 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2502 	struct vm_area_struct *expand);
2503 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2504 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2505 {
2506 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2507 }
2508 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2509 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2510 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2511 	struct mempolicy *, struct vm_userfaultfd_ctx);
2512 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2513 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2514 	unsigned long addr, int new_below);
2515 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2516 	unsigned long addr, int new_below);
2517 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2518 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2519 	struct rb_node **, struct rb_node *);
2520 extern void unlink_file_vma(struct vm_area_struct *);
2521 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2522 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2523 	bool *need_rmap_locks);
2524 extern void exit_mmap(struct mm_struct *);
2525 
2526 static inline int check_data_rlimit(unsigned long rlim,
2527 				    unsigned long new,
2528 				    unsigned long start,
2529 				    unsigned long end_data,
2530 				    unsigned long start_data)
2531 {
2532 	if (rlim < RLIM_INFINITY) {
2533 		if (((new - start) + (end_data - start_data)) > rlim)
2534 			return -ENOSPC;
2535 	}
2536 
2537 	return 0;
2538 }
2539 
2540 extern int mm_take_all_locks(struct mm_struct *mm);
2541 extern void mm_drop_all_locks(struct mm_struct *mm);
2542 
2543 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2544 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2545 extern struct file *get_task_exe_file(struct task_struct *task);
2546 
2547 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2548 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2549 
2550 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2551 				   const struct vm_special_mapping *sm);
2552 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2553 				   unsigned long addr, unsigned long len,
2554 				   unsigned long flags,
2555 				   const struct vm_special_mapping *spec);
2556 /* This is an obsolete alternative to _install_special_mapping. */
2557 extern int install_special_mapping(struct mm_struct *mm,
2558 				   unsigned long addr, unsigned long len,
2559 				   unsigned long flags, struct page **pages);
2560 
2561 unsigned long randomize_stack_top(unsigned long stack_top);
2562 
2563 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2564 
2565 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2566 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2567 	struct list_head *uf);
2568 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2569 	unsigned long len, unsigned long prot, unsigned long flags,
2570 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2571 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2572 		       struct list_head *uf, bool downgrade);
2573 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2574 		     struct list_head *uf);
2575 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2576 
2577 #ifdef CONFIG_MMU
2578 extern int __mm_populate(unsigned long addr, unsigned long len,
2579 			 int ignore_errors);
2580 static inline void mm_populate(unsigned long addr, unsigned long len)
2581 {
2582 	/* Ignore errors */
2583 	(void) __mm_populate(addr, len, 1);
2584 }
2585 #else
2586 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2587 #endif
2588 
2589 /* These take the mm semaphore themselves */
2590 extern int __must_check vm_brk(unsigned long, unsigned long);
2591 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2592 extern int vm_munmap(unsigned long, size_t);
2593 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2594         unsigned long, unsigned long,
2595         unsigned long, unsigned long);
2596 
2597 struct vm_unmapped_area_info {
2598 #define VM_UNMAPPED_AREA_TOPDOWN 1
2599 	unsigned long flags;
2600 	unsigned long length;
2601 	unsigned long low_limit;
2602 	unsigned long high_limit;
2603 	unsigned long align_mask;
2604 	unsigned long align_offset;
2605 };
2606 
2607 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2608 
2609 /* truncate.c */
2610 extern void truncate_inode_pages(struct address_space *, loff_t);
2611 extern void truncate_inode_pages_range(struct address_space *,
2612 				       loff_t lstart, loff_t lend);
2613 extern void truncate_inode_pages_final(struct address_space *);
2614 
2615 /* generic vm_area_ops exported for stackable file systems */
2616 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2617 extern void filemap_map_pages(struct vm_fault *vmf,
2618 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2619 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2620 
2621 /* mm/page-writeback.c */
2622 int __must_check write_one_page(struct page *page);
2623 void task_dirty_inc(struct task_struct *tsk);
2624 
2625 extern unsigned long stack_guard_gap;
2626 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2627 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2628 
2629 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2630 extern int expand_downwards(struct vm_area_struct *vma,
2631 		unsigned long address);
2632 #if VM_GROWSUP
2633 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2634 #else
2635   #define expand_upwards(vma, address) (0)
2636 #endif
2637 
2638 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2639 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2640 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2641 					     struct vm_area_struct **pprev);
2642 
2643 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2644    NULL if none.  Assume start_addr < end_addr. */
2645 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2646 {
2647 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2648 
2649 	if (vma && end_addr <= vma->vm_start)
2650 		vma = NULL;
2651 	return vma;
2652 }
2653 
2654 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2655 {
2656 	unsigned long vm_start = vma->vm_start;
2657 
2658 	if (vma->vm_flags & VM_GROWSDOWN) {
2659 		vm_start -= stack_guard_gap;
2660 		if (vm_start > vma->vm_start)
2661 			vm_start = 0;
2662 	}
2663 	return vm_start;
2664 }
2665 
2666 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2667 {
2668 	unsigned long vm_end = vma->vm_end;
2669 
2670 	if (vma->vm_flags & VM_GROWSUP) {
2671 		vm_end += stack_guard_gap;
2672 		if (vm_end < vma->vm_end)
2673 			vm_end = -PAGE_SIZE;
2674 	}
2675 	return vm_end;
2676 }
2677 
2678 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2679 {
2680 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2681 }
2682 
2683 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2684 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2685 				unsigned long vm_start, unsigned long vm_end)
2686 {
2687 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2688 
2689 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2690 		vma = NULL;
2691 
2692 	return vma;
2693 }
2694 
2695 static inline bool range_in_vma(struct vm_area_struct *vma,
2696 				unsigned long start, unsigned long end)
2697 {
2698 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2699 }
2700 
2701 #ifdef CONFIG_MMU
2702 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2703 void vma_set_page_prot(struct vm_area_struct *vma);
2704 #else
2705 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2706 {
2707 	return __pgprot(0);
2708 }
2709 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2710 {
2711 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2712 }
2713 #endif
2714 
2715 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2716 
2717 #ifdef CONFIG_NUMA_BALANCING
2718 unsigned long change_prot_numa(struct vm_area_struct *vma,
2719 			unsigned long start, unsigned long end);
2720 #endif
2721 
2722 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2723 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2724 			unsigned long pfn, unsigned long size, pgprot_t);
2725 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2726 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2727 			struct page **pages, unsigned long *num);
2728 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2729 				unsigned long num);
2730 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2731 				unsigned long num);
2732 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2733 			unsigned long pfn);
2734 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2735 			unsigned long pfn, pgprot_t pgprot);
2736 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2737 			pfn_t pfn);
2738 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2739 			pfn_t pfn, pgprot_t pgprot);
2740 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2741 		unsigned long addr, pfn_t pfn);
2742 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2743 
2744 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2745 				unsigned long addr, struct page *page)
2746 {
2747 	int err = vm_insert_page(vma, addr, page);
2748 
2749 	if (err == -ENOMEM)
2750 		return VM_FAULT_OOM;
2751 	if (err < 0 && err != -EBUSY)
2752 		return VM_FAULT_SIGBUS;
2753 
2754 	return VM_FAULT_NOPAGE;
2755 }
2756 
2757 #ifndef io_remap_pfn_range
2758 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2759 				     unsigned long addr, unsigned long pfn,
2760 				     unsigned long size, pgprot_t prot)
2761 {
2762 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2763 }
2764 #endif
2765 
2766 static inline vm_fault_t vmf_error(int err)
2767 {
2768 	if (err == -ENOMEM)
2769 		return VM_FAULT_OOM;
2770 	return VM_FAULT_SIGBUS;
2771 }
2772 
2773 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2774 			 unsigned int foll_flags);
2775 
2776 #define FOLL_WRITE	0x01	/* check pte is writable */
2777 #define FOLL_TOUCH	0x02	/* mark page accessed */
2778 #define FOLL_GET	0x04	/* do get_page on page */
2779 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2780 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2781 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2782 				 * and return without waiting upon it */
2783 #define FOLL_POPULATE	0x40	/* fault in page */
2784 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2785 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2786 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2787 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2788 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2789 #define FOLL_MLOCK	0x1000	/* lock present pages */
2790 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2791 #define FOLL_COW	0x4000	/* internal GUP flag */
2792 #define FOLL_ANON	0x8000	/* don't do file mappings */
2793 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2794 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2795 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2796 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2797 
2798 /*
2799  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2800  * other. Here is what they mean, and how to use them:
2801  *
2802  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2803  * period _often_ under userspace control.  This is in contrast to
2804  * iov_iter_get_pages(), whose usages are transient.
2805  *
2806  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2807  * lifetime enforced by the filesystem and we need guarantees that longterm
2808  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2809  * the filesystem.  Ideas for this coordination include revoking the longterm
2810  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2811  * added after the problem with filesystems was found FS DAX VMAs are
2812  * specifically failed.  Filesystem pages are still subject to bugs and use of
2813  * FOLL_LONGTERM should be avoided on those pages.
2814  *
2815  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2816  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2817  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2818  * is due to an incompatibility with the FS DAX check and
2819  * FAULT_FLAG_ALLOW_RETRY.
2820  *
2821  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2822  * that region.  And so, CMA attempts to migrate the page before pinning, when
2823  * FOLL_LONGTERM is specified.
2824  *
2825  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2826  * but an additional pin counting system) will be invoked. This is intended for
2827  * anything that gets a page reference and then touches page data (for example,
2828  * Direct IO). This lets the filesystem know that some non-file-system entity is
2829  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2830  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2831  * a call to unpin_user_page().
2832  *
2833  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2834  * and separate refcounting mechanisms, however, and that means that each has
2835  * its own acquire and release mechanisms:
2836  *
2837  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2838  *
2839  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2840  *
2841  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2842  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2843  * calls applied to them, and that's perfectly OK. This is a constraint on the
2844  * callers, not on the pages.)
2845  *
2846  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2847  * directly by the caller. That's in order to help avoid mismatches when
2848  * releasing pages: get_user_pages*() pages must be released via put_page(),
2849  * while pin_user_pages*() pages must be released via unpin_user_page().
2850  *
2851  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2852  */
2853 
2854 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2855 {
2856 	if (vm_fault & VM_FAULT_OOM)
2857 		return -ENOMEM;
2858 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2859 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2860 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2861 		return -EFAULT;
2862 	return 0;
2863 }
2864 
2865 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2866 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2867 			       unsigned long size, pte_fn_t fn, void *data);
2868 extern int apply_to_existing_page_range(struct mm_struct *mm,
2869 				   unsigned long address, unsigned long size,
2870 				   pte_fn_t fn, void *data);
2871 
2872 extern void init_mem_debugging_and_hardening(void);
2873 #ifdef CONFIG_PAGE_POISONING
2874 extern void __kernel_poison_pages(struct page *page, int numpages);
2875 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2876 extern bool _page_poisoning_enabled_early;
2877 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2878 static inline bool page_poisoning_enabled(void)
2879 {
2880 	return _page_poisoning_enabled_early;
2881 }
2882 /*
2883  * For use in fast paths after init_mem_debugging() has run, or when a
2884  * false negative result is not harmful when called too early.
2885  */
2886 static inline bool page_poisoning_enabled_static(void)
2887 {
2888 	return static_branch_unlikely(&_page_poisoning_enabled);
2889 }
2890 static inline void kernel_poison_pages(struct page *page, int numpages)
2891 {
2892 	if (page_poisoning_enabled_static())
2893 		__kernel_poison_pages(page, numpages);
2894 }
2895 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2896 {
2897 	if (page_poisoning_enabled_static())
2898 		__kernel_unpoison_pages(page, numpages);
2899 }
2900 #else
2901 static inline bool page_poisoning_enabled(void) { return false; }
2902 static inline bool page_poisoning_enabled_static(void) { return false; }
2903 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2904 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2905 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2906 #endif
2907 
2908 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2909 static inline bool want_init_on_alloc(gfp_t flags)
2910 {
2911 	if (static_branch_unlikely(&init_on_alloc))
2912 		return true;
2913 	return flags & __GFP_ZERO;
2914 }
2915 
2916 DECLARE_STATIC_KEY_FALSE(init_on_free);
2917 static inline bool want_init_on_free(void)
2918 {
2919 	return static_branch_unlikely(&init_on_free);
2920 }
2921 
2922 extern bool _debug_pagealloc_enabled_early;
2923 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2924 
2925 static inline bool debug_pagealloc_enabled(void)
2926 {
2927 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2928 		_debug_pagealloc_enabled_early;
2929 }
2930 
2931 /*
2932  * For use in fast paths after init_debug_pagealloc() has run, or when a
2933  * false negative result is not harmful when called too early.
2934  */
2935 static inline bool debug_pagealloc_enabled_static(void)
2936 {
2937 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2938 		return false;
2939 
2940 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2941 }
2942 
2943 #ifdef CONFIG_DEBUG_PAGEALLOC
2944 /*
2945  * To support DEBUG_PAGEALLOC architecture must ensure that
2946  * __kernel_map_pages() never fails
2947  */
2948 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2949 
2950 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2951 {
2952 	if (debug_pagealloc_enabled_static())
2953 		__kernel_map_pages(page, numpages, 1);
2954 }
2955 
2956 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2957 {
2958 	if (debug_pagealloc_enabled_static())
2959 		__kernel_map_pages(page, numpages, 0);
2960 }
2961 #else	/* CONFIG_DEBUG_PAGEALLOC */
2962 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2963 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2964 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2965 
2966 #ifdef __HAVE_ARCH_GATE_AREA
2967 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2968 extern int in_gate_area_no_mm(unsigned long addr);
2969 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2970 #else
2971 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2972 {
2973 	return NULL;
2974 }
2975 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2976 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2977 {
2978 	return 0;
2979 }
2980 #endif	/* __HAVE_ARCH_GATE_AREA */
2981 
2982 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2983 
2984 #ifdef CONFIG_SYSCTL
2985 extern int sysctl_drop_caches;
2986 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2987 		loff_t *);
2988 #endif
2989 
2990 void drop_slab(void);
2991 void drop_slab_node(int nid);
2992 
2993 #ifndef CONFIG_MMU
2994 #define randomize_va_space 0
2995 #else
2996 extern int randomize_va_space;
2997 #endif
2998 
2999 const char * arch_vma_name(struct vm_area_struct *vma);
3000 #ifdef CONFIG_MMU
3001 void print_vma_addr(char *prefix, unsigned long rip);
3002 #else
3003 static inline void print_vma_addr(char *prefix, unsigned long rip)
3004 {
3005 }
3006 #endif
3007 
3008 void *sparse_buffer_alloc(unsigned long size);
3009 struct page * __populate_section_memmap(unsigned long pfn,
3010 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3011 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3012 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3013 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3014 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3015 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3016 			    struct vmem_altmap *altmap);
3017 void *vmemmap_alloc_block(unsigned long size, int node);
3018 struct vmem_altmap;
3019 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3020 			      struct vmem_altmap *altmap);
3021 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3022 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3023 			       int node, struct vmem_altmap *altmap);
3024 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3025 		struct vmem_altmap *altmap);
3026 void vmemmap_populate_print_last(void);
3027 #ifdef CONFIG_MEMORY_HOTPLUG
3028 void vmemmap_free(unsigned long start, unsigned long end,
3029 		struct vmem_altmap *altmap);
3030 #endif
3031 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3032 				  unsigned long nr_pages);
3033 
3034 enum mf_flags {
3035 	MF_COUNT_INCREASED = 1 << 0,
3036 	MF_ACTION_REQUIRED = 1 << 1,
3037 	MF_MUST_KILL = 1 << 2,
3038 	MF_SOFT_OFFLINE = 1 << 3,
3039 };
3040 extern int memory_failure(unsigned long pfn, int flags);
3041 extern void memory_failure_queue(unsigned long pfn, int flags);
3042 extern void memory_failure_queue_kick(int cpu);
3043 extern int unpoison_memory(unsigned long pfn);
3044 extern int sysctl_memory_failure_early_kill;
3045 extern int sysctl_memory_failure_recovery;
3046 extern void shake_page(struct page *p, int access);
3047 extern atomic_long_t num_poisoned_pages __read_mostly;
3048 extern int soft_offline_page(unsigned long pfn, int flags);
3049 
3050 
3051 /*
3052  * Error handlers for various types of pages.
3053  */
3054 enum mf_result {
3055 	MF_IGNORED,	/* Error: cannot be handled */
3056 	MF_FAILED,	/* Error: handling failed */
3057 	MF_DELAYED,	/* Will be handled later */
3058 	MF_RECOVERED,	/* Successfully recovered */
3059 };
3060 
3061 enum mf_action_page_type {
3062 	MF_MSG_KERNEL,
3063 	MF_MSG_KERNEL_HIGH_ORDER,
3064 	MF_MSG_SLAB,
3065 	MF_MSG_DIFFERENT_COMPOUND,
3066 	MF_MSG_POISONED_HUGE,
3067 	MF_MSG_HUGE,
3068 	MF_MSG_FREE_HUGE,
3069 	MF_MSG_NON_PMD_HUGE,
3070 	MF_MSG_UNMAP_FAILED,
3071 	MF_MSG_DIRTY_SWAPCACHE,
3072 	MF_MSG_CLEAN_SWAPCACHE,
3073 	MF_MSG_DIRTY_MLOCKED_LRU,
3074 	MF_MSG_CLEAN_MLOCKED_LRU,
3075 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3076 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3077 	MF_MSG_DIRTY_LRU,
3078 	MF_MSG_CLEAN_LRU,
3079 	MF_MSG_TRUNCATED_LRU,
3080 	MF_MSG_BUDDY,
3081 	MF_MSG_BUDDY_2ND,
3082 	MF_MSG_DAX,
3083 	MF_MSG_UNSPLIT_THP,
3084 	MF_MSG_UNKNOWN,
3085 };
3086 
3087 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3088 extern void clear_huge_page(struct page *page,
3089 			    unsigned long addr_hint,
3090 			    unsigned int pages_per_huge_page);
3091 extern void copy_user_huge_page(struct page *dst, struct page *src,
3092 				unsigned long addr_hint,
3093 				struct vm_area_struct *vma,
3094 				unsigned int pages_per_huge_page);
3095 extern long copy_huge_page_from_user(struct page *dst_page,
3096 				const void __user *usr_src,
3097 				unsigned int pages_per_huge_page,
3098 				bool allow_pagefault);
3099 
3100 /**
3101  * vma_is_special_huge - Are transhuge page-table entries considered special?
3102  * @vma: Pointer to the struct vm_area_struct to consider
3103  *
3104  * Whether transhuge page-table entries are considered "special" following
3105  * the definition in vm_normal_page().
3106  *
3107  * Return: true if transhuge page-table entries should be considered special,
3108  * false otherwise.
3109  */
3110 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3111 {
3112 	return vma_is_dax(vma) || (vma->vm_file &&
3113 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3114 }
3115 
3116 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3117 
3118 #ifdef CONFIG_DEBUG_PAGEALLOC
3119 extern unsigned int _debug_guardpage_minorder;
3120 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3121 
3122 static inline unsigned int debug_guardpage_minorder(void)
3123 {
3124 	return _debug_guardpage_minorder;
3125 }
3126 
3127 static inline bool debug_guardpage_enabled(void)
3128 {
3129 	return static_branch_unlikely(&_debug_guardpage_enabled);
3130 }
3131 
3132 static inline bool page_is_guard(struct page *page)
3133 {
3134 	if (!debug_guardpage_enabled())
3135 		return false;
3136 
3137 	return PageGuard(page);
3138 }
3139 #else
3140 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3141 static inline bool debug_guardpage_enabled(void) { return false; }
3142 static inline bool page_is_guard(struct page *page) { return false; }
3143 #endif /* CONFIG_DEBUG_PAGEALLOC */
3144 
3145 #if MAX_NUMNODES > 1
3146 void __init setup_nr_node_ids(void);
3147 #else
3148 static inline void setup_nr_node_ids(void) {}
3149 #endif
3150 
3151 extern int memcmp_pages(struct page *page1, struct page *page2);
3152 
3153 static inline int pages_identical(struct page *page1, struct page *page2)
3154 {
3155 	return !memcmp_pages(page1, page2);
3156 }
3157 
3158 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3159 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3160 						pgoff_t first_index, pgoff_t nr,
3161 						pgoff_t bitmap_pgoff,
3162 						unsigned long *bitmap,
3163 						pgoff_t *start,
3164 						pgoff_t *end);
3165 
3166 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3167 				      pgoff_t first_index, pgoff_t nr);
3168 #endif
3169 
3170 extern int sysctl_nr_trim_pages;
3171 
3172 #endif /* __KERNEL__ */
3173 #endif /* _LINUX_MM_H */
3174