1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 struct folio_batch; 40 41 extern int sysctl_page_lock_unfairness; 42 43 void mm_core_init(void); 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 extern const int page_cluster_max; 81 82 #ifdef CONFIG_SYSCTL 83 extern int sysctl_legacy_va_layout; 84 #else 85 #define sysctl_legacy_va_layout 0 86 #endif 87 88 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 89 extern const int mmap_rnd_bits_min; 90 extern int mmap_rnd_bits_max __ro_after_init; 91 extern int mmap_rnd_bits __read_mostly; 92 #endif 93 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 94 extern const int mmap_rnd_compat_bits_min; 95 extern const int mmap_rnd_compat_bits_max; 96 extern int mmap_rnd_compat_bits __read_mostly; 97 #endif 98 99 #include <asm/page.h> 100 #include <asm/processor.h> 101 102 #ifndef __pa_symbol 103 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 104 #endif 105 106 #ifndef page_to_virt 107 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 108 #endif 109 110 #ifndef lm_alias 111 #define lm_alias(x) __va(__pa_symbol(x)) 112 #endif 113 114 /* 115 * To prevent common memory management code establishing 116 * a zero page mapping on a read fault. 117 * This macro should be defined within <asm/pgtable.h>. 118 * s390 does this to prevent multiplexing of hardware bits 119 * related to the physical page in case of virtualization. 120 */ 121 #ifndef mm_forbids_zeropage 122 #define mm_forbids_zeropage(X) (0) 123 #endif 124 125 /* 126 * On some architectures it is expensive to call memset() for small sizes. 127 * If an architecture decides to implement their own version of 128 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 129 * define their own version of this macro in <asm/pgtable.h> 130 */ 131 #if BITS_PER_LONG == 64 132 /* This function must be updated when the size of struct page grows above 96 133 * or reduces below 56. The idea that compiler optimizes out switch() 134 * statement, and only leaves move/store instructions. Also the compiler can 135 * combine write statements if they are both assignments and can be reordered, 136 * this can result in several of the writes here being dropped. 137 */ 138 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 139 static inline void __mm_zero_struct_page(struct page *page) 140 { 141 unsigned long *_pp = (void *)page; 142 143 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 144 BUILD_BUG_ON(sizeof(struct page) & 7); 145 BUILD_BUG_ON(sizeof(struct page) < 56); 146 BUILD_BUG_ON(sizeof(struct page) > 96); 147 148 switch (sizeof(struct page)) { 149 case 96: 150 _pp[11] = 0; 151 fallthrough; 152 case 88: 153 _pp[10] = 0; 154 fallthrough; 155 case 80: 156 _pp[9] = 0; 157 fallthrough; 158 case 72: 159 _pp[8] = 0; 160 fallthrough; 161 case 64: 162 _pp[7] = 0; 163 fallthrough; 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173 } 174 #else 175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176 #endif 177 178 /* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194 #define MAPCOUNT_ELF_CORE_MARGIN (5) 195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197 extern int sysctl_max_map_count; 198 199 extern unsigned long sysctl_user_reserve_kbytes; 200 extern unsigned long sysctl_admin_reserve_kbytes; 201 202 extern int sysctl_overcommit_memory; 203 extern int sysctl_overcommit_ratio; 204 extern unsigned long sysctl_overcommit_kbytes; 205 206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 214 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 215 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 216 #else 217 #define nth_page(page,n) ((page) + (n)) 218 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 219 #endif 220 221 /* to align the pointer to the (next) page boundary */ 222 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 223 224 /* to align the pointer to the (prev) page boundary */ 225 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 226 227 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 228 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 229 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331 #ifdef CONFIG_ARCH_HAS_PKEYS 332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337 #ifdef CONFIG_PPC 338 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339 #else 340 # define VM_PKEY_BIT4 0 341 #endif 342 #endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344 #ifdef CONFIG_X86_USER_SHADOW_STACK 345 /* 346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 347 * support core mm. 348 * 349 * These VMAs will get a single end guard page. This helps userspace protect 350 * itself from attacks. A single page is enough for current shadow stack archs 351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 352 * for more details on the guard size. 353 */ 354 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 355 #else 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* 395 * This flag is used to connect VFIO to arch specific KVM code. It 396 * indicates that the memory under this VMA is safe for use with any 397 * non-cachable memory type inside KVM. Some VFIO devices, on some 398 * platforms, are thought to be unsafe and can cause machine crashes 399 * if KVM does not lock down the memory type. 400 */ 401 #ifdef CONFIG_64BIT 402 #define VM_ALLOW_ANY_UNCACHED_BIT 39 403 #define VM_ALLOW_ANY_UNCACHED BIT(VM_ALLOW_ANY_UNCACHED_BIT) 404 #else 405 #define VM_ALLOW_ANY_UNCACHED VM_NONE 406 #endif 407 408 /* Bits set in the VMA until the stack is in its final location */ 409 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 410 411 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 412 413 /* Common data flag combinations */ 414 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 415 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 416 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 417 VM_MAYWRITE | VM_MAYEXEC) 418 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 419 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 420 421 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 422 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 423 #endif 424 425 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 426 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 427 #endif 428 429 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 430 431 #ifdef CONFIG_STACK_GROWSUP 432 #define VM_STACK VM_GROWSUP 433 #define VM_STACK_EARLY VM_GROWSDOWN 434 #else 435 #define VM_STACK VM_GROWSDOWN 436 #define VM_STACK_EARLY 0 437 #endif 438 439 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 440 441 /* VMA basic access permission flags */ 442 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 443 444 445 /* 446 * Special vmas that are non-mergable, non-mlock()able. 447 */ 448 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 449 450 /* This mask prevents VMA from being scanned with khugepaged */ 451 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 452 453 /* This mask defines which mm->def_flags a process can inherit its parent */ 454 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 455 456 /* This mask represents all the VMA flag bits used by mlock */ 457 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 458 459 /* Arch-specific flags to clear when updating VM flags on protection change */ 460 #ifndef VM_ARCH_CLEAR 461 # define VM_ARCH_CLEAR VM_NONE 462 #endif 463 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 464 465 /* 466 * mapping from the currently active vm_flags protection bits (the 467 * low four bits) to a page protection mask.. 468 */ 469 470 /* 471 * The default fault flags that should be used by most of the 472 * arch-specific page fault handlers. 473 */ 474 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 475 FAULT_FLAG_KILLABLE | \ 476 FAULT_FLAG_INTERRUPTIBLE) 477 478 /** 479 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 480 * @flags: Fault flags. 481 * 482 * This is mostly used for places where we want to try to avoid taking 483 * the mmap_lock for too long a time when waiting for another condition 484 * to change, in which case we can try to be polite to release the 485 * mmap_lock in the first round to avoid potential starvation of other 486 * processes that would also want the mmap_lock. 487 * 488 * Return: true if the page fault allows retry and this is the first 489 * attempt of the fault handling; false otherwise. 490 */ 491 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 492 { 493 return (flags & FAULT_FLAG_ALLOW_RETRY) && 494 (!(flags & FAULT_FLAG_TRIED)); 495 } 496 497 #define FAULT_FLAG_TRACE \ 498 { FAULT_FLAG_WRITE, "WRITE" }, \ 499 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 500 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 501 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 502 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 503 { FAULT_FLAG_TRIED, "TRIED" }, \ 504 { FAULT_FLAG_USER, "USER" }, \ 505 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 506 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 507 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 508 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 509 510 /* 511 * vm_fault is filled by the pagefault handler and passed to the vma's 512 * ->fault function. The vma's ->fault is responsible for returning a bitmask 513 * of VM_FAULT_xxx flags that give details about how the fault was handled. 514 * 515 * MM layer fills up gfp_mask for page allocations but fault handler might 516 * alter it if its implementation requires a different allocation context. 517 * 518 * pgoff should be used in favour of virtual_address, if possible. 519 */ 520 struct vm_fault { 521 const struct { 522 struct vm_area_struct *vma; /* Target VMA */ 523 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 524 pgoff_t pgoff; /* Logical page offset based on vma */ 525 unsigned long address; /* Faulting virtual address - masked */ 526 unsigned long real_address; /* Faulting virtual address - unmasked */ 527 }; 528 enum fault_flag flags; /* FAULT_FLAG_xxx flags 529 * XXX: should really be 'const' */ 530 pmd_t *pmd; /* Pointer to pmd entry matching 531 * the 'address' */ 532 pud_t *pud; /* Pointer to pud entry matching 533 * the 'address' 534 */ 535 union { 536 pte_t orig_pte; /* Value of PTE at the time of fault */ 537 pmd_t orig_pmd; /* Value of PMD at the time of fault, 538 * used by PMD fault only. 539 */ 540 }; 541 542 struct page *cow_page; /* Page handler may use for COW fault */ 543 struct page *page; /* ->fault handlers should return a 544 * page here, unless VM_FAULT_NOPAGE 545 * is set (which is also implied by 546 * VM_FAULT_ERROR). 547 */ 548 /* These three entries are valid only while holding ptl lock */ 549 pte_t *pte; /* Pointer to pte entry matching 550 * the 'address'. NULL if the page 551 * table hasn't been allocated. 552 */ 553 spinlock_t *ptl; /* Page table lock. 554 * Protects pte page table if 'pte' 555 * is not NULL, otherwise pmd. 556 */ 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 558 * vm_ops->map_pages() sets up a page 559 * table from atomic context. 560 * do_fault_around() pre-allocates 561 * page table to avoid allocation from 562 * atomic context. 563 */ 564 }; 565 566 /* 567 * These are the virtual MM functions - opening of an area, closing and 568 * unmapping it (needed to keep files on disk up-to-date etc), pointer 569 * to the functions called when a no-page or a wp-page exception occurs. 570 */ 571 struct vm_operations_struct { 572 void (*open)(struct vm_area_struct * area); 573 /** 574 * @close: Called when the VMA is being removed from the MM. 575 * Context: User context. May sleep. Caller holds mmap_lock. 576 */ 577 void (*close)(struct vm_area_struct * area); 578 /* Called any time before splitting to check if it's allowed */ 579 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 580 int (*mremap)(struct vm_area_struct *area); 581 /* 582 * Called by mprotect() to make driver-specific permission 583 * checks before mprotect() is finalised. The VMA must not 584 * be modified. Returns 0 if mprotect() can proceed. 585 */ 586 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 587 unsigned long end, unsigned long newflags); 588 vm_fault_t (*fault)(struct vm_fault *vmf); 589 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 590 vm_fault_t (*map_pages)(struct vm_fault *vmf, 591 pgoff_t start_pgoff, pgoff_t end_pgoff); 592 unsigned long (*pagesize)(struct vm_area_struct * area); 593 594 /* notification that a previously read-only page is about to become 595 * writable, if an error is returned it will cause a SIGBUS */ 596 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 597 598 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 599 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 600 601 /* called by access_process_vm when get_user_pages() fails, typically 602 * for use by special VMAs. See also generic_access_phys() for a generic 603 * implementation useful for any iomem mapping. 604 */ 605 int (*access)(struct vm_area_struct *vma, unsigned long addr, 606 void *buf, int len, int write); 607 608 /* Called by the /proc/PID/maps code to ask the vma whether it 609 * has a special name. Returning non-NULL will also cause this 610 * vma to be dumped unconditionally. */ 611 const char *(*name)(struct vm_area_struct *vma); 612 613 #ifdef CONFIG_NUMA 614 /* 615 * set_policy() op must add a reference to any non-NULL @new mempolicy 616 * to hold the policy upon return. Caller should pass NULL @new to 617 * remove a policy and fall back to surrounding context--i.e. do not 618 * install a MPOL_DEFAULT policy, nor the task or system default 619 * mempolicy. 620 */ 621 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 622 623 /* 624 * get_policy() op must add reference [mpol_get()] to any policy at 625 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 626 * in mm/mempolicy.c will do this automatically. 627 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 628 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 629 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 630 * must return NULL--i.e., do not "fallback" to task or system default 631 * policy. 632 */ 633 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 634 unsigned long addr, pgoff_t *ilx); 635 #endif 636 /* 637 * Called by vm_normal_page() for special PTEs to find the 638 * page for @addr. This is useful if the default behavior 639 * (using pte_page()) would not find the correct page. 640 */ 641 struct page *(*find_special_page)(struct vm_area_struct *vma, 642 unsigned long addr); 643 }; 644 645 #ifdef CONFIG_NUMA_BALANCING 646 static inline void vma_numab_state_init(struct vm_area_struct *vma) 647 { 648 vma->numab_state = NULL; 649 } 650 static inline void vma_numab_state_free(struct vm_area_struct *vma) 651 { 652 kfree(vma->numab_state); 653 } 654 #else 655 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 656 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 657 #endif /* CONFIG_NUMA_BALANCING */ 658 659 #ifdef CONFIG_PER_VMA_LOCK 660 /* 661 * Try to read-lock a vma. The function is allowed to occasionally yield false 662 * locked result to avoid performance overhead, in which case we fall back to 663 * using mmap_lock. The function should never yield false unlocked result. 664 */ 665 static inline bool vma_start_read(struct vm_area_struct *vma) 666 { 667 /* 668 * Check before locking. A race might cause false locked result. 669 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 670 * ACQUIRE semantics, because this is just a lockless check whose result 671 * we don't rely on for anything - the mm_lock_seq read against which we 672 * need ordering is below. 673 */ 674 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 675 return false; 676 677 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 678 return false; 679 680 /* 681 * Overflow might produce false locked result. 682 * False unlocked result is impossible because we modify and check 683 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 684 * modification invalidates all existing locks. 685 * 686 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 687 * racing with vma_end_write_all(), we only start reading from the VMA 688 * after it has been unlocked. 689 * This pairs with RELEASE semantics in vma_end_write_all(). 690 */ 691 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 692 up_read(&vma->vm_lock->lock); 693 return false; 694 } 695 return true; 696 } 697 698 static inline void vma_end_read(struct vm_area_struct *vma) 699 { 700 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 701 up_read(&vma->vm_lock->lock); 702 rcu_read_unlock(); 703 } 704 705 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 706 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 707 { 708 mmap_assert_write_locked(vma->vm_mm); 709 710 /* 711 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 712 * mm->mm_lock_seq can't be concurrently modified. 713 */ 714 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 715 return (vma->vm_lock_seq == *mm_lock_seq); 716 } 717 718 /* 719 * Begin writing to a VMA. 720 * Exclude concurrent readers under the per-VMA lock until the currently 721 * write-locked mmap_lock is dropped or downgraded. 722 */ 723 static inline void vma_start_write(struct vm_area_struct *vma) 724 { 725 int mm_lock_seq; 726 727 if (__is_vma_write_locked(vma, &mm_lock_seq)) 728 return; 729 730 down_write(&vma->vm_lock->lock); 731 /* 732 * We should use WRITE_ONCE() here because we can have concurrent reads 733 * from the early lockless pessimistic check in vma_start_read(). 734 * We don't really care about the correctness of that early check, but 735 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 736 */ 737 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 738 up_write(&vma->vm_lock->lock); 739 } 740 741 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 742 { 743 int mm_lock_seq; 744 745 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 746 } 747 748 static inline void vma_assert_locked(struct vm_area_struct *vma) 749 { 750 if (!rwsem_is_locked(&vma->vm_lock->lock)) 751 vma_assert_write_locked(vma); 752 } 753 754 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 755 { 756 /* When detaching vma should be write-locked */ 757 if (detached) 758 vma_assert_write_locked(vma); 759 vma->detached = detached; 760 } 761 762 static inline void release_fault_lock(struct vm_fault *vmf) 763 { 764 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 765 vma_end_read(vmf->vma); 766 else 767 mmap_read_unlock(vmf->vma->vm_mm); 768 } 769 770 static inline void assert_fault_locked(struct vm_fault *vmf) 771 { 772 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 773 vma_assert_locked(vmf->vma); 774 else 775 mmap_assert_locked(vmf->vma->vm_mm); 776 } 777 778 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 779 unsigned long address); 780 781 #else /* CONFIG_PER_VMA_LOCK */ 782 783 static inline bool vma_start_read(struct vm_area_struct *vma) 784 { return false; } 785 static inline void vma_end_read(struct vm_area_struct *vma) {} 786 static inline void vma_start_write(struct vm_area_struct *vma) {} 787 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 788 { mmap_assert_write_locked(vma->vm_mm); } 789 static inline void vma_mark_detached(struct vm_area_struct *vma, 790 bool detached) {} 791 792 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 793 unsigned long address) 794 { 795 return NULL; 796 } 797 798 static inline void vma_assert_locked(struct vm_area_struct *vma) 799 { 800 mmap_assert_locked(vma->vm_mm); 801 } 802 803 static inline void release_fault_lock(struct vm_fault *vmf) 804 { 805 mmap_read_unlock(vmf->vma->vm_mm); 806 } 807 808 static inline void assert_fault_locked(struct vm_fault *vmf) 809 { 810 mmap_assert_locked(vmf->vma->vm_mm); 811 } 812 813 #endif /* CONFIG_PER_VMA_LOCK */ 814 815 extern const struct vm_operations_struct vma_dummy_vm_ops; 816 817 /* 818 * WARNING: vma_init does not initialize vma->vm_lock. 819 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 820 */ 821 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 822 { 823 memset(vma, 0, sizeof(*vma)); 824 vma->vm_mm = mm; 825 vma->vm_ops = &vma_dummy_vm_ops; 826 INIT_LIST_HEAD(&vma->anon_vma_chain); 827 vma_mark_detached(vma, false); 828 vma_numab_state_init(vma); 829 } 830 831 /* Use when VMA is not part of the VMA tree and needs no locking */ 832 static inline void vm_flags_init(struct vm_area_struct *vma, 833 vm_flags_t flags) 834 { 835 ACCESS_PRIVATE(vma, __vm_flags) = flags; 836 } 837 838 /* 839 * Use when VMA is part of the VMA tree and modifications need coordination 840 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 841 * it should be locked explicitly beforehand. 842 */ 843 static inline void vm_flags_reset(struct vm_area_struct *vma, 844 vm_flags_t flags) 845 { 846 vma_assert_write_locked(vma); 847 vm_flags_init(vma, flags); 848 } 849 850 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 851 vm_flags_t flags) 852 { 853 vma_assert_write_locked(vma); 854 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 855 } 856 857 static inline void vm_flags_set(struct vm_area_struct *vma, 858 vm_flags_t flags) 859 { 860 vma_start_write(vma); 861 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 862 } 863 864 static inline void vm_flags_clear(struct vm_area_struct *vma, 865 vm_flags_t flags) 866 { 867 vma_start_write(vma); 868 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 869 } 870 871 /* 872 * Use only if VMA is not part of the VMA tree or has no other users and 873 * therefore needs no locking. 874 */ 875 static inline void __vm_flags_mod(struct vm_area_struct *vma, 876 vm_flags_t set, vm_flags_t clear) 877 { 878 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 879 } 880 881 /* 882 * Use only when the order of set/clear operations is unimportant, otherwise 883 * use vm_flags_{set|clear} explicitly. 884 */ 885 static inline void vm_flags_mod(struct vm_area_struct *vma, 886 vm_flags_t set, vm_flags_t clear) 887 { 888 vma_start_write(vma); 889 __vm_flags_mod(vma, set, clear); 890 } 891 892 static inline void vma_set_anonymous(struct vm_area_struct *vma) 893 { 894 vma->vm_ops = NULL; 895 } 896 897 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 898 { 899 return !vma->vm_ops; 900 } 901 902 /* 903 * Indicate if the VMA is a heap for the given task; for 904 * /proc/PID/maps that is the heap of the main task. 905 */ 906 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 907 { 908 return vma->vm_start < vma->vm_mm->brk && 909 vma->vm_end > vma->vm_mm->start_brk; 910 } 911 912 /* 913 * Indicate if the VMA is a stack for the given task; for 914 * /proc/PID/maps that is the stack of the main task. 915 */ 916 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 917 { 918 /* 919 * We make no effort to guess what a given thread considers to be 920 * its "stack". It's not even well-defined for programs written 921 * languages like Go. 922 */ 923 return vma->vm_start <= vma->vm_mm->start_stack && 924 vma->vm_end >= vma->vm_mm->start_stack; 925 } 926 927 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 928 { 929 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 930 931 if (!maybe_stack) 932 return false; 933 934 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 935 VM_STACK_INCOMPLETE_SETUP) 936 return true; 937 938 return false; 939 } 940 941 static inline bool vma_is_foreign(struct vm_area_struct *vma) 942 { 943 if (!current->mm) 944 return true; 945 946 if (current->mm != vma->vm_mm) 947 return true; 948 949 return false; 950 } 951 952 static inline bool vma_is_accessible(struct vm_area_struct *vma) 953 { 954 return vma->vm_flags & VM_ACCESS_FLAGS; 955 } 956 957 static inline bool is_shared_maywrite(vm_flags_t vm_flags) 958 { 959 return (vm_flags & (VM_SHARED | VM_MAYWRITE)) == 960 (VM_SHARED | VM_MAYWRITE); 961 } 962 963 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma) 964 { 965 return is_shared_maywrite(vma->vm_flags); 966 } 967 968 static inline 969 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 970 { 971 return mas_find(&vmi->mas, max - 1); 972 } 973 974 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 975 { 976 /* 977 * Uses mas_find() to get the first VMA when the iterator starts. 978 * Calling mas_next() could skip the first entry. 979 */ 980 return mas_find(&vmi->mas, ULONG_MAX); 981 } 982 983 static inline 984 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 985 { 986 return mas_next_range(&vmi->mas, ULONG_MAX); 987 } 988 989 990 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 991 { 992 return mas_prev(&vmi->mas, 0); 993 } 994 995 static inline 996 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 997 { 998 return mas_prev_range(&vmi->mas, 0); 999 } 1000 1001 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 1002 { 1003 return vmi->mas.index; 1004 } 1005 1006 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 1007 { 1008 return vmi->mas.last + 1; 1009 } 1010 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 1011 unsigned long count) 1012 { 1013 return mas_expected_entries(&vmi->mas, count); 1014 } 1015 1016 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi, 1017 unsigned long start, unsigned long end, gfp_t gfp) 1018 { 1019 __mas_set_range(&vmi->mas, start, end - 1); 1020 mas_store_gfp(&vmi->mas, NULL, gfp); 1021 if (unlikely(mas_is_err(&vmi->mas))) 1022 return -ENOMEM; 1023 1024 return 0; 1025 } 1026 1027 /* Free any unused preallocations */ 1028 static inline void vma_iter_free(struct vma_iterator *vmi) 1029 { 1030 mas_destroy(&vmi->mas); 1031 } 1032 1033 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 1034 struct vm_area_struct *vma) 1035 { 1036 vmi->mas.index = vma->vm_start; 1037 vmi->mas.last = vma->vm_end - 1; 1038 mas_store(&vmi->mas, vma); 1039 if (unlikely(mas_is_err(&vmi->mas))) 1040 return -ENOMEM; 1041 1042 return 0; 1043 } 1044 1045 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1046 { 1047 mas_pause(&vmi->mas); 1048 } 1049 1050 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1051 { 1052 mas_set(&vmi->mas, addr); 1053 } 1054 1055 #define for_each_vma(__vmi, __vma) \ 1056 while (((__vma) = vma_next(&(__vmi))) != NULL) 1057 1058 /* The MM code likes to work with exclusive end addresses */ 1059 #define for_each_vma_range(__vmi, __vma, __end) \ 1060 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1061 1062 #ifdef CONFIG_SHMEM 1063 /* 1064 * The vma_is_shmem is not inline because it is used only by slow 1065 * paths in userfault. 1066 */ 1067 bool vma_is_shmem(struct vm_area_struct *vma); 1068 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1069 #else 1070 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1071 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1072 #endif 1073 1074 int vma_is_stack_for_current(struct vm_area_struct *vma); 1075 1076 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1077 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1078 1079 struct mmu_gather; 1080 struct inode; 1081 1082 /* 1083 * compound_order() can be called without holding a reference, which means 1084 * that niceties like page_folio() don't work. These callers should be 1085 * prepared to handle wild return values. For example, PG_head may be 1086 * set before the order is initialised, or this may be a tail page. 1087 * See compaction.c for some good examples. 1088 */ 1089 static inline unsigned int compound_order(struct page *page) 1090 { 1091 struct folio *folio = (struct folio *)page; 1092 1093 if (!test_bit(PG_head, &folio->flags)) 1094 return 0; 1095 return folio->_flags_1 & 0xff; 1096 } 1097 1098 /** 1099 * folio_order - The allocation order of a folio. 1100 * @folio: The folio. 1101 * 1102 * A folio is composed of 2^order pages. See get_order() for the definition 1103 * of order. 1104 * 1105 * Return: The order of the folio. 1106 */ 1107 static inline unsigned int folio_order(struct folio *folio) 1108 { 1109 if (!folio_test_large(folio)) 1110 return 0; 1111 return folio->_flags_1 & 0xff; 1112 } 1113 1114 #include <linux/huge_mm.h> 1115 1116 /* 1117 * Methods to modify the page usage count. 1118 * 1119 * What counts for a page usage: 1120 * - cache mapping (page->mapping) 1121 * - private data (page->private) 1122 * - page mapped in a task's page tables, each mapping 1123 * is counted separately 1124 * 1125 * Also, many kernel routines increase the page count before a critical 1126 * routine so they can be sure the page doesn't go away from under them. 1127 */ 1128 1129 /* 1130 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1131 */ 1132 static inline int put_page_testzero(struct page *page) 1133 { 1134 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1135 return page_ref_dec_and_test(page); 1136 } 1137 1138 static inline int folio_put_testzero(struct folio *folio) 1139 { 1140 return put_page_testzero(&folio->page); 1141 } 1142 1143 /* 1144 * Try to grab a ref unless the page has a refcount of zero, return false if 1145 * that is the case. 1146 * This can be called when MMU is off so it must not access 1147 * any of the virtual mappings. 1148 */ 1149 static inline bool get_page_unless_zero(struct page *page) 1150 { 1151 return page_ref_add_unless(page, 1, 0); 1152 } 1153 1154 static inline struct folio *folio_get_nontail_page(struct page *page) 1155 { 1156 if (unlikely(!get_page_unless_zero(page))) 1157 return NULL; 1158 return (struct folio *)page; 1159 } 1160 1161 extern int page_is_ram(unsigned long pfn); 1162 1163 enum { 1164 REGION_INTERSECTS, 1165 REGION_DISJOINT, 1166 REGION_MIXED, 1167 }; 1168 1169 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1170 unsigned long desc); 1171 1172 /* Support for virtually mapped pages */ 1173 struct page *vmalloc_to_page(const void *addr); 1174 unsigned long vmalloc_to_pfn(const void *addr); 1175 1176 /* 1177 * Determine if an address is within the vmalloc range 1178 * 1179 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1180 * is no special casing required. 1181 */ 1182 #ifdef CONFIG_MMU 1183 extern bool is_vmalloc_addr(const void *x); 1184 extern int is_vmalloc_or_module_addr(const void *x); 1185 #else 1186 static inline bool is_vmalloc_addr(const void *x) 1187 { 1188 return false; 1189 } 1190 static inline int is_vmalloc_or_module_addr(const void *x) 1191 { 1192 return 0; 1193 } 1194 #endif 1195 1196 /* 1197 * How many times the entire folio is mapped as a single unit (eg by a 1198 * PMD or PUD entry). This is probably not what you want, except for 1199 * debugging purposes - it does not include PTE-mapped sub-pages; look 1200 * at folio_mapcount() or page_mapcount() instead. 1201 */ 1202 static inline int folio_entire_mapcount(struct folio *folio) 1203 { 1204 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1205 return atomic_read(&folio->_entire_mapcount) + 1; 1206 } 1207 1208 /* 1209 * The atomic page->_mapcount, starts from -1: so that transitions 1210 * both from it and to it can be tracked, using atomic_inc_and_test 1211 * and atomic_add_negative(-1). 1212 */ 1213 static inline void page_mapcount_reset(struct page *page) 1214 { 1215 atomic_set(&(page)->_mapcount, -1); 1216 } 1217 1218 /** 1219 * page_mapcount() - Number of times this precise page is mapped. 1220 * @page: The page. 1221 * 1222 * The number of times this page is mapped. If this page is part of 1223 * a large folio, it includes the number of times this page is mapped 1224 * as part of that folio. 1225 * 1226 * The result is undefined for pages which cannot be mapped into userspace. 1227 * For example SLAB or special types of pages. See function page_has_type(). 1228 * They use this field in struct page differently. 1229 */ 1230 static inline int page_mapcount(struct page *page) 1231 { 1232 int mapcount = atomic_read(&page->_mapcount) + 1; 1233 1234 if (unlikely(PageCompound(page))) 1235 mapcount += folio_entire_mapcount(page_folio(page)); 1236 1237 return mapcount; 1238 } 1239 1240 int folio_total_mapcount(struct folio *folio); 1241 1242 /** 1243 * folio_mapcount() - Calculate the number of mappings of this folio. 1244 * @folio: The folio. 1245 * 1246 * A large folio tracks both how many times the entire folio is mapped, 1247 * and how many times each individual page in the folio is mapped. 1248 * This function calculates the total number of times the folio is 1249 * mapped. 1250 * 1251 * Return: The number of times this folio is mapped. 1252 */ 1253 static inline int folio_mapcount(struct folio *folio) 1254 { 1255 if (likely(!folio_test_large(folio))) 1256 return atomic_read(&folio->_mapcount) + 1; 1257 return folio_total_mapcount(folio); 1258 } 1259 1260 static inline bool folio_large_is_mapped(struct folio *folio) 1261 { 1262 /* 1263 * Reading _entire_mapcount below could be omitted if hugetlb 1264 * participated in incrementing nr_pages_mapped when compound mapped. 1265 */ 1266 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1267 atomic_read(&folio->_entire_mapcount) >= 0; 1268 } 1269 1270 /** 1271 * folio_mapped - Is this folio mapped into userspace? 1272 * @folio: The folio. 1273 * 1274 * Return: True if any page in this folio is referenced by user page tables. 1275 */ 1276 static inline bool folio_mapped(struct folio *folio) 1277 { 1278 if (likely(!folio_test_large(folio))) 1279 return atomic_read(&folio->_mapcount) >= 0; 1280 return folio_large_is_mapped(folio); 1281 } 1282 1283 /* 1284 * Return true if this page is mapped into pagetables. 1285 * For compound page it returns true if any sub-page of compound page is mapped, 1286 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1287 */ 1288 static inline bool page_mapped(struct page *page) 1289 { 1290 if (likely(!PageCompound(page))) 1291 return atomic_read(&page->_mapcount) >= 0; 1292 return folio_large_is_mapped(page_folio(page)); 1293 } 1294 1295 static inline struct page *virt_to_head_page(const void *x) 1296 { 1297 struct page *page = virt_to_page(x); 1298 1299 return compound_head(page); 1300 } 1301 1302 static inline struct folio *virt_to_folio(const void *x) 1303 { 1304 struct page *page = virt_to_page(x); 1305 1306 return page_folio(page); 1307 } 1308 1309 void __folio_put(struct folio *folio); 1310 1311 void put_pages_list(struct list_head *pages); 1312 1313 void split_page(struct page *page, unsigned int order); 1314 void folio_copy(struct folio *dst, struct folio *src); 1315 1316 unsigned long nr_free_buffer_pages(void); 1317 1318 void destroy_large_folio(struct folio *folio); 1319 1320 /* Returns the number of bytes in this potentially compound page. */ 1321 static inline unsigned long page_size(struct page *page) 1322 { 1323 return PAGE_SIZE << compound_order(page); 1324 } 1325 1326 /* Returns the number of bits needed for the number of bytes in a page */ 1327 static inline unsigned int page_shift(struct page *page) 1328 { 1329 return PAGE_SHIFT + compound_order(page); 1330 } 1331 1332 /** 1333 * thp_order - Order of a transparent huge page. 1334 * @page: Head page of a transparent huge page. 1335 */ 1336 static inline unsigned int thp_order(struct page *page) 1337 { 1338 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1339 return compound_order(page); 1340 } 1341 1342 /** 1343 * thp_size - Size of a transparent huge page. 1344 * @page: Head page of a transparent huge page. 1345 * 1346 * Return: Number of bytes in this page. 1347 */ 1348 static inline unsigned long thp_size(struct page *page) 1349 { 1350 return PAGE_SIZE << thp_order(page); 1351 } 1352 1353 #ifdef CONFIG_MMU 1354 /* 1355 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1356 * servicing faults for write access. In the normal case, do always want 1357 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1358 * that do not have writing enabled, when used by access_process_vm. 1359 */ 1360 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1361 { 1362 if (likely(vma->vm_flags & VM_WRITE)) 1363 pte = pte_mkwrite(pte, vma); 1364 return pte; 1365 } 1366 1367 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1368 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1369 struct page *page, unsigned int nr, unsigned long addr); 1370 1371 vm_fault_t finish_fault(struct vm_fault *vmf); 1372 #endif 1373 1374 /* 1375 * Multiple processes may "see" the same page. E.g. for untouched 1376 * mappings of /dev/null, all processes see the same page full of 1377 * zeroes, and text pages of executables and shared libraries have 1378 * only one copy in memory, at most, normally. 1379 * 1380 * For the non-reserved pages, page_count(page) denotes a reference count. 1381 * page_count() == 0 means the page is free. page->lru is then used for 1382 * freelist management in the buddy allocator. 1383 * page_count() > 0 means the page has been allocated. 1384 * 1385 * Pages are allocated by the slab allocator in order to provide memory 1386 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1387 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1388 * unless a particular usage is carefully commented. (the responsibility of 1389 * freeing the kmalloc memory is the caller's, of course). 1390 * 1391 * A page may be used by anyone else who does a __get_free_page(). 1392 * In this case, page_count still tracks the references, and should only 1393 * be used through the normal accessor functions. The top bits of page->flags 1394 * and page->virtual store page management information, but all other fields 1395 * are unused and could be used privately, carefully. The management of this 1396 * page is the responsibility of the one who allocated it, and those who have 1397 * subsequently been given references to it. 1398 * 1399 * The other pages (we may call them "pagecache pages") are completely 1400 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1401 * The following discussion applies only to them. 1402 * 1403 * A pagecache page contains an opaque `private' member, which belongs to the 1404 * page's address_space. Usually, this is the address of a circular list of 1405 * the page's disk buffers. PG_private must be set to tell the VM to call 1406 * into the filesystem to release these pages. 1407 * 1408 * A page may belong to an inode's memory mapping. In this case, page->mapping 1409 * is the pointer to the inode, and page->index is the file offset of the page, 1410 * in units of PAGE_SIZE. 1411 * 1412 * If pagecache pages are not associated with an inode, they are said to be 1413 * anonymous pages. These may become associated with the swapcache, and in that 1414 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1415 * 1416 * In either case (swapcache or inode backed), the pagecache itself holds one 1417 * reference to the page. Setting PG_private should also increment the 1418 * refcount. The each user mapping also has a reference to the page. 1419 * 1420 * The pagecache pages are stored in a per-mapping radix tree, which is 1421 * rooted at mapping->i_pages, and indexed by offset. 1422 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1423 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1424 * 1425 * All pagecache pages may be subject to I/O: 1426 * - inode pages may need to be read from disk, 1427 * - inode pages which have been modified and are MAP_SHARED may need 1428 * to be written back to the inode on disk, 1429 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1430 * modified may need to be swapped out to swap space and (later) to be read 1431 * back into memory. 1432 */ 1433 1434 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1435 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1436 1437 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1438 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1439 { 1440 if (!static_branch_unlikely(&devmap_managed_key)) 1441 return false; 1442 if (!is_zone_device_page(page)) 1443 return false; 1444 return __put_devmap_managed_page_refs(page, refs); 1445 } 1446 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1447 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1448 { 1449 return false; 1450 } 1451 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1452 1453 static inline bool put_devmap_managed_page(struct page *page) 1454 { 1455 return put_devmap_managed_page_refs(page, 1); 1456 } 1457 1458 /* 127: arbitrary random number, small enough to assemble well */ 1459 #define folio_ref_zero_or_close_to_overflow(folio) \ 1460 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1461 1462 /** 1463 * folio_get - Increment the reference count on a folio. 1464 * @folio: The folio. 1465 * 1466 * Context: May be called in any context, as long as you know that 1467 * you have a refcount on the folio. If you do not already have one, 1468 * folio_try_get() may be the right interface for you to use. 1469 */ 1470 static inline void folio_get(struct folio *folio) 1471 { 1472 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1473 folio_ref_inc(folio); 1474 } 1475 1476 static inline void get_page(struct page *page) 1477 { 1478 folio_get(page_folio(page)); 1479 } 1480 1481 static inline __must_check bool try_get_page(struct page *page) 1482 { 1483 page = compound_head(page); 1484 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1485 return false; 1486 page_ref_inc(page); 1487 return true; 1488 } 1489 1490 /** 1491 * folio_put - Decrement the reference count on a folio. 1492 * @folio: The folio. 1493 * 1494 * If the folio's reference count reaches zero, the memory will be 1495 * released back to the page allocator and may be used by another 1496 * allocation immediately. Do not access the memory or the struct folio 1497 * after calling folio_put() unless you can be sure that it wasn't the 1498 * last reference. 1499 * 1500 * Context: May be called in process or interrupt context, but not in NMI 1501 * context. May be called while holding a spinlock. 1502 */ 1503 static inline void folio_put(struct folio *folio) 1504 { 1505 if (folio_put_testzero(folio)) 1506 __folio_put(folio); 1507 } 1508 1509 /** 1510 * folio_put_refs - Reduce the reference count on a folio. 1511 * @folio: The folio. 1512 * @refs: The amount to subtract from the folio's reference count. 1513 * 1514 * If the folio's reference count reaches zero, the memory will be 1515 * released back to the page allocator and may be used by another 1516 * allocation immediately. Do not access the memory or the struct folio 1517 * after calling folio_put_refs() unless you can be sure that these weren't 1518 * the last references. 1519 * 1520 * Context: May be called in process or interrupt context, but not in NMI 1521 * context. May be called while holding a spinlock. 1522 */ 1523 static inline void folio_put_refs(struct folio *folio, int refs) 1524 { 1525 if (folio_ref_sub_and_test(folio, refs)) 1526 __folio_put(folio); 1527 } 1528 1529 void folios_put_refs(struct folio_batch *folios, unsigned int *refs); 1530 1531 /* 1532 * union release_pages_arg - an array of pages or folios 1533 * 1534 * release_pages() releases a simple array of multiple pages, and 1535 * accepts various different forms of said page array: either 1536 * a regular old boring array of pages, an array of folios, or 1537 * an array of encoded page pointers. 1538 * 1539 * The transparent union syntax for this kind of "any of these 1540 * argument types" is all kinds of ugly, so look away. 1541 */ 1542 typedef union { 1543 struct page **pages; 1544 struct folio **folios; 1545 struct encoded_page **encoded_pages; 1546 } release_pages_arg __attribute__ ((__transparent_union__)); 1547 1548 void release_pages(release_pages_arg, int nr); 1549 1550 /** 1551 * folios_put - Decrement the reference count on an array of folios. 1552 * @folios: The folios. 1553 * 1554 * Like folio_put(), but for a batch of folios. This is more efficient 1555 * than writing the loop yourself as it will optimise the locks which need 1556 * to be taken if the folios are freed. The folios batch is returned 1557 * empty and ready to be reused for another batch; there is no need to 1558 * reinitialise it. 1559 * 1560 * Context: May be called in process or interrupt context, but not in NMI 1561 * context. May be called while holding a spinlock. 1562 */ 1563 static inline void folios_put(struct folio_batch *folios) 1564 { 1565 folios_put_refs(folios, NULL); 1566 } 1567 1568 static inline void put_page(struct page *page) 1569 { 1570 struct folio *folio = page_folio(page); 1571 1572 /* 1573 * For some devmap managed pages we need to catch refcount transition 1574 * from 2 to 1: 1575 */ 1576 if (put_devmap_managed_page(&folio->page)) 1577 return; 1578 folio_put(folio); 1579 } 1580 1581 /* 1582 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1583 * the page's refcount so that two separate items are tracked: the original page 1584 * reference count, and also a new count of how many pin_user_pages() calls were 1585 * made against the page. ("gup-pinned" is another term for the latter). 1586 * 1587 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1588 * distinct from normal pages. As such, the unpin_user_page() call (and its 1589 * variants) must be used in order to release gup-pinned pages. 1590 * 1591 * Choice of value: 1592 * 1593 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1594 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1595 * simpler, due to the fact that adding an even power of two to the page 1596 * refcount has the effect of using only the upper N bits, for the code that 1597 * counts up using the bias value. This means that the lower bits are left for 1598 * the exclusive use of the original code that increments and decrements by one 1599 * (or at least, by much smaller values than the bias value). 1600 * 1601 * Of course, once the lower bits overflow into the upper bits (and this is 1602 * OK, because subtraction recovers the original values), then visual inspection 1603 * no longer suffices to directly view the separate counts. However, for normal 1604 * applications that don't have huge page reference counts, this won't be an 1605 * issue. 1606 * 1607 * Locking: the lockless algorithm described in folio_try_get_rcu() 1608 * provides safe operation for get_user_pages(), page_mkclean() and 1609 * other calls that race to set up page table entries. 1610 */ 1611 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1612 1613 void unpin_user_page(struct page *page); 1614 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1615 bool make_dirty); 1616 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1617 bool make_dirty); 1618 void unpin_user_pages(struct page **pages, unsigned long npages); 1619 1620 static inline bool is_cow_mapping(vm_flags_t flags) 1621 { 1622 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1623 } 1624 1625 #ifndef CONFIG_MMU 1626 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1627 { 1628 /* 1629 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1630 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1631 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1632 * underlying memory if ptrace is active, so this is only possible if 1633 * ptrace does not apply. Note that there is no mprotect() to upgrade 1634 * write permissions later. 1635 */ 1636 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1637 } 1638 #endif 1639 1640 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1641 #define SECTION_IN_PAGE_FLAGS 1642 #endif 1643 1644 /* 1645 * The identification function is mainly used by the buddy allocator for 1646 * determining if two pages could be buddies. We are not really identifying 1647 * the zone since we could be using the section number id if we do not have 1648 * node id available in page flags. 1649 * We only guarantee that it will return the same value for two combinable 1650 * pages in a zone. 1651 */ 1652 static inline int page_zone_id(struct page *page) 1653 { 1654 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1655 } 1656 1657 #ifdef NODE_NOT_IN_PAGE_FLAGS 1658 int page_to_nid(const struct page *page); 1659 #else 1660 static inline int page_to_nid(const struct page *page) 1661 { 1662 return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK; 1663 } 1664 #endif 1665 1666 static inline int folio_nid(const struct folio *folio) 1667 { 1668 return page_to_nid(&folio->page); 1669 } 1670 1671 #ifdef CONFIG_NUMA_BALANCING 1672 /* page access time bits needs to hold at least 4 seconds */ 1673 #define PAGE_ACCESS_TIME_MIN_BITS 12 1674 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1675 #define PAGE_ACCESS_TIME_BUCKETS \ 1676 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1677 #else 1678 #define PAGE_ACCESS_TIME_BUCKETS 0 1679 #endif 1680 1681 #define PAGE_ACCESS_TIME_MASK \ 1682 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1683 1684 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1685 { 1686 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1687 } 1688 1689 static inline int cpupid_to_pid(int cpupid) 1690 { 1691 return cpupid & LAST__PID_MASK; 1692 } 1693 1694 static inline int cpupid_to_cpu(int cpupid) 1695 { 1696 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1697 } 1698 1699 static inline int cpupid_to_nid(int cpupid) 1700 { 1701 return cpu_to_node(cpupid_to_cpu(cpupid)); 1702 } 1703 1704 static inline bool cpupid_pid_unset(int cpupid) 1705 { 1706 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1707 } 1708 1709 static inline bool cpupid_cpu_unset(int cpupid) 1710 { 1711 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1712 } 1713 1714 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1715 { 1716 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1717 } 1718 1719 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1720 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1721 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1722 { 1723 return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1724 } 1725 1726 static inline int folio_last_cpupid(struct folio *folio) 1727 { 1728 return folio->_last_cpupid; 1729 } 1730 static inline void page_cpupid_reset_last(struct page *page) 1731 { 1732 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1733 } 1734 #else 1735 static inline int folio_last_cpupid(struct folio *folio) 1736 { 1737 return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1738 } 1739 1740 int folio_xchg_last_cpupid(struct folio *folio, int cpupid); 1741 1742 static inline void page_cpupid_reset_last(struct page *page) 1743 { 1744 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1745 } 1746 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1747 1748 static inline int folio_xchg_access_time(struct folio *folio, int time) 1749 { 1750 int last_time; 1751 1752 last_time = folio_xchg_last_cpupid(folio, 1753 time >> PAGE_ACCESS_TIME_BUCKETS); 1754 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1755 } 1756 1757 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1758 { 1759 unsigned int pid_bit; 1760 1761 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1762 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) { 1763 __set_bit(pid_bit, &vma->numab_state->pids_active[1]); 1764 } 1765 } 1766 #else /* !CONFIG_NUMA_BALANCING */ 1767 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid) 1768 { 1769 return folio_nid(folio); /* XXX */ 1770 } 1771 1772 static inline int folio_xchg_access_time(struct folio *folio, int time) 1773 { 1774 return 0; 1775 } 1776 1777 static inline int folio_last_cpupid(struct folio *folio) 1778 { 1779 return folio_nid(folio); /* XXX */ 1780 } 1781 1782 static inline int cpupid_to_nid(int cpupid) 1783 { 1784 return -1; 1785 } 1786 1787 static inline int cpupid_to_pid(int cpupid) 1788 { 1789 return -1; 1790 } 1791 1792 static inline int cpupid_to_cpu(int cpupid) 1793 { 1794 return -1; 1795 } 1796 1797 static inline int cpu_pid_to_cpupid(int nid, int pid) 1798 { 1799 return -1; 1800 } 1801 1802 static inline bool cpupid_pid_unset(int cpupid) 1803 { 1804 return true; 1805 } 1806 1807 static inline void page_cpupid_reset_last(struct page *page) 1808 { 1809 } 1810 1811 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1812 { 1813 return false; 1814 } 1815 1816 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1817 { 1818 } 1819 #endif /* CONFIG_NUMA_BALANCING */ 1820 1821 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1822 1823 /* 1824 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1825 * setting tags for all pages to native kernel tag value 0xff, as the default 1826 * value 0x00 maps to 0xff. 1827 */ 1828 1829 static inline u8 page_kasan_tag(const struct page *page) 1830 { 1831 u8 tag = KASAN_TAG_KERNEL; 1832 1833 if (kasan_enabled()) { 1834 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1835 tag ^= 0xff; 1836 } 1837 1838 return tag; 1839 } 1840 1841 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1842 { 1843 unsigned long old_flags, flags; 1844 1845 if (!kasan_enabled()) 1846 return; 1847 1848 tag ^= 0xff; 1849 old_flags = READ_ONCE(page->flags); 1850 do { 1851 flags = old_flags; 1852 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1853 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1854 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1855 } 1856 1857 static inline void page_kasan_tag_reset(struct page *page) 1858 { 1859 if (kasan_enabled()) 1860 page_kasan_tag_set(page, KASAN_TAG_KERNEL); 1861 } 1862 1863 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1864 1865 static inline u8 page_kasan_tag(const struct page *page) 1866 { 1867 return 0xff; 1868 } 1869 1870 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1871 static inline void page_kasan_tag_reset(struct page *page) { } 1872 1873 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1874 1875 static inline struct zone *page_zone(const struct page *page) 1876 { 1877 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1878 } 1879 1880 static inline pg_data_t *page_pgdat(const struct page *page) 1881 { 1882 return NODE_DATA(page_to_nid(page)); 1883 } 1884 1885 static inline struct zone *folio_zone(const struct folio *folio) 1886 { 1887 return page_zone(&folio->page); 1888 } 1889 1890 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1891 { 1892 return page_pgdat(&folio->page); 1893 } 1894 1895 #ifdef SECTION_IN_PAGE_FLAGS 1896 static inline void set_page_section(struct page *page, unsigned long section) 1897 { 1898 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1899 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1900 } 1901 1902 static inline unsigned long page_to_section(const struct page *page) 1903 { 1904 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1905 } 1906 #endif 1907 1908 /** 1909 * folio_pfn - Return the Page Frame Number of a folio. 1910 * @folio: The folio. 1911 * 1912 * A folio may contain multiple pages. The pages have consecutive 1913 * Page Frame Numbers. 1914 * 1915 * Return: The Page Frame Number of the first page in the folio. 1916 */ 1917 static inline unsigned long folio_pfn(struct folio *folio) 1918 { 1919 return page_to_pfn(&folio->page); 1920 } 1921 1922 static inline struct folio *pfn_folio(unsigned long pfn) 1923 { 1924 return page_folio(pfn_to_page(pfn)); 1925 } 1926 1927 /** 1928 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1929 * @folio: The folio. 1930 * 1931 * This function checks if a folio has been pinned via a call to 1932 * a function in the pin_user_pages() family. 1933 * 1934 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1935 * because it means "definitely not pinned for DMA", but true means "probably 1936 * pinned for DMA, but possibly a false positive due to having at least 1937 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1938 * 1939 * False positives are OK, because: a) it's unlikely for a folio to 1940 * get that many refcounts, and b) all the callers of this routine are 1941 * expected to be able to deal gracefully with a false positive. 1942 * 1943 * For large folios, the result will be exactly correct. That's because 1944 * we have more tracking data available: the _pincount field is used 1945 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1946 * 1947 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1948 * 1949 * Return: True, if it is likely that the page has been "dma-pinned". 1950 * False, if the page is definitely not dma-pinned. 1951 */ 1952 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1953 { 1954 if (folio_test_large(folio)) 1955 return atomic_read(&folio->_pincount) > 0; 1956 1957 /* 1958 * folio_ref_count() is signed. If that refcount overflows, then 1959 * folio_ref_count() returns a negative value, and callers will avoid 1960 * further incrementing the refcount. 1961 * 1962 * Here, for that overflow case, use the sign bit to count a little 1963 * bit higher via unsigned math, and thus still get an accurate result. 1964 */ 1965 return ((unsigned int)folio_ref_count(folio)) >= 1966 GUP_PIN_COUNTING_BIAS; 1967 } 1968 1969 static inline bool page_maybe_dma_pinned(struct page *page) 1970 { 1971 return folio_maybe_dma_pinned(page_folio(page)); 1972 } 1973 1974 /* 1975 * This should most likely only be called during fork() to see whether we 1976 * should break the cow immediately for an anon page on the src mm. 1977 * 1978 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1979 */ 1980 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma, 1981 struct folio *folio) 1982 { 1983 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1984 1985 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1986 return false; 1987 1988 return folio_maybe_dma_pinned(folio); 1989 } 1990 1991 /** 1992 * is_zero_page - Query if a page is a zero page 1993 * @page: The page to query 1994 * 1995 * This returns true if @page is one of the permanent zero pages. 1996 */ 1997 static inline bool is_zero_page(const struct page *page) 1998 { 1999 return is_zero_pfn(page_to_pfn(page)); 2000 } 2001 2002 /** 2003 * is_zero_folio - Query if a folio is a zero page 2004 * @folio: The folio to query 2005 * 2006 * This returns true if @folio is one of the permanent zero pages. 2007 */ 2008 static inline bool is_zero_folio(const struct folio *folio) 2009 { 2010 return is_zero_page(&folio->page); 2011 } 2012 2013 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 2014 #ifdef CONFIG_MIGRATION 2015 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2016 { 2017 #ifdef CONFIG_CMA 2018 int mt = folio_migratetype(folio); 2019 2020 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 2021 return false; 2022 #endif 2023 /* The zero page can be "pinned" but gets special handling. */ 2024 if (is_zero_folio(folio)) 2025 return true; 2026 2027 /* Coherent device memory must always allow eviction. */ 2028 if (folio_is_device_coherent(folio)) 2029 return false; 2030 2031 /* Otherwise, non-movable zone folios can be pinned. */ 2032 return !folio_is_zone_movable(folio); 2033 2034 } 2035 #else 2036 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2037 { 2038 return true; 2039 } 2040 #endif 2041 2042 static inline void set_page_zone(struct page *page, enum zone_type zone) 2043 { 2044 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2045 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2046 } 2047 2048 static inline void set_page_node(struct page *page, unsigned long node) 2049 { 2050 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2051 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2052 } 2053 2054 static inline void set_page_links(struct page *page, enum zone_type zone, 2055 unsigned long node, unsigned long pfn) 2056 { 2057 set_page_zone(page, zone); 2058 set_page_node(page, node); 2059 #ifdef SECTION_IN_PAGE_FLAGS 2060 set_page_section(page, pfn_to_section_nr(pfn)); 2061 #endif 2062 } 2063 2064 /** 2065 * folio_nr_pages - The number of pages in the folio. 2066 * @folio: The folio. 2067 * 2068 * Return: A positive power of two. 2069 */ 2070 static inline long folio_nr_pages(struct folio *folio) 2071 { 2072 if (!folio_test_large(folio)) 2073 return 1; 2074 #ifdef CONFIG_64BIT 2075 return folio->_folio_nr_pages; 2076 #else 2077 return 1L << (folio->_flags_1 & 0xff); 2078 #endif 2079 } 2080 2081 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */ 2082 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE 2083 #define MAX_FOLIO_NR_PAGES (1UL << PUD_ORDER) 2084 #else 2085 #define MAX_FOLIO_NR_PAGES MAX_ORDER_NR_PAGES 2086 #endif 2087 2088 /* 2089 * compound_nr() returns the number of pages in this potentially compound 2090 * page. compound_nr() can be called on a tail page, and is defined to 2091 * return 1 in that case. 2092 */ 2093 static inline unsigned long compound_nr(struct page *page) 2094 { 2095 struct folio *folio = (struct folio *)page; 2096 2097 if (!test_bit(PG_head, &folio->flags)) 2098 return 1; 2099 #ifdef CONFIG_64BIT 2100 return folio->_folio_nr_pages; 2101 #else 2102 return 1L << (folio->_flags_1 & 0xff); 2103 #endif 2104 } 2105 2106 /** 2107 * thp_nr_pages - The number of regular pages in this huge page. 2108 * @page: The head page of a huge page. 2109 */ 2110 static inline int thp_nr_pages(struct page *page) 2111 { 2112 return folio_nr_pages((struct folio *)page); 2113 } 2114 2115 /** 2116 * folio_next - Move to the next physical folio. 2117 * @folio: The folio we're currently operating on. 2118 * 2119 * If you have physically contiguous memory which may span more than 2120 * one folio (eg a &struct bio_vec), use this function to move from one 2121 * folio to the next. Do not use it if the memory is only virtually 2122 * contiguous as the folios are almost certainly not adjacent to each 2123 * other. This is the folio equivalent to writing ``page++``. 2124 * 2125 * Context: We assume that the folios are refcounted and/or locked at a 2126 * higher level and do not adjust the reference counts. 2127 * Return: The next struct folio. 2128 */ 2129 static inline struct folio *folio_next(struct folio *folio) 2130 { 2131 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2132 } 2133 2134 /** 2135 * folio_shift - The size of the memory described by this folio. 2136 * @folio: The folio. 2137 * 2138 * A folio represents a number of bytes which is a power-of-two in size. 2139 * This function tells you which power-of-two the folio is. See also 2140 * folio_size() and folio_order(). 2141 * 2142 * Context: The caller should have a reference on the folio to prevent 2143 * it from being split. It is not necessary for the folio to be locked. 2144 * Return: The base-2 logarithm of the size of this folio. 2145 */ 2146 static inline unsigned int folio_shift(struct folio *folio) 2147 { 2148 return PAGE_SHIFT + folio_order(folio); 2149 } 2150 2151 /** 2152 * folio_size - The number of bytes in a folio. 2153 * @folio: The folio. 2154 * 2155 * Context: The caller should have a reference on the folio to prevent 2156 * it from being split. It is not necessary for the folio to be locked. 2157 * Return: The number of bytes in this folio. 2158 */ 2159 static inline size_t folio_size(struct folio *folio) 2160 { 2161 return PAGE_SIZE << folio_order(folio); 2162 } 2163 2164 /** 2165 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2166 * @folio: The folio. 2167 * 2168 * folio_estimated_sharers() aims to serve as a function to efficiently 2169 * estimate the number of processes sharing a folio. This is done by 2170 * looking at the precise mapcount of the first subpage in the folio, and 2171 * assuming the other subpages are the same. This may not be true for large 2172 * folios. If you want exact mapcounts for exact calculations, look at 2173 * page_mapcount() or folio_total_mapcount(). 2174 * 2175 * Return: The estimated number of processes sharing a folio. 2176 */ 2177 static inline int folio_estimated_sharers(struct folio *folio) 2178 { 2179 return page_mapcount(folio_page(folio, 0)); 2180 } 2181 2182 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2183 static inline int arch_make_page_accessible(struct page *page) 2184 { 2185 return 0; 2186 } 2187 #endif 2188 2189 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2190 static inline int arch_make_folio_accessible(struct folio *folio) 2191 { 2192 int ret; 2193 long i, nr = folio_nr_pages(folio); 2194 2195 for (i = 0; i < nr; i++) { 2196 ret = arch_make_page_accessible(folio_page(folio, i)); 2197 if (ret) 2198 break; 2199 } 2200 2201 return ret; 2202 } 2203 #endif 2204 2205 /* 2206 * Some inline functions in vmstat.h depend on page_zone() 2207 */ 2208 #include <linux/vmstat.h> 2209 2210 static __always_inline void *lowmem_page_address(const struct page *page) 2211 { 2212 return page_to_virt(page); 2213 } 2214 2215 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2216 #define HASHED_PAGE_VIRTUAL 2217 #endif 2218 2219 #if defined(WANT_PAGE_VIRTUAL) 2220 static inline void *page_address(const struct page *page) 2221 { 2222 return page->virtual; 2223 } 2224 static inline void set_page_address(struct page *page, void *address) 2225 { 2226 page->virtual = address; 2227 } 2228 #define page_address_init() do { } while(0) 2229 #endif 2230 2231 #if defined(HASHED_PAGE_VIRTUAL) 2232 void *page_address(const struct page *page); 2233 void set_page_address(struct page *page, void *virtual); 2234 void page_address_init(void); 2235 #endif 2236 2237 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2238 #define page_address(page) lowmem_page_address(page) 2239 #define set_page_address(page, address) do { } while(0) 2240 #define page_address_init() do { } while(0) 2241 #endif 2242 2243 static inline void *folio_address(const struct folio *folio) 2244 { 2245 return page_address(&folio->page); 2246 } 2247 2248 extern pgoff_t __page_file_index(struct page *page); 2249 2250 /* 2251 * Return the pagecache index of the passed page. Regular pagecache pages 2252 * use ->index whereas swapcache pages use swp_offset(->private) 2253 */ 2254 static inline pgoff_t page_index(struct page *page) 2255 { 2256 if (unlikely(PageSwapCache(page))) 2257 return __page_file_index(page); 2258 return page->index; 2259 } 2260 2261 /* 2262 * Return true only if the page has been allocated with 2263 * ALLOC_NO_WATERMARKS and the low watermark was not 2264 * met implying that the system is under some pressure. 2265 */ 2266 static inline bool page_is_pfmemalloc(const struct page *page) 2267 { 2268 /* 2269 * lru.next has bit 1 set if the page is allocated from the 2270 * pfmemalloc reserves. Callers may simply overwrite it if 2271 * they do not need to preserve that information. 2272 */ 2273 return (uintptr_t)page->lru.next & BIT(1); 2274 } 2275 2276 /* 2277 * Return true only if the folio has been allocated with 2278 * ALLOC_NO_WATERMARKS and the low watermark was not 2279 * met implying that the system is under some pressure. 2280 */ 2281 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2282 { 2283 /* 2284 * lru.next has bit 1 set if the page is allocated from the 2285 * pfmemalloc reserves. Callers may simply overwrite it if 2286 * they do not need to preserve that information. 2287 */ 2288 return (uintptr_t)folio->lru.next & BIT(1); 2289 } 2290 2291 /* 2292 * Only to be called by the page allocator on a freshly allocated 2293 * page. 2294 */ 2295 static inline void set_page_pfmemalloc(struct page *page) 2296 { 2297 page->lru.next = (void *)BIT(1); 2298 } 2299 2300 static inline void clear_page_pfmemalloc(struct page *page) 2301 { 2302 page->lru.next = NULL; 2303 } 2304 2305 /* 2306 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2307 */ 2308 extern void pagefault_out_of_memory(void); 2309 2310 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2311 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2312 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2313 2314 /* 2315 * Parameter block passed down to zap_pte_range in exceptional cases. 2316 */ 2317 struct zap_details { 2318 struct folio *single_folio; /* Locked folio to be unmapped */ 2319 bool even_cows; /* Zap COWed private pages too? */ 2320 zap_flags_t zap_flags; /* Extra flags for zapping */ 2321 }; 2322 2323 /* 2324 * Whether to drop the pte markers, for example, the uffd-wp information for 2325 * file-backed memory. This should only be specified when we will completely 2326 * drop the page in the mm, either by truncation or unmapping of the vma. By 2327 * default, the flag is not set. 2328 */ 2329 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2330 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2331 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2332 2333 #ifdef CONFIG_SCHED_MM_CID 2334 void sched_mm_cid_before_execve(struct task_struct *t); 2335 void sched_mm_cid_after_execve(struct task_struct *t); 2336 void sched_mm_cid_fork(struct task_struct *t); 2337 void sched_mm_cid_exit_signals(struct task_struct *t); 2338 static inline int task_mm_cid(struct task_struct *t) 2339 { 2340 return t->mm_cid; 2341 } 2342 #else 2343 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2344 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2345 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2346 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2347 static inline int task_mm_cid(struct task_struct *t) 2348 { 2349 /* 2350 * Use the processor id as a fall-back when the mm cid feature is 2351 * disabled. This provides functional per-cpu data structure accesses 2352 * in user-space, althrough it won't provide the memory usage benefits. 2353 */ 2354 return raw_smp_processor_id(); 2355 } 2356 #endif 2357 2358 #ifdef CONFIG_MMU 2359 extern bool can_do_mlock(void); 2360 #else 2361 static inline bool can_do_mlock(void) { return false; } 2362 #endif 2363 extern int user_shm_lock(size_t, struct ucounts *); 2364 extern void user_shm_unlock(size_t, struct ucounts *); 2365 2366 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2367 pte_t pte); 2368 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2369 pte_t pte); 2370 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma, 2371 unsigned long addr, pmd_t pmd); 2372 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2373 pmd_t pmd); 2374 2375 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2376 unsigned long size); 2377 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2378 unsigned long size, struct zap_details *details); 2379 static inline void zap_vma_pages(struct vm_area_struct *vma) 2380 { 2381 zap_page_range_single(vma, vma->vm_start, 2382 vma->vm_end - vma->vm_start, NULL); 2383 } 2384 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2385 struct vm_area_struct *start_vma, unsigned long start, 2386 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2387 2388 struct mmu_notifier_range; 2389 2390 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2391 unsigned long end, unsigned long floor, unsigned long ceiling); 2392 int 2393 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2394 int follow_pte(struct mm_struct *mm, unsigned long address, 2395 pte_t **ptepp, spinlock_t **ptlp); 2396 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2397 unsigned long *pfn); 2398 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2399 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2400 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2401 void *buf, int len, int write); 2402 2403 extern void truncate_pagecache(struct inode *inode, loff_t new); 2404 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2405 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2406 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2407 int generic_error_remove_folio(struct address_space *mapping, 2408 struct folio *folio); 2409 2410 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2411 unsigned long address, struct pt_regs *regs); 2412 2413 #ifdef CONFIG_MMU 2414 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2415 unsigned long address, unsigned int flags, 2416 struct pt_regs *regs); 2417 extern int fixup_user_fault(struct mm_struct *mm, 2418 unsigned long address, unsigned int fault_flags, 2419 bool *unlocked); 2420 void unmap_mapping_pages(struct address_space *mapping, 2421 pgoff_t start, pgoff_t nr, bool even_cows); 2422 void unmap_mapping_range(struct address_space *mapping, 2423 loff_t const holebegin, loff_t const holelen, int even_cows); 2424 #else 2425 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2426 unsigned long address, unsigned int flags, 2427 struct pt_regs *regs) 2428 { 2429 /* should never happen if there's no MMU */ 2430 BUG(); 2431 return VM_FAULT_SIGBUS; 2432 } 2433 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2434 unsigned int fault_flags, bool *unlocked) 2435 { 2436 /* should never happen if there's no MMU */ 2437 BUG(); 2438 return -EFAULT; 2439 } 2440 static inline void unmap_mapping_pages(struct address_space *mapping, 2441 pgoff_t start, pgoff_t nr, bool even_cows) { } 2442 static inline void unmap_mapping_range(struct address_space *mapping, 2443 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2444 #endif 2445 2446 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2447 loff_t const holebegin, loff_t const holelen) 2448 { 2449 unmap_mapping_range(mapping, holebegin, holelen, 0); 2450 } 2451 2452 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2453 unsigned long addr); 2454 2455 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2456 void *buf, int len, unsigned int gup_flags); 2457 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2458 void *buf, int len, unsigned int gup_flags); 2459 2460 long get_user_pages_remote(struct mm_struct *mm, 2461 unsigned long start, unsigned long nr_pages, 2462 unsigned int gup_flags, struct page **pages, 2463 int *locked); 2464 long pin_user_pages_remote(struct mm_struct *mm, 2465 unsigned long start, unsigned long nr_pages, 2466 unsigned int gup_flags, struct page **pages, 2467 int *locked); 2468 2469 /* 2470 * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT. 2471 */ 2472 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2473 unsigned long addr, 2474 int gup_flags, 2475 struct vm_area_struct **vmap) 2476 { 2477 struct page *page; 2478 struct vm_area_struct *vma; 2479 int got; 2480 2481 if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT))) 2482 return ERR_PTR(-EINVAL); 2483 2484 got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2485 2486 if (got < 0) 2487 return ERR_PTR(got); 2488 2489 vma = vma_lookup(mm, addr); 2490 if (WARN_ON_ONCE(!vma)) { 2491 put_page(page); 2492 return ERR_PTR(-EINVAL); 2493 } 2494 2495 *vmap = vma; 2496 return page; 2497 } 2498 2499 long get_user_pages(unsigned long start, unsigned long nr_pages, 2500 unsigned int gup_flags, struct page **pages); 2501 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2502 unsigned int gup_flags, struct page **pages); 2503 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2504 struct page **pages, unsigned int gup_flags); 2505 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2506 struct page **pages, unsigned int gup_flags); 2507 2508 int get_user_pages_fast(unsigned long start, int nr_pages, 2509 unsigned int gup_flags, struct page **pages); 2510 int pin_user_pages_fast(unsigned long start, int nr_pages, 2511 unsigned int gup_flags, struct page **pages); 2512 void folio_add_pin(struct folio *folio); 2513 2514 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2515 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2516 struct task_struct *task, bool bypass_rlim); 2517 2518 struct kvec; 2519 struct page *get_dump_page(unsigned long addr); 2520 2521 bool folio_mark_dirty(struct folio *folio); 2522 bool set_page_dirty(struct page *page); 2523 int set_page_dirty_lock(struct page *page); 2524 2525 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2526 2527 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2528 unsigned long old_addr, struct vm_area_struct *new_vma, 2529 unsigned long new_addr, unsigned long len, 2530 bool need_rmap_locks, bool for_stack); 2531 2532 /* 2533 * Flags used by change_protection(). For now we make it a bitmap so 2534 * that we can pass in multiple flags just like parameters. However 2535 * for now all the callers are only use one of the flags at the same 2536 * time. 2537 */ 2538 /* 2539 * Whether we should manually check if we can map individual PTEs writable, 2540 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2541 * PTEs automatically in a writable mapping. 2542 */ 2543 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2544 /* Whether this protection change is for NUMA hints */ 2545 #define MM_CP_PROT_NUMA (1UL << 1) 2546 /* Whether this change is for write protecting */ 2547 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2548 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2549 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2550 MM_CP_UFFD_WP_RESOLVE) 2551 2552 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2553 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2554 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2555 { 2556 /* 2557 * We want to check manually if we can change individual PTEs writable 2558 * if we can't do that automatically for all PTEs in a mapping. For 2559 * private mappings, that's always the case when we have write 2560 * permissions as we properly have to handle COW. 2561 */ 2562 if (vma->vm_flags & VM_SHARED) 2563 return vma_wants_writenotify(vma, vma->vm_page_prot); 2564 return !!(vma->vm_flags & VM_WRITE); 2565 2566 } 2567 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2568 pte_t pte); 2569 extern long change_protection(struct mmu_gather *tlb, 2570 struct vm_area_struct *vma, unsigned long start, 2571 unsigned long end, unsigned long cp_flags); 2572 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2573 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2574 unsigned long start, unsigned long end, unsigned long newflags); 2575 2576 /* 2577 * doesn't attempt to fault and will return short. 2578 */ 2579 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2580 unsigned int gup_flags, struct page **pages); 2581 2582 static inline bool get_user_page_fast_only(unsigned long addr, 2583 unsigned int gup_flags, struct page **pagep) 2584 { 2585 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2586 } 2587 /* 2588 * per-process(per-mm_struct) statistics. 2589 */ 2590 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2591 { 2592 return percpu_counter_read_positive(&mm->rss_stat[member]); 2593 } 2594 2595 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2596 2597 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2598 { 2599 percpu_counter_add(&mm->rss_stat[member], value); 2600 2601 mm_trace_rss_stat(mm, member); 2602 } 2603 2604 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2605 { 2606 percpu_counter_inc(&mm->rss_stat[member]); 2607 2608 mm_trace_rss_stat(mm, member); 2609 } 2610 2611 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2612 { 2613 percpu_counter_dec(&mm->rss_stat[member]); 2614 2615 mm_trace_rss_stat(mm, member); 2616 } 2617 2618 /* Optimized variant when folio is already known not to be anon */ 2619 static inline int mm_counter_file(struct folio *folio) 2620 { 2621 if (folio_test_swapbacked(folio)) 2622 return MM_SHMEMPAGES; 2623 return MM_FILEPAGES; 2624 } 2625 2626 static inline int mm_counter(struct folio *folio) 2627 { 2628 if (folio_test_anon(folio)) 2629 return MM_ANONPAGES; 2630 return mm_counter_file(folio); 2631 } 2632 2633 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2634 { 2635 return get_mm_counter(mm, MM_FILEPAGES) + 2636 get_mm_counter(mm, MM_ANONPAGES) + 2637 get_mm_counter(mm, MM_SHMEMPAGES); 2638 } 2639 2640 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2641 { 2642 return max(mm->hiwater_rss, get_mm_rss(mm)); 2643 } 2644 2645 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2646 { 2647 return max(mm->hiwater_vm, mm->total_vm); 2648 } 2649 2650 static inline void update_hiwater_rss(struct mm_struct *mm) 2651 { 2652 unsigned long _rss = get_mm_rss(mm); 2653 2654 if ((mm)->hiwater_rss < _rss) 2655 (mm)->hiwater_rss = _rss; 2656 } 2657 2658 static inline void update_hiwater_vm(struct mm_struct *mm) 2659 { 2660 if (mm->hiwater_vm < mm->total_vm) 2661 mm->hiwater_vm = mm->total_vm; 2662 } 2663 2664 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2665 { 2666 mm->hiwater_rss = get_mm_rss(mm); 2667 } 2668 2669 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2670 struct mm_struct *mm) 2671 { 2672 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2673 2674 if (*maxrss < hiwater_rss) 2675 *maxrss = hiwater_rss; 2676 } 2677 2678 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2679 static inline int pte_special(pte_t pte) 2680 { 2681 return 0; 2682 } 2683 2684 static inline pte_t pte_mkspecial(pte_t pte) 2685 { 2686 return pte; 2687 } 2688 #endif 2689 2690 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2691 static inline int pte_devmap(pte_t pte) 2692 { 2693 return 0; 2694 } 2695 #endif 2696 2697 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2698 spinlock_t **ptl); 2699 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2700 spinlock_t **ptl) 2701 { 2702 pte_t *ptep; 2703 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2704 return ptep; 2705 } 2706 2707 #ifdef __PAGETABLE_P4D_FOLDED 2708 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2709 unsigned long address) 2710 { 2711 return 0; 2712 } 2713 #else 2714 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2715 #endif 2716 2717 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2718 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2719 unsigned long address) 2720 { 2721 return 0; 2722 } 2723 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2724 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2725 2726 #else 2727 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2728 2729 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2730 { 2731 if (mm_pud_folded(mm)) 2732 return; 2733 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2734 } 2735 2736 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2737 { 2738 if (mm_pud_folded(mm)) 2739 return; 2740 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2741 } 2742 #endif 2743 2744 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2745 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2746 unsigned long address) 2747 { 2748 return 0; 2749 } 2750 2751 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2752 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2753 2754 #else 2755 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2756 2757 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2758 { 2759 if (mm_pmd_folded(mm)) 2760 return; 2761 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2762 } 2763 2764 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2765 { 2766 if (mm_pmd_folded(mm)) 2767 return; 2768 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2769 } 2770 #endif 2771 2772 #ifdef CONFIG_MMU 2773 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2774 { 2775 atomic_long_set(&mm->pgtables_bytes, 0); 2776 } 2777 2778 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2779 { 2780 return atomic_long_read(&mm->pgtables_bytes); 2781 } 2782 2783 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2784 { 2785 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2786 } 2787 2788 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2789 { 2790 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2791 } 2792 #else 2793 2794 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2795 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2796 { 2797 return 0; 2798 } 2799 2800 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2801 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2802 #endif 2803 2804 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2805 int __pte_alloc_kernel(pmd_t *pmd); 2806 2807 #if defined(CONFIG_MMU) 2808 2809 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2810 unsigned long address) 2811 { 2812 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2813 NULL : p4d_offset(pgd, address); 2814 } 2815 2816 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2817 unsigned long address) 2818 { 2819 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2820 NULL : pud_offset(p4d, address); 2821 } 2822 2823 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2824 { 2825 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2826 NULL: pmd_offset(pud, address); 2827 } 2828 #endif /* CONFIG_MMU */ 2829 2830 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2831 { 2832 return page_ptdesc(virt_to_page(x)); 2833 } 2834 2835 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2836 { 2837 return page_to_virt(ptdesc_page(pt)); 2838 } 2839 2840 static inline void *ptdesc_address(const struct ptdesc *pt) 2841 { 2842 return folio_address(ptdesc_folio(pt)); 2843 } 2844 2845 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2846 { 2847 return folio_test_reserved(ptdesc_folio(pt)); 2848 } 2849 2850 /** 2851 * pagetable_alloc - Allocate pagetables 2852 * @gfp: GFP flags 2853 * @order: desired pagetable order 2854 * 2855 * pagetable_alloc allocates memory for page tables as well as a page table 2856 * descriptor to describe that memory. 2857 * 2858 * Return: The ptdesc describing the allocated page tables. 2859 */ 2860 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order) 2861 { 2862 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2863 2864 return page_ptdesc(page); 2865 } 2866 2867 /** 2868 * pagetable_free - Free pagetables 2869 * @pt: The page table descriptor 2870 * 2871 * pagetable_free frees the memory of all page tables described by a page 2872 * table descriptor and the memory for the descriptor itself. 2873 */ 2874 static inline void pagetable_free(struct ptdesc *pt) 2875 { 2876 struct page *page = ptdesc_page(pt); 2877 2878 __free_pages(page, compound_order(page)); 2879 } 2880 2881 #if USE_SPLIT_PTE_PTLOCKS 2882 #if ALLOC_SPLIT_PTLOCKS 2883 void __init ptlock_cache_init(void); 2884 bool ptlock_alloc(struct ptdesc *ptdesc); 2885 void ptlock_free(struct ptdesc *ptdesc); 2886 2887 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2888 { 2889 return ptdesc->ptl; 2890 } 2891 #else /* ALLOC_SPLIT_PTLOCKS */ 2892 static inline void ptlock_cache_init(void) 2893 { 2894 } 2895 2896 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2897 { 2898 return true; 2899 } 2900 2901 static inline void ptlock_free(struct ptdesc *ptdesc) 2902 { 2903 } 2904 2905 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2906 { 2907 return &ptdesc->ptl; 2908 } 2909 #endif /* ALLOC_SPLIT_PTLOCKS */ 2910 2911 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2912 { 2913 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2914 } 2915 2916 static inline bool ptlock_init(struct ptdesc *ptdesc) 2917 { 2918 /* 2919 * prep_new_page() initialize page->private (and therefore page->ptl) 2920 * with 0. Make sure nobody took it in use in between. 2921 * 2922 * It can happen if arch try to use slab for page table allocation: 2923 * slab code uses page->slab_cache, which share storage with page->ptl. 2924 */ 2925 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2926 if (!ptlock_alloc(ptdesc)) 2927 return false; 2928 spin_lock_init(ptlock_ptr(ptdesc)); 2929 return true; 2930 } 2931 2932 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2933 /* 2934 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2935 */ 2936 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2937 { 2938 return &mm->page_table_lock; 2939 } 2940 static inline void ptlock_cache_init(void) {} 2941 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2942 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2943 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2944 2945 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2946 { 2947 struct folio *folio = ptdesc_folio(ptdesc); 2948 2949 if (!ptlock_init(ptdesc)) 2950 return false; 2951 __folio_set_pgtable(folio); 2952 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2953 return true; 2954 } 2955 2956 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2957 { 2958 struct folio *folio = ptdesc_folio(ptdesc); 2959 2960 ptlock_free(ptdesc); 2961 __folio_clear_pgtable(folio); 2962 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2963 } 2964 2965 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2966 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2967 { 2968 return __pte_offset_map(pmd, addr, NULL); 2969 } 2970 2971 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2972 unsigned long addr, spinlock_t **ptlp); 2973 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2974 unsigned long addr, spinlock_t **ptlp) 2975 { 2976 pte_t *pte; 2977 2978 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2979 return pte; 2980 } 2981 2982 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2983 unsigned long addr, spinlock_t **ptlp); 2984 2985 #define pte_unmap_unlock(pte, ptl) do { \ 2986 spin_unlock(ptl); \ 2987 pte_unmap(pte); \ 2988 } while (0) 2989 2990 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2991 2992 #define pte_alloc_map(mm, pmd, address) \ 2993 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2994 2995 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2996 (pte_alloc(mm, pmd) ? \ 2997 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2998 2999 #define pte_alloc_kernel(pmd, address) \ 3000 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 3001 NULL: pte_offset_kernel(pmd, address)) 3002 3003 #if USE_SPLIT_PMD_PTLOCKS 3004 3005 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 3006 { 3007 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 3008 return virt_to_page((void *)((unsigned long) pmd & mask)); 3009 } 3010 3011 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 3012 { 3013 return page_ptdesc(pmd_pgtable_page(pmd)); 3014 } 3015 3016 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3017 { 3018 return ptlock_ptr(pmd_ptdesc(pmd)); 3019 } 3020 3021 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 3022 { 3023 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3024 ptdesc->pmd_huge_pte = NULL; 3025 #endif 3026 return ptlock_init(ptdesc); 3027 } 3028 3029 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 3030 { 3031 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3032 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 3033 #endif 3034 ptlock_free(ptdesc); 3035 } 3036 3037 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 3038 3039 #else 3040 3041 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3042 { 3043 return &mm->page_table_lock; 3044 } 3045 3046 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3047 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3048 3049 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3050 3051 #endif 3052 3053 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3054 { 3055 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3056 spin_lock(ptl); 3057 return ptl; 3058 } 3059 3060 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3061 { 3062 struct folio *folio = ptdesc_folio(ptdesc); 3063 3064 if (!pmd_ptlock_init(ptdesc)) 3065 return false; 3066 __folio_set_pgtable(folio); 3067 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3068 return true; 3069 } 3070 3071 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3072 { 3073 struct folio *folio = ptdesc_folio(ptdesc); 3074 3075 pmd_ptlock_free(ptdesc); 3076 __folio_clear_pgtable(folio); 3077 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3078 } 3079 3080 /* 3081 * No scalability reason to split PUD locks yet, but follow the same pattern 3082 * as the PMD locks to make it easier if we decide to. The VM should not be 3083 * considered ready to switch to split PUD locks yet; there may be places 3084 * which need to be converted from page_table_lock. 3085 */ 3086 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3087 { 3088 return &mm->page_table_lock; 3089 } 3090 3091 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3092 { 3093 spinlock_t *ptl = pud_lockptr(mm, pud); 3094 3095 spin_lock(ptl); 3096 return ptl; 3097 } 3098 3099 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc) 3100 { 3101 struct folio *folio = ptdesc_folio(ptdesc); 3102 3103 __folio_set_pgtable(folio); 3104 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3105 } 3106 3107 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc) 3108 { 3109 struct folio *folio = ptdesc_folio(ptdesc); 3110 3111 __folio_clear_pgtable(folio); 3112 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3113 } 3114 3115 extern void __init pagecache_init(void); 3116 extern void free_initmem(void); 3117 3118 /* 3119 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3120 * into the buddy system. The freed pages will be poisoned with pattern 3121 * "poison" if it's within range [0, UCHAR_MAX]. 3122 * Return pages freed into the buddy system. 3123 */ 3124 extern unsigned long free_reserved_area(void *start, void *end, 3125 int poison, const char *s); 3126 3127 extern void adjust_managed_page_count(struct page *page, long count); 3128 3129 extern void reserve_bootmem_region(phys_addr_t start, 3130 phys_addr_t end, int nid); 3131 3132 /* Free the reserved page into the buddy system, so it gets managed. */ 3133 static inline void free_reserved_page(struct page *page) 3134 { 3135 ClearPageReserved(page); 3136 init_page_count(page); 3137 __free_page(page); 3138 adjust_managed_page_count(page, 1); 3139 } 3140 #define free_highmem_page(page) free_reserved_page(page) 3141 3142 static inline void mark_page_reserved(struct page *page) 3143 { 3144 SetPageReserved(page); 3145 adjust_managed_page_count(page, -1); 3146 } 3147 3148 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3149 { 3150 free_reserved_page(ptdesc_page(pt)); 3151 } 3152 3153 /* 3154 * Default method to free all the __init memory into the buddy system. 3155 * The freed pages will be poisoned with pattern "poison" if it's within 3156 * range [0, UCHAR_MAX]. 3157 * Return pages freed into the buddy system. 3158 */ 3159 static inline unsigned long free_initmem_default(int poison) 3160 { 3161 extern char __init_begin[], __init_end[]; 3162 3163 return free_reserved_area(&__init_begin, &__init_end, 3164 poison, "unused kernel image (initmem)"); 3165 } 3166 3167 static inline unsigned long get_num_physpages(void) 3168 { 3169 int nid; 3170 unsigned long phys_pages = 0; 3171 3172 for_each_online_node(nid) 3173 phys_pages += node_present_pages(nid); 3174 3175 return phys_pages; 3176 } 3177 3178 /* 3179 * Using memblock node mappings, an architecture may initialise its 3180 * zones, allocate the backing mem_map and account for memory holes in an 3181 * architecture independent manner. 3182 * 3183 * An architecture is expected to register range of page frames backed by 3184 * physical memory with memblock_add[_node]() before calling 3185 * free_area_init() passing in the PFN each zone ends at. At a basic 3186 * usage, an architecture is expected to do something like 3187 * 3188 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3189 * max_highmem_pfn}; 3190 * for_each_valid_physical_page_range() 3191 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3192 * free_area_init(max_zone_pfns); 3193 */ 3194 void free_area_init(unsigned long *max_zone_pfn); 3195 unsigned long node_map_pfn_alignment(void); 3196 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3197 unsigned long end_pfn); 3198 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3199 unsigned long end_pfn); 3200 extern void get_pfn_range_for_nid(unsigned int nid, 3201 unsigned long *start_pfn, unsigned long *end_pfn); 3202 3203 #ifndef CONFIG_NUMA 3204 static inline int early_pfn_to_nid(unsigned long pfn) 3205 { 3206 return 0; 3207 } 3208 #else 3209 /* please see mm/page_alloc.c */ 3210 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3211 #endif 3212 3213 extern void set_dma_reserve(unsigned long new_dma_reserve); 3214 extern void mem_init(void); 3215 extern void __init mmap_init(void); 3216 3217 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3218 static inline void show_mem(void) 3219 { 3220 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3221 } 3222 extern long si_mem_available(void); 3223 extern void si_meminfo(struct sysinfo * val); 3224 extern void si_meminfo_node(struct sysinfo *val, int nid); 3225 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3226 extern unsigned long arch_reserved_kernel_pages(void); 3227 #endif 3228 3229 extern __printf(3, 4) 3230 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3231 3232 extern void setup_per_cpu_pageset(void); 3233 3234 /* nommu.c */ 3235 extern atomic_long_t mmap_pages_allocated; 3236 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3237 3238 /* interval_tree.c */ 3239 void vma_interval_tree_insert(struct vm_area_struct *node, 3240 struct rb_root_cached *root); 3241 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3242 struct vm_area_struct *prev, 3243 struct rb_root_cached *root); 3244 void vma_interval_tree_remove(struct vm_area_struct *node, 3245 struct rb_root_cached *root); 3246 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3247 unsigned long start, unsigned long last); 3248 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3249 unsigned long start, unsigned long last); 3250 3251 #define vma_interval_tree_foreach(vma, root, start, last) \ 3252 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3253 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3254 3255 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3256 struct rb_root_cached *root); 3257 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3258 struct rb_root_cached *root); 3259 struct anon_vma_chain * 3260 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3261 unsigned long start, unsigned long last); 3262 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3263 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3264 #ifdef CONFIG_DEBUG_VM_RB 3265 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3266 #endif 3267 3268 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3269 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3270 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3271 3272 /* mmap.c */ 3273 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3274 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3275 unsigned long start, unsigned long end, pgoff_t pgoff, 3276 struct vm_area_struct *next); 3277 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3278 unsigned long start, unsigned long end, pgoff_t pgoff); 3279 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3280 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3281 extern void unlink_file_vma(struct vm_area_struct *); 3282 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3283 unsigned long addr, unsigned long len, pgoff_t pgoff, 3284 bool *need_rmap_locks); 3285 extern void exit_mmap(struct mm_struct *); 3286 struct vm_area_struct *vma_modify(struct vma_iterator *vmi, 3287 struct vm_area_struct *prev, 3288 struct vm_area_struct *vma, 3289 unsigned long start, unsigned long end, 3290 unsigned long vm_flags, 3291 struct mempolicy *policy, 3292 struct vm_userfaultfd_ctx uffd_ctx, 3293 struct anon_vma_name *anon_name); 3294 3295 /* We are about to modify the VMA's flags. */ 3296 static inline struct vm_area_struct 3297 *vma_modify_flags(struct vma_iterator *vmi, 3298 struct vm_area_struct *prev, 3299 struct vm_area_struct *vma, 3300 unsigned long start, unsigned long end, 3301 unsigned long new_flags) 3302 { 3303 return vma_modify(vmi, prev, vma, start, end, new_flags, 3304 vma_policy(vma), vma->vm_userfaultfd_ctx, 3305 anon_vma_name(vma)); 3306 } 3307 3308 /* We are about to modify the VMA's flags and/or anon_name. */ 3309 static inline struct vm_area_struct 3310 *vma_modify_flags_name(struct vma_iterator *vmi, 3311 struct vm_area_struct *prev, 3312 struct vm_area_struct *vma, 3313 unsigned long start, 3314 unsigned long end, 3315 unsigned long new_flags, 3316 struct anon_vma_name *new_name) 3317 { 3318 return vma_modify(vmi, prev, vma, start, end, new_flags, 3319 vma_policy(vma), vma->vm_userfaultfd_ctx, new_name); 3320 } 3321 3322 /* We are about to modify the VMA's memory policy. */ 3323 static inline struct vm_area_struct 3324 *vma_modify_policy(struct vma_iterator *vmi, 3325 struct vm_area_struct *prev, 3326 struct vm_area_struct *vma, 3327 unsigned long start, unsigned long end, 3328 struct mempolicy *new_pol) 3329 { 3330 return vma_modify(vmi, prev, vma, start, end, vma->vm_flags, 3331 new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma)); 3332 } 3333 3334 /* We are about to modify the VMA's flags and/or uffd context. */ 3335 static inline struct vm_area_struct 3336 *vma_modify_flags_uffd(struct vma_iterator *vmi, 3337 struct vm_area_struct *prev, 3338 struct vm_area_struct *vma, 3339 unsigned long start, unsigned long end, 3340 unsigned long new_flags, 3341 struct vm_userfaultfd_ctx new_ctx) 3342 { 3343 return vma_modify(vmi, prev, vma, start, end, new_flags, 3344 vma_policy(vma), new_ctx, anon_vma_name(vma)); 3345 } 3346 3347 static inline int check_data_rlimit(unsigned long rlim, 3348 unsigned long new, 3349 unsigned long start, 3350 unsigned long end_data, 3351 unsigned long start_data) 3352 { 3353 if (rlim < RLIM_INFINITY) { 3354 if (((new - start) + (end_data - start_data)) > rlim) 3355 return -ENOSPC; 3356 } 3357 3358 return 0; 3359 } 3360 3361 extern int mm_take_all_locks(struct mm_struct *mm); 3362 extern void mm_drop_all_locks(struct mm_struct *mm); 3363 3364 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3365 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3366 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3367 extern struct file *get_task_exe_file(struct task_struct *task); 3368 3369 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3370 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3371 3372 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3373 const struct vm_special_mapping *sm); 3374 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3375 unsigned long addr, unsigned long len, 3376 unsigned long flags, 3377 const struct vm_special_mapping *spec); 3378 /* This is an obsolete alternative to _install_special_mapping. */ 3379 extern int install_special_mapping(struct mm_struct *mm, 3380 unsigned long addr, unsigned long len, 3381 unsigned long flags, struct page **pages); 3382 3383 unsigned long randomize_stack_top(unsigned long stack_top); 3384 unsigned long randomize_page(unsigned long start, unsigned long range); 3385 3386 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3387 3388 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3389 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3390 struct list_head *uf); 3391 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3392 unsigned long len, unsigned long prot, unsigned long flags, 3393 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3394 struct list_head *uf); 3395 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3396 unsigned long start, size_t len, struct list_head *uf, 3397 bool unlock); 3398 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3399 struct list_head *uf); 3400 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3401 3402 #ifdef CONFIG_MMU 3403 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3404 unsigned long start, unsigned long end, 3405 struct list_head *uf, bool unlock); 3406 extern int __mm_populate(unsigned long addr, unsigned long len, 3407 int ignore_errors); 3408 static inline void mm_populate(unsigned long addr, unsigned long len) 3409 { 3410 /* Ignore errors */ 3411 (void) __mm_populate(addr, len, 1); 3412 } 3413 #else 3414 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3415 #endif 3416 3417 /* This takes the mm semaphore itself */ 3418 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3419 extern int vm_munmap(unsigned long, size_t); 3420 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3421 unsigned long, unsigned long, 3422 unsigned long, unsigned long); 3423 3424 struct vm_unmapped_area_info { 3425 #define VM_UNMAPPED_AREA_TOPDOWN 1 3426 unsigned long flags; 3427 unsigned long length; 3428 unsigned long low_limit; 3429 unsigned long high_limit; 3430 unsigned long align_mask; 3431 unsigned long align_offset; 3432 }; 3433 3434 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3435 3436 /* truncate.c */ 3437 extern void truncate_inode_pages(struct address_space *, loff_t); 3438 extern void truncate_inode_pages_range(struct address_space *, 3439 loff_t lstart, loff_t lend); 3440 extern void truncate_inode_pages_final(struct address_space *); 3441 3442 /* generic vm_area_ops exported for stackable file systems */ 3443 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3444 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3445 pgoff_t start_pgoff, pgoff_t end_pgoff); 3446 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3447 3448 extern unsigned long stack_guard_gap; 3449 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3450 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3451 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3452 3453 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3454 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3455 3456 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3457 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3458 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3459 struct vm_area_struct **pprev); 3460 3461 /* 3462 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3463 * NULL if none. Assume start_addr < end_addr. 3464 */ 3465 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3466 unsigned long start_addr, unsigned long end_addr); 3467 3468 /** 3469 * vma_lookup() - Find a VMA at a specific address 3470 * @mm: The process address space. 3471 * @addr: The user address. 3472 * 3473 * Return: The vm_area_struct at the given address, %NULL otherwise. 3474 */ 3475 static inline 3476 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3477 { 3478 return mtree_load(&mm->mm_mt, addr); 3479 } 3480 3481 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3482 { 3483 if (vma->vm_flags & VM_GROWSDOWN) 3484 return stack_guard_gap; 3485 3486 /* See reasoning around the VM_SHADOW_STACK definition */ 3487 if (vma->vm_flags & VM_SHADOW_STACK) 3488 return PAGE_SIZE; 3489 3490 return 0; 3491 } 3492 3493 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3494 { 3495 unsigned long gap = stack_guard_start_gap(vma); 3496 unsigned long vm_start = vma->vm_start; 3497 3498 vm_start -= gap; 3499 if (vm_start > vma->vm_start) 3500 vm_start = 0; 3501 return vm_start; 3502 } 3503 3504 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3505 { 3506 unsigned long vm_end = vma->vm_end; 3507 3508 if (vma->vm_flags & VM_GROWSUP) { 3509 vm_end += stack_guard_gap; 3510 if (vm_end < vma->vm_end) 3511 vm_end = -PAGE_SIZE; 3512 } 3513 return vm_end; 3514 } 3515 3516 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3517 { 3518 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3519 } 3520 3521 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3522 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3523 unsigned long vm_start, unsigned long vm_end) 3524 { 3525 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3526 3527 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3528 vma = NULL; 3529 3530 return vma; 3531 } 3532 3533 static inline bool range_in_vma(struct vm_area_struct *vma, 3534 unsigned long start, unsigned long end) 3535 { 3536 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3537 } 3538 3539 #ifdef CONFIG_MMU 3540 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3541 void vma_set_page_prot(struct vm_area_struct *vma); 3542 #else 3543 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3544 { 3545 return __pgprot(0); 3546 } 3547 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3548 { 3549 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3550 } 3551 #endif 3552 3553 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3554 3555 #ifdef CONFIG_NUMA_BALANCING 3556 unsigned long change_prot_numa(struct vm_area_struct *vma, 3557 unsigned long start, unsigned long end); 3558 #endif 3559 3560 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3561 unsigned long addr); 3562 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3563 unsigned long pfn, unsigned long size, pgprot_t); 3564 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3565 unsigned long pfn, unsigned long size, pgprot_t prot); 3566 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3567 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3568 struct page **pages, unsigned long *num); 3569 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3570 unsigned long num); 3571 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3572 unsigned long num); 3573 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3574 unsigned long pfn); 3575 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3576 unsigned long pfn, pgprot_t pgprot); 3577 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3578 pfn_t pfn); 3579 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3580 unsigned long addr, pfn_t pfn); 3581 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3582 3583 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3584 unsigned long addr, struct page *page) 3585 { 3586 int err = vm_insert_page(vma, addr, page); 3587 3588 if (err == -ENOMEM) 3589 return VM_FAULT_OOM; 3590 if (err < 0 && err != -EBUSY) 3591 return VM_FAULT_SIGBUS; 3592 3593 return VM_FAULT_NOPAGE; 3594 } 3595 3596 #ifndef io_remap_pfn_range 3597 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3598 unsigned long addr, unsigned long pfn, 3599 unsigned long size, pgprot_t prot) 3600 { 3601 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3602 } 3603 #endif 3604 3605 static inline vm_fault_t vmf_error(int err) 3606 { 3607 if (err == -ENOMEM) 3608 return VM_FAULT_OOM; 3609 else if (err == -EHWPOISON) 3610 return VM_FAULT_HWPOISON; 3611 return VM_FAULT_SIGBUS; 3612 } 3613 3614 /* 3615 * Convert errno to return value for ->page_mkwrite() calls. 3616 * 3617 * This should eventually be merged with vmf_error() above, but will need a 3618 * careful audit of all vmf_error() callers. 3619 */ 3620 static inline vm_fault_t vmf_fs_error(int err) 3621 { 3622 if (err == 0) 3623 return VM_FAULT_LOCKED; 3624 if (err == -EFAULT || err == -EAGAIN) 3625 return VM_FAULT_NOPAGE; 3626 if (err == -ENOMEM) 3627 return VM_FAULT_OOM; 3628 /* -ENOSPC, -EDQUOT, -EIO ... */ 3629 return VM_FAULT_SIGBUS; 3630 } 3631 3632 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3633 unsigned int foll_flags); 3634 3635 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3636 { 3637 if (vm_fault & VM_FAULT_OOM) 3638 return -ENOMEM; 3639 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3640 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3641 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3642 return -EFAULT; 3643 return 0; 3644 } 3645 3646 /* 3647 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3648 * a (NUMA hinting) fault is required. 3649 */ 3650 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3651 unsigned int flags) 3652 { 3653 /* 3654 * If callers don't want to honor NUMA hinting faults, no need to 3655 * determine if we would actually have to trigger a NUMA hinting fault. 3656 */ 3657 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3658 return true; 3659 3660 /* 3661 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3662 * 3663 * Requiring a fault here even for inaccessible VMAs would mean that 3664 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3665 * refuses to process NUMA hinting faults in inaccessible VMAs. 3666 */ 3667 return !vma_is_accessible(vma); 3668 } 3669 3670 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3671 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3672 unsigned long size, pte_fn_t fn, void *data); 3673 extern int apply_to_existing_page_range(struct mm_struct *mm, 3674 unsigned long address, unsigned long size, 3675 pte_fn_t fn, void *data); 3676 3677 #ifdef CONFIG_PAGE_POISONING 3678 extern void __kernel_poison_pages(struct page *page, int numpages); 3679 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3680 extern bool _page_poisoning_enabled_early; 3681 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3682 static inline bool page_poisoning_enabled(void) 3683 { 3684 return _page_poisoning_enabled_early; 3685 } 3686 /* 3687 * For use in fast paths after init_mem_debugging() has run, or when a 3688 * false negative result is not harmful when called too early. 3689 */ 3690 static inline bool page_poisoning_enabled_static(void) 3691 { 3692 return static_branch_unlikely(&_page_poisoning_enabled); 3693 } 3694 static inline void kernel_poison_pages(struct page *page, int numpages) 3695 { 3696 if (page_poisoning_enabled_static()) 3697 __kernel_poison_pages(page, numpages); 3698 } 3699 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3700 { 3701 if (page_poisoning_enabled_static()) 3702 __kernel_unpoison_pages(page, numpages); 3703 } 3704 #else 3705 static inline bool page_poisoning_enabled(void) { return false; } 3706 static inline bool page_poisoning_enabled_static(void) { return false; } 3707 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3708 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3709 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3710 #endif 3711 3712 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3713 static inline bool want_init_on_alloc(gfp_t flags) 3714 { 3715 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3716 &init_on_alloc)) 3717 return true; 3718 return flags & __GFP_ZERO; 3719 } 3720 3721 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3722 static inline bool want_init_on_free(void) 3723 { 3724 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3725 &init_on_free); 3726 } 3727 3728 extern bool _debug_pagealloc_enabled_early; 3729 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3730 3731 static inline bool debug_pagealloc_enabled(void) 3732 { 3733 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3734 _debug_pagealloc_enabled_early; 3735 } 3736 3737 /* 3738 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3739 * or when a false negative result is not harmful when called too early. 3740 */ 3741 static inline bool debug_pagealloc_enabled_static(void) 3742 { 3743 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3744 return false; 3745 3746 return static_branch_unlikely(&_debug_pagealloc_enabled); 3747 } 3748 3749 /* 3750 * To support DEBUG_PAGEALLOC architecture must ensure that 3751 * __kernel_map_pages() never fails 3752 */ 3753 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3754 #ifdef CONFIG_DEBUG_PAGEALLOC 3755 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3756 { 3757 if (debug_pagealloc_enabled_static()) 3758 __kernel_map_pages(page, numpages, 1); 3759 } 3760 3761 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3762 { 3763 if (debug_pagealloc_enabled_static()) 3764 __kernel_map_pages(page, numpages, 0); 3765 } 3766 3767 extern unsigned int _debug_guardpage_minorder; 3768 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3769 3770 static inline unsigned int debug_guardpage_minorder(void) 3771 { 3772 return _debug_guardpage_minorder; 3773 } 3774 3775 static inline bool debug_guardpage_enabled(void) 3776 { 3777 return static_branch_unlikely(&_debug_guardpage_enabled); 3778 } 3779 3780 static inline bool page_is_guard(struct page *page) 3781 { 3782 if (!debug_guardpage_enabled()) 3783 return false; 3784 3785 return PageGuard(page); 3786 } 3787 3788 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3789 int migratetype); 3790 static inline bool set_page_guard(struct zone *zone, struct page *page, 3791 unsigned int order, int migratetype) 3792 { 3793 if (!debug_guardpage_enabled()) 3794 return false; 3795 return __set_page_guard(zone, page, order, migratetype); 3796 } 3797 3798 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3799 int migratetype); 3800 static inline void clear_page_guard(struct zone *zone, struct page *page, 3801 unsigned int order, int migratetype) 3802 { 3803 if (!debug_guardpage_enabled()) 3804 return; 3805 __clear_page_guard(zone, page, order, migratetype); 3806 } 3807 3808 #else /* CONFIG_DEBUG_PAGEALLOC */ 3809 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3810 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3811 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3812 static inline bool debug_guardpage_enabled(void) { return false; } 3813 static inline bool page_is_guard(struct page *page) { return false; } 3814 static inline bool set_page_guard(struct zone *zone, struct page *page, 3815 unsigned int order, int migratetype) { return false; } 3816 static inline void clear_page_guard(struct zone *zone, struct page *page, 3817 unsigned int order, int migratetype) {} 3818 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3819 3820 #ifdef __HAVE_ARCH_GATE_AREA 3821 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3822 extern int in_gate_area_no_mm(unsigned long addr); 3823 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3824 #else 3825 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3826 { 3827 return NULL; 3828 } 3829 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3830 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3831 { 3832 return 0; 3833 } 3834 #endif /* __HAVE_ARCH_GATE_AREA */ 3835 3836 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3837 3838 #ifdef CONFIG_SYSCTL 3839 extern int sysctl_drop_caches; 3840 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3841 loff_t *); 3842 #endif 3843 3844 void drop_slab(void); 3845 3846 #ifndef CONFIG_MMU 3847 #define randomize_va_space 0 3848 #else 3849 extern int randomize_va_space; 3850 #endif 3851 3852 const char * arch_vma_name(struct vm_area_struct *vma); 3853 #ifdef CONFIG_MMU 3854 void print_vma_addr(char *prefix, unsigned long rip); 3855 #else 3856 static inline void print_vma_addr(char *prefix, unsigned long rip) 3857 { 3858 } 3859 #endif 3860 3861 void *sparse_buffer_alloc(unsigned long size); 3862 struct page * __populate_section_memmap(unsigned long pfn, 3863 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3864 struct dev_pagemap *pgmap); 3865 void pmd_init(void *addr); 3866 void pud_init(void *addr); 3867 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3868 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3869 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3870 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3871 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3872 struct vmem_altmap *altmap, struct page *reuse); 3873 void *vmemmap_alloc_block(unsigned long size, int node); 3874 struct vmem_altmap; 3875 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3876 struct vmem_altmap *altmap); 3877 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3878 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3879 unsigned long addr, unsigned long next); 3880 int vmemmap_check_pmd(pmd_t *pmd, int node, 3881 unsigned long addr, unsigned long next); 3882 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3883 int node, struct vmem_altmap *altmap); 3884 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3885 int node, struct vmem_altmap *altmap); 3886 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3887 struct vmem_altmap *altmap); 3888 void vmemmap_populate_print_last(void); 3889 #ifdef CONFIG_MEMORY_HOTPLUG 3890 void vmemmap_free(unsigned long start, unsigned long end, 3891 struct vmem_altmap *altmap); 3892 #endif 3893 3894 #ifdef CONFIG_SPARSEMEM_VMEMMAP 3895 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3896 { 3897 /* number of pfns from base where pfn_to_page() is valid */ 3898 if (altmap) 3899 return altmap->reserve + altmap->free; 3900 return 0; 3901 } 3902 3903 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3904 unsigned long nr_pfns) 3905 { 3906 altmap->alloc -= nr_pfns; 3907 } 3908 #else 3909 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap) 3910 { 3911 return 0; 3912 } 3913 3914 static inline void vmem_altmap_free(struct vmem_altmap *altmap, 3915 unsigned long nr_pfns) 3916 { 3917 } 3918 #endif 3919 3920 #define VMEMMAP_RESERVE_NR 2 3921 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3922 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3923 struct dev_pagemap *pgmap) 3924 { 3925 unsigned long nr_pages; 3926 unsigned long nr_vmemmap_pages; 3927 3928 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3929 return false; 3930 3931 nr_pages = pgmap_vmemmap_nr(pgmap); 3932 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3933 /* 3934 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3935 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3936 */ 3937 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3938 } 3939 /* 3940 * If we don't have an architecture override, use the generic rule 3941 */ 3942 #ifndef vmemmap_can_optimize 3943 #define vmemmap_can_optimize __vmemmap_can_optimize 3944 #endif 3945 3946 #else 3947 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3948 struct dev_pagemap *pgmap) 3949 { 3950 return false; 3951 } 3952 #endif 3953 3954 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3955 unsigned long nr_pages); 3956 3957 enum mf_flags { 3958 MF_COUNT_INCREASED = 1 << 0, 3959 MF_ACTION_REQUIRED = 1 << 1, 3960 MF_MUST_KILL = 1 << 2, 3961 MF_SOFT_OFFLINE = 1 << 3, 3962 MF_UNPOISON = 1 << 4, 3963 MF_SW_SIMULATED = 1 << 5, 3964 MF_NO_RETRY = 1 << 6, 3965 MF_MEM_PRE_REMOVE = 1 << 7, 3966 }; 3967 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3968 unsigned long count, int mf_flags); 3969 extern int memory_failure(unsigned long pfn, int flags); 3970 extern void memory_failure_queue_kick(int cpu); 3971 extern int unpoison_memory(unsigned long pfn); 3972 extern void shake_page(struct page *p); 3973 extern atomic_long_t num_poisoned_pages __read_mostly; 3974 extern int soft_offline_page(unsigned long pfn, int flags); 3975 #ifdef CONFIG_MEMORY_FAILURE 3976 /* 3977 * Sysfs entries for memory failure handling statistics. 3978 */ 3979 extern const struct attribute_group memory_failure_attr_group; 3980 extern void memory_failure_queue(unsigned long pfn, int flags); 3981 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3982 bool *migratable_cleared); 3983 void num_poisoned_pages_inc(unsigned long pfn); 3984 void num_poisoned_pages_sub(unsigned long pfn, long i); 3985 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3986 #else 3987 static inline void memory_failure_queue(unsigned long pfn, int flags) 3988 { 3989 } 3990 3991 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3992 bool *migratable_cleared) 3993 { 3994 return 0; 3995 } 3996 3997 static inline void num_poisoned_pages_inc(unsigned long pfn) 3998 { 3999 } 4000 4001 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 4002 { 4003 } 4004 #endif 4005 4006 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 4007 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 4008 struct vm_area_struct *vma, struct list_head *to_kill, 4009 unsigned long ksm_addr); 4010 #endif 4011 4012 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 4013 extern void memblk_nr_poison_inc(unsigned long pfn); 4014 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 4015 #else 4016 static inline void memblk_nr_poison_inc(unsigned long pfn) 4017 { 4018 } 4019 4020 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 4021 { 4022 } 4023 #endif 4024 4025 #ifndef arch_memory_failure 4026 static inline int arch_memory_failure(unsigned long pfn, int flags) 4027 { 4028 return -ENXIO; 4029 } 4030 #endif 4031 4032 #ifndef arch_is_platform_page 4033 static inline bool arch_is_platform_page(u64 paddr) 4034 { 4035 return false; 4036 } 4037 #endif 4038 4039 /* 4040 * Error handlers for various types of pages. 4041 */ 4042 enum mf_result { 4043 MF_IGNORED, /* Error: cannot be handled */ 4044 MF_FAILED, /* Error: handling failed */ 4045 MF_DELAYED, /* Will be handled later */ 4046 MF_RECOVERED, /* Successfully recovered */ 4047 }; 4048 4049 enum mf_action_page_type { 4050 MF_MSG_KERNEL, 4051 MF_MSG_KERNEL_HIGH_ORDER, 4052 MF_MSG_SLAB, 4053 MF_MSG_DIFFERENT_COMPOUND, 4054 MF_MSG_HUGE, 4055 MF_MSG_FREE_HUGE, 4056 MF_MSG_UNMAP_FAILED, 4057 MF_MSG_DIRTY_SWAPCACHE, 4058 MF_MSG_CLEAN_SWAPCACHE, 4059 MF_MSG_DIRTY_MLOCKED_LRU, 4060 MF_MSG_CLEAN_MLOCKED_LRU, 4061 MF_MSG_DIRTY_UNEVICTABLE_LRU, 4062 MF_MSG_CLEAN_UNEVICTABLE_LRU, 4063 MF_MSG_DIRTY_LRU, 4064 MF_MSG_CLEAN_LRU, 4065 MF_MSG_TRUNCATED_LRU, 4066 MF_MSG_BUDDY, 4067 MF_MSG_DAX, 4068 MF_MSG_UNSPLIT_THP, 4069 MF_MSG_UNKNOWN, 4070 }; 4071 4072 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 4073 extern void clear_huge_page(struct page *page, 4074 unsigned long addr_hint, 4075 unsigned int pages_per_huge_page); 4076 int copy_user_large_folio(struct folio *dst, struct folio *src, 4077 unsigned long addr_hint, 4078 struct vm_area_struct *vma); 4079 long copy_folio_from_user(struct folio *dst_folio, 4080 const void __user *usr_src, 4081 bool allow_pagefault); 4082 4083 /** 4084 * vma_is_special_huge - Are transhuge page-table entries considered special? 4085 * @vma: Pointer to the struct vm_area_struct to consider 4086 * 4087 * Whether transhuge page-table entries are considered "special" following 4088 * the definition in vm_normal_page(). 4089 * 4090 * Return: true if transhuge page-table entries should be considered special, 4091 * false otherwise. 4092 */ 4093 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 4094 { 4095 return vma_is_dax(vma) || (vma->vm_file && 4096 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 4097 } 4098 4099 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 4100 4101 #if MAX_NUMNODES > 1 4102 void __init setup_nr_node_ids(void); 4103 #else 4104 static inline void setup_nr_node_ids(void) {} 4105 #endif 4106 4107 extern int memcmp_pages(struct page *page1, struct page *page2); 4108 4109 static inline int pages_identical(struct page *page1, struct page *page2) 4110 { 4111 return !memcmp_pages(page1, page2); 4112 } 4113 4114 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 4115 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 4116 pgoff_t first_index, pgoff_t nr, 4117 pgoff_t bitmap_pgoff, 4118 unsigned long *bitmap, 4119 pgoff_t *start, 4120 pgoff_t *end); 4121 4122 unsigned long wp_shared_mapping_range(struct address_space *mapping, 4123 pgoff_t first_index, pgoff_t nr); 4124 #endif 4125 4126 extern int sysctl_nr_trim_pages; 4127 4128 #ifdef CONFIG_PRINTK 4129 void mem_dump_obj(void *object); 4130 #else 4131 static inline void mem_dump_obj(void *object) {} 4132 #endif 4133 4134 /** 4135 * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and 4136 * handle them. 4137 * @seals: the seals to check 4138 * @vma: the vma to operate on 4139 * 4140 * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper 4141 * check/handling on the vma flags. Return 0 if check pass, or <0 for errors. 4142 */ 4143 static inline int seal_check_write(int seals, struct vm_area_struct *vma) 4144 { 4145 if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) { 4146 /* 4147 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4148 * write seals are active. 4149 */ 4150 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4151 return -EPERM; 4152 4153 /* 4154 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as 4155 * MAP_SHARED and read-only, take care to not allow mprotect to 4156 * revert protections on such mappings. Do this only for shared 4157 * mappings. For private mappings, don't need to mask 4158 * VM_MAYWRITE as we still want them to be COW-writable. 4159 */ 4160 if (vma->vm_flags & VM_SHARED) 4161 vm_flags_clear(vma, VM_MAYWRITE); 4162 } 4163 4164 return 0; 4165 } 4166 4167 #ifdef CONFIG_ANON_VMA_NAME 4168 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4169 unsigned long len_in, 4170 struct anon_vma_name *anon_name); 4171 #else 4172 static inline int 4173 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4174 unsigned long len_in, struct anon_vma_name *anon_name) { 4175 return 0; 4176 } 4177 #endif 4178 4179 #ifdef CONFIG_UNACCEPTED_MEMORY 4180 4181 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4182 void accept_memory(phys_addr_t start, phys_addr_t end); 4183 4184 #else 4185 4186 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4187 phys_addr_t end) 4188 { 4189 return false; 4190 } 4191 4192 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4193 { 4194 } 4195 4196 #endif 4197 4198 static inline bool pfn_is_unaccepted_memory(unsigned long pfn) 4199 { 4200 phys_addr_t paddr = pfn << PAGE_SHIFT; 4201 4202 return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE); 4203 } 4204 4205 #endif /* _LINUX_MM_H */ 4206