xref: /linux-6.15/include/linux/mm.h (revision da51bbcd)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 struct folio_batch;
40 
41 extern int sysctl_page_lock_unfairness;
42 
43 void mm_core_init(void);
44 void init_mm_internals(void);
45 
46 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
47 extern unsigned long max_mapnr;
48 
49 static inline void set_max_mapnr(unsigned long limit)
50 {
51 	max_mapnr = limit;
52 }
53 #else
54 static inline void set_max_mapnr(unsigned long limit) { }
55 #endif
56 
57 extern atomic_long_t _totalram_pages;
58 static inline unsigned long totalram_pages(void)
59 {
60 	return (unsigned long)atomic_long_read(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_inc(void)
64 {
65 	atomic_long_inc(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_dec(void)
69 {
70 	atomic_long_dec(&_totalram_pages);
71 }
72 
73 static inline void totalram_pages_add(long count)
74 {
75 	atomic_long_add(count, &_totalram_pages);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 extern const int page_cluster_max;
81 
82 #ifdef CONFIG_SYSCTL
83 extern int sysctl_legacy_va_layout;
84 #else
85 #define sysctl_legacy_va_layout 0
86 #endif
87 
88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
89 extern const int mmap_rnd_bits_min;
90 extern int mmap_rnd_bits_max __ro_after_init;
91 extern int mmap_rnd_bits __read_mostly;
92 #endif
93 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
94 extern const int mmap_rnd_compat_bits_min;
95 extern const int mmap_rnd_compat_bits_max;
96 extern int mmap_rnd_compat_bits __read_mostly;
97 #endif
98 
99 #include <asm/page.h>
100 #include <asm/processor.h>
101 
102 #ifndef __pa_symbol
103 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
104 #endif
105 
106 #ifndef page_to_virt
107 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
108 #endif
109 
110 #ifndef lm_alias
111 #define lm_alias(x)	__va(__pa_symbol(x))
112 #endif
113 
114 /*
115  * To prevent common memory management code establishing
116  * a zero page mapping on a read fault.
117  * This macro should be defined within <asm/pgtable.h>.
118  * s390 does this to prevent multiplexing of hardware bits
119  * related to the physical page in case of virtualization.
120  */
121 #ifndef mm_forbids_zeropage
122 #define mm_forbids_zeropage(X)	(0)
123 #endif
124 
125 /*
126  * On some architectures it is expensive to call memset() for small sizes.
127  * If an architecture decides to implement their own version of
128  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
129  * define their own version of this macro in <asm/pgtable.h>
130  */
131 #if BITS_PER_LONG == 64
132 /* This function must be updated when the size of struct page grows above 96
133  * or reduces below 56. The idea that compiler optimizes out switch()
134  * statement, and only leaves move/store instructions. Also the compiler can
135  * combine write statements if they are both assignments and can be reordered,
136  * this can result in several of the writes here being dropped.
137  */
138 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
139 static inline void __mm_zero_struct_page(struct page *page)
140 {
141 	unsigned long *_pp = (void *)page;
142 
143 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
144 	BUILD_BUG_ON(sizeof(struct page) & 7);
145 	BUILD_BUG_ON(sizeof(struct page) < 56);
146 	BUILD_BUG_ON(sizeof(struct page) > 96);
147 
148 	switch (sizeof(struct page)) {
149 	case 96:
150 		_pp[11] = 0;
151 		fallthrough;
152 	case 88:
153 		_pp[10] = 0;
154 		fallthrough;
155 	case 80:
156 		_pp[9] = 0;
157 		fallthrough;
158 	case 72:
159 		_pp[8] = 0;
160 		fallthrough;
161 	case 64:
162 		_pp[7] = 0;
163 		fallthrough;
164 	case 56:
165 		_pp[6] = 0;
166 		_pp[5] = 0;
167 		_pp[4] = 0;
168 		_pp[3] = 0;
169 		_pp[2] = 0;
170 		_pp[1] = 0;
171 		_pp[0] = 0;
172 	}
173 }
174 #else
175 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
176 #endif
177 
178 /*
179  * Default maximum number of active map areas, this limits the number of vmas
180  * per mm struct. Users can overwrite this number by sysctl but there is a
181  * problem.
182  *
183  * When a program's coredump is generated as ELF format, a section is created
184  * per a vma. In ELF, the number of sections is represented in unsigned short.
185  * This means the number of sections should be smaller than 65535 at coredump.
186  * Because the kernel adds some informative sections to a image of program at
187  * generating coredump, we need some margin. The number of extra sections is
188  * 1-3 now and depends on arch. We use "5" as safe margin, here.
189  *
190  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191  * not a hard limit any more. Although some userspace tools can be surprised by
192  * that.
193  */
194 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
195 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196 
197 extern int sysctl_max_map_count;
198 
199 extern unsigned long sysctl_user_reserve_kbytes;
200 extern unsigned long sysctl_admin_reserve_kbytes;
201 
202 extern int sysctl_overcommit_memory;
203 extern int sysctl_overcommit_ratio;
204 extern unsigned long sysctl_overcommit_kbytes;
205 
206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 		loff_t *);
208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 
213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
215 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
216 #else
217 #define nth_page(page,n) ((page) + (n))
218 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
219 #endif
220 
221 /* to align the pointer to the (next) page boundary */
222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
223 
224 /* to align the pointer to the (prev) page boundary */
225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
226 
227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
228 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
229 
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330 
331 #ifdef CONFIG_ARCH_HAS_PKEYS
332 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
333 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
334 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
335 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
336 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
337 #ifdef CONFIG_PPC
338 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
339 #else
340 # define VM_PKEY_BIT4  0
341 #endif
342 #endif /* CONFIG_ARCH_HAS_PKEYS */
343 
344 #ifdef CONFIG_X86_USER_SHADOW_STACK
345 /*
346  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347  * support core mm.
348  *
349  * These VMAs will get a single end guard page. This helps userspace protect
350  * itself from attacks. A single page is enough for current shadow stack archs
351  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352  * for more details on the guard size.
353  */
354 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
355 #else
356 # define VM_SHADOW_STACK	VM_NONE
357 #endif
358 
359 #if defined(CONFIG_X86)
360 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC)
362 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP	VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR	VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR	VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
373 #endif
374 
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
378 #else
379 # define VM_MTE		VM_NONE
380 # define VM_MTE_ALLOWED	VM_NONE
381 #endif
382 
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP	VM_NONE
385 #endif
386 
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT	38
389 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR		VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393 
394 /*
395  * This flag is used to connect VFIO to arch specific KVM code. It
396  * indicates that the memory under this VMA is safe for use with any
397  * non-cachable memory type inside KVM. Some VFIO devices, on some
398  * platforms, are thought to be unsafe and can cause machine crashes
399  * if KVM does not lock down the memory type.
400  */
401 #ifdef CONFIG_64BIT
402 #define VM_ALLOW_ANY_UNCACHED_BIT	39
403 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
404 #else
405 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
406 #endif
407 
408 /* Bits set in the VMA until the stack is in its final location */
409 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
410 
411 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
412 
413 /* Common data flag combinations */
414 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
415 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
416 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
417 				 VM_MAYWRITE | VM_MAYEXEC)
418 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
419 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
420 
421 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
422 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
423 #endif
424 
425 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
426 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
427 #endif
428 
429 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
430 
431 #ifdef CONFIG_STACK_GROWSUP
432 #define VM_STACK	VM_GROWSUP
433 #define VM_STACK_EARLY	VM_GROWSDOWN
434 #else
435 #define VM_STACK	VM_GROWSDOWN
436 #define VM_STACK_EARLY	0
437 #endif
438 
439 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
440 
441 /* VMA basic access permission flags */
442 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
443 
444 
445 /*
446  * Special vmas that are non-mergable, non-mlock()able.
447  */
448 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
449 
450 /* This mask prevents VMA from being scanned with khugepaged */
451 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
452 
453 /* This mask defines which mm->def_flags a process can inherit its parent */
454 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
455 
456 /* This mask represents all the VMA flag bits used by mlock */
457 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
458 
459 /* Arch-specific flags to clear when updating VM flags on protection change */
460 #ifndef VM_ARCH_CLEAR
461 # define VM_ARCH_CLEAR	VM_NONE
462 #endif
463 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
464 
465 /*
466  * mapping from the currently active vm_flags protection bits (the
467  * low four bits) to a page protection mask..
468  */
469 
470 /*
471  * The default fault flags that should be used by most of the
472  * arch-specific page fault handlers.
473  */
474 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
475 			     FAULT_FLAG_KILLABLE | \
476 			     FAULT_FLAG_INTERRUPTIBLE)
477 
478 /**
479  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
480  * @flags: Fault flags.
481  *
482  * This is mostly used for places where we want to try to avoid taking
483  * the mmap_lock for too long a time when waiting for another condition
484  * to change, in which case we can try to be polite to release the
485  * mmap_lock in the first round to avoid potential starvation of other
486  * processes that would also want the mmap_lock.
487  *
488  * Return: true if the page fault allows retry and this is the first
489  * attempt of the fault handling; false otherwise.
490  */
491 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
492 {
493 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
494 	    (!(flags & FAULT_FLAG_TRIED));
495 }
496 
497 #define FAULT_FLAG_TRACE \
498 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
499 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
500 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
501 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
502 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
503 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
504 	{ FAULT_FLAG_USER,		"USER" }, \
505 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
506 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
507 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
508 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
509 
510 /*
511  * vm_fault is filled by the pagefault handler and passed to the vma's
512  * ->fault function. The vma's ->fault is responsible for returning a bitmask
513  * of VM_FAULT_xxx flags that give details about how the fault was handled.
514  *
515  * MM layer fills up gfp_mask for page allocations but fault handler might
516  * alter it if its implementation requires a different allocation context.
517  *
518  * pgoff should be used in favour of virtual_address, if possible.
519  */
520 struct vm_fault {
521 	const struct {
522 		struct vm_area_struct *vma;	/* Target VMA */
523 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
524 		pgoff_t pgoff;			/* Logical page offset based on vma */
525 		unsigned long address;		/* Faulting virtual address - masked */
526 		unsigned long real_address;	/* Faulting virtual address - unmasked */
527 	};
528 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
529 					 * XXX: should really be 'const' */
530 	pmd_t *pmd;			/* Pointer to pmd entry matching
531 					 * the 'address' */
532 	pud_t *pud;			/* Pointer to pud entry matching
533 					 * the 'address'
534 					 */
535 	union {
536 		pte_t orig_pte;		/* Value of PTE at the time of fault */
537 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
538 					 * used by PMD fault only.
539 					 */
540 	};
541 
542 	struct page *cow_page;		/* Page handler may use for COW fault */
543 	struct page *page;		/* ->fault handlers should return a
544 					 * page here, unless VM_FAULT_NOPAGE
545 					 * is set (which is also implied by
546 					 * VM_FAULT_ERROR).
547 					 */
548 	/* These three entries are valid only while holding ptl lock */
549 	pte_t *pte;			/* Pointer to pte entry matching
550 					 * the 'address'. NULL if the page
551 					 * table hasn't been allocated.
552 					 */
553 	spinlock_t *ptl;		/* Page table lock.
554 					 * Protects pte page table if 'pte'
555 					 * is not NULL, otherwise pmd.
556 					 */
557 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
558 					 * vm_ops->map_pages() sets up a page
559 					 * table from atomic context.
560 					 * do_fault_around() pre-allocates
561 					 * page table to avoid allocation from
562 					 * atomic context.
563 					 */
564 };
565 
566 /*
567  * These are the virtual MM functions - opening of an area, closing and
568  * unmapping it (needed to keep files on disk up-to-date etc), pointer
569  * to the functions called when a no-page or a wp-page exception occurs.
570  */
571 struct vm_operations_struct {
572 	void (*open)(struct vm_area_struct * area);
573 	/**
574 	 * @close: Called when the VMA is being removed from the MM.
575 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
576 	 */
577 	void (*close)(struct vm_area_struct * area);
578 	/* Called any time before splitting to check if it's allowed */
579 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
580 	int (*mremap)(struct vm_area_struct *area);
581 	/*
582 	 * Called by mprotect() to make driver-specific permission
583 	 * checks before mprotect() is finalised.   The VMA must not
584 	 * be modified.  Returns 0 if mprotect() can proceed.
585 	 */
586 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
587 			unsigned long end, unsigned long newflags);
588 	vm_fault_t (*fault)(struct vm_fault *vmf);
589 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
590 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
591 			pgoff_t start_pgoff, pgoff_t end_pgoff);
592 	unsigned long (*pagesize)(struct vm_area_struct * area);
593 
594 	/* notification that a previously read-only page is about to become
595 	 * writable, if an error is returned it will cause a SIGBUS */
596 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
597 
598 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
599 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
600 
601 	/* called by access_process_vm when get_user_pages() fails, typically
602 	 * for use by special VMAs. See also generic_access_phys() for a generic
603 	 * implementation useful for any iomem mapping.
604 	 */
605 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
606 		      void *buf, int len, int write);
607 
608 	/* Called by the /proc/PID/maps code to ask the vma whether it
609 	 * has a special name.  Returning non-NULL will also cause this
610 	 * vma to be dumped unconditionally. */
611 	const char *(*name)(struct vm_area_struct *vma);
612 
613 #ifdef CONFIG_NUMA
614 	/*
615 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
616 	 * to hold the policy upon return.  Caller should pass NULL @new to
617 	 * remove a policy and fall back to surrounding context--i.e. do not
618 	 * install a MPOL_DEFAULT policy, nor the task or system default
619 	 * mempolicy.
620 	 */
621 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
622 
623 	/*
624 	 * get_policy() op must add reference [mpol_get()] to any policy at
625 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
626 	 * in mm/mempolicy.c will do this automatically.
627 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
628 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
629 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
630 	 * must return NULL--i.e., do not "fallback" to task or system default
631 	 * policy.
632 	 */
633 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
634 					unsigned long addr, pgoff_t *ilx);
635 #endif
636 	/*
637 	 * Called by vm_normal_page() for special PTEs to find the
638 	 * page for @addr.  This is useful if the default behavior
639 	 * (using pte_page()) would not find the correct page.
640 	 */
641 	struct page *(*find_special_page)(struct vm_area_struct *vma,
642 					  unsigned long addr);
643 };
644 
645 #ifdef CONFIG_NUMA_BALANCING
646 static inline void vma_numab_state_init(struct vm_area_struct *vma)
647 {
648 	vma->numab_state = NULL;
649 }
650 static inline void vma_numab_state_free(struct vm_area_struct *vma)
651 {
652 	kfree(vma->numab_state);
653 }
654 #else
655 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
656 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
657 #endif /* CONFIG_NUMA_BALANCING */
658 
659 #ifdef CONFIG_PER_VMA_LOCK
660 /*
661  * Try to read-lock a vma. The function is allowed to occasionally yield false
662  * locked result to avoid performance overhead, in which case we fall back to
663  * using mmap_lock. The function should never yield false unlocked result.
664  */
665 static inline bool vma_start_read(struct vm_area_struct *vma)
666 {
667 	/*
668 	 * Check before locking. A race might cause false locked result.
669 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
670 	 * ACQUIRE semantics, because this is just a lockless check whose result
671 	 * we don't rely on for anything - the mm_lock_seq read against which we
672 	 * need ordering is below.
673 	 */
674 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
675 		return false;
676 
677 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
678 		return false;
679 
680 	/*
681 	 * Overflow might produce false locked result.
682 	 * False unlocked result is impossible because we modify and check
683 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
684 	 * modification invalidates all existing locks.
685 	 *
686 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
687 	 * racing with vma_end_write_all(), we only start reading from the VMA
688 	 * after it has been unlocked.
689 	 * This pairs with RELEASE semantics in vma_end_write_all().
690 	 */
691 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
692 		up_read(&vma->vm_lock->lock);
693 		return false;
694 	}
695 	return true;
696 }
697 
698 static inline void vma_end_read(struct vm_area_struct *vma)
699 {
700 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
701 	up_read(&vma->vm_lock->lock);
702 	rcu_read_unlock();
703 }
704 
705 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
706 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
707 {
708 	mmap_assert_write_locked(vma->vm_mm);
709 
710 	/*
711 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
712 	 * mm->mm_lock_seq can't be concurrently modified.
713 	 */
714 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
715 	return (vma->vm_lock_seq == *mm_lock_seq);
716 }
717 
718 /*
719  * Begin writing to a VMA.
720  * Exclude concurrent readers under the per-VMA lock until the currently
721  * write-locked mmap_lock is dropped or downgraded.
722  */
723 static inline void vma_start_write(struct vm_area_struct *vma)
724 {
725 	int mm_lock_seq;
726 
727 	if (__is_vma_write_locked(vma, &mm_lock_seq))
728 		return;
729 
730 	down_write(&vma->vm_lock->lock);
731 	/*
732 	 * We should use WRITE_ONCE() here because we can have concurrent reads
733 	 * from the early lockless pessimistic check in vma_start_read().
734 	 * We don't really care about the correctness of that early check, but
735 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
736 	 */
737 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
738 	up_write(&vma->vm_lock->lock);
739 }
740 
741 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
742 {
743 	int mm_lock_seq;
744 
745 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
746 }
747 
748 static inline void vma_assert_locked(struct vm_area_struct *vma)
749 {
750 	if (!rwsem_is_locked(&vma->vm_lock->lock))
751 		vma_assert_write_locked(vma);
752 }
753 
754 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
755 {
756 	/* When detaching vma should be write-locked */
757 	if (detached)
758 		vma_assert_write_locked(vma);
759 	vma->detached = detached;
760 }
761 
762 static inline void release_fault_lock(struct vm_fault *vmf)
763 {
764 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
765 		vma_end_read(vmf->vma);
766 	else
767 		mmap_read_unlock(vmf->vma->vm_mm);
768 }
769 
770 static inline void assert_fault_locked(struct vm_fault *vmf)
771 {
772 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
773 		vma_assert_locked(vmf->vma);
774 	else
775 		mmap_assert_locked(vmf->vma->vm_mm);
776 }
777 
778 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 					  unsigned long address);
780 
781 #else /* CONFIG_PER_VMA_LOCK */
782 
783 static inline bool vma_start_read(struct vm_area_struct *vma)
784 		{ return false; }
785 static inline void vma_end_read(struct vm_area_struct *vma) {}
786 static inline void vma_start_write(struct vm_area_struct *vma) {}
787 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
788 		{ mmap_assert_write_locked(vma->vm_mm); }
789 static inline void vma_mark_detached(struct vm_area_struct *vma,
790 				     bool detached) {}
791 
792 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
793 		unsigned long address)
794 {
795 	return NULL;
796 }
797 
798 static inline void vma_assert_locked(struct vm_area_struct *vma)
799 {
800 	mmap_assert_locked(vma->vm_mm);
801 }
802 
803 static inline void release_fault_lock(struct vm_fault *vmf)
804 {
805 	mmap_read_unlock(vmf->vma->vm_mm);
806 }
807 
808 static inline void assert_fault_locked(struct vm_fault *vmf)
809 {
810 	mmap_assert_locked(vmf->vma->vm_mm);
811 }
812 
813 #endif /* CONFIG_PER_VMA_LOCK */
814 
815 extern const struct vm_operations_struct vma_dummy_vm_ops;
816 
817 /*
818  * WARNING: vma_init does not initialize vma->vm_lock.
819  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
820  */
821 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
822 {
823 	memset(vma, 0, sizeof(*vma));
824 	vma->vm_mm = mm;
825 	vma->vm_ops = &vma_dummy_vm_ops;
826 	INIT_LIST_HEAD(&vma->anon_vma_chain);
827 	vma_mark_detached(vma, false);
828 	vma_numab_state_init(vma);
829 }
830 
831 /* Use when VMA is not part of the VMA tree and needs no locking */
832 static inline void vm_flags_init(struct vm_area_struct *vma,
833 				 vm_flags_t flags)
834 {
835 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
836 }
837 
838 /*
839  * Use when VMA is part of the VMA tree and modifications need coordination
840  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
841  * it should be locked explicitly beforehand.
842  */
843 static inline void vm_flags_reset(struct vm_area_struct *vma,
844 				  vm_flags_t flags)
845 {
846 	vma_assert_write_locked(vma);
847 	vm_flags_init(vma, flags);
848 }
849 
850 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
851 				       vm_flags_t flags)
852 {
853 	vma_assert_write_locked(vma);
854 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
855 }
856 
857 static inline void vm_flags_set(struct vm_area_struct *vma,
858 				vm_flags_t flags)
859 {
860 	vma_start_write(vma);
861 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
862 }
863 
864 static inline void vm_flags_clear(struct vm_area_struct *vma,
865 				  vm_flags_t flags)
866 {
867 	vma_start_write(vma);
868 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
869 }
870 
871 /*
872  * Use only if VMA is not part of the VMA tree or has no other users and
873  * therefore needs no locking.
874  */
875 static inline void __vm_flags_mod(struct vm_area_struct *vma,
876 				  vm_flags_t set, vm_flags_t clear)
877 {
878 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
879 }
880 
881 /*
882  * Use only when the order of set/clear operations is unimportant, otherwise
883  * use vm_flags_{set|clear} explicitly.
884  */
885 static inline void vm_flags_mod(struct vm_area_struct *vma,
886 				vm_flags_t set, vm_flags_t clear)
887 {
888 	vma_start_write(vma);
889 	__vm_flags_mod(vma, set, clear);
890 }
891 
892 static inline void vma_set_anonymous(struct vm_area_struct *vma)
893 {
894 	vma->vm_ops = NULL;
895 }
896 
897 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
898 {
899 	return !vma->vm_ops;
900 }
901 
902 /*
903  * Indicate if the VMA is a heap for the given task; for
904  * /proc/PID/maps that is the heap of the main task.
905  */
906 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
907 {
908 	return vma->vm_start < vma->vm_mm->brk &&
909 		vma->vm_end > vma->vm_mm->start_brk;
910 }
911 
912 /*
913  * Indicate if the VMA is a stack for the given task; for
914  * /proc/PID/maps that is the stack of the main task.
915  */
916 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
917 {
918 	/*
919 	 * We make no effort to guess what a given thread considers to be
920 	 * its "stack".  It's not even well-defined for programs written
921 	 * languages like Go.
922 	 */
923 	return vma->vm_start <= vma->vm_mm->start_stack &&
924 		vma->vm_end >= vma->vm_mm->start_stack;
925 }
926 
927 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
928 {
929 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
930 
931 	if (!maybe_stack)
932 		return false;
933 
934 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
935 						VM_STACK_INCOMPLETE_SETUP)
936 		return true;
937 
938 	return false;
939 }
940 
941 static inline bool vma_is_foreign(struct vm_area_struct *vma)
942 {
943 	if (!current->mm)
944 		return true;
945 
946 	if (current->mm != vma->vm_mm)
947 		return true;
948 
949 	return false;
950 }
951 
952 static inline bool vma_is_accessible(struct vm_area_struct *vma)
953 {
954 	return vma->vm_flags & VM_ACCESS_FLAGS;
955 }
956 
957 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
958 {
959 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
960 		(VM_SHARED | VM_MAYWRITE);
961 }
962 
963 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
964 {
965 	return is_shared_maywrite(vma->vm_flags);
966 }
967 
968 static inline
969 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
970 {
971 	return mas_find(&vmi->mas, max - 1);
972 }
973 
974 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
975 {
976 	/*
977 	 * Uses mas_find() to get the first VMA when the iterator starts.
978 	 * Calling mas_next() could skip the first entry.
979 	 */
980 	return mas_find(&vmi->mas, ULONG_MAX);
981 }
982 
983 static inline
984 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
985 {
986 	return mas_next_range(&vmi->mas, ULONG_MAX);
987 }
988 
989 
990 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
991 {
992 	return mas_prev(&vmi->mas, 0);
993 }
994 
995 static inline
996 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
997 {
998 	return mas_prev_range(&vmi->mas, 0);
999 }
1000 
1001 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1002 {
1003 	return vmi->mas.index;
1004 }
1005 
1006 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1007 {
1008 	return vmi->mas.last + 1;
1009 }
1010 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1011 				      unsigned long count)
1012 {
1013 	return mas_expected_entries(&vmi->mas, count);
1014 }
1015 
1016 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1017 			unsigned long start, unsigned long end, gfp_t gfp)
1018 {
1019 	__mas_set_range(&vmi->mas, start, end - 1);
1020 	mas_store_gfp(&vmi->mas, NULL, gfp);
1021 	if (unlikely(mas_is_err(&vmi->mas)))
1022 		return -ENOMEM;
1023 
1024 	return 0;
1025 }
1026 
1027 /* Free any unused preallocations */
1028 static inline void vma_iter_free(struct vma_iterator *vmi)
1029 {
1030 	mas_destroy(&vmi->mas);
1031 }
1032 
1033 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1034 				      struct vm_area_struct *vma)
1035 {
1036 	vmi->mas.index = vma->vm_start;
1037 	vmi->mas.last = vma->vm_end - 1;
1038 	mas_store(&vmi->mas, vma);
1039 	if (unlikely(mas_is_err(&vmi->mas)))
1040 		return -ENOMEM;
1041 
1042 	return 0;
1043 }
1044 
1045 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1046 {
1047 	mas_pause(&vmi->mas);
1048 }
1049 
1050 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1051 {
1052 	mas_set(&vmi->mas, addr);
1053 }
1054 
1055 #define for_each_vma(__vmi, __vma)					\
1056 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1057 
1058 /* The MM code likes to work with exclusive end addresses */
1059 #define for_each_vma_range(__vmi, __vma, __end)				\
1060 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1061 
1062 #ifdef CONFIG_SHMEM
1063 /*
1064  * The vma_is_shmem is not inline because it is used only by slow
1065  * paths in userfault.
1066  */
1067 bool vma_is_shmem(struct vm_area_struct *vma);
1068 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1069 #else
1070 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1071 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1072 #endif
1073 
1074 int vma_is_stack_for_current(struct vm_area_struct *vma);
1075 
1076 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1077 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1078 
1079 struct mmu_gather;
1080 struct inode;
1081 
1082 /*
1083  * compound_order() can be called without holding a reference, which means
1084  * that niceties like page_folio() don't work.  These callers should be
1085  * prepared to handle wild return values.  For example, PG_head may be
1086  * set before the order is initialised, or this may be a tail page.
1087  * See compaction.c for some good examples.
1088  */
1089 static inline unsigned int compound_order(struct page *page)
1090 {
1091 	struct folio *folio = (struct folio *)page;
1092 
1093 	if (!test_bit(PG_head, &folio->flags))
1094 		return 0;
1095 	return folio->_flags_1 & 0xff;
1096 }
1097 
1098 /**
1099  * folio_order - The allocation order of a folio.
1100  * @folio: The folio.
1101  *
1102  * A folio is composed of 2^order pages.  See get_order() for the definition
1103  * of order.
1104  *
1105  * Return: The order of the folio.
1106  */
1107 static inline unsigned int folio_order(struct folio *folio)
1108 {
1109 	if (!folio_test_large(folio))
1110 		return 0;
1111 	return folio->_flags_1 & 0xff;
1112 }
1113 
1114 #include <linux/huge_mm.h>
1115 
1116 /*
1117  * Methods to modify the page usage count.
1118  *
1119  * What counts for a page usage:
1120  * - cache mapping   (page->mapping)
1121  * - private data    (page->private)
1122  * - page mapped in a task's page tables, each mapping
1123  *   is counted separately
1124  *
1125  * Also, many kernel routines increase the page count before a critical
1126  * routine so they can be sure the page doesn't go away from under them.
1127  */
1128 
1129 /*
1130  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1131  */
1132 static inline int put_page_testzero(struct page *page)
1133 {
1134 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1135 	return page_ref_dec_and_test(page);
1136 }
1137 
1138 static inline int folio_put_testzero(struct folio *folio)
1139 {
1140 	return put_page_testzero(&folio->page);
1141 }
1142 
1143 /*
1144  * Try to grab a ref unless the page has a refcount of zero, return false if
1145  * that is the case.
1146  * This can be called when MMU is off so it must not access
1147  * any of the virtual mappings.
1148  */
1149 static inline bool get_page_unless_zero(struct page *page)
1150 {
1151 	return page_ref_add_unless(page, 1, 0);
1152 }
1153 
1154 static inline struct folio *folio_get_nontail_page(struct page *page)
1155 {
1156 	if (unlikely(!get_page_unless_zero(page)))
1157 		return NULL;
1158 	return (struct folio *)page;
1159 }
1160 
1161 extern int page_is_ram(unsigned long pfn);
1162 
1163 enum {
1164 	REGION_INTERSECTS,
1165 	REGION_DISJOINT,
1166 	REGION_MIXED,
1167 };
1168 
1169 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1170 		      unsigned long desc);
1171 
1172 /* Support for virtually mapped pages */
1173 struct page *vmalloc_to_page(const void *addr);
1174 unsigned long vmalloc_to_pfn(const void *addr);
1175 
1176 /*
1177  * Determine if an address is within the vmalloc range
1178  *
1179  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1180  * is no special casing required.
1181  */
1182 #ifdef CONFIG_MMU
1183 extern bool is_vmalloc_addr(const void *x);
1184 extern int is_vmalloc_or_module_addr(const void *x);
1185 #else
1186 static inline bool is_vmalloc_addr(const void *x)
1187 {
1188 	return false;
1189 }
1190 static inline int is_vmalloc_or_module_addr(const void *x)
1191 {
1192 	return 0;
1193 }
1194 #endif
1195 
1196 /*
1197  * How many times the entire folio is mapped as a single unit (eg by a
1198  * PMD or PUD entry).  This is probably not what you want, except for
1199  * debugging purposes - it does not include PTE-mapped sub-pages; look
1200  * at folio_mapcount() or page_mapcount() instead.
1201  */
1202 static inline int folio_entire_mapcount(struct folio *folio)
1203 {
1204 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1205 	return atomic_read(&folio->_entire_mapcount) + 1;
1206 }
1207 
1208 /*
1209  * The atomic page->_mapcount, starts from -1: so that transitions
1210  * both from it and to it can be tracked, using atomic_inc_and_test
1211  * and atomic_add_negative(-1).
1212  */
1213 static inline void page_mapcount_reset(struct page *page)
1214 {
1215 	atomic_set(&(page)->_mapcount, -1);
1216 }
1217 
1218 /**
1219  * page_mapcount() - Number of times this precise page is mapped.
1220  * @page: The page.
1221  *
1222  * The number of times this page is mapped.  If this page is part of
1223  * a large folio, it includes the number of times this page is mapped
1224  * as part of that folio.
1225  *
1226  * The result is undefined for pages which cannot be mapped into userspace.
1227  * For example SLAB or special types of pages. See function page_has_type().
1228  * They use this field in struct page differently.
1229  */
1230 static inline int page_mapcount(struct page *page)
1231 {
1232 	int mapcount = atomic_read(&page->_mapcount) + 1;
1233 
1234 	if (unlikely(PageCompound(page)))
1235 		mapcount += folio_entire_mapcount(page_folio(page));
1236 
1237 	return mapcount;
1238 }
1239 
1240 int folio_total_mapcount(struct folio *folio);
1241 
1242 /**
1243  * folio_mapcount() - Calculate the number of mappings of this folio.
1244  * @folio: The folio.
1245  *
1246  * A large folio tracks both how many times the entire folio is mapped,
1247  * and how many times each individual page in the folio is mapped.
1248  * This function calculates the total number of times the folio is
1249  * mapped.
1250  *
1251  * Return: The number of times this folio is mapped.
1252  */
1253 static inline int folio_mapcount(struct folio *folio)
1254 {
1255 	if (likely(!folio_test_large(folio)))
1256 		return atomic_read(&folio->_mapcount) + 1;
1257 	return folio_total_mapcount(folio);
1258 }
1259 
1260 static inline bool folio_large_is_mapped(struct folio *folio)
1261 {
1262 	/*
1263 	 * Reading _entire_mapcount below could be omitted if hugetlb
1264 	 * participated in incrementing nr_pages_mapped when compound mapped.
1265 	 */
1266 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1267 		atomic_read(&folio->_entire_mapcount) >= 0;
1268 }
1269 
1270 /**
1271  * folio_mapped - Is this folio mapped into userspace?
1272  * @folio: The folio.
1273  *
1274  * Return: True if any page in this folio is referenced by user page tables.
1275  */
1276 static inline bool folio_mapped(struct folio *folio)
1277 {
1278 	if (likely(!folio_test_large(folio)))
1279 		return atomic_read(&folio->_mapcount) >= 0;
1280 	return folio_large_is_mapped(folio);
1281 }
1282 
1283 /*
1284  * Return true if this page is mapped into pagetables.
1285  * For compound page it returns true if any sub-page of compound page is mapped,
1286  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1287  */
1288 static inline bool page_mapped(struct page *page)
1289 {
1290 	if (likely(!PageCompound(page)))
1291 		return atomic_read(&page->_mapcount) >= 0;
1292 	return folio_large_is_mapped(page_folio(page));
1293 }
1294 
1295 static inline struct page *virt_to_head_page(const void *x)
1296 {
1297 	struct page *page = virt_to_page(x);
1298 
1299 	return compound_head(page);
1300 }
1301 
1302 static inline struct folio *virt_to_folio(const void *x)
1303 {
1304 	struct page *page = virt_to_page(x);
1305 
1306 	return page_folio(page);
1307 }
1308 
1309 void __folio_put(struct folio *folio);
1310 
1311 void put_pages_list(struct list_head *pages);
1312 
1313 void split_page(struct page *page, unsigned int order);
1314 void folio_copy(struct folio *dst, struct folio *src);
1315 
1316 unsigned long nr_free_buffer_pages(void);
1317 
1318 void destroy_large_folio(struct folio *folio);
1319 
1320 /* Returns the number of bytes in this potentially compound page. */
1321 static inline unsigned long page_size(struct page *page)
1322 {
1323 	return PAGE_SIZE << compound_order(page);
1324 }
1325 
1326 /* Returns the number of bits needed for the number of bytes in a page */
1327 static inline unsigned int page_shift(struct page *page)
1328 {
1329 	return PAGE_SHIFT + compound_order(page);
1330 }
1331 
1332 /**
1333  * thp_order - Order of a transparent huge page.
1334  * @page: Head page of a transparent huge page.
1335  */
1336 static inline unsigned int thp_order(struct page *page)
1337 {
1338 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1339 	return compound_order(page);
1340 }
1341 
1342 /**
1343  * thp_size - Size of a transparent huge page.
1344  * @page: Head page of a transparent huge page.
1345  *
1346  * Return: Number of bytes in this page.
1347  */
1348 static inline unsigned long thp_size(struct page *page)
1349 {
1350 	return PAGE_SIZE << thp_order(page);
1351 }
1352 
1353 #ifdef CONFIG_MMU
1354 /*
1355  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1356  * servicing faults for write access.  In the normal case, do always want
1357  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1358  * that do not have writing enabled, when used by access_process_vm.
1359  */
1360 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1361 {
1362 	if (likely(vma->vm_flags & VM_WRITE))
1363 		pte = pte_mkwrite(pte, vma);
1364 	return pte;
1365 }
1366 
1367 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1368 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1369 		struct page *page, unsigned int nr, unsigned long addr);
1370 
1371 vm_fault_t finish_fault(struct vm_fault *vmf);
1372 #endif
1373 
1374 /*
1375  * Multiple processes may "see" the same page. E.g. for untouched
1376  * mappings of /dev/null, all processes see the same page full of
1377  * zeroes, and text pages of executables and shared libraries have
1378  * only one copy in memory, at most, normally.
1379  *
1380  * For the non-reserved pages, page_count(page) denotes a reference count.
1381  *   page_count() == 0 means the page is free. page->lru is then used for
1382  *   freelist management in the buddy allocator.
1383  *   page_count() > 0  means the page has been allocated.
1384  *
1385  * Pages are allocated by the slab allocator in order to provide memory
1386  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1387  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1388  * unless a particular usage is carefully commented. (the responsibility of
1389  * freeing the kmalloc memory is the caller's, of course).
1390  *
1391  * A page may be used by anyone else who does a __get_free_page().
1392  * In this case, page_count still tracks the references, and should only
1393  * be used through the normal accessor functions. The top bits of page->flags
1394  * and page->virtual store page management information, but all other fields
1395  * are unused and could be used privately, carefully. The management of this
1396  * page is the responsibility of the one who allocated it, and those who have
1397  * subsequently been given references to it.
1398  *
1399  * The other pages (we may call them "pagecache pages") are completely
1400  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1401  * The following discussion applies only to them.
1402  *
1403  * A pagecache page contains an opaque `private' member, which belongs to the
1404  * page's address_space. Usually, this is the address of a circular list of
1405  * the page's disk buffers. PG_private must be set to tell the VM to call
1406  * into the filesystem to release these pages.
1407  *
1408  * A page may belong to an inode's memory mapping. In this case, page->mapping
1409  * is the pointer to the inode, and page->index is the file offset of the page,
1410  * in units of PAGE_SIZE.
1411  *
1412  * If pagecache pages are not associated with an inode, they are said to be
1413  * anonymous pages. These may become associated with the swapcache, and in that
1414  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1415  *
1416  * In either case (swapcache or inode backed), the pagecache itself holds one
1417  * reference to the page. Setting PG_private should also increment the
1418  * refcount. The each user mapping also has a reference to the page.
1419  *
1420  * The pagecache pages are stored in a per-mapping radix tree, which is
1421  * rooted at mapping->i_pages, and indexed by offset.
1422  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1423  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1424  *
1425  * All pagecache pages may be subject to I/O:
1426  * - inode pages may need to be read from disk,
1427  * - inode pages which have been modified and are MAP_SHARED may need
1428  *   to be written back to the inode on disk,
1429  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1430  *   modified may need to be swapped out to swap space and (later) to be read
1431  *   back into memory.
1432  */
1433 
1434 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1435 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1436 
1437 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1438 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1439 {
1440 	if (!static_branch_unlikely(&devmap_managed_key))
1441 		return false;
1442 	if (!is_zone_device_page(page))
1443 		return false;
1444 	return __put_devmap_managed_page_refs(page, refs);
1445 }
1446 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1447 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1448 {
1449 	return false;
1450 }
1451 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1452 
1453 static inline bool put_devmap_managed_page(struct page *page)
1454 {
1455 	return put_devmap_managed_page_refs(page, 1);
1456 }
1457 
1458 /* 127: arbitrary random number, small enough to assemble well */
1459 #define folio_ref_zero_or_close_to_overflow(folio) \
1460 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1461 
1462 /**
1463  * folio_get - Increment the reference count on a folio.
1464  * @folio: The folio.
1465  *
1466  * Context: May be called in any context, as long as you know that
1467  * you have a refcount on the folio.  If you do not already have one,
1468  * folio_try_get() may be the right interface for you to use.
1469  */
1470 static inline void folio_get(struct folio *folio)
1471 {
1472 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1473 	folio_ref_inc(folio);
1474 }
1475 
1476 static inline void get_page(struct page *page)
1477 {
1478 	folio_get(page_folio(page));
1479 }
1480 
1481 static inline __must_check bool try_get_page(struct page *page)
1482 {
1483 	page = compound_head(page);
1484 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1485 		return false;
1486 	page_ref_inc(page);
1487 	return true;
1488 }
1489 
1490 /**
1491  * folio_put - Decrement the reference count on a folio.
1492  * @folio: The folio.
1493  *
1494  * If the folio's reference count reaches zero, the memory will be
1495  * released back to the page allocator and may be used by another
1496  * allocation immediately.  Do not access the memory or the struct folio
1497  * after calling folio_put() unless you can be sure that it wasn't the
1498  * last reference.
1499  *
1500  * Context: May be called in process or interrupt context, but not in NMI
1501  * context.  May be called while holding a spinlock.
1502  */
1503 static inline void folio_put(struct folio *folio)
1504 {
1505 	if (folio_put_testzero(folio))
1506 		__folio_put(folio);
1507 }
1508 
1509 /**
1510  * folio_put_refs - Reduce the reference count on a folio.
1511  * @folio: The folio.
1512  * @refs: The amount to subtract from the folio's reference count.
1513  *
1514  * If the folio's reference count reaches zero, the memory will be
1515  * released back to the page allocator and may be used by another
1516  * allocation immediately.  Do not access the memory or the struct folio
1517  * after calling folio_put_refs() unless you can be sure that these weren't
1518  * the last references.
1519  *
1520  * Context: May be called in process or interrupt context, but not in NMI
1521  * context.  May be called while holding a spinlock.
1522  */
1523 static inline void folio_put_refs(struct folio *folio, int refs)
1524 {
1525 	if (folio_ref_sub_and_test(folio, refs))
1526 		__folio_put(folio);
1527 }
1528 
1529 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1530 
1531 /*
1532  * union release_pages_arg - an array of pages or folios
1533  *
1534  * release_pages() releases a simple array of multiple pages, and
1535  * accepts various different forms of said page array: either
1536  * a regular old boring array of pages, an array of folios, or
1537  * an array of encoded page pointers.
1538  *
1539  * The transparent union syntax for this kind of "any of these
1540  * argument types" is all kinds of ugly, so look away.
1541  */
1542 typedef union {
1543 	struct page **pages;
1544 	struct folio **folios;
1545 	struct encoded_page **encoded_pages;
1546 } release_pages_arg __attribute__ ((__transparent_union__));
1547 
1548 void release_pages(release_pages_arg, int nr);
1549 
1550 /**
1551  * folios_put - Decrement the reference count on an array of folios.
1552  * @folios: The folios.
1553  *
1554  * Like folio_put(), but for a batch of folios.  This is more efficient
1555  * than writing the loop yourself as it will optimise the locks which need
1556  * to be taken if the folios are freed.  The folios batch is returned
1557  * empty and ready to be reused for another batch; there is no need to
1558  * reinitialise it.
1559  *
1560  * Context: May be called in process or interrupt context, but not in NMI
1561  * context.  May be called while holding a spinlock.
1562  */
1563 static inline void folios_put(struct folio_batch *folios)
1564 {
1565 	folios_put_refs(folios, NULL);
1566 }
1567 
1568 static inline void put_page(struct page *page)
1569 {
1570 	struct folio *folio = page_folio(page);
1571 
1572 	/*
1573 	 * For some devmap managed pages we need to catch refcount transition
1574 	 * from 2 to 1:
1575 	 */
1576 	if (put_devmap_managed_page(&folio->page))
1577 		return;
1578 	folio_put(folio);
1579 }
1580 
1581 /*
1582  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1583  * the page's refcount so that two separate items are tracked: the original page
1584  * reference count, and also a new count of how many pin_user_pages() calls were
1585  * made against the page. ("gup-pinned" is another term for the latter).
1586  *
1587  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1588  * distinct from normal pages. As such, the unpin_user_page() call (and its
1589  * variants) must be used in order to release gup-pinned pages.
1590  *
1591  * Choice of value:
1592  *
1593  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1594  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1595  * simpler, due to the fact that adding an even power of two to the page
1596  * refcount has the effect of using only the upper N bits, for the code that
1597  * counts up using the bias value. This means that the lower bits are left for
1598  * the exclusive use of the original code that increments and decrements by one
1599  * (or at least, by much smaller values than the bias value).
1600  *
1601  * Of course, once the lower bits overflow into the upper bits (and this is
1602  * OK, because subtraction recovers the original values), then visual inspection
1603  * no longer suffices to directly view the separate counts. However, for normal
1604  * applications that don't have huge page reference counts, this won't be an
1605  * issue.
1606  *
1607  * Locking: the lockless algorithm described in folio_try_get_rcu()
1608  * provides safe operation for get_user_pages(), page_mkclean() and
1609  * other calls that race to set up page table entries.
1610  */
1611 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1612 
1613 void unpin_user_page(struct page *page);
1614 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1615 				 bool make_dirty);
1616 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1617 				      bool make_dirty);
1618 void unpin_user_pages(struct page **pages, unsigned long npages);
1619 
1620 static inline bool is_cow_mapping(vm_flags_t flags)
1621 {
1622 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1623 }
1624 
1625 #ifndef CONFIG_MMU
1626 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1627 {
1628 	/*
1629 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1630 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1631 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1632 	 * underlying memory if ptrace is active, so this is only possible if
1633 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1634 	 * write permissions later.
1635 	 */
1636 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1637 }
1638 #endif
1639 
1640 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1641 #define SECTION_IN_PAGE_FLAGS
1642 #endif
1643 
1644 /*
1645  * The identification function is mainly used by the buddy allocator for
1646  * determining if two pages could be buddies. We are not really identifying
1647  * the zone since we could be using the section number id if we do not have
1648  * node id available in page flags.
1649  * We only guarantee that it will return the same value for two combinable
1650  * pages in a zone.
1651  */
1652 static inline int page_zone_id(struct page *page)
1653 {
1654 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1655 }
1656 
1657 #ifdef NODE_NOT_IN_PAGE_FLAGS
1658 int page_to_nid(const struct page *page);
1659 #else
1660 static inline int page_to_nid(const struct page *page)
1661 {
1662 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1663 }
1664 #endif
1665 
1666 static inline int folio_nid(const struct folio *folio)
1667 {
1668 	return page_to_nid(&folio->page);
1669 }
1670 
1671 #ifdef CONFIG_NUMA_BALANCING
1672 /* page access time bits needs to hold at least 4 seconds */
1673 #define PAGE_ACCESS_TIME_MIN_BITS	12
1674 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1675 #define PAGE_ACCESS_TIME_BUCKETS				\
1676 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1677 #else
1678 #define PAGE_ACCESS_TIME_BUCKETS	0
1679 #endif
1680 
1681 #define PAGE_ACCESS_TIME_MASK				\
1682 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1683 
1684 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1685 {
1686 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1687 }
1688 
1689 static inline int cpupid_to_pid(int cpupid)
1690 {
1691 	return cpupid & LAST__PID_MASK;
1692 }
1693 
1694 static inline int cpupid_to_cpu(int cpupid)
1695 {
1696 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1697 }
1698 
1699 static inline int cpupid_to_nid(int cpupid)
1700 {
1701 	return cpu_to_node(cpupid_to_cpu(cpupid));
1702 }
1703 
1704 static inline bool cpupid_pid_unset(int cpupid)
1705 {
1706 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1707 }
1708 
1709 static inline bool cpupid_cpu_unset(int cpupid)
1710 {
1711 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1712 }
1713 
1714 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1715 {
1716 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1717 }
1718 
1719 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1720 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1721 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1722 {
1723 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1724 }
1725 
1726 static inline int folio_last_cpupid(struct folio *folio)
1727 {
1728 	return folio->_last_cpupid;
1729 }
1730 static inline void page_cpupid_reset_last(struct page *page)
1731 {
1732 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1733 }
1734 #else
1735 static inline int folio_last_cpupid(struct folio *folio)
1736 {
1737 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1738 }
1739 
1740 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1741 
1742 static inline void page_cpupid_reset_last(struct page *page)
1743 {
1744 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1745 }
1746 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1747 
1748 static inline int folio_xchg_access_time(struct folio *folio, int time)
1749 {
1750 	int last_time;
1751 
1752 	last_time = folio_xchg_last_cpupid(folio,
1753 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1754 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1755 }
1756 
1757 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1758 {
1759 	unsigned int pid_bit;
1760 
1761 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1762 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1763 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1764 	}
1765 }
1766 #else /* !CONFIG_NUMA_BALANCING */
1767 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1768 {
1769 	return folio_nid(folio); /* XXX */
1770 }
1771 
1772 static inline int folio_xchg_access_time(struct folio *folio, int time)
1773 {
1774 	return 0;
1775 }
1776 
1777 static inline int folio_last_cpupid(struct folio *folio)
1778 {
1779 	return folio_nid(folio); /* XXX */
1780 }
1781 
1782 static inline int cpupid_to_nid(int cpupid)
1783 {
1784 	return -1;
1785 }
1786 
1787 static inline int cpupid_to_pid(int cpupid)
1788 {
1789 	return -1;
1790 }
1791 
1792 static inline int cpupid_to_cpu(int cpupid)
1793 {
1794 	return -1;
1795 }
1796 
1797 static inline int cpu_pid_to_cpupid(int nid, int pid)
1798 {
1799 	return -1;
1800 }
1801 
1802 static inline bool cpupid_pid_unset(int cpupid)
1803 {
1804 	return true;
1805 }
1806 
1807 static inline void page_cpupid_reset_last(struct page *page)
1808 {
1809 }
1810 
1811 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1812 {
1813 	return false;
1814 }
1815 
1816 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1817 {
1818 }
1819 #endif /* CONFIG_NUMA_BALANCING */
1820 
1821 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1822 
1823 /*
1824  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1825  * setting tags for all pages to native kernel tag value 0xff, as the default
1826  * value 0x00 maps to 0xff.
1827  */
1828 
1829 static inline u8 page_kasan_tag(const struct page *page)
1830 {
1831 	u8 tag = KASAN_TAG_KERNEL;
1832 
1833 	if (kasan_enabled()) {
1834 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1835 		tag ^= 0xff;
1836 	}
1837 
1838 	return tag;
1839 }
1840 
1841 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1842 {
1843 	unsigned long old_flags, flags;
1844 
1845 	if (!kasan_enabled())
1846 		return;
1847 
1848 	tag ^= 0xff;
1849 	old_flags = READ_ONCE(page->flags);
1850 	do {
1851 		flags = old_flags;
1852 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1853 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1854 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1855 }
1856 
1857 static inline void page_kasan_tag_reset(struct page *page)
1858 {
1859 	if (kasan_enabled())
1860 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1861 }
1862 
1863 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1864 
1865 static inline u8 page_kasan_tag(const struct page *page)
1866 {
1867 	return 0xff;
1868 }
1869 
1870 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1871 static inline void page_kasan_tag_reset(struct page *page) { }
1872 
1873 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1874 
1875 static inline struct zone *page_zone(const struct page *page)
1876 {
1877 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1878 }
1879 
1880 static inline pg_data_t *page_pgdat(const struct page *page)
1881 {
1882 	return NODE_DATA(page_to_nid(page));
1883 }
1884 
1885 static inline struct zone *folio_zone(const struct folio *folio)
1886 {
1887 	return page_zone(&folio->page);
1888 }
1889 
1890 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1891 {
1892 	return page_pgdat(&folio->page);
1893 }
1894 
1895 #ifdef SECTION_IN_PAGE_FLAGS
1896 static inline void set_page_section(struct page *page, unsigned long section)
1897 {
1898 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1899 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1900 }
1901 
1902 static inline unsigned long page_to_section(const struct page *page)
1903 {
1904 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1905 }
1906 #endif
1907 
1908 /**
1909  * folio_pfn - Return the Page Frame Number of a folio.
1910  * @folio: The folio.
1911  *
1912  * A folio may contain multiple pages.  The pages have consecutive
1913  * Page Frame Numbers.
1914  *
1915  * Return: The Page Frame Number of the first page in the folio.
1916  */
1917 static inline unsigned long folio_pfn(struct folio *folio)
1918 {
1919 	return page_to_pfn(&folio->page);
1920 }
1921 
1922 static inline struct folio *pfn_folio(unsigned long pfn)
1923 {
1924 	return page_folio(pfn_to_page(pfn));
1925 }
1926 
1927 /**
1928  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1929  * @folio: The folio.
1930  *
1931  * This function checks if a folio has been pinned via a call to
1932  * a function in the pin_user_pages() family.
1933  *
1934  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1935  * because it means "definitely not pinned for DMA", but true means "probably
1936  * pinned for DMA, but possibly a false positive due to having at least
1937  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1938  *
1939  * False positives are OK, because: a) it's unlikely for a folio to
1940  * get that many refcounts, and b) all the callers of this routine are
1941  * expected to be able to deal gracefully with a false positive.
1942  *
1943  * For large folios, the result will be exactly correct. That's because
1944  * we have more tracking data available: the _pincount field is used
1945  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1946  *
1947  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1948  *
1949  * Return: True, if it is likely that the page has been "dma-pinned".
1950  * False, if the page is definitely not dma-pinned.
1951  */
1952 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1953 {
1954 	if (folio_test_large(folio))
1955 		return atomic_read(&folio->_pincount) > 0;
1956 
1957 	/*
1958 	 * folio_ref_count() is signed. If that refcount overflows, then
1959 	 * folio_ref_count() returns a negative value, and callers will avoid
1960 	 * further incrementing the refcount.
1961 	 *
1962 	 * Here, for that overflow case, use the sign bit to count a little
1963 	 * bit higher via unsigned math, and thus still get an accurate result.
1964 	 */
1965 	return ((unsigned int)folio_ref_count(folio)) >=
1966 		GUP_PIN_COUNTING_BIAS;
1967 }
1968 
1969 static inline bool page_maybe_dma_pinned(struct page *page)
1970 {
1971 	return folio_maybe_dma_pinned(page_folio(page));
1972 }
1973 
1974 /*
1975  * This should most likely only be called during fork() to see whether we
1976  * should break the cow immediately for an anon page on the src mm.
1977  *
1978  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1979  */
1980 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1981 					  struct folio *folio)
1982 {
1983 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1984 
1985 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1986 		return false;
1987 
1988 	return folio_maybe_dma_pinned(folio);
1989 }
1990 
1991 /**
1992  * is_zero_page - Query if a page is a zero page
1993  * @page: The page to query
1994  *
1995  * This returns true if @page is one of the permanent zero pages.
1996  */
1997 static inline bool is_zero_page(const struct page *page)
1998 {
1999 	return is_zero_pfn(page_to_pfn(page));
2000 }
2001 
2002 /**
2003  * is_zero_folio - Query if a folio is a zero page
2004  * @folio: The folio to query
2005  *
2006  * This returns true if @folio is one of the permanent zero pages.
2007  */
2008 static inline bool is_zero_folio(const struct folio *folio)
2009 {
2010 	return is_zero_page(&folio->page);
2011 }
2012 
2013 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2014 #ifdef CONFIG_MIGRATION
2015 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2016 {
2017 #ifdef CONFIG_CMA
2018 	int mt = folio_migratetype(folio);
2019 
2020 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2021 		return false;
2022 #endif
2023 	/* The zero page can be "pinned" but gets special handling. */
2024 	if (is_zero_folio(folio))
2025 		return true;
2026 
2027 	/* Coherent device memory must always allow eviction. */
2028 	if (folio_is_device_coherent(folio))
2029 		return false;
2030 
2031 	/* Otherwise, non-movable zone folios can be pinned. */
2032 	return !folio_is_zone_movable(folio);
2033 
2034 }
2035 #else
2036 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2037 {
2038 	return true;
2039 }
2040 #endif
2041 
2042 static inline void set_page_zone(struct page *page, enum zone_type zone)
2043 {
2044 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2045 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2046 }
2047 
2048 static inline void set_page_node(struct page *page, unsigned long node)
2049 {
2050 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2051 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2052 }
2053 
2054 static inline void set_page_links(struct page *page, enum zone_type zone,
2055 	unsigned long node, unsigned long pfn)
2056 {
2057 	set_page_zone(page, zone);
2058 	set_page_node(page, node);
2059 #ifdef SECTION_IN_PAGE_FLAGS
2060 	set_page_section(page, pfn_to_section_nr(pfn));
2061 #endif
2062 }
2063 
2064 /**
2065  * folio_nr_pages - The number of pages in the folio.
2066  * @folio: The folio.
2067  *
2068  * Return: A positive power of two.
2069  */
2070 static inline long folio_nr_pages(struct folio *folio)
2071 {
2072 	if (!folio_test_large(folio))
2073 		return 1;
2074 #ifdef CONFIG_64BIT
2075 	return folio->_folio_nr_pages;
2076 #else
2077 	return 1L << (folio->_flags_1 & 0xff);
2078 #endif
2079 }
2080 
2081 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2082 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2083 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2084 #else
2085 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2086 #endif
2087 
2088 /*
2089  * compound_nr() returns the number of pages in this potentially compound
2090  * page.  compound_nr() can be called on a tail page, and is defined to
2091  * return 1 in that case.
2092  */
2093 static inline unsigned long compound_nr(struct page *page)
2094 {
2095 	struct folio *folio = (struct folio *)page;
2096 
2097 	if (!test_bit(PG_head, &folio->flags))
2098 		return 1;
2099 #ifdef CONFIG_64BIT
2100 	return folio->_folio_nr_pages;
2101 #else
2102 	return 1L << (folio->_flags_1 & 0xff);
2103 #endif
2104 }
2105 
2106 /**
2107  * thp_nr_pages - The number of regular pages in this huge page.
2108  * @page: The head page of a huge page.
2109  */
2110 static inline int thp_nr_pages(struct page *page)
2111 {
2112 	return folio_nr_pages((struct folio *)page);
2113 }
2114 
2115 /**
2116  * folio_next - Move to the next physical folio.
2117  * @folio: The folio we're currently operating on.
2118  *
2119  * If you have physically contiguous memory which may span more than
2120  * one folio (eg a &struct bio_vec), use this function to move from one
2121  * folio to the next.  Do not use it if the memory is only virtually
2122  * contiguous as the folios are almost certainly not adjacent to each
2123  * other.  This is the folio equivalent to writing ``page++``.
2124  *
2125  * Context: We assume that the folios are refcounted and/or locked at a
2126  * higher level and do not adjust the reference counts.
2127  * Return: The next struct folio.
2128  */
2129 static inline struct folio *folio_next(struct folio *folio)
2130 {
2131 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2132 }
2133 
2134 /**
2135  * folio_shift - The size of the memory described by this folio.
2136  * @folio: The folio.
2137  *
2138  * A folio represents a number of bytes which is a power-of-two in size.
2139  * This function tells you which power-of-two the folio is.  See also
2140  * folio_size() and folio_order().
2141  *
2142  * Context: The caller should have a reference on the folio to prevent
2143  * it from being split.  It is not necessary for the folio to be locked.
2144  * Return: The base-2 logarithm of the size of this folio.
2145  */
2146 static inline unsigned int folio_shift(struct folio *folio)
2147 {
2148 	return PAGE_SHIFT + folio_order(folio);
2149 }
2150 
2151 /**
2152  * folio_size - The number of bytes in a folio.
2153  * @folio: The folio.
2154  *
2155  * Context: The caller should have a reference on the folio to prevent
2156  * it from being split.  It is not necessary for the folio to be locked.
2157  * Return: The number of bytes in this folio.
2158  */
2159 static inline size_t folio_size(struct folio *folio)
2160 {
2161 	return PAGE_SIZE << folio_order(folio);
2162 }
2163 
2164 /**
2165  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2166  * @folio: The folio.
2167  *
2168  * folio_estimated_sharers() aims to serve as a function to efficiently
2169  * estimate the number of processes sharing a folio. This is done by
2170  * looking at the precise mapcount of the first subpage in the folio, and
2171  * assuming the other subpages are the same. This may not be true for large
2172  * folios. If you want exact mapcounts for exact calculations, look at
2173  * page_mapcount() or folio_total_mapcount().
2174  *
2175  * Return: The estimated number of processes sharing a folio.
2176  */
2177 static inline int folio_estimated_sharers(struct folio *folio)
2178 {
2179 	return page_mapcount(folio_page(folio, 0));
2180 }
2181 
2182 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2183 static inline int arch_make_page_accessible(struct page *page)
2184 {
2185 	return 0;
2186 }
2187 #endif
2188 
2189 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2190 static inline int arch_make_folio_accessible(struct folio *folio)
2191 {
2192 	int ret;
2193 	long i, nr = folio_nr_pages(folio);
2194 
2195 	for (i = 0; i < nr; i++) {
2196 		ret = arch_make_page_accessible(folio_page(folio, i));
2197 		if (ret)
2198 			break;
2199 	}
2200 
2201 	return ret;
2202 }
2203 #endif
2204 
2205 /*
2206  * Some inline functions in vmstat.h depend on page_zone()
2207  */
2208 #include <linux/vmstat.h>
2209 
2210 static __always_inline void *lowmem_page_address(const struct page *page)
2211 {
2212 	return page_to_virt(page);
2213 }
2214 
2215 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2216 #define HASHED_PAGE_VIRTUAL
2217 #endif
2218 
2219 #if defined(WANT_PAGE_VIRTUAL)
2220 static inline void *page_address(const struct page *page)
2221 {
2222 	return page->virtual;
2223 }
2224 static inline void set_page_address(struct page *page, void *address)
2225 {
2226 	page->virtual = address;
2227 }
2228 #define page_address_init()  do { } while(0)
2229 #endif
2230 
2231 #if defined(HASHED_PAGE_VIRTUAL)
2232 void *page_address(const struct page *page);
2233 void set_page_address(struct page *page, void *virtual);
2234 void page_address_init(void);
2235 #endif
2236 
2237 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2238 #define page_address(page) lowmem_page_address(page)
2239 #define set_page_address(page, address)  do { } while(0)
2240 #define page_address_init()  do { } while(0)
2241 #endif
2242 
2243 static inline void *folio_address(const struct folio *folio)
2244 {
2245 	return page_address(&folio->page);
2246 }
2247 
2248 extern pgoff_t __page_file_index(struct page *page);
2249 
2250 /*
2251  * Return the pagecache index of the passed page.  Regular pagecache pages
2252  * use ->index whereas swapcache pages use swp_offset(->private)
2253  */
2254 static inline pgoff_t page_index(struct page *page)
2255 {
2256 	if (unlikely(PageSwapCache(page)))
2257 		return __page_file_index(page);
2258 	return page->index;
2259 }
2260 
2261 /*
2262  * Return true only if the page has been allocated with
2263  * ALLOC_NO_WATERMARKS and the low watermark was not
2264  * met implying that the system is under some pressure.
2265  */
2266 static inline bool page_is_pfmemalloc(const struct page *page)
2267 {
2268 	/*
2269 	 * lru.next has bit 1 set if the page is allocated from the
2270 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2271 	 * they do not need to preserve that information.
2272 	 */
2273 	return (uintptr_t)page->lru.next & BIT(1);
2274 }
2275 
2276 /*
2277  * Return true only if the folio has been allocated with
2278  * ALLOC_NO_WATERMARKS and the low watermark was not
2279  * met implying that the system is under some pressure.
2280  */
2281 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2282 {
2283 	/*
2284 	 * lru.next has bit 1 set if the page is allocated from the
2285 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2286 	 * they do not need to preserve that information.
2287 	 */
2288 	return (uintptr_t)folio->lru.next & BIT(1);
2289 }
2290 
2291 /*
2292  * Only to be called by the page allocator on a freshly allocated
2293  * page.
2294  */
2295 static inline void set_page_pfmemalloc(struct page *page)
2296 {
2297 	page->lru.next = (void *)BIT(1);
2298 }
2299 
2300 static inline void clear_page_pfmemalloc(struct page *page)
2301 {
2302 	page->lru.next = NULL;
2303 }
2304 
2305 /*
2306  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2307  */
2308 extern void pagefault_out_of_memory(void);
2309 
2310 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2311 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2312 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2313 
2314 /*
2315  * Parameter block passed down to zap_pte_range in exceptional cases.
2316  */
2317 struct zap_details {
2318 	struct folio *single_folio;	/* Locked folio to be unmapped */
2319 	bool even_cows;			/* Zap COWed private pages too? */
2320 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2321 };
2322 
2323 /*
2324  * Whether to drop the pte markers, for example, the uffd-wp information for
2325  * file-backed memory.  This should only be specified when we will completely
2326  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2327  * default, the flag is not set.
2328  */
2329 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2330 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2331 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2332 
2333 #ifdef CONFIG_SCHED_MM_CID
2334 void sched_mm_cid_before_execve(struct task_struct *t);
2335 void sched_mm_cid_after_execve(struct task_struct *t);
2336 void sched_mm_cid_fork(struct task_struct *t);
2337 void sched_mm_cid_exit_signals(struct task_struct *t);
2338 static inline int task_mm_cid(struct task_struct *t)
2339 {
2340 	return t->mm_cid;
2341 }
2342 #else
2343 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2344 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2345 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2346 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2347 static inline int task_mm_cid(struct task_struct *t)
2348 {
2349 	/*
2350 	 * Use the processor id as a fall-back when the mm cid feature is
2351 	 * disabled. This provides functional per-cpu data structure accesses
2352 	 * in user-space, althrough it won't provide the memory usage benefits.
2353 	 */
2354 	return raw_smp_processor_id();
2355 }
2356 #endif
2357 
2358 #ifdef CONFIG_MMU
2359 extern bool can_do_mlock(void);
2360 #else
2361 static inline bool can_do_mlock(void) { return false; }
2362 #endif
2363 extern int user_shm_lock(size_t, struct ucounts *);
2364 extern void user_shm_unlock(size_t, struct ucounts *);
2365 
2366 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2367 			     pte_t pte);
2368 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2369 			     pte_t pte);
2370 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2371 				  unsigned long addr, pmd_t pmd);
2372 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2373 				pmd_t pmd);
2374 
2375 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2376 		  unsigned long size);
2377 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2378 			   unsigned long size, struct zap_details *details);
2379 static inline void zap_vma_pages(struct vm_area_struct *vma)
2380 {
2381 	zap_page_range_single(vma, vma->vm_start,
2382 			      vma->vm_end - vma->vm_start, NULL);
2383 }
2384 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2385 		struct vm_area_struct *start_vma, unsigned long start,
2386 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2387 
2388 struct mmu_notifier_range;
2389 
2390 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2391 		unsigned long end, unsigned long floor, unsigned long ceiling);
2392 int
2393 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2394 int follow_pte(struct mm_struct *mm, unsigned long address,
2395 	       pte_t **ptepp, spinlock_t **ptlp);
2396 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2397 	unsigned long *pfn);
2398 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2399 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2400 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2401 			void *buf, int len, int write);
2402 
2403 extern void truncate_pagecache(struct inode *inode, loff_t new);
2404 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2405 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2406 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2407 int generic_error_remove_folio(struct address_space *mapping,
2408 		struct folio *folio);
2409 
2410 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2411 		unsigned long address, struct pt_regs *regs);
2412 
2413 #ifdef CONFIG_MMU
2414 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2415 				  unsigned long address, unsigned int flags,
2416 				  struct pt_regs *regs);
2417 extern int fixup_user_fault(struct mm_struct *mm,
2418 			    unsigned long address, unsigned int fault_flags,
2419 			    bool *unlocked);
2420 void unmap_mapping_pages(struct address_space *mapping,
2421 		pgoff_t start, pgoff_t nr, bool even_cows);
2422 void unmap_mapping_range(struct address_space *mapping,
2423 		loff_t const holebegin, loff_t const holelen, int even_cows);
2424 #else
2425 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2426 					 unsigned long address, unsigned int flags,
2427 					 struct pt_regs *regs)
2428 {
2429 	/* should never happen if there's no MMU */
2430 	BUG();
2431 	return VM_FAULT_SIGBUS;
2432 }
2433 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2434 		unsigned int fault_flags, bool *unlocked)
2435 {
2436 	/* should never happen if there's no MMU */
2437 	BUG();
2438 	return -EFAULT;
2439 }
2440 static inline void unmap_mapping_pages(struct address_space *mapping,
2441 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2442 static inline void unmap_mapping_range(struct address_space *mapping,
2443 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2444 #endif
2445 
2446 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2447 		loff_t const holebegin, loff_t const holelen)
2448 {
2449 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2450 }
2451 
2452 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2453 						unsigned long addr);
2454 
2455 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2456 		void *buf, int len, unsigned int gup_flags);
2457 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2458 		void *buf, int len, unsigned int gup_flags);
2459 
2460 long get_user_pages_remote(struct mm_struct *mm,
2461 			   unsigned long start, unsigned long nr_pages,
2462 			   unsigned int gup_flags, struct page **pages,
2463 			   int *locked);
2464 long pin_user_pages_remote(struct mm_struct *mm,
2465 			   unsigned long start, unsigned long nr_pages,
2466 			   unsigned int gup_flags, struct page **pages,
2467 			   int *locked);
2468 
2469 /*
2470  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2471  */
2472 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2473 						    unsigned long addr,
2474 						    int gup_flags,
2475 						    struct vm_area_struct **vmap)
2476 {
2477 	struct page *page;
2478 	struct vm_area_struct *vma;
2479 	int got;
2480 
2481 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2482 		return ERR_PTR(-EINVAL);
2483 
2484 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2485 
2486 	if (got < 0)
2487 		return ERR_PTR(got);
2488 
2489 	vma = vma_lookup(mm, addr);
2490 	if (WARN_ON_ONCE(!vma)) {
2491 		put_page(page);
2492 		return ERR_PTR(-EINVAL);
2493 	}
2494 
2495 	*vmap = vma;
2496 	return page;
2497 }
2498 
2499 long get_user_pages(unsigned long start, unsigned long nr_pages,
2500 		    unsigned int gup_flags, struct page **pages);
2501 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2502 		    unsigned int gup_flags, struct page **pages);
2503 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2504 		    struct page **pages, unsigned int gup_flags);
2505 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2506 		    struct page **pages, unsigned int gup_flags);
2507 
2508 int get_user_pages_fast(unsigned long start, int nr_pages,
2509 			unsigned int gup_flags, struct page **pages);
2510 int pin_user_pages_fast(unsigned long start, int nr_pages,
2511 			unsigned int gup_flags, struct page **pages);
2512 void folio_add_pin(struct folio *folio);
2513 
2514 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2515 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2516 			struct task_struct *task, bool bypass_rlim);
2517 
2518 struct kvec;
2519 struct page *get_dump_page(unsigned long addr);
2520 
2521 bool folio_mark_dirty(struct folio *folio);
2522 bool set_page_dirty(struct page *page);
2523 int set_page_dirty_lock(struct page *page);
2524 
2525 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2526 
2527 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2528 		unsigned long old_addr, struct vm_area_struct *new_vma,
2529 		unsigned long new_addr, unsigned long len,
2530 		bool need_rmap_locks, bool for_stack);
2531 
2532 /*
2533  * Flags used by change_protection().  For now we make it a bitmap so
2534  * that we can pass in multiple flags just like parameters.  However
2535  * for now all the callers are only use one of the flags at the same
2536  * time.
2537  */
2538 /*
2539  * Whether we should manually check if we can map individual PTEs writable,
2540  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2541  * PTEs automatically in a writable mapping.
2542  */
2543 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2544 /* Whether this protection change is for NUMA hints */
2545 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2546 /* Whether this change is for write protecting */
2547 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2548 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2549 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2550 					    MM_CP_UFFD_WP_RESOLVE)
2551 
2552 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2553 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2554 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2555 {
2556 	/*
2557 	 * We want to check manually if we can change individual PTEs writable
2558 	 * if we can't do that automatically for all PTEs in a mapping. For
2559 	 * private mappings, that's always the case when we have write
2560 	 * permissions as we properly have to handle COW.
2561 	 */
2562 	if (vma->vm_flags & VM_SHARED)
2563 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2564 	return !!(vma->vm_flags & VM_WRITE);
2565 
2566 }
2567 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2568 			     pte_t pte);
2569 extern long change_protection(struct mmu_gather *tlb,
2570 			      struct vm_area_struct *vma, unsigned long start,
2571 			      unsigned long end, unsigned long cp_flags);
2572 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2573 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2574 	  unsigned long start, unsigned long end, unsigned long newflags);
2575 
2576 /*
2577  * doesn't attempt to fault and will return short.
2578  */
2579 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2580 			     unsigned int gup_flags, struct page **pages);
2581 
2582 static inline bool get_user_page_fast_only(unsigned long addr,
2583 			unsigned int gup_flags, struct page **pagep)
2584 {
2585 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2586 }
2587 /*
2588  * per-process(per-mm_struct) statistics.
2589  */
2590 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2591 {
2592 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2593 }
2594 
2595 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2596 
2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2598 {
2599 	percpu_counter_add(&mm->rss_stat[member], value);
2600 
2601 	mm_trace_rss_stat(mm, member);
2602 }
2603 
2604 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2605 {
2606 	percpu_counter_inc(&mm->rss_stat[member]);
2607 
2608 	mm_trace_rss_stat(mm, member);
2609 }
2610 
2611 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2612 {
2613 	percpu_counter_dec(&mm->rss_stat[member]);
2614 
2615 	mm_trace_rss_stat(mm, member);
2616 }
2617 
2618 /* Optimized variant when folio is already known not to be anon */
2619 static inline int mm_counter_file(struct folio *folio)
2620 {
2621 	if (folio_test_swapbacked(folio))
2622 		return MM_SHMEMPAGES;
2623 	return MM_FILEPAGES;
2624 }
2625 
2626 static inline int mm_counter(struct folio *folio)
2627 {
2628 	if (folio_test_anon(folio))
2629 		return MM_ANONPAGES;
2630 	return mm_counter_file(folio);
2631 }
2632 
2633 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2634 {
2635 	return get_mm_counter(mm, MM_FILEPAGES) +
2636 		get_mm_counter(mm, MM_ANONPAGES) +
2637 		get_mm_counter(mm, MM_SHMEMPAGES);
2638 }
2639 
2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2641 {
2642 	return max(mm->hiwater_rss, get_mm_rss(mm));
2643 }
2644 
2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2646 {
2647 	return max(mm->hiwater_vm, mm->total_vm);
2648 }
2649 
2650 static inline void update_hiwater_rss(struct mm_struct *mm)
2651 {
2652 	unsigned long _rss = get_mm_rss(mm);
2653 
2654 	if ((mm)->hiwater_rss < _rss)
2655 		(mm)->hiwater_rss = _rss;
2656 }
2657 
2658 static inline void update_hiwater_vm(struct mm_struct *mm)
2659 {
2660 	if (mm->hiwater_vm < mm->total_vm)
2661 		mm->hiwater_vm = mm->total_vm;
2662 }
2663 
2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2665 {
2666 	mm->hiwater_rss = get_mm_rss(mm);
2667 }
2668 
2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2670 					 struct mm_struct *mm)
2671 {
2672 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2673 
2674 	if (*maxrss < hiwater_rss)
2675 		*maxrss = hiwater_rss;
2676 }
2677 
2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2679 static inline int pte_special(pte_t pte)
2680 {
2681 	return 0;
2682 }
2683 
2684 static inline pte_t pte_mkspecial(pte_t pte)
2685 {
2686 	return pte;
2687 }
2688 #endif
2689 
2690 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2691 static inline int pte_devmap(pte_t pte)
2692 {
2693 	return 0;
2694 }
2695 #endif
2696 
2697 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2698 			       spinlock_t **ptl);
2699 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2700 				    spinlock_t **ptl)
2701 {
2702 	pte_t *ptep;
2703 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2704 	return ptep;
2705 }
2706 
2707 #ifdef __PAGETABLE_P4D_FOLDED
2708 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2709 						unsigned long address)
2710 {
2711 	return 0;
2712 }
2713 #else
2714 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2715 #endif
2716 
2717 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2718 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2719 						unsigned long address)
2720 {
2721 	return 0;
2722 }
2723 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2724 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2725 
2726 #else
2727 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2728 
2729 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2730 {
2731 	if (mm_pud_folded(mm))
2732 		return;
2733 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2734 }
2735 
2736 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2737 {
2738 	if (mm_pud_folded(mm))
2739 		return;
2740 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2741 }
2742 #endif
2743 
2744 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2745 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2746 						unsigned long address)
2747 {
2748 	return 0;
2749 }
2750 
2751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2752 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2753 
2754 #else
2755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2756 
2757 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2758 {
2759 	if (mm_pmd_folded(mm))
2760 		return;
2761 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2762 }
2763 
2764 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2765 {
2766 	if (mm_pmd_folded(mm))
2767 		return;
2768 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2769 }
2770 #endif
2771 
2772 #ifdef CONFIG_MMU
2773 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2774 {
2775 	atomic_long_set(&mm->pgtables_bytes, 0);
2776 }
2777 
2778 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2779 {
2780 	return atomic_long_read(&mm->pgtables_bytes);
2781 }
2782 
2783 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2784 {
2785 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2786 }
2787 
2788 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2789 {
2790 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2791 }
2792 #else
2793 
2794 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2796 {
2797 	return 0;
2798 }
2799 
2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2801 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2802 #endif
2803 
2804 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2805 int __pte_alloc_kernel(pmd_t *pmd);
2806 
2807 #if defined(CONFIG_MMU)
2808 
2809 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2810 		unsigned long address)
2811 {
2812 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2813 		NULL : p4d_offset(pgd, address);
2814 }
2815 
2816 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2817 		unsigned long address)
2818 {
2819 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2820 		NULL : pud_offset(p4d, address);
2821 }
2822 
2823 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2824 {
2825 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2826 		NULL: pmd_offset(pud, address);
2827 }
2828 #endif /* CONFIG_MMU */
2829 
2830 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2831 {
2832 	return page_ptdesc(virt_to_page(x));
2833 }
2834 
2835 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2836 {
2837 	return page_to_virt(ptdesc_page(pt));
2838 }
2839 
2840 static inline void *ptdesc_address(const struct ptdesc *pt)
2841 {
2842 	return folio_address(ptdesc_folio(pt));
2843 }
2844 
2845 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2846 {
2847 	return folio_test_reserved(ptdesc_folio(pt));
2848 }
2849 
2850 /**
2851  * pagetable_alloc - Allocate pagetables
2852  * @gfp:    GFP flags
2853  * @order:  desired pagetable order
2854  *
2855  * pagetable_alloc allocates memory for page tables as well as a page table
2856  * descriptor to describe that memory.
2857  *
2858  * Return: The ptdesc describing the allocated page tables.
2859  */
2860 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2861 {
2862 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2863 
2864 	return page_ptdesc(page);
2865 }
2866 
2867 /**
2868  * pagetable_free - Free pagetables
2869  * @pt:	The page table descriptor
2870  *
2871  * pagetable_free frees the memory of all page tables described by a page
2872  * table descriptor and the memory for the descriptor itself.
2873  */
2874 static inline void pagetable_free(struct ptdesc *pt)
2875 {
2876 	struct page *page = ptdesc_page(pt);
2877 
2878 	__free_pages(page, compound_order(page));
2879 }
2880 
2881 #if USE_SPLIT_PTE_PTLOCKS
2882 #if ALLOC_SPLIT_PTLOCKS
2883 void __init ptlock_cache_init(void);
2884 bool ptlock_alloc(struct ptdesc *ptdesc);
2885 void ptlock_free(struct ptdesc *ptdesc);
2886 
2887 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2888 {
2889 	return ptdesc->ptl;
2890 }
2891 #else /* ALLOC_SPLIT_PTLOCKS */
2892 static inline void ptlock_cache_init(void)
2893 {
2894 }
2895 
2896 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2897 {
2898 	return true;
2899 }
2900 
2901 static inline void ptlock_free(struct ptdesc *ptdesc)
2902 {
2903 }
2904 
2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2906 {
2907 	return &ptdesc->ptl;
2908 }
2909 #endif /* ALLOC_SPLIT_PTLOCKS */
2910 
2911 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2912 {
2913 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2914 }
2915 
2916 static inline bool ptlock_init(struct ptdesc *ptdesc)
2917 {
2918 	/*
2919 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2920 	 * with 0. Make sure nobody took it in use in between.
2921 	 *
2922 	 * It can happen if arch try to use slab for page table allocation:
2923 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2924 	 */
2925 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2926 	if (!ptlock_alloc(ptdesc))
2927 		return false;
2928 	spin_lock_init(ptlock_ptr(ptdesc));
2929 	return true;
2930 }
2931 
2932 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2933 /*
2934  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2935  */
2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2937 {
2938 	return &mm->page_table_lock;
2939 }
2940 static inline void ptlock_cache_init(void) {}
2941 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2942 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2943 #endif /* USE_SPLIT_PTE_PTLOCKS */
2944 
2945 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2946 {
2947 	struct folio *folio = ptdesc_folio(ptdesc);
2948 
2949 	if (!ptlock_init(ptdesc))
2950 		return false;
2951 	__folio_set_pgtable(folio);
2952 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2953 	return true;
2954 }
2955 
2956 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2957 {
2958 	struct folio *folio = ptdesc_folio(ptdesc);
2959 
2960 	ptlock_free(ptdesc);
2961 	__folio_clear_pgtable(folio);
2962 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2963 }
2964 
2965 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2966 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2967 {
2968 	return __pte_offset_map(pmd, addr, NULL);
2969 }
2970 
2971 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2972 			unsigned long addr, spinlock_t **ptlp);
2973 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2974 			unsigned long addr, spinlock_t **ptlp)
2975 {
2976 	pte_t *pte;
2977 
2978 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2979 	return pte;
2980 }
2981 
2982 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2983 			unsigned long addr, spinlock_t **ptlp);
2984 
2985 #define pte_unmap_unlock(pte, ptl)	do {		\
2986 	spin_unlock(ptl);				\
2987 	pte_unmap(pte);					\
2988 } while (0)
2989 
2990 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2991 
2992 #define pte_alloc_map(mm, pmd, address)			\
2993 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2994 
2995 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2996 	(pte_alloc(mm, pmd) ?			\
2997 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2998 
2999 #define pte_alloc_kernel(pmd, address)			\
3000 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3001 		NULL: pte_offset_kernel(pmd, address))
3002 
3003 #if USE_SPLIT_PMD_PTLOCKS
3004 
3005 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3006 {
3007 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3008 	return virt_to_page((void *)((unsigned long) pmd & mask));
3009 }
3010 
3011 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3012 {
3013 	return page_ptdesc(pmd_pgtable_page(pmd));
3014 }
3015 
3016 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3017 {
3018 	return ptlock_ptr(pmd_ptdesc(pmd));
3019 }
3020 
3021 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3022 {
3023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3024 	ptdesc->pmd_huge_pte = NULL;
3025 #endif
3026 	return ptlock_init(ptdesc);
3027 }
3028 
3029 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3030 {
3031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3032 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3033 #endif
3034 	ptlock_free(ptdesc);
3035 }
3036 
3037 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3038 
3039 #else
3040 
3041 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3042 {
3043 	return &mm->page_table_lock;
3044 }
3045 
3046 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3047 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3048 
3049 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3050 
3051 #endif
3052 
3053 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3054 {
3055 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3056 	spin_lock(ptl);
3057 	return ptl;
3058 }
3059 
3060 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3061 {
3062 	struct folio *folio = ptdesc_folio(ptdesc);
3063 
3064 	if (!pmd_ptlock_init(ptdesc))
3065 		return false;
3066 	__folio_set_pgtable(folio);
3067 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3068 	return true;
3069 }
3070 
3071 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3072 {
3073 	struct folio *folio = ptdesc_folio(ptdesc);
3074 
3075 	pmd_ptlock_free(ptdesc);
3076 	__folio_clear_pgtable(folio);
3077 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3078 }
3079 
3080 /*
3081  * No scalability reason to split PUD locks yet, but follow the same pattern
3082  * as the PMD locks to make it easier if we decide to.  The VM should not be
3083  * considered ready to switch to split PUD locks yet; there may be places
3084  * which need to be converted from page_table_lock.
3085  */
3086 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3087 {
3088 	return &mm->page_table_lock;
3089 }
3090 
3091 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3092 {
3093 	spinlock_t *ptl = pud_lockptr(mm, pud);
3094 
3095 	spin_lock(ptl);
3096 	return ptl;
3097 }
3098 
3099 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3100 {
3101 	struct folio *folio = ptdesc_folio(ptdesc);
3102 
3103 	__folio_set_pgtable(folio);
3104 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3105 }
3106 
3107 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3108 {
3109 	struct folio *folio = ptdesc_folio(ptdesc);
3110 
3111 	__folio_clear_pgtable(folio);
3112 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3113 }
3114 
3115 extern void __init pagecache_init(void);
3116 extern void free_initmem(void);
3117 
3118 /*
3119  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3120  * into the buddy system. The freed pages will be poisoned with pattern
3121  * "poison" if it's within range [0, UCHAR_MAX].
3122  * Return pages freed into the buddy system.
3123  */
3124 extern unsigned long free_reserved_area(void *start, void *end,
3125 					int poison, const char *s);
3126 
3127 extern void adjust_managed_page_count(struct page *page, long count);
3128 
3129 extern void reserve_bootmem_region(phys_addr_t start,
3130 				   phys_addr_t end, int nid);
3131 
3132 /* Free the reserved page into the buddy system, so it gets managed. */
3133 static inline void free_reserved_page(struct page *page)
3134 {
3135 	ClearPageReserved(page);
3136 	init_page_count(page);
3137 	__free_page(page);
3138 	adjust_managed_page_count(page, 1);
3139 }
3140 #define free_highmem_page(page) free_reserved_page(page)
3141 
3142 static inline void mark_page_reserved(struct page *page)
3143 {
3144 	SetPageReserved(page);
3145 	adjust_managed_page_count(page, -1);
3146 }
3147 
3148 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3149 {
3150 	free_reserved_page(ptdesc_page(pt));
3151 }
3152 
3153 /*
3154  * Default method to free all the __init memory into the buddy system.
3155  * The freed pages will be poisoned with pattern "poison" if it's within
3156  * range [0, UCHAR_MAX].
3157  * Return pages freed into the buddy system.
3158  */
3159 static inline unsigned long free_initmem_default(int poison)
3160 {
3161 	extern char __init_begin[], __init_end[];
3162 
3163 	return free_reserved_area(&__init_begin, &__init_end,
3164 				  poison, "unused kernel image (initmem)");
3165 }
3166 
3167 static inline unsigned long get_num_physpages(void)
3168 {
3169 	int nid;
3170 	unsigned long phys_pages = 0;
3171 
3172 	for_each_online_node(nid)
3173 		phys_pages += node_present_pages(nid);
3174 
3175 	return phys_pages;
3176 }
3177 
3178 /*
3179  * Using memblock node mappings, an architecture may initialise its
3180  * zones, allocate the backing mem_map and account for memory holes in an
3181  * architecture independent manner.
3182  *
3183  * An architecture is expected to register range of page frames backed by
3184  * physical memory with memblock_add[_node]() before calling
3185  * free_area_init() passing in the PFN each zone ends at. At a basic
3186  * usage, an architecture is expected to do something like
3187  *
3188  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3189  * 							 max_highmem_pfn};
3190  * for_each_valid_physical_page_range()
3191  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3192  * free_area_init(max_zone_pfns);
3193  */
3194 void free_area_init(unsigned long *max_zone_pfn);
3195 unsigned long node_map_pfn_alignment(void);
3196 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3197 						unsigned long end_pfn);
3198 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3199 						unsigned long end_pfn);
3200 extern void get_pfn_range_for_nid(unsigned int nid,
3201 			unsigned long *start_pfn, unsigned long *end_pfn);
3202 
3203 #ifndef CONFIG_NUMA
3204 static inline int early_pfn_to_nid(unsigned long pfn)
3205 {
3206 	return 0;
3207 }
3208 #else
3209 /* please see mm/page_alloc.c */
3210 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3211 #endif
3212 
3213 extern void set_dma_reserve(unsigned long new_dma_reserve);
3214 extern void mem_init(void);
3215 extern void __init mmap_init(void);
3216 
3217 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3218 static inline void show_mem(void)
3219 {
3220 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3221 }
3222 extern long si_mem_available(void);
3223 extern void si_meminfo(struct sysinfo * val);
3224 extern void si_meminfo_node(struct sysinfo *val, int nid);
3225 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3226 extern unsigned long arch_reserved_kernel_pages(void);
3227 #endif
3228 
3229 extern __printf(3, 4)
3230 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3231 
3232 extern void setup_per_cpu_pageset(void);
3233 
3234 /* nommu.c */
3235 extern atomic_long_t mmap_pages_allocated;
3236 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3237 
3238 /* interval_tree.c */
3239 void vma_interval_tree_insert(struct vm_area_struct *node,
3240 			      struct rb_root_cached *root);
3241 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3242 				    struct vm_area_struct *prev,
3243 				    struct rb_root_cached *root);
3244 void vma_interval_tree_remove(struct vm_area_struct *node,
3245 			      struct rb_root_cached *root);
3246 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3247 				unsigned long start, unsigned long last);
3248 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3249 				unsigned long start, unsigned long last);
3250 
3251 #define vma_interval_tree_foreach(vma, root, start, last)		\
3252 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3253 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3254 
3255 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3256 				   struct rb_root_cached *root);
3257 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3258 				   struct rb_root_cached *root);
3259 struct anon_vma_chain *
3260 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3261 				  unsigned long start, unsigned long last);
3262 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3263 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3264 #ifdef CONFIG_DEBUG_VM_RB
3265 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3266 #endif
3267 
3268 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3269 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3270 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3271 
3272 /* mmap.c */
3273 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3274 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3275 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3276 		      struct vm_area_struct *next);
3277 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3278 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3279 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3280 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3281 extern void unlink_file_vma(struct vm_area_struct *);
3282 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3283 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3284 	bool *need_rmap_locks);
3285 extern void exit_mmap(struct mm_struct *);
3286 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3287 				  struct vm_area_struct *prev,
3288 				  struct vm_area_struct *vma,
3289 				  unsigned long start, unsigned long end,
3290 				  unsigned long vm_flags,
3291 				  struct mempolicy *policy,
3292 				  struct vm_userfaultfd_ctx uffd_ctx,
3293 				  struct anon_vma_name *anon_name);
3294 
3295 /* We are about to modify the VMA's flags. */
3296 static inline struct vm_area_struct
3297 *vma_modify_flags(struct vma_iterator *vmi,
3298 		  struct vm_area_struct *prev,
3299 		  struct vm_area_struct *vma,
3300 		  unsigned long start, unsigned long end,
3301 		  unsigned long new_flags)
3302 {
3303 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3304 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3305 			  anon_vma_name(vma));
3306 }
3307 
3308 /* We are about to modify the VMA's flags and/or anon_name. */
3309 static inline struct vm_area_struct
3310 *vma_modify_flags_name(struct vma_iterator *vmi,
3311 		       struct vm_area_struct *prev,
3312 		       struct vm_area_struct *vma,
3313 		       unsigned long start,
3314 		       unsigned long end,
3315 		       unsigned long new_flags,
3316 		       struct anon_vma_name *new_name)
3317 {
3318 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3319 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3320 }
3321 
3322 /* We are about to modify the VMA's memory policy. */
3323 static inline struct vm_area_struct
3324 *vma_modify_policy(struct vma_iterator *vmi,
3325 		   struct vm_area_struct *prev,
3326 		   struct vm_area_struct *vma,
3327 		   unsigned long start, unsigned long end,
3328 		   struct mempolicy *new_pol)
3329 {
3330 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3331 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3332 }
3333 
3334 /* We are about to modify the VMA's flags and/or uffd context. */
3335 static inline struct vm_area_struct
3336 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3337 		       struct vm_area_struct *prev,
3338 		       struct vm_area_struct *vma,
3339 		       unsigned long start, unsigned long end,
3340 		       unsigned long new_flags,
3341 		       struct vm_userfaultfd_ctx new_ctx)
3342 {
3343 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3344 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3345 }
3346 
3347 static inline int check_data_rlimit(unsigned long rlim,
3348 				    unsigned long new,
3349 				    unsigned long start,
3350 				    unsigned long end_data,
3351 				    unsigned long start_data)
3352 {
3353 	if (rlim < RLIM_INFINITY) {
3354 		if (((new - start) + (end_data - start_data)) > rlim)
3355 			return -ENOSPC;
3356 	}
3357 
3358 	return 0;
3359 }
3360 
3361 extern int mm_take_all_locks(struct mm_struct *mm);
3362 extern void mm_drop_all_locks(struct mm_struct *mm);
3363 
3364 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3365 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3366 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3367 extern struct file *get_task_exe_file(struct task_struct *task);
3368 
3369 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3370 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3371 
3372 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3373 				   const struct vm_special_mapping *sm);
3374 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3375 				   unsigned long addr, unsigned long len,
3376 				   unsigned long flags,
3377 				   const struct vm_special_mapping *spec);
3378 /* This is an obsolete alternative to _install_special_mapping. */
3379 extern int install_special_mapping(struct mm_struct *mm,
3380 				   unsigned long addr, unsigned long len,
3381 				   unsigned long flags, struct page **pages);
3382 
3383 unsigned long randomize_stack_top(unsigned long stack_top);
3384 unsigned long randomize_page(unsigned long start, unsigned long range);
3385 
3386 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3387 
3388 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3389 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3390 	struct list_head *uf);
3391 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3392 	unsigned long len, unsigned long prot, unsigned long flags,
3393 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3394 	struct list_head *uf);
3395 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3396 			 unsigned long start, size_t len, struct list_head *uf,
3397 			 bool unlock);
3398 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3399 		     struct list_head *uf);
3400 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3401 
3402 #ifdef CONFIG_MMU
3403 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3404 			 unsigned long start, unsigned long end,
3405 			 struct list_head *uf, bool unlock);
3406 extern int __mm_populate(unsigned long addr, unsigned long len,
3407 			 int ignore_errors);
3408 static inline void mm_populate(unsigned long addr, unsigned long len)
3409 {
3410 	/* Ignore errors */
3411 	(void) __mm_populate(addr, len, 1);
3412 }
3413 #else
3414 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3415 #endif
3416 
3417 /* This takes the mm semaphore itself */
3418 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3419 extern int vm_munmap(unsigned long, size_t);
3420 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3421         unsigned long, unsigned long,
3422         unsigned long, unsigned long);
3423 
3424 struct vm_unmapped_area_info {
3425 #define VM_UNMAPPED_AREA_TOPDOWN 1
3426 	unsigned long flags;
3427 	unsigned long length;
3428 	unsigned long low_limit;
3429 	unsigned long high_limit;
3430 	unsigned long align_mask;
3431 	unsigned long align_offset;
3432 };
3433 
3434 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3435 
3436 /* truncate.c */
3437 extern void truncate_inode_pages(struct address_space *, loff_t);
3438 extern void truncate_inode_pages_range(struct address_space *,
3439 				       loff_t lstart, loff_t lend);
3440 extern void truncate_inode_pages_final(struct address_space *);
3441 
3442 /* generic vm_area_ops exported for stackable file systems */
3443 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3444 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3445 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3446 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3447 
3448 extern unsigned long stack_guard_gap;
3449 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3450 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3451 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3452 
3453 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3454 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3455 
3456 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3457 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3458 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3459 					     struct vm_area_struct **pprev);
3460 
3461 /*
3462  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3463  * NULL if none.  Assume start_addr < end_addr.
3464  */
3465 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3466 			unsigned long start_addr, unsigned long end_addr);
3467 
3468 /**
3469  * vma_lookup() - Find a VMA at a specific address
3470  * @mm: The process address space.
3471  * @addr: The user address.
3472  *
3473  * Return: The vm_area_struct at the given address, %NULL otherwise.
3474  */
3475 static inline
3476 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3477 {
3478 	return mtree_load(&mm->mm_mt, addr);
3479 }
3480 
3481 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3482 {
3483 	if (vma->vm_flags & VM_GROWSDOWN)
3484 		return stack_guard_gap;
3485 
3486 	/* See reasoning around the VM_SHADOW_STACK definition */
3487 	if (vma->vm_flags & VM_SHADOW_STACK)
3488 		return PAGE_SIZE;
3489 
3490 	return 0;
3491 }
3492 
3493 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3494 {
3495 	unsigned long gap = stack_guard_start_gap(vma);
3496 	unsigned long vm_start = vma->vm_start;
3497 
3498 	vm_start -= gap;
3499 	if (vm_start > vma->vm_start)
3500 		vm_start = 0;
3501 	return vm_start;
3502 }
3503 
3504 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3505 {
3506 	unsigned long vm_end = vma->vm_end;
3507 
3508 	if (vma->vm_flags & VM_GROWSUP) {
3509 		vm_end += stack_guard_gap;
3510 		if (vm_end < vma->vm_end)
3511 			vm_end = -PAGE_SIZE;
3512 	}
3513 	return vm_end;
3514 }
3515 
3516 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3517 {
3518 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3519 }
3520 
3521 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3522 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3523 				unsigned long vm_start, unsigned long vm_end)
3524 {
3525 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3526 
3527 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3528 		vma = NULL;
3529 
3530 	return vma;
3531 }
3532 
3533 static inline bool range_in_vma(struct vm_area_struct *vma,
3534 				unsigned long start, unsigned long end)
3535 {
3536 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3537 }
3538 
3539 #ifdef CONFIG_MMU
3540 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3541 void vma_set_page_prot(struct vm_area_struct *vma);
3542 #else
3543 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3544 {
3545 	return __pgprot(0);
3546 }
3547 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3548 {
3549 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3550 }
3551 #endif
3552 
3553 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3554 
3555 #ifdef CONFIG_NUMA_BALANCING
3556 unsigned long change_prot_numa(struct vm_area_struct *vma,
3557 			unsigned long start, unsigned long end);
3558 #endif
3559 
3560 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3561 		unsigned long addr);
3562 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3563 			unsigned long pfn, unsigned long size, pgprot_t);
3564 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3565 		unsigned long pfn, unsigned long size, pgprot_t prot);
3566 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3567 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3568 			struct page **pages, unsigned long *num);
3569 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3570 				unsigned long num);
3571 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3572 				unsigned long num);
3573 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3574 			unsigned long pfn);
3575 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3576 			unsigned long pfn, pgprot_t pgprot);
3577 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3578 			pfn_t pfn);
3579 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3580 		unsigned long addr, pfn_t pfn);
3581 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3582 
3583 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3584 				unsigned long addr, struct page *page)
3585 {
3586 	int err = vm_insert_page(vma, addr, page);
3587 
3588 	if (err == -ENOMEM)
3589 		return VM_FAULT_OOM;
3590 	if (err < 0 && err != -EBUSY)
3591 		return VM_FAULT_SIGBUS;
3592 
3593 	return VM_FAULT_NOPAGE;
3594 }
3595 
3596 #ifndef io_remap_pfn_range
3597 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3598 				     unsigned long addr, unsigned long pfn,
3599 				     unsigned long size, pgprot_t prot)
3600 {
3601 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3602 }
3603 #endif
3604 
3605 static inline vm_fault_t vmf_error(int err)
3606 {
3607 	if (err == -ENOMEM)
3608 		return VM_FAULT_OOM;
3609 	else if (err == -EHWPOISON)
3610 		return VM_FAULT_HWPOISON;
3611 	return VM_FAULT_SIGBUS;
3612 }
3613 
3614 /*
3615  * Convert errno to return value for ->page_mkwrite() calls.
3616  *
3617  * This should eventually be merged with vmf_error() above, but will need a
3618  * careful audit of all vmf_error() callers.
3619  */
3620 static inline vm_fault_t vmf_fs_error(int err)
3621 {
3622 	if (err == 0)
3623 		return VM_FAULT_LOCKED;
3624 	if (err == -EFAULT || err == -EAGAIN)
3625 		return VM_FAULT_NOPAGE;
3626 	if (err == -ENOMEM)
3627 		return VM_FAULT_OOM;
3628 	/* -ENOSPC, -EDQUOT, -EIO ... */
3629 	return VM_FAULT_SIGBUS;
3630 }
3631 
3632 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3633 			 unsigned int foll_flags);
3634 
3635 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3636 {
3637 	if (vm_fault & VM_FAULT_OOM)
3638 		return -ENOMEM;
3639 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3640 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3641 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3642 		return -EFAULT;
3643 	return 0;
3644 }
3645 
3646 /*
3647  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3648  * a (NUMA hinting) fault is required.
3649  */
3650 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3651 					   unsigned int flags)
3652 {
3653 	/*
3654 	 * If callers don't want to honor NUMA hinting faults, no need to
3655 	 * determine if we would actually have to trigger a NUMA hinting fault.
3656 	 */
3657 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3658 		return true;
3659 
3660 	/*
3661 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3662 	 *
3663 	 * Requiring a fault here even for inaccessible VMAs would mean that
3664 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3665 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3666 	 */
3667 	return !vma_is_accessible(vma);
3668 }
3669 
3670 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3671 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3672 			       unsigned long size, pte_fn_t fn, void *data);
3673 extern int apply_to_existing_page_range(struct mm_struct *mm,
3674 				   unsigned long address, unsigned long size,
3675 				   pte_fn_t fn, void *data);
3676 
3677 #ifdef CONFIG_PAGE_POISONING
3678 extern void __kernel_poison_pages(struct page *page, int numpages);
3679 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3680 extern bool _page_poisoning_enabled_early;
3681 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3682 static inline bool page_poisoning_enabled(void)
3683 {
3684 	return _page_poisoning_enabled_early;
3685 }
3686 /*
3687  * For use in fast paths after init_mem_debugging() has run, or when a
3688  * false negative result is not harmful when called too early.
3689  */
3690 static inline bool page_poisoning_enabled_static(void)
3691 {
3692 	return static_branch_unlikely(&_page_poisoning_enabled);
3693 }
3694 static inline void kernel_poison_pages(struct page *page, int numpages)
3695 {
3696 	if (page_poisoning_enabled_static())
3697 		__kernel_poison_pages(page, numpages);
3698 }
3699 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3700 {
3701 	if (page_poisoning_enabled_static())
3702 		__kernel_unpoison_pages(page, numpages);
3703 }
3704 #else
3705 static inline bool page_poisoning_enabled(void) { return false; }
3706 static inline bool page_poisoning_enabled_static(void) { return false; }
3707 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3708 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3709 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3710 #endif
3711 
3712 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3713 static inline bool want_init_on_alloc(gfp_t flags)
3714 {
3715 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3716 				&init_on_alloc))
3717 		return true;
3718 	return flags & __GFP_ZERO;
3719 }
3720 
3721 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3722 static inline bool want_init_on_free(void)
3723 {
3724 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3725 				   &init_on_free);
3726 }
3727 
3728 extern bool _debug_pagealloc_enabled_early;
3729 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3730 
3731 static inline bool debug_pagealloc_enabled(void)
3732 {
3733 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3734 		_debug_pagealloc_enabled_early;
3735 }
3736 
3737 /*
3738  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3739  * or when a false negative result is not harmful when called too early.
3740  */
3741 static inline bool debug_pagealloc_enabled_static(void)
3742 {
3743 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3744 		return false;
3745 
3746 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3747 }
3748 
3749 /*
3750  * To support DEBUG_PAGEALLOC architecture must ensure that
3751  * __kernel_map_pages() never fails
3752  */
3753 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3754 #ifdef CONFIG_DEBUG_PAGEALLOC
3755 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3756 {
3757 	if (debug_pagealloc_enabled_static())
3758 		__kernel_map_pages(page, numpages, 1);
3759 }
3760 
3761 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3762 {
3763 	if (debug_pagealloc_enabled_static())
3764 		__kernel_map_pages(page, numpages, 0);
3765 }
3766 
3767 extern unsigned int _debug_guardpage_minorder;
3768 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3769 
3770 static inline unsigned int debug_guardpage_minorder(void)
3771 {
3772 	return _debug_guardpage_minorder;
3773 }
3774 
3775 static inline bool debug_guardpage_enabled(void)
3776 {
3777 	return static_branch_unlikely(&_debug_guardpage_enabled);
3778 }
3779 
3780 static inline bool page_is_guard(struct page *page)
3781 {
3782 	if (!debug_guardpage_enabled())
3783 		return false;
3784 
3785 	return PageGuard(page);
3786 }
3787 
3788 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3789 		      int migratetype);
3790 static inline bool set_page_guard(struct zone *zone, struct page *page,
3791 				  unsigned int order, int migratetype)
3792 {
3793 	if (!debug_guardpage_enabled())
3794 		return false;
3795 	return __set_page_guard(zone, page, order, migratetype);
3796 }
3797 
3798 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3799 			int migratetype);
3800 static inline void clear_page_guard(struct zone *zone, struct page *page,
3801 				    unsigned int order, int migratetype)
3802 {
3803 	if (!debug_guardpage_enabled())
3804 		return;
3805 	__clear_page_guard(zone, page, order, migratetype);
3806 }
3807 
3808 #else	/* CONFIG_DEBUG_PAGEALLOC */
3809 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3810 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3811 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3812 static inline bool debug_guardpage_enabled(void) { return false; }
3813 static inline bool page_is_guard(struct page *page) { return false; }
3814 static inline bool set_page_guard(struct zone *zone, struct page *page,
3815 			unsigned int order, int migratetype) { return false; }
3816 static inline void clear_page_guard(struct zone *zone, struct page *page,
3817 				unsigned int order, int migratetype) {}
3818 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3819 
3820 #ifdef __HAVE_ARCH_GATE_AREA
3821 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3822 extern int in_gate_area_no_mm(unsigned long addr);
3823 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3824 #else
3825 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3826 {
3827 	return NULL;
3828 }
3829 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3830 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3831 {
3832 	return 0;
3833 }
3834 #endif	/* __HAVE_ARCH_GATE_AREA */
3835 
3836 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3837 
3838 #ifdef CONFIG_SYSCTL
3839 extern int sysctl_drop_caches;
3840 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3841 		loff_t *);
3842 #endif
3843 
3844 void drop_slab(void);
3845 
3846 #ifndef CONFIG_MMU
3847 #define randomize_va_space 0
3848 #else
3849 extern int randomize_va_space;
3850 #endif
3851 
3852 const char * arch_vma_name(struct vm_area_struct *vma);
3853 #ifdef CONFIG_MMU
3854 void print_vma_addr(char *prefix, unsigned long rip);
3855 #else
3856 static inline void print_vma_addr(char *prefix, unsigned long rip)
3857 {
3858 }
3859 #endif
3860 
3861 void *sparse_buffer_alloc(unsigned long size);
3862 struct page * __populate_section_memmap(unsigned long pfn,
3863 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3864 		struct dev_pagemap *pgmap);
3865 void pmd_init(void *addr);
3866 void pud_init(void *addr);
3867 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3868 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3869 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3870 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3871 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3872 			    struct vmem_altmap *altmap, struct page *reuse);
3873 void *vmemmap_alloc_block(unsigned long size, int node);
3874 struct vmem_altmap;
3875 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3876 			      struct vmem_altmap *altmap);
3877 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3878 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3879 		     unsigned long addr, unsigned long next);
3880 int vmemmap_check_pmd(pmd_t *pmd, int node,
3881 		      unsigned long addr, unsigned long next);
3882 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3883 			       int node, struct vmem_altmap *altmap);
3884 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3885 			       int node, struct vmem_altmap *altmap);
3886 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3887 		struct vmem_altmap *altmap);
3888 void vmemmap_populate_print_last(void);
3889 #ifdef CONFIG_MEMORY_HOTPLUG
3890 void vmemmap_free(unsigned long start, unsigned long end,
3891 		struct vmem_altmap *altmap);
3892 #endif
3893 
3894 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3895 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3896 {
3897 	/* number of pfns from base where pfn_to_page() is valid */
3898 	if (altmap)
3899 		return altmap->reserve + altmap->free;
3900 	return 0;
3901 }
3902 
3903 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3904 				    unsigned long nr_pfns)
3905 {
3906 	altmap->alloc -= nr_pfns;
3907 }
3908 #else
3909 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3910 {
3911 	return 0;
3912 }
3913 
3914 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3915 				    unsigned long nr_pfns)
3916 {
3917 }
3918 #endif
3919 
3920 #define VMEMMAP_RESERVE_NR	2
3921 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3922 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3923 					  struct dev_pagemap *pgmap)
3924 {
3925 	unsigned long nr_pages;
3926 	unsigned long nr_vmemmap_pages;
3927 
3928 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3929 		return false;
3930 
3931 	nr_pages = pgmap_vmemmap_nr(pgmap);
3932 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3933 	/*
3934 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3935 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3936 	 */
3937 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3938 }
3939 /*
3940  * If we don't have an architecture override, use the generic rule
3941  */
3942 #ifndef vmemmap_can_optimize
3943 #define vmemmap_can_optimize __vmemmap_can_optimize
3944 #endif
3945 
3946 #else
3947 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3948 					   struct dev_pagemap *pgmap)
3949 {
3950 	return false;
3951 }
3952 #endif
3953 
3954 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3955 				  unsigned long nr_pages);
3956 
3957 enum mf_flags {
3958 	MF_COUNT_INCREASED = 1 << 0,
3959 	MF_ACTION_REQUIRED = 1 << 1,
3960 	MF_MUST_KILL = 1 << 2,
3961 	MF_SOFT_OFFLINE = 1 << 3,
3962 	MF_UNPOISON = 1 << 4,
3963 	MF_SW_SIMULATED = 1 << 5,
3964 	MF_NO_RETRY = 1 << 6,
3965 	MF_MEM_PRE_REMOVE = 1 << 7,
3966 };
3967 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3968 		      unsigned long count, int mf_flags);
3969 extern int memory_failure(unsigned long pfn, int flags);
3970 extern void memory_failure_queue_kick(int cpu);
3971 extern int unpoison_memory(unsigned long pfn);
3972 extern void shake_page(struct page *p);
3973 extern atomic_long_t num_poisoned_pages __read_mostly;
3974 extern int soft_offline_page(unsigned long pfn, int flags);
3975 #ifdef CONFIG_MEMORY_FAILURE
3976 /*
3977  * Sysfs entries for memory failure handling statistics.
3978  */
3979 extern const struct attribute_group memory_failure_attr_group;
3980 extern void memory_failure_queue(unsigned long pfn, int flags);
3981 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3982 					bool *migratable_cleared);
3983 void num_poisoned_pages_inc(unsigned long pfn);
3984 void num_poisoned_pages_sub(unsigned long pfn, long i);
3985 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3986 #else
3987 static inline void memory_failure_queue(unsigned long pfn, int flags)
3988 {
3989 }
3990 
3991 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3992 					bool *migratable_cleared)
3993 {
3994 	return 0;
3995 }
3996 
3997 static inline void num_poisoned_pages_inc(unsigned long pfn)
3998 {
3999 }
4000 
4001 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4002 {
4003 }
4004 #endif
4005 
4006 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4007 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4008 		     struct vm_area_struct *vma, struct list_head *to_kill,
4009 		     unsigned long ksm_addr);
4010 #endif
4011 
4012 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4013 extern void memblk_nr_poison_inc(unsigned long pfn);
4014 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4015 #else
4016 static inline void memblk_nr_poison_inc(unsigned long pfn)
4017 {
4018 }
4019 
4020 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4021 {
4022 }
4023 #endif
4024 
4025 #ifndef arch_memory_failure
4026 static inline int arch_memory_failure(unsigned long pfn, int flags)
4027 {
4028 	return -ENXIO;
4029 }
4030 #endif
4031 
4032 #ifndef arch_is_platform_page
4033 static inline bool arch_is_platform_page(u64 paddr)
4034 {
4035 	return false;
4036 }
4037 #endif
4038 
4039 /*
4040  * Error handlers for various types of pages.
4041  */
4042 enum mf_result {
4043 	MF_IGNORED,	/* Error: cannot be handled */
4044 	MF_FAILED,	/* Error: handling failed */
4045 	MF_DELAYED,	/* Will be handled later */
4046 	MF_RECOVERED,	/* Successfully recovered */
4047 };
4048 
4049 enum mf_action_page_type {
4050 	MF_MSG_KERNEL,
4051 	MF_MSG_KERNEL_HIGH_ORDER,
4052 	MF_MSG_SLAB,
4053 	MF_MSG_DIFFERENT_COMPOUND,
4054 	MF_MSG_HUGE,
4055 	MF_MSG_FREE_HUGE,
4056 	MF_MSG_UNMAP_FAILED,
4057 	MF_MSG_DIRTY_SWAPCACHE,
4058 	MF_MSG_CLEAN_SWAPCACHE,
4059 	MF_MSG_DIRTY_MLOCKED_LRU,
4060 	MF_MSG_CLEAN_MLOCKED_LRU,
4061 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4062 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4063 	MF_MSG_DIRTY_LRU,
4064 	MF_MSG_CLEAN_LRU,
4065 	MF_MSG_TRUNCATED_LRU,
4066 	MF_MSG_BUDDY,
4067 	MF_MSG_DAX,
4068 	MF_MSG_UNSPLIT_THP,
4069 	MF_MSG_UNKNOWN,
4070 };
4071 
4072 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4073 extern void clear_huge_page(struct page *page,
4074 			    unsigned long addr_hint,
4075 			    unsigned int pages_per_huge_page);
4076 int copy_user_large_folio(struct folio *dst, struct folio *src,
4077 			  unsigned long addr_hint,
4078 			  struct vm_area_struct *vma);
4079 long copy_folio_from_user(struct folio *dst_folio,
4080 			   const void __user *usr_src,
4081 			   bool allow_pagefault);
4082 
4083 /**
4084  * vma_is_special_huge - Are transhuge page-table entries considered special?
4085  * @vma: Pointer to the struct vm_area_struct to consider
4086  *
4087  * Whether transhuge page-table entries are considered "special" following
4088  * the definition in vm_normal_page().
4089  *
4090  * Return: true if transhuge page-table entries should be considered special,
4091  * false otherwise.
4092  */
4093 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4094 {
4095 	return vma_is_dax(vma) || (vma->vm_file &&
4096 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4097 }
4098 
4099 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4100 
4101 #if MAX_NUMNODES > 1
4102 void __init setup_nr_node_ids(void);
4103 #else
4104 static inline void setup_nr_node_ids(void) {}
4105 #endif
4106 
4107 extern int memcmp_pages(struct page *page1, struct page *page2);
4108 
4109 static inline int pages_identical(struct page *page1, struct page *page2)
4110 {
4111 	return !memcmp_pages(page1, page2);
4112 }
4113 
4114 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4115 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4116 						pgoff_t first_index, pgoff_t nr,
4117 						pgoff_t bitmap_pgoff,
4118 						unsigned long *bitmap,
4119 						pgoff_t *start,
4120 						pgoff_t *end);
4121 
4122 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4123 				      pgoff_t first_index, pgoff_t nr);
4124 #endif
4125 
4126 extern int sysctl_nr_trim_pages;
4127 
4128 #ifdef CONFIG_PRINTK
4129 void mem_dump_obj(void *object);
4130 #else
4131 static inline void mem_dump_obj(void *object) {}
4132 #endif
4133 
4134 /**
4135  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4136  *                    handle them.
4137  * @seals: the seals to check
4138  * @vma: the vma to operate on
4139  *
4140  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4141  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4142  */
4143 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4144 {
4145 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4146 		/*
4147 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4148 		 * write seals are active.
4149 		 */
4150 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4151 			return -EPERM;
4152 
4153 		/*
4154 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4155 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4156 		 * revert protections on such mappings. Do this only for shared
4157 		 * mappings. For private mappings, don't need to mask
4158 		 * VM_MAYWRITE as we still want them to be COW-writable.
4159 		 */
4160 		if (vma->vm_flags & VM_SHARED)
4161 			vm_flags_clear(vma, VM_MAYWRITE);
4162 	}
4163 
4164 	return 0;
4165 }
4166 
4167 #ifdef CONFIG_ANON_VMA_NAME
4168 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4169 			  unsigned long len_in,
4170 			  struct anon_vma_name *anon_name);
4171 #else
4172 static inline int
4173 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4174 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4175 	return 0;
4176 }
4177 #endif
4178 
4179 #ifdef CONFIG_UNACCEPTED_MEMORY
4180 
4181 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4182 void accept_memory(phys_addr_t start, phys_addr_t end);
4183 
4184 #else
4185 
4186 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4187 						    phys_addr_t end)
4188 {
4189 	return false;
4190 }
4191 
4192 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4193 {
4194 }
4195 
4196 #endif
4197 
4198 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4199 {
4200 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4201 
4202 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4203 }
4204 
4205 #endif /* _LINUX_MM_H */
4206