1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 33 struct mempolicy; 34 struct anon_vma; 35 struct anon_vma_chain; 36 struct user_struct; 37 struct pt_regs; 38 39 extern int sysctl_page_lock_unfairness; 40 41 void init_mm_internals(void); 42 43 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 44 extern unsigned long max_mapnr; 45 46 static inline void set_max_mapnr(unsigned long limit) 47 { 48 max_mapnr = limit; 49 } 50 #else 51 static inline void set_max_mapnr(unsigned long limit) { } 52 #endif 53 54 extern atomic_long_t _totalram_pages; 55 static inline unsigned long totalram_pages(void) 56 { 57 return (unsigned long)atomic_long_read(&_totalram_pages); 58 } 59 60 static inline void totalram_pages_inc(void) 61 { 62 atomic_long_inc(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_dec(void) 66 { 67 atomic_long_dec(&_totalram_pages); 68 } 69 70 static inline void totalram_pages_add(long count) 71 { 72 atomic_long_add(count, &_totalram_pages); 73 } 74 75 extern void * high_memory; 76 extern int page_cluster; 77 extern const int page_cluster_max; 78 79 #ifdef CONFIG_SYSCTL 80 extern int sysctl_legacy_va_layout; 81 #else 82 #define sysctl_legacy_va_layout 0 83 #endif 84 85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86 extern const int mmap_rnd_bits_min; 87 extern const int mmap_rnd_bits_max; 88 extern int mmap_rnd_bits __read_mostly; 89 #endif 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91 extern const int mmap_rnd_compat_bits_min; 92 extern const int mmap_rnd_compat_bits_max; 93 extern int mmap_rnd_compat_bits __read_mostly; 94 #endif 95 96 #include <asm/page.h> 97 #include <asm/processor.h> 98 99 /* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for architectures that don't support memory tagging. 105 */ 106 #ifndef untagged_addr 107 #define untagged_addr(addr) (addr) 108 #endif 109 110 #ifndef __pa_symbol 111 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112 #endif 113 114 #ifndef page_to_virt 115 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116 #endif 117 118 #ifndef lm_alias 119 #define lm_alias(x) __va(__pa_symbol(x)) 120 #endif 121 122 /* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129 #ifndef mm_forbids_zeropage 130 #define mm_forbids_zeropage(X) (0) 131 #endif 132 133 /* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139 #if BITS_PER_LONG == 64 140 /* This function must be updated when the size of struct page grows above 80 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statements if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147 static inline void __mm_zero_struct_page(struct page *page) 148 { 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 80); 155 156 switch (sizeof(struct page)) { 157 case 80: 158 _pp[9] = 0; 159 fallthrough; 160 case 72: 161 _pp[8] = 0; 162 fallthrough; 163 case 64: 164 _pp[7] = 0; 165 fallthrough; 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175 } 176 #else 177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178 #endif 179 180 /* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196 #define MAPCOUNT_ELF_CORE_MARGIN (5) 197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199 extern int sysctl_max_map_count; 200 201 extern unsigned long sysctl_user_reserve_kbytes; 202 extern unsigned long sysctl_admin_reserve_kbytes; 203 204 extern int sysctl_overcommit_memory; 205 extern int sysctl_overcommit_ratio; 206 extern unsigned long sysctl_overcommit_kbytes; 207 208 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 215 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 216 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 217 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 218 #else 219 #define nth_page(page,n) ((page) + (n)) 220 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 221 #endif 222 223 /* to align the pointer to the (next) page boundary */ 224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 225 226 /* to align the pointer to the (prev) page boundary */ 227 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 228 229 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 230 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 231 232 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 233 static inline struct folio *lru_to_folio(struct list_head *head) 234 { 235 return list_entry((head)->prev, struct folio, lru); 236 } 237 238 void setup_initial_init_mm(void *start_code, void *end_code, 239 void *end_data, void *brk); 240 241 /* 242 * Linux kernel virtual memory manager primitives. 243 * The idea being to have a "virtual" mm in the same way 244 * we have a virtual fs - giving a cleaner interface to the 245 * mm details, and allowing different kinds of memory mappings 246 * (from shared memory to executable loading to arbitrary 247 * mmap() functions). 248 */ 249 250 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 251 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 252 void vm_area_free(struct vm_area_struct *); 253 254 #ifndef CONFIG_MMU 255 extern struct rb_root nommu_region_tree; 256 extern struct rw_semaphore nommu_region_sem; 257 258 extern unsigned int kobjsize(const void *objp); 259 #endif 260 261 /* 262 * vm_flags in vm_area_struct, see mm_types.h. 263 * When changing, update also include/trace/events/mmflags.h 264 */ 265 #define VM_NONE 0x00000000 266 267 #define VM_READ 0x00000001 /* currently active flags */ 268 #define VM_WRITE 0x00000002 269 #define VM_EXEC 0x00000004 270 #define VM_SHARED 0x00000008 271 272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 273 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 274 #define VM_MAYWRITE 0x00000020 275 #define VM_MAYEXEC 0x00000040 276 #define VM_MAYSHARE 0x00000080 277 278 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 279 #ifdef CONFIG_MMU 280 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 281 #else /* CONFIG_MMU */ 282 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 283 #define VM_UFFD_MISSING 0 284 #endif /* CONFIG_MMU */ 285 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 286 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 287 288 #define VM_LOCKED 0x00002000 289 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 290 291 /* Used by sys_madvise() */ 292 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 293 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 294 295 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 296 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 297 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 298 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 299 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 300 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 301 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 302 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 303 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 304 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 305 306 #ifdef CONFIG_MEM_SOFT_DIRTY 307 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 308 #else 309 # define VM_SOFTDIRTY 0 310 #endif 311 312 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 313 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 314 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 315 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 316 317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 318 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 329 330 #ifdef CONFIG_ARCH_HAS_PKEYS 331 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 332 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 333 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 334 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 335 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 336 #ifdef CONFIG_PPC 337 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 338 #else 339 # define VM_PKEY_BIT4 0 340 #endif 341 #endif /* CONFIG_ARCH_HAS_PKEYS */ 342 343 #if defined(CONFIG_X86) 344 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 345 #elif defined(CONFIG_PPC) 346 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 347 #elif defined(CONFIG_PARISC) 348 # define VM_GROWSUP VM_ARCH_1 349 #elif defined(CONFIG_IA64) 350 # define VM_GROWSUP VM_ARCH_1 351 #elif defined(CONFIG_SPARC64) 352 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 353 # define VM_ARCH_CLEAR VM_SPARC_ADI 354 #elif defined(CONFIG_ARM64) 355 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 356 # define VM_ARCH_CLEAR VM_ARM64_BTI 357 #elif !defined(CONFIG_MMU) 358 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 359 #endif 360 361 #if defined(CONFIG_ARM64_MTE) 362 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 363 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 364 #else 365 # define VM_MTE VM_NONE 366 # define VM_MTE_ALLOWED VM_NONE 367 #endif 368 369 #ifndef VM_GROWSUP 370 # define VM_GROWSUP VM_NONE 371 #endif 372 373 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 374 # define VM_UFFD_MINOR_BIT 37 375 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 376 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 377 # define VM_UFFD_MINOR VM_NONE 378 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 379 380 /* Bits set in the VMA until the stack is in its final location */ 381 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 382 383 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 384 385 /* Common data flag combinations */ 386 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 387 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 388 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 389 VM_MAYWRITE | VM_MAYEXEC) 390 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 391 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 392 393 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 394 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 395 #endif 396 397 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 398 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 399 #endif 400 401 #ifdef CONFIG_STACK_GROWSUP 402 #define VM_STACK VM_GROWSUP 403 #else 404 #define VM_STACK VM_GROWSDOWN 405 #endif 406 407 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 408 409 /* VMA basic access permission flags */ 410 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 411 412 413 /* 414 * Special vmas that are non-mergable, non-mlock()able. 415 */ 416 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 417 418 /* This mask prevents VMA from being scanned with khugepaged */ 419 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 420 421 /* This mask defines which mm->def_flags a process can inherit its parent */ 422 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 423 424 /* This mask is used to clear all the VMA flags used by mlock */ 425 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 426 427 /* Arch-specific flags to clear when updating VM flags on protection change */ 428 #ifndef VM_ARCH_CLEAR 429 # define VM_ARCH_CLEAR VM_NONE 430 #endif 431 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 432 433 /* 434 * mapping from the currently active vm_flags protection bits (the 435 * low four bits) to a page protection mask.. 436 */ 437 438 /* 439 * The default fault flags that should be used by most of the 440 * arch-specific page fault handlers. 441 */ 442 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 443 FAULT_FLAG_KILLABLE | \ 444 FAULT_FLAG_INTERRUPTIBLE) 445 446 /** 447 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 448 * @flags: Fault flags. 449 * 450 * This is mostly used for places where we want to try to avoid taking 451 * the mmap_lock for too long a time when waiting for another condition 452 * to change, in which case we can try to be polite to release the 453 * mmap_lock in the first round to avoid potential starvation of other 454 * processes that would also want the mmap_lock. 455 * 456 * Return: true if the page fault allows retry and this is the first 457 * attempt of the fault handling; false otherwise. 458 */ 459 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 460 { 461 return (flags & FAULT_FLAG_ALLOW_RETRY) && 462 (!(flags & FAULT_FLAG_TRIED)); 463 } 464 465 #define FAULT_FLAG_TRACE \ 466 { FAULT_FLAG_WRITE, "WRITE" }, \ 467 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 468 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 469 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 470 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 471 { FAULT_FLAG_TRIED, "TRIED" }, \ 472 { FAULT_FLAG_USER, "USER" }, \ 473 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 474 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 475 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 476 477 /* 478 * vm_fault is filled by the pagefault handler and passed to the vma's 479 * ->fault function. The vma's ->fault is responsible for returning a bitmask 480 * of VM_FAULT_xxx flags that give details about how the fault was handled. 481 * 482 * MM layer fills up gfp_mask for page allocations but fault handler might 483 * alter it if its implementation requires a different allocation context. 484 * 485 * pgoff should be used in favour of virtual_address, if possible. 486 */ 487 struct vm_fault { 488 const struct { 489 struct vm_area_struct *vma; /* Target VMA */ 490 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 491 pgoff_t pgoff; /* Logical page offset based on vma */ 492 unsigned long address; /* Faulting virtual address - masked */ 493 unsigned long real_address; /* Faulting virtual address - unmasked */ 494 }; 495 enum fault_flag flags; /* FAULT_FLAG_xxx flags 496 * XXX: should really be 'const' */ 497 pmd_t *pmd; /* Pointer to pmd entry matching 498 * the 'address' */ 499 pud_t *pud; /* Pointer to pud entry matching 500 * the 'address' 501 */ 502 union { 503 pte_t orig_pte; /* Value of PTE at the time of fault */ 504 pmd_t orig_pmd; /* Value of PMD at the time of fault, 505 * used by PMD fault only. 506 */ 507 }; 508 509 struct page *cow_page; /* Page handler may use for COW fault */ 510 struct page *page; /* ->fault handlers should return a 511 * page here, unless VM_FAULT_NOPAGE 512 * is set (which is also implied by 513 * VM_FAULT_ERROR). 514 */ 515 /* These three entries are valid only while holding ptl lock */ 516 pte_t *pte; /* Pointer to pte entry matching 517 * the 'address'. NULL if the page 518 * table hasn't been allocated. 519 */ 520 spinlock_t *ptl; /* Page table lock. 521 * Protects pte page table if 'pte' 522 * is not NULL, otherwise pmd. 523 */ 524 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 525 * vm_ops->map_pages() sets up a page 526 * table from atomic context. 527 * do_fault_around() pre-allocates 528 * page table to avoid allocation from 529 * atomic context. 530 */ 531 }; 532 533 /* page entry size for vm->huge_fault() */ 534 enum page_entry_size { 535 PE_SIZE_PTE = 0, 536 PE_SIZE_PMD, 537 PE_SIZE_PUD, 538 }; 539 540 /* 541 * These are the virtual MM functions - opening of an area, closing and 542 * unmapping it (needed to keep files on disk up-to-date etc), pointer 543 * to the functions called when a no-page or a wp-page exception occurs. 544 */ 545 struct vm_operations_struct { 546 void (*open)(struct vm_area_struct * area); 547 /** 548 * @close: Called when the VMA is being removed from the MM. 549 * Context: User context. May sleep. Caller holds mmap_lock. 550 */ 551 void (*close)(struct vm_area_struct * area); 552 /* Called any time before splitting to check if it's allowed */ 553 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 554 int (*mremap)(struct vm_area_struct *area); 555 /* 556 * Called by mprotect() to make driver-specific permission 557 * checks before mprotect() is finalised. The VMA must not 558 * be modified. Returns 0 if mprotect() can proceed. 559 */ 560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 561 unsigned long end, unsigned long newflags); 562 vm_fault_t (*fault)(struct vm_fault *vmf); 563 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 564 enum page_entry_size pe_size); 565 vm_fault_t (*map_pages)(struct vm_fault *vmf, 566 pgoff_t start_pgoff, pgoff_t end_pgoff); 567 unsigned long (*pagesize)(struct vm_area_struct * area); 568 569 /* notification that a previously read-only page is about to become 570 * writable, if an error is returned it will cause a SIGBUS */ 571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 572 573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 575 576 /* called by access_process_vm when get_user_pages() fails, typically 577 * for use by special VMAs. See also generic_access_phys() for a generic 578 * implementation useful for any iomem mapping. 579 */ 580 int (*access)(struct vm_area_struct *vma, unsigned long addr, 581 void *buf, int len, int write); 582 583 /* Called by the /proc/PID/maps code to ask the vma whether it 584 * has a special name. Returning non-NULL will also cause this 585 * vma to be dumped unconditionally. */ 586 const char *(*name)(struct vm_area_struct *vma); 587 588 #ifdef CONFIG_NUMA 589 /* 590 * set_policy() op must add a reference to any non-NULL @new mempolicy 591 * to hold the policy upon return. Caller should pass NULL @new to 592 * remove a policy and fall back to surrounding context--i.e. do not 593 * install a MPOL_DEFAULT policy, nor the task or system default 594 * mempolicy. 595 */ 596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 597 598 /* 599 * get_policy() op must add reference [mpol_get()] to any policy at 600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 601 * in mm/mempolicy.c will do this automatically. 602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 605 * must return NULL--i.e., do not "fallback" to task or system default 606 * policy. 607 */ 608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 609 unsigned long addr); 610 #endif 611 /* 612 * Called by vm_normal_page() for special PTEs to find the 613 * page for @addr. This is useful if the default behavior 614 * (using pte_page()) would not find the correct page. 615 */ 616 struct page *(*find_special_page)(struct vm_area_struct *vma, 617 unsigned long addr); 618 }; 619 620 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 621 { 622 static const struct vm_operations_struct dummy_vm_ops = {}; 623 624 memset(vma, 0, sizeof(*vma)); 625 vma->vm_mm = mm; 626 vma->vm_ops = &dummy_vm_ops; 627 INIT_LIST_HEAD(&vma->anon_vma_chain); 628 } 629 630 static inline void vma_set_anonymous(struct vm_area_struct *vma) 631 { 632 vma->vm_ops = NULL; 633 } 634 635 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 636 { 637 return !vma->vm_ops; 638 } 639 640 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 641 { 642 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 643 644 if (!maybe_stack) 645 return false; 646 647 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 648 VM_STACK_INCOMPLETE_SETUP) 649 return true; 650 651 return false; 652 } 653 654 static inline bool vma_is_foreign(struct vm_area_struct *vma) 655 { 656 if (!current->mm) 657 return true; 658 659 if (current->mm != vma->vm_mm) 660 return true; 661 662 return false; 663 } 664 665 static inline bool vma_is_accessible(struct vm_area_struct *vma) 666 { 667 return vma->vm_flags & VM_ACCESS_FLAGS; 668 } 669 670 static inline 671 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 672 { 673 return mas_find(&vmi->mas, max); 674 } 675 676 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 677 { 678 /* 679 * Uses vma_find() to get the first VMA when the iterator starts. 680 * Calling mas_next() could skip the first entry. 681 */ 682 return vma_find(vmi, ULONG_MAX); 683 } 684 685 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 686 { 687 return mas_prev(&vmi->mas, 0); 688 } 689 690 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 691 { 692 return vmi->mas.index; 693 } 694 695 #define for_each_vma(__vmi, __vma) \ 696 while (((__vma) = vma_next(&(__vmi))) != NULL) 697 698 /* The MM code likes to work with exclusive end addresses */ 699 #define for_each_vma_range(__vmi, __vma, __end) \ 700 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL) 701 702 #ifdef CONFIG_SHMEM 703 /* 704 * The vma_is_shmem is not inline because it is used only by slow 705 * paths in userfault. 706 */ 707 bool vma_is_shmem(struct vm_area_struct *vma); 708 bool vma_is_anon_shmem(struct vm_area_struct *vma); 709 #else 710 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 711 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 712 #endif 713 714 int vma_is_stack_for_current(struct vm_area_struct *vma); 715 716 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 717 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 718 719 struct mmu_gather; 720 struct inode; 721 722 static inline unsigned int compound_order(struct page *page) 723 { 724 if (!PageHead(page)) 725 return 0; 726 return page[1].compound_order; 727 } 728 729 /** 730 * folio_order - The allocation order of a folio. 731 * @folio: The folio. 732 * 733 * A folio is composed of 2^order pages. See get_order() for the definition 734 * of order. 735 * 736 * Return: The order of the folio. 737 */ 738 static inline unsigned int folio_order(struct folio *folio) 739 { 740 if (!folio_test_large(folio)) 741 return 0; 742 return folio->_folio_order; 743 } 744 745 #include <linux/huge_mm.h> 746 747 /* 748 * Methods to modify the page usage count. 749 * 750 * What counts for a page usage: 751 * - cache mapping (page->mapping) 752 * - private data (page->private) 753 * - page mapped in a task's page tables, each mapping 754 * is counted separately 755 * 756 * Also, many kernel routines increase the page count before a critical 757 * routine so they can be sure the page doesn't go away from under them. 758 */ 759 760 /* 761 * Drop a ref, return true if the refcount fell to zero (the page has no users) 762 */ 763 static inline int put_page_testzero(struct page *page) 764 { 765 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 766 return page_ref_dec_and_test(page); 767 } 768 769 static inline int folio_put_testzero(struct folio *folio) 770 { 771 return put_page_testzero(&folio->page); 772 } 773 774 /* 775 * Try to grab a ref unless the page has a refcount of zero, return false if 776 * that is the case. 777 * This can be called when MMU is off so it must not access 778 * any of the virtual mappings. 779 */ 780 static inline bool get_page_unless_zero(struct page *page) 781 { 782 return page_ref_add_unless(page, 1, 0); 783 } 784 785 extern int page_is_ram(unsigned long pfn); 786 787 enum { 788 REGION_INTERSECTS, 789 REGION_DISJOINT, 790 REGION_MIXED, 791 }; 792 793 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 794 unsigned long desc); 795 796 /* Support for virtually mapped pages */ 797 struct page *vmalloc_to_page(const void *addr); 798 unsigned long vmalloc_to_pfn(const void *addr); 799 800 /* 801 * Determine if an address is within the vmalloc range 802 * 803 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 804 * is no special casing required. 805 */ 806 807 #ifndef is_ioremap_addr 808 #define is_ioremap_addr(x) is_vmalloc_addr(x) 809 #endif 810 811 #ifdef CONFIG_MMU 812 extern bool is_vmalloc_addr(const void *x); 813 extern int is_vmalloc_or_module_addr(const void *x); 814 #else 815 static inline bool is_vmalloc_addr(const void *x) 816 { 817 return false; 818 } 819 static inline int is_vmalloc_or_module_addr(const void *x) 820 { 821 return 0; 822 } 823 #endif 824 825 /* 826 * How many times the entire folio is mapped as a single unit (eg by a 827 * PMD or PUD entry). This is probably not what you want, except for 828 * debugging purposes - it does not include PTE-mapped sub-pages; look 829 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 830 */ 831 static inline int folio_entire_mapcount(struct folio *folio) 832 { 833 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 834 return atomic_read(folio_mapcount_ptr(folio)) + 1; 835 } 836 837 /* 838 * Mapcount of compound page as a whole, does not include mapped sub-pages. 839 * Must be called only on head of compound page. 840 */ 841 static inline int head_compound_mapcount(struct page *head) 842 { 843 return atomic_read(compound_mapcount_ptr(head)) + 1; 844 } 845 846 /* 847 * If a 16GB hugetlb page were mapped by PTEs of all of its 4kB sub-pages, 848 * its subpages_mapcount would be 0x400000: choose the COMPOUND_MAPPED bit 849 * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE). Hugetlb currently 850 * leaves subpages_mapcount at 0, but avoid surprise if it participates later. 851 */ 852 #define COMPOUND_MAPPED 0x800000 853 #define SUBPAGES_MAPPED (COMPOUND_MAPPED - 1) 854 855 /* 856 * Number of sub-pages mapped by PTE, does not include compound mapcount. 857 * Must be called only on head of compound page. 858 */ 859 static inline int head_subpages_mapcount(struct page *head) 860 { 861 return atomic_read(subpages_mapcount_ptr(head)) & SUBPAGES_MAPPED; 862 } 863 864 /* 865 * The atomic page->_mapcount, starts from -1: so that transitions 866 * both from it and to it can be tracked, using atomic_inc_and_test 867 * and atomic_add_negative(-1). 868 */ 869 static inline void page_mapcount_reset(struct page *page) 870 { 871 atomic_set(&(page)->_mapcount, -1); 872 } 873 874 /* 875 * Mapcount of 0-order page; when compound sub-page, includes 876 * compound_mapcount of compound_head of page. 877 * 878 * Result is undefined for pages which cannot be mapped into userspace. 879 * For example SLAB or special types of pages. See function page_has_type(). 880 * They use this place in struct page differently. 881 */ 882 static inline int page_mapcount(struct page *page) 883 { 884 int mapcount = atomic_read(&page->_mapcount) + 1; 885 886 if (likely(!PageCompound(page))) 887 return mapcount; 888 page = compound_head(page); 889 return head_compound_mapcount(page) + mapcount; 890 } 891 892 int total_compound_mapcount(struct page *head); 893 894 /** 895 * folio_mapcount() - Calculate the number of mappings of this folio. 896 * @folio: The folio. 897 * 898 * A large folio tracks both how many times the entire folio is mapped, 899 * and how many times each individual page in the folio is mapped. 900 * This function calculates the total number of times the folio is 901 * mapped. 902 * 903 * Return: The number of times this folio is mapped. 904 */ 905 static inline int folio_mapcount(struct folio *folio) 906 { 907 if (likely(!folio_test_large(folio))) 908 return atomic_read(&folio->_mapcount) + 1; 909 return total_compound_mapcount(&folio->page); 910 } 911 912 static inline int total_mapcount(struct page *page) 913 { 914 if (likely(!PageCompound(page))) 915 return atomic_read(&page->_mapcount) + 1; 916 return total_compound_mapcount(compound_head(page)); 917 } 918 919 static inline bool folio_large_is_mapped(struct folio *folio) 920 { 921 /* 922 * Reading folio_mapcount_ptr() below could be omitted if hugetlb 923 * participated in incrementing subpages_mapcount when compound mapped. 924 */ 925 return atomic_read(folio_subpages_mapcount_ptr(folio)) > 0 || 926 atomic_read(folio_mapcount_ptr(folio)) >= 0; 927 } 928 929 /** 930 * folio_mapped - Is this folio mapped into userspace? 931 * @folio: The folio. 932 * 933 * Return: True if any page in this folio is referenced by user page tables. 934 */ 935 static inline bool folio_mapped(struct folio *folio) 936 { 937 if (likely(!folio_test_large(folio))) 938 return atomic_read(&folio->_mapcount) >= 0; 939 return folio_large_is_mapped(folio); 940 } 941 942 /* 943 * Return true if this page is mapped into pagetables. 944 * For compound page it returns true if any sub-page of compound page is mapped, 945 * even if this particular sub-page is not itself mapped by any PTE or PMD. 946 */ 947 static inline bool page_mapped(struct page *page) 948 { 949 if (likely(!PageCompound(page))) 950 return atomic_read(&page->_mapcount) >= 0; 951 return folio_large_is_mapped(page_folio(page)); 952 } 953 954 static inline struct page *virt_to_head_page(const void *x) 955 { 956 struct page *page = virt_to_page(x); 957 958 return compound_head(page); 959 } 960 961 static inline struct folio *virt_to_folio(const void *x) 962 { 963 struct page *page = virt_to_page(x); 964 965 return page_folio(page); 966 } 967 968 void __folio_put(struct folio *folio); 969 970 void put_pages_list(struct list_head *pages); 971 972 void split_page(struct page *page, unsigned int order); 973 void folio_copy(struct folio *dst, struct folio *src); 974 975 unsigned long nr_free_buffer_pages(void); 976 977 /* 978 * Compound pages have a destructor function. Provide a 979 * prototype for that function and accessor functions. 980 * These are _only_ valid on the head of a compound page. 981 */ 982 typedef void compound_page_dtor(struct page *); 983 984 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 985 enum compound_dtor_id { 986 NULL_COMPOUND_DTOR, 987 COMPOUND_PAGE_DTOR, 988 #ifdef CONFIG_HUGETLB_PAGE 989 HUGETLB_PAGE_DTOR, 990 #endif 991 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 992 TRANSHUGE_PAGE_DTOR, 993 #endif 994 NR_COMPOUND_DTORS, 995 }; 996 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 997 998 static inline void set_compound_page_dtor(struct page *page, 999 enum compound_dtor_id compound_dtor) 1000 { 1001 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 1002 page[1].compound_dtor = compound_dtor; 1003 } 1004 1005 static inline void folio_set_compound_dtor(struct folio *folio, 1006 enum compound_dtor_id compound_dtor) 1007 { 1008 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1009 folio->_folio_dtor = compound_dtor; 1010 } 1011 1012 void destroy_large_folio(struct folio *folio); 1013 1014 static inline int head_compound_pincount(struct page *head) 1015 { 1016 return atomic_read(compound_pincount_ptr(head)); 1017 } 1018 1019 static inline void set_compound_order(struct page *page, unsigned int order) 1020 { 1021 page[1].compound_order = order; 1022 #ifdef CONFIG_64BIT 1023 page[1].compound_nr = 1U << order; 1024 #endif 1025 } 1026 1027 /* Returns the number of pages in this potentially compound page. */ 1028 static inline unsigned long compound_nr(struct page *page) 1029 { 1030 if (!PageHead(page)) 1031 return 1; 1032 #ifdef CONFIG_64BIT 1033 return page[1].compound_nr; 1034 #else 1035 return 1UL << compound_order(page); 1036 #endif 1037 } 1038 1039 /* Returns the number of bytes in this potentially compound page. */ 1040 static inline unsigned long page_size(struct page *page) 1041 { 1042 return PAGE_SIZE << compound_order(page); 1043 } 1044 1045 /* Returns the number of bits needed for the number of bytes in a page */ 1046 static inline unsigned int page_shift(struct page *page) 1047 { 1048 return PAGE_SHIFT + compound_order(page); 1049 } 1050 1051 /** 1052 * thp_order - Order of a transparent huge page. 1053 * @page: Head page of a transparent huge page. 1054 */ 1055 static inline unsigned int thp_order(struct page *page) 1056 { 1057 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1058 return compound_order(page); 1059 } 1060 1061 /** 1062 * thp_nr_pages - The number of regular pages in this huge page. 1063 * @page: The head page of a huge page. 1064 */ 1065 static inline int thp_nr_pages(struct page *page) 1066 { 1067 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1068 return compound_nr(page); 1069 } 1070 1071 /** 1072 * thp_size - Size of a transparent huge page. 1073 * @page: Head page of a transparent huge page. 1074 * 1075 * Return: Number of bytes in this page. 1076 */ 1077 static inline unsigned long thp_size(struct page *page) 1078 { 1079 return PAGE_SIZE << thp_order(page); 1080 } 1081 1082 void free_compound_page(struct page *page); 1083 1084 #ifdef CONFIG_MMU 1085 /* 1086 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1087 * servicing faults for write access. In the normal case, do always want 1088 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1089 * that do not have writing enabled, when used by access_process_vm. 1090 */ 1091 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1092 { 1093 if (likely(vma->vm_flags & VM_WRITE)) 1094 pte = pte_mkwrite(pte); 1095 return pte; 1096 } 1097 1098 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1099 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1100 1101 vm_fault_t finish_fault(struct vm_fault *vmf); 1102 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1103 #endif 1104 1105 /* 1106 * Multiple processes may "see" the same page. E.g. for untouched 1107 * mappings of /dev/null, all processes see the same page full of 1108 * zeroes, and text pages of executables and shared libraries have 1109 * only one copy in memory, at most, normally. 1110 * 1111 * For the non-reserved pages, page_count(page) denotes a reference count. 1112 * page_count() == 0 means the page is free. page->lru is then used for 1113 * freelist management in the buddy allocator. 1114 * page_count() > 0 means the page has been allocated. 1115 * 1116 * Pages are allocated by the slab allocator in order to provide memory 1117 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1118 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1119 * unless a particular usage is carefully commented. (the responsibility of 1120 * freeing the kmalloc memory is the caller's, of course). 1121 * 1122 * A page may be used by anyone else who does a __get_free_page(). 1123 * In this case, page_count still tracks the references, and should only 1124 * be used through the normal accessor functions. The top bits of page->flags 1125 * and page->virtual store page management information, but all other fields 1126 * are unused and could be used privately, carefully. The management of this 1127 * page is the responsibility of the one who allocated it, and those who have 1128 * subsequently been given references to it. 1129 * 1130 * The other pages (we may call them "pagecache pages") are completely 1131 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1132 * The following discussion applies only to them. 1133 * 1134 * A pagecache page contains an opaque `private' member, which belongs to the 1135 * page's address_space. Usually, this is the address of a circular list of 1136 * the page's disk buffers. PG_private must be set to tell the VM to call 1137 * into the filesystem to release these pages. 1138 * 1139 * A page may belong to an inode's memory mapping. In this case, page->mapping 1140 * is the pointer to the inode, and page->index is the file offset of the page, 1141 * in units of PAGE_SIZE. 1142 * 1143 * If pagecache pages are not associated with an inode, they are said to be 1144 * anonymous pages. These may become associated with the swapcache, and in that 1145 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1146 * 1147 * In either case (swapcache or inode backed), the pagecache itself holds one 1148 * reference to the page. Setting PG_private should also increment the 1149 * refcount. The each user mapping also has a reference to the page. 1150 * 1151 * The pagecache pages are stored in a per-mapping radix tree, which is 1152 * rooted at mapping->i_pages, and indexed by offset. 1153 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1154 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1155 * 1156 * All pagecache pages may be subject to I/O: 1157 * - inode pages may need to be read from disk, 1158 * - inode pages which have been modified and are MAP_SHARED may need 1159 * to be written back to the inode on disk, 1160 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1161 * modified may need to be swapped out to swap space and (later) to be read 1162 * back into memory. 1163 */ 1164 1165 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1166 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1167 1168 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1169 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1170 { 1171 if (!static_branch_unlikely(&devmap_managed_key)) 1172 return false; 1173 if (!is_zone_device_page(page)) 1174 return false; 1175 return __put_devmap_managed_page_refs(page, refs); 1176 } 1177 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1178 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1179 { 1180 return false; 1181 } 1182 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1183 1184 static inline bool put_devmap_managed_page(struct page *page) 1185 { 1186 return put_devmap_managed_page_refs(page, 1); 1187 } 1188 1189 /* 127: arbitrary random number, small enough to assemble well */ 1190 #define folio_ref_zero_or_close_to_overflow(folio) \ 1191 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1192 1193 /** 1194 * folio_get - Increment the reference count on a folio. 1195 * @folio: The folio. 1196 * 1197 * Context: May be called in any context, as long as you know that 1198 * you have a refcount on the folio. If you do not already have one, 1199 * folio_try_get() may be the right interface for you to use. 1200 */ 1201 static inline void folio_get(struct folio *folio) 1202 { 1203 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1204 folio_ref_inc(folio); 1205 } 1206 1207 static inline void get_page(struct page *page) 1208 { 1209 folio_get(page_folio(page)); 1210 } 1211 1212 int __must_check try_grab_page(struct page *page, unsigned int flags); 1213 1214 static inline __must_check bool try_get_page(struct page *page) 1215 { 1216 page = compound_head(page); 1217 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1218 return false; 1219 page_ref_inc(page); 1220 return true; 1221 } 1222 1223 /** 1224 * folio_put - Decrement the reference count on a folio. 1225 * @folio: The folio. 1226 * 1227 * If the folio's reference count reaches zero, the memory will be 1228 * released back to the page allocator and may be used by another 1229 * allocation immediately. Do not access the memory or the struct folio 1230 * after calling folio_put() unless you can be sure that it wasn't the 1231 * last reference. 1232 * 1233 * Context: May be called in process or interrupt context, but not in NMI 1234 * context. May be called while holding a spinlock. 1235 */ 1236 static inline void folio_put(struct folio *folio) 1237 { 1238 if (folio_put_testzero(folio)) 1239 __folio_put(folio); 1240 } 1241 1242 /** 1243 * folio_put_refs - Reduce the reference count on a folio. 1244 * @folio: The folio. 1245 * @refs: The amount to subtract from the folio's reference count. 1246 * 1247 * If the folio's reference count reaches zero, the memory will be 1248 * released back to the page allocator and may be used by another 1249 * allocation immediately. Do not access the memory or the struct folio 1250 * after calling folio_put_refs() unless you can be sure that these weren't 1251 * the last references. 1252 * 1253 * Context: May be called in process or interrupt context, but not in NMI 1254 * context. May be called while holding a spinlock. 1255 */ 1256 static inline void folio_put_refs(struct folio *folio, int refs) 1257 { 1258 if (folio_ref_sub_and_test(folio, refs)) 1259 __folio_put(folio); 1260 } 1261 1262 /* 1263 * union release_pages_arg - an array of pages or folios 1264 * 1265 * release_pages() releases a simple array of multiple pages, and 1266 * accepts various different forms of said page array: either 1267 * a regular old boring array of pages, an array of folios, or 1268 * an array of encoded page pointers. 1269 * 1270 * The transparent union syntax for this kind of "any of these 1271 * argument types" is all kinds of ugly, so look away. 1272 */ 1273 typedef union { 1274 struct page **pages; 1275 struct folio **folios; 1276 struct encoded_page **encoded_pages; 1277 } release_pages_arg __attribute__ ((__transparent_union__)); 1278 1279 void release_pages(release_pages_arg, int nr); 1280 1281 /** 1282 * folios_put - Decrement the reference count on an array of folios. 1283 * @folios: The folios. 1284 * @nr: How many folios there are. 1285 * 1286 * Like folio_put(), but for an array of folios. This is more efficient 1287 * than writing the loop yourself as it will optimise the locks which 1288 * need to be taken if the folios are freed. 1289 * 1290 * Context: May be called in process or interrupt context, but not in NMI 1291 * context. May be called while holding a spinlock. 1292 */ 1293 static inline void folios_put(struct folio **folios, unsigned int nr) 1294 { 1295 release_pages(folios, nr); 1296 } 1297 1298 static inline void put_page(struct page *page) 1299 { 1300 struct folio *folio = page_folio(page); 1301 1302 /* 1303 * For some devmap managed pages we need to catch refcount transition 1304 * from 2 to 1: 1305 */ 1306 if (put_devmap_managed_page(&folio->page)) 1307 return; 1308 folio_put(folio); 1309 } 1310 1311 /* 1312 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1313 * the page's refcount so that two separate items are tracked: the original page 1314 * reference count, and also a new count of how many pin_user_pages() calls were 1315 * made against the page. ("gup-pinned" is another term for the latter). 1316 * 1317 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1318 * distinct from normal pages. As such, the unpin_user_page() call (and its 1319 * variants) must be used in order to release gup-pinned pages. 1320 * 1321 * Choice of value: 1322 * 1323 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1324 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1325 * simpler, due to the fact that adding an even power of two to the page 1326 * refcount has the effect of using only the upper N bits, for the code that 1327 * counts up using the bias value. This means that the lower bits are left for 1328 * the exclusive use of the original code that increments and decrements by one 1329 * (or at least, by much smaller values than the bias value). 1330 * 1331 * Of course, once the lower bits overflow into the upper bits (and this is 1332 * OK, because subtraction recovers the original values), then visual inspection 1333 * no longer suffices to directly view the separate counts. However, for normal 1334 * applications that don't have huge page reference counts, this won't be an 1335 * issue. 1336 * 1337 * Locking: the lockless algorithm described in folio_try_get_rcu() 1338 * provides safe operation for get_user_pages(), page_mkclean() and 1339 * other calls that race to set up page table entries. 1340 */ 1341 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1342 1343 void unpin_user_page(struct page *page); 1344 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1345 bool make_dirty); 1346 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1347 bool make_dirty); 1348 void unpin_user_pages(struct page **pages, unsigned long npages); 1349 1350 static inline bool is_cow_mapping(vm_flags_t flags) 1351 { 1352 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1353 } 1354 1355 #ifndef CONFIG_MMU 1356 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1357 { 1358 /* 1359 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1360 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1361 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1362 * underlying memory if ptrace is active, so this is only possible if 1363 * ptrace does not apply. Note that there is no mprotect() to upgrade 1364 * write permissions later. 1365 */ 1366 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1367 } 1368 #endif 1369 1370 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1371 #define SECTION_IN_PAGE_FLAGS 1372 #endif 1373 1374 /* 1375 * The identification function is mainly used by the buddy allocator for 1376 * determining if two pages could be buddies. We are not really identifying 1377 * the zone since we could be using the section number id if we do not have 1378 * node id available in page flags. 1379 * We only guarantee that it will return the same value for two combinable 1380 * pages in a zone. 1381 */ 1382 static inline int page_zone_id(struct page *page) 1383 { 1384 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1385 } 1386 1387 #ifdef NODE_NOT_IN_PAGE_FLAGS 1388 extern int page_to_nid(const struct page *page); 1389 #else 1390 static inline int page_to_nid(const struct page *page) 1391 { 1392 struct page *p = (struct page *)page; 1393 1394 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1395 } 1396 #endif 1397 1398 static inline int folio_nid(const struct folio *folio) 1399 { 1400 return page_to_nid(&folio->page); 1401 } 1402 1403 #ifdef CONFIG_NUMA_BALANCING 1404 /* page access time bits needs to hold at least 4 seconds */ 1405 #define PAGE_ACCESS_TIME_MIN_BITS 12 1406 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1407 #define PAGE_ACCESS_TIME_BUCKETS \ 1408 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1409 #else 1410 #define PAGE_ACCESS_TIME_BUCKETS 0 1411 #endif 1412 1413 #define PAGE_ACCESS_TIME_MASK \ 1414 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1415 1416 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1417 { 1418 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1419 } 1420 1421 static inline int cpupid_to_pid(int cpupid) 1422 { 1423 return cpupid & LAST__PID_MASK; 1424 } 1425 1426 static inline int cpupid_to_cpu(int cpupid) 1427 { 1428 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1429 } 1430 1431 static inline int cpupid_to_nid(int cpupid) 1432 { 1433 return cpu_to_node(cpupid_to_cpu(cpupid)); 1434 } 1435 1436 static inline bool cpupid_pid_unset(int cpupid) 1437 { 1438 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1439 } 1440 1441 static inline bool cpupid_cpu_unset(int cpupid) 1442 { 1443 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1444 } 1445 1446 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1447 { 1448 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1449 } 1450 1451 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1452 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1453 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1454 { 1455 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1456 } 1457 1458 static inline int page_cpupid_last(struct page *page) 1459 { 1460 return page->_last_cpupid; 1461 } 1462 static inline void page_cpupid_reset_last(struct page *page) 1463 { 1464 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1465 } 1466 #else 1467 static inline int page_cpupid_last(struct page *page) 1468 { 1469 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1470 } 1471 1472 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1473 1474 static inline void page_cpupid_reset_last(struct page *page) 1475 { 1476 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1477 } 1478 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1479 1480 static inline int xchg_page_access_time(struct page *page, int time) 1481 { 1482 int last_time; 1483 1484 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1485 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1486 } 1487 #else /* !CONFIG_NUMA_BALANCING */ 1488 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1489 { 1490 return page_to_nid(page); /* XXX */ 1491 } 1492 1493 static inline int xchg_page_access_time(struct page *page, int time) 1494 { 1495 return 0; 1496 } 1497 1498 static inline int page_cpupid_last(struct page *page) 1499 { 1500 return page_to_nid(page); /* XXX */ 1501 } 1502 1503 static inline int cpupid_to_nid(int cpupid) 1504 { 1505 return -1; 1506 } 1507 1508 static inline int cpupid_to_pid(int cpupid) 1509 { 1510 return -1; 1511 } 1512 1513 static inline int cpupid_to_cpu(int cpupid) 1514 { 1515 return -1; 1516 } 1517 1518 static inline int cpu_pid_to_cpupid(int nid, int pid) 1519 { 1520 return -1; 1521 } 1522 1523 static inline bool cpupid_pid_unset(int cpupid) 1524 { 1525 return true; 1526 } 1527 1528 static inline void page_cpupid_reset_last(struct page *page) 1529 { 1530 } 1531 1532 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1533 { 1534 return false; 1535 } 1536 #endif /* CONFIG_NUMA_BALANCING */ 1537 1538 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1539 1540 /* 1541 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1542 * setting tags for all pages to native kernel tag value 0xff, as the default 1543 * value 0x00 maps to 0xff. 1544 */ 1545 1546 static inline u8 page_kasan_tag(const struct page *page) 1547 { 1548 u8 tag = 0xff; 1549 1550 if (kasan_enabled()) { 1551 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1552 tag ^= 0xff; 1553 } 1554 1555 return tag; 1556 } 1557 1558 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1559 { 1560 unsigned long old_flags, flags; 1561 1562 if (!kasan_enabled()) 1563 return; 1564 1565 tag ^= 0xff; 1566 old_flags = READ_ONCE(page->flags); 1567 do { 1568 flags = old_flags; 1569 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1570 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1571 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1572 } 1573 1574 static inline void page_kasan_tag_reset(struct page *page) 1575 { 1576 if (kasan_enabled()) 1577 page_kasan_tag_set(page, 0xff); 1578 } 1579 1580 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1581 1582 static inline u8 page_kasan_tag(const struct page *page) 1583 { 1584 return 0xff; 1585 } 1586 1587 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1588 static inline void page_kasan_tag_reset(struct page *page) { } 1589 1590 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1591 1592 static inline struct zone *page_zone(const struct page *page) 1593 { 1594 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1595 } 1596 1597 static inline pg_data_t *page_pgdat(const struct page *page) 1598 { 1599 return NODE_DATA(page_to_nid(page)); 1600 } 1601 1602 static inline struct zone *folio_zone(const struct folio *folio) 1603 { 1604 return page_zone(&folio->page); 1605 } 1606 1607 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1608 { 1609 return page_pgdat(&folio->page); 1610 } 1611 1612 #ifdef SECTION_IN_PAGE_FLAGS 1613 static inline void set_page_section(struct page *page, unsigned long section) 1614 { 1615 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1616 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1617 } 1618 1619 static inline unsigned long page_to_section(const struct page *page) 1620 { 1621 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1622 } 1623 #endif 1624 1625 /** 1626 * folio_pfn - Return the Page Frame Number of a folio. 1627 * @folio: The folio. 1628 * 1629 * A folio may contain multiple pages. The pages have consecutive 1630 * Page Frame Numbers. 1631 * 1632 * Return: The Page Frame Number of the first page in the folio. 1633 */ 1634 static inline unsigned long folio_pfn(struct folio *folio) 1635 { 1636 return page_to_pfn(&folio->page); 1637 } 1638 1639 static inline struct folio *pfn_folio(unsigned long pfn) 1640 { 1641 return page_folio(pfn_to_page(pfn)); 1642 } 1643 1644 static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1645 { 1646 return &folio_page(folio, 1)->compound_pincount; 1647 } 1648 1649 /** 1650 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1651 * @folio: The folio. 1652 * 1653 * This function checks if a folio has been pinned via a call to 1654 * a function in the pin_user_pages() family. 1655 * 1656 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1657 * because it means "definitely not pinned for DMA", but true means "probably 1658 * pinned for DMA, but possibly a false positive due to having at least 1659 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1660 * 1661 * False positives are OK, because: a) it's unlikely for a folio to 1662 * get that many refcounts, and b) all the callers of this routine are 1663 * expected to be able to deal gracefully with a false positive. 1664 * 1665 * For large folios, the result will be exactly correct. That's because 1666 * we have more tracking data available: the compound_pincount is used 1667 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1668 * 1669 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1670 * 1671 * Return: True, if it is likely that the page has been "dma-pinned". 1672 * False, if the page is definitely not dma-pinned. 1673 */ 1674 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1675 { 1676 if (folio_test_large(folio)) 1677 return atomic_read(folio_pincount_ptr(folio)) > 0; 1678 1679 /* 1680 * folio_ref_count() is signed. If that refcount overflows, then 1681 * folio_ref_count() returns a negative value, and callers will avoid 1682 * further incrementing the refcount. 1683 * 1684 * Here, for that overflow case, use the sign bit to count a little 1685 * bit higher via unsigned math, and thus still get an accurate result. 1686 */ 1687 return ((unsigned int)folio_ref_count(folio)) >= 1688 GUP_PIN_COUNTING_BIAS; 1689 } 1690 1691 static inline bool page_maybe_dma_pinned(struct page *page) 1692 { 1693 return folio_maybe_dma_pinned(page_folio(page)); 1694 } 1695 1696 /* 1697 * This should most likely only be called during fork() to see whether we 1698 * should break the cow immediately for an anon page on the src mm. 1699 * 1700 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1701 */ 1702 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1703 struct page *page) 1704 { 1705 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1706 1707 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1708 return false; 1709 1710 return page_maybe_dma_pinned(page); 1711 } 1712 1713 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1714 #ifdef CONFIG_MIGRATION 1715 static inline bool is_longterm_pinnable_page(struct page *page) 1716 { 1717 #ifdef CONFIG_CMA 1718 int mt = get_pageblock_migratetype(page); 1719 1720 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1721 return false; 1722 #endif 1723 /* The zero page may always be pinned */ 1724 if (is_zero_pfn(page_to_pfn(page))) 1725 return true; 1726 1727 /* Coherent device memory must always allow eviction. */ 1728 if (is_device_coherent_page(page)) 1729 return false; 1730 1731 /* Otherwise, non-movable zone pages can be pinned. */ 1732 return !is_zone_movable_page(page); 1733 } 1734 #else 1735 static inline bool is_longterm_pinnable_page(struct page *page) 1736 { 1737 return true; 1738 } 1739 #endif 1740 1741 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1742 { 1743 return is_longterm_pinnable_page(&folio->page); 1744 } 1745 1746 static inline void set_page_zone(struct page *page, enum zone_type zone) 1747 { 1748 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1749 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1750 } 1751 1752 static inline void set_page_node(struct page *page, unsigned long node) 1753 { 1754 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1755 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1756 } 1757 1758 static inline void set_page_links(struct page *page, enum zone_type zone, 1759 unsigned long node, unsigned long pfn) 1760 { 1761 set_page_zone(page, zone); 1762 set_page_node(page, node); 1763 #ifdef SECTION_IN_PAGE_FLAGS 1764 set_page_section(page, pfn_to_section_nr(pfn)); 1765 #endif 1766 } 1767 1768 /** 1769 * folio_nr_pages - The number of pages in the folio. 1770 * @folio: The folio. 1771 * 1772 * Return: A positive power of two. 1773 */ 1774 static inline long folio_nr_pages(struct folio *folio) 1775 { 1776 if (!folio_test_large(folio)) 1777 return 1; 1778 #ifdef CONFIG_64BIT 1779 return folio->_folio_nr_pages; 1780 #else 1781 return 1L << folio->_folio_order; 1782 #endif 1783 } 1784 1785 /** 1786 * folio_next - Move to the next physical folio. 1787 * @folio: The folio we're currently operating on. 1788 * 1789 * If you have physically contiguous memory which may span more than 1790 * one folio (eg a &struct bio_vec), use this function to move from one 1791 * folio to the next. Do not use it if the memory is only virtually 1792 * contiguous as the folios are almost certainly not adjacent to each 1793 * other. This is the folio equivalent to writing ``page++``. 1794 * 1795 * Context: We assume that the folios are refcounted and/or locked at a 1796 * higher level and do not adjust the reference counts. 1797 * Return: The next struct folio. 1798 */ 1799 static inline struct folio *folio_next(struct folio *folio) 1800 { 1801 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1802 } 1803 1804 /** 1805 * folio_shift - The size of the memory described by this folio. 1806 * @folio: The folio. 1807 * 1808 * A folio represents a number of bytes which is a power-of-two in size. 1809 * This function tells you which power-of-two the folio is. See also 1810 * folio_size() and folio_order(). 1811 * 1812 * Context: The caller should have a reference on the folio to prevent 1813 * it from being split. It is not necessary for the folio to be locked. 1814 * Return: The base-2 logarithm of the size of this folio. 1815 */ 1816 static inline unsigned int folio_shift(struct folio *folio) 1817 { 1818 return PAGE_SHIFT + folio_order(folio); 1819 } 1820 1821 /** 1822 * folio_size - The number of bytes in a folio. 1823 * @folio: The folio. 1824 * 1825 * Context: The caller should have a reference on the folio to prevent 1826 * it from being split. It is not necessary for the folio to be locked. 1827 * Return: The number of bytes in this folio. 1828 */ 1829 static inline size_t folio_size(struct folio *folio) 1830 { 1831 return PAGE_SIZE << folio_order(folio); 1832 } 1833 1834 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1835 static inline int arch_make_page_accessible(struct page *page) 1836 { 1837 return 0; 1838 } 1839 #endif 1840 1841 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1842 static inline int arch_make_folio_accessible(struct folio *folio) 1843 { 1844 int ret; 1845 long i, nr = folio_nr_pages(folio); 1846 1847 for (i = 0; i < nr; i++) { 1848 ret = arch_make_page_accessible(folio_page(folio, i)); 1849 if (ret) 1850 break; 1851 } 1852 1853 return ret; 1854 } 1855 #endif 1856 1857 /* 1858 * Some inline functions in vmstat.h depend on page_zone() 1859 */ 1860 #include <linux/vmstat.h> 1861 1862 static __always_inline void *lowmem_page_address(const struct page *page) 1863 { 1864 return page_to_virt(page); 1865 } 1866 1867 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1868 #define HASHED_PAGE_VIRTUAL 1869 #endif 1870 1871 #if defined(WANT_PAGE_VIRTUAL) 1872 static inline void *page_address(const struct page *page) 1873 { 1874 return page->virtual; 1875 } 1876 static inline void set_page_address(struct page *page, void *address) 1877 { 1878 page->virtual = address; 1879 } 1880 #define page_address_init() do { } while(0) 1881 #endif 1882 1883 #if defined(HASHED_PAGE_VIRTUAL) 1884 void *page_address(const struct page *page); 1885 void set_page_address(struct page *page, void *virtual); 1886 void page_address_init(void); 1887 #endif 1888 1889 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1890 #define page_address(page) lowmem_page_address(page) 1891 #define set_page_address(page, address) do { } while(0) 1892 #define page_address_init() do { } while(0) 1893 #endif 1894 1895 static inline void *folio_address(const struct folio *folio) 1896 { 1897 return page_address(&folio->page); 1898 } 1899 1900 extern void *page_rmapping(struct page *page); 1901 extern pgoff_t __page_file_index(struct page *page); 1902 1903 /* 1904 * Return the pagecache index of the passed page. Regular pagecache pages 1905 * use ->index whereas swapcache pages use swp_offset(->private) 1906 */ 1907 static inline pgoff_t page_index(struct page *page) 1908 { 1909 if (unlikely(PageSwapCache(page))) 1910 return __page_file_index(page); 1911 return page->index; 1912 } 1913 1914 /* 1915 * Return true only if the page has been allocated with 1916 * ALLOC_NO_WATERMARKS and the low watermark was not 1917 * met implying that the system is under some pressure. 1918 */ 1919 static inline bool page_is_pfmemalloc(const struct page *page) 1920 { 1921 /* 1922 * lru.next has bit 1 set if the page is allocated from the 1923 * pfmemalloc reserves. Callers may simply overwrite it if 1924 * they do not need to preserve that information. 1925 */ 1926 return (uintptr_t)page->lru.next & BIT(1); 1927 } 1928 1929 /* 1930 * Return true only if the folio has been allocated with 1931 * ALLOC_NO_WATERMARKS and the low watermark was not 1932 * met implying that the system is under some pressure. 1933 */ 1934 static inline bool folio_is_pfmemalloc(const struct folio *folio) 1935 { 1936 /* 1937 * lru.next has bit 1 set if the page is allocated from the 1938 * pfmemalloc reserves. Callers may simply overwrite it if 1939 * they do not need to preserve that information. 1940 */ 1941 return (uintptr_t)folio->lru.next & BIT(1); 1942 } 1943 1944 /* 1945 * Only to be called by the page allocator on a freshly allocated 1946 * page. 1947 */ 1948 static inline void set_page_pfmemalloc(struct page *page) 1949 { 1950 page->lru.next = (void *)BIT(1); 1951 } 1952 1953 static inline void clear_page_pfmemalloc(struct page *page) 1954 { 1955 page->lru.next = NULL; 1956 } 1957 1958 /* 1959 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1960 */ 1961 extern void pagefault_out_of_memory(void); 1962 1963 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1964 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1965 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1966 1967 /* 1968 * Flags passed to show_mem() and show_free_areas() to suppress output in 1969 * various contexts. 1970 */ 1971 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1972 1973 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 1974 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 1975 { 1976 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 1977 } 1978 1979 /* 1980 * Parameter block passed down to zap_pte_range in exceptional cases. 1981 */ 1982 struct zap_details { 1983 struct folio *single_folio; /* Locked folio to be unmapped */ 1984 bool even_cows; /* Zap COWed private pages too? */ 1985 zap_flags_t zap_flags; /* Extra flags for zapping */ 1986 }; 1987 1988 /* 1989 * Whether to drop the pte markers, for example, the uffd-wp information for 1990 * file-backed memory. This should only be specified when we will completely 1991 * drop the page in the mm, either by truncation or unmapping of the vma. By 1992 * default, the flag is not set. 1993 */ 1994 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 1995 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 1996 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 1997 1998 #ifdef CONFIG_MMU 1999 extern bool can_do_mlock(void); 2000 #else 2001 static inline bool can_do_mlock(void) { return false; } 2002 #endif 2003 extern int user_shm_lock(size_t, struct ucounts *); 2004 extern void user_shm_unlock(size_t, struct ucounts *); 2005 2006 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2007 pte_t pte); 2008 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2009 pte_t pte); 2010 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2011 pmd_t pmd); 2012 2013 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2014 unsigned long size); 2015 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2016 unsigned long size, struct zap_details *details); 2017 static inline void zap_vma_pages(struct vm_area_struct *vma) 2018 { 2019 zap_page_range_single(vma, vma->vm_start, 2020 vma->vm_end - vma->vm_start, NULL); 2021 } 2022 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2023 struct vm_area_struct *start_vma, unsigned long start, 2024 unsigned long end); 2025 2026 struct mmu_notifier_range; 2027 2028 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2029 unsigned long end, unsigned long floor, unsigned long ceiling); 2030 int 2031 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2032 int follow_pte(struct mm_struct *mm, unsigned long address, 2033 pte_t **ptepp, spinlock_t **ptlp); 2034 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2035 unsigned long *pfn); 2036 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2037 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2038 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2039 void *buf, int len, int write); 2040 2041 extern void truncate_pagecache(struct inode *inode, loff_t new); 2042 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2043 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2044 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2045 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2046 2047 #ifdef CONFIG_MMU 2048 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2049 unsigned long address, unsigned int flags, 2050 struct pt_regs *regs); 2051 extern int fixup_user_fault(struct mm_struct *mm, 2052 unsigned long address, unsigned int fault_flags, 2053 bool *unlocked); 2054 void unmap_mapping_pages(struct address_space *mapping, 2055 pgoff_t start, pgoff_t nr, bool even_cows); 2056 void unmap_mapping_range(struct address_space *mapping, 2057 loff_t const holebegin, loff_t const holelen, int even_cows); 2058 #else 2059 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2060 unsigned long address, unsigned int flags, 2061 struct pt_regs *regs) 2062 { 2063 /* should never happen if there's no MMU */ 2064 BUG(); 2065 return VM_FAULT_SIGBUS; 2066 } 2067 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2068 unsigned int fault_flags, bool *unlocked) 2069 { 2070 /* should never happen if there's no MMU */ 2071 BUG(); 2072 return -EFAULT; 2073 } 2074 static inline void unmap_mapping_pages(struct address_space *mapping, 2075 pgoff_t start, pgoff_t nr, bool even_cows) { } 2076 static inline void unmap_mapping_range(struct address_space *mapping, 2077 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2078 #endif 2079 2080 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2081 loff_t const holebegin, loff_t const holelen) 2082 { 2083 unmap_mapping_range(mapping, holebegin, holelen, 0); 2084 } 2085 2086 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2087 void *buf, int len, unsigned int gup_flags); 2088 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2089 void *buf, int len, unsigned int gup_flags); 2090 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2091 void *buf, int len, unsigned int gup_flags); 2092 2093 long get_user_pages_remote(struct mm_struct *mm, 2094 unsigned long start, unsigned long nr_pages, 2095 unsigned int gup_flags, struct page **pages, 2096 struct vm_area_struct **vmas, int *locked); 2097 long pin_user_pages_remote(struct mm_struct *mm, 2098 unsigned long start, unsigned long nr_pages, 2099 unsigned int gup_flags, struct page **pages, 2100 struct vm_area_struct **vmas, int *locked); 2101 long get_user_pages(unsigned long start, unsigned long nr_pages, 2102 unsigned int gup_flags, struct page **pages, 2103 struct vm_area_struct **vmas); 2104 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2105 unsigned int gup_flags, struct page **pages, 2106 struct vm_area_struct **vmas); 2107 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2108 struct page **pages, unsigned int gup_flags); 2109 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2110 struct page **pages, unsigned int gup_flags); 2111 2112 int get_user_pages_fast(unsigned long start, int nr_pages, 2113 unsigned int gup_flags, struct page **pages); 2114 int pin_user_pages_fast(unsigned long start, int nr_pages, 2115 unsigned int gup_flags, struct page **pages); 2116 2117 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2118 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2119 struct task_struct *task, bool bypass_rlim); 2120 2121 struct kvec; 2122 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 2123 struct page **pages); 2124 struct page *get_dump_page(unsigned long addr); 2125 2126 bool folio_mark_dirty(struct folio *folio); 2127 bool set_page_dirty(struct page *page); 2128 int set_page_dirty_lock(struct page *page); 2129 2130 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2131 2132 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2133 unsigned long old_addr, struct vm_area_struct *new_vma, 2134 unsigned long new_addr, unsigned long len, 2135 bool need_rmap_locks); 2136 2137 /* 2138 * Flags used by change_protection(). For now we make it a bitmap so 2139 * that we can pass in multiple flags just like parameters. However 2140 * for now all the callers are only use one of the flags at the same 2141 * time. 2142 */ 2143 /* 2144 * Whether we should manually check if we can map individual PTEs writable, 2145 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2146 * PTEs automatically in a writable mapping. 2147 */ 2148 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2149 /* Whether this protection change is for NUMA hints */ 2150 #define MM_CP_PROT_NUMA (1UL << 1) 2151 /* Whether this change is for write protecting */ 2152 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2153 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2154 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2155 MM_CP_UFFD_WP_RESOLVE) 2156 2157 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2158 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2159 { 2160 /* 2161 * We want to check manually if we can change individual PTEs writable 2162 * if we can't do that automatically for all PTEs in a mapping. For 2163 * private mappings, that's always the case when we have write 2164 * permissions as we properly have to handle COW. 2165 */ 2166 if (vma->vm_flags & VM_SHARED) 2167 return vma_wants_writenotify(vma, vma->vm_page_prot); 2168 return !!(vma->vm_flags & VM_WRITE); 2169 2170 } 2171 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2172 pte_t pte); 2173 extern long change_protection(struct mmu_gather *tlb, 2174 struct vm_area_struct *vma, unsigned long start, 2175 unsigned long end, unsigned long cp_flags); 2176 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 2177 struct vm_area_struct **pprev, unsigned long start, 2178 unsigned long end, unsigned long newflags); 2179 2180 /* 2181 * doesn't attempt to fault and will return short. 2182 */ 2183 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2184 unsigned int gup_flags, struct page **pages); 2185 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2186 unsigned int gup_flags, struct page **pages); 2187 2188 static inline bool get_user_page_fast_only(unsigned long addr, 2189 unsigned int gup_flags, struct page **pagep) 2190 { 2191 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2192 } 2193 /* 2194 * per-process(per-mm_struct) statistics. 2195 */ 2196 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2197 { 2198 return percpu_counter_read_positive(&mm->rss_stat[member]); 2199 } 2200 2201 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2202 2203 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2204 { 2205 percpu_counter_add(&mm->rss_stat[member], value); 2206 2207 mm_trace_rss_stat(mm, member); 2208 } 2209 2210 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2211 { 2212 percpu_counter_inc(&mm->rss_stat[member]); 2213 2214 mm_trace_rss_stat(mm, member); 2215 } 2216 2217 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2218 { 2219 percpu_counter_dec(&mm->rss_stat[member]); 2220 2221 mm_trace_rss_stat(mm, member); 2222 } 2223 2224 /* Optimized variant when page is already known not to be PageAnon */ 2225 static inline int mm_counter_file(struct page *page) 2226 { 2227 if (PageSwapBacked(page)) 2228 return MM_SHMEMPAGES; 2229 return MM_FILEPAGES; 2230 } 2231 2232 static inline int mm_counter(struct page *page) 2233 { 2234 if (PageAnon(page)) 2235 return MM_ANONPAGES; 2236 return mm_counter_file(page); 2237 } 2238 2239 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2240 { 2241 return get_mm_counter(mm, MM_FILEPAGES) + 2242 get_mm_counter(mm, MM_ANONPAGES) + 2243 get_mm_counter(mm, MM_SHMEMPAGES); 2244 } 2245 2246 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2247 { 2248 return max(mm->hiwater_rss, get_mm_rss(mm)); 2249 } 2250 2251 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2252 { 2253 return max(mm->hiwater_vm, mm->total_vm); 2254 } 2255 2256 static inline void update_hiwater_rss(struct mm_struct *mm) 2257 { 2258 unsigned long _rss = get_mm_rss(mm); 2259 2260 if ((mm)->hiwater_rss < _rss) 2261 (mm)->hiwater_rss = _rss; 2262 } 2263 2264 static inline void update_hiwater_vm(struct mm_struct *mm) 2265 { 2266 if (mm->hiwater_vm < mm->total_vm) 2267 mm->hiwater_vm = mm->total_vm; 2268 } 2269 2270 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2271 { 2272 mm->hiwater_rss = get_mm_rss(mm); 2273 } 2274 2275 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2276 struct mm_struct *mm) 2277 { 2278 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2279 2280 if (*maxrss < hiwater_rss) 2281 *maxrss = hiwater_rss; 2282 } 2283 2284 #if defined(SPLIT_RSS_COUNTING) 2285 void sync_mm_rss(struct mm_struct *mm); 2286 #else 2287 static inline void sync_mm_rss(struct mm_struct *mm) 2288 { 2289 } 2290 #endif 2291 2292 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2293 static inline int pte_special(pte_t pte) 2294 { 2295 return 0; 2296 } 2297 2298 static inline pte_t pte_mkspecial(pte_t pte) 2299 { 2300 return pte; 2301 } 2302 #endif 2303 2304 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2305 static inline int pte_devmap(pte_t pte) 2306 { 2307 return 0; 2308 } 2309 #endif 2310 2311 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2312 spinlock_t **ptl); 2313 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2314 spinlock_t **ptl) 2315 { 2316 pte_t *ptep; 2317 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2318 return ptep; 2319 } 2320 2321 #ifdef __PAGETABLE_P4D_FOLDED 2322 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2323 unsigned long address) 2324 { 2325 return 0; 2326 } 2327 #else 2328 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2329 #endif 2330 2331 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2332 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2333 unsigned long address) 2334 { 2335 return 0; 2336 } 2337 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2338 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2339 2340 #else 2341 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2342 2343 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2344 { 2345 if (mm_pud_folded(mm)) 2346 return; 2347 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2348 } 2349 2350 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2351 { 2352 if (mm_pud_folded(mm)) 2353 return; 2354 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2355 } 2356 #endif 2357 2358 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2359 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2360 unsigned long address) 2361 { 2362 return 0; 2363 } 2364 2365 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2366 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2367 2368 #else 2369 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2370 2371 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2372 { 2373 if (mm_pmd_folded(mm)) 2374 return; 2375 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2376 } 2377 2378 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2379 { 2380 if (mm_pmd_folded(mm)) 2381 return; 2382 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2383 } 2384 #endif 2385 2386 #ifdef CONFIG_MMU 2387 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2388 { 2389 atomic_long_set(&mm->pgtables_bytes, 0); 2390 } 2391 2392 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2393 { 2394 return atomic_long_read(&mm->pgtables_bytes); 2395 } 2396 2397 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2398 { 2399 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2400 } 2401 2402 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2403 { 2404 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2405 } 2406 #else 2407 2408 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2409 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2410 { 2411 return 0; 2412 } 2413 2414 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2415 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2416 #endif 2417 2418 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2419 int __pte_alloc_kernel(pmd_t *pmd); 2420 2421 #if defined(CONFIG_MMU) 2422 2423 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2424 unsigned long address) 2425 { 2426 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2427 NULL : p4d_offset(pgd, address); 2428 } 2429 2430 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2431 unsigned long address) 2432 { 2433 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2434 NULL : pud_offset(p4d, address); 2435 } 2436 2437 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2438 { 2439 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2440 NULL: pmd_offset(pud, address); 2441 } 2442 #endif /* CONFIG_MMU */ 2443 2444 #if USE_SPLIT_PTE_PTLOCKS 2445 #if ALLOC_SPLIT_PTLOCKS 2446 void __init ptlock_cache_init(void); 2447 extern bool ptlock_alloc(struct page *page); 2448 extern void ptlock_free(struct page *page); 2449 2450 static inline spinlock_t *ptlock_ptr(struct page *page) 2451 { 2452 return page->ptl; 2453 } 2454 #else /* ALLOC_SPLIT_PTLOCKS */ 2455 static inline void ptlock_cache_init(void) 2456 { 2457 } 2458 2459 static inline bool ptlock_alloc(struct page *page) 2460 { 2461 return true; 2462 } 2463 2464 static inline void ptlock_free(struct page *page) 2465 { 2466 } 2467 2468 static inline spinlock_t *ptlock_ptr(struct page *page) 2469 { 2470 return &page->ptl; 2471 } 2472 #endif /* ALLOC_SPLIT_PTLOCKS */ 2473 2474 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2475 { 2476 return ptlock_ptr(pmd_page(*pmd)); 2477 } 2478 2479 static inline bool ptlock_init(struct page *page) 2480 { 2481 /* 2482 * prep_new_page() initialize page->private (and therefore page->ptl) 2483 * with 0. Make sure nobody took it in use in between. 2484 * 2485 * It can happen if arch try to use slab for page table allocation: 2486 * slab code uses page->slab_cache, which share storage with page->ptl. 2487 */ 2488 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2489 if (!ptlock_alloc(page)) 2490 return false; 2491 spin_lock_init(ptlock_ptr(page)); 2492 return true; 2493 } 2494 2495 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2496 /* 2497 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2498 */ 2499 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2500 { 2501 return &mm->page_table_lock; 2502 } 2503 static inline void ptlock_cache_init(void) {} 2504 static inline bool ptlock_init(struct page *page) { return true; } 2505 static inline void ptlock_free(struct page *page) {} 2506 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2507 2508 static inline void pgtable_init(void) 2509 { 2510 ptlock_cache_init(); 2511 pgtable_cache_init(); 2512 } 2513 2514 static inline bool pgtable_pte_page_ctor(struct page *page) 2515 { 2516 if (!ptlock_init(page)) 2517 return false; 2518 __SetPageTable(page); 2519 inc_lruvec_page_state(page, NR_PAGETABLE); 2520 return true; 2521 } 2522 2523 static inline void pgtable_pte_page_dtor(struct page *page) 2524 { 2525 ptlock_free(page); 2526 __ClearPageTable(page); 2527 dec_lruvec_page_state(page, NR_PAGETABLE); 2528 } 2529 2530 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2531 ({ \ 2532 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2533 pte_t *__pte = pte_offset_map(pmd, address); \ 2534 *(ptlp) = __ptl; \ 2535 spin_lock(__ptl); \ 2536 __pte; \ 2537 }) 2538 2539 #define pte_unmap_unlock(pte, ptl) do { \ 2540 spin_unlock(ptl); \ 2541 pte_unmap(pte); \ 2542 } while (0) 2543 2544 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2545 2546 #define pte_alloc_map(mm, pmd, address) \ 2547 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2548 2549 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2550 (pte_alloc(mm, pmd) ? \ 2551 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2552 2553 #define pte_alloc_kernel(pmd, address) \ 2554 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2555 NULL: pte_offset_kernel(pmd, address)) 2556 2557 #if USE_SPLIT_PMD_PTLOCKS 2558 2559 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2560 { 2561 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2562 return virt_to_page((void *)((unsigned long) pmd & mask)); 2563 } 2564 2565 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2566 { 2567 return ptlock_ptr(pmd_pgtable_page(pmd)); 2568 } 2569 2570 static inline bool pmd_ptlock_init(struct page *page) 2571 { 2572 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2573 page->pmd_huge_pte = NULL; 2574 #endif 2575 return ptlock_init(page); 2576 } 2577 2578 static inline void pmd_ptlock_free(struct page *page) 2579 { 2580 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2581 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2582 #endif 2583 ptlock_free(page); 2584 } 2585 2586 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2587 2588 #else 2589 2590 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2591 { 2592 return &mm->page_table_lock; 2593 } 2594 2595 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2596 static inline void pmd_ptlock_free(struct page *page) {} 2597 2598 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2599 2600 #endif 2601 2602 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2603 { 2604 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2605 spin_lock(ptl); 2606 return ptl; 2607 } 2608 2609 static inline bool pgtable_pmd_page_ctor(struct page *page) 2610 { 2611 if (!pmd_ptlock_init(page)) 2612 return false; 2613 __SetPageTable(page); 2614 inc_lruvec_page_state(page, NR_PAGETABLE); 2615 return true; 2616 } 2617 2618 static inline void pgtable_pmd_page_dtor(struct page *page) 2619 { 2620 pmd_ptlock_free(page); 2621 __ClearPageTable(page); 2622 dec_lruvec_page_state(page, NR_PAGETABLE); 2623 } 2624 2625 /* 2626 * No scalability reason to split PUD locks yet, but follow the same pattern 2627 * as the PMD locks to make it easier if we decide to. The VM should not be 2628 * considered ready to switch to split PUD locks yet; there may be places 2629 * which need to be converted from page_table_lock. 2630 */ 2631 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2632 { 2633 return &mm->page_table_lock; 2634 } 2635 2636 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2637 { 2638 spinlock_t *ptl = pud_lockptr(mm, pud); 2639 2640 spin_lock(ptl); 2641 return ptl; 2642 } 2643 2644 extern void __init pagecache_init(void); 2645 extern void free_initmem(void); 2646 2647 /* 2648 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2649 * into the buddy system. The freed pages will be poisoned with pattern 2650 * "poison" if it's within range [0, UCHAR_MAX]. 2651 * Return pages freed into the buddy system. 2652 */ 2653 extern unsigned long free_reserved_area(void *start, void *end, 2654 int poison, const char *s); 2655 2656 extern void adjust_managed_page_count(struct page *page, long count); 2657 extern void mem_init_print_info(void); 2658 2659 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2660 2661 /* Free the reserved page into the buddy system, so it gets managed. */ 2662 static inline void free_reserved_page(struct page *page) 2663 { 2664 ClearPageReserved(page); 2665 init_page_count(page); 2666 __free_page(page); 2667 adjust_managed_page_count(page, 1); 2668 } 2669 #define free_highmem_page(page) free_reserved_page(page) 2670 2671 static inline void mark_page_reserved(struct page *page) 2672 { 2673 SetPageReserved(page); 2674 adjust_managed_page_count(page, -1); 2675 } 2676 2677 /* 2678 * Default method to free all the __init memory into the buddy system. 2679 * The freed pages will be poisoned with pattern "poison" if it's within 2680 * range [0, UCHAR_MAX]. 2681 * Return pages freed into the buddy system. 2682 */ 2683 static inline unsigned long free_initmem_default(int poison) 2684 { 2685 extern char __init_begin[], __init_end[]; 2686 2687 return free_reserved_area(&__init_begin, &__init_end, 2688 poison, "unused kernel image (initmem)"); 2689 } 2690 2691 static inline unsigned long get_num_physpages(void) 2692 { 2693 int nid; 2694 unsigned long phys_pages = 0; 2695 2696 for_each_online_node(nid) 2697 phys_pages += node_present_pages(nid); 2698 2699 return phys_pages; 2700 } 2701 2702 /* 2703 * Using memblock node mappings, an architecture may initialise its 2704 * zones, allocate the backing mem_map and account for memory holes in an 2705 * architecture independent manner. 2706 * 2707 * An architecture is expected to register range of page frames backed by 2708 * physical memory with memblock_add[_node]() before calling 2709 * free_area_init() passing in the PFN each zone ends at. At a basic 2710 * usage, an architecture is expected to do something like 2711 * 2712 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2713 * max_highmem_pfn}; 2714 * for_each_valid_physical_page_range() 2715 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2716 * free_area_init(max_zone_pfns); 2717 */ 2718 void free_area_init(unsigned long *max_zone_pfn); 2719 unsigned long node_map_pfn_alignment(void); 2720 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2721 unsigned long end_pfn); 2722 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2723 unsigned long end_pfn); 2724 extern void get_pfn_range_for_nid(unsigned int nid, 2725 unsigned long *start_pfn, unsigned long *end_pfn); 2726 2727 #ifndef CONFIG_NUMA 2728 static inline int early_pfn_to_nid(unsigned long pfn) 2729 { 2730 return 0; 2731 } 2732 #else 2733 /* please see mm/page_alloc.c */ 2734 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2735 #endif 2736 2737 extern void set_dma_reserve(unsigned long new_dma_reserve); 2738 extern void memmap_init_range(unsigned long, int, unsigned long, 2739 unsigned long, unsigned long, enum meminit_context, 2740 struct vmem_altmap *, int migratetype); 2741 extern void setup_per_zone_wmarks(void); 2742 extern void calculate_min_free_kbytes(void); 2743 extern int __meminit init_per_zone_wmark_min(void); 2744 extern void mem_init(void); 2745 extern void __init mmap_init(void); 2746 2747 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2748 static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 2749 { 2750 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 2751 } 2752 extern long si_mem_available(void); 2753 extern void si_meminfo(struct sysinfo * val); 2754 extern void si_meminfo_node(struct sysinfo *val, int nid); 2755 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2756 extern unsigned long arch_reserved_kernel_pages(void); 2757 #endif 2758 2759 extern __printf(3, 4) 2760 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2761 2762 extern void setup_per_cpu_pageset(void); 2763 2764 /* page_alloc.c */ 2765 extern int min_free_kbytes; 2766 extern int watermark_boost_factor; 2767 extern int watermark_scale_factor; 2768 extern bool arch_has_descending_max_zone_pfns(void); 2769 2770 /* nommu.c */ 2771 extern atomic_long_t mmap_pages_allocated; 2772 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2773 2774 /* interval_tree.c */ 2775 void vma_interval_tree_insert(struct vm_area_struct *node, 2776 struct rb_root_cached *root); 2777 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2778 struct vm_area_struct *prev, 2779 struct rb_root_cached *root); 2780 void vma_interval_tree_remove(struct vm_area_struct *node, 2781 struct rb_root_cached *root); 2782 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2783 unsigned long start, unsigned long last); 2784 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2785 unsigned long start, unsigned long last); 2786 2787 #define vma_interval_tree_foreach(vma, root, start, last) \ 2788 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2789 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2790 2791 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2792 struct rb_root_cached *root); 2793 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2794 struct rb_root_cached *root); 2795 struct anon_vma_chain * 2796 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2797 unsigned long start, unsigned long last); 2798 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2799 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2800 #ifdef CONFIG_DEBUG_VM_RB 2801 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2802 #endif 2803 2804 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2805 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2806 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2807 2808 /* mmap.c */ 2809 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2810 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2811 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2812 struct vm_area_struct *expand); 2813 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2814 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2815 { 2816 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2817 } 2818 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2819 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2820 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2821 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2822 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2823 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2824 unsigned long addr, int new_below); 2825 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2826 unsigned long addr, int new_below); 2827 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2828 extern void unlink_file_vma(struct vm_area_struct *); 2829 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2830 unsigned long addr, unsigned long len, pgoff_t pgoff, 2831 bool *need_rmap_locks); 2832 extern void exit_mmap(struct mm_struct *); 2833 2834 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas); 2835 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas); 2836 2837 static inline int check_data_rlimit(unsigned long rlim, 2838 unsigned long new, 2839 unsigned long start, 2840 unsigned long end_data, 2841 unsigned long start_data) 2842 { 2843 if (rlim < RLIM_INFINITY) { 2844 if (((new - start) + (end_data - start_data)) > rlim) 2845 return -ENOSPC; 2846 } 2847 2848 return 0; 2849 } 2850 2851 extern int mm_take_all_locks(struct mm_struct *mm); 2852 extern void mm_drop_all_locks(struct mm_struct *mm); 2853 2854 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2855 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2856 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2857 extern struct file *get_task_exe_file(struct task_struct *task); 2858 2859 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2860 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2861 2862 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2863 const struct vm_special_mapping *sm); 2864 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2865 unsigned long addr, unsigned long len, 2866 unsigned long flags, 2867 const struct vm_special_mapping *spec); 2868 /* This is an obsolete alternative to _install_special_mapping. */ 2869 extern int install_special_mapping(struct mm_struct *mm, 2870 unsigned long addr, unsigned long len, 2871 unsigned long flags, struct page **pages); 2872 2873 unsigned long randomize_stack_top(unsigned long stack_top); 2874 unsigned long randomize_page(unsigned long start, unsigned long range); 2875 2876 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2877 2878 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2879 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2880 struct list_head *uf); 2881 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2882 unsigned long len, unsigned long prot, unsigned long flags, 2883 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2884 extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm, 2885 unsigned long start, size_t len, struct list_head *uf, 2886 bool downgrade); 2887 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2888 struct list_head *uf); 2889 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2890 2891 #ifdef CONFIG_MMU 2892 extern int __mm_populate(unsigned long addr, unsigned long len, 2893 int ignore_errors); 2894 static inline void mm_populate(unsigned long addr, unsigned long len) 2895 { 2896 /* Ignore errors */ 2897 (void) __mm_populate(addr, len, 1); 2898 } 2899 #else 2900 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2901 #endif 2902 2903 /* These take the mm semaphore themselves */ 2904 extern int __must_check vm_brk(unsigned long, unsigned long); 2905 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2906 extern int vm_munmap(unsigned long, size_t); 2907 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2908 unsigned long, unsigned long, 2909 unsigned long, unsigned long); 2910 2911 struct vm_unmapped_area_info { 2912 #define VM_UNMAPPED_AREA_TOPDOWN 1 2913 unsigned long flags; 2914 unsigned long length; 2915 unsigned long low_limit; 2916 unsigned long high_limit; 2917 unsigned long align_mask; 2918 unsigned long align_offset; 2919 }; 2920 2921 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2922 2923 /* truncate.c */ 2924 extern void truncate_inode_pages(struct address_space *, loff_t); 2925 extern void truncate_inode_pages_range(struct address_space *, 2926 loff_t lstart, loff_t lend); 2927 extern void truncate_inode_pages_final(struct address_space *); 2928 2929 /* generic vm_area_ops exported for stackable file systems */ 2930 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2931 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2932 pgoff_t start_pgoff, pgoff_t end_pgoff); 2933 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2934 2935 extern unsigned long stack_guard_gap; 2936 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2937 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2938 2939 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2940 extern int expand_downwards(struct vm_area_struct *vma, 2941 unsigned long address); 2942 #if VM_GROWSUP 2943 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2944 #else 2945 #define expand_upwards(vma, address) (0) 2946 #endif 2947 2948 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2949 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2950 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2951 struct vm_area_struct **pprev); 2952 2953 /* 2954 * Look up the first VMA which intersects the interval [start_addr, end_addr) 2955 * NULL if none. Assume start_addr < end_addr. 2956 */ 2957 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2958 unsigned long start_addr, unsigned long end_addr); 2959 2960 /** 2961 * vma_lookup() - Find a VMA at a specific address 2962 * @mm: The process address space. 2963 * @addr: The user address. 2964 * 2965 * Return: The vm_area_struct at the given address, %NULL otherwise. 2966 */ 2967 static inline 2968 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2969 { 2970 return mtree_load(&mm->mm_mt, addr); 2971 } 2972 2973 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2974 { 2975 unsigned long vm_start = vma->vm_start; 2976 2977 if (vma->vm_flags & VM_GROWSDOWN) { 2978 vm_start -= stack_guard_gap; 2979 if (vm_start > vma->vm_start) 2980 vm_start = 0; 2981 } 2982 return vm_start; 2983 } 2984 2985 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2986 { 2987 unsigned long vm_end = vma->vm_end; 2988 2989 if (vma->vm_flags & VM_GROWSUP) { 2990 vm_end += stack_guard_gap; 2991 if (vm_end < vma->vm_end) 2992 vm_end = -PAGE_SIZE; 2993 } 2994 return vm_end; 2995 } 2996 2997 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2998 { 2999 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3000 } 3001 3002 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3003 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3004 unsigned long vm_start, unsigned long vm_end) 3005 { 3006 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3007 3008 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3009 vma = NULL; 3010 3011 return vma; 3012 } 3013 3014 static inline bool range_in_vma(struct vm_area_struct *vma, 3015 unsigned long start, unsigned long end) 3016 { 3017 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3018 } 3019 3020 #ifdef CONFIG_MMU 3021 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3022 void vma_set_page_prot(struct vm_area_struct *vma); 3023 #else 3024 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3025 { 3026 return __pgprot(0); 3027 } 3028 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3029 { 3030 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3031 } 3032 #endif 3033 3034 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3035 3036 #ifdef CONFIG_NUMA_BALANCING 3037 unsigned long change_prot_numa(struct vm_area_struct *vma, 3038 unsigned long start, unsigned long end); 3039 #endif 3040 3041 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 3042 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3043 unsigned long pfn, unsigned long size, pgprot_t); 3044 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3045 unsigned long pfn, unsigned long size, pgprot_t prot); 3046 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3047 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3048 struct page **pages, unsigned long *num); 3049 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3050 unsigned long num); 3051 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3052 unsigned long num); 3053 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3054 unsigned long pfn); 3055 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3056 unsigned long pfn, pgprot_t pgprot); 3057 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3058 pfn_t pfn); 3059 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 3060 pfn_t pfn, pgprot_t pgprot); 3061 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3062 unsigned long addr, pfn_t pfn); 3063 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3064 3065 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3066 unsigned long addr, struct page *page) 3067 { 3068 int err = vm_insert_page(vma, addr, page); 3069 3070 if (err == -ENOMEM) 3071 return VM_FAULT_OOM; 3072 if (err < 0 && err != -EBUSY) 3073 return VM_FAULT_SIGBUS; 3074 3075 return VM_FAULT_NOPAGE; 3076 } 3077 3078 #ifndef io_remap_pfn_range 3079 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3080 unsigned long addr, unsigned long pfn, 3081 unsigned long size, pgprot_t prot) 3082 { 3083 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3084 } 3085 #endif 3086 3087 static inline vm_fault_t vmf_error(int err) 3088 { 3089 if (err == -ENOMEM) 3090 return VM_FAULT_OOM; 3091 return VM_FAULT_SIGBUS; 3092 } 3093 3094 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3095 unsigned int foll_flags); 3096 3097 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3098 { 3099 if (vm_fault & VM_FAULT_OOM) 3100 return -ENOMEM; 3101 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3102 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3103 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3104 return -EFAULT; 3105 return 0; 3106 } 3107 3108 /* 3109 * Indicates for which pages that are write-protected in the page table, 3110 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 3111 * GUP pin will remain consistent with the pages mapped into the page tables 3112 * of the MM. 3113 * 3114 * Temporary unmapping of PageAnonExclusive() pages or clearing of 3115 * PageAnonExclusive() has to protect against concurrent GUP: 3116 * * Ordinary GUP: Using the PT lock 3117 * * GUP-fast and fork(): mm->write_protect_seq 3118 * * GUP-fast and KSM or temporary unmapping (swap, migration): see 3119 * page_try_share_anon_rmap() 3120 * 3121 * Must be called with the (sub)page that's actually referenced via the 3122 * page table entry, which might not necessarily be the head page for a 3123 * PTE-mapped THP. 3124 * 3125 * If the vma is NULL, we're coming from the GUP-fast path and might have 3126 * to fallback to the slow path just to lookup the vma. 3127 */ 3128 static inline bool gup_must_unshare(struct vm_area_struct *vma, 3129 unsigned int flags, struct page *page) 3130 { 3131 /* 3132 * FOLL_WRITE is implicitly handled correctly as the page table entry 3133 * has to be writable -- and if it references (part of) an anonymous 3134 * folio, that part is required to be marked exclusive. 3135 */ 3136 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 3137 return false; 3138 /* 3139 * Note: PageAnon(page) is stable until the page is actually getting 3140 * freed. 3141 */ 3142 if (!PageAnon(page)) { 3143 /* 3144 * We only care about R/O long-term pining: R/O short-term 3145 * pinning does not have the semantics to observe successive 3146 * changes through the process page tables. 3147 */ 3148 if (!(flags & FOLL_LONGTERM)) 3149 return false; 3150 3151 /* We really need the vma ... */ 3152 if (!vma) 3153 return true; 3154 3155 /* 3156 * ... because we only care about writable private ("COW") 3157 * mappings where we have to break COW early. 3158 */ 3159 return is_cow_mapping(vma->vm_flags); 3160 } 3161 3162 /* Paired with a memory barrier in page_try_share_anon_rmap(). */ 3163 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP)) 3164 smp_rmb(); 3165 3166 /* 3167 * Note that PageKsm() pages cannot be exclusive, and consequently, 3168 * cannot get pinned. 3169 */ 3170 return !PageAnonExclusive(page); 3171 } 3172 3173 /* 3174 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3175 * a (NUMA hinting) fault is required. 3176 */ 3177 static inline bool gup_can_follow_protnone(unsigned int flags) 3178 { 3179 /* 3180 * FOLL_FORCE has to be able to make progress even if the VMA is 3181 * inaccessible. Further, FOLL_FORCE access usually does not represent 3182 * application behaviour and we should avoid triggering NUMA hinting 3183 * faults. 3184 */ 3185 return flags & FOLL_FORCE; 3186 } 3187 3188 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3189 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3190 unsigned long size, pte_fn_t fn, void *data); 3191 extern int apply_to_existing_page_range(struct mm_struct *mm, 3192 unsigned long address, unsigned long size, 3193 pte_fn_t fn, void *data); 3194 3195 extern void __init init_mem_debugging_and_hardening(void); 3196 #ifdef CONFIG_PAGE_POISONING 3197 extern void __kernel_poison_pages(struct page *page, int numpages); 3198 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3199 extern bool _page_poisoning_enabled_early; 3200 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3201 static inline bool page_poisoning_enabled(void) 3202 { 3203 return _page_poisoning_enabled_early; 3204 } 3205 /* 3206 * For use in fast paths after init_mem_debugging() has run, or when a 3207 * false negative result is not harmful when called too early. 3208 */ 3209 static inline bool page_poisoning_enabled_static(void) 3210 { 3211 return static_branch_unlikely(&_page_poisoning_enabled); 3212 } 3213 static inline void kernel_poison_pages(struct page *page, int numpages) 3214 { 3215 if (page_poisoning_enabled_static()) 3216 __kernel_poison_pages(page, numpages); 3217 } 3218 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3219 { 3220 if (page_poisoning_enabled_static()) 3221 __kernel_unpoison_pages(page, numpages); 3222 } 3223 #else 3224 static inline bool page_poisoning_enabled(void) { return false; } 3225 static inline bool page_poisoning_enabled_static(void) { return false; } 3226 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3227 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3228 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3229 #endif 3230 3231 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3232 static inline bool want_init_on_alloc(gfp_t flags) 3233 { 3234 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3235 &init_on_alloc)) 3236 return true; 3237 return flags & __GFP_ZERO; 3238 } 3239 3240 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3241 static inline bool want_init_on_free(void) 3242 { 3243 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3244 &init_on_free); 3245 } 3246 3247 extern bool _debug_pagealloc_enabled_early; 3248 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3249 3250 static inline bool debug_pagealloc_enabled(void) 3251 { 3252 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3253 _debug_pagealloc_enabled_early; 3254 } 3255 3256 /* 3257 * For use in fast paths after init_debug_pagealloc() has run, or when a 3258 * false negative result is not harmful when called too early. 3259 */ 3260 static inline bool debug_pagealloc_enabled_static(void) 3261 { 3262 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3263 return false; 3264 3265 return static_branch_unlikely(&_debug_pagealloc_enabled); 3266 } 3267 3268 #ifdef CONFIG_DEBUG_PAGEALLOC 3269 /* 3270 * To support DEBUG_PAGEALLOC architecture must ensure that 3271 * __kernel_map_pages() never fails 3272 */ 3273 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3274 3275 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3276 { 3277 if (debug_pagealloc_enabled_static()) 3278 __kernel_map_pages(page, numpages, 1); 3279 } 3280 3281 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3282 { 3283 if (debug_pagealloc_enabled_static()) 3284 __kernel_map_pages(page, numpages, 0); 3285 } 3286 #else /* CONFIG_DEBUG_PAGEALLOC */ 3287 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3288 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3289 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3290 3291 #ifdef __HAVE_ARCH_GATE_AREA 3292 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3293 extern int in_gate_area_no_mm(unsigned long addr); 3294 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3295 #else 3296 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3297 { 3298 return NULL; 3299 } 3300 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3301 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3302 { 3303 return 0; 3304 } 3305 #endif /* __HAVE_ARCH_GATE_AREA */ 3306 3307 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3308 3309 #ifdef CONFIG_SYSCTL 3310 extern int sysctl_drop_caches; 3311 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3312 loff_t *); 3313 #endif 3314 3315 void drop_slab(void); 3316 3317 #ifndef CONFIG_MMU 3318 #define randomize_va_space 0 3319 #else 3320 extern int randomize_va_space; 3321 #endif 3322 3323 const char * arch_vma_name(struct vm_area_struct *vma); 3324 #ifdef CONFIG_MMU 3325 void print_vma_addr(char *prefix, unsigned long rip); 3326 #else 3327 static inline void print_vma_addr(char *prefix, unsigned long rip) 3328 { 3329 } 3330 #endif 3331 3332 void *sparse_buffer_alloc(unsigned long size); 3333 struct page * __populate_section_memmap(unsigned long pfn, 3334 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3335 struct dev_pagemap *pgmap); 3336 void pmd_init(void *addr); 3337 void pud_init(void *addr); 3338 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3339 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3340 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3341 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3342 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3343 struct vmem_altmap *altmap, struct page *reuse); 3344 void *vmemmap_alloc_block(unsigned long size, int node); 3345 struct vmem_altmap; 3346 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3347 struct vmem_altmap *altmap); 3348 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3349 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3350 unsigned long addr, unsigned long next); 3351 int vmemmap_check_pmd(pmd_t *pmd, int node, 3352 unsigned long addr, unsigned long next); 3353 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3354 int node, struct vmem_altmap *altmap); 3355 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3356 int node, struct vmem_altmap *altmap); 3357 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3358 struct vmem_altmap *altmap); 3359 void vmemmap_populate_print_last(void); 3360 #ifdef CONFIG_MEMORY_HOTPLUG 3361 void vmemmap_free(unsigned long start, unsigned long end, 3362 struct vmem_altmap *altmap); 3363 #endif 3364 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3365 unsigned long nr_pages); 3366 3367 enum mf_flags { 3368 MF_COUNT_INCREASED = 1 << 0, 3369 MF_ACTION_REQUIRED = 1 << 1, 3370 MF_MUST_KILL = 1 << 2, 3371 MF_SOFT_OFFLINE = 1 << 3, 3372 MF_UNPOISON = 1 << 4, 3373 MF_SW_SIMULATED = 1 << 5, 3374 MF_NO_RETRY = 1 << 6, 3375 }; 3376 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3377 unsigned long count, int mf_flags); 3378 extern int memory_failure(unsigned long pfn, int flags); 3379 extern void memory_failure_queue_kick(int cpu); 3380 extern int unpoison_memory(unsigned long pfn); 3381 extern int sysctl_memory_failure_early_kill; 3382 extern int sysctl_memory_failure_recovery; 3383 extern void shake_page(struct page *p); 3384 extern atomic_long_t num_poisoned_pages __read_mostly; 3385 extern int soft_offline_page(unsigned long pfn, int flags); 3386 #ifdef CONFIG_MEMORY_FAILURE 3387 extern void memory_failure_queue(unsigned long pfn, int flags); 3388 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3389 bool *migratable_cleared); 3390 void num_poisoned_pages_inc(unsigned long pfn); 3391 void num_poisoned_pages_sub(unsigned long pfn, long i); 3392 #else 3393 static inline void memory_failure_queue(unsigned long pfn, int flags) 3394 { 3395 } 3396 3397 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3398 bool *migratable_cleared) 3399 { 3400 return 0; 3401 } 3402 3403 static inline void num_poisoned_pages_inc(unsigned long pfn) 3404 { 3405 } 3406 3407 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3408 { 3409 } 3410 #endif 3411 3412 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3413 extern void memblk_nr_poison_inc(unsigned long pfn); 3414 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3415 #else 3416 static inline void memblk_nr_poison_inc(unsigned long pfn) 3417 { 3418 } 3419 3420 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3421 { 3422 } 3423 #endif 3424 3425 #ifndef arch_memory_failure 3426 static inline int arch_memory_failure(unsigned long pfn, int flags) 3427 { 3428 return -ENXIO; 3429 } 3430 #endif 3431 3432 #ifndef arch_is_platform_page 3433 static inline bool arch_is_platform_page(u64 paddr) 3434 { 3435 return false; 3436 } 3437 #endif 3438 3439 /* 3440 * Error handlers for various types of pages. 3441 */ 3442 enum mf_result { 3443 MF_IGNORED, /* Error: cannot be handled */ 3444 MF_FAILED, /* Error: handling failed */ 3445 MF_DELAYED, /* Will be handled later */ 3446 MF_RECOVERED, /* Successfully recovered */ 3447 }; 3448 3449 enum mf_action_page_type { 3450 MF_MSG_KERNEL, 3451 MF_MSG_KERNEL_HIGH_ORDER, 3452 MF_MSG_SLAB, 3453 MF_MSG_DIFFERENT_COMPOUND, 3454 MF_MSG_HUGE, 3455 MF_MSG_FREE_HUGE, 3456 MF_MSG_UNMAP_FAILED, 3457 MF_MSG_DIRTY_SWAPCACHE, 3458 MF_MSG_CLEAN_SWAPCACHE, 3459 MF_MSG_DIRTY_MLOCKED_LRU, 3460 MF_MSG_CLEAN_MLOCKED_LRU, 3461 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3462 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3463 MF_MSG_DIRTY_LRU, 3464 MF_MSG_CLEAN_LRU, 3465 MF_MSG_TRUNCATED_LRU, 3466 MF_MSG_BUDDY, 3467 MF_MSG_DAX, 3468 MF_MSG_UNSPLIT_THP, 3469 MF_MSG_UNKNOWN, 3470 }; 3471 3472 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3473 extern void clear_huge_page(struct page *page, 3474 unsigned long addr_hint, 3475 unsigned int pages_per_huge_page); 3476 extern void copy_user_huge_page(struct page *dst, struct page *src, 3477 unsigned long addr_hint, 3478 struct vm_area_struct *vma, 3479 unsigned int pages_per_huge_page); 3480 extern long copy_huge_page_from_user(struct page *dst_page, 3481 const void __user *usr_src, 3482 unsigned int pages_per_huge_page, 3483 bool allow_pagefault); 3484 3485 /** 3486 * vma_is_special_huge - Are transhuge page-table entries considered special? 3487 * @vma: Pointer to the struct vm_area_struct to consider 3488 * 3489 * Whether transhuge page-table entries are considered "special" following 3490 * the definition in vm_normal_page(). 3491 * 3492 * Return: true if transhuge page-table entries should be considered special, 3493 * false otherwise. 3494 */ 3495 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3496 { 3497 return vma_is_dax(vma) || (vma->vm_file && 3498 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3499 } 3500 3501 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3502 3503 #ifdef CONFIG_DEBUG_PAGEALLOC 3504 extern unsigned int _debug_guardpage_minorder; 3505 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3506 3507 static inline unsigned int debug_guardpage_minorder(void) 3508 { 3509 return _debug_guardpage_minorder; 3510 } 3511 3512 static inline bool debug_guardpage_enabled(void) 3513 { 3514 return static_branch_unlikely(&_debug_guardpage_enabled); 3515 } 3516 3517 static inline bool page_is_guard(struct page *page) 3518 { 3519 if (!debug_guardpage_enabled()) 3520 return false; 3521 3522 return PageGuard(page); 3523 } 3524 #else 3525 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3526 static inline bool debug_guardpage_enabled(void) { return false; } 3527 static inline bool page_is_guard(struct page *page) { return false; } 3528 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3529 3530 #if MAX_NUMNODES > 1 3531 void __init setup_nr_node_ids(void); 3532 #else 3533 static inline void setup_nr_node_ids(void) {} 3534 #endif 3535 3536 extern int memcmp_pages(struct page *page1, struct page *page2); 3537 3538 static inline int pages_identical(struct page *page1, struct page *page2) 3539 { 3540 return !memcmp_pages(page1, page2); 3541 } 3542 3543 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3544 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3545 pgoff_t first_index, pgoff_t nr, 3546 pgoff_t bitmap_pgoff, 3547 unsigned long *bitmap, 3548 pgoff_t *start, 3549 pgoff_t *end); 3550 3551 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3552 pgoff_t first_index, pgoff_t nr); 3553 #endif 3554 3555 extern int sysctl_nr_trim_pages; 3556 3557 #ifdef CONFIG_PRINTK 3558 void mem_dump_obj(void *object); 3559 #else 3560 static inline void mem_dump_obj(void *object) {} 3561 #endif 3562 3563 /** 3564 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3565 * @seals: the seals to check 3566 * @vma: the vma to operate on 3567 * 3568 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3569 * the vma flags. Return 0 if check pass, or <0 for errors. 3570 */ 3571 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3572 { 3573 if (seals & F_SEAL_FUTURE_WRITE) { 3574 /* 3575 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3576 * "future write" seal active. 3577 */ 3578 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3579 return -EPERM; 3580 3581 /* 3582 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3583 * MAP_SHARED and read-only, take care to not allow mprotect to 3584 * revert protections on such mappings. Do this only for shared 3585 * mappings. For private mappings, don't need to mask 3586 * VM_MAYWRITE as we still want them to be COW-writable. 3587 */ 3588 if (vma->vm_flags & VM_SHARED) 3589 vma->vm_flags &= ~(VM_MAYWRITE); 3590 } 3591 3592 return 0; 3593 } 3594 3595 #ifdef CONFIG_ANON_VMA_NAME 3596 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3597 unsigned long len_in, 3598 struct anon_vma_name *anon_name); 3599 #else 3600 static inline int 3601 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3602 unsigned long len_in, struct anon_vma_name *anon_name) { 3603 return 0; 3604 } 3605 #endif 3606 3607 #endif /* _LINUX_MM_H */ 3608