xref: /linux-6.15/include/linux/mm.h (revision d9fd5a71)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page-flags.h>
28 #include <linux/page_ref.h>
29 #include <linux/memremap.h>
30 #include <linux/overflow.h>
31 #include <linux/sizes.h>
32 #include <linux/sched.h>
33 #include <linux/pgtable.h>
34 #include <linux/kasan.h>
35 
36 struct mempolicy;
37 struct anon_vma;
38 struct anon_vma_chain;
39 struct file_ra_state;
40 struct user_struct;
41 struct writeback_control;
42 struct bdi_writeback;
43 struct pt_regs;
44 
45 extern int sysctl_page_lock_unfairness;
46 
47 void init_mm_internals(void);
48 
49 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
50 extern unsigned long max_mapnr;
51 
52 static inline void set_max_mapnr(unsigned long limit)
53 {
54 	max_mapnr = limit;
55 }
56 #else
57 static inline void set_max_mapnr(unsigned long limit) { }
58 #endif
59 
60 extern atomic_long_t _totalram_pages;
61 static inline unsigned long totalram_pages(void)
62 {
63 	return (unsigned long)atomic_long_read(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_inc(void)
67 {
68 	atomic_long_inc(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_dec(void)
72 {
73 	atomic_long_dec(&_totalram_pages);
74 }
75 
76 static inline void totalram_pages_add(long count)
77 {
78 	atomic_long_add(count, &_totalram_pages);
79 }
80 
81 extern void * high_memory;
82 extern int page_cluster;
83 
84 #ifdef CONFIG_SYSCTL
85 extern int sysctl_legacy_va_layout;
86 #else
87 #define sysctl_legacy_va_layout 0
88 #endif
89 
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
91 extern const int mmap_rnd_bits_min;
92 extern const int mmap_rnd_bits_max;
93 extern int mmap_rnd_bits __read_mostly;
94 #endif
95 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
96 extern const int mmap_rnd_compat_bits_min;
97 extern const int mmap_rnd_compat_bits_max;
98 extern int mmap_rnd_compat_bits __read_mostly;
99 #endif
100 
101 #include <asm/page.h>
102 #include <asm/processor.h>
103 
104 /*
105  * Architectures that support memory tagging (assigning tags to memory regions,
106  * embedding these tags into addresses that point to these memory regions, and
107  * checking that the memory and the pointer tags match on memory accesses)
108  * redefine this macro to strip tags from pointers.
109  * It's defined as noop for arcitectures that don't support memory tagging.
110  */
111 #ifndef untagged_addr
112 #define untagged_addr(addr) (addr)
113 #endif
114 
115 #ifndef __pa_symbol
116 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
117 #endif
118 
119 #ifndef page_to_virt
120 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
121 #endif
122 
123 #ifndef lm_alias
124 #define lm_alias(x)	__va(__pa_symbol(x))
125 #endif
126 
127 /*
128  * To prevent common memory management code establishing
129  * a zero page mapping on a read fault.
130  * This macro should be defined within <asm/pgtable.h>.
131  * s390 does this to prevent multiplexing of hardware bits
132  * related to the physical page in case of virtualization.
133  */
134 #ifndef mm_forbids_zeropage
135 #define mm_forbids_zeropage(X)	(0)
136 #endif
137 
138 /*
139  * On some architectures it is expensive to call memset() for small sizes.
140  * If an architecture decides to implement their own version of
141  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
142  * define their own version of this macro in <asm/pgtable.h>
143  */
144 #if BITS_PER_LONG == 64
145 /* This function must be updated when the size of struct page grows above 80
146  * or reduces below 56. The idea that compiler optimizes out switch()
147  * statement, and only leaves move/store instructions. Also the compiler can
148  * combine write statments if they are both assignments and can be reordered,
149  * this can result in several of the writes here being dropped.
150  */
151 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
152 static inline void __mm_zero_struct_page(struct page *page)
153 {
154 	unsigned long *_pp = (void *)page;
155 
156 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
157 	BUILD_BUG_ON(sizeof(struct page) & 7);
158 	BUILD_BUG_ON(sizeof(struct page) < 56);
159 	BUILD_BUG_ON(sizeof(struct page) > 80);
160 
161 	switch (sizeof(struct page)) {
162 	case 80:
163 		_pp[9] = 0;
164 		fallthrough;
165 	case 72:
166 		_pp[8] = 0;
167 		fallthrough;
168 	case 64:
169 		_pp[7] = 0;
170 		fallthrough;
171 	case 56:
172 		_pp[6] = 0;
173 		_pp[5] = 0;
174 		_pp[4] = 0;
175 		_pp[3] = 0;
176 		_pp[2] = 0;
177 		_pp[1] = 0;
178 		_pp[0] = 0;
179 	}
180 }
181 #else
182 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
183 #endif
184 
185 /*
186  * Default maximum number of active map areas, this limits the number of vmas
187  * per mm struct. Users can overwrite this number by sysctl but there is a
188  * problem.
189  *
190  * When a program's coredump is generated as ELF format, a section is created
191  * per a vma. In ELF, the number of sections is represented in unsigned short.
192  * This means the number of sections should be smaller than 65535 at coredump.
193  * Because the kernel adds some informative sections to a image of program at
194  * generating coredump, we need some margin. The number of extra sections is
195  * 1-3 now and depends on arch. We use "5" as safe margin, here.
196  *
197  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
198  * not a hard limit any more. Although some userspace tools can be surprised by
199  * that.
200  */
201 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
202 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
203 
204 extern int sysctl_max_map_count;
205 
206 extern unsigned long sysctl_user_reserve_kbytes;
207 extern unsigned long sysctl_admin_reserve_kbytes;
208 
209 extern int sysctl_overcommit_memory;
210 extern int sysctl_overcommit_ratio;
211 extern unsigned long sysctl_overcommit_kbytes;
212 
213 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
214 		loff_t *);
215 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
216 		loff_t *);
217 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
218 		loff_t *);
219 /*
220  * Any attempt to mark this function as static leads to build failure
221  * when CONFIG_DEBUG_INFO_BTF is enabled because __add_to_page_cache_locked()
222  * is referred to by BPF code. This must be visible for error injection.
223  */
224 int __add_to_page_cache_locked(struct page *page, struct address_space *mapping,
225 		pgoff_t index, gfp_t gfp, void **shadowp);
226 
227 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
228 
229 /* to align the pointer to the (next) page boundary */
230 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
231 
232 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
233 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
234 
235 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
236 
237 /*
238  * Linux kernel virtual memory manager primitives.
239  * The idea being to have a "virtual" mm in the same way
240  * we have a virtual fs - giving a cleaner interface to the
241  * mm details, and allowing different kinds of memory mappings
242  * (from shared memory to executable loading to arbitrary
243  * mmap() functions).
244  */
245 
246 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
247 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
248 void vm_area_free(struct vm_area_struct *);
249 
250 #ifndef CONFIG_MMU
251 extern struct rb_root nommu_region_tree;
252 extern struct rw_semaphore nommu_region_sem;
253 
254 extern unsigned int kobjsize(const void *objp);
255 #endif
256 
257 /*
258  * vm_flags in vm_area_struct, see mm_types.h.
259  * When changing, update also include/trace/events/mmflags.h
260  */
261 #define VM_NONE		0x00000000
262 
263 #define VM_READ		0x00000001	/* currently active flags */
264 #define VM_WRITE	0x00000002
265 #define VM_EXEC		0x00000004
266 #define VM_SHARED	0x00000008
267 
268 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
269 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
270 #define VM_MAYWRITE	0x00000020
271 #define VM_MAYEXEC	0x00000040
272 #define VM_MAYSHARE	0x00000080
273 
274 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
275 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
276 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
277 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
278 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
279 
280 #define VM_LOCKED	0x00002000
281 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
282 
283 					/* Used by sys_madvise() */
284 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
285 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
286 
287 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
288 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
289 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
290 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
291 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
292 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
293 #define VM_SYNC		0x00800000	/* Synchronous page faults */
294 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
295 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
296 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
297 
298 #ifdef CONFIG_MEM_SOFT_DIRTY
299 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
300 #else
301 # define VM_SOFTDIRTY	0
302 #endif
303 
304 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
305 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
306 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
307 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
308 
309 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
310 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
311 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
312 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
316 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
317 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
318 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
319 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
320 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
321 
322 #ifdef CONFIG_ARCH_HAS_PKEYS
323 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
324 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
325 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
326 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
327 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
328 #ifdef CONFIG_PPC
329 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
330 #else
331 # define VM_PKEY_BIT4  0
332 #endif
333 #endif /* CONFIG_ARCH_HAS_PKEYS */
334 
335 #if defined(CONFIG_X86)
336 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
337 #elif defined(CONFIG_PPC)
338 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
339 #elif defined(CONFIG_PARISC)
340 # define VM_GROWSUP	VM_ARCH_1
341 #elif defined(CONFIG_IA64)
342 # define VM_GROWSUP	VM_ARCH_1
343 #elif defined(CONFIG_SPARC64)
344 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
345 # define VM_ARCH_CLEAR	VM_SPARC_ADI
346 #elif defined(CONFIG_ARM64)
347 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
348 # define VM_ARCH_CLEAR	VM_ARM64_BTI
349 #elif !defined(CONFIG_MMU)
350 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
351 #endif
352 
353 #if defined(CONFIG_ARM64_MTE)
354 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
355 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
356 #else
357 # define VM_MTE		VM_NONE
358 # define VM_MTE_ALLOWED	VM_NONE
359 #endif
360 
361 #ifndef VM_GROWSUP
362 # define VM_GROWSUP	VM_NONE
363 #endif
364 
365 /* Bits set in the VMA until the stack is in its final location */
366 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
367 
368 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
369 
370 /* Common data flag combinations */
371 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
372 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
373 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
374 				 VM_MAYWRITE | VM_MAYEXEC)
375 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
376 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
377 
378 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
379 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
380 #endif
381 
382 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
383 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
384 #endif
385 
386 #ifdef CONFIG_STACK_GROWSUP
387 #define VM_STACK	VM_GROWSUP
388 #else
389 #define VM_STACK	VM_GROWSDOWN
390 #endif
391 
392 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
393 
394 /* VMA basic access permission flags */
395 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
396 
397 
398 /*
399  * Special vmas that are non-mergable, non-mlock()able.
400  */
401 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
402 
403 /* This mask prevents VMA from being scanned with khugepaged */
404 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
405 
406 /* This mask defines which mm->def_flags a process can inherit its parent */
407 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
408 
409 /* This mask is used to clear all the VMA flags used by mlock */
410 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
411 
412 /* Arch-specific flags to clear when updating VM flags on protection change */
413 #ifndef VM_ARCH_CLEAR
414 # define VM_ARCH_CLEAR	VM_NONE
415 #endif
416 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
417 
418 /*
419  * mapping from the currently active vm_flags protection bits (the
420  * low four bits) to a page protection mask..
421  */
422 extern pgprot_t protection_map[16];
423 
424 /**
425  * Fault flag definitions.
426  *
427  * @FAULT_FLAG_WRITE: Fault was a write fault.
428  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
429  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
430  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
431  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
432  * @FAULT_FLAG_TRIED: The fault has been tried once.
433  * @FAULT_FLAG_USER: The fault originated in userspace.
434  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
435  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
436  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
437  *
438  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
439  * whether we would allow page faults to retry by specifying these two
440  * fault flags correctly.  Currently there can be three legal combinations:
441  *
442  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
443  *                              this is the first try
444  *
445  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
446  *                              we've already tried at least once
447  *
448  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
449  *
450  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
451  * be used.  Note that page faults can be allowed to retry for multiple times,
452  * in which case we'll have an initial fault with flags (a) then later on
453  * continuous faults with flags (b).  We should always try to detect pending
454  * signals before a retry to make sure the continuous page faults can still be
455  * interrupted if necessary.
456  */
457 #define FAULT_FLAG_WRITE			0x01
458 #define FAULT_FLAG_MKWRITE			0x02
459 #define FAULT_FLAG_ALLOW_RETRY			0x04
460 #define FAULT_FLAG_RETRY_NOWAIT			0x08
461 #define FAULT_FLAG_KILLABLE			0x10
462 #define FAULT_FLAG_TRIED			0x20
463 #define FAULT_FLAG_USER				0x40
464 #define FAULT_FLAG_REMOTE			0x80
465 #define FAULT_FLAG_INSTRUCTION  		0x100
466 #define FAULT_FLAG_INTERRUPTIBLE		0x200
467 
468 /*
469  * The default fault flags that should be used by most of the
470  * arch-specific page fault handlers.
471  */
472 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
473 			     FAULT_FLAG_KILLABLE | \
474 			     FAULT_FLAG_INTERRUPTIBLE)
475 
476 /**
477  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
478  *
479  * This is mostly used for places where we want to try to avoid taking
480  * the mmap_lock for too long a time when waiting for another condition
481  * to change, in which case we can try to be polite to release the
482  * mmap_lock in the first round to avoid potential starvation of other
483  * processes that would also want the mmap_lock.
484  *
485  * Return: true if the page fault allows retry and this is the first
486  * attempt of the fault handling; false otherwise.
487  */
488 static inline bool fault_flag_allow_retry_first(unsigned int flags)
489 {
490 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
491 	    (!(flags & FAULT_FLAG_TRIED));
492 }
493 
494 #define FAULT_FLAG_TRACE \
495 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
496 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
497 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
498 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
499 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
500 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
501 	{ FAULT_FLAG_USER,		"USER" }, \
502 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
503 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
504 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
505 
506 /*
507  * vm_fault is filled by the pagefault handler and passed to the vma's
508  * ->fault function. The vma's ->fault is responsible for returning a bitmask
509  * of VM_FAULT_xxx flags that give details about how the fault was handled.
510  *
511  * MM layer fills up gfp_mask for page allocations but fault handler might
512  * alter it if its implementation requires a different allocation context.
513  *
514  * pgoff should be used in favour of virtual_address, if possible.
515  */
516 struct vm_fault {
517 	const struct {
518 		struct vm_area_struct *vma;	/* Target VMA */
519 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
520 		pgoff_t pgoff;			/* Logical page offset based on vma */
521 		unsigned long address;		/* Faulting virtual address */
522 	};
523 	unsigned int flags;		/* FAULT_FLAG_xxx flags
524 					 * XXX: should really be 'const' */
525 	pmd_t *pmd;			/* Pointer to pmd entry matching
526 					 * the 'address' */
527 	pud_t *pud;			/* Pointer to pud entry matching
528 					 * the 'address'
529 					 */
530 	pte_t orig_pte;			/* Value of PTE at the time of fault */
531 
532 	struct page *cow_page;		/* Page handler may use for COW fault */
533 	struct page *page;		/* ->fault handlers should return a
534 					 * page here, unless VM_FAULT_NOPAGE
535 					 * is set (which is also implied by
536 					 * VM_FAULT_ERROR).
537 					 */
538 	/* These three entries are valid only while holding ptl lock */
539 	pte_t *pte;			/* Pointer to pte entry matching
540 					 * the 'address'. NULL if the page
541 					 * table hasn't been allocated.
542 					 */
543 	spinlock_t *ptl;		/* Page table lock.
544 					 * Protects pte page table if 'pte'
545 					 * is not NULL, otherwise pmd.
546 					 */
547 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
548 					 * vm_ops->map_pages() sets up a page
549 					 * table from atomic context.
550 					 * do_fault_around() pre-allocates
551 					 * page table to avoid allocation from
552 					 * atomic context.
553 					 */
554 };
555 
556 /* page entry size for vm->huge_fault() */
557 enum page_entry_size {
558 	PE_SIZE_PTE = 0,
559 	PE_SIZE_PMD,
560 	PE_SIZE_PUD,
561 };
562 
563 /*
564  * These are the virtual MM functions - opening of an area, closing and
565  * unmapping it (needed to keep files on disk up-to-date etc), pointer
566  * to the functions called when a no-page or a wp-page exception occurs.
567  */
568 struct vm_operations_struct {
569 	void (*open)(struct vm_area_struct * area);
570 	void (*close)(struct vm_area_struct * area);
571 	/* Called any time before splitting to check if it's allowed */
572 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
573 	int (*mremap)(struct vm_area_struct *area, unsigned long flags);
574 	/*
575 	 * Called by mprotect() to make driver-specific permission
576 	 * checks before mprotect() is finalised.   The VMA must not
577 	 * be modified.  Returns 0 if eprotect() can proceed.
578 	 */
579 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
580 			unsigned long end, unsigned long newflags);
581 	vm_fault_t (*fault)(struct vm_fault *vmf);
582 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
583 			enum page_entry_size pe_size);
584 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
585 			pgoff_t start_pgoff, pgoff_t end_pgoff);
586 	unsigned long (*pagesize)(struct vm_area_struct * area);
587 
588 	/* notification that a previously read-only page is about to become
589 	 * writable, if an error is returned it will cause a SIGBUS */
590 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
591 
592 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
593 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
594 
595 	/* called by access_process_vm when get_user_pages() fails, typically
596 	 * for use by special VMAs. See also generic_access_phys() for a generic
597 	 * implementation useful for any iomem mapping.
598 	 */
599 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
600 		      void *buf, int len, int write);
601 
602 	/* Called by the /proc/PID/maps code to ask the vma whether it
603 	 * has a special name.  Returning non-NULL will also cause this
604 	 * vma to be dumped unconditionally. */
605 	const char *(*name)(struct vm_area_struct *vma);
606 
607 #ifdef CONFIG_NUMA
608 	/*
609 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
610 	 * to hold the policy upon return.  Caller should pass NULL @new to
611 	 * remove a policy and fall back to surrounding context--i.e. do not
612 	 * install a MPOL_DEFAULT policy, nor the task or system default
613 	 * mempolicy.
614 	 */
615 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
616 
617 	/*
618 	 * get_policy() op must add reference [mpol_get()] to any policy at
619 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
620 	 * in mm/mempolicy.c will do this automatically.
621 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
622 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
623 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
624 	 * must return NULL--i.e., do not "fallback" to task or system default
625 	 * policy.
626 	 */
627 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
628 					unsigned long addr);
629 #endif
630 	/*
631 	 * Called by vm_normal_page() for special PTEs to find the
632 	 * page for @addr.  This is useful if the default behavior
633 	 * (using pte_page()) would not find the correct page.
634 	 */
635 	struct page *(*find_special_page)(struct vm_area_struct *vma,
636 					  unsigned long addr);
637 };
638 
639 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
640 {
641 	static const struct vm_operations_struct dummy_vm_ops = {};
642 
643 	memset(vma, 0, sizeof(*vma));
644 	vma->vm_mm = mm;
645 	vma->vm_ops = &dummy_vm_ops;
646 	INIT_LIST_HEAD(&vma->anon_vma_chain);
647 }
648 
649 static inline void vma_set_anonymous(struct vm_area_struct *vma)
650 {
651 	vma->vm_ops = NULL;
652 }
653 
654 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
655 {
656 	return !vma->vm_ops;
657 }
658 
659 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
660 {
661 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
662 
663 	if (!maybe_stack)
664 		return false;
665 
666 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
667 						VM_STACK_INCOMPLETE_SETUP)
668 		return true;
669 
670 	return false;
671 }
672 
673 static inline bool vma_is_foreign(struct vm_area_struct *vma)
674 {
675 	if (!current->mm)
676 		return true;
677 
678 	if (current->mm != vma->vm_mm)
679 		return true;
680 
681 	return false;
682 }
683 
684 static inline bool vma_is_accessible(struct vm_area_struct *vma)
685 {
686 	return vma->vm_flags & VM_ACCESS_FLAGS;
687 }
688 
689 #ifdef CONFIG_SHMEM
690 /*
691  * The vma_is_shmem is not inline because it is used only by slow
692  * paths in userfault.
693  */
694 bool vma_is_shmem(struct vm_area_struct *vma);
695 #else
696 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
697 #endif
698 
699 int vma_is_stack_for_current(struct vm_area_struct *vma);
700 
701 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
702 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
703 
704 struct mmu_gather;
705 struct inode;
706 
707 #include <linux/huge_mm.h>
708 
709 /*
710  * Methods to modify the page usage count.
711  *
712  * What counts for a page usage:
713  * - cache mapping   (page->mapping)
714  * - private data    (page->private)
715  * - page mapped in a task's page tables, each mapping
716  *   is counted separately
717  *
718  * Also, many kernel routines increase the page count before a critical
719  * routine so they can be sure the page doesn't go away from under them.
720  */
721 
722 /*
723  * Drop a ref, return true if the refcount fell to zero (the page has no users)
724  */
725 static inline int put_page_testzero(struct page *page)
726 {
727 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
728 	return page_ref_dec_and_test(page);
729 }
730 
731 /*
732  * Try to grab a ref unless the page has a refcount of zero, return false if
733  * that is the case.
734  * This can be called when MMU is off so it must not access
735  * any of the virtual mappings.
736  */
737 static inline int get_page_unless_zero(struct page *page)
738 {
739 	return page_ref_add_unless(page, 1, 0);
740 }
741 
742 extern int page_is_ram(unsigned long pfn);
743 
744 enum {
745 	REGION_INTERSECTS,
746 	REGION_DISJOINT,
747 	REGION_MIXED,
748 };
749 
750 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
751 		      unsigned long desc);
752 
753 /* Support for virtually mapped pages */
754 struct page *vmalloc_to_page(const void *addr);
755 unsigned long vmalloc_to_pfn(const void *addr);
756 
757 /*
758  * Determine if an address is within the vmalloc range
759  *
760  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
761  * is no special casing required.
762  */
763 
764 #ifndef is_ioremap_addr
765 #define is_ioremap_addr(x) is_vmalloc_addr(x)
766 #endif
767 
768 #ifdef CONFIG_MMU
769 extern bool is_vmalloc_addr(const void *x);
770 extern int is_vmalloc_or_module_addr(const void *x);
771 #else
772 static inline bool is_vmalloc_addr(const void *x)
773 {
774 	return false;
775 }
776 static inline int is_vmalloc_or_module_addr(const void *x)
777 {
778 	return 0;
779 }
780 #endif
781 
782 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
783 static inline void *kvmalloc(size_t size, gfp_t flags)
784 {
785 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
786 }
787 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
788 {
789 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
790 }
791 static inline void *kvzalloc(size_t size, gfp_t flags)
792 {
793 	return kvmalloc(size, flags | __GFP_ZERO);
794 }
795 
796 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
797 {
798 	size_t bytes;
799 
800 	if (unlikely(check_mul_overflow(n, size, &bytes)))
801 		return NULL;
802 
803 	return kvmalloc(bytes, flags);
804 }
805 
806 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
807 {
808 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
809 }
810 
811 extern void kvfree(const void *addr);
812 extern void kvfree_sensitive(const void *addr, size_t len);
813 
814 static inline int head_compound_mapcount(struct page *head)
815 {
816 	return atomic_read(compound_mapcount_ptr(head)) + 1;
817 }
818 
819 /*
820  * Mapcount of compound page as a whole, does not include mapped sub-pages.
821  *
822  * Must be called only for compound pages or any their tail sub-pages.
823  */
824 static inline int compound_mapcount(struct page *page)
825 {
826 	VM_BUG_ON_PAGE(!PageCompound(page), page);
827 	page = compound_head(page);
828 	return head_compound_mapcount(page);
829 }
830 
831 /*
832  * The atomic page->_mapcount, starts from -1: so that transitions
833  * both from it and to it can be tracked, using atomic_inc_and_test
834  * and atomic_add_negative(-1).
835  */
836 static inline void page_mapcount_reset(struct page *page)
837 {
838 	atomic_set(&(page)->_mapcount, -1);
839 }
840 
841 int __page_mapcount(struct page *page);
842 
843 /*
844  * Mapcount of 0-order page; when compound sub-page, includes
845  * compound_mapcount().
846  *
847  * Result is undefined for pages which cannot be mapped into userspace.
848  * For example SLAB or special types of pages. See function page_has_type().
849  * They use this place in struct page differently.
850  */
851 static inline int page_mapcount(struct page *page)
852 {
853 	if (unlikely(PageCompound(page)))
854 		return __page_mapcount(page);
855 	return atomic_read(&page->_mapcount) + 1;
856 }
857 
858 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
859 int total_mapcount(struct page *page);
860 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
861 #else
862 static inline int total_mapcount(struct page *page)
863 {
864 	return page_mapcount(page);
865 }
866 static inline int page_trans_huge_mapcount(struct page *page,
867 					   int *total_mapcount)
868 {
869 	int mapcount = page_mapcount(page);
870 	if (total_mapcount)
871 		*total_mapcount = mapcount;
872 	return mapcount;
873 }
874 #endif
875 
876 static inline struct page *virt_to_head_page(const void *x)
877 {
878 	struct page *page = virt_to_page(x);
879 
880 	return compound_head(page);
881 }
882 
883 void __put_page(struct page *page);
884 
885 void put_pages_list(struct list_head *pages);
886 
887 void split_page(struct page *page, unsigned int order);
888 
889 /*
890  * Compound pages have a destructor function.  Provide a
891  * prototype for that function and accessor functions.
892  * These are _only_ valid on the head of a compound page.
893  */
894 typedef void compound_page_dtor(struct page *);
895 
896 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
897 enum compound_dtor_id {
898 	NULL_COMPOUND_DTOR,
899 	COMPOUND_PAGE_DTOR,
900 #ifdef CONFIG_HUGETLB_PAGE
901 	HUGETLB_PAGE_DTOR,
902 #endif
903 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
904 	TRANSHUGE_PAGE_DTOR,
905 #endif
906 	NR_COMPOUND_DTORS,
907 };
908 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
909 
910 static inline void set_compound_page_dtor(struct page *page,
911 		enum compound_dtor_id compound_dtor)
912 {
913 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
914 	page[1].compound_dtor = compound_dtor;
915 }
916 
917 static inline void destroy_compound_page(struct page *page)
918 {
919 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
920 	compound_page_dtors[page[1].compound_dtor](page);
921 }
922 
923 static inline unsigned int compound_order(struct page *page)
924 {
925 	if (!PageHead(page))
926 		return 0;
927 	return page[1].compound_order;
928 }
929 
930 static inline bool hpage_pincount_available(struct page *page)
931 {
932 	/*
933 	 * Can the page->hpage_pinned_refcount field be used? That field is in
934 	 * the 3rd page of the compound page, so the smallest (2-page) compound
935 	 * pages cannot support it.
936 	 */
937 	page = compound_head(page);
938 	return PageCompound(page) && compound_order(page) > 1;
939 }
940 
941 static inline int head_compound_pincount(struct page *head)
942 {
943 	return atomic_read(compound_pincount_ptr(head));
944 }
945 
946 static inline int compound_pincount(struct page *page)
947 {
948 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
949 	page = compound_head(page);
950 	return head_compound_pincount(page);
951 }
952 
953 static inline void set_compound_order(struct page *page, unsigned int order)
954 {
955 	page[1].compound_order = order;
956 	page[1].compound_nr = 1U << order;
957 }
958 
959 /* Returns the number of pages in this potentially compound page. */
960 static inline unsigned long compound_nr(struct page *page)
961 {
962 	if (!PageHead(page))
963 		return 1;
964 	return page[1].compound_nr;
965 }
966 
967 /* Returns the number of bytes in this potentially compound page. */
968 static inline unsigned long page_size(struct page *page)
969 {
970 	return PAGE_SIZE << compound_order(page);
971 }
972 
973 /* Returns the number of bits needed for the number of bytes in a page */
974 static inline unsigned int page_shift(struct page *page)
975 {
976 	return PAGE_SHIFT + compound_order(page);
977 }
978 
979 void free_compound_page(struct page *page);
980 
981 #ifdef CONFIG_MMU
982 /*
983  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
984  * servicing faults for write access.  In the normal case, do always want
985  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
986  * that do not have writing enabled, when used by access_process_vm.
987  */
988 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
989 {
990 	if (likely(vma->vm_flags & VM_WRITE))
991 		pte = pte_mkwrite(pte);
992 	return pte;
993 }
994 
995 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
996 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
997 
998 vm_fault_t finish_fault(struct vm_fault *vmf);
999 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1000 #endif
1001 
1002 /*
1003  * Multiple processes may "see" the same page. E.g. for untouched
1004  * mappings of /dev/null, all processes see the same page full of
1005  * zeroes, and text pages of executables and shared libraries have
1006  * only one copy in memory, at most, normally.
1007  *
1008  * For the non-reserved pages, page_count(page) denotes a reference count.
1009  *   page_count() == 0 means the page is free. page->lru is then used for
1010  *   freelist management in the buddy allocator.
1011  *   page_count() > 0  means the page has been allocated.
1012  *
1013  * Pages are allocated by the slab allocator in order to provide memory
1014  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1015  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1016  * unless a particular usage is carefully commented. (the responsibility of
1017  * freeing the kmalloc memory is the caller's, of course).
1018  *
1019  * A page may be used by anyone else who does a __get_free_page().
1020  * In this case, page_count still tracks the references, and should only
1021  * be used through the normal accessor functions. The top bits of page->flags
1022  * and page->virtual store page management information, but all other fields
1023  * are unused and could be used privately, carefully. The management of this
1024  * page is the responsibility of the one who allocated it, and those who have
1025  * subsequently been given references to it.
1026  *
1027  * The other pages (we may call them "pagecache pages") are completely
1028  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1029  * The following discussion applies only to them.
1030  *
1031  * A pagecache page contains an opaque `private' member, which belongs to the
1032  * page's address_space. Usually, this is the address of a circular list of
1033  * the page's disk buffers. PG_private must be set to tell the VM to call
1034  * into the filesystem to release these pages.
1035  *
1036  * A page may belong to an inode's memory mapping. In this case, page->mapping
1037  * is the pointer to the inode, and page->index is the file offset of the page,
1038  * in units of PAGE_SIZE.
1039  *
1040  * If pagecache pages are not associated with an inode, they are said to be
1041  * anonymous pages. These may become associated with the swapcache, and in that
1042  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1043  *
1044  * In either case (swapcache or inode backed), the pagecache itself holds one
1045  * reference to the page. Setting PG_private should also increment the
1046  * refcount. The each user mapping also has a reference to the page.
1047  *
1048  * The pagecache pages are stored in a per-mapping radix tree, which is
1049  * rooted at mapping->i_pages, and indexed by offset.
1050  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1051  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1052  *
1053  * All pagecache pages may be subject to I/O:
1054  * - inode pages may need to be read from disk,
1055  * - inode pages which have been modified and are MAP_SHARED may need
1056  *   to be written back to the inode on disk,
1057  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1058  *   modified may need to be swapped out to swap space and (later) to be read
1059  *   back into memory.
1060  */
1061 
1062 /*
1063  * The zone field is never updated after free_area_init_core()
1064  * sets it, so none of the operations on it need to be atomic.
1065  */
1066 
1067 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1068 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1069 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1070 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1071 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1072 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1073 
1074 /*
1075  * Define the bit shifts to access each section.  For non-existent
1076  * sections we define the shift as 0; that plus a 0 mask ensures
1077  * the compiler will optimise away reference to them.
1078  */
1079 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1080 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1081 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1082 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1083 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1084 
1085 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1086 #ifdef NODE_NOT_IN_PAGE_FLAGS
1087 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1088 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1089 						SECTIONS_PGOFF : ZONES_PGOFF)
1090 #else
1091 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1092 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1093 						NODES_PGOFF : ZONES_PGOFF)
1094 #endif
1095 
1096 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1097 
1098 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1099 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1100 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1101 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1102 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1103 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1104 
1105 static inline enum zone_type page_zonenum(const struct page *page)
1106 {
1107 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1108 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1109 }
1110 
1111 #ifdef CONFIG_ZONE_DEVICE
1112 static inline bool is_zone_device_page(const struct page *page)
1113 {
1114 	return page_zonenum(page) == ZONE_DEVICE;
1115 }
1116 extern void memmap_init_zone_device(struct zone *, unsigned long,
1117 				    unsigned long, struct dev_pagemap *);
1118 #else
1119 static inline bool is_zone_device_page(const struct page *page)
1120 {
1121 	return false;
1122 }
1123 #endif
1124 
1125 #ifdef CONFIG_DEV_PAGEMAP_OPS
1126 void free_devmap_managed_page(struct page *page);
1127 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1128 
1129 static inline bool page_is_devmap_managed(struct page *page)
1130 {
1131 	if (!static_branch_unlikely(&devmap_managed_key))
1132 		return false;
1133 	if (!is_zone_device_page(page))
1134 		return false;
1135 	switch (page->pgmap->type) {
1136 	case MEMORY_DEVICE_PRIVATE:
1137 	case MEMORY_DEVICE_FS_DAX:
1138 		return true;
1139 	default:
1140 		break;
1141 	}
1142 	return false;
1143 }
1144 
1145 void put_devmap_managed_page(struct page *page);
1146 
1147 #else /* CONFIG_DEV_PAGEMAP_OPS */
1148 static inline bool page_is_devmap_managed(struct page *page)
1149 {
1150 	return false;
1151 }
1152 
1153 static inline void put_devmap_managed_page(struct page *page)
1154 {
1155 }
1156 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1157 
1158 static inline bool is_device_private_page(const struct page *page)
1159 {
1160 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1161 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1162 		is_zone_device_page(page) &&
1163 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1164 }
1165 
1166 static inline bool is_pci_p2pdma_page(const struct page *page)
1167 {
1168 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1169 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1170 		is_zone_device_page(page) &&
1171 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1172 }
1173 
1174 /* 127: arbitrary random number, small enough to assemble well */
1175 #define page_ref_zero_or_close_to_overflow(page) \
1176 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1177 
1178 static inline void get_page(struct page *page)
1179 {
1180 	page = compound_head(page);
1181 	/*
1182 	 * Getting a normal page or the head of a compound page
1183 	 * requires to already have an elevated page->_refcount.
1184 	 */
1185 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1186 	page_ref_inc(page);
1187 }
1188 
1189 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1190 
1191 static inline __must_check bool try_get_page(struct page *page)
1192 {
1193 	page = compound_head(page);
1194 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1195 		return false;
1196 	page_ref_inc(page);
1197 	return true;
1198 }
1199 
1200 static inline void put_page(struct page *page)
1201 {
1202 	page = compound_head(page);
1203 
1204 	/*
1205 	 * For devmap managed pages we need to catch refcount transition from
1206 	 * 2 to 1, when refcount reach one it means the page is free and we
1207 	 * need to inform the device driver through callback. See
1208 	 * include/linux/memremap.h and HMM for details.
1209 	 */
1210 	if (page_is_devmap_managed(page)) {
1211 		put_devmap_managed_page(page);
1212 		return;
1213 	}
1214 
1215 	if (put_page_testzero(page))
1216 		__put_page(page);
1217 }
1218 
1219 /*
1220  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1221  * the page's refcount so that two separate items are tracked: the original page
1222  * reference count, and also a new count of how many pin_user_pages() calls were
1223  * made against the page. ("gup-pinned" is another term for the latter).
1224  *
1225  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1226  * distinct from normal pages. As such, the unpin_user_page() call (and its
1227  * variants) must be used in order to release gup-pinned pages.
1228  *
1229  * Choice of value:
1230  *
1231  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1232  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1233  * simpler, due to the fact that adding an even power of two to the page
1234  * refcount has the effect of using only the upper N bits, for the code that
1235  * counts up using the bias value. This means that the lower bits are left for
1236  * the exclusive use of the original code that increments and decrements by one
1237  * (or at least, by much smaller values than the bias value).
1238  *
1239  * Of course, once the lower bits overflow into the upper bits (and this is
1240  * OK, because subtraction recovers the original values), then visual inspection
1241  * no longer suffices to directly view the separate counts. However, for normal
1242  * applications that don't have huge page reference counts, this won't be an
1243  * issue.
1244  *
1245  * Locking: the lockless algorithm described in page_cache_get_speculative()
1246  * and page_cache_gup_pin_speculative() provides safe operation for
1247  * get_user_pages and page_mkclean and other calls that race to set up page
1248  * table entries.
1249  */
1250 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1251 
1252 void unpin_user_page(struct page *page);
1253 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1254 				 bool make_dirty);
1255 void unpin_user_pages(struct page **pages, unsigned long npages);
1256 
1257 /**
1258  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1259  *
1260  * This function checks if a page has been pinned via a call to
1261  * pin_user_pages*().
1262  *
1263  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1264  * because it means "definitely not pinned for DMA", but true means "probably
1265  * pinned for DMA, but possibly a false positive due to having at least
1266  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1267  *
1268  * False positives are OK, because: a) it's unlikely for a page to get that many
1269  * refcounts, and b) all the callers of this routine are expected to be able to
1270  * deal gracefully with a false positive.
1271  *
1272  * For huge pages, the result will be exactly correct. That's because we have
1273  * more tracking data available: the 3rd struct page in the compound page is
1274  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1275  * scheme).
1276  *
1277  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1278  *
1279  * @page:	pointer to page to be queried.
1280  * @Return:	True, if it is likely that the page has been "dma-pinned".
1281  *		False, if the page is definitely not dma-pinned.
1282  */
1283 static inline bool page_maybe_dma_pinned(struct page *page)
1284 {
1285 	if (hpage_pincount_available(page))
1286 		return compound_pincount(page) > 0;
1287 
1288 	/*
1289 	 * page_ref_count() is signed. If that refcount overflows, then
1290 	 * page_ref_count() returns a negative value, and callers will avoid
1291 	 * further incrementing the refcount.
1292 	 *
1293 	 * Here, for that overflow case, use the signed bit to count a little
1294 	 * bit higher via unsigned math, and thus still get an accurate result.
1295 	 */
1296 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1297 		GUP_PIN_COUNTING_BIAS;
1298 }
1299 
1300 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1301 #define SECTION_IN_PAGE_FLAGS
1302 #endif
1303 
1304 /*
1305  * The identification function is mainly used by the buddy allocator for
1306  * determining if two pages could be buddies. We are not really identifying
1307  * the zone since we could be using the section number id if we do not have
1308  * node id available in page flags.
1309  * We only guarantee that it will return the same value for two combinable
1310  * pages in a zone.
1311  */
1312 static inline int page_zone_id(struct page *page)
1313 {
1314 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1315 }
1316 
1317 #ifdef NODE_NOT_IN_PAGE_FLAGS
1318 extern int page_to_nid(const struct page *page);
1319 #else
1320 static inline int page_to_nid(const struct page *page)
1321 {
1322 	struct page *p = (struct page *)page;
1323 
1324 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1325 }
1326 #endif
1327 
1328 #ifdef CONFIG_NUMA_BALANCING
1329 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1330 {
1331 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1332 }
1333 
1334 static inline int cpupid_to_pid(int cpupid)
1335 {
1336 	return cpupid & LAST__PID_MASK;
1337 }
1338 
1339 static inline int cpupid_to_cpu(int cpupid)
1340 {
1341 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1342 }
1343 
1344 static inline int cpupid_to_nid(int cpupid)
1345 {
1346 	return cpu_to_node(cpupid_to_cpu(cpupid));
1347 }
1348 
1349 static inline bool cpupid_pid_unset(int cpupid)
1350 {
1351 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1352 }
1353 
1354 static inline bool cpupid_cpu_unset(int cpupid)
1355 {
1356 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1357 }
1358 
1359 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1360 {
1361 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1362 }
1363 
1364 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1365 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1366 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1367 {
1368 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1369 }
1370 
1371 static inline int page_cpupid_last(struct page *page)
1372 {
1373 	return page->_last_cpupid;
1374 }
1375 static inline void page_cpupid_reset_last(struct page *page)
1376 {
1377 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1378 }
1379 #else
1380 static inline int page_cpupid_last(struct page *page)
1381 {
1382 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1383 }
1384 
1385 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1386 
1387 static inline void page_cpupid_reset_last(struct page *page)
1388 {
1389 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1390 }
1391 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1392 #else /* !CONFIG_NUMA_BALANCING */
1393 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1394 {
1395 	return page_to_nid(page); /* XXX */
1396 }
1397 
1398 static inline int page_cpupid_last(struct page *page)
1399 {
1400 	return page_to_nid(page); /* XXX */
1401 }
1402 
1403 static inline int cpupid_to_nid(int cpupid)
1404 {
1405 	return -1;
1406 }
1407 
1408 static inline int cpupid_to_pid(int cpupid)
1409 {
1410 	return -1;
1411 }
1412 
1413 static inline int cpupid_to_cpu(int cpupid)
1414 {
1415 	return -1;
1416 }
1417 
1418 static inline int cpu_pid_to_cpupid(int nid, int pid)
1419 {
1420 	return -1;
1421 }
1422 
1423 static inline bool cpupid_pid_unset(int cpupid)
1424 {
1425 	return true;
1426 }
1427 
1428 static inline void page_cpupid_reset_last(struct page *page)
1429 {
1430 }
1431 
1432 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1433 {
1434 	return false;
1435 }
1436 #endif /* CONFIG_NUMA_BALANCING */
1437 
1438 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1439 
1440 static inline u8 page_kasan_tag(const struct page *page)
1441 {
1442 	if (kasan_enabled())
1443 		return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1444 	return 0xff;
1445 }
1446 
1447 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1448 {
1449 	if (kasan_enabled()) {
1450 		page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1451 		page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1452 	}
1453 }
1454 
1455 static inline void page_kasan_tag_reset(struct page *page)
1456 {
1457 	if (kasan_enabled())
1458 		page_kasan_tag_set(page, 0xff);
1459 }
1460 
1461 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1462 
1463 static inline u8 page_kasan_tag(const struct page *page)
1464 {
1465 	return 0xff;
1466 }
1467 
1468 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1469 static inline void page_kasan_tag_reset(struct page *page) { }
1470 
1471 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1472 
1473 static inline struct zone *page_zone(const struct page *page)
1474 {
1475 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1476 }
1477 
1478 static inline pg_data_t *page_pgdat(const struct page *page)
1479 {
1480 	return NODE_DATA(page_to_nid(page));
1481 }
1482 
1483 #ifdef SECTION_IN_PAGE_FLAGS
1484 static inline void set_page_section(struct page *page, unsigned long section)
1485 {
1486 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1487 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1488 }
1489 
1490 static inline unsigned long page_to_section(const struct page *page)
1491 {
1492 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1493 }
1494 #endif
1495 
1496 static inline void set_page_zone(struct page *page, enum zone_type zone)
1497 {
1498 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1499 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1500 }
1501 
1502 static inline void set_page_node(struct page *page, unsigned long node)
1503 {
1504 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1505 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1506 }
1507 
1508 static inline void set_page_links(struct page *page, enum zone_type zone,
1509 	unsigned long node, unsigned long pfn)
1510 {
1511 	set_page_zone(page, zone);
1512 	set_page_node(page, node);
1513 #ifdef SECTION_IN_PAGE_FLAGS
1514 	set_page_section(page, pfn_to_section_nr(pfn));
1515 #endif
1516 }
1517 
1518 /*
1519  * Some inline functions in vmstat.h depend on page_zone()
1520  */
1521 #include <linux/vmstat.h>
1522 
1523 static __always_inline void *lowmem_page_address(const struct page *page)
1524 {
1525 	return page_to_virt(page);
1526 }
1527 
1528 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1529 #define HASHED_PAGE_VIRTUAL
1530 #endif
1531 
1532 #if defined(WANT_PAGE_VIRTUAL)
1533 static inline void *page_address(const struct page *page)
1534 {
1535 	return page->virtual;
1536 }
1537 static inline void set_page_address(struct page *page, void *address)
1538 {
1539 	page->virtual = address;
1540 }
1541 #define page_address_init()  do { } while(0)
1542 #endif
1543 
1544 #if defined(HASHED_PAGE_VIRTUAL)
1545 void *page_address(const struct page *page);
1546 void set_page_address(struct page *page, void *virtual);
1547 void page_address_init(void);
1548 #endif
1549 
1550 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1551 #define page_address(page) lowmem_page_address(page)
1552 #define set_page_address(page, address)  do { } while(0)
1553 #define page_address_init()  do { } while(0)
1554 #endif
1555 
1556 extern void *page_rmapping(struct page *page);
1557 extern struct anon_vma *page_anon_vma(struct page *page);
1558 extern struct address_space *page_mapping(struct page *page);
1559 
1560 extern struct address_space *__page_file_mapping(struct page *);
1561 
1562 static inline
1563 struct address_space *page_file_mapping(struct page *page)
1564 {
1565 	if (unlikely(PageSwapCache(page)))
1566 		return __page_file_mapping(page);
1567 
1568 	return page->mapping;
1569 }
1570 
1571 extern pgoff_t __page_file_index(struct page *page);
1572 
1573 /*
1574  * Return the pagecache index of the passed page.  Regular pagecache pages
1575  * use ->index whereas swapcache pages use swp_offset(->private)
1576  */
1577 static inline pgoff_t page_index(struct page *page)
1578 {
1579 	if (unlikely(PageSwapCache(page)))
1580 		return __page_file_index(page);
1581 	return page->index;
1582 }
1583 
1584 bool page_mapped(struct page *page);
1585 struct address_space *page_mapping(struct page *page);
1586 struct address_space *page_mapping_file(struct page *page);
1587 
1588 /*
1589  * Return true only if the page has been allocated with
1590  * ALLOC_NO_WATERMARKS and the low watermark was not
1591  * met implying that the system is under some pressure.
1592  */
1593 static inline bool page_is_pfmemalloc(const struct page *page)
1594 {
1595 	/*
1596 	 * Page index cannot be this large so this must be
1597 	 * a pfmemalloc page.
1598 	 */
1599 	return page->index == -1UL;
1600 }
1601 
1602 /*
1603  * Only to be called by the page allocator on a freshly allocated
1604  * page.
1605  */
1606 static inline void set_page_pfmemalloc(struct page *page)
1607 {
1608 	page->index = -1UL;
1609 }
1610 
1611 static inline void clear_page_pfmemalloc(struct page *page)
1612 {
1613 	page->index = 0;
1614 }
1615 
1616 /*
1617  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1618  */
1619 extern void pagefault_out_of_memory(void);
1620 
1621 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1622 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1623 
1624 /*
1625  * Flags passed to show_mem() and show_free_areas() to suppress output in
1626  * various contexts.
1627  */
1628 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1629 
1630 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1631 
1632 #ifdef CONFIG_MMU
1633 extern bool can_do_mlock(void);
1634 #else
1635 static inline bool can_do_mlock(void) { return false; }
1636 #endif
1637 extern int user_shm_lock(size_t, struct user_struct *);
1638 extern void user_shm_unlock(size_t, struct user_struct *);
1639 
1640 /*
1641  * Parameter block passed down to zap_pte_range in exceptional cases.
1642  */
1643 struct zap_details {
1644 	struct address_space *check_mapping;	/* Check page->mapping if set */
1645 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1646 	pgoff_t last_index;			/* Highest page->index to unmap */
1647 };
1648 
1649 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1650 			     pte_t pte);
1651 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1652 				pmd_t pmd);
1653 
1654 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1655 		  unsigned long size);
1656 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1657 		    unsigned long size);
1658 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1659 		unsigned long start, unsigned long end);
1660 
1661 struct mmu_notifier_range;
1662 
1663 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1664 		unsigned long end, unsigned long floor, unsigned long ceiling);
1665 int
1666 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1667 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address,
1668 			  struct mmu_notifier_range *range, pte_t **ptepp,
1669 			  pmd_t **pmdpp, spinlock_t **ptlp);
1670 int follow_pte(struct mm_struct *mm, unsigned long address,
1671 	       pte_t **ptepp, spinlock_t **ptlp);
1672 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1673 	unsigned long *pfn);
1674 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1675 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1676 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1677 			void *buf, int len, int write);
1678 
1679 extern void truncate_pagecache(struct inode *inode, loff_t new);
1680 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1681 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1682 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1683 int truncate_inode_page(struct address_space *mapping, struct page *page);
1684 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1685 int invalidate_inode_page(struct page *page);
1686 
1687 #ifdef CONFIG_MMU
1688 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1689 				  unsigned long address, unsigned int flags,
1690 				  struct pt_regs *regs);
1691 extern int fixup_user_fault(struct mm_struct *mm,
1692 			    unsigned long address, unsigned int fault_flags,
1693 			    bool *unlocked);
1694 void unmap_mapping_pages(struct address_space *mapping,
1695 		pgoff_t start, pgoff_t nr, bool even_cows);
1696 void unmap_mapping_range(struct address_space *mapping,
1697 		loff_t const holebegin, loff_t const holelen, int even_cows);
1698 #else
1699 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1700 					 unsigned long address, unsigned int flags,
1701 					 struct pt_regs *regs)
1702 {
1703 	/* should never happen if there's no MMU */
1704 	BUG();
1705 	return VM_FAULT_SIGBUS;
1706 }
1707 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1708 		unsigned int fault_flags, bool *unlocked)
1709 {
1710 	/* should never happen if there's no MMU */
1711 	BUG();
1712 	return -EFAULT;
1713 }
1714 static inline void unmap_mapping_pages(struct address_space *mapping,
1715 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1716 static inline void unmap_mapping_range(struct address_space *mapping,
1717 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1718 #endif
1719 
1720 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1721 		loff_t const holebegin, loff_t const holelen)
1722 {
1723 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1724 }
1725 
1726 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1727 		void *buf, int len, unsigned int gup_flags);
1728 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1729 		void *buf, int len, unsigned int gup_flags);
1730 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1731 			      void *buf, int len, unsigned int gup_flags);
1732 
1733 long get_user_pages_remote(struct mm_struct *mm,
1734 			    unsigned long start, unsigned long nr_pages,
1735 			    unsigned int gup_flags, struct page **pages,
1736 			    struct vm_area_struct **vmas, int *locked);
1737 long pin_user_pages_remote(struct mm_struct *mm,
1738 			   unsigned long start, unsigned long nr_pages,
1739 			   unsigned int gup_flags, struct page **pages,
1740 			   struct vm_area_struct **vmas, int *locked);
1741 long get_user_pages(unsigned long start, unsigned long nr_pages,
1742 			    unsigned int gup_flags, struct page **pages,
1743 			    struct vm_area_struct **vmas);
1744 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1745 		    unsigned int gup_flags, struct page **pages,
1746 		    struct vm_area_struct **vmas);
1747 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1748 		    unsigned int gup_flags, struct page **pages, int *locked);
1749 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1750 		    unsigned int gup_flags, struct page **pages, int *locked);
1751 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1752 		    struct page **pages, unsigned int gup_flags);
1753 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1754 		    struct page **pages, unsigned int gup_flags);
1755 
1756 int get_user_pages_fast(unsigned long start, int nr_pages,
1757 			unsigned int gup_flags, struct page **pages);
1758 int pin_user_pages_fast(unsigned long start, int nr_pages,
1759 			unsigned int gup_flags, struct page **pages);
1760 
1761 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1762 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1763 			struct task_struct *task, bool bypass_rlim);
1764 
1765 struct kvec;
1766 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1767 			struct page **pages);
1768 int get_kernel_page(unsigned long start, int write, struct page **pages);
1769 struct page *get_dump_page(unsigned long addr);
1770 
1771 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1772 extern void do_invalidatepage(struct page *page, unsigned int offset,
1773 			      unsigned int length);
1774 
1775 void __set_page_dirty(struct page *, struct address_space *, int warn);
1776 int __set_page_dirty_nobuffers(struct page *page);
1777 int __set_page_dirty_no_writeback(struct page *page);
1778 int redirty_page_for_writepage(struct writeback_control *wbc,
1779 				struct page *page);
1780 void account_page_dirtied(struct page *page, struct address_space *mapping);
1781 void account_page_cleaned(struct page *page, struct address_space *mapping,
1782 			  struct bdi_writeback *wb);
1783 int set_page_dirty(struct page *page);
1784 int set_page_dirty_lock(struct page *page);
1785 void __cancel_dirty_page(struct page *page);
1786 static inline void cancel_dirty_page(struct page *page)
1787 {
1788 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1789 	if (PageDirty(page))
1790 		__cancel_dirty_page(page);
1791 }
1792 int clear_page_dirty_for_io(struct page *page);
1793 
1794 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1795 
1796 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1797 		unsigned long old_addr, struct vm_area_struct *new_vma,
1798 		unsigned long new_addr, unsigned long len,
1799 		bool need_rmap_locks);
1800 
1801 /*
1802  * Flags used by change_protection().  For now we make it a bitmap so
1803  * that we can pass in multiple flags just like parameters.  However
1804  * for now all the callers are only use one of the flags at the same
1805  * time.
1806  */
1807 /* Whether we should allow dirty bit accounting */
1808 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1809 /* Whether this protection change is for NUMA hints */
1810 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1811 /* Whether this change is for write protecting */
1812 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1813 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1814 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1815 					    MM_CP_UFFD_WP_RESOLVE)
1816 
1817 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1818 			      unsigned long end, pgprot_t newprot,
1819 			      unsigned long cp_flags);
1820 extern int mprotect_fixup(struct vm_area_struct *vma,
1821 			  struct vm_area_struct **pprev, unsigned long start,
1822 			  unsigned long end, unsigned long newflags);
1823 
1824 /*
1825  * doesn't attempt to fault and will return short.
1826  */
1827 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1828 			     unsigned int gup_flags, struct page **pages);
1829 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1830 			     unsigned int gup_flags, struct page **pages);
1831 
1832 static inline bool get_user_page_fast_only(unsigned long addr,
1833 			unsigned int gup_flags, struct page **pagep)
1834 {
1835 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1836 }
1837 /*
1838  * per-process(per-mm_struct) statistics.
1839  */
1840 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1841 {
1842 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1843 
1844 #ifdef SPLIT_RSS_COUNTING
1845 	/*
1846 	 * counter is updated in asynchronous manner and may go to minus.
1847 	 * But it's never be expected number for users.
1848 	 */
1849 	if (val < 0)
1850 		val = 0;
1851 #endif
1852 	return (unsigned long)val;
1853 }
1854 
1855 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1856 
1857 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1858 {
1859 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1860 
1861 	mm_trace_rss_stat(mm, member, count);
1862 }
1863 
1864 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1865 {
1866 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1867 
1868 	mm_trace_rss_stat(mm, member, count);
1869 }
1870 
1871 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1872 {
1873 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1874 
1875 	mm_trace_rss_stat(mm, member, count);
1876 }
1877 
1878 /* Optimized variant when page is already known not to be PageAnon */
1879 static inline int mm_counter_file(struct page *page)
1880 {
1881 	if (PageSwapBacked(page))
1882 		return MM_SHMEMPAGES;
1883 	return MM_FILEPAGES;
1884 }
1885 
1886 static inline int mm_counter(struct page *page)
1887 {
1888 	if (PageAnon(page))
1889 		return MM_ANONPAGES;
1890 	return mm_counter_file(page);
1891 }
1892 
1893 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1894 {
1895 	return get_mm_counter(mm, MM_FILEPAGES) +
1896 		get_mm_counter(mm, MM_ANONPAGES) +
1897 		get_mm_counter(mm, MM_SHMEMPAGES);
1898 }
1899 
1900 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1901 {
1902 	return max(mm->hiwater_rss, get_mm_rss(mm));
1903 }
1904 
1905 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1906 {
1907 	return max(mm->hiwater_vm, mm->total_vm);
1908 }
1909 
1910 static inline void update_hiwater_rss(struct mm_struct *mm)
1911 {
1912 	unsigned long _rss = get_mm_rss(mm);
1913 
1914 	if ((mm)->hiwater_rss < _rss)
1915 		(mm)->hiwater_rss = _rss;
1916 }
1917 
1918 static inline void update_hiwater_vm(struct mm_struct *mm)
1919 {
1920 	if (mm->hiwater_vm < mm->total_vm)
1921 		mm->hiwater_vm = mm->total_vm;
1922 }
1923 
1924 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1925 {
1926 	mm->hiwater_rss = get_mm_rss(mm);
1927 }
1928 
1929 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1930 					 struct mm_struct *mm)
1931 {
1932 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1933 
1934 	if (*maxrss < hiwater_rss)
1935 		*maxrss = hiwater_rss;
1936 }
1937 
1938 #if defined(SPLIT_RSS_COUNTING)
1939 void sync_mm_rss(struct mm_struct *mm);
1940 #else
1941 static inline void sync_mm_rss(struct mm_struct *mm)
1942 {
1943 }
1944 #endif
1945 
1946 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1947 static inline int pte_special(pte_t pte)
1948 {
1949 	return 0;
1950 }
1951 
1952 static inline pte_t pte_mkspecial(pte_t pte)
1953 {
1954 	return pte;
1955 }
1956 #endif
1957 
1958 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1959 static inline int pte_devmap(pte_t pte)
1960 {
1961 	return 0;
1962 }
1963 #endif
1964 
1965 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1966 
1967 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1968 			       spinlock_t **ptl);
1969 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1970 				    spinlock_t **ptl)
1971 {
1972 	pte_t *ptep;
1973 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1974 	return ptep;
1975 }
1976 
1977 #ifdef __PAGETABLE_P4D_FOLDED
1978 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1979 						unsigned long address)
1980 {
1981 	return 0;
1982 }
1983 #else
1984 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1985 #endif
1986 
1987 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1988 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1989 						unsigned long address)
1990 {
1991 	return 0;
1992 }
1993 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1994 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1995 
1996 #else
1997 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1998 
1999 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2000 {
2001 	if (mm_pud_folded(mm))
2002 		return;
2003 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2004 }
2005 
2006 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2007 {
2008 	if (mm_pud_folded(mm))
2009 		return;
2010 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2011 }
2012 #endif
2013 
2014 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2015 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2016 						unsigned long address)
2017 {
2018 	return 0;
2019 }
2020 
2021 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2022 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2023 
2024 #else
2025 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2026 
2027 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2028 {
2029 	if (mm_pmd_folded(mm))
2030 		return;
2031 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2032 }
2033 
2034 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2035 {
2036 	if (mm_pmd_folded(mm))
2037 		return;
2038 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2039 }
2040 #endif
2041 
2042 #ifdef CONFIG_MMU
2043 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2044 {
2045 	atomic_long_set(&mm->pgtables_bytes, 0);
2046 }
2047 
2048 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2049 {
2050 	return atomic_long_read(&mm->pgtables_bytes);
2051 }
2052 
2053 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2054 {
2055 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2056 }
2057 
2058 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2059 {
2060 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2061 }
2062 #else
2063 
2064 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2065 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2066 {
2067 	return 0;
2068 }
2069 
2070 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2071 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2072 #endif
2073 
2074 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2075 int __pte_alloc_kernel(pmd_t *pmd);
2076 
2077 #if defined(CONFIG_MMU)
2078 
2079 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2080 		unsigned long address)
2081 {
2082 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2083 		NULL : p4d_offset(pgd, address);
2084 }
2085 
2086 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2087 		unsigned long address)
2088 {
2089 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2090 		NULL : pud_offset(p4d, address);
2091 }
2092 
2093 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2094 {
2095 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2096 		NULL: pmd_offset(pud, address);
2097 }
2098 #endif /* CONFIG_MMU */
2099 
2100 #if USE_SPLIT_PTE_PTLOCKS
2101 #if ALLOC_SPLIT_PTLOCKS
2102 void __init ptlock_cache_init(void);
2103 extern bool ptlock_alloc(struct page *page);
2104 extern void ptlock_free(struct page *page);
2105 
2106 static inline spinlock_t *ptlock_ptr(struct page *page)
2107 {
2108 	return page->ptl;
2109 }
2110 #else /* ALLOC_SPLIT_PTLOCKS */
2111 static inline void ptlock_cache_init(void)
2112 {
2113 }
2114 
2115 static inline bool ptlock_alloc(struct page *page)
2116 {
2117 	return true;
2118 }
2119 
2120 static inline void ptlock_free(struct page *page)
2121 {
2122 }
2123 
2124 static inline spinlock_t *ptlock_ptr(struct page *page)
2125 {
2126 	return &page->ptl;
2127 }
2128 #endif /* ALLOC_SPLIT_PTLOCKS */
2129 
2130 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2131 {
2132 	return ptlock_ptr(pmd_page(*pmd));
2133 }
2134 
2135 static inline bool ptlock_init(struct page *page)
2136 {
2137 	/*
2138 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2139 	 * with 0. Make sure nobody took it in use in between.
2140 	 *
2141 	 * It can happen if arch try to use slab for page table allocation:
2142 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2143 	 */
2144 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2145 	if (!ptlock_alloc(page))
2146 		return false;
2147 	spin_lock_init(ptlock_ptr(page));
2148 	return true;
2149 }
2150 
2151 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2152 /*
2153  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2154  */
2155 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2156 {
2157 	return &mm->page_table_lock;
2158 }
2159 static inline void ptlock_cache_init(void) {}
2160 static inline bool ptlock_init(struct page *page) { return true; }
2161 static inline void ptlock_free(struct page *page) {}
2162 #endif /* USE_SPLIT_PTE_PTLOCKS */
2163 
2164 static inline void pgtable_init(void)
2165 {
2166 	ptlock_cache_init();
2167 	pgtable_cache_init();
2168 }
2169 
2170 static inline bool pgtable_pte_page_ctor(struct page *page)
2171 {
2172 	if (!ptlock_init(page))
2173 		return false;
2174 	__SetPageTable(page);
2175 	inc_lruvec_page_state(page, NR_PAGETABLE);
2176 	return true;
2177 }
2178 
2179 static inline void pgtable_pte_page_dtor(struct page *page)
2180 {
2181 	ptlock_free(page);
2182 	__ClearPageTable(page);
2183 	dec_lruvec_page_state(page, NR_PAGETABLE);
2184 }
2185 
2186 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2187 ({							\
2188 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2189 	pte_t *__pte = pte_offset_map(pmd, address);	\
2190 	*(ptlp) = __ptl;				\
2191 	spin_lock(__ptl);				\
2192 	__pte;						\
2193 })
2194 
2195 #define pte_unmap_unlock(pte, ptl)	do {		\
2196 	spin_unlock(ptl);				\
2197 	pte_unmap(pte);					\
2198 } while (0)
2199 
2200 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2201 
2202 #define pte_alloc_map(mm, pmd, address)			\
2203 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2204 
2205 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2206 	(pte_alloc(mm, pmd) ?			\
2207 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2208 
2209 #define pte_alloc_kernel(pmd, address)			\
2210 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2211 		NULL: pte_offset_kernel(pmd, address))
2212 
2213 #if USE_SPLIT_PMD_PTLOCKS
2214 
2215 static struct page *pmd_to_page(pmd_t *pmd)
2216 {
2217 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2218 	return virt_to_page((void *)((unsigned long) pmd & mask));
2219 }
2220 
2221 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2222 {
2223 	return ptlock_ptr(pmd_to_page(pmd));
2224 }
2225 
2226 static inline bool pmd_ptlock_init(struct page *page)
2227 {
2228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2229 	page->pmd_huge_pte = NULL;
2230 #endif
2231 	return ptlock_init(page);
2232 }
2233 
2234 static inline void pmd_ptlock_free(struct page *page)
2235 {
2236 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2237 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2238 #endif
2239 	ptlock_free(page);
2240 }
2241 
2242 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2243 
2244 #else
2245 
2246 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2247 {
2248 	return &mm->page_table_lock;
2249 }
2250 
2251 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2252 static inline void pmd_ptlock_free(struct page *page) {}
2253 
2254 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2255 
2256 #endif
2257 
2258 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2259 {
2260 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2261 	spin_lock(ptl);
2262 	return ptl;
2263 }
2264 
2265 static inline bool pgtable_pmd_page_ctor(struct page *page)
2266 {
2267 	if (!pmd_ptlock_init(page))
2268 		return false;
2269 	__SetPageTable(page);
2270 	inc_lruvec_page_state(page, NR_PAGETABLE);
2271 	return true;
2272 }
2273 
2274 static inline void pgtable_pmd_page_dtor(struct page *page)
2275 {
2276 	pmd_ptlock_free(page);
2277 	__ClearPageTable(page);
2278 	dec_lruvec_page_state(page, NR_PAGETABLE);
2279 }
2280 
2281 /*
2282  * No scalability reason to split PUD locks yet, but follow the same pattern
2283  * as the PMD locks to make it easier if we decide to.  The VM should not be
2284  * considered ready to switch to split PUD locks yet; there may be places
2285  * which need to be converted from page_table_lock.
2286  */
2287 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2288 {
2289 	return &mm->page_table_lock;
2290 }
2291 
2292 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2293 {
2294 	spinlock_t *ptl = pud_lockptr(mm, pud);
2295 
2296 	spin_lock(ptl);
2297 	return ptl;
2298 }
2299 
2300 extern void __init pagecache_init(void);
2301 extern void __init free_area_init_memoryless_node(int nid);
2302 extern void free_initmem(void);
2303 
2304 /*
2305  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2306  * into the buddy system. The freed pages will be poisoned with pattern
2307  * "poison" if it's within range [0, UCHAR_MAX].
2308  * Return pages freed into the buddy system.
2309  */
2310 extern unsigned long free_reserved_area(void *start, void *end,
2311 					int poison, const char *s);
2312 
2313 #ifdef	CONFIG_HIGHMEM
2314 /*
2315  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2316  * and totalram_pages.
2317  */
2318 extern void free_highmem_page(struct page *page);
2319 #endif
2320 
2321 extern void adjust_managed_page_count(struct page *page, long count);
2322 extern void mem_init_print_info(const char *str);
2323 
2324 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2325 
2326 /* Free the reserved page into the buddy system, so it gets managed. */
2327 static inline void __free_reserved_page(struct page *page)
2328 {
2329 	ClearPageReserved(page);
2330 	init_page_count(page);
2331 	__free_page(page);
2332 }
2333 
2334 static inline void free_reserved_page(struct page *page)
2335 {
2336 	__free_reserved_page(page);
2337 	adjust_managed_page_count(page, 1);
2338 }
2339 
2340 static inline void mark_page_reserved(struct page *page)
2341 {
2342 	SetPageReserved(page);
2343 	adjust_managed_page_count(page, -1);
2344 }
2345 
2346 /*
2347  * Default method to free all the __init memory into the buddy system.
2348  * The freed pages will be poisoned with pattern "poison" if it's within
2349  * range [0, UCHAR_MAX].
2350  * Return pages freed into the buddy system.
2351  */
2352 static inline unsigned long free_initmem_default(int poison)
2353 {
2354 	extern char __init_begin[], __init_end[];
2355 
2356 	return free_reserved_area(&__init_begin, &__init_end,
2357 				  poison, "unused kernel");
2358 }
2359 
2360 static inline unsigned long get_num_physpages(void)
2361 {
2362 	int nid;
2363 	unsigned long phys_pages = 0;
2364 
2365 	for_each_online_node(nid)
2366 		phys_pages += node_present_pages(nid);
2367 
2368 	return phys_pages;
2369 }
2370 
2371 /*
2372  * Using memblock node mappings, an architecture may initialise its
2373  * zones, allocate the backing mem_map and account for memory holes in an
2374  * architecture independent manner.
2375  *
2376  * An architecture is expected to register range of page frames backed by
2377  * physical memory with memblock_add[_node]() before calling
2378  * free_area_init() passing in the PFN each zone ends at. At a basic
2379  * usage, an architecture is expected to do something like
2380  *
2381  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2382  * 							 max_highmem_pfn};
2383  * for_each_valid_physical_page_range()
2384  * 	memblock_add_node(base, size, nid)
2385  * free_area_init(max_zone_pfns);
2386  */
2387 void free_area_init(unsigned long *max_zone_pfn);
2388 unsigned long node_map_pfn_alignment(void);
2389 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2390 						unsigned long end_pfn);
2391 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2392 						unsigned long end_pfn);
2393 extern void get_pfn_range_for_nid(unsigned int nid,
2394 			unsigned long *start_pfn, unsigned long *end_pfn);
2395 extern unsigned long find_min_pfn_with_active_regions(void);
2396 
2397 #ifndef CONFIG_NEED_MULTIPLE_NODES
2398 static inline int early_pfn_to_nid(unsigned long pfn)
2399 {
2400 	return 0;
2401 }
2402 #else
2403 /* please see mm/page_alloc.c */
2404 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2405 #endif
2406 
2407 extern void set_dma_reserve(unsigned long new_dma_reserve);
2408 extern void memmap_init_zone(unsigned long, int, unsigned long,
2409 		unsigned long, unsigned long, enum meminit_context,
2410 		struct vmem_altmap *, int migratetype);
2411 extern void setup_per_zone_wmarks(void);
2412 extern int __meminit init_per_zone_wmark_min(void);
2413 extern void mem_init(void);
2414 extern void __init mmap_init(void);
2415 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2416 extern long si_mem_available(void);
2417 extern void si_meminfo(struct sysinfo * val);
2418 extern void si_meminfo_node(struct sysinfo *val, int nid);
2419 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2420 extern unsigned long arch_reserved_kernel_pages(void);
2421 #endif
2422 
2423 extern __printf(3, 4)
2424 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2425 
2426 extern void setup_per_cpu_pageset(void);
2427 
2428 /* page_alloc.c */
2429 extern int min_free_kbytes;
2430 extern int watermark_boost_factor;
2431 extern int watermark_scale_factor;
2432 extern bool arch_has_descending_max_zone_pfns(void);
2433 
2434 /* nommu.c */
2435 extern atomic_long_t mmap_pages_allocated;
2436 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2437 
2438 /* interval_tree.c */
2439 void vma_interval_tree_insert(struct vm_area_struct *node,
2440 			      struct rb_root_cached *root);
2441 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2442 				    struct vm_area_struct *prev,
2443 				    struct rb_root_cached *root);
2444 void vma_interval_tree_remove(struct vm_area_struct *node,
2445 			      struct rb_root_cached *root);
2446 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2447 				unsigned long start, unsigned long last);
2448 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2449 				unsigned long start, unsigned long last);
2450 
2451 #define vma_interval_tree_foreach(vma, root, start, last)		\
2452 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2453 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2454 
2455 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2456 				   struct rb_root_cached *root);
2457 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2458 				   struct rb_root_cached *root);
2459 struct anon_vma_chain *
2460 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2461 				  unsigned long start, unsigned long last);
2462 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2463 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2464 #ifdef CONFIG_DEBUG_VM_RB
2465 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2466 #endif
2467 
2468 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2469 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2470 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2471 
2472 /* mmap.c */
2473 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2474 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2475 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2476 	struct vm_area_struct *expand);
2477 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2478 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2479 {
2480 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2481 }
2482 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2483 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2484 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2485 	struct mempolicy *, struct vm_userfaultfd_ctx);
2486 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2487 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2488 	unsigned long addr, int new_below);
2489 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2490 	unsigned long addr, int new_below);
2491 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2492 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2493 	struct rb_node **, struct rb_node *);
2494 extern void unlink_file_vma(struct vm_area_struct *);
2495 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2496 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2497 	bool *need_rmap_locks);
2498 extern void exit_mmap(struct mm_struct *);
2499 
2500 static inline int check_data_rlimit(unsigned long rlim,
2501 				    unsigned long new,
2502 				    unsigned long start,
2503 				    unsigned long end_data,
2504 				    unsigned long start_data)
2505 {
2506 	if (rlim < RLIM_INFINITY) {
2507 		if (((new - start) + (end_data - start_data)) > rlim)
2508 			return -ENOSPC;
2509 	}
2510 
2511 	return 0;
2512 }
2513 
2514 extern int mm_take_all_locks(struct mm_struct *mm);
2515 extern void mm_drop_all_locks(struct mm_struct *mm);
2516 
2517 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2518 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2519 extern struct file *get_task_exe_file(struct task_struct *task);
2520 
2521 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2522 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2523 
2524 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2525 				   const struct vm_special_mapping *sm);
2526 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2527 				   unsigned long addr, unsigned long len,
2528 				   unsigned long flags,
2529 				   const struct vm_special_mapping *spec);
2530 /* This is an obsolete alternative to _install_special_mapping. */
2531 extern int install_special_mapping(struct mm_struct *mm,
2532 				   unsigned long addr, unsigned long len,
2533 				   unsigned long flags, struct page **pages);
2534 
2535 unsigned long randomize_stack_top(unsigned long stack_top);
2536 
2537 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2538 
2539 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2540 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2541 	struct list_head *uf);
2542 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2543 	unsigned long len, unsigned long prot, unsigned long flags,
2544 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2545 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2546 		       struct list_head *uf, bool downgrade);
2547 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2548 		     struct list_head *uf);
2549 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2550 
2551 #ifdef CONFIG_MMU
2552 extern int __mm_populate(unsigned long addr, unsigned long len,
2553 			 int ignore_errors);
2554 static inline void mm_populate(unsigned long addr, unsigned long len)
2555 {
2556 	/* Ignore errors */
2557 	(void) __mm_populate(addr, len, 1);
2558 }
2559 #else
2560 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2561 #endif
2562 
2563 /* These take the mm semaphore themselves */
2564 extern int __must_check vm_brk(unsigned long, unsigned long);
2565 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2566 extern int vm_munmap(unsigned long, size_t);
2567 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2568         unsigned long, unsigned long,
2569         unsigned long, unsigned long);
2570 
2571 struct vm_unmapped_area_info {
2572 #define VM_UNMAPPED_AREA_TOPDOWN 1
2573 	unsigned long flags;
2574 	unsigned long length;
2575 	unsigned long low_limit;
2576 	unsigned long high_limit;
2577 	unsigned long align_mask;
2578 	unsigned long align_offset;
2579 };
2580 
2581 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2582 
2583 /* truncate.c */
2584 extern void truncate_inode_pages(struct address_space *, loff_t);
2585 extern void truncate_inode_pages_range(struct address_space *,
2586 				       loff_t lstart, loff_t lend);
2587 extern void truncate_inode_pages_final(struct address_space *);
2588 
2589 /* generic vm_area_ops exported for stackable file systems */
2590 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2591 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2592 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2593 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2594 
2595 /* mm/page-writeback.c */
2596 int __must_check write_one_page(struct page *page);
2597 void task_dirty_inc(struct task_struct *tsk);
2598 
2599 extern unsigned long stack_guard_gap;
2600 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2601 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2602 
2603 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2604 extern int expand_downwards(struct vm_area_struct *vma,
2605 		unsigned long address);
2606 #if VM_GROWSUP
2607 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2608 #else
2609   #define expand_upwards(vma, address) (0)
2610 #endif
2611 
2612 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2613 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2614 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2615 					     struct vm_area_struct **pprev);
2616 
2617 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2618    NULL if none.  Assume start_addr < end_addr. */
2619 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2620 {
2621 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2622 
2623 	if (vma && end_addr <= vma->vm_start)
2624 		vma = NULL;
2625 	return vma;
2626 }
2627 
2628 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2629 {
2630 	unsigned long vm_start = vma->vm_start;
2631 
2632 	if (vma->vm_flags & VM_GROWSDOWN) {
2633 		vm_start -= stack_guard_gap;
2634 		if (vm_start > vma->vm_start)
2635 			vm_start = 0;
2636 	}
2637 	return vm_start;
2638 }
2639 
2640 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2641 {
2642 	unsigned long vm_end = vma->vm_end;
2643 
2644 	if (vma->vm_flags & VM_GROWSUP) {
2645 		vm_end += stack_guard_gap;
2646 		if (vm_end < vma->vm_end)
2647 			vm_end = -PAGE_SIZE;
2648 	}
2649 	return vm_end;
2650 }
2651 
2652 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2653 {
2654 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2655 }
2656 
2657 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2658 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2659 				unsigned long vm_start, unsigned long vm_end)
2660 {
2661 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2662 
2663 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2664 		vma = NULL;
2665 
2666 	return vma;
2667 }
2668 
2669 static inline bool range_in_vma(struct vm_area_struct *vma,
2670 				unsigned long start, unsigned long end)
2671 {
2672 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2673 }
2674 
2675 #ifdef CONFIG_MMU
2676 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2677 void vma_set_page_prot(struct vm_area_struct *vma);
2678 #else
2679 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2680 {
2681 	return __pgprot(0);
2682 }
2683 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2684 {
2685 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2686 }
2687 #endif
2688 
2689 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2690 
2691 #ifdef CONFIG_NUMA_BALANCING
2692 unsigned long change_prot_numa(struct vm_area_struct *vma,
2693 			unsigned long start, unsigned long end);
2694 #endif
2695 
2696 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2697 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2698 			unsigned long pfn, unsigned long size, pgprot_t);
2699 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2700 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2701 			struct page **pages, unsigned long *num);
2702 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2703 				unsigned long num);
2704 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2705 				unsigned long num);
2706 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2707 			unsigned long pfn);
2708 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2709 			unsigned long pfn, pgprot_t pgprot);
2710 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2711 			pfn_t pfn);
2712 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2713 			pfn_t pfn, pgprot_t pgprot);
2714 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2715 		unsigned long addr, pfn_t pfn);
2716 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2717 
2718 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2719 				unsigned long addr, struct page *page)
2720 {
2721 	int err = vm_insert_page(vma, addr, page);
2722 
2723 	if (err == -ENOMEM)
2724 		return VM_FAULT_OOM;
2725 	if (err < 0 && err != -EBUSY)
2726 		return VM_FAULT_SIGBUS;
2727 
2728 	return VM_FAULT_NOPAGE;
2729 }
2730 
2731 #ifndef io_remap_pfn_range
2732 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2733 				     unsigned long addr, unsigned long pfn,
2734 				     unsigned long size, pgprot_t prot)
2735 {
2736 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2737 }
2738 #endif
2739 
2740 static inline vm_fault_t vmf_error(int err)
2741 {
2742 	if (err == -ENOMEM)
2743 		return VM_FAULT_OOM;
2744 	return VM_FAULT_SIGBUS;
2745 }
2746 
2747 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2748 			 unsigned int foll_flags);
2749 
2750 #define FOLL_WRITE	0x01	/* check pte is writable */
2751 #define FOLL_TOUCH	0x02	/* mark page accessed */
2752 #define FOLL_GET	0x04	/* do get_page on page */
2753 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2754 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2755 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2756 				 * and return without waiting upon it */
2757 #define FOLL_POPULATE	0x40	/* fault in page */
2758 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2759 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2760 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2761 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2762 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2763 #define FOLL_MLOCK	0x1000	/* lock present pages */
2764 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2765 #define FOLL_COW	0x4000	/* internal GUP flag */
2766 #define FOLL_ANON	0x8000	/* don't do file mappings */
2767 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2768 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2769 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2770 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2771 
2772 /*
2773  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2774  * other. Here is what they mean, and how to use them:
2775  *
2776  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2777  * period _often_ under userspace control.  This is in contrast to
2778  * iov_iter_get_pages(), whose usages are transient.
2779  *
2780  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2781  * lifetime enforced by the filesystem and we need guarantees that longterm
2782  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2783  * the filesystem.  Ideas for this coordination include revoking the longterm
2784  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2785  * added after the problem with filesystems was found FS DAX VMAs are
2786  * specifically failed.  Filesystem pages are still subject to bugs and use of
2787  * FOLL_LONGTERM should be avoided on those pages.
2788  *
2789  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2790  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2791  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2792  * is due to an incompatibility with the FS DAX check and
2793  * FAULT_FLAG_ALLOW_RETRY.
2794  *
2795  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2796  * that region.  And so, CMA attempts to migrate the page before pinning, when
2797  * FOLL_LONGTERM is specified.
2798  *
2799  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2800  * but an additional pin counting system) will be invoked. This is intended for
2801  * anything that gets a page reference and then touches page data (for example,
2802  * Direct IO). This lets the filesystem know that some non-file-system entity is
2803  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2804  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2805  * a call to unpin_user_page().
2806  *
2807  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2808  * and separate refcounting mechanisms, however, and that means that each has
2809  * its own acquire and release mechanisms:
2810  *
2811  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2812  *
2813  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2814  *
2815  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2816  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2817  * calls applied to them, and that's perfectly OK. This is a constraint on the
2818  * callers, not on the pages.)
2819  *
2820  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2821  * directly by the caller. That's in order to help avoid mismatches when
2822  * releasing pages: get_user_pages*() pages must be released via put_page(),
2823  * while pin_user_pages*() pages must be released via unpin_user_page().
2824  *
2825  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2826  */
2827 
2828 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2829 {
2830 	if (vm_fault & VM_FAULT_OOM)
2831 		return -ENOMEM;
2832 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2833 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2834 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2835 		return -EFAULT;
2836 	return 0;
2837 }
2838 
2839 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2840 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2841 			       unsigned long size, pte_fn_t fn, void *data);
2842 extern int apply_to_existing_page_range(struct mm_struct *mm,
2843 				   unsigned long address, unsigned long size,
2844 				   pte_fn_t fn, void *data);
2845 
2846 extern void init_mem_debugging_and_hardening(void);
2847 #ifdef CONFIG_PAGE_POISONING
2848 extern void __kernel_poison_pages(struct page *page, int numpages);
2849 extern void __kernel_unpoison_pages(struct page *page, int numpages);
2850 extern bool _page_poisoning_enabled_early;
2851 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
2852 static inline bool page_poisoning_enabled(void)
2853 {
2854 	return _page_poisoning_enabled_early;
2855 }
2856 /*
2857  * For use in fast paths after init_mem_debugging() has run, or when a
2858  * false negative result is not harmful when called too early.
2859  */
2860 static inline bool page_poisoning_enabled_static(void)
2861 {
2862 	return static_branch_unlikely(&_page_poisoning_enabled);
2863 }
2864 static inline void kernel_poison_pages(struct page *page, int numpages)
2865 {
2866 	if (page_poisoning_enabled_static())
2867 		__kernel_poison_pages(page, numpages);
2868 }
2869 static inline void kernel_unpoison_pages(struct page *page, int numpages)
2870 {
2871 	if (page_poisoning_enabled_static())
2872 		__kernel_unpoison_pages(page, numpages);
2873 }
2874 #else
2875 static inline bool page_poisoning_enabled(void) { return false; }
2876 static inline bool page_poisoning_enabled_static(void) { return false; }
2877 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
2878 static inline void kernel_poison_pages(struct page *page, int numpages) { }
2879 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
2880 #endif
2881 
2882 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2883 static inline bool want_init_on_alloc(gfp_t flags)
2884 {
2885 	if (static_branch_unlikely(&init_on_alloc))
2886 		return true;
2887 	return flags & __GFP_ZERO;
2888 }
2889 
2890 DECLARE_STATIC_KEY_FALSE(init_on_free);
2891 static inline bool want_init_on_free(void)
2892 {
2893 	return static_branch_unlikely(&init_on_free);
2894 }
2895 
2896 extern bool _debug_pagealloc_enabled_early;
2897 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2898 
2899 static inline bool debug_pagealloc_enabled(void)
2900 {
2901 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2902 		_debug_pagealloc_enabled_early;
2903 }
2904 
2905 /*
2906  * For use in fast paths after init_debug_pagealloc() has run, or when a
2907  * false negative result is not harmful when called too early.
2908  */
2909 static inline bool debug_pagealloc_enabled_static(void)
2910 {
2911 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2912 		return false;
2913 
2914 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2915 }
2916 
2917 #ifdef CONFIG_DEBUG_PAGEALLOC
2918 /*
2919  * To support DEBUG_PAGEALLOC architecture must ensure that
2920  * __kernel_map_pages() never fails
2921  */
2922 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2923 
2924 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
2925 {
2926 	if (debug_pagealloc_enabled_static())
2927 		__kernel_map_pages(page, numpages, 1);
2928 }
2929 
2930 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
2931 {
2932 	if (debug_pagealloc_enabled_static())
2933 		__kernel_map_pages(page, numpages, 0);
2934 }
2935 #else	/* CONFIG_DEBUG_PAGEALLOC */
2936 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
2937 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
2938 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2939 
2940 #ifdef __HAVE_ARCH_GATE_AREA
2941 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2942 extern int in_gate_area_no_mm(unsigned long addr);
2943 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2944 #else
2945 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2946 {
2947 	return NULL;
2948 }
2949 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2950 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2951 {
2952 	return 0;
2953 }
2954 #endif	/* __HAVE_ARCH_GATE_AREA */
2955 
2956 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2957 
2958 #ifdef CONFIG_SYSCTL
2959 extern int sysctl_drop_caches;
2960 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2961 		loff_t *);
2962 #endif
2963 
2964 void drop_slab(void);
2965 void drop_slab_node(int nid);
2966 
2967 #ifndef CONFIG_MMU
2968 #define randomize_va_space 0
2969 #else
2970 extern int randomize_va_space;
2971 #endif
2972 
2973 const char * arch_vma_name(struct vm_area_struct *vma);
2974 #ifdef CONFIG_MMU
2975 void print_vma_addr(char *prefix, unsigned long rip);
2976 #else
2977 static inline void print_vma_addr(char *prefix, unsigned long rip)
2978 {
2979 }
2980 #endif
2981 
2982 void *sparse_buffer_alloc(unsigned long size);
2983 struct page * __populate_section_memmap(unsigned long pfn,
2984 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2985 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2986 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2987 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2988 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2989 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2990 			    struct vmem_altmap *altmap);
2991 void *vmemmap_alloc_block(unsigned long size, int node);
2992 struct vmem_altmap;
2993 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2994 			      struct vmem_altmap *altmap);
2995 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2996 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2997 			       int node, struct vmem_altmap *altmap);
2998 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2999 		struct vmem_altmap *altmap);
3000 void vmemmap_populate_print_last(void);
3001 #ifdef CONFIG_MEMORY_HOTPLUG
3002 void vmemmap_free(unsigned long start, unsigned long end,
3003 		struct vmem_altmap *altmap);
3004 #endif
3005 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3006 				  unsigned long nr_pages);
3007 
3008 enum mf_flags {
3009 	MF_COUNT_INCREASED = 1 << 0,
3010 	MF_ACTION_REQUIRED = 1 << 1,
3011 	MF_MUST_KILL = 1 << 2,
3012 	MF_SOFT_OFFLINE = 1 << 3,
3013 };
3014 extern int memory_failure(unsigned long pfn, int flags);
3015 extern void memory_failure_queue(unsigned long pfn, int flags);
3016 extern void memory_failure_queue_kick(int cpu);
3017 extern int unpoison_memory(unsigned long pfn);
3018 extern int sysctl_memory_failure_early_kill;
3019 extern int sysctl_memory_failure_recovery;
3020 extern void shake_page(struct page *p, int access);
3021 extern atomic_long_t num_poisoned_pages __read_mostly;
3022 extern int soft_offline_page(unsigned long pfn, int flags);
3023 
3024 
3025 /*
3026  * Error handlers for various types of pages.
3027  */
3028 enum mf_result {
3029 	MF_IGNORED,	/* Error: cannot be handled */
3030 	MF_FAILED,	/* Error: handling failed */
3031 	MF_DELAYED,	/* Will be handled later */
3032 	MF_RECOVERED,	/* Successfully recovered */
3033 };
3034 
3035 enum mf_action_page_type {
3036 	MF_MSG_KERNEL,
3037 	MF_MSG_KERNEL_HIGH_ORDER,
3038 	MF_MSG_SLAB,
3039 	MF_MSG_DIFFERENT_COMPOUND,
3040 	MF_MSG_POISONED_HUGE,
3041 	MF_MSG_HUGE,
3042 	MF_MSG_FREE_HUGE,
3043 	MF_MSG_NON_PMD_HUGE,
3044 	MF_MSG_UNMAP_FAILED,
3045 	MF_MSG_DIRTY_SWAPCACHE,
3046 	MF_MSG_CLEAN_SWAPCACHE,
3047 	MF_MSG_DIRTY_MLOCKED_LRU,
3048 	MF_MSG_CLEAN_MLOCKED_LRU,
3049 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3050 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3051 	MF_MSG_DIRTY_LRU,
3052 	MF_MSG_CLEAN_LRU,
3053 	MF_MSG_TRUNCATED_LRU,
3054 	MF_MSG_BUDDY,
3055 	MF_MSG_BUDDY_2ND,
3056 	MF_MSG_DAX,
3057 	MF_MSG_UNSPLIT_THP,
3058 	MF_MSG_UNKNOWN,
3059 };
3060 
3061 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3062 extern void clear_huge_page(struct page *page,
3063 			    unsigned long addr_hint,
3064 			    unsigned int pages_per_huge_page);
3065 extern void copy_user_huge_page(struct page *dst, struct page *src,
3066 				unsigned long addr_hint,
3067 				struct vm_area_struct *vma,
3068 				unsigned int pages_per_huge_page);
3069 extern long copy_huge_page_from_user(struct page *dst_page,
3070 				const void __user *usr_src,
3071 				unsigned int pages_per_huge_page,
3072 				bool allow_pagefault);
3073 
3074 /**
3075  * vma_is_special_huge - Are transhuge page-table entries considered special?
3076  * @vma: Pointer to the struct vm_area_struct to consider
3077  *
3078  * Whether transhuge page-table entries are considered "special" following
3079  * the definition in vm_normal_page().
3080  *
3081  * Return: true if transhuge page-table entries should be considered special,
3082  * false otherwise.
3083  */
3084 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3085 {
3086 	return vma_is_dax(vma) || (vma->vm_file &&
3087 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3088 }
3089 
3090 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3091 
3092 #ifdef CONFIG_DEBUG_PAGEALLOC
3093 extern unsigned int _debug_guardpage_minorder;
3094 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3095 
3096 static inline unsigned int debug_guardpage_minorder(void)
3097 {
3098 	return _debug_guardpage_minorder;
3099 }
3100 
3101 static inline bool debug_guardpage_enabled(void)
3102 {
3103 	return static_branch_unlikely(&_debug_guardpage_enabled);
3104 }
3105 
3106 static inline bool page_is_guard(struct page *page)
3107 {
3108 	if (!debug_guardpage_enabled())
3109 		return false;
3110 
3111 	return PageGuard(page);
3112 }
3113 #else
3114 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3115 static inline bool debug_guardpage_enabled(void) { return false; }
3116 static inline bool page_is_guard(struct page *page) { return false; }
3117 #endif /* CONFIG_DEBUG_PAGEALLOC */
3118 
3119 #if MAX_NUMNODES > 1
3120 void __init setup_nr_node_ids(void);
3121 #else
3122 static inline void setup_nr_node_ids(void) {}
3123 #endif
3124 
3125 extern int memcmp_pages(struct page *page1, struct page *page2);
3126 
3127 static inline int pages_identical(struct page *page1, struct page *page2)
3128 {
3129 	return !memcmp_pages(page1, page2);
3130 }
3131 
3132 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3133 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3134 						pgoff_t first_index, pgoff_t nr,
3135 						pgoff_t bitmap_pgoff,
3136 						unsigned long *bitmap,
3137 						pgoff_t *start,
3138 						pgoff_t *end);
3139 
3140 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3141 				      pgoff_t first_index, pgoff_t nr);
3142 #endif
3143 
3144 extern int sysctl_nr_trim_pages;
3145 
3146 void mem_dump_obj(void *object);
3147 
3148 #endif /* __KERNEL__ */
3149 #endif /* _LINUX_MM_H */
3150