xref: /linux-6.15/include/linux/mm.h (revision d526643f)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct user_struct;
37 struct pt_regs;
38 
39 extern int sysctl_page_lock_unfairness;
40 
41 void init_mm_internals(void);
42 
43 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45 
46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 	max_mapnr = limit;
49 }
50 #else
51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53 
54 extern atomic_long_t _totalram_pages;
55 static inline unsigned long totalram_pages(void)
56 {
57 	return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_inc(void)
61 {
62 	atomic_long_inc(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_dec(void)
66 {
67 	atomic_long_dec(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_add(long count)
71 {
72 	atomic_long_add(count, &_totalram_pages);
73 }
74 
75 extern void * high_memory;
76 extern int page_cluster;
77 extern const int page_cluster_max;
78 
79 #ifdef CONFIG_SYSCTL
80 extern int sysctl_legacy_va_layout;
81 #else
82 #define sysctl_legacy_va_layout 0
83 #endif
84 
85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86 extern const int mmap_rnd_bits_min;
87 extern const int mmap_rnd_bits_max;
88 extern int mmap_rnd_bits __read_mostly;
89 #endif
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91 extern const int mmap_rnd_compat_bits_min;
92 extern const int mmap_rnd_compat_bits_max;
93 extern int mmap_rnd_compat_bits __read_mostly;
94 #endif
95 
96 #include <asm/page.h>
97 #include <asm/processor.h>
98 
99 /*
100  * Architectures that support memory tagging (assigning tags to memory regions,
101  * embedding these tags into addresses that point to these memory regions, and
102  * checking that the memory and the pointer tags match on memory accesses)
103  * redefine this macro to strip tags from pointers.
104  * It's defined as noop for architectures that don't support memory tagging.
105  */
106 #ifndef untagged_addr
107 #define untagged_addr(addr) (addr)
108 #endif
109 
110 #ifndef __pa_symbol
111 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
112 #endif
113 
114 #ifndef page_to_virt
115 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
116 #endif
117 
118 #ifndef lm_alias
119 #define lm_alias(x)	__va(__pa_symbol(x))
120 #endif
121 
122 /*
123  * To prevent common memory management code establishing
124  * a zero page mapping on a read fault.
125  * This macro should be defined within <asm/pgtable.h>.
126  * s390 does this to prevent multiplexing of hardware bits
127  * related to the physical page in case of virtualization.
128  */
129 #ifndef mm_forbids_zeropage
130 #define mm_forbids_zeropage(X)	(0)
131 #endif
132 
133 /*
134  * On some architectures it is expensive to call memset() for small sizes.
135  * If an architecture decides to implement their own version of
136  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137  * define their own version of this macro in <asm/pgtable.h>
138  */
139 #if BITS_PER_LONG == 64
140 /* This function must be updated when the size of struct page grows above 80
141  * or reduces below 56. The idea that compiler optimizes out switch()
142  * statement, and only leaves move/store instructions. Also the compiler can
143  * combine write statements if they are both assignments and can be reordered,
144  * this can result in several of the writes here being dropped.
145  */
146 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147 static inline void __mm_zero_struct_page(struct page *page)
148 {
149 	unsigned long *_pp = (void *)page;
150 
151 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 	BUILD_BUG_ON(sizeof(struct page) & 7);
153 	BUILD_BUG_ON(sizeof(struct page) < 56);
154 	BUILD_BUG_ON(sizeof(struct page) > 80);
155 
156 	switch (sizeof(struct page)) {
157 	case 80:
158 		_pp[9] = 0;
159 		fallthrough;
160 	case 72:
161 		_pp[8] = 0;
162 		fallthrough;
163 	case 64:
164 		_pp[7] = 0;
165 		fallthrough;
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
213 		loff_t *);
214 
215 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
216 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
217 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
218 #else
219 #define nth_page(page,n) ((page) + (n))
220 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
221 #endif
222 
223 /* to align the pointer to the (next) page boundary */
224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
225 
226 /* to align the pointer to the (prev) page boundary */
227 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
228 
229 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
230 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
231 
232 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
233 static inline struct folio *lru_to_folio(struct list_head *head)
234 {
235 	return list_entry((head)->prev, struct folio, lru);
236 }
237 
238 void setup_initial_init_mm(void *start_code, void *end_code,
239 			   void *end_data, void *brk);
240 
241 /*
242  * Linux kernel virtual memory manager primitives.
243  * The idea being to have a "virtual" mm in the same way
244  * we have a virtual fs - giving a cleaner interface to the
245  * mm details, and allowing different kinds of memory mappings
246  * (from shared memory to executable loading to arbitrary
247  * mmap() functions).
248  */
249 
250 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
251 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
252 void vm_area_free(struct vm_area_struct *);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
329 
330 #ifdef CONFIG_ARCH_HAS_PKEYS
331 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
332 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
333 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
334 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
335 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
336 #ifdef CONFIG_PPC
337 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
338 #else
339 # define VM_PKEY_BIT4  0
340 #endif
341 #endif /* CONFIG_ARCH_HAS_PKEYS */
342 
343 #if defined(CONFIG_X86)
344 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
345 #elif defined(CONFIG_PPC)
346 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
347 #elif defined(CONFIG_PARISC)
348 # define VM_GROWSUP	VM_ARCH_1
349 #elif defined(CONFIG_IA64)
350 # define VM_GROWSUP	VM_ARCH_1
351 #elif defined(CONFIG_SPARC64)
352 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
353 # define VM_ARCH_CLEAR	VM_SPARC_ADI
354 #elif defined(CONFIG_ARM64)
355 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
356 # define VM_ARCH_CLEAR	VM_ARM64_BTI
357 #elif !defined(CONFIG_MMU)
358 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
359 #endif
360 
361 #if defined(CONFIG_ARM64_MTE)
362 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
363 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
364 #else
365 # define VM_MTE		VM_NONE
366 # define VM_MTE_ALLOWED	VM_NONE
367 #endif
368 
369 #ifndef VM_GROWSUP
370 # define VM_GROWSUP	VM_NONE
371 #endif
372 
373 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
374 # define VM_UFFD_MINOR_BIT	37
375 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
376 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
377 # define VM_UFFD_MINOR		VM_NONE
378 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
379 
380 /* Bits set in the VMA until the stack is in its final location */
381 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
382 
383 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
384 
385 /* Common data flag combinations */
386 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
387 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
388 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
389 				 VM_MAYWRITE | VM_MAYEXEC)
390 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
391 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
392 
393 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
394 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
395 #endif
396 
397 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
398 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
399 #endif
400 
401 #ifdef CONFIG_STACK_GROWSUP
402 #define VM_STACK	VM_GROWSUP
403 #else
404 #define VM_STACK	VM_GROWSDOWN
405 #endif
406 
407 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
408 
409 /* VMA basic access permission flags */
410 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
411 
412 
413 /*
414  * Special vmas that are non-mergable, non-mlock()able.
415  */
416 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
417 
418 /* This mask prevents VMA from being scanned with khugepaged */
419 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
420 
421 /* This mask defines which mm->def_flags a process can inherit its parent */
422 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
423 
424 /* This mask is used to clear all the VMA flags used by mlock */
425 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
426 
427 /* Arch-specific flags to clear when updating VM flags on protection change */
428 #ifndef VM_ARCH_CLEAR
429 # define VM_ARCH_CLEAR	VM_NONE
430 #endif
431 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
432 
433 /*
434  * mapping from the currently active vm_flags protection bits (the
435  * low four bits) to a page protection mask..
436  */
437 
438 /*
439  * The default fault flags that should be used by most of the
440  * arch-specific page fault handlers.
441  */
442 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
443 			     FAULT_FLAG_KILLABLE | \
444 			     FAULT_FLAG_INTERRUPTIBLE)
445 
446 /**
447  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
448  * @flags: Fault flags.
449  *
450  * This is mostly used for places where we want to try to avoid taking
451  * the mmap_lock for too long a time when waiting for another condition
452  * to change, in which case we can try to be polite to release the
453  * mmap_lock in the first round to avoid potential starvation of other
454  * processes that would also want the mmap_lock.
455  *
456  * Return: true if the page fault allows retry and this is the first
457  * attempt of the fault handling; false otherwise.
458  */
459 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
460 {
461 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
462 	    (!(flags & FAULT_FLAG_TRIED));
463 }
464 
465 #define FAULT_FLAG_TRACE \
466 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
467 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
468 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
469 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
470 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
471 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
472 	{ FAULT_FLAG_USER,		"USER" }, \
473 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
474 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
475 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
476 
477 /*
478  * vm_fault is filled by the pagefault handler and passed to the vma's
479  * ->fault function. The vma's ->fault is responsible for returning a bitmask
480  * of VM_FAULT_xxx flags that give details about how the fault was handled.
481  *
482  * MM layer fills up gfp_mask for page allocations but fault handler might
483  * alter it if its implementation requires a different allocation context.
484  *
485  * pgoff should be used in favour of virtual_address, if possible.
486  */
487 struct vm_fault {
488 	const struct {
489 		struct vm_area_struct *vma;	/* Target VMA */
490 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
491 		pgoff_t pgoff;			/* Logical page offset based on vma */
492 		unsigned long address;		/* Faulting virtual address - masked */
493 		unsigned long real_address;	/* Faulting virtual address - unmasked */
494 	};
495 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
496 					 * XXX: should really be 'const' */
497 	pmd_t *pmd;			/* Pointer to pmd entry matching
498 					 * the 'address' */
499 	pud_t *pud;			/* Pointer to pud entry matching
500 					 * the 'address'
501 					 */
502 	union {
503 		pte_t orig_pte;		/* Value of PTE at the time of fault */
504 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
505 					 * used by PMD fault only.
506 					 */
507 	};
508 
509 	struct page *cow_page;		/* Page handler may use for COW fault */
510 	struct page *page;		/* ->fault handlers should return a
511 					 * page here, unless VM_FAULT_NOPAGE
512 					 * is set (which is also implied by
513 					 * VM_FAULT_ERROR).
514 					 */
515 	/* These three entries are valid only while holding ptl lock */
516 	pte_t *pte;			/* Pointer to pte entry matching
517 					 * the 'address'. NULL if the page
518 					 * table hasn't been allocated.
519 					 */
520 	spinlock_t *ptl;		/* Page table lock.
521 					 * Protects pte page table if 'pte'
522 					 * is not NULL, otherwise pmd.
523 					 */
524 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
525 					 * vm_ops->map_pages() sets up a page
526 					 * table from atomic context.
527 					 * do_fault_around() pre-allocates
528 					 * page table to avoid allocation from
529 					 * atomic context.
530 					 */
531 };
532 
533 /* page entry size for vm->huge_fault() */
534 enum page_entry_size {
535 	PE_SIZE_PTE = 0,
536 	PE_SIZE_PMD,
537 	PE_SIZE_PUD,
538 };
539 
540 /*
541  * These are the virtual MM functions - opening of an area, closing and
542  * unmapping it (needed to keep files on disk up-to-date etc), pointer
543  * to the functions called when a no-page or a wp-page exception occurs.
544  */
545 struct vm_operations_struct {
546 	void (*open)(struct vm_area_struct * area);
547 	/**
548 	 * @close: Called when the VMA is being removed from the MM.
549 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
550 	 */
551 	void (*close)(struct vm_area_struct * area);
552 	/* Called any time before splitting to check if it's allowed */
553 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
554 	int (*mremap)(struct vm_area_struct *area);
555 	/*
556 	 * Called by mprotect() to make driver-specific permission
557 	 * checks before mprotect() is finalised.   The VMA must not
558 	 * be modified.  Returns 0 if mprotect() can proceed.
559 	 */
560 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 			unsigned long end, unsigned long newflags);
562 	vm_fault_t (*fault)(struct vm_fault *vmf);
563 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 			enum page_entry_size pe_size);
565 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
566 			pgoff_t start_pgoff, pgoff_t end_pgoff);
567 	unsigned long (*pagesize)(struct vm_area_struct * area);
568 
569 	/* notification that a previously read-only page is about to become
570 	 * writable, if an error is returned it will cause a SIGBUS */
571 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572 
573 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575 
576 	/* called by access_process_vm when get_user_pages() fails, typically
577 	 * for use by special VMAs. See also generic_access_phys() for a generic
578 	 * implementation useful for any iomem mapping.
579 	 */
580 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 		      void *buf, int len, int write);
582 
583 	/* Called by the /proc/PID/maps code to ask the vma whether it
584 	 * has a special name.  Returning non-NULL will also cause this
585 	 * vma to be dumped unconditionally. */
586 	const char *(*name)(struct vm_area_struct *vma);
587 
588 #ifdef CONFIG_NUMA
589 	/*
590 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 	 * to hold the policy upon return.  Caller should pass NULL @new to
592 	 * remove a policy and fall back to surrounding context--i.e. do not
593 	 * install a MPOL_DEFAULT policy, nor the task or system default
594 	 * mempolicy.
595 	 */
596 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
597 
598 	/*
599 	 * get_policy() op must add reference [mpol_get()] to any policy at
600 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
601 	 * in mm/mempolicy.c will do this automatically.
602 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
603 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
604 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 	 * must return NULL--i.e., do not "fallback" to task or system default
606 	 * policy.
607 	 */
608 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 					unsigned long addr);
610 #endif
611 	/*
612 	 * Called by vm_normal_page() for special PTEs to find the
613 	 * page for @addr.  This is useful if the default behavior
614 	 * (using pte_page()) would not find the correct page.
615 	 */
616 	struct page *(*find_special_page)(struct vm_area_struct *vma,
617 					  unsigned long addr);
618 };
619 
620 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
621 {
622 	static const struct vm_operations_struct dummy_vm_ops = {};
623 
624 	memset(vma, 0, sizeof(*vma));
625 	vma->vm_mm = mm;
626 	vma->vm_ops = &dummy_vm_ops;
627 	INIT_LIST_HEAD(&vma->anon_vma_chain);
628 }
629 
630 static inline void vma_set_anonymous(struct vm_area_struct *vma)
631 {
632 	vma->vm_ops = NULL;
633 }
634 
635 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
636 {
637 	return !vma->vm_ops;
638 }
639 
640 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
641 {
642 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
643 
644 	if (!maybe_stack)
645 		return false;
646 
647 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
648 						VM_STACK_INCOMPLETE_SETUP)
649 		return true;
650 
651 	return false;
652 }
653 
654 static inline bool vma_is_foreign(struct vm_area_struct *vma)
655 {
656 	if (!current->mm)
657 		return true;
658 
659 	if (current->mm != vma->vm_mm)
660 		return true;
661 
662 	return false;
663 }
664 
665 static inline bool vma_is_accessible(struct vm_area_struct *vma)
666 {
667 	return vma->vm_flags & VM_ACCESS_FLAGS;
668 }
669 
670 static inline
671 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
672 {
673 	return mas_find(&vmi->mas, max);
674 }
675 
676 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
677 {
678 	/*
679 	 * Uses vma_find() to get the first VMA when the iterator starts.
680 	 * Calling mas_next() could skip the first entry.
681 	 */
682 	return vma_find(vmi, ULONG_MAX);
683 }
684 
685 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
686 {
687 	return mas_prev(&vmi->mas, 0);
688 }
689 
690 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
691 {
692 	return vmi->mas.index;
693 }
694 
695 #define for_each_vma(__vmi, __vma)					\
696 	while (((__vma) = vma_next(&(__vmi))) != NULL)
697 
698 /* The MM code likes to work with exclusive end addresses */
699 #define for_each_vma_range(__vmi, __vma, __end)				\
700 	while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
701 
702 #ifdef CONFIG_SHMEM
703 /*
704  * The vma_is_shmem is not inline because it is used only by slow
705  * paths in userfault.
706  */
707 bool vma_is_shmem(struct vm_area_struct *vma);
708 bool vma_is_anon_shmem(struct vm_area_struct *vma);
709 #else
710 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
711 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
712 #endif
713 
714 int vma_is_stack_for_current(struct vm_area_struct *vma);
715 
716 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
717 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
718 
719 struct mmu_gather;
720 struct inode;
721 
722 static inline unsigned int compound_order(struct page *page)
723 {
724 	if (!PageHead(page))
725 		return 0;
726 	return page[1].compound_order;
727 }
728 
729 /**
730  * folio_order - The allocation order of a folio.
731  * @folio: The folio.
732  *
733  * A folio is composed of 2^order pages.  See get_order() for the definition
734  * of order.
735  *
736  * Return: The order of the folio.
737  */
738 static inline unsigned int folio_order(struct folio *folio)
739 {
740 	if (!folio_test_large(folio))
741 		return 0;
742 	return folio->_folio_order;
743 }
744 
745 #include <linux/huge_mm.h>
746 
747 /*
748  * Methods to modify the page usage count.
749  *
750  * What counts for a page usage:
751  * - cache mapping   (page->mapping)
752  * - private data    (page->private)
753  * - page mapped in a task's page tables, each mapping
754  *   is counted separately
755  *
756  * Also, many kernel routines increase the page count before a critical
757  * routine so they can be sure the page doesn't go away from under them.
758  */
759 
760 /*
761  * Drop a ref, return true if the refcount fell to zero (the page has no users)
762  */
763 static inline int put_page_testzero(struct page *page)
764 {
765 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
766 	return page_ref_dec_and_test(page);
767 }
768 
769 static inline int folio_put_testzero(struct folio *folio)
770 {
771 	return put_page_testzero(&folio->page);
772 }
773 
774 /*
775  * Try to grab a ref unless the page has a refcount of zero, return false if
776  * that is the case.
777  * This can be called when MMU is off so it must not access
778  * any of the virtual mappings.
779  */
780 static inline bool get_page_unless_zero(struct page *page)
781 {
782 	return page_ref_add_unless(page, 1, 0);
783 }
784 
785 extern int page_is_ram(unsigned long pfn);
786 
787 enum {
788 	REGION_INTERSECTS,
789 	REGION_DISJOINT,
790 	REGION_MIXED,
791 };
792 
793 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
794 		      unsigned long desc);
795 
796 /* Support for virtually mapped pages */
797 struct page *vmalloc_to_page(const void *addr);
798 unsigned long vmalloc_to_pfn(const void *addr);
799 
800 /*
801  * Determine if an address is within the vmalloc range
802  *
803  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
804  * is no special casing required.
805  */
806 
807 #ifndef is_ioremap_addr
808 #define is_ioremap_addr(x) is_vmalloc_addr(x)
809 #endif
810 
811 #ifdef CONFIG_MMU
812 extern bool is_vmalloc_addr(const void *x);
813 extern int is_vmalloc_or_module_addr(const void *x);
814 #else
815 static inline bool is_vmalloc_addr(const void *x)
816 {
817 	return false;
818 }
819 static inline int is_vmalloc_or_module_addr(const void *x)
820 {
821 	return 0;
822 }
823 #endif
824 
825 /*
826  * How many times the entire folio is mapped as a single unit (eg by a
827  * PMD or PUD entry).  This is probably not what you want, except for
828  * debugging purposes - it does not include PTE-mapped sub-pages; look
829  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
830  */
831 static inline int folio_entire_mapcount(struct folio *folio)
832 {
833 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
834 	return atomic_read(folio_mapcount_ptr(folio)) + 1;
835 }
836 
837 /*
838  * Mapcount of compound page as a whole, does not include mapped sub-pages.
839  * Must be called only on head of compound page.
840  */
841 static inline int head_compound_mapcount(struct page *head)
842 {
843 	return atomic_read(compound_mapcount_ptr(head)) + 1;
844 }
845 
846 /*
847  * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages,
848  * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit
849  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
850  * leaves subpages_mapcount at 0, but avoid surprise if it participates later.
851  */
852 #define COMPOUND_MAPPED	0x800000
853 #define SUBPAGES_MAPPED	(COMPOUND_MAPPED - 1)
854 
855 /*
856  * Number of sub-pages mapped by PTE, does not include compound mapcount.
857  * Must be called only on head of compound page.
858  */
859 static inline int head_subpages_mapcount(struct page *head)
860 {
861 	return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED;
862 }
863 
864 /*
865  * The atomic page->_mapcount, starts from -1: so that transitions
866  * both from it and to it can be tracked, using atomic_inc_and_test
867  * and atomic_add_negative(-1).
868  */
869 static inline void page_mapcount_reset(struct page *page)
870 {
871 	atomic_set(&(page)->_mapcount, -1);
872 }
873 
874 /*
875  * Mapcount of 0-order page; when compound sub-page, includes
876  * compound_mapcount of compound_head of page.
877  *
878  * Result is undefined for pages which cannot be mapped into userspace.
879  * For example SLAB or special types of pages. See function page_has_type().
880  * They use this place in struct page differently.
881  */
882 static inline int page_mapcount(struct page *page)
883 {
884 	int mapcount = atomic_read(&page->_mapcount) + 1;
885 
886 	if (likely(!PageCompound(page)))
887 		return mapcount;
888 	page = compound_head(page);
889 	return head_compound_mapcount(page) + mapcount;
890 }
891 
892 int total_compound_mapcount(struct page *head);
893 
894 /**
895  * folio_mapcount() - Calculate the number of mappings of this folio.
896  * @folio: The folio.
897  *
898  * A large folio tracks both how many times the entire folio is mapped,
899  * and how many times each individual page in the folio is mapped.
900  * This function calculates the total number of times the folio is
901  * mapped.
902  *
903  * Return: The number of times this folio is mapped.
904  */
905 static inline int folio_mapcount(struct folio *folio)
906 {
907 	if (likely(!folio_test_large(folio)))
908 		return atomic_read(&folio->_mapcount) + 1;
909 	return total_compound_mapcount(&folio->page);
910 }
911 
912 static inline int total_mapcount(struct page *page)
913 {
914 	if (likely(!PageCompound(page)))
915 		return atomic_read(&page->_mapcount) + 1;
916 	return total_compound_mapcount(compound_head(page));
917 }
918 
919 static inline bool folio_large_is_mapped(struct folio *folio)
920 {
921 	/*
922 	 * Reading folio_mapcount_ptr() below could be omitted if hugetlb
923 	 * participated in incrementing subpages_mapcount when compound mapped.
924 	 */
925 	return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 ||
926 		atomic_read(folio_mapcount_ptr(folio)) >= 0;
927 }
928 
929 /**
930  * folio_mapped - Is this folio mapped into userspace?
931  * @folio: The folio.
932  *
933  * Return: True if any page in this folio is referenced by user page tables.
934  */
935 static inline bool folio_mapped(struct folio *folio)
936 {
937 	if (likely(!folio_test_large(folio)))
938 		return atomic_read(&folio->_mapcount) >= 0;
939 	return folio_large_is_mapped(folio);
940 }
941 
942 /*
943  * Return true if this page is mapped into pagetables.
944  * For compound page it returns true if any sub-page of compound page is mapped,
945  * even if this particular sub-page is not itself mapped by any PTE or PMD.
946  */
947 static inline bool page_mapped(struct page *page)
948 {
949 	if (likely(!PageCompound(page)))
950 		return atomic_read(&page->_mapcount) >= 0;
951 	return folio_large_is_mapped(page_folio(page));
952 }
953 
954 static inline struct page *virt_to_head_page(const void *x)
955 {
956 	struct page *page = virt_to_page(x);
957 
958 	return compound_head(page);
959 }
960 
961 static inline struct folio *virt_to_folio(const void *x)
962 {
963 	struct page *page = virt_to_page(x);
964 
965 	return page_folio(page);
966 }
967 
968 void __folio_put(struct folio *folio);
969 
970 void put_pages_list(struct list_head *pages);
971 
972 void split_page(struct page *page, unsigned int order);
973 void folio_copy(struct folio *dst, struct folio *src);
974 
975 unsigned long nr_free_buffer_pages(void);
976 
977 /*
978  * Compound pages have a destructor function.  Provide a
979  * prototype for that function and accessor functions.
980  * These are _only_ valid on the head of a compound page.
981  */
982 typedef void compound_page_dtor(struct page *);
983 
984 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
985 enum compound_dtor_id {
986 	NULL_COMPOUND_DTOR,
987 	COMPOUND_PAGE_DTOR,
988 #ifdef CONFIG_HUGETLB_PAGE
989 	HUGETLB_PAGE_DTOR,
990 #endif
991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
992 	TRANSHUGE_PAGE_DTOR,
993 #endif
994 	NR_COMPOUND_DTORS,
995 };
996 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
997 
998 static inline void set_compound_page_dtor(struct page *page,
999 		enum compound_dtor_id compound_dtor)
1000 {
1001 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1002 	page[1].compound_dtor = compound_dtor;
1003 }
1004 
1005 static inline void folio_set_compound_dtor(struct folio *folio,
1006 		enum compound_dtor_id compound_dtor)
1007 {
1008 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1009 	folio->_folio_dtor = compound_dtor;
1010 }
1011 
1012 void destroy_large_folio(struct folio *folio);
1013 
1014 static inline int head_compound_pincount(struct page *head)
1015 {
1016 	return atomic_read(compound_pincount_ptr(head));
1017 }
1018 
1019 static inline void set_compound_order(struct page *page, unsigned int order)
1020 {
1021 	page[1].compound_order = order;
1022 #ifdef CONFIG_64BIT
1023 	page[1].compound_nr = 1U << order;
1024 #endif
1025 }
1026 
1027 /* Returns the number of pages in this potentially compound page. */
1028 static inline unsigned long compound_nr(struct page *page)
1029 {
1030 	if (!PageHead(page))
1031 		return 1;
1032 #ifdef CONFIG_64BIT
1033 	return page[1].compound_nr;
1034 #else
1035 	return 1UL << compound_order(page);
1036 #endif
1037 }
1038 
1039 /* Returns the number of bytes in this potentially compound page. */
1040 static inline unsigned long page_size(struct page *page)
1041 {
1042 	return PAGE_SIZE << compound_order(page);
1043 }
1044 
1045 /* Returns the number of bits needed for the number of bytes in a page */
1046 static inline unsigned int page_shift(struct page *page)
1047 {
1048 	return PAGE_SHIFT + compound_order(page);
1049 }
1050 
1051 /**
1052  * thp_order - Order of a transparent huge page.
1053  * @page: Head page of a transparent huge page.
1054  */
1055 static inline unsigned int thp_order(struct page *page)
1056 {
1057 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1058 	return compound_order(page);
1059 }
1060 
1061 /**
1062  * thp_nr_pages - The number of regular pages in this huge page.
1063  * @page: The head page of a huge page.
1064  */
1065 static inline int thp_nr_pages(struct page *page)
1066 {
1067 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1068 	return compound_nr(page);
1069 }
1070 
1071 /**
1072  * thp_size - Size of a transparent huge page.
1073  * @page: Head page of a transparent huge page.
1074  *
1075  * Return: Number of bytes in this page.
1076  */
1077 static inline unsigned long thp_size(struct page *page)
1078 {
1079 	return PAGE_SIZE << thp_order(page);
1080 }
1081 
1082 void free_compound_page(struct page *page);
1083 
1084 #ifdef CONFIG_MMU
1085 /*
1086  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1087  * servicing faults for write access.  In the normal case, do always want
1088  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1089  * that do not have writing enabled, when used by access_process_vm.
1090  */
1091 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1092 {
1093 	if (likely(vma->vm_flags & VM_WRITE))
1094 		pte = pte_mkwrite(pte);
1095 	return pte;
1096 }
1097 
1098 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1099 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1100 
1101 vm_fault_t finish_fault(struct vm_fault *vmf);
1102 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1103 #endif
1104 
1105 /*
1106  * Multiple processes may "see" the same page. E.g. for untouched
1107  * mappings of /dev/null, all processes see the same page full of
1108  * zeroes, and text pages of executables and shared libraries have
1109  * only one copy in memory, at most, normally.
1110  *
1111  * For the non-reserved pages, page_count(page) denotes a reference count.
1112  *   page_count() == 0 means the page is free. page->lru is then used for
1113  *   freelist management in the buddy allocator.
1114  *   page_count() > 0  means the page has been allocated.
1115  *
1116  * Pages are allocated by the slab allocator in order to provide memory
1117  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1118  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1119  * unless a particular usage is carefully commented. (the responsibility of
1120  * freeing the kmalloc memory is the caller's, of course).
1121  *
1122  * A page may be used by anyone else who does a __get_free_page().
1123  * In this case, page_count still tracks the references, and should only
1124  * be used through the normal accessor functions. The top bits of page->flags
1125  * and page->virtual store page management information, but all other fields
1126  * are unused and could be used privately, carefully. The management of this
1127  * page is the responsibility of the one who allocated it, and those who have
1128  * subsequently been given references to it.
1129  *
1130  * The other pages (we may call them "pagecache pages") are completely
1131  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1132  * The following discussion applies only to them.
1133  *
1134  * A pagecache page contains an opaque `private' member, which belongs to the
1135  * page's address_space. Usually, this is the address of a circular list of
1136  * the page's disk buffers. PG_private must be set to tell the VM to call
1137  * into the filesystem to release these pages.
1138  *
1139  * A page may belong to an inode's memory mapping. In this case, page->mapping
1140  * is the pointer to the inode, and page->index is the file offset of the page,
1141  * in units of PAGE_SIZE.
1142  *
1143  * If pagecache pages are not associated with an inode, they are said to be
1144  * anonymous pages. These may become associated with the swapcache, and in that
1145  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1146  *
1147  * In either case (swapcache or inode backed), the pagecache itself holds one
1148  * reference to the page. Setting PG_private should also increment the
1149  * refcount. The each user mapping also has a reference to the page.
1150  *
1151  * The pagecache pages are stored in a per-mapping radix tree, which is
1152  * rooted at mapping->i_pages, and indexed by offset.
1153  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1154  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1155  *
1156  * All pagecache pages may be subject to I/O:
1157  * - inode pages may need to be read from disk,
1158  * - inode pages which have been modified and are MAP_SHARED may need
1159  *   to be written back to the inode on disk,
1160  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1161  *   modified may need to be swapped out to swap space and (later) to be read
1162  *   back into memory.
1163  */
1164 
1165 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1166 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1167 
1168 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1169 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1170 {
1171 	if (!static_branch_unlikely(&devmap_managed_key))
1172 		return false;
1173 	if (!is_zone_device_page(page))
1174 		return false;
1175 	return __put_devmap_managed_page_refs(page, refs);
1176 }
1177 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1178 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1179 {
1180 	return false;
1181 }
1182 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1183 
1184 static inline bool put_devmap_managed_page(struct page *page)
1185 {
1186 	return put_devmap_managed_page_refs(page, 1);
1187 }
1188 
1189 /* 127: arbitrary random number, small enough to assemble well */
1190 #define folio_ref_zero_or_close_to_overflow(folio) \
1191 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1192 
1193 /**
1194  * folio_get - Increment the reference count on a folio.
1195  * @folio: The folio.
1196  *
1197  * Context: May be called in any context, as long as you know that
1198  * you have a refcount on the folio.  If you do not already have one,
1199  * folio_try_get() may be the right interface for you to use.
1200  */
1201 static inline void folio_get(struct folio *folio)
1202 {
1203 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1204 	folio_ref_inc(folio);
1205 }
1206 
1207 static inline void get_page(struct page *page)
1208 {
1209 	folio_get(page_folio(page));
1210 }
1211 
1212 int __must_check try_grab_page(struct page *page, unsigned int flags);
1213 
1214 static inline __must_check bool try_get_page(struct page *page)
1215 {
1216 	page = compound_head(page);
1217 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1218 		return false;
1219 	page_ref_inc(page);
1220 	return true;
1221 }
1222 
1223 /**
1224  * folio_put - Decrement the reference count on a folio.
1225  * @folio: The folio.
1226  *
1227  * If the folio's reference count reaches zero, the memory will be
1228  * released back to the page allocator and may be used by another
1229  * allocation immediately.  Do not access the memory or the struct folio
1230  * after calling folio_put() unless you can be sure that it wasn't the
1231  * last reference.
1232  *
1233  * Context: May be called in process or interrupt context, but not in NMI
1234  * context.  May be called while holding a spinlock.
1235  */
1236 static inline void folio_put(struct folio *folio)
1237 {
1238 	if (folio_put_testzero(folio))
1239 		__folio_put(folio);
1240 }
1241 
1242 /**
1243  * folio_put_refs - Reduce the reference count on a folio.
1244  * @folio: The folio.
1245  * @refs: The amount to subtract from the folio's reference count.
1246  *
1247  * If the folio's reference count reaches zero, the memory will be
1248  * released back to the page allocator and may be used by another
1249  * allocation immediately.  Do not access the memory or the struct folio
1250  * after calling folio_put_refs() unless you can be sure that these weren't
1251  * the last references.
1252  *
1253  * Context: May be called in process or interrupt context, but not in NMI
1254  * context.  May be called while holding a spinlock.
1255  */
1256 static inline void folio_put_refs(struct folio *folio, int refs)
1257 {
1258 	if (folio_ref_sub_and_test(folio, refs))
1259 		__folio_put(folio);
1260 }
1261 
1262 /*
1263  * union release_pages_arg - an array of pages or folios
1264  *
1265  * release_pages() releases a simple array of multiple pages, and
1266  * accepts various different forms of said page array: either
1267  * a regular old boring array of pages, an array of folios, or
1268  * an array of encoded page pointers.
1269  *
1270  * The transparent union syntax for this kind of "any of these
1271  * argument types" is all kinds of ugly, so look away.
1272  */
1273 typedef union {
1274 	struct page **pages;
1275 	struct folio **folios;
1276 	struct encoded_page **encoded_pages;
1277 } release_pages_arg __attribute__ ((__transparent_union__));
1278 
1279 void release_pages(release_pages_arg, int nr);
1280 
1281 /**
1282  * folios_put - Decrement the reference count on an array of folios.
1283  * @folios: The folios.
1284  * @nr: How many folios there are.
1285  *
1286  * Like folio_put(), but for an array of folios.  This is more efficient
1287  * than writing the loop yourself as it will optimise the locks which
1288  * need to be taken if the folios are freed.
1289  *
1290  * Context: May be called in process or interrupt context, but not in NMI
1291  * context.  May be called while holding a spinlock.
1292  */
1293 static inline void folios_put(struct folio **folios, unsigned int nr)
1294 {
1295 	release_pages(folios, nr);
1296 }
1297 
1298 static inline void put_page(struct page *page)
1299 {
1300 	struct folio *folio = page_folio(page);
1301 
1302 	/*
1303 	 * For some devmap managed pages we need to catch refcount transition
1304 	 * from 2 to 1:
1305 	 */
1306 	if (put_devmap_managed_page(&folio->page))
1307 		return;
1308 	folio_put(folio);
1309 }
1310 
1311 /*
1312  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1313  * the page's refcount so that two separate items are tracked: the original page
1314  * reference count, and also a new count of how many pin_user_pages() calls were
1315  * made against the page. ("gup-pinned" is another term for the latter).
1316  *
1317  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1318  * distinct from normal pages. As such, the unpin_user_page() call (and its
1319  * variants) must be used in order to release gup-pinned pages.
1320  *
1321  * Choice of value:
1322  *
1323  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1324  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1325  * simpler, due to the fact that adding an even power of two to the page
1326  * refcount has the effect of using only the upper N bits, for the code that
1327  * counts up using the bias value. This means that the lower bits are left for
1328  * the exclusive use of the original code that increments and decrements by one
1329  * (or at least, by much smaller values than the bias value).
1330  *
1331  * Of course, once the lower bits overflow into the upper bits (and this is
1332  * OK, because subtraction recovers the original values), then visual inspection
1333  * no longer suffices to directly view the separate counts. However, for normal
1334  * applications that don't have huge page reference counts, this won't be an
1335  * issue.
1336  *
1337  * Locking: the lockless algorithm described in folio_try_get_rcu()
1338  * provides safe operation for get_user_pages(), page_mkclean() and
1339  * other calls that race to set up page table entries.
1340  */
1341 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1342 
1343 void unpin_user_page(struct page *page);
1344 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1345 				 bool make_dirty);
1346 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1347 				      bool make_dirty);
1348 void unpin_user_pages(struct page **pages, unsigned long npages);
1349 
1350 static inline bool is_cow_mapping(vm_flags_t flags)
1351 {
1352 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1353 }
1354 
1355 #ifndef CONFIG_MMU
1356 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1357 {
1358 	/*
1359 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1360 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1361 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1362 	 * underlying memory if ptrace is active, so this is only possible if
1363 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1364 	 * write permissions later.
1365 	 */
1366 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1367 }
1368 #endif
1369 
1370 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1371 #define SECTION_IN_PAGE_FLAGS
1372 #endif
1373 
1374 /*
1375  * The identification function is mainly used by the buddy allocator for
1376  * determining if two pages could be buddies. We are not really identifying
1377  * the zone since we could be using the section number id if we do not have
1378  * node id available in page flags.
1379  * We only guarantee that it will return the same value for two combinable
1380  * pages in a zone.
1381  */
1382 static inline int page_zone_id(struct page *page)
1383 {
1384 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1385 }
1386 
1387 #ifdef NODE_NOT_IN_PAGE_FLAGS
1388 extern int page_to_nid(const struct page *page);
1389 #else
1390 static inline int page_to_nid(const struct page *page)
1391 {
1392 	struct page *p = (struct page *)page;
1393 
1394 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1395 }
1396 #endif
1397 
1398 static inline int folio_nid(const struct folio *folio)
1399 {
1400 	return page_to_nid(&folio->page);
1401 }
1402 
1403 #ifdef CONFIG_NUMA_BALANCING
1404 /* page access time bits needs to hold at least 4 seconds */
1405 #define PAGE_ACCESS_TIME_MIN_BITS	12
1406 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1407 #define PAGE_ACCESS_TIME_BUCKETS				\
1408 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1409 #else
1410 #define PAGE_ACCESS_TIME_BUCKETS	0
1411 #endif
1412 
1413 #define PAGE_ACCESS_TIME_MASK				\
1414 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1415 
1416 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1417 {
1418 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1419 }
1420 
1421 static inline int cpupid_to_pid(int cpupid)
1422 {
1423 	return cpupid & LAST__PID_MASK;
1424 }
1425 
1426 static inline int cpupid_to_cpu(int cpupid)
1427 {
1428 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1429 }
1430 
1431 static inline int cpupid_to_nid(int cpupid)
1432 {
1433 	return cpu_to_node(cpupid_to_cpu(cpupid));
1434 }
1435 
1436 static inline bool cpupid_pid_unset(int cpupid)
1437 {
1438 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1439 }
1440 
1441 static inline bool cpupid_cpu_unset(int cpupid)
1442 {
1443 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1444 }
1445 
1446 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1447 {
1448 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1449 }
1450 
1451 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1452 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1453 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1454 {
1455 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1456 }
1457 
1458 static inline int page_cpupid_last(struct page *page)
1459 {
1460 	return page->_last_cpupid;
1461 }
1462 static inline void page_cpupid_reset_last(struct page *page)
1463 {
1464 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1465 }
1466 #else
1467 static inline int page_cpupid_last(struct page *page)
1468 {
1469 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1470 }
1471 
1472 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1473 
1474 static inline void page_cpupid_reset_last(struct page *page)
1475 {
1476 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1477 }
1478 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1479 
1480 static inline int xchg_page_access_time(struct page *page, int time)
1481 {
1482 	int last_time;
1483 
1484 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1485 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1486 }
1487 #else /* !CONFIG_NUMA_BALANCING */
1488 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1489 {
1490 	return page_to_nid(page); /* XXX */
1491 }
1492 
1493 static inline int xchg_page_access_time(struct page *page, int time)
1494 {
1495 	return 0;
1496 }
1497 
1498 static inline int page_cpupid_last(struct page *page)
1499 {
1500 	return page_to_nid(page); /* XXX */
1501 }
1502 
1503 static inline int cpupid_to_nid(int cpupid)
1504 {
1505 	return -1;
1506 }
1507 
1508 static inline int cpupid_to_pid(int cpupid)
1509 {
1510 	return -1;
1511 }
1512 
1513 static inline int cpupid_to_cpu(int cpupid)
1514 {
1515 	return -1;
1516 }
1517 
1518 static inline int cpu_pid_to_cpupid(int nid, int pid)
1519 {
1520 	return -1;
1521 }
1522 
1523 static inline bool cpupid_pid_unset(int cpupid)
1524 {
1525 	return true;
1526 }
1527 
1528 static inline void page_cpupid_reset_last(struct page *page)
1529 {
1530 }
1531 
1532 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1533 {
1534 	return false;
1535 }
1536 #endif /* CONFIG_NUMA_BALANCING */
1537 
1538 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1539 
1540 /*
1541  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1542  * setting tags for all pages to native kernel tag value 0xff, as the default
1543  * value 0x00 maps to 0xff.
1544  */
1545 
1546 static inline u8 page_kasan_tag(const struct page *page)
1547 {
1548 	u8 tag = 0xff;
1549 
1550 	if (kasan_enabled()) {
1551 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1552 		tag ^= 0xff;
1553 	}
1554 
1555 	return tag;
1556 }
1557 
1558 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1559 {
1560 	unsigned long old_flags, flags;
1561 
1562 	if (!kasan_enabled())
1563 		return;
1564 
1565 	tag ^= 0xff;
1566 	old_flags = READ_ONCE(page->flags);
1567 	do {
1568 		flags = old_flags;
1569 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1570 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1571 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1572 }
1573 
1574 static inline void page_kasan_tag_reset(struct page *page)
1575 {
1576 	if (kasan_enabled())
1577 		page_kasan_tag_set(page, 0xff);
1578 }
1579 
1580 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1581 
1582 static inline u8 page_kasan_tag(const struct page *page)
1583 {
1584 	return 0xff;
1585 }
1586 
1587 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1588 static inline void page_kasan_tag_reset(struct page *page) { }
1589 
1590 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1591 
1592 static inline struct zone *page_zone(const struct page *page)
1593 {
1594 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1595 }
1596 
1597 static inline pg_data_t *page_pgdat(const struct page *page)
1598 {
1599 	return NODE_DATA(page_to_nid(page));
1600 }
1601 
1602 static inline struct zone *folio_zone(const struct folio *folio)
1603 {
1604 	return page_zone(&folio->page);
1605 }
1606 
1607 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1608 {
1609 	return page_pgdat(&folio->page);
1610 }
1611 
1612 #ifdef SECTION_IN_PAGE_FLAGS
1613 static inline void set_page_section(struct page *page, unsigned long section)
1614 {
1615 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1616 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1617 }
1618 
1619 static inline unsigned long page_to_section(const struct page *page)
1620 {
1621 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1622 }
1623 #endif
1624 
1625 /**
1626  * folio_pfn - Return the Page Frame Number of a folio.
1627  * @folio: The folio.
1628  *
1629  * A folio may contain multiple pages.  The pages have consecutive
1630  * Page Frame Numbers.
1631  *
1632  * Return: The Page Frame Number of the first page in the folio.
1633  */
1634 static inline unsigned long folio_pfn(struct folio *folio)
1635 {
1636 	return page_to_pfn(&folio->page);
1637 }
1638 
1639 static inline struct folio *pfn_folio(unsigned long pfn)
1640 {
1641 	return page_folio(pfn_to_page(pfn));
1642 }
1643 
1644 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1645 {
1646 	return &folio_page(folio, 1)->compound_pincount;
1647 }
1648 
1649 /**
1650  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1651  * @folio: The folio.
1652  *
1653  * This function checks if a folio has been pinned via a call to
1654  * a function in the pin_user_pages() family.
1655  *
1656  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1657  * because it means "definitely not pinned for DMA", but true means "probably
1658  * pinned for DMA, but possibly a false positive due to having at least
1659  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1660  *
1661  * False positives are OK, because: a) it's unlikely for a folio to
1662  * get that many refcounts, and b) all the callers of this routine are
1663  * expected to be able to deal gracefully with a false positive.
1664  *
1665  * For large folios, the result will be exactly correct. That's because
1666  * we have more tracking data available: the compound_pincount is used
1667  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1668  *
1669  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1670  *
1671  * Return: True, if it is likely that the page has been "dma-pinned".
1672  * False, if the page is definitely not dma-pinned.
1673  */
1674 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1675 {
1676 	if (folio_test_large(folio))
1677 		return atomic_read(folio_pincount_ptr(folio)) > 0;
1678 
1679 	/*
1680 	 * folio_ref_count() is signed. If that refcount overflows, then
1681 	 * folio_ref_count() returns a negative value, and callers will avoid
1682 	 * further incrementing the refcount.
1683 	 *
1684 	 * Here, for that overflow case, use the sign bit to count a little
1685 	 * bit higher via unsigned math, and thus still get an accurate result.
1686 	 */
1687 	return ((unsigned int)folio_ref_count(folio)) >=
1688 		GUP_PIN_COUNTING_BIAS;
1689 }
1690 
1691 static inline bool page_maybe_dma_pinned(struct page *page)
1692 {
1693 	return folio_maybe_dma_pinned(page_folio(page));
1694 }
1695 
1696 /*
1697  * This should most likely only be called during fork() to see whether we
1698  * should break the cow immediately for an anon page on the src mm.
1699  *
1700  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1701  */
1702 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1703 					  struct page *page)
1704 {
1705 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1706 
1707 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1708 		return false;
1709 
1710 	return page_maybe_dma_pinned(page);
1711 }
1712 
1713 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1714 #ifdef CONFIG_MIGRATION
1715 static inline bool is_longterm_pinnable_page(struct page *page)
1716 {
1717 #ifdef CONFIG_CMA
1718 	int mt = get_pageblock_migratetype(page);
1719 
1720 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1721 		return false;
1722 #endif
1723 	/* The zero page may always be pinned */
1724 	if (is_zero_pfn(page_to_pfn(page)))
1725 		return true;
1726 
1727 	/* Coherent device memory must always allow eviction. */
1728 	if (is_device_coherent_page(page))
1729 		return false;
1730 
1731 	/* Otherwise, non-movable zone pages can be pinned. */
1732 	return !is_zone_movable_page(page);
1733 }
1734 #else
1735 static inline bool is_longterm_pinnable_page(struct page *page)
1736 {
1737 	return true;
1738 }
1739 #endif
1740 
1741 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1742 {
1743 	return is_longterm_pinnable_page(&folio->page);
1744 }
1745 
1746 static inline void set_page_zone(struct page *page, enum zone_type zone)
1747 {
1748 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1749 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1750 }
1751 
1752 static inline void set_page_node(struct page *page, unsigned long node)
1753 {
1754 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1755 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1756 }
1757 
1758 static inline void set_page_links(struct page *page, enum zone_type zone,
1759 	unsigned long node, unsigned long pfn)
1760 {
1761 	set_page_zone(page, zone);
1762 	set_page_node(page, node);
1763 #ifdef SECTION_IN_PAGE_FLAGS
1764 	set_page_section(page, pfn_to_section_nr(pfn));
1765 #endif
1766 }
1767 
1768 /**
1769  * folio_nr_pages - The number of pages in the folio.
1770  * @folio: The folio.
1771  *
1772  * Return: A positive power of two.
1773  */
1774 static inline long folio_nr_pages(struct folio *folio)
1775 {
1776 	if (!folio_test_large(folio))
1777 		return 1;
1778 #ifdef CONFIG_64BIT
1779 	return folio->_folio_nr_pages;
1780 #else
1781 	return 1L << folio->_folio_order;
1782 #endif
1783 }
1784 
1785 /**
1786  * folio_next - Move to the next physical folio.
1787  * @folio: The folio we're currently operating on.
1788  *
1789  * If you have physically contiguous memory which may span more than
1790  * one folio (eg a &struct bio_vec), use this function to move from one
1791  * folio to the next.  Do not use it if the memory is only virtually
1792  * contiguous as the folios are almost certainly not adjacent to each
1793  * other.  This is the folio equivalent to writing ``page++``.
1794  *
1795  * Context: We assume that the folios are refcounted and/or locked at a
1796  * higher level and do not adjust the reference counts.
1797  * Return: The next struct folio.
1798  */
1799 static inline struct folio *folio_next(struct folio *folio)
1800 {
1801 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1802 }
1803 
1804 /**
1805  * folio_shift - The size of the memory described by this folio.
1806  * @folio: The folio.
1807  *
1808  * A folio represents a number of bytes which is a power-of-two in size.
1809  * This function tells you which power-of-two the folio is.  See also
1810  * folio_size() and folio_order().
1811  *
1812  * Context: The caller should have a reference on the folio to prevent
1813  * it from being split.  It is not necessary for the folio to be locked.
1814  * Return: The base-2 logarithm of the size of this folio.
1815  */
1816 static inline unsigned int folio_shift(struct folio *folio)
1817 {
1818 	return PAGE_SHIFT + folio_order(folio);
1819 }
1820 
1821 /**
1822  * folio_size - The number of bytes in a folio.
1823  * @folio: The folio.
1824  *
1825  * Context: The caller should have a reference on the folio to prevent
1826  * it from being split.  It is not necessary for the folio to be locked.
1827  * Return: The number of bytes in this folio.
1828  */
1829 static inline size_t folio_size(struct folio *folio)
1830 {
1831 	return PAGE_SIZE << folio_order(folio);
1832 }
1833 
1834 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1835 static inline int arch_make_page_accessible(struct page *page)
1836 {
1837 	return 0;
1838 }
1839 #endif
1840 
1841 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1842 static inline int arch_make_folio_accessible(struct folio *folio)
1843 {
1844 	int ret;
1845 	long i, nr = folio_nr_pages(folio);
1846 
1847 	for (i = 0; i < nr; i++) {
1848 		ret = arch_make_page_accessible(folio_page(folio, i));
1849 		if (ret)
1850 			break;
1851 	}
1852 
1853 	return ret;
1854 }
1855 #endif
1856 
1857 /*
1858  * Some inline functions in vmstat.h depend on page_zone()
1859  */
1860 #include <linux/vmstat.h>
1861 
1862 static __always_inline void *lowmem_page_address(const struct page *page)
1863 {
1864 	return page_to_virt(page);
1865 }
1866 
1867 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1868 #define HASHED_PAGE_VIRTUAL
1869 #endif
1870 
1871 #if defined(WANT_PAGE_VIRTUAL)
1872 static inline void *page_address(const struct page *page)
1873 {
1874 	return page->virtual;
1875 }
1876 static inline void set_page_address(struct page *page, void *address)
1877 {
1878 	page->virtual = address;
1879 }
1880 #define page_address_init()  do { } while(0)
1881 #endif
1882 
1883 #if defined(HASHED_PAGE_VIRTUAL)
1884 void *page_address(const struct page *page);
1885 void set_page_address(struct page *page, void *virtual);
1886 void page_address_init(void);
1887 #endif
1888 
1889 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1890 #define page_address(page) lowmem_page_address(page)
1891 #define set_page_address(page, address)  do { } while(0)
1892 #define page_address_init()  do { } while(0)
1893 #endif
1894 
1895 static inline void *folio_address(const struct folio *folio)
1896 {
1897 	return page_address(&folio->page);
1898 }
1899 
1900 extern void *page_rmapping(struct page *page);
1901 extern pgoff_t __page_file_index(struct page *page);
1902 
1903 /*
1904  * Return the pagecache index of the passed page.  Regular pagecache pages
1905  * use ->index whereas swapcache pages use swp_offset(->private)
1906  */
1907 static inline pgoff_t page_index(struct page *page)
1908 {
1909 	if (unlikely(PageSwapCache(page)))
1910 		return __page_file_index(page);
1911 	return page->index;
1912 }
1913 
1914 /*
1915  * Return true only if the page has been allocated with
1916  * ALLOC_NO_WATERMARKS and the low watermark was not
1917  * met implying that the system is under some pressure.
1918  */
1919 static inline bool page_is_pfmemalloc(const struct page *page)
1920 {
1921 	/*
1922 	 * lru.next has bit 1 set if the page is allocated from the
1923 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1924 	 * they do not need to preserve that information.
1925 	 */
1926 	return (uintptr_t)page->lru.next & BIT(1);
1927 }
1928 
1929 /*
1930  * Return true only if the folio has been allocated with
1931  * ALLOC_NO_WATERMARKS and the low watermark was not
1932  * met implying that the system is under some pressure.
1933  */
1934 static inline bool folio_is_pfmemalloc(const struct folio *folio)
1935 {
1936 	/*
1937 	 * lru.next has bit 1 set if the page is allocated from the
1938 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1939 	 * they do not need to preserve that information.
1940 	 */
1941 	return (uintptr_t)folio->lru.next & BIT(1);
1942 }
1943 
1944 /*
1945  * Only to be called by the page allocator on a freshly allocated
1946  * page.
1947  */
1948 static inline void set_page_pfmemalloc(struct page *page)
1949 {
1950 	page->lru.next = (void *)BIT(1);
1951 }
1952 
1953 static inline void clear_page_pfmemalloc(struct page *page)
1954 {
1955 	page->lru.next = NULL;
1956 }
1957 
1958 /*
1959  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1960  */
1961 extern void pagefault_out_of_memory(void);
1962 
1963 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1964 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1965 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1966 
1967 /*
1968  * Flags passed to show_mem() and show_free_areas() to suppress output in
1969  * various contexts.
1970  */
1971 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1972 
1973 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
1974 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1975 {
1976 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1977 }
1978 
1979 /*
1980  * Parameter block passed down to zap_pte_range in exceptional cases.
1981  */
1982 struct zap_details {
1983 	struct folio *single_folio;	/* Locked folio to be unmapped */
1984 	bool even_cows;			/* Zap COWed private pages too? */
1985 	zap_flags_t zap_flags;		/* Extra flags for zapping */
1986 };
1987 
1988 /*
1989  * Whether to drop the pte markers, for example, the uffd-wp information for
1990  * file-backed memory.  This should only be specified when we will completely
1991  * drop the page in the mm, either by truncation or unmapping of the vma.  By
1992  * default, the flag is not set.
1993  */
1994 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
1995 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
1996 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
1997 
1998 #ifdef CONFIG_MMU
1999 extern bool can_do_mlock(void);
2000 #else
2001 static inline bool can_do_mlock(void) { return false; }
2002 #endif
2003 extern int user_shm_lock(size_t, struct ucounts *);
2004 extern void user_shm_unlock(size_t, struct ucounts *);
2005 
2006 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2007 			     pte_t pte);
2008 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2009 			     pte_t pte);
2010 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2011 				pmd_t pmd);
2012 
2013 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2014 		  unsigned long size);
2015 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2016 			   unsigned long size, struct zap_details *details);
2017 static inline void zap_vma_pages(struct vm_area_struct *vma)
2018 {
2019 	zap_page_range_single(vma, vma->vm_start,
2020 			      vma->vm_end - vma->vm_start, NULL);
2021 }
2022 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2023 		struct vm_area_struct *start_vma, unsigned long start,
2024 		unsigned long end);
2025 
2026 struct mmu_notifier_range;
2027 
2028 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2029 		unsigned long end, unsigned long floor, unsigned long ceiling);
2030 int
2031 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2032 int follow_pte(struct mm_struct *mm, unsigned long address,
2033 	       pte_t **ptepp, spinlock_t **ptlp);
2034 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2035 	unsigned long *pfn);
2036 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2037 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2038 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2039 			void *buf, int len, int write);
2040 
2041 extern void truncate_pagecache(struct inode *inode, loff_t new);
2042 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2043 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2044 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2045 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2046 
2047 #ifdef CONFIG_MMU
2048 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2049 				  unsigned long address, unsigned int flags,
2050 				  struct pt_regs *regs);
2051 extern int fixup_user_fault(struct mm_struct *mm,
2052 			    unsigned long address, unsigned int fault_flags,
2053 			    bool *unlocked);
2054 void unmap_mapping_pages(struct address_space *mapping,
2055 		pgoff_t start, pgoff_t nr, bool even_cows);
2056 void unmap_mapping_range(struct address_space *mapping,
2057 		loff_t const holebegin, loff_t const holelen, int even_cows);
2058 #else
2059 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2060 					 unsigned long address, unsigned int flags,
2061 					 struct pt_regs *regs)
2062 {
2063 	/* should never happen if there's no MMU */
2064 	BUG();
2065 	return VM_FAULT_SIGBUS;
2066 }
2067 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2068 		unsigned int fault_flags, bool *unlocked)
2069 {
2070 	/* should never happen if there's no MMU */
2071 	BUG();
2072 	return -EFAULT;
2073 }
2074 static inline void unmap_mapping_pages(struct address_space *mapping,
2075 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2076 static inline void unmap_mapping_range(struct address_space *mapping,
2077 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2078 #endif
2079 
2080 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2081 		loff_t const holebegin, loff_t const holelen)
2082 {
2083 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2084 }
2085 
2086 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2087 		void *buf, int len, unsigned int gup_flags);
2088 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2089 		void *buf, int len, unsigned int gup_flags);
2090 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2091 			      void *buf, int len, unsigned int gup_flags);
2092 
2093 long get_user_pages_remote(struct mm_struct *mm,
2094 			    unsigned long start, unsigned long nr_pages,
2095 			    unsigned int gup_flags, struct page **pages,
2096 			    struct vm_area_struct **vmas, int *locked);
2097 long pin_user_pages_remote(struct mm_struct *mm,
2098 			   unsigned long start, unsigned long nr_pages,
2099 			   unsigned int gup_flags, struct page **pages,
2100 			   struct vm_area_struct **vmas, int *locked);
2101 long get_user_pages(unsigned long start, unsigned long nr_pages,
2102 			    unsigned int gup_flags, struct page **pages,
2103 			    struct vm_area_struct **vmas);
2104 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2105 		    unsigned int gup_flags, struct page **pages,
2106 		    struct vm_area_struct **vmas);
2107 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2108 		    struct page **pages, unsigned int gup_flags);
2109 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2110 		    struct page **pages, unsigned int gup_flags);
2111 
2112 int get_user_pages_fast(unsigned long start, int nr_pages,
2113 			unsigned int gup_flags, struct page **pages);
2114 int pin_user_pages_fast(unsigned long start, int nr_pages,
2115 			unsigned int gup_flags, struct page **pages);
2116 
2117 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2118 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2119 			struct task_struct *task, bool bypass_rlim);
2120 
2121 struct kvec;
2122 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
2123 			struct page **pages);
2124 struct page *get_dump_page(unsigned long addr);
2125 
2126 bool folio_mark_dirty(struct folio *folio);
2127 bool set_page_dirty(struct page *page);
2128 int set_page_dirty_lock(struct page *page);
2129 
2130 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2131 
2132 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2133 		unsigned long old_addr, struct vm_area_struct *new_vma,
2134 		unsigned long new_addr, unsigned long len,
2135 		bool need_rmap_locks);
2136 
2137 /*
2138  * Flags used by change_protection().  For now we make it a bitmap so
2139  * that we can pass in multiple flags just like parameters.  However
2140  * for now all the callers are only use one of the flags at the same
2141  * time.
2142  */
2143 /*
2144  * Whether we should manually check if we can map individual PTEs writable,
2145  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2146  * PTEs automatically in a writable mapping.
2147  */
2148 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2149 /* Whether this protection change is for NUMA hints */
2150 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2151 /* Whether this change is for write protecting */
2152 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2153 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2154 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2155 					    MM_CP_UFFD_WP_RESOLVE)
2156 
2157 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2158 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2159 {
2160 	/*
2161 	 * We want to check manually if we can change individual PTEs writable
2162 	 * if we can't do that automatically for all PTEs in a mapping. For
2163 	 * private mappings, that's always the case when we have write
2164 	 * permissions as we properly have to handle COW.
2165 	 */
2166 	if (vma->vm_flags & VM_SHARED)
2167 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2168 	return !!(vma->vm_flags & VM_WRITE);
2169 
2170 }
2171 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2172 			     pte_t pte);
2173 extern long change_protection(struct mmu_gather *tlb,
2174 			      struct vm_area_struct *vma, unsigned long start,
2175 			      unsigned long end, unsigned long cp_flags);
2176 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
2177 			  struct vm_area_struct **pprev, unsigned long start,
2178 			  unsigned long end, unsigned long newflags);
2179 
2180 /*
2181  * doesn't attempt to fault and will return short.
2182  */
2183 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2184 			     unsigned int gup_flags, struct page **pages);
2185 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2186 			     unsigned int gup_flags, struct page **pages);
2187 
2188 static inline bool get_user_page_fast_only(unsigned long addr,
2189 			unsigned int gup_flags, struct page **pagep)
2190 {
2191 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2192 }
2193 /*
2194  * per-process(per-mm_struct) statistics.
2195  */
2196 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2197 {
2198 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2199 }
2200 
2201 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2202 
2203 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2204 {
2205 	percpu_counter_add(&mm->rss_stat[member], value);
2206 
2207 	mm_trace_rss_stat(mm, member);
2208 }
2209 
2210 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2211 {
2212 	percpu_counter_inc(&mm->rss_stat[member]);
2213 
2214 	mm_trace_rss_stat(mm, member);
2215 }
2216 
2217 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2218 {
2219 	percpu_counter_dec(&mm->rss_stat[member]);
2220 
2221 	mm_trace_rss_stat(mm, member);
2222 }
2223 
2224 /* Optimized variant when page is already known not to be PageAnon */
2225 static inline int mm_counter_file(struct page *page)
2226 {
2227 	if (PageSwapBacked(page))
2228 		return MM_SHMEMPAGES;
2229 	return MM_FILEPAGES;
2230 }
2231 
2232 static inline int mm_counter(struct page *page)
2233 {
2234 	if (PageAnon(page))
2235 		return MM_ANONPAGES;
2236 	return mm_counter_file(page);
2237 }
2238 
2239 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2240 {
2241 	return get_mm_counter(mm, MM_FILEPAGES) +
2242 		get_mm_counter(mm, MM_ANONPAGES) +
2243 		get_mm_counter(mm, MM_SHMEMPAGES);
2244 }
2245 
2246 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2247 {
2248 	return max(mm->hiwater_rss, get_mm_rss(mm));
2249 }
2250 
2251 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2252 {
2253 	return max(mm->hiwater_vm, mm->total_vm);
2254 }
2255 
2256 static inline void update_hiwater_rss(struct mm_struct *mm)
2257 {
2258 	unsigned long _rss = get_mm_rss(mm);
2259 
2260 	if ((mm)->hiwater_rss < _rss)
2261 		(mm)->hiwater_rss = _rss;
2262 }
2263 
2264 static inline void update_hiwater_vm(struct mm_struct *mm)
2265 {
2266 	if (mm->hiwater_vm < mm->total_vm)
2267 		mm->hiwater_vm = mm->total_vm;
2268 }
2269 
2270 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2271 {
2272 	mm->hiwater_rss = get_mm_rss(mm);
2273 }
2274 
2275 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2276 					 struct mm_struct *mm)
2277 {
2278 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2279 
2280 	if (*maxrss < hiwater_rss)
2281 		*maxrss = hiwater_rss;
2282 }
2283 
2284 #if defined(SPLIT_RSS_COUNTING)
2285 void sync_mm_rss(struct mm_struct *mm);
2286 #else
2287 static inline void sync_mm_rss(struct mm_struct *mm)
2288 {
2289 }
2290 #endif
2291 
2292 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2293 static inline int pte_special(pte_t pte)
2294 {
2295 	return 0;
2296 }
2297 
2298 static inline pte_t pte_mkspecial(pte_t pte)
2299 {
2300 	return pte;
2301 }
2302 #endif
2303 
2304 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2305 static inline int pte_devmap(pte_t pte)
2306 {
2307 	return 0;
2308 }
2309 #endif
2310 
2311 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2312 			       spinlock_t **ptl);
2313 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2314 				    spinlock_t **ptl)
2315 {
2316 	pte_t *ptep;
2317 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2318 	return ptep;
2319 }
2320 
2321 #ifdef __PAGETABLE_P4D_FOLDED
2322 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2323 						unsigned long address)
2324 {
2325 	return 0;
2326 }
2327 #else
2328 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2329 #endif
2330 
2331 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2332 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2333 						unsigned long address)
2334 {
2335 	return 0;
2336 }
2337 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2338 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2339 
2340 #else
2341 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2342 
2343 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2344 {
2345 	if (mm_pud_folded(mm))
2346 		return;
2347 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2348 }
2349 
2350 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2351 {
2352 	if (mm_pud_folded(mm))
2353 		return;
2354 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2355 }
2356 #endif
2357 
2358 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2359 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2360 						unsigned long address)
2361 {
2362 	return 0;
2363 }
2364 
2365 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2366 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2367 
2368 #else
2369 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2370 
2371 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2372 {
2373 	if (mm_pmd_folded(mm))
2374 		return;
2375 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2376 }
2377 
2378 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2379 {
2380 	if (mm_pmd_folded(mm))
2381 		return;
2382 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2383 }
2384 #endif
2385 
2386 #ifdef CONFIG_MMU
2387 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2388 {
2389 	atomic_long_set(&mm->pgtables_bytes, 0);
2390 }
2391 
2392 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2393 {
2394 	return atomic_long_read(&mm->pgtables_bytes);
2395 }
2396 
2397 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2398 {
2399 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2400 }
2401 
2402 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2403 {
2404 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2405 }
2406 #else
2407 
2408 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2409 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2410 {
2411 	return 0;
2412 }
2413 
2414 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2415 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2416 #endif
2417 
2418 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2419 int __pte_alloc_kernel(pmd_t *pmd);
2420 
2421 #if defined(CONFIG_MMU)
2422 
2423 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2424 		unsigned long address)
2425 {
2426 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2427 		NULL : p4d_offset(pgd, address);
2428 }
2429 
2430 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2431 		unsigned long address)
2432 {
2433 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2434 		NULL : pud_offset(p4d, address);
2435 }
2436 
2437 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2438 {
2439 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2440 		NULL: pmd_offset(pud, address);
2441 }
2442 #endif /* CONFIG_MMU */
2443 
2444 #if USE_SPLIT_PTE_PTLOCKS
2445 #if ALLOC_SPLIT_PTLOCKS
2446 void __init ptlock_cache_init(void);
2447 extern bool ptlock_alloc(struct page *page);
2448 extern void ptlock_free(struct page *page);
2449 
2450 static inline spinlock_t *ptlock_ptr(struct page *page)
2451 {
2452 	return page->ptl;
2453 }
2454 #else /* ALLOC_SPLIT_PTLOCKS */
2455 static inline void ptlock_cache_init(void)
2456 {
2457 }
2458 
2459 static inline bool ptlock_alloc(struct page *page)
2460 {
2461 	return true;
2462 }
2463 
2464 static inline void ptlock_free(struct page *page)
2465 {
2466 }
2467 
2468 static inline spinlock_t *ptlock_ptr(struct page *page)
2469 {
2470 	return &page->ptl;
2471 }
2472 #endif /* ALLOC_SPLIT_PTLOCKS */
2473 
2474 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2475 {
2476 	return ptlock_ptr(pmd_page(*pmd));
2477 }
2478 
2479 static inline bool ptlock_init(struct page *page)
2480 {
2481 	/*
2482 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2483 	 * with 0. Make sure nobody took it in use in between.
2484 	 *
2485 	 * It can happen if arch try to use slab for page table allocation:
2486 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2487 	 */
2488 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2489 	if (!ptlock_alloc(page))
2490 		return false;
2491 	spin_lock_init(ptlock_ptr(page));
2492 	return true;
2493 }
2494 
2495 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2496 /*
2497  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2498  */
2499 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2500 {
2501 	return &mm->page_table_lock;
2502 }
2503 static inline void ptlock_cache_init(void) {}
2504 static inline bool ptlock_init(struct page *page) { return true; }
2505 static inline void ptlock_free(struct page *page) {}
2506 #endif /* USE_SPLIT_PTE_PTLOCKS */
2507 
2508 static inline void pgtable_init(void)
2509 {
2510 	ptlock_cache_init();
2511 	pgtable_cache_init();
2512 }
2513 
2514 static inline bool pgtable_pte_page_ctor(struct page *page)
2515 {
2516 	if (!ptlock_init(page))
2517 		return false;
2518 	__SetPageTable(page);
2519 	inc_lruvec_page_state(page, NR_PAGETABLE);
2520 	return true;
2521 }
2522 
2523 static inline void pgtable_pte_page_dtor(struct page *page)
2524 {
2525 	ptlock_free(page);
2526 	__ClearPageTable(page);
2527 	dec_lruvec_page_state(page, NR_PAGETABLE);
2528 }
2529 
2530 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2531 ({							\
2532 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2533 	pte_t *__pte = pte_offset_map(pmd, address);	\
2534 	*(ptlp) = __ptl;				\
2535 	spin_lock(__ptl);				\
2536 	__pte;						\
2537 })
2538 
2539 #define pte_unmap_unlock(pte, ptl)	do {		\
2540 	spin_unlock(ptl);				\
2541 	pte_unmap(pte);					\
2542 } while (0)
2543 
2544 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2545 
2546 #define pte_alloc_map(mm, pmd, address)			\
2547 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2548 
2549 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2550 	(pte_alloc(mm, pmd) ?			\
2551 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2552 
2553 #define pte_alloc_kernel(pmd, address)			\
2554 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2555 		NULL: pte_offset_kernel(pmd, address))
2556 
2557 #if USE_SPLIT_PMD_PTLOCKS
2558 
2559 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2560 {
2561 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2562 	return virt_to_page((void *)((unsigned long) pmd & mask));
2563 }
2564 
2565 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2566 {
2567 	return ptlock_ptr(pmd_pgtable_page(pmd));
2568 }
2569 
2570 static inline bool pmd_ptlock_init(struct page *page)
2571 {
2572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2573 	page->pmd_huge_pte = NULL;
2574 #endif
2575 	return ptlock_init(page);
2576 }
2577 
2578 static inline void pmd_ptlock_free(struct page *page)
2579 {
2580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2581 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2582 #endif
2583 	ptlock_free(page);
2584 }
2585 
2586 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2587 
2588 #else
2589 
2590 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2591 {
2592 	return &mm->page_table_lock;
2593 }
2594 
2595 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2596 static inline void pmd_ptlock_free(struct page *page) {}
2597 
2598 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2599 
2600 #endif
2601 
2602 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2603 {
2604 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2605 	spin_lock(ptl);
2606 	return ptl;
2607 }
2608 
2609 static inline bool pgtable_pmd_page_ctor(struct page *page)
2610 {
2611 	if (!pmd_ptlock_init(page))
2612 		return false;
2613 	__SetPageTable(page);
2614 	inc_lruvec_page_state(page, NR_PAGETABLE);
2615 	return true;
2616 }
2617 
2618 static inline void pgtable_pmd_page_dtor(struct page *page)
2619 {
2620 	pmd_ptlock_free(page);
2621 	__ClearPageTable(page);
2622 	dec_lruvec_page_state(page, NR_PAGETABLE);
2623 }
2624 
2625 /*
2626  * No scalability reason to split PUD locks yet, but follow the same pattern
2627  * as the PMD locks to make it easier if we decide to.  The VM should not be
2628  * considered ready to switch to split PUD locks yet; there may be places
2629  * which need to be converted from page_table_lock.
2630  */
2631 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2632 {
2633 	return &mm->page_table_lock;
2634 }
2635 
2636 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2637 {
2638 	spinlock_t *ptl = pud_lockptr(mm, pud);
2639 
2640 	spin_lock(ptl);
2641 	return ptl;
2642 }
2643 
2644 extern void __init pagecache_init(void);
2645 extern void free_initmem(void);
2646 
2647 /*
2648  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2649  * into the buddy system. The freed pages will be poisoned with pattern
2650  * "poison" if it's within range [0, UCHAR_MAX].
2651  * Return pages freed into the buddy system.
2652  */
2653 extern unsigned long free_reserved_area(void *start, void *end,
2654 					int poison, const char *s);
2655 
2656 extern void adjust_managed_page_count(struct page *page, long count);
2657 extern void mem_init_print_info(void);
2658 
2659 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2660 
2661 /* Free the reserved page into the buddy system, so it gets managed. */
2662 static inline void free_reserved_page(struct page *page)
2663 {
2664 	ClearPageReserved(page);
2665 	init_page_count(page);
2666 	__free_page(page);
2667 	adjust_managed_page_count(page, 1);
2668 }
2669 #define free_highmem_page(page) free_reserved_page(page)
2670 
2671 static inline void mark_page_reserved(struct page *page)
2672 {
2673 	SetPageReserved(page);
2674 	adjust_managed_page_count(page, -1);
2675 }
2676 
2677 /*
2678  * Default method to free all the __init memory into the buddy system.
2679  * The freed pages will be poisoned with pattern "poison" if it's within
2680  * range [0, UCHAR_MAX].
2681  * Return pages freed into the buddy system.
2682  */
2683 static inline unsigned long free_initmem_default(int poison)
2684 {
2685 	extern char __init_begin[], __init_end[];
2686 
2687 	return free_reserved_area(&__init_begin, &__init_end,
2688 				  poison, "unused kernel image (initmem)");
2689 }
2690 
2691 static inline unsigned long get_num_physpages(void)
2692 {
2693 	int nid;
2694 	unsigned long phys_pages = 0;
2695 
2696 	for_each_online_node(nid)
2697 		phys_pages += node_present_pages(nid);
2698 
2699 	return phys_pages;
2700 }
2701 
2702 /*
2703  * Using memblock node mappings, an architecture may initialise its
2704  * zones, allocate the backing mem_map and account for memory holes in an
2705  * architecture independent manner.
2706  *
2707  * An architecture is expected to register range of page frames backed by
2708  * physical memory with memblock_add[_node]() before calling
2709  * free_area_init() passing in the PFN each zone ends at. At a basic
2710  * usage, an architecture is expected to do something like
2711  *
2712  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2713  * 							 max_highmem_pfn};
2714  * for_each_valid_physical_page_range()
2715  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2716  * free_area_init(max_zone_pfns);
2717  */
2718 void free_area_init(unsigned long *max_zone_pfn);
2719 unsigned long node_map_pfn_alignment(void);
2720 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2721 						unsigned long end_pfn);
2722 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2723 						unsigned long end_pfn);
2724 extern void get_pfn_range_for_nid(unsigned int nid,
2725 			unsigned long *start_pfn, unsigned long *end_pfn);
2726 
2727 #ifndef CONFIG_NUMA
2728 static inline int early_pfn_to_nid(unsigned long pfn)
2729 {
2730 	return 0;
2731 }
2732 #else
2733 /* please see mm/page_alloc.c */
2734 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2735 #endif
2736 
2737 extern void set_dma_reserve(unsigned long new_dma_reserve);
2738 extern void memmap_init_range(unsigned long, int, unsigned long,
2739 		unsigned long, unsigned long, enum meminit_context,
2740 		struct vmem_altmap *, int migratetype);
2741 extern void setup_per_zone_wmarks(void);
2742 extern void calculate_min_free_kbytes(void);
2743 extern int __meminit init_per_zone_wmark_min(void);
2744 extern void mem_init(void);
2745 extern void __init mmap_init(void);
2746 
2747 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2748 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2749 {
2750 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2751 }
2752 extern long si_mem_available(void);
2753 extern void si_meminfo(struct sysinfo * val);
2754 extern void si_meminfo_node(struct sysinfo *val, int nid);
2755 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2756 extern unsigned long arch_reserved_kernel_pages(void);
2757 #endif
2758 
2759 extern __printf(3, 4)
2760 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2761 
2762 extern void setup_per_cpu_pageset(void);
2763 
2764 /* page_alloc.c */
2765 extern int min_free_kbytes;
2766 extern int watermark_boost_factor;
2767 extern int watermark_scale_factor;
2768 extern bool arch_has_descending_max_zone_pfns(void);
2769 
2770 /* nommu.c */
2771 extern atomic_long_t mmap_pages_allocated;
2772 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2773 
2774 /* interval_tree.c */
2775 void vma_interval_tree_insert(struct vm_area_struct *node,
2776 			      struct rb_root_cached *root);
2777 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2778 				    struct vm_area_struct *prev,
2779 				    struct rb_root_cached *root);
2780 void vma_interval_tree_remove(struct vm_area_struct *node,
2781 			      struct rb_root_cached *root);
2782 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2783 				unsigned long start, unsigned long last);
2784 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2785 				unsigned long start, unsigned long last);
2786 
2787 #define vma_interval_tree_foreach(vma, root, start, last)		\
2788 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2789 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2790 
2791 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2792 				   struct rb_root_cached *root);
2793 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2794 				   struct rb_root_cached *root);
2795 struct anon_vma_chain *
2796 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2797 				  unsigned long start, unsigned long last);
2798 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2799 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2800 #ifdef CONFIG_DEBUG_VM_RB
2801 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2802 #endif
2803 
2804 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2805 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2806 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2807 
2808 /* mmap.c */
2809 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2810 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2811 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2812 	struct vm_area_struct *expand);
2813 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2814 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2815 {
2816 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2817 }
2818 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2819 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2820 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2821 	struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2822 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2823 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2824 	unsigned long addr, int new_below);
2825 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2826 	unsigned long addr, int new_below);
2827 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2828 extern void unlink_file_vma(struct vm_area_struct *);
2829 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2830 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2831 	bool *need_rmap_locks);
2832 extern void exit_mmap(struct mm_struct *);
2833 
2834 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2835 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2836 
2837 static inline int check_data_rlimit(unsigned long rlim,
2838 				    unsigned long new,
2839 				    unsigned long start,
2840 				    unsigned long end_data,
2841 				    unsigned long start_data)
2842 {
2843 	if (rlim < RLIM_INFINITY) {
2844 		if (((new - start) + (end_data - start_data)) > rlim)
2845 			return -ENOSPC;
2846 	}
2847 
2848 	return 0;
2849 }
2850 
2851 extern int mm_take_all_locks(struct mm_struct *mm);
2852 extern void mm_drop_all_locks(struct mm_struct *mm);
2853 
2854 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2855 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2856 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2857 extern struct file *get_task_exe_file(struct task_struct *task);
2858 
2859 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2860 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2861 
2862 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2863 				   const struct vm_special_mapping *sm);
2864 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2865 				   unsigned long addr, unsigned long len,
2866 				   unsigned long flags,
2867 				   const struct vm_special_mapping *spec);
2868 /* This is an obsolete alternative to _install_special_mapping. */
2869 extern int install_special_mapping(struct mm_struct *mm,
2870 				   unsigned long addr, unsigned long len,
2871 				   unsigned long flags, struct page **pages);
2872 
2873 unsigned long randomize_stack_top(unsigned long stack_top);
2874 unsigned long randomize_page(unsigned long start, unsigned long range);
2875 
2876 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2877 
2878 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2879 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2880 	struct list_head *uf);
2881 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2882 	unsigned long len, unsigned long prot, unsigned long flags,
2883 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2884 extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2885 			 unsigned long start, size_t len, struct list_head *uf,
2886 			 bool downgrade);
2887 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2888 		     struct list_head *uf);
2889 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2890 
2891 #ifdef CONFIG_MMU
2892 extern int __mm_populate(unsigned long addr, unsigned long len,
2893 			 int ignore_errors);
2894 static inline void mm_populate(unsigned long addr, unsigned long len)
2895 {
2896 	/* Ignore errors */
2897 	(void) __mm_populate(addr, len, 1);
2898 }
2899 #else
2900 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2901 #endif
2902 
2903 /* These take the mm semaphore themselves */
2904 extern int __must_check vm_brk(unsigned long, unsigned long);
2905 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2906 extern int vm_munmap(unsigned long, size_t);
2907 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2908         unsigned long, unsigned long,
2909         unsigned long, unsigned long);
2910 
2911 struct vm_unmapped_area_info {
2912 #define VM_UNMAPPED_AREA_TOPDOWN 1
2913 	unsigned long flags;
2914 	unsigned long length;
2915 	unsigned long low_limit;
2916 	unsigned long high_limit;
2917 	unsigned long align_mask;
2918 	unsigned long align_offset;
2919 };
2920 
2921 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2922 
2923 /* truncate.c */
2924 extern void truncate_inode_pages(struct address_space *, loff_t);
2925 extern void truncate_inode_pages_range(struct address_space *,
2926 				       loff_t lstart, loff_t lend);
2927 extern void truncate_inode_pages_final(struct address_space *);
2928 
2929 /* generic vm_area_ops exported for stackable file systems */
2930 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2931 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2932 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2933 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2934 
2935 extern unsigned long stack_guard_gap;
2936 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2937 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2938 
2939 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2940 extern int expand_downwards(struct vm_area_struct *vma,
2941 		unsigned long address);
2942 #if VM_GROWSUP
2943 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2944 #else
2945   #define expand_upwards(vma, address) (0)
2946 #endif
2947 
2948 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2949 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2950 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2951 					     struct vm_area_struct **pprev);
2952 
2953 /*
2954  * Look up the first VMA which intersects the interval [start_addr, end_addr)
2955  * NULL if none.  Assume start_addr < end_addr.
2956  */
2957 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2958 			unsigned long start_addr, unsigned long end_addr);
2959 
2960 /**
2961  * vma_lookup() - Find a VMA at a specific address
2962  * @mm: The process address space.
2963  * @addr: The user address.
2964  *
2965  * Return: The vm_area_struct at the given address, %NULL otherwise.
2966  */
2967 static inline
2968 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2969 {
2970 	return mtree_load(&mm->mm_mt, addr);
2971 }
2972 
2973 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2974 {
2975 	unsigned long vm_start = vma->vm_start;
2976 
2977 	if (vma->vm_flags & VM_GROWSDOWN) {
2978 		vm_start -= stack_guard_gap;
2979 		if (vm_start > vma->vm_start)
2980 			vm_start = 0;
2981 	}
2982 	return vm_start;
2983 }
2984 
2985 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2986 {
2987 	unsigned long vm_end = vma->vm_end;
2988 
2989 	if (vma->vm_flags & VM_GROWSUP) {
2990 		vm_end += stack_guard_gap;
2991 		if (vm_end < vma->vm_end)
2992 			vm_end = -PAGE_SIZE;
2993 	}
2994 	return vm_end;
2995 }
2996 
2997 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2998 {
2999 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3000 }
3001 
3002 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3003 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3004 				unsigned long vm_start, unsigned long vm_end)
3005 {
3006 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3007 
3008 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3009 		vma = NULL;
3010 
3011 	return vma;
3012 }
3013 
3014 static inline bool range_in_vma(struct vm_area_struct *vma,
3015 				unsigned long start, unsigned long end)
3016 {
3017 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3018 }
3019 
3020 #ifdef CONFIG_MMU
3021 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3022 void vma_set_page_prot(struct vm_area_struct *vma);
3023 #else
3024 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3025 {
3026 	return __pgprot(0);
3027 }
3028 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3029 {
3030 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3031 }
3032 #endif
3033 
3034 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3035 
3036 #ifdef CONFIG_NUMA_BALANCING
3037 unsigned long change_prot_numa(struct vm_area_struct *vma,
3038 			unsigned long start, unsigned long end);
3039 #endif
3040 
3041 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3042 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3043 			unsigned long pfn, unsigned long size, pgprot_t);
3044 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3045 		unsigned long pfn, unsigned long size, pgprot_t prot);
3046 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3047 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3048 			struct page **pages, unsigned long *num);
3049 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3050 				unsigned long num);
3051 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3052 				unsigned long num);
3053 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3054 			unsigned long pfn);
3055 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3056 			unsigned long pfn, pgprot_t pgprot);
3057 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3058 			pfn_t pfn);
3059 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
3060 			pfn_t pfn, pgprot_t pgprot);
3061 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3062 		unsigned long addr, pfn_t pfn);
3063 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3064 
3065 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3066 				unsigned long addr, struct page *page)
3067 {
3068 	int err = vm_insert_page(vma, addr, page);
3069 
3070 	if (err == -ENOMEM)
3071 		return VM_FAULT_OOM;
3072 	if (err < 0 && err != -EBUSY)
3073 		return VM_FAULT_SIGBUS;
3074 
3075 	return VM_FAULT_NOPAGE;
3076 }
3077 
3078 #ifndef io_remap_pfn_range
3079 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3080 				     unsigned long addr, unsigned long pfn,
3081 				     unsigned long size, pgprot_t prot)
3082 {
3083 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3084 }
3085 #endif
3086 
3087 static inline vm_fault_t vmf_error(int err)
3088 {
3089 	if (err == -ENOMEM)
3090 		return VM_FAULT_OOM;
3091 	return VM_FAULT_SIGBUS;
3092 }
3093 
3094 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3095 			 unsigned int foll_flags);
3096 
3097 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3098 {
3099 	if (vm_fault & VM_FAULT_OOM)
3100 		return -ENOMEM;
3101 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3102 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3103 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3104 		return -EFAULT;
3105 	return 0;
3106 }
3107 
3108 /*
3109  * Indicates for which pages that are write-protected in the page table,
3110  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3111  * GUP pin will remain consistent with the pages mapped into the page tables
3112  * of the MM.
3113  *
3114  * Temporary unmapping of PageAnonExclusive() pages or clearing of
3115  * PageAnonExclusive() has to protect against concurrent GUP:
3116  * * Ordinary GUP: Using the PT lock
3117  * * GUP-fast and fork(): mm->write_protect_seq
3118  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3119  *    page_try_share_anon_rmap()
3120  *
3121  * Must be called with the (sub)page that's actually referenced via the
3122  * page table entry, which might not necessarily be the head page for a
3123  * PTE-mapped THP.
3124  *
3125  * If the vma is NULL, we're coming from the GUP-fast path and might have
3126  * to fallback to the slow path just to lookup the vma.
3127  */
3128 static inline bool gup_must_unshare(struct vm_area_struct *vma,
3129 				    unsigned int flags, struct page *page)
3130 {
3131 	/*
3132 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
3133 	 * has to be writable -- and if it references (part of) an anonymous
3134 	 * folio, that part is required to be marked exclusive.
3135 	 */
3136 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3137 		return false;
3138 	/*
3139 	 * Note: PageAnon(page) is stable until the page is actually getting
3140 	 * freed.
3141 	 */
3142 	if (!PageAnon(page)) {
3143 		/*
3144 		 * We only care about R/O long-term pining: R/O short-term
3145 		 * pinning does not have the semantics to observe successive
3146 		 * changes through the process page tables.
3147 		 */
3148 		if (!(flags & FOLL_LONGTERM))
3149 			return false;
3150 
3151 		/* We really need the vma ... */
3152 		if (!vma)
3153 			return true;
3154 
3155 		/*
3156 		 * ... because we only care about writable private ("COW")
3157 		 * mappings where we have to break COW early.
3158 		 */
3159 		return is_cow_mapping(vma->vm_flags);
3160 	}
3161 
3162 	/* Paired with a memory barrier in page_try_share_anon_rmap(). */
3163 	if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3164 		smp_rmb();
3165 
3166 	/*
3167 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
3168 	 * cannot get pinned.
3169 	 */
3170 	return !PageAnonExclusive(page);
3171 }
3172 
3173 /*
3174  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3175  * a (NUMA hinting) fault is required.
3176  */
3177 static inline bool gup_can_follow_protnone(unsigned int flags)
3178 {
3179 	/*
3180 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3181 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3182 	 * application behaviour and we should avoid triggering NUMA hinting
3183 	 * faults.
3184 	 */
3185 	return flags & FOLL_FORCE;
3186 }
3187 
3188 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3189 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3190 			       unsigned long size, pte_fn_t fn, void *data);
3191 extern int apply_to_existing_page_range(struct mm_struct *mm,
3192 				   unsigned long address, unsigned long size,
3193 				   pte_fn_t fn, void *data);
3194 
3195 extern void __init init_mem_debugging_and_hardening(void);
3196 #ifdef CONFIG_PAGE_POISONING
3197 extern void __kernel_poison_pages(struct page *page, int numpages);
3198 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3199 extern bool _page_poisoning_enabled_early;
3200 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3201 static inline bool page_poisoning_enabled(void)
3202 {
3203 	return _page_poisoning_enabled_early;
3204 }
3205 /*
3206  * For use in fast paths after init_mem_debugging() has run, or when a
3207  * false negative result is not harmful when called too early.
3208  */
3209 static inline bool page_poisoning_enabled_static(void)
3210 {
3211 	return static_branch_unlikely(&_page_poisoning_enabled);
3212 }
3213 static inline void kernel_poison_pages(struct page *page, int numpages)
3214 {
3215 	if (page_poisoning_enabled_static())
3216 		__kernel_poison_pages(page, numpages);
3217 }
3218 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3219 {
3220 	if (page_poisoning_enabled_static())
3221 		__kernel_unpoison_pages(page, numpages);
3222 }
3223 #else
3224 static inline bool page_poisoning_enabled(void) { return false; }
3225 static inline bool page_poisoning_enabled_static(void) { return false; }
3226 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3227 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3228 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3229 #endif
3230 
3231 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3232 static inline bool want_init_on_alloc(gfp_t flags)
3233 {
3234 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3235 				&init_on_alloc))
3236 		return true;
3237 	return flags & __GFP_ZERO;
3238 }
3239 
3240 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3241 static inline bool want_init_on_free(void)
3242 {
3243 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3244 				   &init_on_free);
3245 }
3246 
3247 extern bool _debug_pagealloc_enabled_early;
3248 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3249 
3250 static inline bool debug_pagealloc_enabled(void)
3251 {
3252 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3253 		_debug_pagealloc_enabled_early;
3254 }
3255 
3256 /*
3257  * For use in fast paths after init_debug_pagealloc() has run, or when a
3258  * false negative result is not harmful when called too early.
3259  */
3260 static inline bool debug_pagealloc_enabled_static(void)
3261 {
3262 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3263 		return false;
3264 
3265 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3266 }
3267 
3268 #ifdef CONFIG_DEBUG_PAGEALLOC
3269 /*
3270  * To support DEBUG_PAGEALLOC architecture must ensure that
3271  * __kernel_map_pages() never fails
3272  */
3273 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3274 
3275 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3276 {
3277 	if (debug_pagealloc_enabled_static())
3278 		__kernel_map_pages(page, numpages, 1);
3279 }
3280 
3281 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3282 {
3283 	if (debug_pagealloc_enabled_static())
3284 		__kernel_map_pages(page, numpages, 0);
3285 }
3286 #else	/* CONFIG_DEBUG_PAGEALLOC */
3287 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3288 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3289 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3290 
3291 #ifdef __HAVE_ARCH_GATE_AREA
3292 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3293 extern int in_gate_area_no_mm(unsigned long addr);
3294 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3295 #else
3296 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3297 {
3298 	return NULL;
3299 }
3300 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3301 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3302 {
3303 	return 0;
3304 }
3305 #endif	/* __HAVE_ARCH_GATE_AREA */
3306 
3307 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3308 
3309 #ifdef CONFIG_SYSCTL
3310 extern int sysctl_drop_caches;
3311 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3312 		loff_t *);
3313 #endif
3314 
3315 void drop_slab(void);
3316 
3317 #ifndef CONFIG_MMU
3318 #define randomize_va_space 0
3319 #else
3320 extern int randomize_va_space;
3321 #endif
3322 
3323 const char * arch_vma_name(struct vm_area_struct *vma);
3324 #ifdef CONFIG_MMU
3325 void print_vma_addr(char *prefix, unsigned long rip);
3326 #else
3327 static inline void print_vma_addr(char *prefix, unsigned long rip)
3328 {
3329 }
3330 #endif
3331 
3332 void *sparse_buffer_alloc(unsigned long size);
3333 struct page * __populate_section_memmap(unsigned long pfn,
3334 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3335 		struct dev_pagemap *pgmap);
3336 void pmd_init(void *addr);
3337 void pud_init(void *addr);
3338 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3339 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3340 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3341 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3342 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3343 			    struct vmem_altmap *altmap, struct page *reuse);
3344 void *vmemmap_alloc_block(unsigned long size, int node);
3345 struct vmem_altmap;
3346 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3347 			      struct vmem_altmap *altmap);
3348 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3349 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3350 		     unsigned long addr, unsigned long next);
3351 int vmemmap_check_pmd(pmd_t *pmd, int node,
3352 		      unsigned long addr, unsigned long next);
3353 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3354 			       int node, struct vmem_altmap *altmap);
3355 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3356 			       int node, struct vmem_altmap *altmap);
3357 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3358 		struct vmem_altmap *altmap);
3359 void vmemmap_populate_print_last(void);
3360 #ifdef CONFIG_MEMORY_HOTPLUG
3361 void vmemmap_free(unsigned long start, unsigned long end,
3362 		struct vmem_altmap *altmap);
3363 #endif
3364 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3365 				  unsigned long nr_pages);
3366 
3367 enum mf_flags {
3368 	MF_COUNT_INCREASED = 1 << 0,
3369 	MF_ACTION_REQUIRED = 1 << 1,
3370 	MF_MUST_KILL = 1 << 2,
3371 	MF_SOFT_OFFLINE = 1 << 3,
3372 	MF_UNPOISON = 1 << 4,
3373 	MF_SW_SIMULATED = 1 << 5,
3374 	MF_NO_RETRY = 1 << 6,
3375 };
3376 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3377 		      unsigned long count, int mf_flags);
3378 extern int memory_failure(unsigned long pfn, int flags);
3379 extern void memory_failure_queue_kick(int cpu);
3380 extern int unpoison_memory(unsigned long pfn);
3381 extern int sysctl_memory_failure_early_kill;
3382 extern int sysctl_memory_failure_recovery;
3383 extern void shake_page(struct page *p);
3384 extern atomic_long_t num_poisoned_pages __read_mostly;
3385 extern int soft_offline_page(unsigned long pfn, int flags);
3386 #ifdef CONFIG_MEMORY_FAILURE
3387 extern void memory_failure_queue(unsigned long pfn, int flags);
3388 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3389 					bool *migratable_cleared);
3390 void num_poisoned_pages_inc(unsigned long pfn);
3391 void num_poisoned_pages_sub(unsigned long pfn, long i);
3392 #else
3393 static inline void memory_failure_queue(unsigned long pfn, int flags)
3394 {
3395 }
3396 
3397 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3398 					bool *migratable_cleared)
3399 {
3400 	return 0;
3401 }
3402 
3403 static inline void num_poisoned_pages_inc(unsigned long pfn)
3404 {
3405 }
3406 
3407 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3408 {
3409 }
3410 #endif
3411 
3412 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3413 extern void memblk_nr_poison_inc(unsigned long pfn);
3414 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3415 #else
3416 static inline void memblk_nr_poison_inc(unsigned long pfn)
3417 {
3418 }
3419 
3420 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3421 {
3422 }
3423 #endif
3424 
3425 #ifndef arch_memory_failure
3426 static inline int arch_memory_failure(unsigned long pfn, int flags)
3427 {
3428 	return -ENXIO;
3429 }
3430 #endif
3431 
3432 #ifndef arch_is_platform_page
3433 static inline bool arch_is_platform_page(u64 paddr)
3434 {
3435 	return false;
3436 }
3437 #endif
3438 
3439 /*
3440  * Error handlers for various types of pages.
3441  */
3442 enum mf_result {
3443 	MF_IGNORED,	/* Error: cannot be handled */
3444 	MF_FAILED,	/* Error: handling failed */
3445 	MF_DELAYED,	/* Will be handled later */
3446 	MF_RECOVERED,	/* Successfully recovered */
3447 };
3448 
3449 enum mf_action_page_type {
3450 	MF_MSG_KERNEL,
3451 	MF_MSG_KERNEL_HIGH_ORDER,
3452 	MF_MSG_SLAB,
3453 	MF_MSG_DIFFERENT_COMPOUND,
3454 	MF_MSG_HUGE,
3455 	MF_MSG_FREE_HUGE,
3456 	MF_MSG_UNMAP_FAILED,
3457 	MF_MSG_DIRTY_SWAPCACHE,
3458 	MF_MSG_CLEAN_SWAPCACHE,
3459 	MF_MSG_DIRTY_MLOCKED_LRU,
3460 	MF_MSG_CLEAN_MLOCKED_LRU,
3461 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3462 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3463 	MF_MSG_DIRTY_LRU,
3464 	MF_MSG_CLEAN_LRU,
3465 	MF_MSG_TRUNCATED_LRU,
3466 	MF_MSG_BUDDY,
3467 	MF_MSG_DAX,
3468 	MF_MSG_UNSPLIT_THP,
3469 	MF_MSG_UNKNOWN,
3470 };
3471 
3472 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3473 extern void clear_huge_page(struct page *page,
3474 			    unsigned long addr_hint,
3475 			    unsigned int pages_per_huge_page);
3476 extern void copy_user_huge_page(struct page *dst, struct page *src,
3477 				unsigned long addr_hint,
3478 				struct vm_area_struct *vma,
3479 				unsigned int pages_per_huge_page);
3480 extern long copy_huge_page_from_user(struct page *dst_page,
3481 				const void __user *usr_src,
3482 				unsigned int pages_per_huge_page,
3483 				bool allow_pagefault);
3484 
3485 /**
3486  * vma_is_special_huge - Are transhuge page-table entries considered special?
3487  * @vma: Pointer to the struct vm_area_struct to consider
3488  *
3489  * Whether transhuge page-table entries are considered "special" following
3490  * the definition in vm_normal_page().
3491  *
3492  * Return: true if transhuge page-table entries should be considered special,
3493  * false otherwise.
3494  */
3495 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3496 {
3497 	return vma_is_dax(vma) || (vma->vm_file &&
3498 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3499 }
3500 
3501 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3502 
3503 #ifdef CONFIG_DEBUG_PAGEALLOC
3504 extern unsigned int _debug_guardpage_minorder;
3505 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3506 
3507 static inline unsigned int debug_guardpage_minorder(void)
3508 {
3509 	return _debug_guardpage_minorder;
3510 }
3511 
3512 static inline bool debug_guardpage_enabled(void)
3513 {
3514 	return static_branch_unlikely(&_debug_guardpage_enabled);
3515 }
3516 
3517 static inline bool page_is_guard(struct page *page)
3518 {
3519 	if (!debug_guardpage_enabled())
3520 		return false;
3521 
3522 	return PageGuard(page);
3523 }
3524 #else
3525 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3526 static inline bool debug_guardpage_enabled(void) { return false; }
3527 static inline bool page_is_guard(struct page *page) { return false; }
3528 #endif /* CONFIG_DEBUG_PAGEALLOC */
3529 
3530 #if MAX_NUMNODES > 1
3531 void __init setup_nr_node_ids(void);
3532 #else
3533 static inline void setup_nr_node_ids(void) {}
3534 #endif
3535 
3536 extern int memcmp_pages(struct page *page1, struct page *page2);
3537 
3538 static inline int pages_identical(struct page *page1, struct page *page2)
3539 {
3540 	return !memcmp_pages(page1, page2);
3541 }
3542 
3543 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3544 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3545 						pgoff_t first_index, pgoff_t nr,
3546 						pgoff_t bitmap_pgoff,
3547 						unsigned long *bitmap,
3548 						pgoff_t *start,
3549 						pgoff_t *end);
3550 
3551 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3552 				      pgoff_t first_index, pgoff_t nr);
3553 #endif
3554 
3555 extern int sysctl_nr_trim_pages;
3556 
3557 #ifdef CONFIG_PRINTK
3558 void mem_dump_obj(void *object);
3559 #else
3560 static inline void mem_dump_obj(void *object) {}
3561 #endif
3562 
3563 /**
3564  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3565  * @seals: the seals to check
3566  * @vma: the vma to operate on
3567  *
3568  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3569  * the vma flags.  Return 0 if check pass, or <0 for errors.
3570  */
3571 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3572 {
3573 	if (seals & F_SEAL_FUTURE_WRITE) {
3574 		/*
3575 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3576 		 * "future write" seal active.
3577 		 */
3578 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3579 			return -EPERM;
3580 
3581 		/*
3582 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3583 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3584 		 * revert protections on such mappings. Do this only for shared
3585 		 * mappings. For private mappings, don't need to mask
3586 		 * VM_MAYWRITE as we still want them to be COW-writable.
3587 		 */
3588 		if (vma->vm_flags & VM_SHARED)
3589 			vma->vm_flags &= ~(VM_MAYWRITE);
3590 	}
3591 
3592 	return 0;
3593 }
3594 
3595 #ifdef CONFIG_ANON_VMA_NAME
3596 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3597 			  unsigned long len_in,
3598 			  struct anon_vma_name *anon_name);
3599 #else
3600 static inline int
3601 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3602 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3603 	return 0;
3604 }
3605 #endif
3606 
3607 #endif /* _LINUX_MM_H */
3608