xref: /linux-6.15/include/linux/mm.h (revision dae2d288)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for architectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * To prevent common memory management code establishing
129  * a zero page mapping on a read fault.
130  * This macro should be defined within <asm/pgtable.h>.
131  * s390 does this to prevent multiplexing of hardware bits
132  * related to the physical page in case of virtualization.
133  */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X)	(0)
136 #endif
137 
138 /*
139  * On some architectures it is expensive to call memset() for small sizes.
140  * If an architecture decides to implement their own version of
141  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142  * define their own version of this macro in <asm/pgtable.h>
143  */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146  * or reduces below 56. The idea that compiler optimizes out switch()
147  * statement, and only leaves move/store instructions. Also the compiler can
148  * combine write statements if they are both assignments and can be reordered,
149  * this can result in several of the writes here being dropped.
150  */
151 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 	unsigned long *_pp = (void *)page;
155 
156 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 	BUILD_BUG_ON(sizeof(struct page) & 7);
158 	BUILD_BUG_ON(sizeof(struct page) < 56);
159 	BUILD_BUG_ON(sizeof(struct page) > 80);
160 
161 	switch (sizeof(struct page)) {
162 	case 80:
163 		_pp[9] = 0;
164 		fallthrough;
165 	case 72:
166 		_pp[8] = 0;
167 		fallthrough;
168 	case 64:
169 		_pp[7] = 0;
170 		fallthrough;
171 	case 56:
172 		_pp[6] = 0;
173 		_pp[5] = 0;
174 		_pp[4] = 0;
175 		_pp[3] = 0;
176 		_pp[2] = 0;
177 		_pp[1] = 0;
178 		_pp[0] = 0;
179 	}
180 }
181 #else
182 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184 
185 /*
186  * Default maximum number of active map areas, this limits the number of vmas
187  * per mm struct. Users can overwrite this number by sysctl but there is a
188  * problem.
189  *
190  * When a program's coredump is generated as ELF format, a section is created
191  * per a vma. In ELF, the number of sections is represented in unsigned short.
192  * This means the number of sections should be smaller than 65535 at coredump.
193  * Because the kernel adds some informative sections to a image of program at
194  * generating coredump, we need some margin. The number of extra sections is
195  * 1-3 now and depends on arch. We use "5" as safe margin, here.
196  *
197  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198  * not a hard limit any more. Although some userspace tools can be surprised by
199  * that.
200  */
201 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
202 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 
204 extern int sysctl_max_map_count;
205 
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208 
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212 
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 /*
220  * Any attempt to mark this function as static leads to build failure
221  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222  * is referred to by BPF code. This must be visible for error injection.
223  */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 		pgoff_t index, gfp_t gfp, void **shadowp);
226 
227 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
228 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
229 #else
230 #define nth_page(page,n) ((page) + (n))
231 #endif
232 
233 /* to align the pointer to the (next) page boundary */
234 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
235 
236 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
237 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
238 
239 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
240 
241 void setup_initial_init_mm(void *start_code, void *end_code,
242 			   void *end_data, void *brk);
243 
244 /*
245  * Linux kernel virtual memory manager primitives.
246  * The idea being to have a "virtual" mm in the same way
247  * we have a virtual fs - giving a cleaner interface to the
248  * mm details, and allowing different kinds of memory mappings
249  * (from shared memory to executable loading to arbitrary
250  * mmap() functions).
251  */
252 
253 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
254 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
255 void vm_area_free(struct vm_area_struct *);
256 
257 #ifndef CONFIG_MMU
258 extern struct rb_root nommu_region_tree;
259 extern struct rw_semaphore nommu_region_sem;
260 
261 extern unsigned int kobjsize(const void *objp);
262 #endif
263 
264 /*
265  * vm_flags in vm_area_struct, see mm_types.h.
266  * When changing, update also include/trace/events/mmflags.h
267  */
268 #define VM_NONE		0x00000000
269 
270 #define VM_READ		0x00000001	/* currently active flags */
271 #define VM_WRITE	0x00000002
272 #define VM_EXEC		0x00000004
273 #define VM_SHARED	0x00000008
274 
275 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
276 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
277 #define VM_MAYWRITE	0x00000020
278 #define VM_MAYEXEC	0x00000040
279 #define VM_MAYSHARE	0x00000080
280 
281 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
282 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
283 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
284 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328 
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
333 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4  0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341 
342 #if defined(CONFIG_X86)
343 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP	VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP	VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR	VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR	VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
358 #endif
359 
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
363 #else
364 # define VM_MTE		VM_NONE
365 # define VM_MTE_ALLOWED	VM_NONE
366 #endif
367 
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP	VM_NONE
370 #endif
371 
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT	37
374 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR		VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378 
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
381 
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383 
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
388 				 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
390 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391 
392 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
394 #endif
395 
396 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399 
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK	VM_GROWSUP
402 #else
403 #define VM_STACK	VM_GROWSDOWN
404 #endif
405 
406 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407 
408 /* VMA basic access permission flags */
409 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410 
411 
412 /*
413  * Special vmas that are non-mergable, non-mlock()able.
414  */
415 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
416 
417 /* This mask prevents VMA from being scanned with khugepaged */
418 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419 
420 /* This mask defines which mm->def_flags a process can inherit its parent */
421 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
422 
423 /* This mask is used to clear all the VMA flags used by mlock */
424 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
425 
426 /* Arch-specific flags to clear when updating VM flags on protection change */
427 #ifndef VM_ARCH_CLEAR
428 # define VM_ARCH_CLEAR	VM_NONE
429 #endif
430 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431 
432 /*
433  * mapping from the currently active vm_flags protection bits (the
434  * low four bits) to a page protection mask..
435  */
436 extern pgprot_t protection_map[16];
437 
438 /**
439  * enum fault_flag - Fault flag definitions.
440  * @FAULT_FLAG_WRITE: Fault was a write fault.
441  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
442  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
443  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
444  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
445  * @FAULT_FLAG_TRIED: The fault has been tried once.
446  * @FAULT_FLAG_USER: The fault originated in userspace.
447  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
448  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
449  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
450  *
451  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
452  * whether we would allow page faults to retry by specifying these two
453  * fault flags correctly.  Currently there can be three legal combinations:
454  *
455  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
456  *                              this is the first try
457  *
458  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
459  *                              we've already tried at least once
460  *
461  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
462  *
463  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
464  * be used.  Note that page faults can be allowed to retry for multiple times,
465  * in which case we'll have an initial fault with flags (a) then later on
466  * continuous faults with flags (b).  We should always try to detect pending
467  * signals before a retry to make sure the continuous page faults can still be
468  * interrupted if necessary.
469  */
470 enum fault_flag {
471 	FAULT_FLAG_WRITE =		1 << 0,
472 	FAULT_FLAG_MKWRITE =		1 << 1,
473 	FAULT_FLAG_ALLOW_RETRY =	1 << 2,
474 	FAULT_FLAG_RETRY_NOWAIT = 	1 << 3,
475 	FAULT_FLAG_KILLABLE =		1 << 4,
476 	FAULT_FLAG_TRIED = 		1 << 5,
477 	FAULT_FLAG_USER =		1 << 6,
478 	FAULT_FLAG_REMOTE =		1 << 7,
479 	FAULT_FLAG_INSTRUCTION =	1 << 8,
480 	FAULT_FLAG_INTERRUPTIBLE =	1 << 9,
481 };
482 
483 /*
484  * The default fault flags that should be used by most of the
485  * arch-specific page fault handlers.
486  */
487 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
488 			     FAULT_FLAG_KILLABLE | \
489 			     FAULT_FLAG_INTERRUPTIBLE)
490 
491 /**
492  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493  * @flags: Fault flags.
494  *
495  * This is mostly used for places where we want to try to avoid taking
496  * the mmap_lock for too long a time when waiting for another condition
497  * to change, in which case we can try to be polite to release the
498  * mmap_lock in the first round to avoid potential starvation of other
499  * processes that would also want the mmap_lock.
500  *
501  * Return: true if the page fault allows retry and this is the first
502  * attempt of the fault handling; false otherwise.
503  */
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 	    (!(flags & FAULT_FLAG_TRIED));
508 }
509 
510 #define FAULT_FLAG_TRACE \
511 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
512 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
513 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
514 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
515 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
516 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
517 	{ FAULT_FLAG_USER,		"USER" }, \
518 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
519 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
520 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
521 
522 /*
523  * vm_fault is filled by the pagefault handler and passed to the vma's
524  * ->fault function. The vma's ->fault is responsible for returning a bitmask
525  * of VM_FAULT_xxx flags that give details about how the fault was handled.
526  *
527  * MM layer fills up gfp_mask for page allocations but fault handler might
528  * alter it if its implementation requires a different allocation context.
529  *
530  * pgoff should be used in favour of virtual_address, if possible.
531  */
532 struct vm_fault {
533 	const struct {
534 		struct vm_area_struct *vma;	/* Target VMA */
535 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
536 		pgoff_t pgoff;			/* Logical page offset based on vma */
537 		unsigned long address;		/* Faulting virtual address */
538 	};
539 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
540 					 * XXX: should really be 'const' */
541 	pmd_t *pmd;			/* Pointer to pmd entry matching
542 					 * the 'address' */
543 	pud_t *pud;			/* Pointer to pud entry matching
544 					 * the 'address'
545 					 */
546 	union {
547 		pte_t orig_pte;		/* Value of PTE at the time of fault */
548 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
549 					 * used by PMD fault only.
550 					 */
551 	};
552 
553 	struct page *cow_page;		/* Page handler may use for COW fault */
554 	struct page *page;		/* ->fault handlers should return a
555 					 * page here, unless VM_FAULT_NOPAGE
556 					 * is set (which is also implied by
557 					 * VM_FAULT_ERROR).
558 					 */
559 	/* These three entries are valid only while holding ptl lock */
560 	pte_t *pte;			/* Pointer to pte entry matching
561 					 * the 'address'. NULL if the page
562 					 * table hasn't been allocated.
563 					 */
564 	spinlock_t *ptl;		/* Page table lock.
565 					 * Protects pte page table if 'pte'
566 					 * is not NULL, otherwise pmd.
567 					 */
568 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
569 					 * vm_ops->map_pages() sets up a page
570 					 * table from atomic context.
571 					 * do_fault_around() pre-allocates
572 					 * page table to avoid allocation from
573 					 * atomic context.
574 					 */
575 };
576 
577 /* page entry size for vm->huge_fault() */
578 enum page_entry_size {
579 	PE_SIZE_PTE = 0,
580 	PE_SIZE_PMD,
581 	PE_SIZE_PUD,
582 };
583 
584 /*
585  * These are the virtual MM functions - opening of an area, closing and
586  * unmapping it (needed to keep files on disk up-to-date etc), pointer
587  * to the functions called when a no-page or a wp-page exception occurs.
588  */
589 struct vm_operations_struct {
590 	void (*open)(struct vm_area_struct * area);
591 	void (*close)(struct vm_area_struct * area);
592 	/* Called any time before splitting to check if it's allowed */
593 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
594 	int (*mremap)(struct vm_area_struct *area);
595 	/*
596 	 * Called by mprotect() to make driver-specific permission
597 	 * checks before mprotect() is finalised.   The VMA must not
598 	 * be modified.  Returns 0 if eprotect() can proceed.
599 	 */
600 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
601 			unsigned long end, unsigned long newflags);
602 	vm_fault_t (*fault)(struct vm_fault *vmf);
603 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
604 			enum page_entry_size pe_size);
605 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
606 			pgoff_t start_pgoff, pgoff_t end_pgoff);
607 	unsigned long (*pagesize)(struct vm_area_struct * area);
608 
609 	/* notification that a previously read-only page is about to become
610 	 * writable, if an error is returned it will cause a SIGBUS */
611 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
612 
613 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
614 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
615 
616 	/* called by access_process_vm when get_user_pages() fails, typically
617 	 * for use by special VMAs. See also generic_access_phys() for a generic
618 	 * implementation useful for any iomem mapping.
619 	 */
620 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
621 		      void *buf, int len, int write);
622 
623 	/* Called by the /proc/PID/maps code to ask the vma whether it
624 	 * has a special name.  Returning non-NULL will also cause this
625 	 * vma to be dumped unconditionally. */
626 	const char *(*name)(struct vm_area_struct *vma);
627 
628 #ifdef CONFIG_NUMA
629 	/*
630 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
631 	 * to hold the policy upon return.  Caller should pass NULL @new to
632 	 * remove a policy and fall back to surrounding context--i.e. do not
633 	 * install a MPOL_DEFAULT policy, nor the task or system default
634 	 * mempolicy.
635 	 */
636 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
637 
638 	/*
639 	 * get_policy() op must add reference [mpol_get()] to any policy at
640 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
641 	 * in mm/mempolicy.c will do this automatically.
642 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
643 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
644 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
645 	 * must return NULL--i.e., do not "fallback" to task or system default
646 	 * policy.
647 	 */
648 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
649 					unsigned long addr);
650 #endif
651 	/*
652 	 * Called by vm_normal_page() for special PTEs to find the
653 	 * page for @addr.  This is useful if the default behavior
654 	 * (using pte_page()) would not find the correct page.
655 	 */
656 	struct page *(*find_special_page)(struct vm_area_struct *vma,
657 					  unsigned long addr);
658 };
659 
660 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
661 {
662 	static const struct vm_operations_struct dummy_vm_ops = {};
663 
664 	memset(vma, 0, sizeof(*vma));
665 	vma->vm_mm = mm;
666 	vma->vm_ops = &dummy_vm_ops;
667 	INIT_LIST_HEAD(&vma->anon_vma_chain);
668 }
669 
670 static inline void vma_set_anonymous(struct vm_area_struct *vma)
671 {
672 	vma->vm_ops = NULL;
673 }
674 
675 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
676 {
677 	return !vma->vm_ops;
678 }
679 
680 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
681 {
682 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
683 
684 	if (!maybe_stack)
685 		return false;
686 
687 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
688 						VM_STACK_INCOMPLETE_SETUP)
689 		return true;
690 
691 	return false;
692 }
693 
694 static inline bool vma_is_foreign(struct vm_area_struct *vma)
695 {
696 	if (!current->mm)
697 		return true;
698 
699 	if (current->mm != vma->vm_mm)
700 		return true;
701 
702 	return false;
703 }
704 
705 static inline bool vma_is_accessible(struct vm_area_struct *vma)
706 {
707 	return vma->vm_flags & VM_ACCESS_FLAGS;
708 }
709 
710 #ifdef CONFIG_SHMEM
711 /*
712  * The vma_is_shmem is not inline because it is used only by slow
713  * paths in userfault.
714  */
715 bool vma_is_shmem(struct vm_area_struct *vma);
716 #else
717 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
718 #endif
719 
720 int vma_is_stack_for_current(struct vm_area_struct *vma);
721 
722 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
723 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
724 
725 struct mmu_gather;
726 struct inode;
727 
728 #include <linux/huge_mm.h>
729 
730 /*
731  * Methods to modify the page usage count.
732  *
733  * What counts for a page usage:
734  * - cache mapping   (page->mapping)
735  * - private data    (page->private)
736  * - page mapped in a task's page tables, each mapping
737  *   is counted separately
738  *
739  * Also, many kernel routines increase the page count before a critical
740  * routine so they can be sure the page doesn't go away from under them.
741  */
742 
743 /*
744  * Drop a ref, return true if the refcount fell to zero (the page has no users)
745  */
746 static inline int put_page_testzero(struct page *page)
747 {
748 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
749 	return page_ref_dec_and_test(page);
750 }
751 
752 /*
753  * Try to grab a ref unless the page has a refcount of zero, return false if
754  * that is the case.
755  * This can be called when MMU is off so it must not access
756  * any of the virtual mappings.
757  */
758 static inline int get_page_unless_zero(struct page *page)
759 {
760 	return page_ref_add_unless(page, 1, 0);
761 }
762 
763 extern int page_is_ram(unsigned long pfn);
764 
765 enum {
766 	REGION_INTERSECTS,
767 	REGION_DISJOINT,
768 	REGION_MIXED,
769 };
770 
771 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
772 		      unsigned long desc);
773 
774 /* Support for virtually mapped pages */
775 struct page *vmalloc_to_page(const void *addr);
776 unsigned long vmalloc_to_pfn(const void *addr);
777 
778 /*
779  * Determine if an address is within the vmalloc range
780  *
781  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
782  * is no special casing required.
783  */
784 
785 #ifndef is_ioremap_addr
786 #define is_ioremap_addr(x) is_vmalloc_addr(x)
787 #endif
788 
789 #ifdef CONFIG_MMU
790 extern bool is_vmalloc_addr(const void *x);
791 extern int is_vmalloc_or_module_addr(const void *x);
792 #else
793 static inline bool is_vmalloc_addr(const void *x)
794 {
795 	return false;
796 }
797 static inline int is_vmalloc_or_module_addr(const void *x)
798 {
799 	return 0;
800 }
801 #endif
802 
803 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
804 static inline void *kvmalloc(size_t size, gfp_t flags)
805 {
806 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
807 }
808 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
809 {
810 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
811 }
812 static inline void *kvzalloc(size_t size, gfp_t flags)
813 {
814 	return kvmalloc(size, flags | __GFP_ZERO);
815 }
816 
817 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
818 {
819 	size_t bytes;
820 
821 	if (unlikely(check_mul_overflow(n, size, &bytes)))
822 		return NULL;
823 
824 	return kvmalloc(bytes, flags);
825 }
826 
827 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
828 {
829 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
830 }
831 
832 extern void kvfree(const void *addr);
833 extern void kvfree_sensitive(const void *addr, size_t len);
834 
835 static inline int head_compound_mapcount(struct page *head)
836 {
837 	return atomic_read(compound_mapcount_ptr(head)) + 1;
838 }
839 
840 /*
841  * Mapcount of compound page as a whole, does not include mapped sub-pages.
842  *
843  * Must be called only for compound pages or any their tail sub-pages.
844  */
845 static inline int compound_mapcount(struct page *page)
846 {
847 	VM_BUG_ON_PAGE(!PageCompound(page), page);
848 	page = compound_head(page);
849 	return head_compound_mapcount(page);
850 }
851 
852 /*
853  * The atomic page->_mapcount, starts from -1: so that transitions
854  * both from it and to it can be tracked, using atomic_inc_and_test
855  * and atomic_add_negative(-1).
856  */
857 static inline void page_mapcount_reset(struct page *page)
858 {
859 	atomic_set(&(page)->_mapcount, -1);
860 }
861 
862 int __page_mapcount(struct page *page);
863 
864 /*
865  * Mapcount of 0-order page; when compound sub-page, includes
866  * compound_mapcount().
867  *
868  * Result is undefined for pages which cannot be mapped into userspace.
869  * For example SLAB or special types of pages. See function page_has_type().
870  * They use this place in struct page differently.
871  */
872 static inline int page_mapcount(struct page *page)
873 {
874 	if (unlikely(PageCompound(page)))
875 		return __page_mapcount(page);
876 	return atomic_read(&page->_mapcount) + 1;
877 }
878 
879 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
880 int total_mapcount(struct page *page);
881 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
882 #else
883 static inline int total_mapcount(struct page *page)
884 {
885 	return page_mapcount(page);
886 }
887 static inline int page_trans_huge_mapcount(struct page *page,
888 					   int *total_mapcount)
889 {
890 	int mapcount = page_mapcount(page);
891 	if (total_mapcount)
892 		*total_mapcount = mapcount;
893 	return mapcount;
894 }
895 #endif
896 
897 static inline struct page *virt_to_head_page(const void *x)
898 {
899 	struct page *page = virt_to_page(x);
900 
901 	return compound_head(page);
902 }
903 
904 void __put_page(struct page *page);
905 
906 void put_pages_list(struct list_head *pages);
907 
908 void split_page(struct page *page, unsigned int order);
909 
910 /*
911  * Compound pages have a destructor function.  Provide a
912  * prototype for that function and accessor functions.
913  * These are _only_ valid on the head of a compound page.
914  */
915 typedef void compound_page_dtor(struct page *);
916 
917 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
918 enum compound_dtor_id {
919 	NULL_COMPOUND_DTOR,
920 	COMPOUND_PAGE_DTOR,
921 #ifdef CONFIG_HUGETLB_PAGE
922 	HUGETLB_PAGE_DTOR,
923 #endif
924 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
925 	TRANSHUGE_PAGE_DTOR,
926 #endif
927 	NR_COMPOUND_DTORS,
928 };
929 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
930 
931 static inline void set_compound_page_dtor(struct page *page,
932 		enum compound_dtor_id compound_dtor)
933 {
934 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
935 	page[1].compound_dtor = compound_dtor;
936 }
937 
938 static inline void destroy_compound_page(struct page *page)
939 {
940 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
941 	compound_page_dtors[page[1].compound_dtor](page);
942 }
943 
944 static inline unsigned int compound_order(struct page *page)
945 {
946 	if (!PageHead(page))
947 		return 0;
948 	return page[1].compound_order;
949 }
950 
951 static inline bool hpage_pincount_available(struct page *page)
952 {
953 	/*
954 	 * Can the page->hpage_pinned_refcount field be used? That field is in
955 	 * the 3rd page of the compound page, so the smallest (2-page) compound
956 	 * pages cannot support it.
957 	 */
958 	page = compound_head(page);
959 	return PageCompound(page) && compound_order(page) > 1;
960 }
961 
962 static inline int head_compound_pincount(struct page *head)
963 {
964 	return atomic_read(compound_pincount_ptr(head));
965 }
966 
967 static inline int compound_pincount(struct page *page)
968 {
969 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
970 	page = compound_head(page);
971 	return head_compound_pincount(page);
972 }
973 
974 static inline void set_compound_order(struct page *page, unsigned int order)
975 {
976 	page[1].compound_order = order;
977 	page[1].compound_nr = 1U << order;
978 }
979 
980 /* Returns the number of pages in this potentially compound page. */
981 static inline unsigned long compound_nr(struct page *page)
982 {
983 	if (!PageHead(page))
984 		return 1;
985 	return page[1].compound_nr;
986 }
987 
988 /* Returns the number of bytes in this potentially compound page. */
989 static inline unsigned long page_size(struct page *page)
990 {
991 	return PAGE_SIZE << compound_order(page);
992 }
993 
994 /* Returns the number of bits needed for the number of bytes in a page */
995 static inline unsigned int page_shift(struct page *page)
996 {
997 	return PAGE_SHIFT + compound_order(page);
998 }
999 
1000 void free_compound_page(struct page *page);
1001 
1002 #ifdef CONFIG_MMU
1003 /*
1004  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1005  * servicing faults for write access.  In the normal case, do always want
1006  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1007  * that do not have writing enabled, when used by access_process_vm.
1008  */
1009 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1010 {
1011 	if (likely(vma->vm_flags & VM_WRITE))
1012 		pte = pte_mkwrite(pte);
1013 	return pte;
1014 }
1015 
1016 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1017 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1018 
1019 vm_fault_t finish_fault(struct vm_fault *vmf);
1020 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1021 #endif
1022 
1023 /*
1024  * Multiple processes may "see" the same page. E.g. for untouched
1025  * mappings of /dev/null, all processes see the same page full of
1026  * zeroes, and text pages of executables and shared libraries have
1027  * only one copy in memory, at most, normally.
1028  *
1029  * For the non-reserved pages, page_count(page) denotes a reference count.
1030  *   page_count() == 0 means the page is free. page->lru is then used for
1031  *   freelist management in the buddy allocator.
1032  *   page_count() > 0  means the page has been allocated.
1033  *
1034  * Pages are allocated by the slab allocator in order to provide memory
1035  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1036  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1037  * unless a particular usage is carefully commented. (the responsibility of
1038  * freeing the kmalloc memory is the caller's, of course).
1039  *
1040  * A page may be used by anyone else who does a __get_free_page().
1041  * In this case, page_count still tracks the references, and should only
1042  * be used through the normal accessor functions. The top bits of page->flags
1043  * and page->virtual store page management information, but all other fields
1044  * are unused and could be used privately, carefully. The management of this
1045  * page is the responsibility of the one who allocated it, and those who have
1046  * subsequently been given references to it.
1047  *
1048  * The other pages (we may call them "pagecache pages") are completely
1049  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1050  * The following discussion applies only to them.
1051  *
1052  * A pagecache page contains an opaque `private' member, which belongs to the
1053  * page's address_space. Usually, this is the address of a circular list of
1054  * the page's disk buffers. PG_private must be set to tell the VM to call
1055  * into the filesystem to release these pages.
1056  *
1057  * A page may belong to an inode's memory mapping. In this case, page->mapping
1058  * is the pointer to the inode, and page->index is the file offset of the page,
1059  * in units of PAGE_SIZE.
1060  *
1061  * If pagecache pages are not associated with an inode, they are said to be
1062  * anonymous pages. These may become associated with the swapcache, and in that
1063  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1064  *
1065  * In either case (swapcache or inode backed), the pagecache itself holds one
1066  * reference to the page. Setting PG_private should also increment the
1067  * refcount. The each user mapping also has a reference to the page.
1068  *
1069  * The pagecache pages are stored in a per-mapping radix tree, which is
1070  * rooted at mapping->i_pages, and indexed by offset.
1071  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1072  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1073  *
1074  * All pagecache pages may be subject to I/O:
1075  * - inode pages may need to be read from disk,
1076  * - inode pages which have been modified and are MAP_SHARED may need
1077  *   to be written back to the inode on disk,
1078  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1079  *   modified may need to be swapped out to swap space and (later) to be read
1080  *   back into memory.
1081  */
1082 
1083 /*
1084  * The zone field is never updated after free_area_init_core()
1085  * sets it, so none of the operations on it need to be atomic.
1086  */
1087 
1088 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1089 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1090 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1091 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1092 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1093 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1094 
1095 /*
1096  * Define the bit shifts to access each section.  For non-existent
1097  * sections we define the shift as 0; that plus a 0 mask ensures
1098  * the compiler will optimise away reference to them.
1099  */
1100 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1101 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1102 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1103 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1104 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1105 
1106 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1107 #ifdef NODE_NOT_IN_PAGE_FLAGS
1108 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1109 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1110 						SECTIONS_PGOFF : ZONES_PGOFF)
1111 #else
1112 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1113 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1114 						NODES_PGOFF : ZONES_PGOFF)
1115 #endif
1116 
1117 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1118 
1119 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1120 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1121 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1122 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1123 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1124 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1125 
1126 static inline enum zone_type page_zonenum(const struct page *page)
1127 {
1128 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1129 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1130 }
1131 
1132 #ifdef CONFIG_ZONE_DEVICE
1133 static inline bool is_zone_device_page(const struct page *page)
1134 {
1135 	return page_zonenum(page) == ZONE_DEVICE;
1136 }
1137 extern void memmap_init_zone_device(struct zone *, unsigned long,
1138 				    unsigned long, struct dev_pagemap *);
1139 #else
1140 static inline bool is_zone_device_page(const struct page *page)
1141 {
1142 	return false;
1143 }
1144 #endif
1145 
1146 static inline bool is_zone_movable_page(const struct page *page)
1147 {
1148 	return page_zonenum(page) == ZONE_MOVABLE;
1149 }
1150 
1151 #ifdef CONFIG_DEV_PAGEMAP_OPS
1152 void free_devmap_managed_page(struct page *page);
1153 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1154 
1155 static inline bool page_is_devmap_managed(struct page *page)
1156 {
1157 	if (!static_branch_unlikely(&devmap_managed_key))
1158 		return false;
1159 	if (!is_zone_device_page(page))
1160 		return false;
1161 	switch (page->pgmap->type) {
1162 	case MEMORY_DEVICE_PRIVATE:
1163 	case MEMORY_DEVICE_FS_DAX:
1164 		return true;
1165 	default:
1166 		break;
1167 	}
1168 	return false;
1169 }
1170 
1171 void put_devmap_managed_page(struct page *page);
1172 
1173 #else /* CONFIG_DEV_PAGEMAP_OPS */
1174 static inline bool page_is_devmap_managed(struct page *page)
1175 {
1176 	return false;
1177 }
1178 
1179 static inline void put_devmap_managed_page(struct page *page)
1180 {
1181 }
1182 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1183 
1184 static inline bool is_device_private_page(const struct page *page)
1185 {
1186 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1187 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1188 		is_zone_device_page(page) &&
1189 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1190 }
1191 
1192 static inline bool is_pci_p2pdma_page(const struct page *page)
1193 {
1194 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1195 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1196 		is_zone_device_page(page) &&
1197 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1198 }
1199 
1200 /* 127: arbitrary random number, small enough to assemble well */
1201 #define page_ref_zero_or_close_to_overflow(page) \
1202 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1203 
1204 static inline void get_page(struct page *page)
1205 {
1206 	page = compound_head(page);
1207 	/*
1208 	 * Getting a normal page or the head of a compound page
1209 	 * requires to already have an elevated page->_refcount.
1210 	 */
1211 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1212 	page_ref_inc(page);
1213 }
1214 
1215 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1216 __maybe_unused struct page *try_grab_compound_head(struct page *page, int refs,
1217 						   unsigned int flags);
1218 
1219 
1220 static inline __must_check bool try_get_page(struct page *page)
1221 {
1222 	page = compound_head(page);
1223 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1224 		return false;
1225 	page_ref_inc(page);
1226 	return true;
1227 }
1228 
1229 static inline void put_page(struct page *page)
1230 {
1231 	page = compound_head(page);
1232 
1233 	/*
1234 	 * For devmap managed pages we need to catch refcount transition from
1235 	 * 2 to 1, when refcount reach one it means the page is free and we
1236 	 * need to inform the device driver through callback. See
1237 	 * include/linux/memremap.h and HMM for details.
1238 	 */
1239 	if (page_is_devmap_managed(page)) {
1240 		put_devmap_managed_page(page);
1241 		return;
1242 	}
1243 
1244 	if (put_page_testzero(page))
1245 		__put_page(page);
1246 }
1247 
1248 /*
1249  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1250  * the page's refcount so that two separate items are tracked: the original page
1251  * reference count, and also a new count of how many pin_user_pages() calls were
1252  * made against the page. ("gup-pinned" is another term for the latter).
1253  *
1254  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1255  * distinct from normal pages. As such, the unpin_user_page() call (and its
1256  * variants) must be used in order to release gup-pinned pages.
1257  *
1258  * Choice of value:
1259  *
1260  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1261  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1262  * simpler, due to the fact that adding an even power of two to the page
1263  * refcount has the effect of using only the upper N bits, for the code that
1264  * counts up using the bias value. This means that the lower bits are left for
1265  * the exclusive use of the original code that increments and decrements by one
1266  * (or at least, by much smaller values than the bias value).
1267  *
1268  * Of course, once the lower bits overflow into the upper bits (and this is
1269  * OK, because subtraction recovers the original values), then visual inspection
1270  * no longer suffices to directly view the separate counts. However, for normal
1271  * applications that don't have huge page reference counts, this won't be an
1272  * issue.
1273  *
1274  * Locking: the lockless algorithm described in page_cache_get_speculative()
1275  * and page_cache_gup_pin_speculative() provides safe operation for
1276  * get_user_pages and page_mkclean and other calls that race to set up page
1277  * table entries.
1278  */
1279 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1280 
1281 void unpin_user_page(struct page *page);
1282 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1283 				 bool make_dirty);
1284 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1285 				      bool make_dirty);
1286 void unpin_user_pages(struct page **pages, unsigned long npages);
1287 
1288 /**
1289  * page_maybe_dma_pinned - Report if a page is pinned for DMA.
1290  * @page: The page.
1291  *
1292  * This function checks if a page has been pinned via a call to
1293  * a function in the pin_user_pages() family.
1294  *
1295  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1296  * because it means "definitely not pinned for DMA", but true means "probably
1297  * pinned for DMA, but possibly a false positive due to having at least
1298  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1299  *
1300  * False positives are OK, because: a) it's unlikely for a page to get that many
1301  * refcounts, and b) all the callers of this routine are expected to be able to
1302  * deal gracefully with a false positive.
1303  *
1304  * For huge pages, the result will be exactly correct. That's because we have
1305  * more tracking data available: the 3rd struct page in the compound page is
1306  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1307  * scheme).
1308  *
1309  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1310  *
1311  * Return: True, if it is likely that the page has been "dma-pinned".
1312  * False, if the page is definitely not dma-pinned.
1313  */
1314 static inline bool page_maybe_dma_pinned(struct page *page)
1315 {
1316 	if (hpage_pincount_available(page))
1317 		return compound_pincount(page) > 0;
1318 
1319 	/*
1320 	 * page_ref_count() is signed. If that refcount overflows, then
1321 	 * page_ref_count() returns a negative value, and callers will avoid
1322 	 * further incrementing the refcount.
1323 	 *
1324 	 * Here, for that overflow case, use the signed bit to count a little
1325 	 * bit higher via unsigned math, and thus still get an accurate result.
1326 	 */
1327 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1328 		GUP_PIN_COUNTING_BIAS;
1329 }
1330 
1331 static inline bool is_cow_mapping(vm_flags_t flags)
1332 {
1333 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1334 }
1335 
1336 /*
1337  * This should most likely only be called during fork() to see whether we
1338  * should break the cow immediately for a page on the src mm.
1339  */
1340 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1341 					  struct page *page)
1342 {
1343 	if (!is_cow_mapping(vma->vm_flags))
1344 		return false;
1345 
1346 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1347 		return false;
1348 
1349 	return page_maybe_dma_pinned(page);
1350 }
1351 
1352 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1353 #define SECTION_IN_PAGE_FLAGS
1354 #endif
1355 
1356 /*
1357  * The identification function is mainly used by the buddy allocator for
1358  * determining if two pages could be buddies. We are not really identifying
1359  * the zone since we could be using the section number id if we do not have
1360  * node id available in page flags.
1361  * We only guarantee that it will return the same value for two combinable
1362  * pages in a zone.
1363  */
1364 static inline int page_zone_id(struct page *page)
1365 {
1366 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1367 }
1368 
1369 #ifdef NODE_NOT_IN_PAGE_FLAGS
1370 extern int page_to_nid(const struct page *page);
1371 #else
1372 static inline int page_to_nid(const struct page *page)
1373 {
1374 	struct page *p = (struct page *)page;
1375 
1376 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1377 }
1378 #endif
1379 
1380 #ifdef CONFIG_NUMA_BALANCING
1381 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1382 {
1383 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1384 }
1385 
1386 static inline int cpupid_to_pid(int cpupid)
1387 {
1388 	return cpupid & LAST__PID_MASK;
1389 }
1390 
1391 static inline int cpupid_to_cpu(int cpupid)
1392 {
1393 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1394 }
1395 
1396 static inline int cpupid_to_nid(int cpupid)
1397 {
1398 	return cpu_to_node(cpupid_to_cpu(cpupid));
1399 }
1400 
1401 static inline bool cpupid_pid_unset(int cpupid)
1402 {
1403 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1404 }
1405 
1406 static inline bool cpupid_cpu_unset(int cpupid)
1407 {
1408 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1409 }
1410 
1411 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1412 {
1413 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1414 }
1415 
1416 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1417 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1418 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1419 {
1420 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1421 }
1422 
1423 static inline int page_cpupid_last(struct page *page)
1424 {
1425 	return page->_last_cpupid;
1426 }
1427 static inline void page_cpupid_reset_last(struct page *page)
1428 {
1429 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1430 }
1431 #else
1432 static inline int page_cpupid_last(struct page *page)
1433 {
1434 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1435 }
1436 
1437 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1438 
1439 static inline void page_cpupid_reset_last(struct page *page)
1440 {
1441 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1442 }
1443 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1444 #else /* !CONFIG_NUMA_BALANCING */
1445 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1446 {
1447 	return page_to_nid(page); /* XXX */
1448 }
1449 
1450 static inline int page_cpupid_last(struct page *page)
1451 {
1452 	return page_to_nid(page); /* XXX */
1453 }
1454 
1455 static inline int cpupid_to_nid(int cpupid)
1456 {
1457 	return -1;
1458 }
1459 
1460 static inline int cpupid_to_pid(int cpupid)
1461 {
1462 	return -1;
1463 }
1464 
1465 static inline int cpupid_to_cpu(int cpupid)
1466 {
1467 	return -1;
1468 }
1469 
1470 static inline int cpu_pid_to_cpupid(int nid, int pid)
1471 {
1472 	return -1;
1473 }
1474 
1475 static inline bool cpupid_pid_unset(int cpupid)
1476 {
1477 	return true;
1478 }
1479 
1480 static inline void page_cpupid_reset_last(struct page *page)
1481 {
1482 }
1483 
1484 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1485 {
1486 	return false;
1487 }
1488 #endif /* CONFIG_NUMA_BALANCING */
1489 
1490 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1491 
1492 /*
1493  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1494  * setting tags for all pages to native kernel tag value 0xff, as the default
1495  * value 0x00 maps to 0xff.
1496  */
1497 
1498 static inline u8 page_kasan_tag(const struct page *page)
1499 {
1500 	u8 tag = 0xff;
1501 
1502 	if (kasan_enabled()) {
1503 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1504 		tag ^= 0xff;
1505 	}
1506 
1507 	return tag;
1508 }
1509 
1510 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1511 {
1512 	if (kasan_enabled()) {
1513 		tag ^= 0xff;
1514 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1515 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1516 	}
1517 }
1518 
1519 static inline void page_kasan_tag_reset(struct page *page)
1520 {
1521 	if (kasan_enabled())
1522 		page_kasan_tag_set(page, 0xff);
1523 }
1524 
1525 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1526 
1527 static inline u8 page_kasan_tag(const struct page *page)
1528 {
1529 	return 0xff;
1530 }
1531 
1532 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1533 static inline void page_kasan_tag_reset(struct page *page) { }
1534 
1535 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1536 
1537 static inline struct zone *page_zone(const struct page *page)
1538 {
1539 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1540 }
1541 
1542 static inline pg_data_t *page_pgdat(const struct page *page)
1543 {
1544 	return NODE_DATA(page_to_nid(page));
1545 }
1546 
1547 #ifdef SECTION_IN_PAGE_FLAGS
1548 static inline void set_page_section(struct page *page, unsigned long section)
1549 {
1550 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1551 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1552 }
1553 
1554 static inline unsigned long page_to_section(const struct page *page)
1555 {
1556 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1557 }
1558 #endif
1559 
1560 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1561 #ifdef CONFIG_MIGRATION
1562 static inline bool is_pinnable_page(struct page *page)
1563 {
1564 	return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) ||
1565 		is_zero_pfn(page_to_pfn(page));
1566 }
1567 #else
1568 static inline bool is_pinnable_page(struct page *page)
1569 {
1570 	return true;
1571 }
1572 #endif
1573 
1574 static inline void set_page_zone(struct page *page, enum zone_type zone)
1575 {
1576 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1577 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1578 }
1579 
1580 static inline void set_page_node(struct page *page, unsigned long node)
1581 {
1582 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1583 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1584 }
1585 
1586 static inline void set_page_links(struct page *page, enum zone_type zone,
1587 	unsigned long node, unsigned long pfn)
1588 {
1589 	set_page_zone(page, zone);
1590 	set_page_node(page, node);
1591 #ifdef SECTION_IN_PAGE_FLAGS
1592 	set_page_section(page, pfn_to_section_nr(pfn));
1593 #endif
1594 }
1595 
1596 /*
1597  * Some inline functions in vmstat.h depend on page_zone()
1598  */
1599 #include <linux/vmstat.h>
1600 
1601 static __always_inline void *lowmem_page_address(const struct page *page)
1602 {
1603 	return page_to_virt(page);
1604 }
1605 
1606 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1607 #define HASHED_PAGE_VIRTUAL
1608 #endif
1609 
1610 #if defined(WANT_PAGE_VIRTUAL)
1611 static inline void *page_address(const struct page *page)
1612 {
1613 	return page->virtual;
1614 }
1615 static inline void set_page_address(struct page *page, void *address)
1616 {
1617 	page->virtual = address;
1618 }
1619 #define page_address_init()  do { } while(0)
1620 #endif
1621 
1622 #if defined(HASHED_PAGE_VIRTUAL)
1623 void *page_address(const struct page *page);
1624 void set_page_address(struct page *page, void *virtual);
1625 void page_address_init(void);
1626 #endif
1627 
1628 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1629 #define page_address(page) lowmem_page_address(page)
1630 #define set_page_address(page, address)  do { } while(0)
1631 #define page_address_init()  do { } while(0)
1632 #endif
1633 
1634 extern void *page_rmapping(struct page *page);
1635 extern struct anon_vma *page_anon_vma(struct page *page);
1636 extern struct address_space *page_mapping(struct page *page);
1637 
1638 extern struct address_space *__page_file_mapping(struct page *);
1639 
1640 static inline
1641 struct address_space *page_file_mapping(struct page *page)
1642 {
1643 	if (unlikely(PageSwapCache(page)))
1644 		return __page_file_mapping(page);
1645 
1646 	return page->mapping;
1647 }
1648 
1649 extern pgoff_t __page_file_index(struct page *page);
1650 
1651 /*
1652  * Return the pagecache index of the passed page.  Regular pagecache pages
1653  * use ->index whereas swapcache pages use swp_offset(->private)
1654  */
1655 static inline pgoff_t page_index(struct page *page)
1656 {
1657 	if (unlikely(PageSwapCache(page)))
1658 		return __page_file_index(page);
1659 	return page->index;
1660 }
1661 
1662 bool page_mapped(struct page *page);
1663 struct address_space *page_mapping(struct page *page);
1664 
1665 /*
1666  * Return true only if the page has been allocated with
1667  * ALLOC_NO_WATERMARKS and the low watermark was not
1668  * met implying that the system is under some pressure.
1669  */
1670 static inline bool page_is_pfmemalloc(const struct page *page)
1671 {
1672 	/*
1673 	 * lru.next has bit 1 set if the page is allocated from the
1674 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1675 	 * they do not need to preserve that information.
1676 	 */
1677 	return (uintptr_t)page->lru.next & BIT(1);
1678 }
1679 
1680 /*
1681  * Only to be called by the page allocator on a freshly allocated
1682  * page.
1683  */
1684 static inline void set_page_pfmemalloc(struct page *page)
1685 {
1686 	page->lru.next = (void *)BIT(1);
1687 }
1688 
1689 static inline void clear_page_pfmemalloc(struct page *page)
1690 {
1691 	page->lru.next = NULL;
1692 }
1693 
1694 /*
1695  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1696  */
1697 extern void pagefault_out_of_memory(void);
1698 
1699 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1700 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1701 
1702 /*
1703  * Flags passed to show_mem() and show_free_areas() to suppress output in
1704  * various contexts.
1705  */
1706 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1707 
1708 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1709 
1710 #ifdef CONFIG_MMU
1711 extern bool can_do_mlock(void);
1712 #else
1713 static inline bool can_do_mlock(void) { return false; }
1714 #endif
1715 extern int user_shm_lock(size_t, struct ucounts *);
1716 extern void user_shm_unlock(size_t, struct ucounts *);
1717 
1718 /*
1719  * Parameter block passed down to zap_pte_range in exceptional cases.
1720  */
1721 struct zap_details {
1722 	struct address_space *check_mapping;	/* Check page->mapping if set */
1723 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1724 	pgoff_t last_index;			/* Highest page->index to unmap */
1725 	struct page *single_page;		/* Locked page to be unmapped */
1726 };
1727 
1728 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1729 			     pte_t pte);
1730 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1731 				pmd_t pmd);
1732 
1733 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1734 		  unsigned long size);
1735 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1736 		    unsigned long size);
1737 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1738 		unsigned long start, unsigned long end);
1739 
1740 struct mmu_notifier_range;
1741 
1742 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1743 		unsigned long end, unsigned long floor, unsigned long ceiling);
1744 int
1745 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1746 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1747 			  struct mmu_notifier_range *range, pte_t **ptepp,
1748 			  pmd_t **pmdpp, spinlock_t **ptlp);
1749 int follow_pte(struct mm_struct *mm, unsigned long address,
1750 	       pte_t **ptepp, spinlock_t **ptlp);
1751 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1752 	unsigned long *pfn);
1753 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1754 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1755 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1756 			void *buf, int len, int write);
1757 
1758 extern void truncate_pagecache(struct inode *inode, loff_t new);
1759 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1760 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1761 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1762 int truncate_inode_page(struct address_space *mapping, struct page *page);
1763 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1764 int invalidate_inode_page(struct page *page);
1765 
1766 #ifdef CONFIG_MMU
1767 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1768 				  unsigned long address, unsigned int flags,
1769 				  struct pt_regs *regs);
1770 extern int fixup_user_fault(struct mm_struct *mm,
1771 			    unsigned long address, unsigned int fault_flags,
1772 			    bool *unlocked);
1773 void unmap_mapping_page(struct page *page);
1774 void unmap_mapping_pages(struct address_space *mapping,
1775 		pgoff_t start, pgoff_t nr, bool even_cows);
1776 void unmap_mapping_range(struct address_space *mapping,
1777 		loff_t const holebegin, loff_t const holelen, int even_cows);
1778 #else
1779 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1780 					 unsigned long address, unsigned int flags,
1781 					 struct pt_regs *regs)
1782 {
1783 	/* should never happen if there's no MMU */
1784 	BUG();
1785 	return VM_FAULT_SIGBUS;
1786 }
1787 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1788 		unsigned int fault_flags, bool *unlocked)
1789 {
1790 	/* should never happen if there's no MMU */
1791 	BUG();
1792 	return -EFAULT;
1793 }
1794 static inline void unmap_mapping_page(struct page *page) { }
1795 static inline void unmap_mapping_pages(struct address_space *mapping,
1796 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1797 static inline void unmap_mapping_range(struct address_space *mapping,
1798 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1799 #endif
1800 
1801 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1802 		loff_t const holebegin, loff_t const holelen)
1803 {
1804 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1805 }
1806 
1807 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1808 		void *buf, int len, unsigned int gup_flags);
1809 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1810 		void *buf, int len, unsigned int gup_flags);
1811 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1812 			      void *buf, int len, unsigned int gup_flags);
1813 
1814 long get_user_pages_remote(struct mm_struct *mm,
1815 			    unsigned long start, unsigned long nr_pages,
1816 			    unsigned int gup_flags, struct page **pages,
1817 			    struct vm_area_struct **vmas, int *locked);
1818 long pin_user_pages_remote(struct mm_struct *mm,
1819 			   unsigned long start, unsigned long nr_pages,
1820 			   unsigned int gup_flags, struct page **pages,
1821 			   struct vm_area_struct **vmas, int *locked);
1822 long get_user_pages(unsigned long start, unsigned long nr_pages,
1823 			    unsigned int gup_flags, struct page **pages,
1824 			    struct vm_area_struct **vmas);
1825 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1826 		    unsigned int gup_flags, struct page **pages,
1827 		    struct vm_area_struct **vmas);
1828 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1829 		    unsigned int gup_flags, struct page **pages, int *locked);
1830 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1831 		    unsigned int gup_flags, struct page **pages, int *locked);
1832 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1833 		    struct page **pages, unsigned int gup_flags);
1834 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1835 		    struct page **pages, unsigned int gup_flags);
1836 
1837 int get_user_pages_fast(unsigned long start, int nr_pages,
1838 			unsigned int gup_flags, struct page **pages);
1839 int pin_user_pages_fast(unsigned long start, int nr_pages,
1840 			unsigned int gup_flags, struct page **pages);
1841 
1842 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1843 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1844 			struct task_struct *task, bool bypass_rlim);
1845 
1846 struct kvec;
1847 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1848 			struct page **pages);
1849 int get_kernel_page(unsigned long start, int write, struct page **pages);
1850 struct page *get_dump_page(unsigned long addr);
1851 
1852 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1853 extern void do_invalidatepage(struct page *page, unsigned int offset,
1854 			      unsigned int length);
1855 
1856 int redirty_page_for_writepage(struct writeback_control *wbc,
1857 				struct page *page);
1858 void account_page_cleaned(struct page *page, struct address_space *mapping,
1859 			  struct bdi_writeback *wb);
1860 int set_page_dirty(struct page *page);
1861 int set_page_dirty_lock(struct page *page);
1862 void __cancel_dirty_page(struct page *page);
1863 static inline void cancel_dirty_page(struct page *page)
1864 {
1865 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1866 	if (PageDirty(page))
1867 		__cancel_dirty_page(page);
1868 }
1869 int clear_page_dirty_for_io(struct page *page);
1870 
1871 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1872 
1873 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1874 		unsigned long old_addr, struct vm_area_struct *new_vma,
1875 		unsigned long new_addr, unsigned long len,
1876 		bool need_rmap_locks);
1877 
1878 /*
1879  * Flags used by change_protection().  For now we make it a bitmap so
1880  * that we can pass in multiple flags just like parameters.  However
1881  * for now all the callers are only use one of the flags at the same
1882  * time.
1883  */
1884 /* Whether we should allow dirty bit accounting */
1885 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1886 /* Whether this protection change is for NUMA hints */
1887 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1888 /* Whether this change is for write protecting */
1889 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1890 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1891 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1892 					    MM_CP_UFFD_WP_RESOLVE)
1893 
1894 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1895 			      unsigned long end, pgprot_t newprot,
1896 			      unsigned long cp_flags);
1897 extern int mprotect_fixup(struct vm_area_struct *vma,
1898 			  struct vm_area_struct **pprev, unsigned long start,
1899 			  unsigned long end, unsigned long newflags);
1900 
1901 /*
1902  * doesn't attempt to fault and will return short.
1903  */
1904 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1905 			     unsigned int gup_flags, struct page **pages);
1906 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1907 			     unsigned int gup_flags, struct page **pages);
1908 
1909 static inline bool get_user_page_fast_only(unsigned long addr,
1910 			unsigned int gup_flags, struct page **pagep)
1911 {
1912 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1913 }
1914 /*
1915  * per-process(per-mm_struct) statistics.
1916  */
1917 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1918 {
1919 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1920 
1921 #ifdef SPLIT_RSS_COUNTING
1922 	/*
1923 	 * counter is updated in asynchronous manner and may go to minus.
1924 	 * But it's never be expected number for users.
1925 	 */
1926 	if (val < 0)
1927 		val = 0;
1928 #endif
1929 	return (unsigned long)val;
1930 }
1931 
1932 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1933 
1934 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1935 {
1936 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1937 
1938 	mm_trace_rss_stat(mm, member, count);
1939 }
1940 
1941 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1942 {
1943 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1944 
1945 	mm_trace_rss_stat(mm, member, count);
1946 }
1947 
1948 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1949 {
1950 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1951 
1952 	mm_trace_rss_stat(mm, member, count);
1953 }
1954 
1955 /* Optimized variant when page is already known not to be PageAnon */
1956 static inline int mm_counter_file(struct page *page)
1957 {
1958 	if (PageSwapBacked(page))
1959 		return MM_SHMEMPAGES;
1960 	return MM_FILEPAGES;
1961 }
1962 
1963 static inline int mm_counter(struct page *page)
1964 {
1965 	if (PageAnon(page))
1966 		return MM_ANONPAGES;
1967 	return mm_counter_file(page);
1968 }
1969 
1970 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1971 {
1972 	return get_mm_counter(mm, MM_FILEPAGES) +
1973 		get_mm_counter(mm, MM_ANONPAGES) +
1974 		get_mm_counter(mm, MM_SHMEMPAGES);
1975 }
1976 
1977 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1978 {
1979 	return max(mm->hiwater_rss, get_mm_rss(mm));
1980 }
1981 
1982 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1983 {
1984 	return max(mm->hiwater_vm, mm->total_vm);
1985 }
1986 
1987 static inline void update_hiwater_rss(struct mm_struct *mm)
1988 {
1989 	unsigned long _rss = get_mm_rss(mm);
1990 
1991 	if ((mm)->hiwater_rss < _rss)
1992 		(mm)->hiwater_rss = _rss;
1993 }
1994 
1995 static inline void update_hiwater_vm(struct mm_struct *mm)
1996 {
1997 	if (mm->hiwater_vm < mm->total_vm)
1998 		mm->hiwater_vm = mm->total_vm;
1999 }
2000 
2001 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2002 {
2003 	mm->hiwater_rss = get_mm_rss(mm);
2004 }
2005 
2006 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2007 					 struct mm_struct *mm)
2008 {
2009 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2010 
2011 	if (*maxrss < hiwater_rss)
2012 		*maxrss = hiwater_rss;
2013 }
2014 
2015 #if defined(SPLIT_RSS_COUNTING)
2016 void sync_mm_rss(struct mm_struct *mm);
2017 #else
2018 static inline void sync_mm_rss(struct mm_struct *mm)
2019 {
2020 }
2021 #endif
2022 
2023 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2024 static inline int pte_special(pte_t pte)
2025 {
2026 	return 0;
2027 }
2028 
2029 static inline pte_t pte_mkspecial(pte_t pte)
2030 {
2031 	return pte;
2032 }
2033 #endif
2034 
2035 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2036 static inline int pte_devmap(pte_t pte)
2037 {
2038 	return 0;
2039 }
2040 #endif
2041 
2042 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2043 
2044 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2045 			       spinlock_t **ptl);
2046 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2047 				    spinlock_t **ptl)
2048 {
2049 	pte_t *ptep;
2050 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2051 	return ptep;
2052 }
2053 
2054 #ifdef __PAGETABLE_P4D_FOLDED
2055 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2056 						unsigned long address)
2057 {
2058 	return 0;
2059 }
2060 #else
2061 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2062 #endif
2063 
2064 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2065 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2066 						unsigned long address)
2067 {
2068 	return 0;
2069 }
2070 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2071 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2072 
2073 #else
2074 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2075 
2076 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2077 {
2078 	if (mm_pud_folded(mm))
2079 		return;
2080 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2081 }
2082 
2083 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2084 {
2085 	if (mm_pud_folded(mm))
2086 		return;
2087 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2088 }
2089 #endif
2090 
2091 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2092 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2093 						unsigned long address)
2094 {
2095 	return 0;
2096 }
2097 
2098 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2099 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2100 
2101 #else
2102 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2103 
2104 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2105 {
2106 	if (mm_pmd_folded(mm))
2107 		return;
2108 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2109 }
2110 
2111 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2112 {
2113 	if (mm_pmd_folded(mm))
2114 		return;
2115 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2116 }
2117 #endif
2118 
2119 #ifdef CONFIG_MMU
2120 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2121 {
2122 	atomic_long_set(&mm->pgtables_bytes, 0);
2123 }
2124 
2125 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2126 {
2127 	return atomic_long_read(&mm->pgtables_bytes);
2128 }
2129 
2130 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2131 {
2132 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2133 }
2134 
2135 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2136 {
2137 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2138 }
2139 #else
2140 
2141 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2142 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2143 {
2144 	return 0;
2145 }
2146 
2147 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2148 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2149 #endif
2150 
2151 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2152 int __pte_alloc_kernel(pmd_t *pmd);
2153 
2154 #if defined(CONFIG_MMU)
2155 
2156 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2157 		unsigned long address)
2158 {
2159 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2160 		NULL : p4d_offset(pgd, address);
2161 }
2162 
2163 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2164 		unsigned long address)
2165 {
2166 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2167 		NULL : pud_offset(p4d, address);
2168 }
2169 
2170 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2171 {
2172 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2173 		NULL: pmd_offset(pud, address);
2174 }
2175 #endif /* CONFIG_MMU */
2176 
2177 #if USE_SPLIT_PTE_PTLOCKS
2178 #if ALLOC_SPLIT_PTLOCKS
2179 void __init ptlock_cache_init(void);
2180 extern bool ptlock_alloc(struct page *page);
2181 extern void ptlock_free(struct page *page);
2182 
2183 static inline spinlock_t *ptlock_ptr(struct page *page)
2184 {
2185 	return page->ptl;
2186 }
2187 #else /* ALLOC_SPLIT_PTLOCKS */
2188 static inline void ptlock_cache_init(void)
2189 {
2190 }
2191 
2192 static inline bool ptlock_alloc(struct page *page)
2193 {
2194 	return true;
2195 }
2196 
2197 static inline void ptlock_free(struct page *page)
2198 {
2199 }
2200 
2201 static inline spinlock_t *ptlock_ptr(struct page *page)
2202 {
2203 	return &page->ptl;
2204 }
2205 #endif /* ALLOC_SPLIT_PTLOCKS */
2206 
2207 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2208 {
2209 	return ptlock_ptr(pmd_page(*pmd));
2210 }
2211 
2212 static inline bool ptlock_init(struct page *page)
2213 {
2214 	/*
2215 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2216 	 * with 0. Make sure nobody took it in use in between.
2217 	 *
2218 	 * It can happen if arch try to use slab for page table allocation:
2219 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2220 	 */
2221 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2222 	if (!ptlock_alloc(page))
2223 		return false;
2224 	spin_lock_init(ptlock_ptr(page));
2225 	return true;
2226 }
2227 
2228 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2229 /*
2230  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2231  */
2232 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2233 {
2234 	return &mm->page_table_lock;
2235 }
2236 static inline void ptlock_cache_init(void) {}
2237 static inline bool ptlock_init(struct page *page) { return true; }
2238 static inline void ptlock_free(struct page *page) {}
2239 #endif /* USE_SPLIT_PTE_PTLOCKS */
2240 
2241 static inline void pgtable_init(void)
2242 {
2243 	ptlock_cache_init();
2244 	pgtable_cache_init();
2245 }
2246 
2247 static inline bool pgtable_pte_page_ctor(struct page *page)
2248 {
2249 	if (!ptlock_init(page))
2250 		return false;
2251 	__SetPageTable(page);
2252 	inc_lruvec_page_state(page, NR_PAGETABLE);
2253 	return true;
2254 }
2255 
2256 static inline void pgtable_pte_page_dtor(struct page *page)
2257 {
2258 	ptlock_free(page);
2259 	__ClearPageTable(page);
2260 	dec_lruvec_page_state(page, NR_PAGETABLE);
2261 }
2262 
2263 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2264 ({							\
2265 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2266 	pte_t *__pte = pte_offset_map(pmd, address);	\
2267 	*(ptlp) = __ptl;				\
2268 	spin_lock(__ptl);				\
2269 	__pte;						\
2270 })
2271 
2272 #define pte_unmap_unlock(pte, ptl)	do {		\
2273 	spin_unlock(ptl);				\
2274 	pte_unmap(pte);					\
2275 } while (0)
2276 
2277 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2278 
2279 #define pte_alloc_map(mm, pmd, address)			\
2280 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2281 
2282 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2283 	(pte_alloc(mm, pmd) ?			\
2284 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2285 
2286 #define pte_alloc_kernel(pmd, address)			\
2287 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2288 		NULL: pte_offset_kernel(pmd, address))
2289 
2290 #if USE_SPLIT_PMD_PTLOCKS
2291 
2292 static struct page *pmd_to_page(pmd_t *pmd)
2293 {
2294 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2295 	return virt_to_page((void *)((unsigned long) pmd & mask));
2296 }
2297 
2298 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2299 {
2300 	return ptlock_ptr(pmd_to_page(pmd));
2301 }
2302 
2303 static inline bool pmd_ptlock_init(struct page *page)
2304 {
2305 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2306 	page->pmd_huge_pte = NULL;
2307 #endif
2308 	return ptlock_init(page);
2309 }
2310 
2311 static inline void pmd_ptlock_free(struct page *page)
2312 {
2313 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2314 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2315 #endif
2316 	ptlock_free(page);
2317 }
2318 
2319 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2320 
2321 #else
2322 
2323 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2324 {
2325 	return &mm->page_table_lock;
2326 }
2327 
2328 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2329 static inline void pmd_ptlock_free(struct page *page) {}
2330 
2331 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2332 
2333 #endif
2334 
2335 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2336 {
2337 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2338 	spin_lock(ptl);
2339 	return ptl;
2340 }
2341 
2342 static inline bool pgtable_pmd_page_ctor(struct page *page)
2343 {
2344 	if (!pmd_ptlock_init(page))
2345 		return false;
2346 	__SetPageTable(page);
2347 	inc_lruvec_page_state(page, NR_PAGETABLE);
2348 	return true;
2349 }
2350 
2351 static inline void pgtable_pmd_page_dtor(struct page *page)
2352 {
2353 	pmd_ptlock_free(page);
2354 	__ClearPageTable(page);
2355 	dec_lruvec_page_state(page, NR_PAGETABLE);
2356 }
2357 
2358 /*
2359  * No scalability reason to split PUD locks yet, but follow the same pattern
2360  * as the PMD locks to make it easier if we decide to.  The VM should not be
2361  * considered ready to switch to split PUD locks yet; there may be places
2362  * which need to be converted from page_table_lock.
2363  */
2364 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2365 {
2366 	return &mm->page_table_lock;
2367 }
2368 
2369 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2370 {
2371 	spinlock_t *ptl = pud_lockptr(mm, pud);
2372 
2373 	spin_lock(ptl);
2374 	return ptl;
2375 }
2376 
2377 extern void __init pagecache_init(void);
2378 extern void __init free_area_init_memoryless_node(int nid);
2379 extern void free_initmem(void);
2380 
2381 /*
2382  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2383  * into the buddy system. The freed pages will be poisoned with pattern
2384  * "poison" if it's within range [0, UCHAR_MAX].
2385  * Return pages freed into the buddy system.
2386  */
2387 extern unsigned long free_reserved_area(void *start, void *end,
2388 					int poison, const char *s);
2389 
2390 extern void adjust_managed_page_count(struct page *page, long count);
2391 extern void mem_init_print_info(void);
2392 
2393 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2394 
2395 /* Free the reserved page into the buddy system, so it gets managed. */
2396 static inline void free_reserved_page(struct page *page)
2397 {
2398 	ClearPageReserved(page);
2399 	init_page_count(page);
2400 	__free_page(page);
2401 	adjust_managed_page_count(page, 1);
2402 }
2403 #define free_highmem_page(page) free_reserved_page(page)
2404 
2405 static inline void mark_page_reserved(struct page *page)
2406 {
2407 	SetPageReserved(page);
2408 	adjust_managed_page_count(page, -1);
2409 }
2410 
2411 /*
2412  * Default method to free all the __init memory into the buddy system.
2413  * The freed pages will be poisoned with pattern "poison" if it's within
2414  * range [0, UCHAR_MAX].
2415  * Return pages freed into the buddy system.
2416  */
2417 static inline unsigned long free_initmem_default(int poison)
2418 {
2419 	extern char __init_begin[], __init_end[];
2420 
2421 	return free_reserved_area(&__init_begin, &__init_end,
2422 				  poison, "unused kernel image (initmem)");
2423 }
2424 
2425 static inline unsigned long get_num_physpages(void)
2426 {
2427 	int nid;
2428 	unsigned long phys_pages = 0;
2429 
2430 	for_each_online_node(nid)
2431 		phys_pages += node_present_pages(nid);
2432 
2433 	return phys_pages;
2434 }
2435 
2436 /*
2437  * Using memblock node mappings, an architecture may initialise its
2438  * zones, allocate the backing mem_map and account for memory holes in an
2439  * architecture independent manner.
2440  *
2441  * An architecture is expected to register range of page frames backed by
2442  * physical memory with memblock_add[_node]() before calling
2443  * free_area_init() passing in the PFN each zone ends at. At a basic
2444  * usage, an architecture is expected to do something like
2445  *
2446  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2447  * 							 max_highmem_pfn};
2448  * for_each_valid_physical_page_range()
2449  * 	memblock_add_node(base, size, nid)
2450  * free_area_init(max_zone_pfns);
2451  */
2452 void free_area_init(unsigned long *max_zone_pfn);
2453 unsigned long node_map_pfn_alignment(void);
2454 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2455 						unsigned long end_pfn);
2456 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2457 						unsigned long end_pfn);
2458 extern void get_pfn_range_for_nid(unsigned int nid,
2459 			unsigned long *start_pfn, unsigned long *end_pfn);
2460 extern unsigned long find_min_pfn_with_active_regions(void);
2461 
2462 #ifndef CONFIG_NUMA
2463 static inline int early_pfn_to_nid(unsigned long pfn)
2464 {
2465 	return 0;
2466 }
2467 #else
2468 /* please see mm/page_alloc.c */
2469 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2470 #endif
2471 
2472 extern void set_dma_reserve(unsigned long new_dma_reserve);
2473 extern void memmap_init_range(unsigned long, int, unsigned long,
2474 		unsigned long, unsigned long, enum meminit_context,
2475 		struct vmem_altmap *, int migratetype);
2476 extern void setup_per_zone_wmarks(void);
2477 extern int __meminit init_per_zone_wmark_min(void);
2478 extern void mem_init(void);
2479 extern void __init mmap_init(void);
2480 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2481 extern long si_mem_available(void);
2482 extern void si_meminfo(struct sysinfo * val);
2483 extern void si_meminfo_node(struct sysinfo *val, int nid);
2484 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2485 extern unsigned long arch_reserved_kernel_pages(void);
2486 #endif
2487 
2488 extern __printf(3, 4)
2489 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2490 
2491 extern void setup_per_cpu_pageset(void);
2492 
2493 /* page_alloc.c */
2494 extern int min_free_kbytes;
2495 extern int watermark_boost_factor;
2496 extern int watermark_scale_factor;
2497 extern bool arch_has_descending_max_zone_pfns(void);
2498 
2499 /* nommu.c */
2500 extern atomic_long_t mmap_pages_allocated;
2501 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2502 
2503 /* interval_tree.c */
2504 void vma_interval_tree_insert(struct vm_area_struct *node,
2505 			      struct rb_root_cached *root);
2506 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2507 				    struct vm_area_struct *prev,
2508 				    struct rb_root_cached *root);
2509 void vma_interval_tree_remove(struct vm_area_struct *node,
2510 			      struct rb_root_cached *root);
2511 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2512 				unsigned long start, unsigned long last);
2513 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2514 				unsigned long start, unsigned long last);
2515 
2516 #define vma_interval_tree_foreach(vma, root, start, last)		\
2517 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2518 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2519 
2520 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2521 				   struct rb_root_cached *root);
2522 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2523 				   struct rb_root_cached *root);
2524 struct anon_vma_chain *
2525 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2526 				  unsigned long start, unsigned long last);
2527 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2528 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2529 #ifdef CONFIG_DEBUG_VM_RB
2530 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2531 #endif
2532 
2533 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2534 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2535 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2536 
2537 /* mmap.c */
2538 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2539 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2540 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2541 	struct vm_area_struct *expand);
2542 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2543 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2544 {
2545 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2546 }
2547 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2548 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2549 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2550 	struct mempolicy *, struct vm_userfaultfd_ctx);
2551 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2552 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2553 	unsigned long addr, int new_below);
2554 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2555 	unsigned long addr, int new_below);
2556 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2557 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2558 	struct rb_node **, struct rb_node *);
2559 extern void unlink_file_vma(struct vm_area_struct *);
2560 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2561 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2562 	bool *need_rmap_locks);
2563 extern void exit_mmap(struct mm_struct *);
2564 
2565 static inline int check_data_rlimit(unsigned long rlim,
2566 				    unsigned long new,
2567 				    unsigned long start,
2568 				    unsigned long end_data,
2569 				    unsigned long start_data)
2570 {
2571 	if (rlim < RLIM_INFINITY) {
2572 		if (((new - start) + (end_data - start_data)) > rlim)
2573 			return -ENOSPC;
2574 	}
2575 
2576 	return 0;
2577 }
2578 
2579 extern int mm_take_all_locks(struct mm_struct *mm);
2580 extern void mm_drop_all_locks(struct mm_struct *mm);
2581 
2582 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2583 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2584 extern struct file *get_task_exe_file(struct task_struct *task);
2585 
2586 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2587 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2588 
2589 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2590 				   const struct vm_special_mapping *sm);
2591 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2592 				   unsigned long addr, unsigned long len,
2593 				   unsigned long flags,
2594 				   const struct vm_special_mapping *spec);
2595 /* This is an obsolete alternative to _install_special_mapping. */
2596 extern int install_special_mapping(struct mm_struct *mm,
2597 				   unsigned long addr, unsigned long len,
2598 				   unsigned long flags, struct page **pages);
2599 
2600 unsigned long randomize_stack_top(unsigned long stack_top);
2601 
2602 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2603 
2604 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2605 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2606 	struct list_head *uf);
2607 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2608 	unsigned long len, unsigned long prot, unsigned long flags,
2609 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2610 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2611 		       struct list_head *uf, bool downgrade);
2612 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2613 		     struct list_head *uf);
2614 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2615 
2616 #ifdef CONFIG_MMU
2617 extern int __mm_populate(unsigned long addr, unsigned long len,
2618 			 int ignore_errors);
2619 static inline void mm_populate(unsigned long addr, unsigned long len)
2620 {
2621 	/* Ignore errors */
2622 	(void) __mm_populate(addr, len, 1);
2623 }
2624 #else
2625 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2626 #endif
2627 
2628 /* These take the mm semaphore themselves */
2629 extern int __must_check vm_brk(unsigned long, unsigned long);
2630 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2631 extern int vm_munmap(unsigned long, size_t);
2632 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2633         unsigned long, unsigned long,
2634         unsigned long, unsigned long);
2635 
2636 struct vm_unmapped_area_info {
2637 #define VM_UNMAPPED_AREA_TOPDOWN 1
2638 	unsigned long flags;
2639 	unsigned long length;
2640 	unsigned long low_limit;
2641 	unsigned long high_limit;
2642 	unsigned long align_mask;
2643 	unsigned long align_offset;
2644 };
2645 
2646 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2647 
2648 /* truncate.c */
2649 extern void truncate_inode_pages(struct address_space *, loff_t);
2650 extern void truncate_inode_pages_range(struct address_space *,
2651 				       loff_t lstart, loff_t lend);
2652 extern void truncate_inode_pages_final(struct address_space *);
2653 
2654 /* generic vm_area_ops exported for stackable file systems */
2655 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2656 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2657 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2658 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2659 
2660 /* mm/page-writeback.c */
2661 int __must_check write_one_page(struct page *page);
2662 void task_dirty_inc(struct task_struct *tsk);
2663 
2664 extern unsigned long stack_guard_gap;
2665 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2666 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2667 
2668 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2669 extern int expand_downwards(struct vm_area_struct *vma,
2670 		unsigned long address);
2671 #if VM_GROWSUP
2672 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2673 #else
2674   #define expand_upwards(vma, address) (0)
2675 #endif
2676 
2677 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2678 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2679 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2680 					     struct vm_area_struct **pprev);
2681 
2682 /**
2683  * find_vma_intersection() - Look up the first VMA which intersects the interval
2684  * @mm: The process address space.
2685  * @start_addr: The inclusive start user address.
2686  * @end_addr: The exclusive end user address.
2687  *
2688  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2689  * start_addr < end_addr.
2690  */
2691 static inline
2692 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2693 					     unsigned long start_addr,
2694 					     unsigned long end_addr)
2695 {
2696 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2697 
2698 	if (vma && end_addr <= vma->vm_start)
2699 		vma = NULL;
2700 	return vma;
2701 }
2702 
2703 /**
2704  * vma_lookup() - Find a VMA at a specific address
2705  * @mm: The process address space.
2706  * @addr: The user address.
2707  *
2708  * Return: The vm_area_struct at the given address, %NULL otherwise.
2709  */
2710 static inline
2711 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2712 {
2713 	struct vm_area_struct *vma = find_vma(mm, addr);
2714 
2715 	if (vma && addr < vma->vm_start)
2716 		vma = NULL;
2717 
2718 	return vma;
2719 }
2720 
2721 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2722 {
2723 	unsigned long vm_start = vma->vm_start;
2724 
2725 	if (vma->vm_flags & VM_GROWSDOWN) {
2726 		vm_start -= stack_guard_gap;
2727 		if (vm_start > vma->vm_start)
2728 			vm_start = 0;
2729 	}
2730 	return vm_start;
2731 }
2732 
2733 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2734 {
2735 	unsigned long vm_end = vma->vm_end;
2736 
2737 	if (vma->vm_flags & VM_GROWSUP) {
2738 		vm_end += stack_guard_gap;
2739 		if (vm_end < vma->vm_end)
2740 			vm_end = -PAGE_SIZE;
2741 	}
2742 	return vm_end;
2743 }
2744 
2745 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2746 {
2747 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2748 }
2749 
2750 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2751 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2752 				unsigned long vm_start, unsigned long vm_end)
2753 {
2754 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2755 
2756 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2757 		vma = NULL;
2758 
2759 	return vma;
2760 }
2761 
2762 static inline bool range_in_vma(struct vm_area_struct *vma,
2763 				unsigned long start, unsigned long end)
2764 {
2765 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2766 }
2767 
2768 #ifdef CONFIG_MMU
2769 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2770 void vma_set_page_prot(struct vm_area_struct *vma);
2771 #else
2772 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2773 {
2774 	return __pgprot(0);
2775 }
2776 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2777 {
2778 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2779 }
2780 #endif
2781 
2782 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2783 
2784 #ifdef CONFIG_NUMA_BALANCING
2785 unsigned long change_prot_numa(struct vm_area_struct *vma,
2786 			unsigned long start, unsigned long end);
2787 #endif
2788 
2789 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2790 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2791 			unsigned long pfn, unsigned long size, pgprot_t);
2792 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2793 		unsigned long pfn, unsigned long size, pgprot_t prot);
2794 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2795 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2796 			struct page **pages, unsigned long *num);
2797 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2798 				unsigned long num);
2799 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2800 				unsigned long num);
2801 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2802 			unsigned long pfn);
2803 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2804 			unsigned long pfn, pgprot_t pgprot);
2805 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2806 			pfn_t pfn);
2807 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2808 			pfn_t pfn, pgprot_t pgprot);
2809 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2810 		unsigned long addr, pfn_t pfn);
2811 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2812 
2813 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2814 				unsigned long addr, struct page *page)
2815 {
2816 	int err = vm_insert_page(vma, addr, page);
2817 
2818 	if (err == -ENOMEM)
2819 		return VM_FAULT_OOM;
2820 	if (err < 0 && err != -EBUSY)
2821 		return VM_FAULT_SIGBUS;
2822 
2823 	return VM_FAULT_NOPAGE;
2824 }
2825 
2826 #ifndef io_remap_pfn_range
2827 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2828 				     unsigned long addr, unsigned long pfn,
2829 				     unsigned long size, pgprot_t prot)
2830 {
2831 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2832 }
2833 #endif
2834 
2835 static inline vm_fault_t vmf_error(int err)
2836 {
2837 	if (err == -ENOMEM)
2838 		return VM_FAULT_OOM;
2839 	return VM_FAULT_SIGBUS;
2840 }
2841 
2842 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2843 			 unsigned int foll_flags);
2844 
2845 #define FOLL_WRITE	0x01	/* check pte is writable */
2846 #define FOLL_TOUCH	0x02	/* mark page accessed */
2847 #define FOLL_GET	0x04	/* do get_page on page */
2848 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2849 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2850 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2851 				 * and return without waiting upon it */
2852 #define FOLL_POPULATE	0x40	/* fault in page */
2853 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2854 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2855 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2856 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2857 #define FOLL_MLOCK	0x1000	/* lock present pages */
2858 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2859 #define FOLL_COW	0x4000	/* internal GUP flag */
2860 #define FOLL_ANON	0x8000	/* don't do file mappings */
2861 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2862 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2863 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2864 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2865 
2866 /*
2867  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2868  * other. Here is what they mean, and how to use them:
2869  *
2870  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2871  * period _often_ under userspace control.  This is in contrast to
2872  * iov_iter_get_pages(), whose usages are transient.
2873  *
2874  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2875  * lifetime enforced by the filesystem and we need guarantees that longterm
2876  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2877  * the filesystem.  Ideas for this coordination include revoking the longterm
2878  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2879  * added after the problem with filesystems was found FS DAX VMAs are
2880  * specifically failed.  Filesystem pages are still subject to bugs and use of
2881  * FOLL_LONGTERM should be avoided on those pages.
2882  *
2883  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2884  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2885  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2886  * is due to an incompatibility with the FS DAX check and
2887  * FAULT_FLAG_ALLOW_RETRY.
2888  *
2889  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2890  * that region.  And so, CMA attempts to migrate the page before pinning, when
2891  * FOLL_LONGTERM is specified.
2892  *
2893  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2894  * but an additional pin counting system) will be invoked. This is intended for
2895  * anything that gets a page reference and then touches page data (for example,
2896  * Direct IO). This lets the filesystem know that some non-file-system entity is
2897  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2898  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2899  * a call to unpin_user_page().
2900  *
2901  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2902  * and separate refcounting mechanisms, however, and that means that each has
2903  * its own acquire and release mechanisms:
2904  *
2905  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2906  *
2907  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2908  *
2909  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2910  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2911  * calls applied to them, and that's perfectly OK. This is a constraint on the
2912  * callers, not on the pages.)
2913  *
2914  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2915  * directly by the caller. That's in order to help avoid mismatches when
2916  * releasing pages: get_user_pages*() pages must be released via put_page(),
2917  * while pin_user_pages*() pages must be released via unpin_user_page().
2918  *
2919  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2920  */
2921 
2922 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2923 {
2924 	if (vm_fault & VM_FAULT_OOM)
2925 		return -ENOMEM;
2926 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2927 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2928 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2929 		return -EFAULT;
2930 	return 0;
2931 }
2932 
2933 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2934 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2935 			       unsigned long size, pte_fn_t fn, void *data);
2936 extern int apply_to_existing_page_range(struct mm_struct *mm,
2937 				   unsigned long address, unsigned long size,
2938 				   pte_fn_t fn, void *data);
2939 
2940 extern void init_mem_debugging_and_hardening(void);
2941 #ifdef CONFIG_PAGE_POISONING
2942 extern void __kernel_poison_pages(struct page *page, int numpages);
2943 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2944 extern bool _page_poisoning_enabled_early;
2945 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2946 static inline bool page_poisoning_enabled(void)
2947 {
2948 	return _page_poisoning_enabled_early;
2949 }
2950 /*
2951  * For use in fast paths after init_mem_debugging() has run, or when a
2952  * false negative result is not harmful when called too early.
2953  */
2954 static inline bool page_poisoning_enabled_static(void)
2955 {
2956 	return static_branch_unlikely(&_page_poisoning_enabled);
2957 }
2958 static inline void kernel_poison_pages(struct page *page, int numpages)
2959 {
2960 	if (page_poisoning_enabled_static())
2961 		__kernel_poison_pages(page, numpages);
2962 }
2963 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2964 {
2965 	if (page_poisoning_enabled_static())
2966 		__kernel_unpoison_pages(page, numpages);
2967 }
2968 #else
2969 static inline bool page_poisoning_enabled(void) { return false; }
2970 static inline bool page_poisoning_enabled_static(void) { return false; }
2971 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2972 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2973 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2974 #endif
2975 
2976 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
2977 static inline bool want_init_on_alloc(gfp_t flags)
2978 {
2979 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
2980 				&init_on_alloc))
2981 		return true;
2982 	return flags & __GFP_ZERO;
2983 }
2984 
2985 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
2986 static inline bool want_init_on_free(void)
2987 {
2988 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
2989 				   &init_on_free);
2990 }
2991 
2992 extern bool _debug_pagealloc_enabled_early;
2993 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2994 
2995 static inline bool debug_pagealloc_enabled(void)
2996 {
2997 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2998 		_debug_pagealloc_enabled_early;
2999 }
3000 
3001 /*
3002  * For use in fast paths after init_debug_pagealloc() has run, or when a
3003  * false negative result is not harmful when called too early.
3004  */
3005 static inline bool debug_pagealloc_enabled_static(void)
3006 {
3007 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3008 		return false;
3009 
3010 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3011 }
3012 
3013 #ifdef CONFIG_DEBUG_PAGEALLOC
3014 /*
3015  * To support DEBUG_PAGEALLOC architecture must ensure that
3016  * __kernel_map_pages() never fails
3017  */
3018 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3019 
3020 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3021 {
3022 	if (debug_pagealloc_enabled_static())
3023 		__kernel_map_pages(page, numpages, 1);
3024 }
3025 
3026 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3027 {
3028 	if (debug_pagealloc_enabled_static())
3029 		__kernel_map_pages(page, numpages, 0);
3030 }
3031 #else	/* CONFIG_DEBUG_PAGEALLOC */
3032 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3033 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3034 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3035 
3036 #ifdef __HAVE_ARCH_GATE_AREA
3037 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3038 extern int in_gate_area_no_mm(unsigned long addr);
3039 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3040 #else
3041 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3042 {
3043 	return NULL;
3044 }
3045 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3046 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3047 {
3048 	return 0;
3049 }
3050 #endif	/* __HAVE_ARCH_GATE_AREA */
3051 
3052 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3053 
3054 #ifdef CONFIG_SYSCTL
3055 extern int sysctl_drop_caches;
3056 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3057 		loff_t *);
3058 #endif
3059 
3060 void drop_slab(void);
3061 void drop_slab_node(int nid);
3062 
3063 #ifndef CONFIG_MMU
3064 #define randomize_va_space 0
3065 #else
3066 extern int randomize_va_space;
3067 #endif
3068 
3069 const char * arch_vma_name(struct vm_area_struct *vma);
3070 #ifdef CONFIG_MMU
3071 void print_vma_addr(char *prefix, unsigned long rip);
3072 #else
3073 static inline void print_vma_addr(char *prefix, unsigned long rip)
3074 {
3075 }
3076 #endif
3077 
3078 int vmemmap_remap_free(unsigned long start, unsigned long end,
3079 		       unsigned long reuse);
3080 int vmemmap_remap_alloc(unsigned long start, unsigned long end,
3081 			unsigned long reuse, gfp_t gfp_mask);
3082 
3083 void *sparse_buffer_alloc(unsigned long size);
3084 struct page * __populate_section_memmap(unsigned long pfn,
3085 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3086 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3087 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3088 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3089 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3090 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3091 			    struct vmem_altmap *altmap);
3092 void *vmemmap_alloc_block(unsigned long size, int node);
3093 struct vmem_altmap;
3094 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3095 			      struct vmem_altmap *altmap);
3096 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3097 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3098 			       int node, struct vmem_altmap *altmap);
3099 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3100 		struct vmem_altmap *altmap);
3101 void vmemmap_populate_print_last(void);
3102 #ifdef CONFIG_MEMORY_HOTPLUG
3103 void vmemmap_free(unsigned long start, unsigned long end,
3104 		struct vmem_altmap *altmap);
3105 #endif
3106 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3107 				  unsigned long nr_pages);
3108 
3109 enum mf_flags {
3110 	MF_COUNT_INCREASED = 1 << 0,
3111 	MF_ACTION_REQUIRED = 1 << 1,
3112 	MF_MUST_KILL = 1 << 2,
3113 	MF_SOFT_OFFLINE = 1 << 3,
3114 };
3115 extern int memory_failure(unsigned long pfn, int flags);
3116 extern void memory_failure_queue(unsigned long pfn, int flags);
3117 extern void memory_failure_queue_kick(int cpu);
3118 extern int unpoison_memory(unsigned long pfn);
3119 extern int sysctl_memory_failure_early_kill;
3120 extern int sysctl_memory_failure_recovery;
3121 extern void shake_page(struct page *p, int access);
3122 extern atomic_long_t num_poisoned_pages __read_mostly;
3123 extern int soft_offline_page(unsigned long pfn, int flags);
3124 
3125 
3126 /*
3127  * Error handlers for various types of pages.
3128  */
3129 enum mf_result {
3130 	MF_IGNORED,	/* Error: cannot be handled */
3131 	MF_FAILED,	/* Error: handling failed */
3132 	MF_DELAYED,	/* Will be handled later */
3133 	MF_RECOVERED,	/* Successfully recovered */
3134 };
3135 
3136 enum mf_action_page_type {
3137 	MF_MSG_KERNEL,
3138 	MF_MSG_KERNEL_HIGH_ORDER,
3139 	MF_MSG_SLAB,
3140 	MF_MSG_DIFFERENT_COMPOUND,
3141 	MF_MSG_POISONED_HUGE,
3142 	MF_MSG_HUGE,
3143 	MF_MSG_FREE_HUGE,
3144 	MF_MSG_NON_PMD_HUGE,
3145 	MF_MSG_UNMAP_FAILED,
3146 	MF_MSG_DIRTY_SWAPCACHE,
3147 	MF_MSG_CLEAN_SWAPCACHE,
3148 	MF_MSG_DIRTY_MLOCKED_LRU,
3149 	MF_MSG_CLEAN_MLOCKED_LRU,
3150 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3151 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3152 	MF_MSG_DIRTY_LRU,
3153 	MF_MSG_CLEAN_LRU,
3154 	MF_MSG_TRUNCATED_LRU,
3155 	MF_MSG_BUDDY,
3156 	MF_MSG_BUDDY_2ND,
3157 	MF_MSG_DAX,
3158 	MF_MSG_UNSPLIT_THP,
3159 	MF_MSG_UNKNOWN,
3160 };
3161 
3162 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3163 extern void clear_huge_page(struct page *page,
3164 			    unsigned long addr_hint,
3165 			    unsigned int pages_per_huge_page);
3166 extern void copy_user_huge_page(struct page *dst, struct page *src,
3167 				unsigned long addr_hint,
3168 				struct vm_area_struct *vma,
3169 				unsigned int pages_per_huge_page);
3170 extern long copy_huge_page_from_user(struct page *dst_page,
3171 				const void __user *usr_src,
3172 				unsigned int pages_per_huge_page,
3173 				bool allow_pagefault);
3174 
3175 /**
3176  * vma_is_special_huge - Are transhuge page-table entries considered special?
3177  * @vma: Pointer to the struct vm_area_struct to consider
3178  *
3179  * Whether transhuge page-table entries are considered "special" following
3180  * the definition in vm_normal_page().
3181  *
3182  * Return: true if transhuge page-table entries should be considered special,
3183  * false otherwise.
3184  */
3185 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3186 {
3187 	return vma_is_dax(vma) || (vma->vm_file &&
3188 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3189 }
3190 
3191 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3192 
3193 #ifdef CONFIG_DEBUG_PAGEALLOC
3194 extern unsigned int _debug_guardpage_minorder;
3195 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3196 
3197 static inline unsigned int debug_guardpage_minorder(void)
3198 {
3199 	return _debug_guardpage_minorder;
3200 }
3201 
3202 static inline bool debug_guardpage_enabled(void)
3203 {
3204 	return static_branch_unlikely(&_debug_guardpage_enabled);
3205 }
3206 
3207 static inline bool page_is_guard(struct page *page)
3208 {
3209 	if (!debug_guardpage_enabled())
3210 		return false;
3211 
3212 	return PageGuard(page);
3213 }
3214 #else
3215 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3216 static inline bool debug_guardpage_enabled(void) { return false; }
3217 static inline bool page_is_guard(struct page *page) { return false; }
3218 #endif /* CONFIG_DEBUG_PAGEALLOC */
3219 
3220 #if MAX_NUMNODES > 1
3221 void __init setup_nr_node_ids(void);
3222 #else
3223 static inline void setup_nr_node_ids(void) {}
3224 #endif
3225 
3226 extern int memcmp_pages(struct page *page1, struct page *page2);
3227 
3228 static inline int pages_identical(struct page *page1, struct page *page2)
3229 {
3230 	return !memcmp_pages(page1, page2);
3231 }
3232 
3233 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3234 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3235 						pgoff_t first_index, pgoff_t nr,
3236 						pgoff_t bitmap_pgoff,
3237 						unsigned long *bitmap,
3238 						pgoff_t *start,
3239 						pgoff_t *end);
3240 
3241 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3242 				      pgoff_t first_index, pgoff_t nr);
3243 #endif
3244 
3245 extern int sysctl_nr_trim_pages;
3246 
3247 #ifdef CONFIG_PRINTK
3248 void mem_dump_obj(void *object);
3249 #else
3250 static inline void mem_dump_obj(void *object) {}
3251 #endif
3252 
3253 /**
3254  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3255  * @seals: the seals to check
3256  * @vma: the vma to operate on
3257  *
3258  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3259  * the vma flags.  Return 0 if check pass, or <0 for errors.
3260  */
3261 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3262 {
3263 	if (seals & F_SEAL_FUTURE_WRITE) {
3264 		/*
3265 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3266 		 * "future write" seal active.
3267 		 */
3268 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3269 			return -EPERM;
3270 
3271 		/*
3272 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3273 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3274 		 * revert protections on such mappings. Do this only for shared
3275 		 * mappings. For private mappings, don't need to mask
3276 		 * VM_MAYWRITE as we still want them to be COW-writable.
3277 		 */
3278 		if (vma->vm_flags & VM_SHARED)
3279 			vma->vm_flags &= ~(VM_MAYWRITE);
3280 	}
3281 
3282 	return 0;
3283 }
3284 
3285 #endif /* __KERNEL__ */
3286 #endif /* _LINUX_MM_H */
3287