1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 323 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 324 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 325 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 326 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 328 329 #ifdef CONFIG_ARCH_HAS_PKEYS 330 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 331 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 332 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 333 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 334 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 335 #ifdef CONFIG_PPC 336 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 337 #else 338 # define VM_PKEY_BIT4 0 339 #endif 340 #endif /* CONFIG_ARCH_HAS_PKEYS */ 341 342 #if defined(CONFIG_X86) 343 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 344 #elif defined(CONFIG_PPC) 345 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 346 #elif defined(CONFIG_PARISC) 347 # define VM_GROWSUP VM_ARCH_1 348 #elif defined(CONFIG_IA64) 349 # define VM_GROWSUP VM_ARCH_1 350 #elif defined(CONFIG_SPARC64) 351 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 352 # define VM_ARCH_CLEAR VM_SPARC_ADI 353 #elif defined(CONFIG_ARM64) 354 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 355 # define VM_ARCH_CLEAR VM_ARM64_BTI 356 #elif !defined(CONFIG_MMU) 357 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 358 #endif 359 360 #if defined(CONFIG_ARM64_MTE) 361 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 362 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 363 #else 364 # define VM_MTE VM_NONE 365 # define VM_MTE_ALLOWED VM_NONE 366 #endif 367 368 #ifndef VM_GROWSUP 369 # define VM_GROWSUP VM_NONE 370 #endif 371 372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 373 # define VM_UFFD_MINOR_BIT 37 374 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 376 # define VM_UFFD_MINOR VM_NONE 377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 378 379 /* Bits set in the VMA until the stack is in its final location */ 380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 381 382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 383 384 /* Common data flag combinations */ 385 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 387 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 388 VM_MAYWRITE | VM_MAYEXEC) 389 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 391 392 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 393 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 394 #endif 395 396 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 398 #endif 399 400 #ifdef CONFIG_STACK_GROWSUP 401 #define VM_STACK VM_GROWSUP 402 #define VM_STACK_EARLY VM_GROWSDOWN 403 #else 404 #define VM_STACK VM_GROWSDOWN 405 #define VM_STACK_EARLY 0 406 #endif 407 408 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 409 410 /* VMA basic access permission flags */ 411 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 412 413 414 /* 415 * Special vmas that are non-mergable, non-mlock()able. 416 */ 417 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 418 419 /* This mask prevents VMA from being scanned with khugepaged */ 420 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 421 422 /* This mask defines which mm->def_flags a process can inherit its parent */ 423 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 424 425 /* This mask represents all the VMA flag bits used by mlock */ 426 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 427 428 /* Arch-specific flags to clear when updating VM flags on protection change */ 429 #ifndef VM_ARCH_CLEAR 430 # define VM_ARCH_CLEAR VM_NONE 431 #endif 432 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 433 434 /* 435 * mapping from the currently active vm_flags protection bits (the 436 * low four bits) to a page protection mask.. 437 */ 438 439 /* 440 * The default fault flags that should be used by most of the 441 * arch-specific page fault handlers. 442 */ 443 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 444 FAULT_FLAG_KILLABLE | \ 445 FAULT_FLAG_INTERRUPTIBLE) 446 447 /** 448 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 449 * @flags: Fault flags. 450 * 451 * This is mostly used for places where we want to try to avoid taking 452 * the mmap_lock for too long a time when waiting for another condition 453 * to change, in which case we can try to be polite to release the 454 * mmap_lock in the first round to avoid potential starvation of other 455 * processes that would also want the mmap_lock. 456 * 457 * Return: true if the page fault allows retry and this is the first 458 * attempt of the fault handling; false otherwise. 459 */ 460 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 461 { 462 return (flags & FAULT_FLAG_ALLOW_RETRY) && 463 (!(flags & FAULT_FLAG_TRIED)); 464 } 465 466 #define FAULT_FLAG_TRACE \ 467 { FAULT_FLAG_WRITE, "WRITE" }, \ 468 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 469 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 470 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 471 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 472 { FAULT_FLAG_TRIED, "TRIED" }, \ 473 { FAULT_FLAG_USER, "USER" }, \ 474 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 475 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 476 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 477 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 478 479 /* 480 * vm_fault is filled by the pagefault handler and passed to the vma's 481 * ->fault function. The vma's ->fault is responsible for returning a bitmask 482 * of VM_FAULT_xxx flags that give details about how the fault was handled. 483 * 484 * MM layer fills up gfp_mask for page allocations but fault handler might 485 * alter it if its implementation requires a different allocation context. 486 * 487 * pgoff should be used in favour of virtual_address, if possible. 488 */ 489 struct vm_fault { 490 const struct { 491 struct vm_area_struct *vma; /* Target VMA */ 492 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 493 pgoff_t pgoff; /* Logical page offset based on vma */ 494 unsigned long address; /* Faulting virtual address - masked */ 495 unsigned long real_address; /* Faulting virtual address - unmasked */ 496 }; 497 enum fault_flag flags; /* FAULT_FLAG_xxx flags 498 * XXX: should really be 'const' */ 499 pmd_t *pmd; /* Pointer to pmd entry matching 500 * the 'address' */ 501 pud_t *pud; /* Pointer to pud entry matching 502 * the 'address' 503 */ 504 union { 505 pte_t orig_pte; /* Value of PTE at the time of fault */ 506 pmd_t orig_pmd; /* Value of PMD at the time of fault, 507 * used by PMD fault only. 508 */ 509 }; 510 511 struct page *cow_page; /* Page handler may use for COW fault */ 512 struct page *page; /* ->fault handlers should return a 513 * page here, unless VM_FAULT_NOPAGE 514 * is set (which is also implied by 515 * VM_FAULT_ERROR). 516 */ 517 /* These three entries are valid only while holding ptl lock */ 518 pte_t *pte; /* Pointer to pte entry matching 519 * the 'address'. NULL if the page 520 * table hasn't been allocated. 521 */ 522 spinlock_t *ptl; /* Page table lock. 523 * Protects pte page table if 'pte' 524 * is not NULL, otherwise pmd. 525 */ 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 527 * vm_ops->map_pages() sets up a page 528 * table from atomic context. 529 * do_fault_around() pre-allocates 530 * page table to avoid allocation from 531 * atomic context. 532 */ 533 }; 534 535 /* page entry size for vm->huge_fault() */ 536 enum page_entry_size { 537 PE_SIZE_PTE = 0, 538 PE_SIZE_PMD, 539 PE_SIZE_PUD, 540 }; 541 542 /* 543 * These are the virtual MM functions - opening of an area, closing and 544 * unmapping it (needed to keep files on disk up-to-date etc), pointer 545 * to the functions called when a no-page or a wp-page exception occurs. 546 */ 547 struct vm_operations_struct { 548 void (*open)(struct vm_area_struct * area); 549 /** 550 * @close: Called when the VMA is being removed from the MM. 551 * Context: User context. May sleep. Caller holds mmap_lock. 552 */ 553 void (*close)(struct vm_area_struct * area); 554 /* Called any time before splitting to check if it's allowed */ 555 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 556 int (*mremap)(struct vm_area_struct *area); 557 /* 558 * Called by mprotect() to make driver-specific permission 559 * checks before mprotect() is finalised. The VMA must not 560 * be modified. Returns 0 if mprotect() can proceed. 561 */ 562 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 563 unsigned long end, unsigned long newflags); 564 vm_fault_t (*fault)(struct vm_fault *vmf); 565 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 566 enum page_entry_size pe_size); 567 vm_fault_t (*map_pages)(struct vm_fault *vmf, 568 pgoff_t start_pgoff, pgoff_t end_pgoff); 569 unsigned long (*pagesize)(struct vm_area_struct * area); 570 571 /* notification that a previously read-only page is about to become 572 * writable, if an error is returned it will cause a SIGBUS */ 573 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 574 575 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 576 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 577 578 /* called by access_process_vm when get_user_pages() fails, typically 579 * for use by special VMAs. See also generic_access_phys() for a generic 580 * implementation useful for any iomem mapping. 581 */ 582 int (*access)(struct vm_area_struct *vma, unsigned long addr, 583 void *buf, int len, int write); 584 585 /* Called by the /proc/PID/maps code to ask the vma whether it 586 * has a special name. Returning non-NULL will also cause this 587 * vma to be dumped unconditionally. */ 588 const char *(*name)(struct vm_area_struct *vma); 589 590 #ifdef CONFIG_NUMA 591 /* 592 * set_policy() op must add a reference to any non-NULL @new mempolicy 593 * to hold the policy upon return. Caller should pass NULL @new to 594 * remove a policy and fall back to surrounding context--i.e. do not 595 * install a MPOL_DEFAULT policy, nor the task or system default 596 * mempolicy. 597 */ 598 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 599 600 /* 601 * get_policy() op must add reference [mpol_get()] to any policy at 602 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 603 * in mm/mempolicy.c will do this automatically. 604 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 605 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 606 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 607 * must return NULL--i.e., do not "fallback" to task or system default 608 * policy. 609 */ 610 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 611 unsigned long addr); 612 #endif 613 /* 614 * Called by vm_normal_page() for special PTEs to find the 615 * page for @addr. This is useful if the default behavior 616 * (using pte_page()) would not find the correct page. 617 */ 618 struct page *(*find_special_page)(struct vm_area_struct *vma, 619 unsigned long addr); 620 }; 621 622 #ifdef CONFIG_NUMA_BALANCING 623 static inline void vma_numab_state_init(struct vm_area_struct *vma) 624 { 625 vma->numab_state = NULL; 626 } 627 static inline void vma_numab_state_free(struct vm_area_struct *vma) 628 { 629 kfree(vma->numab_state); 630 } 631 #else 632 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 633 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 634 #endif /* CONFIG_NUMA_BALANCING */ 635 636 #ifdef CONFIG_PER_VMA_LOCK 637 /* 638 * Try to read-lock a vma. The function is allowed to occasionally yield false 639 * locked result to avoid performance overhead, in which case we fall back to 640 * using mmap_lock. The function should never yield false unlocked result. 641 */ 642 static inline bool vma_start_read(struct vm_area_struct *vma) 643 { 644 /* Check before locking. A race might cause false locked result. */ 645 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq)) 646 return false; 647 648 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 649 return false; 650 651 /* 652 * Overflow might produce false locked result. 653 * False unlocked result is impossible because we modify and check 654 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 655 * modification invalidates all existing locks. 656 */ 657 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) { 658 up_read(&vma->vm_lock->lock); 659 return false; 660 } 661 return true; 662 } 663 664 static inline void vma_end_read(struct vm_area_struct *vma) 665 { 666 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 667 up_read(&vma->vm_lock->lock); 668 rcu_read_unlock(); 669 } 670 671 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 672 { 673 mmap_assert_write_locked(vma->vm_mm); 674 675 /* 676 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 677 * mm->mm_lock_seq can't be concurrently modified. 678 */ 679 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq); 680 return (vma->vm_lock_seq == *mm_lock_seq); 681 } 682 683 static inline void vma_start_write(struct vm_area_struct *vma) 684 { 685 int mm_lock_seq; 686 687 if (__is_vma_write_locked(vma, &mm_lock_seq)) 688 return; 689 690 down_write(&vma->vm_lock->lock); 691 vma->vm_lock_seq = mm_lock_seq; 692 up_write(&vma->vm_lock->lock); 693 } 694 695 static inline bool vma_try_start_write(struct vm_area_struct *vma) 696 { 697 int mm_lock_seq; 698 699 if (__is_vma_write_locked(vma, &mm_lock_seq)) 700 return true; 701 702 if (!down_write_trylock(&vma->vm_lock->lock)) 703 return false; 704 705 vma->vm_lock_seq = mm_lock_seq; 706 up_write(&vma->vm_lock->lock); 707 return true; 708 } 709 710 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 711 { 712 int mm_lock_seq; 713 714 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 715 } 716 717 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 718 { 719 /* When detaching vma should be write-locked */ 720 if (detached) 721 vma_assert_write_locked(vma); 722 vma->detached = detached; 723 } 724 725 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 726 unsigned long address); 727 728 #else /* CONFIG_PER_VMA_LOCK */ 729 730 static inline bool vma_start_read(struct vm_area_struct *vma) 731 { return false; } 732 static inline void vma_end_read(struct vm_area_struct *vma) {} 733 static inline void vma_start_write(struct vm_area_struct *vma) {} 734 static inline bool vma_try_start_write(struct vm_area_struct *vma) 735 { return true; } 736 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {} 737 static inline void vma_mark_detached(struct vm_area_struct *vma, 738 bool detached) {} 739 740 #endif /* CONFIG_PER_VMA_LOCK */ 741 742 /* 743 * WARNING: vma_init does not initialize vma->vm_lock. 744 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 745 */ 746 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 747 { 748 static const struct vm_operations_struct dummy_vm_ops = {}; 749 750 memset(vma, 0, sizeof(*vma)); 751 vma->vm_mm = mm; 752 vma->vm_ops = &dummy_vm_ops; 753 INIT_LIST_HEAD(&vma->anon_vma_chain); 754 vma_mark_detached(vma, false); 755 vma_numab_state_init(vma); 756 } 757 758 /* Use when VMA is not part of the VMA tree and needs no locking */ 759 static inline void vm_flags_init(struct vm_area_struct *vma, 760 vm_flags_t flags) 761 { 762 ACCESS_PRIVATE(vma, __vm_flags) = flags; 763 } 764 765 /* Use when VMA is part of the VMA tree and modifications need coordination */ 766 static inline void vm_flags_reset(struct vm_area_struct *vma, 767 vm_flags_t flags) 768 { 769 vma_start_write(vma); 770 vm_flags_init(vma, flags); 771 } 772 773 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 774 vm_flags_t flags) 775 { 776 vma_start_write(vma); 777 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 778 } 779 780 static inline void vm_flags_set(struct vm_area_struct *vma, 781 vm_flags_t flags) 782 { 783 vma_start_write(vma); 784 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 785 } 786 787 static inline void vm_flags_clear(struct vm_area_struct *vma, 788 vm_flags_t flags) 789 { 790 vma_start_write(vma); 791 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 792 } 793 794 /* 795 * Use only if VMA is not part of the VMA tree or has no other users and 796 * therefore needs no locking. 797 */ 798 static inline void __vm_flags_mod(struct vm_area_struct *vma, 799 vm_flags_t set, vm_flags_t clear) 800 { 801 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 802 } 803 804 /* 805 * Use only when the order of set/clear operations is unimportant, otherwise 806 * use vm_flags_{set|clear} explicitly. 807 */ 808 static inline void vm_flags_mod(struct vm_area_struct *vma, 809 vm_flags_t set, vm_flags_t clear) 810 { 811 vma_start_write(vma); 812 __vm_flags_mod(vma, set, clear); 813 } 814 815 static inline void vma_set_anonymous(struct vm_area_struct *vma) 816 { 817 vma->vm_ops = NULL; 818 } 819 820 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 821 { 822 return !vma->vm_ops; 823 } 824 825 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 826 { 827 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 828 829 if (!maybe_stack) 830 return false; 831 832 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 833 VM_STACK_INCOMPLETE_SETUP) 834 return true; 835 836 return false; 837 } 838 839 static inline bool vma_is_foreign(struct vm_area_struct *vma) 840 { 841 if (!current->mm) 842 return true; 843 844 if (current->mm != vma->vm_mm) 845 return true; 846 847 return false; 848 } 849 850 static inline bool vma_is_accessible(struct vm_area_struct *vma) 851 { 852 return vma->vm_flags & VM_ACCESS_FLAGS; 853 } 854 855 static inline 856 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 857 { 858 return mas_find(&vmi->mas, max - 1); 859 } 860 861 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 862 { 863 /* 864 * Uses mas_find() to get the first VMA when the iterator starts. 865 * Calling mas_next() could skip the first entry. 866 */ 867 return mas_find(&vmi->mas, ULONG_MAX); 868 } 869 870 static inline 871 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 872 { 873 return mas_next_range(&vmi->mas, ULONG_MAX); 874 } 875 876 877 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 878 { 879 return mas_prev(&vmi->mas, 0); 880 } 881 882 static inline 883 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 884 { 885 return mas_prev_range(&vmi->mas, 0); 886 } 887 888 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 889 { 890 return vmi->mas.index; 891 } 892 893 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 894 { 895 return vmi->mas.last + 1; 896 } 897 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 898 unsigned long count) 899 { 900 return mas_expected_entries(&vmi->mas, count); 901 } 902 903 /* Free any unused preallocations */ 904 static inline void vma_iter_free(struct vma_iterator *vmi) 905 { 906 mas_destroy(&vmi->mas); 907 } 908 909 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 910 struct vm_area_struct *vma) 911 { 912 vmi->mas.index = vma->vm_start; 913 vmi->mas.last = vma->vm_end - 1; 914 mas_store(&vmi->mas, vma); 915 if (unlikely(mas_is_err(&vmi->mas))) 916 return -ENOMEM; 917 918 return 0; 919 } 920 921 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 922 { 923 mas_pause(&vmi->mas); 924 } 925 926 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 927 { 928 mas_set(&vmi->mas, addr); 929 } 930 931 #define for_each_vma(__vmi, __vma) \ 932 while (((__vma) = vma_next(&(__vmi))) != NULL) 933 934 /* The MM code likes to work with exclusive end addresses */ 935 #define for_each_vma_range(__vmi, __vma, __end) \ 936 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 937 938 #ifdef CONFIG_SHMEM 939 /* 940 * The vma_is_shmem is not inline because it is used only by slow 941 * paths in userfault. 942 */ 943 bool vma_is_shmem(struct vm_area_struct *vma); 944 bool vma_is_anon_shmem(struct vm_area_struct *vma); 945 #else 946 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 947 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 948 #endif 949 950 int vma_is_stack_for_current(struct vm_area_struct *vma); 951 952 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 953 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 954 955 struct mmu_gather; 956 struct inode; 957 958 /* 959 * compound_order() can be called without holding a reference, which means 960 * that niceties like page_folio() don't work. These callers should be 961 * prepared to handle wild return values. For example, PG_head may be 962 * set before _folio_order is initialised, or this may be a tail page. 963 * See compaction.c for some good examples. 964 */ 965 static inline unsigned int compound_order(struct page *page) 966 { 967 struct folio *folio = (struct folio *)page; 968 969 if (!test_bit(PG_head, &folio->flags)) 970 return 0; 971 return folio->_folio_order; 972 } 973 974 /** 975 * folio_order - The allocation order of a folio. 976 * @folio: The folio. 977 * 978 * A folio is composed of 2^order pages. See get_order() for the definition 979 * of order. 980 * 981 * Return: The order of the folio. 982 */ 983 static inline unsigned int folio_order(struct folio *folio) 984 { 985 if (!folio_test_large(folio)) 986 return 0; 987 return folio->_folio_order; 988 } 989 990 #include <linux/huge_mm.h> 991 992 /* 993 * Methods to modify the page usage count. 994 * 995 * What counts for a page usage: 996 * - cache mapping (page->mapping) 997 * - private data (page->private) 998 * - page mapped in a task's page tables, each mapping 999 * is counted separately 1000 * 1001 * Also, many kernel routines increase the page count before a critical 1002 * routine so they can be sure the page doesn't go away from under them. 1003 */ 1004 1005 /* 1006 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1007 */ 1008 static inline int put_page_testzero(struct page *page) 1009 { 1010 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1011 return page_ref_dec_and_test(page); 1012 } 1013 1014 static inline int folio_put_testzero(struct folio *folio) 1015 { 1016 return put_page_testzero(&folio->page); 1017 } 1018 1019 /* 1020 * Try to grab a ref unless the page has a refcount of zero, return false if 1021 * that is the case. 1022 * This can be called when MMU is off so it must not access 1023 * any of the virtual mappings. 1024 */ 1025 static inline bool get_page_unless_zero(struct page *page) 1026 { 1027 return page_ref_add_unless(page, 1, 0); 1028 } 1029 1030 static inline struct folio *folio_get_nontail_page(struct page *page) 1031 { 1032 if (unlikely(!get_page_unless_zero(page))) 1033 return NULL; 1034 return (struct folio *)page; 1035 } 1036 1037 extern int page_is_ram(unsigned long pfn); 1038 1039 enum { 1040 REGION_INTERSECTS, 1041 REGION_DISJOINT, 1042 REGION_MIXED, 1043 }; 1044 1045 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1046 unsigned long desc); 1047 1048 /* Support for virtually mapped pages */ 1049 struct page *vmalloc_to_page(const void *addr); 1050 unsigned long vmalloc_to_pfn(const void *addr); 1051 1052 /* 1053 * Determine if an address is within the vmalloc range 1054 * 1055 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1056 * is no special casing required. 1057 */ 1058 1059 #ifndef is_ioremap_addr 1060 #define is_ioremap_addr(x) is_vmalloc_addr(x) 1061 #endif 1062 1063 #ifdef CONFIG_MMU 1064 extern bool is_vmalloc_addr(const void *x); 1065 extern int is_vmalloc_or_module_addr(const void *x); 1066 #else 1067 static inline bool is_vmalloc_addr(const void *x) 1068 { 1069 return false; 1070 } 1071 static inline int is_vmalloc_or_module_addr(const void *x) 1072 { 1073 return 0; 1074 } 1075 #endif 1076 1077 /* 1078 * How many times the entire folio is mapped as a single unit (eg by a 1079 * PMD or PUD entry). This is probably not what you want, except for 1080 * debugging purposes - it does not include PTE-mapped sub-pages; look 1081 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1082 */ 1083 static inline int folio_entire_mapcount(struct folio *folio) 1084 { 1085 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1086 return atomic_read(&folio->_entire_mapcount) + 1; 1087 } 1088 1089 /* 1090 * The atomic page->_mapcount, starts from -1: so that transitions 1091 * both from it and to it can be tracked, using atomic_inc_and_test 1092 * and atomic_add_negative(-1). 1093 */ 1094 static inline void page_mapcount_reset(struct page *page) 1095 { 1096 atomic_set(&(page)->_mapcount, -1); 1097 } 1098 1099 /** 1100 * page_mapcount() - Number of times this precise page is mapped. 1101 * @page: The page. 1102 * 1103 * The number of times this page is mapped. If this page is part of 1104 * a large folio, it includes the number of times this page is mapped 1105 * as part of that folio. 1106 * 1107 * The result is undefined for pages which cannot be mapped into userspace. 1108 * For example SLAB or special types of pages. See function page_has_type(). 1109 * They use this field in struct page differently. 1110 */ 1111 static inline int page_mapcount(struct page *page) 1112 { 1113 int mapcount = atomic_read(&page->_mapcount) + 1; 1114 1115 if (unlikely(PageCompound(page))) 1116 mapcount += folio_entire_mapcount(page_folio(page)); 1117 1118 return mapcount; 1119 } 1120 1121 int folio_total_mapcount(struct folio *folio); 1122 1123 /** 1124 * folio_mapcount() - Calculate the number of mappings of this folio. 1125 * @folio: The folio. 1126 * 1127 * A large folio tracks both how many times the entire folio is mapped, 1128 * and how many times each individual page in the folio is mapped. 1129 * This function calculates the total number of times the folio is 1130 * mapped. 1131 * 1132 * Return: The number of times this folio is mapped. 1133 */ 1134 static inline int folio_mapcount(struct folio *folio) 1135 { 1136 if (likely(!folio_test_large(folio))) 1137 return atomic_read(&folio->_mapcount) + 1; 1138 return folio_total_mapcount(folio); 1139 } 1140 1141 static inline int total_mapcount(struct page *page) 1142 { 1143 if (likely(!PageCompound(page))) 1144 return atomic_read(&page->_mapcount) + 1; 1145 return folio_total_mapcount(page_folio(page)); 1146 } 1147 1148 static inline bool folio_large_is_mapped(struct folio *folio) 1149 { 1150 /* 1151 * Reading _entire_mapcount below could be omitted if hugetlb 1152 * participated in incrementing nr_pages_mapped when compound mapped. 1153 */ 1154 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1155 atomic_read(&folio->_entire_mapcount) >= 0; 1156 } 1157 1158 /** 1159 * folio_mapped - Is this folio mapped into userspace? 1160 * @folio: The folio. 1161 * 1162 * Return: True if any page in this folio is referenced by user page tables. 1163 */ 1164 static inline bool folio_mapped(struct folio *folio) 1165 { 1166 if (likely(!folio_test_large(folio))) 1167 return atomic_read(&folio->_mapcount) >= 0; 1168 return folio_large_is_mapped(folio); 1169 } 1170 1171 /* 1172 * Return true if this page is mapped into pagetables. 1173 * For compound page it returns true if any sub-page of compound page is mapped, 1174 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1175 */ 1176 static inline bool page_mapped(struct page *page) 1177 { 1178 if (likely(!PageCompound(page))) 1179 return atomic_read(&page->_mapcount) >= 0; 1180 return folio_large_is_mapped(page_folio(page)); 1181 } 1182 1183 static inline struct page *virt_to_head_page(const void *x) 1184 { 1185 struct page *page = virt_to_page(x); 1186 1187 return compound_head(page); 1188 } 1189 1190 static inline struct folio *virt_to_folio(const void *x) 1191 { 1192 struct page *page = virt_to_page(x); 1193 1194 return page_folio(page); 1195 } 1196 1197 void __folio_put(struct folio *folio); 1198 1199 void put_pages_list(struct list_head *pages); 1200 1201 void split_page(struct page *page, unsigned int order); 1202 void folio_copy(struct folio *dst, struct folio *src); 1203 1204 unsigned long nr_free_buffer_pages(void); 1205 1206 /* 1207 * Compound pages have a destructor function. Provide a 1208 * prototype for that function and accessor functions. 1209 * These are _only_ valid on the head of a compound page. 1210 */ 1211 typedef void compound_page_dtor(struct page *); 1212 1213 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 1214 enum compound_dtor_id { 1215 NULL_COMPOUND_DTOR, 1216 COMPOUND_PAGE_DTOR, 1217 #ifdef CONFIG_HUGETLB_PAGE 1218 HUGETLB_PAGE_DTOR, 1219 #endif 1220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1221 TRANSHUGE_PAGE_DTOR, 1222 #endif 1223 NR_COMPOUND_DTORS, 1224 }; 1225 1226 static inline void folio_set_compound_dtor(struct folio *folio, 1227 enum compound_dtor_id compound_dtor) 1228 { 1229 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio); 1230 folio->_folio_dtor = compound_dtor; 1231 } 1232 1233 void destroy_large_folio(struct folio *folio); 1234 1235 /* Returns the number of bytes in this potentially compound page. */ 1236 static inline unsigned long page_size(struct page *page) 1237 { 1238 return PAGE_SIZE << compound_order(page); 1239 } 1240 1241 /* Returns the number of bits needed for the number of bytes in a page */ 1242 static inline unsigned int page_shift(struct page *page) 1243 { 1244 return PAGE_SHIFT + compound_order(page); 1245 } 1246 1247 /** 1248 * thp_order - Order of a transparent huge page. 1249 * @page: Head page of a transparent huge page. 1250 */ 1251 static inline unsigned int thp_order(struct page *page) 1252 { 1253 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1254 return compound_order(page); 1255 } 1256 1257 /** 1258 * thp_size - Size of a transparent huge page. 1259 * @page: Head page of a transparent huge page. 1260 * 1261 * Return: Number of bytes in this page. 1262 */ 1263 static inline unsigned long thp_size(struct page *page) 1264 { 1265 return PAGE_SIZE << thp_order(page); 1266 } 1267 1268 void free_compound_page(struct page *page); 1269 1270 #ifdef CONFIG_MMU 1271 /* 1272 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1273 * servicing faults for write access. In the normal case, do always want 1274 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1275 * that do not have writing enabled, when used by access_process_vm. 1276 */ 1277 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1278 { 1279 if (likely(vma->vm_flags & VM_WRITE)) 1280 pte = pte_mkwrite(pte); 1281 return pte; 1282 } 1283 1284 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1285 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1286 1287 vm_fault_t finish_fault(struct vm_fault *vmf); 1288 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1289 #endif 1290 1291 /* 1292 * Multiple processes may "see" the same page. E.g. for untouched 1293 * mappings of /dev/null, all processes see the same page full of 1294 * zeroes, and text pages of executables and shared libraries have 1295 * only one copy in memory, at most, normally. 1296 * 1297 * For the non-reserved pages, page_count(page) denotes a reference count. 1298 * page_count() == 0 means the page is free. page->lru is then used for 1299 * freelist management in the buddy allocator. 1300 * page_count() > 0 means the page has been allocated. 1301 * 1302 * Pages are allocated by the slab allocator in order to provide memory 1303 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1304 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1305 * unless a particular usage is carefully commented. (the responsibility of 1306 * freeing the kmalloc memory is the caller's, of course). 1307 * 1308 * A page may be used by anyone else who does a __get_free_page(). 1309 * In this case, page_count still tracks the references, and should only 1310 * be used through the normal accessor functions. The top bits of page->flags 1311 * and page->virtual store page management information, but all other fields 1312 * are unused and could be used privately, carefully. The management of this 1313 * page is the responsibility of the one who allocated it, and those who have 1314 * subsequently been given references to it. 1315 * 1316 * The other pages (we may call them "pagecache pages") are completely 1317 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1318 * The following discussion applies only to them. 1319 * 1320 * A pagecache page contains an opaque `private' member, which belongs to the 1321 * page's address_space. Usually, this is the address of a circular list of 1322 * the page's disk buffers. PG_private must be set to tell the VM to call 1323 * into the filesystem to release these pages. 1324 * 1325 * A page may belong to an inode's memory mapping. In this case, page->mapping 1326 * is the pointer to the inode, and page->index is the file offset of the page, 1327 * in units of PAGE_SIZE. 1328 * 1329 * If pagecache pages are not associated with an inode, they are said to be 1330 * anonymous pages. These may become associated with the swapcache, and in that 1331 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1332 * 1333 * In either case (swapcache or inode backed), the pagecache itself holds one 1334 * reference to the page. Setting PG_private should also increment the 1335 * refcount. The each user mapping also has a reference to the page. 1336 * 1337 * The pagecache pages are stored in a per-mapping radix tree, which is 1338 * rooted at mapping->i_pages, and indexed by offset. 1339 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1340 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1341 * 1342 * All pagecache pages may be subject to I/O: 1343 * - inode pages may need to be read from disk, 1344 * - inode pages which have been modified and are MAP_SHARED may need 1345 * to be written back to the inode on disk, 1346 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1347 * modified may need to be swapped out to swap space and (later) to be read 1348 * back into memory. 1349 */ 1350 1351 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1352 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1353 1354 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1355 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1356 { 1357 if (!static_branch_unlikely(&devmap_managed_key)) 1358 return false; 1359 if (!is_zone_device_page(page)) 1360 return false; 1361 return __put_devmap_managed_page_refs(page, refs); 1362 } 1363 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1364 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1365 { 1366 return false; 1367 } 1368 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1369 1370 static inline bool put_devmap_managed_page(struct page *page) 1371 { 1372 return put_devmap_managed_page_refs(page, 1); 1373 } 1374 1375 /* 127: arbitrary random number, small enough to assemble well */ 1376 #define folio_ref_zero_or_close_to_overflow(folio) \ 1377 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1378 1379 /** 1380 * folio_get - Increment the reference count on a folio. 1381 * @folio: The folio. 1382 * 1383 * Context: May be called in any context, as long as you know that 1384 * you have a refcount on the folio. If you do not already have one, 1385 * folio_try_get() may be the right interface for you to use. 1386 */ 1387 static inline void folio_get(struct folio *folio) 1388 { 1389 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1390 folio_ref_inc(folio); 1391 } 1392 1393 static inline void get_page(struct page *page) 1394 { 1395 folio_get(page_folio(page)); 1396 } 1397 1398 static inline __must_check bool try_get_page(struct page *page) 1399 { 1400 page = compound_head(page); 1401 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1402 return false; 1403 page_ref_inc(page); 1404 return true; 1405 } 1406 1407 /** 1408 * folio_put - Decrement the reference count on a folio. 1409 * @folio: The folio. 1410 * 1411 * If the folio's reference count reaches zero, the memory will be 1412 * released back to the page allocator and may be used by another 1413 * allocation immediately. Do not access the memory or the struct folio 1414 * after calling folio_put() unless you can be sure that it wasn't the 1415 * last reference. 1416 * 1417 * Context: May be called in process or interrupt context, but not in NMI 1418 * context. May be called while holding a spinlock. 1419 */ 1420 static inline void folio_put(struct folio *folio) 1421 { 1422 if (folio_put_testzero(folio)) 1423 __folio_put(folio); 1424 } 1425 1426 /** 1427 * folio_put_refs - Reduce the reference count on a folio. 1428 * @folio: The folio. 1429 * @refs: The amount to subtract from the folio's reference count. 1430 * 1431 * If the folio's reference count reaches zero, the memory will be 1432 * released back to the page allocator and may be used by another 1433 * allocation immediately. Do not access the memory or the struct folio 1434 * after calling folio_put_refs() unless you can be sure that these weren't 1435 * the last references. 1436 * 1437 * Context: May be called in process or interrupt context, but not in NMI 1438 * context. May be called while holding a spinlock. 1439 */ 1440 static inline void folio_put_refs(struct folio *folio, int refs) 1441 { 1442 if (folio_ref_sub_and_test(folio, refs)) 1443 __folio_put(folio); 1444 } 1445 1446 /* 1447 * union release_pages_arg - an array of pages or folios 1448 * 1449 * release_pages() releases a simple array of multiple pages, and 1450 * accepts various different forms of said page array: either 1451 * a regular old boring array of pages, an array of folios, or 1452 * an array of encoded page pointers. 1453 * 1454 * The transparent union syntax for this kind of "any of these 1455 * argument types" is all kinds of ugly, so look away. 1456 */ 1457 typedef union { 1458 struct page **pages; 1459 struct folio **folios; 1460 struct encoded_page **encoded_pages; 1461 } release_pages_arg __attribute__ ((__transparent_union__)); 1462 1463 void release_pages(release_pages_arg, int nr); 1464 1465 /** 1466 * folios_put - Decrement the reference count on an array of folios. 1467 * @folios: The folios. 1468 * @nr: How many folios there are. 1469 * 1470 * Like folio_put(), but for an array of folios. This is more efficient 1471 * than writing the loop yourself as it will optimise the locks which 1472 * need to be taken if the folios are freed. 1473 * 1474 * Context: May be called in process or interrupt context, but not in NMI 1475 * context. May be called while holding a spinlock. 1476 */ 1477 static inline void folios_put(struct folio **folios, unsigned int nr) 1478 { 1479 release_pages(folios, nr); 1480 } 1481 1482 static inline void put_page(struct page *page) 1483 { 1484 struct folio *folio = page_folio(page); 1485 1486 /* 1487 * For some devmap managed pages we need to catch refcount transition 1488 * from 2 to 1: 1489 */ 1490 if (put_devmap_managed_page(&folio->page)) 1491 return; 1492 folio_put(folio); 1493 } 1494 1495 /* 1496 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1497 * the page's refcount so that two separate items are tracked: the original page 1498 * reference count, and also a new count of how many pin_user_pages() calls were 1499 * made against the page. ("gup-pinned" is another term for the latter). 1500 * 1501 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1502 * distinct from normal pages. As such, the unpin_user_page() call (and its 1503 * variants) must be used in order to release gup-pinned pages. 1504 * 1505 * Choice of value: 1506 * 1507 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1508 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1509 * simpler, due to the fact that adding an even power of two to the page 1510 * refcount has the effect of using only the upper N bits, for the code that 1511 * counts up using the bias value. This means that the lower bits are left for 1512 * the exclusive use of the original code that increments and decrements by one 1513 * (or at least, by much smaller values than the bias value). 1514 * 1515 * Of course, once the lower bits overflow into the upper bits (and this is 1516 * OK, because subtraction recovers the original values), then visual inspection 1517 * no longer suffices to directly view the separate counts. However, for normal 1518 * applications that don't have huge page reference counts, this won't be an 1519 * issue. 1520 * 1521 * Locking: the lockless algorithm described in folio_try_get_rcu() 1522 * provides safe operation for get_user_pages(), page_mkclean() and 1523 * other calls that race to set up page table entries. 1524 */ 1525 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1526 1527 void unpin_user_page(struct page *page); 1528 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1529 bool make_dirty); 1530 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1531 bool make_dirty); 1532 void unpin_user_pages(struct page **pages, unsigned long npages); 1533 1534 static inline bool is_cow_mapping(vm_flags_t flags) 1535 { 1536 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1537 } 1538 1539 #ifndef CONFIG_MMU 1540 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1541 { 1542 /* 1543 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1544 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1545 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1546 * underlying memory if ptrace is active, so this is only possible if 1547 * ptrace does not apply. Note that there is no mprotect() to upgrade 1548 * write permissions later. 1549 */ 1550 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1551 } 1552 #endif 1553 1554 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1555 #define SECTION_IN_PAGE_FLAGS 1556 #endif 1557 1558 /* 1559 * The identification function is mainly used by the buddy allocator for 1560 * determining if two pages could be buddies. We are not really identifying 1561 * the zone since we could be using the section number id if we do not have 1562 * node id available in page flags. 1563 * We only guarantee that it will return the same value for two combinable 1564 * pages in a zone. 1565 */ 1566 static inline int page_zone_id(struct page *page) 1567 { 1568 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1569 } 1570 1571 #ifdef NODE_NOT_IN_PAGE_FLAGS 1572 extern int page_to_nid(const struct page *page); 1573 #else 1574 static inline int page_to_nid(const struct page *page) 1575 { 1576 struct page *p = (struct page *)page; 1577 1578 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1579 } 1580 #endif 1581 1582 static inline int folio_nid(const struct folio *folio) 1583 { 1584 return page_to_nid(&folio->page); 1585 } 1586 1587 #ifdef CONFIG_NUMA_BALANCING 1588 /* page access time bits needs to hold at least 4 seconds */ 1589 #define PAGE_ACCESS_TIME_MIN_BITS 12 1590 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1591 #define PAGE_ACCESS_TIME_BUCKETS \ 1592 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1593 #else 1594 #define PAGE_ACCESS_TIME_BUCKETS 0 1595 #endif 1596 1597 #define PAGE_ACCESS_TIME_MASK \ 1598 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1599 1600 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1601 { 1602 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1603 } 1604 1605 static inline int cpupid_to_pid(int cpupid) 1606 { 1607 return cpupid & LAST__PID_MASK; 1608 } 1609 1610 static inline int cpupid_to_cpu(int cpupid) 1611 { 1612 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1613 } 1614 1615 static inline int cpupid_to_nid(int cpupid) 1616 { 1617 return cpu_to_node(cpupid_to_cpu(cpupid)); 1618 } 1619 1620 static inline bool cpupid_pid_unset(int cpupid) 1621 { 1622 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1623 } 1624 1625 static inline bool cpupid_cpu_unset(int cpupid) 1626 { 1627 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1628 } 1629 1630 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1631 { 1632 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1633 } 1634 1635 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1636 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1637 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1638 { 1639 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1640 } 1641 1642 static inline int page_cpupid_last(struct page *page) 1643 { 1644 return page->_last_cpupid; 1645 } 1646 static inline void page_cpupid_reset_last(struct page *page) 1647 { 1648 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1649 } 1650 #else 1651 static inline int page_cpupid_last(struct page *page) 1652 { 1653 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1654 } 1655 1656 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1657 1658 static inline void page_cpupid_reset_last(struct page *page) 1659 { 1660 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1661 } 1662 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1663 1664 static inline int xchg_page_access_time(struct page *page, int time) 1665 { 1666 int last_time; 1667 1668 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1669 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1670 } 1671 1672 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1673 { 1674 unsigned int pid_bit; 1675 1676 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1677 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1678 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1679 } 1680 } 1681 #else /* !CONFIG_NUMA_BALANCING */ 1682 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1683 { 1684 return page_to_nid(page); /* XXX */ 1685 } 1686 1687 static inline int xchg_page_access_time(struct page *page, int time) 1688 { 1689 return 0; 1690 } 1691 1692 static inline int page_cpupid_last(struct page *page) 1693 { 1694 return page_to_nid(page); /* XXX */ 1695 } 1696 1697 static inline int cpupid_to_nid(int cpupid) 1698 { 1699 return -1; 1700 } 1701 1702 static inline int cpupid_to_pid(int cpupid) 1703 { 1704 return -1; 1705 } 1706 1707 static inline int cpupid_to_cpu(int cpupid) 1708 { 1709 return -1; 1710 } 1711 1712 static inline int cpu_pid_to_cpupid(int nid, int pid) 1713 { 1714 return -1; 1715 } 1716 1717 static inline bool cpupid_pid_unset(int cpupid) 1718 { 1719 return true; 1720 } 1721 1722 static inline void page_cpupid_reset_last(struct page *page) 1723 { 1724 } 1725 1726 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1727 { 1728 return false; 1729 } 1730 1731 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1732 { 1733 } 1734 #endif /* CONFIG_NUMA_BALANCING */ 1735 1736 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1737 1738 /* 1739 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1740 * setting tags for all pages to native kernel tag value 0xff, as the default 1741 * value 0x00 maps to 0xff. 1742 */ 1743 1744 static inline u8 page_kasan_tag(const struct page *page) 1745 { 1746 u8 tag = 0xff; 1747 1748 if (kasan_enabled()) { 1749 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1750 tag ^= 0xff; 1751 } 1752 1753 return tag; 1754 } 1755 1756 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1757 { 1758 unsigned long old_flags, flags; 1759 1760 if (!kasan_enabled()) 1761 return; 1762 1763 tag ^= 0xff; 1764 old_flags = READ_ONCE(page->flags); 1765 do { 1766 flags = old_flags; 1767 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1768 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1769 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1770 } 1771 1772 static inline void page_kasan_tag_reset(struct page *page) 1773 { 1774 if (kasan_enabled()) 1775 page_kasan_tag_set(page, 0xff); 1776 } 1777 1778 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1779 1780 static inline u8 page_kasan_tag(const struct page *page) 1781 { 1782 return 0xff; 1783 } 1784 1785 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1786 static inline void page_kasan_tag_reset(struct page *page) { } 1787 1788 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1789 1790 static inline struct zone *page_zone(const struct page *page) 1791 { 1792 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1793 } 1794 1795 static inline pg_data_t *page_pgdat(const struct page *page) 1796 { 1797 return NODE_DATA(page_to_nid(page)); 1798 } 1799 1800 static inline struct zone *folio_zone(const struct folio *folio) 1801 { 1802 return page_zone(&folio->page); 1803 } 1804 1805 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1806 { 1807 return page_pgdat(&folio->page); 1808 } 1809 1810 #ifdef SECTION_IN_PAGE_FLAGS 1811 static inline void set_page_section(struct page *page, unsigned long section) 1812 { 1813 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1814 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1815 } 1816 1817 static inline unsigned long page_to_section(const struct page *page) 1818 { 1819 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1820 } 1821 #endif 1822 1823 /** 1824 * folio_pfn - Return the Page Frame Number of a folio. 1825 * @folio: The folio. 1826 * 1827 * A folio may contain multiple pages. The pages have consecutive 1828 * Page Frame Numbers. 1829 * 1830 * Return: The Page Frame Number of the first page in the folio. 1831 */ 1832 static inline unsigned long folio_pfn(struct folio *folio) 1833 { 1834 return page_to_pfn(&folio->page); 1835 } 1836 1837 static inline struct folio *pfn_folio(unsigned long pfn) 1838 { 1839 return page_folio(pfn_to_page(pfn)); 1840 } 1841 1842 /** 1843 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1844 * @folio: The folio. 1845 * 1846 * This function checks if a folio has been pinned via a call to 1847 * a function in the pin_user_pages() family. 1848 * 1849 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1850 * because it means "definitely not pinned for DMA", but true means "probably 1851 * pinned for DMA, but possibly a false positive due to having at least 1852 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1853 * 1854 * False positives are OK, because: a) it's unlikely for a folio to 1855 * get that many refcounts, and b) all the callers of this routine are 1856 * expected to be able to deal gracefully with a false positive. 1857 * 1858 * For large folios, the result will be exactly correct. That's because 1859 * we have more tracking data available: the _pincount field is used 1860 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1861 * 1862 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1863 * 1864 * Return: True, if it is likely that the page has been "dma-pinned". 1865 * False, if the page is definitely not dma-pinned. 1866 */ 1867 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1868 { 1869 if (folio_test_large(folio)) 1870 return atomic_read(&folio->_pincount) > 0; 1871 1872 /* 1873 * folio_ref_count() is signed. If that refcount overflows, then 1874 * folio_ref_count() returns a negative value, and callers will avoid 1875 * further incrementing the refcount. 1876 * 1877 * Here, for that overflow case, use the sign bit to count a little 1878 * bit higher via unsigned math, and thus still get an accurate result. 1879 */ 1880 return ((unsigned int)folio_ref_count(folio)) >= 1881 GUP_PIN_COUNTING_BIAS; 1882 } 1883 1884 static inline bool page_maybe_dma_pinned(struct page *page) 1885 { 1886 return folio_maybe_dma_pinned(page_folio(page)); 1887 } 1888 1889 /* 1890 * This should most likely only be called during fork() to see whether we 1891 * should break the cow immediately for an anon page on the src mm. 1892 * 1893 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1894 */ 1895 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1896 struct page *page) 1897 { 1898 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1899 1900 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1901 return false; 1902 1903 return page_maybe_dma_pinned(page); 1904 } 1905 1906 /** 1907 * is_zero_page - Query if a page is a zero page 1908 * @page: The page to query 1909 * 1910 * This returns true if @page is one of the permanent zero pages. 1911 */ 1912 static inline bool is_zero_page(const struct page *page) 1913 { 1914 return is_zero_pfn(page_to_pfn(page)); 1915 } 1916 1917 /** 1918 * is_zero_folio - Query if a folio is a zero page 1919 * @folio: The folio to query 1920 * 1921 * This returns true if @folio is one of the permanent zero pages. 1922 */ 1923 static inline bool is_zero_folio(const struct folio *folio) 1924 { 1925 return is_zero_page(&folio->page); 1926 } 1927 1928 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1929 #ifdef CONFIG_MIGRATION 1930 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1931 { 1932 #ifdef CONFIG_CMA 1933 int mt = folio_migratetype(folio); 1934 1935 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1936 return false; 1937 #endif 1938 /* The zero page can be "pinned" but gets special handling. */ 1939 if (is_zero_folio(folio)) 1940 return true; 1941 1942 /* Coherent device memory must always allow eviction. */ 1943 if (folio_is_device_coherent(folio)) 1944 return false; 1945 1946 /* Otherwise, non-movable zone folios can be pinned. */ 1947 return !folio_is_zone_movable(folio); 1948 1949 } 1950 #else 1951 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1952 { 1953 return true; 1954 } 1955 #endif 1956 1957 static inline void set_page_zone(struct page *page, enum zone_type zone) 1958 { 1959 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1960 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1961 } 1962 1963 static inline void set_page_node(struct page *page, unsigned long node) 1964 { 1965 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1966 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1967 } 1968 1969 static inline void set_page_links(struct page *page, enum zone_type zone, 1970 unsigned long node, unsigned long pfn) 1971 { 1972 set_page_zone(page, zone); 1973 set_page_node(page, node); 1974 #ifdef SECTION_IN_PAGE_FLAGS 1975 set_page_section(page, pfn_to_section_nr(pfn)); 1976 #endif 1977 } 1978 1979 /** 1980 * folio_nr_pages - The number of pages in the folio. 1981 * @folio: The folio. 1982 * 1983 * Return: A positive power of two. 1984 */ 1985 static inline long folio_nr_pages(struct folio *folio) 1986 { 1987 if (!folio_test_large(folio)) 1988 return 1; 1989 #ifdef CONFIG_64BIT 1990 return folio->_folio_nr_pages; 1991 #else 1992 return 1L << folio->_folio_order; 1993 #endif 1994 } 1995 1996 /* 1997 * compound_nr() returns the number of pages in this potentially compound 1998 * page. compound_nr() can be called on a tail page, and is defined to 1999 * return 1 in that case. 2000 */ 2001 static inline unsigned long compound_nr(struct page *page) 2002 { 2003 struct folio *folio = (struct folio *)page; 2004 2005 if (!test_bit(PG_head, &folio->flags)) 2006 return 1; 2007 #ifdef CONFIG_64BIT 2008 return folio->_folio_nr_pages; 2009 #else 2010 return 1L << folio->_folio_order; 2011 #endif 2012 } 2013 2014 /** 2015 * thp_nr_pages - The number of regular pages in this huge page. 2016 * @page: The head page of a huge page. 2017 */ 2018 static inline int thp_nr_pages(struct page *page) 2019 { 2020 return folio_nr_pages((struct folio *)page); 2021 } 2022 2023 /** 2024 * folio_next - Move to the next physical folio. 2025 * @folio: The folio we're currently operating on. 2026 * 2027 * If you have physically contiguous memory which may span more than 2028 * one folio (eg a &struct bio_vec), use this function to move from one 2029 * folio to the next. Do not use it if the memory is only virtually 2030 * contiguous as the folios are almost certainly not adjacent to each 2031 * other. This is the folio equivalent to writing ``page++``. 2032 * 2033 * Context: We assume that the folios are refcounted and/or locked at a 2034 * higher level and do not adjust the reference counts. 2035 * Return: The next struct folio. 2036 */ 2037 static inline struct folio *folio_next(struct folio *folio) 2038 { 2039 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2040 } 2041 2042 /** 2043 * folio_shift - The size of the memory described by this folio. 2044 * @folio: The folio. 2045 * 2046 * A folio represents a number of bytes which is a power-of-two in size. 2047 * This function tells you which power-of-two the folio is. See also 2048 * folio_size() and folio_order(). 2049 * 2050 * Context: The caller should have a reference on the folio to prevent 2051 * it from being split. It is not necessary for the folio to be locked. 2052 * Return: The base-2 logarithm of the size of this folio. 2053 */ 2054 static inline unsigned int folio_shift(struct folio *folio) 2055 { 2056 return PAGE_SHIFT + folio_order(folio); 2057 } 2058 2059 /** 2060 * folio_size - The number of bytes in a folio. 2061 * @folio: The folio. 2062 * 2063 * Context: The caller should have a reference on the folio to prevent 2064 * it from being split. It is not necessary for the folio to be locked. 2065 * Return: The number of bytes in this folio. 2066 */ 2067 static inline size_t folio_size(struct folio *folio) 2068 { 2069 return PAGE_SIZE << folio_order(folio); 2070 } 2071 2072 /** 2073 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2074 * @folio: The folio. 2075 * 2076 * folio_estimated_sharers() aims to serve as a function to efficiently 2077 * estimate the number of processes sharing a folio. This is done by 2078 * looking at the precise mapcount of the first subpage in the folio, and 2079 * assuming the other subpages are the same. This may not be true for large 2080 * folios. If you want exact mapcounts for exact calculations, look at 2081 * page_mapcount() or folio_total_mapcount(). 2082 * 2083 * Return: The estimated number of processes sharing a folio. 2084 */ 2085 static inline int folio_estimated_sharers(struct folio *folio) 2086 { 2087 return page_mapcount(folio_page(folio, 0)); 2088 } 2089 2090 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2091 static inline int arch_make_page_accessible(struct page *page) 2092 { 2093 return 0; 2094 } 2095 #endif 2096 2097 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2098 static inline int arch_make_folio_accessible(struct folio *folio) 2099 { 2100 int ret; 2101 long i, nr = folio_nr_pages(folio); 2102 2103 for (i = 0; i < nr; i++) { 2104 ret = arch_make_page_accessible(folio_page(folio, i)); 2105 if (ret) 2106 break; 2107 } 2108 2109 return ret; 2110 } 2111 #endif 2112 2113 /* 2114 * Some inline functions in vmstat.h depend on page_zone() 2115 */ 2116 #include <linux/vmstat.h> 2117 2118 static __always_inline void *lowmem_page_address(const struct page *page) 2119 { 2120 return page_to_virt(page); 2121 } 2122 2123 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2124 #define HASHED_PAGE_VIRTUAL 2125 #endif 2126 2127 #if defined(WANT_PAGE_VIRTUAL) 2128 static inline void *page_address(const struct page *page) 2129 { 2130 return page->virtual; 2131 } 2132 static inline void set_page_address(struct page *page, void *address) 2133 { 2134 page->virtual = address; 2135 } 2136 #define page_address_init() do { } while(0) 2137 #endif 2138 2139 #if defined(HASHED_PAGE_VIRTUAL) 2140 void *page_address(const struct page *page); 2141 void set_page_address(struct page *page, void *virtual); 2142 void page_address_init(void); 2143 #endif 2144 2145 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2146 #define page_address(page) lowmem_page_address(page) 2147 #define set_page_address(page, address) do { } while(0) 2148 #define page_address_init() do { } while(0) 2149 #endif 2150 2151 static inline void *folio_address(const struct folio *folio) 2152 { 2153 return page_address(&folio->page); 2154 } 2155 2156 extern void *page_rmapping(struct page *page); 2157 extern pgoff_t __page_file_index(struct page *page); 2158 2159 /* 2160 * Return the pagecache index of the passed page. Regular pagecache pages 2161 * use ->index whereas swapcache pages use swp_offset(->private) 2162 */ 2163 static inline pgoff_t page_index(struct page *page) 2164 { 2165 if (unlikely(PageSwapCache(page))) 2166 return __page_file_index(page); 2167 return page->index; 2168 } 2169 2170 /* 2171 * Return true only if the page has been allocated with 2172 * ALLOC_NO_WATERMARKS and the low watermark was not 2173 * met implying that the system is under some pressure. 2174 */ 2175 static inline bool page_is_pfmemalloc(const struct page *page) 2176 { 2177 /* 2178 * lru.next has bit 1 set if the page is allocated from the 2179 * pfmemalloc reserves. Callers may simply overwrite it if 2180 * they do not need to preserve that information. 2181 */ 2182 return (uintptr_t)page->lru.next & BIT(1); 2183 } 2184 2185 /* 2186 * Return true only if the folio has been allocated with 2187 * ALLOC_NO_WATERMARKS and the low watermark was not 2188 * met implying that the system is under some pressure. 2189 */ 2190 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2191 { 2192 /* 2193 * lru.next has bit 1 set if the page is allocated from the 2194 * pfmemalloc reserves. Callers may simply overwrite it if 2195 * they do not need to preserve that information. 2196 */ 2197 return (uintptr_t)folio->lru.next & BIT(1); 2198 } 2199 2200 /* 2201 * Only to be called by the page allocator on a freshly allocated 2202 * page. 2203 */ 2204 static inline void set_page_pfmemalloc(struct page *page) 2205 { 2206 page->lru.next = (void *)BIT(1); 2207 } 2208 2209 static inline void clear_page_pfmemalloc(struct page *page) 2210 { 2211 page->lru.next = NULL; 2212 } 2213 2214 /* 2215 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2216 */ 2217 extern void pagefault_out_of_memory(void); 2218 2219 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2220 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2221 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2222 2223 /* 2224 * Flags passed to show_mem() and show_free_areas() to suppress output in 2225 * various contexts. 2226 */ 2227 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 2228 2229 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 2230 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask) 2231 { 2232 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1); 2233 } 2234 2235 /* 2236 * Parameter block passed down to zap_pte_range in exceptional cases. 2237 */ 2238 struct zap_details { 2239 struct folio *single_folio; /* Locked folio to be unmapped */ 2240 bool even_cows; /* Zap COWed private pages too? */ 2241 zap_flags_t zap_flags; /* Extra flags for zapping */ 2242 }; 2243 2244 /* 2245 * Whether to drop the pte markers, for example, the uffd-wp information for 2246 * file-backed memory. This should only be specified when we will completely 2247 * drop the page in the mm, either by truncation or unmapping of the vma. By 2248 * default, the flag is not set. 2249 */ 2250 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2251 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2252 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2253 2254 #ifdef CONFIG_SCHED_MM_CID 2255 void sched_mm_cid_before_execve(struct task_struct *t); 2256 void sched_mm_cid_after_execve(struct task_struct *t); 2257 void sched_mm_cid_fork(struct task_struct *t); 2258 void sched_mm_cid_exit_signals(struct task_struct *t); 2259 static inline int task_mm_cid(struct task_struct *t) 2260 { 2261 return t->mm_cid; 2262 } 2263 #else 2264 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2265 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2266 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2267 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2268 static inline int task_mm_cid(struct task_struct *t) 2269 { 2270 /* 2271 * Use the processor id as a fall-back when the mm cid feature is 2272 * disabled. This provides functional per-cpu data structure accesses 2273 * in user-space, althrough it won't provide the memory usage benefits. 2274 */ 2275 return raw_smp_processor_id(); 2276 } 2277 #endif 2278 2279 #ifdef CONFIG_MMU 2280 extern bool can_do_mlock(void); 2281 #else 2282 static inline bool can_do_mlock(void) { return false; } 2283 #endif 2284 extern int user_shm_lock(size_t, struct ucounts *); 2285 extern void user_shm_unlock(size_t, struct ucounts *); 2286 2287 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2288 pte_t pte); 2289 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2290 pte_t pte); 2291 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2292 pmd_t pmd); 2293 2294 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2295 unsigned long size); 2296 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2297 unsigned long size, struct zap_details *details); 2298 static inline void zap_vma_pages(struct vm_area_struct *vma) 2299 { 2300 zap_page_range_single(vma, vma->vm_start, 2301 vma->vm_end - vma->vm_start, NULL); 2302 } 2303 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt, 2304 struct vm_area_struct *start_vma, unsigned long start, 2305 unsigned long end, bool mm_wr_locked); 2306 2307 struct mmu_notifier_range; 2308 2309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2310 unsigned long end, unsigned long floor, unsigned long ceiling); 2311 int 2312 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2313 int follow_pte(struct mm_struct *mm, unsigned long address, 2314 pte_t **ptepp, spinlock_t **ptlp); 2315 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2316 unsigned long *pfn); 2317 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2318 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2319 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2320 void *buf, int len, int write); 2321 2322 extern void truncate_pagecache(struct inode *inode, loff_t new); 2323 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2324 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2325 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2326 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2327 2328 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2329 unsigned long address, struct pt_regs *regs); 2330 2331 #ifdef CONFIG_MMU 2332 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2333 unsigned long address, unsigned int flags, 2334 struct pt_regs *regs); 2335 extern int fixup_user_fault(struct mm_struct *mm, 2336 unsigned long address, unsigned int fault_flags, 2337 bool *unlocked); 2338 void unmap_mapping_pages(struct address_space *mapping, 2339 pgoff_t start, pgoff_t nr, bool even_cows); 2340 void unmap_mapping_range(struct address_space *mapping, 2341 loff_t const holebegin, loff_t const holelen, int even_cows); 2342 #else 2343 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2344 unsigned long address, unsigned int flags, 2345 struct pt_regs *regs) 2346 { 2347 /* should never happen if there's no MMU */ 2348 BUG(); 2349 return VM_FAULT_SIGBUS; 2350 } 2351 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2352 unsigned int fault_flags, bool *unlocked) 2353 { 2354 /* should never happen if there's no MMU */ 2355 BUG(); 2356 return -EFAULT; 2357 } 2358 static inline void unmap_mapping_pages(struct address_space *mapping, 2359 pgoff_t start, pgoff_t nr, bool even_cows) { } 2360 static inline void unmap_mapping_range(struct address_space *mapping, 2361 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2362 #endif 2363 2364 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2365 loff_t const holebegin, loff_t const holelen) 2366 { 2367 unmap_mapping_range(mapping, holebegin, holelen, 0); 2368 } 2369 2370 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2371 unsigned long addr); 2372 2373 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2374 void *buf, int len, unsigned int gup_flags); 2375 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2376 void *buf, int len, unsigned int gup_flags); 2377 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2378 void *buf, int len, unsigned int gup_flags); 2379 2380 long get_user_pages_remote(struct mm_struct *mm, 2381 unsigned long start, unsigned long nr_pages, 2382 unsigned int gup_flags, struct page **pages, 2383 int *locked); 2384 long pin_user_pages_remote(struct mm_struct *mm, 2385 unsigned long start, unsigned long nr_pages, 2386 unsigned int gup_flags, struct page **pages, 2387 int *locked); 2388 2389 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2390 unsigned long addr, 2391 int gup_flags, 2392 struct vm_area_struct **vmap) 2393 { 2394 struct page *page; 2395 struct vm_area_struct *vma; 2396 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2397 2398 if (got < 0) 2399 return ERR_PTR(got); 2400 if (got == 0) 2401 return NULL; 2402 2403 vma = vma_lookup(mm, addr); 2404 if (WARN_ON_ONCE(!vma)) { 2405 put_page(page); 2406 return ERR_PTR(-EINVAL); 2407 } 2408 2409 *vmap = vma; 2410 return page; 2411 } 2412 2413 long get_user_pages(unsigned long start, unsigned long nr_pages, 2414 unsigned int gup_flags, struct page **pages); 2415 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2416 unsigned int gup_flags, struct page **pages); 2417 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2418 struct page **pages, unsigned int gup_flags); 2419 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2420 struct page **pages, unsigned int gup_flags); 2421 2422 int get_user_pages_fast(unsigned long start, int nr_pages, 2423 unsigned int gup_flags, struct page **pages); 2424 int pin_user_pages_fast(unsigned long start, int nr_pages, 2425 unsigned int gup_flags, struct page **pages); 2426 void folio_add_pin(struct folio *folio); 2427 2428 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2429 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2430 struct task_struct *task, bool bypass_rlim); 2431 2432 struct kvec; 2433 struct page *get_dump_page(unsigned long addr); 2434 2435 bool folio_mark_dirty(struct folio *folio); 2436 bool set_page_dirty(struct page *page); 2437 int set_page_dirty_lock(struct page *page); 2438 2439 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2440 2441 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2442 unsigned long old_addr, struct vm_area_struct *new_vma, 2443 unsigned long new_addr, unsigned long len, 2444 bool need_rmap_locks); 2445 2446 /* 2447 * Flags used by change_protection(). For now we make it a bitmap so 2448 * that we can pass in multiple flags just like parameters. However 2449 * for now all the callers are only use one of the flags at the same 2450 * time. 2451 */ 2452 /* 2453 * Whether we should manually check if we can map individual PTEs writable, 2454 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2455 * PTEs automatically in a writable mapping. 2456 */ 2457 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2458 /* Whether this protection change is for NUMA hints */ 2459 #define MM_CP_PROT_NUMA (1UL << 1) 2460 /* Whether this change is for write protecting */ 2461 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2462 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2463 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2464 MM_CP_UFFD_WP_RESOLVE) 2465 2466 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2467 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2468 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2469 { 2470 /* 2471 * We want to check manually if we can change individual PTEs writable 2472 * if we can't do that automatically for all PTEs in a mapping. For 2473 * private mappings, that's always the case when we have write 2474 * permissions as we properly have to handle COW. 2475 */ 2476 if (vma->vm_flags & VM_SHARED) 2477 return vma_wants_writenotify(vma, vma->vm_page_prot); 2478 return !!(vma->vm_flags & VM_WRITE); 2479 2480 } 2481 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2482 pte_t pte); 2483 extern long change_protection(struct mmu_gather *tlb, 2484 struct vm_area_struct *vma, unsigned long start, 2485 unsigned long end, unsigned long cp_flags); 2486 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2487 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2488 unsigned long start, unsigned long end, unsigned long newflags); 2489 2490 /* 2491 * doesn't attempt to fault and will return short. 2492 */ 2493 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2494 unsigned int gup_flags, struct page **pages); 2495 2496 static inline bool get_user_page_fast_only(unsigned long addr, 2497 unsigned int gup_flags, struct page **pagep) 2498 { 2499 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2500 } 2501 /* 2502 * per-process(per-mm_struct) statistics. 2503 */ 2504 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2505 { 2506 return percpu_counter_read_positive(&mm->rss_stat[member]); 2507 } 2508 2509 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2510 2511 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2512 { 2513 percpu_counter_add(&mm->rss_stat[member], value); 2514 2515 mm_trace_rss_stat(mm, member); 2516 } 2517 2518 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2519 { 2520 percpu_counter_inc(&mm->rss_stat[member]); 2521 2522 mm_trace_rss_stat(mm, member); 2523 } 2524 2525 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2526 { 2527 percpu_counter_dec(&mm->rss_stat[member]); 2528 2529 mm_trace_rss_stat(mm, member); 2530 } 2531 2532 /* Optimized variant when page is already known not to be PageAnon */ 2533 static inline int mm_counter_file(struct page *page) 2534 { 2535 if (PageSwapBacked(page)) 2536 return MM_SHMEMPAGES; 2537 return MM_FILEPAGES; 2538 } 2539 2540 static inline int mm_counter(struct page *page) 2541 { 2542 if (PageAnon(page)) 2543 return MM_ANONPAGES; 2544 return mm_counter_file(page); 2545 } 2546 2547 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2548 { 2549 return get_mm_counter(mm, MM_FILEPAGES) + 2550 get_mm_counter(mm, MM_ANONPAGES) + 2551 get_mm_counter(mm, MM_SHMEMPAGES); 2552 } 2553 2554 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2555 { 2556 return max(mm->hiwater_rss, get_mm_rss(mm)); 2557 } 2558 2559 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2560 { 2561 return max(mm->hiwater_vm, mm->total_vm); 2562 } 2563 2564 static inline void update_hiwater_rss(struct mm_struct *mm) 2565 { 2566 unsigned long _rss = get_mm_rss(mm); 2567 2568 if ((mm)->hiwater_rss < _rss) 2569 (mm)->hiwater_rss = _rss; 2570 } 2571 2572 static inline void update_hiwater_vm(struct mm_struct *mm) 2573 { 2574 if (mm->hiwater_vm < mm->total_vm) 2575 mm->hiwater_vm = mm->total_vm; 2576 } 2577 2578 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2579 { 2580 mm->hiwater_rss = get_mm_rss(mm); 2581 } 2582 2583 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2584 struct mm_struct *mm) 2585 { 2586 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2587 2588 if (*maxrss < hiwater_rss) 2589 *maxrss = hiwater_rss; 2590 } 2591 2592 #if defined(SPLIT_RSS_COUNTING) 2593 void sync_mm_rss(struct mm_struct *mm); 2594 #else 2595 static inline void sync_mm_rss(struct mm_struct *mm) 2596 { 2597 } 2598 #endif 2599 2600 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2601 static inline int pte_special(pte_t pte) 2602 { 2603 return 0; 2604 } 2605 2606 static inline pte_t pte_mkspecial(pte_t pte) 2607 { 2608 return pte; 2609 } 2610 #endif 2611 2612 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2613 static inline int pte_devmap(pte_t pte) 2614 { 2615 return 0; 2616 } 2617 #endif 2618 2619 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2620 spinlock_t **ptl); 2621 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2622 spinlock_t **ptl) 2623 { 2624 pte_t *ptep; 2625 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2626 return ptep; 2627 } 2628 2629 #ifdef __PAGETABLE_P4D_FOLDED 2630 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2631 unsigned long address) 2632 { 2633 return 0; 2634 } 2635 #else 2636 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2637 #endif 2638 2639 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2640 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2641 unsigned long address) 2642 { 2643 return 0; 2644 } 2645 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2646 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2647 2648 #else 2649 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2650 2651 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2652 { 2653 if (mm_pud_folded(mm)) 2654 return; 2655 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2656 } 2657 2658 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2659 { 2660 if (mm_pud_folded(mm)) 2661 return; 2662 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2663 } 2664 #endif 2665 2666 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2667 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2668 unsigned long address) 2669 { 2670 return 0; 2671 } 2672 2673 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2674 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2675 2676 #else 2677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2678 2679 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2680 { 2681 if (mm_pmd_folded(mm)) 2682 return; 2683 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2684 } 2685 2686 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2687 { 2688 if (mm_pmd_folded(mm)) 2689 return; 2690 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2691 } 2692 #endif 2693 2694 #ifdef CONFIG_MMU 2695 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2696 { 2697 atomic_long_set(&mm->pgtables_bytes, 0); 2698 } 2699 2700 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2701 { 2702 return atomic_long_read(&mm->pgtables_bytes); 2703 } 2704 2705 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2706 { 2707 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2708 } 2709 2710 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2711 { 2712 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2713 } 2714 #else 2715 2716 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2717 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2718 { 2719 return 0; 2720 } 2721 2722 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2723 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2724 #endif 2725 2726 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2727 int __pte_alloc_kernel(pmd_t *pmd); 2728 2729 #if defined(CONFIG_MMU) 2730 2731 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2732 unsigned long address) 2733 { 2734 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2735 NULL : p4d_offset(pgd, address); 2736 } 2737 2738 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2739 unsigned long address) 2740 { 2741 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2742 NULL : pud_offset(p4d, address); 2743 } 2744 2745 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2746 { 2747 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2748 NULL: pmd_offset(pud, address); 2749 } 2750 #endif /* CONFIG_MMU */ 2751 2752 #if USE_SPLIT_PTE_PTLOCKS 2753 #if ALLOC_SPLIT_PTLOCKS 2754 void __init ptlock_cache_init(void); 2755 extern bool ptlock_alloc(struct page *page); 2756 extern void ptlock_free(struct page *page); 2757 2758 static inline spinlock_t *ptlock_ptr(struct page *page) 2759 { 2760 return page->ptl; 2761 } 2762 #else /* ALLOC_SPLIT_PTLOCKS */ 2763 static inline void ptlock_cache_init(void) 2764 { 2765 } 2766 2767 static inline bool ptlock_alloc(struct page *page) 2768 { 2769 return true; 2770 } 2771 2772 static inline void ptlock_free(struct page *page) 2773 { 2774 } 2775 2776 static inline spinlock_t *ptlock_ptr(struct page *page) 2777 { 2778 return &page->ptl; 2779 } 2780 #endif /* ALLOC_SPLIT_PTLOCKS */ 2781 2782 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2783 { 2784 return ptlock_ptr(pmd_page(*pmd)); 2785 } 2786 2787 static inline bool ptlock_init(struct page *page) 2788 { 2789 /* 2790 * prep_new_page() initialize page->private (and therefore page->ptl) 2791 * with 0. Make sure nobody took it in use in between. 2792 * 2793 * It can happen if arch try to use slab for page table allocation: 2794 * slab code uses page->slab_cache, which share storage with page->ptl. 2795 */ 2796 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2797 if (!ptlock_alloc(page)) 2798 return false; 2799 spin_lock_init(ptlock_ptr(page)); 2800 return true; 2801 } 2802 2803 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2804 /* 2805 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2806 */ 2807 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2808 { 2809 return &mm->page_table_lock; 2810 } 2811 static inline void ptlock_cache_init(void) {} 2812 static inline bool ptlock_init(struct page *page) { return true; } 2813 static inline void ptlock_free(struct page *page) {} 2814 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2815 2816 static inline bool pgtable_pte_page_ctor(struct page *page) 2817 { 2818 if (!ptlock_init(page)) 2819 return false; 2820 __SetPageTable(page); 2821 inc_lruvec_page_state(page, NR_PAGETABLE); 2822 return true; 2823 } 2824 2825 static inline void pgtable_pte_page_dtor(struct page *page) 2826 { 2827 ptlock_free(page); 2828 __ClearPageTable(page); 2829 dec_lruvec_page_state(page, NR_PAGETABLE); 2830 } 2831 2832 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2833 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2834 { 2835 return __pte_offset_map(pmd, addr, NULL); 2836 } 2837 2838 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2839 unsigned long addr, spinlock_t **ptlp); 2840 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2841 unsigned long addr, spinlock_t **ptlp) 2842 { 2843 pte_t *pte; 2844 2845 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2846 return pte; 2847 } 2848 2849 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2850 unsigned long addr, spinlock_t **ptlp); 2851 2852 #define pte_unmap_unlock(pte, ptl) do { \ 2853 spin_unlock(ptl); \ 2854 pte_unmap(pte); \ 2855 } while (0) 2856 2857 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2858 2859 #define pte_alloc_map(mm, pmd, address) \ 2860 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2861 2862 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2863 (pte_alloc(mm, pmd) ? \ 2864 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2865 2866 #define pte_alloc_kernel(pmd, address) \ 2867 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2868 NULL: pte_offset_kernel(pmd, address)) 2869 2870 #if USE_SPLIT_PMD_PTLOCKS 2871 2872 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2873 { 2874 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2875 return virt_to_page((void *)((unsigned long) pmd & mask)); 2876 } 2877 2878 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2879 { 2880 return ptlock_ptr(pmd_pgtable_page(pmd)); 2881 } 2882 2883 static inline bool pmd_ptlock_init(struct page *page) 2884 { 2885 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2886 page->pmd_huge_pte = NULL; 2887 #endif 2888 return ptlock_init(page); 2889 } 2890 2891 static inline void pmd_ptlock_free(struct page *page) 2892 { 2893 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2894 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2895 #endif 2896 ptlock_free(page); 2897 } 2898 2899 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte) 2900 2901 #else 2902 2903 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2904 { 2905 return &mm->page_table_lock; 2906 } 2907 2908 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2909 static inline void pmd_ptlock_free(struct page *page) {} 2910 2911 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2912 2913 #endif 2914 2915 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2916 { 2917 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2918 spin_lock(ptl); 2919 return ptl; 2920 } 2921 2922 static inline bool pgtable_pmd_page_ctor(struct page *page) 2923 { 2924 if (!pmd_ptlock_init(page)) 2925 return false; 2926 __SetPageTable(page); 2927 inc_lruvec_page_state(page, NR_PAGETABLE); 2928 return true; 2929 } 2930 2931 static inline void pgtable_pmd_page_dtor(struct page *page) 2932 { 2933 pmd_ptlock_free(page); 2934 __ClearPageTable(page); 2935 dec_lruvec_page_state(page, NR_PAGETABLE); 2936 } 2937 2938 /* 2939 * No scalability reason to split PUD locks yet, but follow the same pattern 2940 * as the PMD locks to make it easier if we decide to. The VM should not be 2941 * considered ready to switch to split PUD locks yet; there may be places 2942 * which need to be converted from page_table_lock. 2943 */ 2944 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2945 { 2946 return &mm->page_table_lock; 2947 } 2948 2949 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2950 { 2951 spinlock_t *ptl = pud_lockptr(mm, pud); 2952 2953 spin_lock(ptl); 2954 return ptl; 2955 } 2956 2957 extern void __init pagecache_init(void); 2958 extern void free_initmem(void); 2959 2960 /* 2961 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2962 * into the buddy system. The freed pages will be poisoned with pattern 2963 * "poison" if it's within range [0, UCHAR_MAX]. 2964 * Return pages freed into the buddy system. 2965 */ 2966 extern unsigned long free_reserved_area(void *start, void *end, 2967 int poison, const char *s); 2968 2969 extern void adjust_managed_page_count(struct page *page, long count); 2970 2971 extern void reserve_bootmem_region(phys_addr_t start, 2972 phys_addr_t end, int nid); 2973 2974 /* Free the reserved page into the buddy system, so it gets managed. */ 2975 static inline void free_reserved_page(struct page *page) 2976 { 2977 ClearPageReserved(page); 2978 init_page_count(page); 2979 __free_page(page); 2980 adjust_managed_page_count(page, 1); 2981 } 2982 #define free_highmem_page(page) free_reserved_page(page) 2983 2984 static inline void mark_page_reserved(struct page *page) 2985 { 2986 SetPageReserved(page); 2987 adjust_managed_page_count(page, -1); 2988 } 2989 2990 /* 2991 * Default method to free all the __init memory into the buddy system. 2992 * The freed pages will be poisoned with pattern "poison" if it's within 2993 * range [0, UCHAR_MAX]. 2994 * Return pages freed into the buddy system. 2995 */ 2996 static inline unsigned long free_initmem_default(int poison) 2997 { 2998 extern char __init_begin[], __init_end[]; 2999 3000 return free_reserved_area(&__init_begin, &__init_end, 3001 poison, "unused kernel image (initmem)"); 3002 } 3003 3004 static inline unsigned long get_num_physpages(void) 3005 { 3006 int nid; 3007 unsigned long phys_pages = 0; 3008 3009 for_each_online_node(nid) 3010 phys_pages += node_present_pages(nid); 3011 3012 return phys_pages; 3013 } 3014 3015 /* 3016 * Using memblock node mappings, an architecture may initialise its 3017 * zones, allocate the backing mem_map and account for memory holes in an 3018 * architecture independent manner. 3019 * 3020 * An architecture is expected to register range of page frames backed by 3021 * physical memory with memblock_add[_node]() before calling 3022 * free_area_init() passing in the PFN each zone ends at. At a basic 3023 * usage, an architecture is expected to do something like 3024 * 3025 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3026 * max_highmem_pfn}; 3027 * for_each_valid_physical_page_range() 3028 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3029 * free_area_init(max_zone_pfns); 3030 */ 3031 void free_area_init(unsigned long *max_zone_pfn); 3032 unsigned long node_map_pfn_alignment(void); 3033 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3034 unsigned long end_pfn); 3035 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3036 unsigned long end_pfn); 3037 extern void get_pfn_range_for_nid(unsigned int nid, 3038 unsigned long *start_pfn, unsigned long *end_pfn); 3039 3040 #ifndef CONFIG_NUMA 3041 static inline int early_pfn_to_nid(unsigned long pfn) 3042 { 3043 return 0; 3044 } 3045 #else 3046 /* please see mm/page_alloc.c */ 3047 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3048 #endif 3049 3050 extern void set_dma_reserve(unsigned long new_dma_reserve); 3051 extern void mem_init(void); 3052 extern void __init mmap_init(void); 3053 3054 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3055 static inline void show_mem(unsigned int flags, nodemask_t *nodemask) 3056 { 3057 __show_mem(flags, nodemask, MAX_NR_ZONES - 1); 3058 } 3059 extern long si_mem_available(void); 3060 extern void si_meminfo(struct sysinfo * val); 3061 extern void si_meminfo_node(struct sysinfo *val, int nid); 3062 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3063 extern unsigned long arch_reserved_kernel_pages(void); 3064 #endif 3065 3066 extern __printf(3, 4) 3067 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3068 3069 extern void setup_per_cpu_pageset(void); 3070 3071 /* nommu.c */ 3072 extern atomic_long_t mmap_pages_allocated; 3073 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3074 3075 /* interval_tree.c */ 3076 void vma_interval_tree_insert(struct vm_area_struct *node, 3077 struct rb_root_cached *root); 3078 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3079 struct vm_area_struct *prev, 3080 struct rb_root_cached *root); 3081 void vma_interval_tree_remove(struct vm_area_struct *node, 3082 struct rb_root_cached *root); 3083 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3084 unsigned long start, unsigned long last); 3085 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3086 unsigned long start, unsigned long last); 3087 3088 #define vma_interval_tree_foreach(vma, root, start, last) \ 3089 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3090 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3091 3092 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3093 struct rb_root_cached *root); 3094 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3095 struct rb_root_cached *root); 3096 struct anon_vma_chain * 3097 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3098 unsigned long start, unsigned long last); 3099 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3100 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3101 #ifdef CONFIG_DEBUG_VM_RB 3102 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3103 #endif 3104 3105 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3106 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3107 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3108 3109 /* mmap.c */ 3110 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3111 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3112 unsigned long start, unsigned long end, pgoff_t pgoff, 3113 struct vm_area_struct *next); 3114 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3115 unsigned long start, unsigned long end, pgoff_t pgoff); 3116 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3117 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3118 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3119 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3120 struct anon_vma_name *); 3121 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3122 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3123 unsigned long addr, int new_below); 3124 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3125 unsigned long addr, int new_below); 3126 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3127 extern void unlink_file_vma(struct vm_area_struct *); 3128 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3129 unsigned long addr, unsigned long len, pgoff_t pgoff, 3130 bool *need_rmap_locks); 3131 extern void exit_mmap(struct mm_struct *); 3132 3133 static inline int check_data_rlimit(unsigned long rlim, 3134 unsigned long new, 3135 unsigned long start, 3136 unsigned long end_data, 3137 unsigned long start_data) 3138 { 3139 if (rlim < RLIM_INFINITY) { 3140 if (((new - start) + (end_data - start_data)) > rlim) 3141 return -ENOSPC; 3142 } 3143 3144 return 0; 3145 } 3146 3147 extern int mm_take_all_locks(struct mm_struct *mm); 3148 extern void mm_drop_all_locks(struct mm_struct *mm); 3149 3150 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3151 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3152 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3153 extern struct file *get_task_exe_file(struct task_struct *task); 3154 3155 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3156 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3157 3158 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3159 const struct vm_special_mapping *sm); 3160 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3161 unsigned long addr, unsigned long len, 3162 unsigned long flags, 3163 const struct vm_special_mapping *spec); 3164 /* This is an obsolete alternative to _install_special_mapping. */ 3165 extern int install_special_mapping(struct mm_struct *mm, 3166 unsigned long addr, unsigned long len, 3167 unsigned long flags, struct page **pages); 3168 3169 unsigned long randomize_stack_top(unsigned long stack_top); 3170 unsigned long randomize_page(unsigned long start, unsigned long range); 3171 3172 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3173 3174 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3175 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3176 struct list_head *uf); 3177 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3178 unsigned long len, unsigned long prot, unsigned long flags, 3179 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 3180 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3181 unsigned long start, size_t len, struct list_head *uf, 3182 bool unlock); 3183 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3184 struct list_head *uf); 3185 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3186 3187 #ifdef CONFIG_MMU 3188 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3189 unsigned long start, unsigned long end, 3190 struct list_head *uf, bool unlock); 3191 extern int __mm_populate(unsigned long addr, unsigned long len, 3192 int ignore_errors); 3193 static inline void mm_populate(unsigned long addr, unsigned long len) 3194 { 3195 /* Ignore errors */ 3196 (void) __mm_populate(addr, len, 1); 3197 } 3198 #else 3199 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3200 #endif 3201 3202 /* These take the mm semaphore themselves */ 3203 extern int __must_check vm_brk(unsigned long, unsigned long); 3204 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3205 extern int vm_munmap(unsigned long, size_t); 3206 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3207 unsigned long, unsigned long, 3208 unsigned long, unsigned long); 3209 3210 struct vm_unmapped_area_info { 3211 #define VM_UNMAPPED_AREA_TOPDOWN 1 3212 unsigned long flags; 3213 unsigned long length; 3214 unsigned long low_limit; 3215 unsigned long high_limit; 3216 unsigned long align_mask; 3217 unsigned long align_offset; 3218 }; 3219 3220 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3221 3222 /* truncate.c */ 3223 extern void truncate_inode_pages(struct address_space *, loff_t); 3224 extern void truncate_inode_pages_range(struct address_space *, 3225 loff_t lstart, loff_t lend); 3226 extern void truncate_inode_pages_final(struct address_space *); 3227 3228 /* generic vm_area_ops exported for stackable file systems */ 3229 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3230 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3231 pgoff_t start_pgoff, pgoff_t end_pgoff); 3232 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3233 3234 extern unsigned long stack_guard_gap; 3235 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3236 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3237 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3238 3239 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3240 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3241 3242 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3243 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3244 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3245 struct vm_area_struct **pprev); 3246 3247 /* 3248 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3249 * NULL if none. Assume start_addr < end_addr. 3250 */ 3251 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3252 unsigned long start_addr, unsigned long end_addr); 3253 3254 /** 3255 * vma_lookup() - Find a VMA at a specific address 3256 * @mm: The process address space. 3257 * @addr: The user address. 3258 * 3259 * Return: The vm_area_struct at the given address, %NULL otherwise. 3260 */ 3261 static inline 3262 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3263 { 3264 return mtree_load(&mm->mm_mt, addr); 3265 } 3266 3267 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3268 { 3269 unsigned long vm_start = vma->vm_start; 3270 3271 if (vma->vm_flags & VM_GROWSDOWN) { 3272 vm_start -= stack_guard_gap; 3273 if (vm_start > vma->vm_start) 3274 vm_start = 0; 3275 } 3276 return vm_start; 3277 } 3278 3279 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3280 { 3281 unsigned long vm_end = vma->vm_end; 3282 3283 if (vma->vm_flags & VM_GROWSUP) { 3284 vm_end += stack_guard_gap; 3285 if (vm_end < vma->vm_end) 3286 vm_end = -PAGE_SIZE; 3287 } 3288 return vm_end; 3289 } 3290 3291 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3292 { 3293 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3294 } 3295 3296 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3297 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3298 unsigned long vm_start, unsigned long vm_end) 3299 { 3300 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3301 3302 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3303 vma = NULL; 3304 3305 return vma; 3306 } 3307 3308 static inline bool range_in_vma(struct vm_area_struct *vma, 3309 unsigned long start, unsigned long end) 3310 { 3311 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3312 } 3313 3314 #ifdef CONFIG_MMU 3315 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3316 void vma_set_page_prot(struct vm_area_struct *vma); 3317 #else 3318 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3319 { 3320 return __pgprot(0); 3321 } 3322 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3323 { 3324 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3325 } 3326 #endif 3327 3328 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3329 3330 #ifdef CONFIG_NUMA_BALANCING 3331 unsigned long change_prot_numa(struct vm_area_struct *vma, 3332 unsigned long start, unsigned long end); 3333 #endif 3334 3335 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3336 unsigned long addr); 3337 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3338 unsigned long pfn, unsigned long size, pgprot_t); 3339 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3340 unsigned long pfn, unsigned long size, pgprot_t prot); 3341 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3342 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3343 struct page **pages, unsigned long *num); 3344 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3345 unsigned long num); 3346 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3347 unsigned long num); 3348 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3349 unsigned long pfn); 3350 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3351 unsigned long pfn, pgprot_t pgprot); 3352 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3353 pfn_t pfn); 3354 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3355 unsigned long addr, pfn_t pfn); 3356 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3357 3358 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3359 unsigned long addr, struct page *page) 3360 { 3361 int err = vm_insert_page(vma, addr, page); 3362 3363 if (err == -ENOMEM) 3364 return VM_FAULT_OOM; 3365 if (err < 0 && err != -EBUSY) 3366 return VM_FAULT_SIGBUS; 3367 3368 return VM_FAULT_NOPAGE; 3369 } 3370 3371 #ifndef io_remap_pfn_range 3372 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3373 unsigned long addr, unsigned long pfn, 3374 unsigned long size, pgprot_t prot) 3375 { 3376 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3377 } 3378 #endif 3379 3380 static inline vm_fault_t vmf_error(int err) 3381 { 3382 if (err == -ENOMEM) 3383 return VM_FAULT_OOM; 3384 else if (err == -EHWPOISON) 3385 return VM_FAULT_HWPOISON; 3386 return VM_FAULT_SIGBUS; 3387 } 3388 3389 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3390 unsigned int foll_flags); 3391 3392 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3393 { 3394 if (vm_fault & VM_FAULT_OOM) 3395 return -ENOMEM; 3396 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3397 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3398 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3399 return -EFAULT; 3400 return 0; 3401 } 3402 3403 /* 3404 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3405 * a (NUMA hinting) fault is required. 3406 */ 3407 static inline bool gup_can_follow_protnone(unsigned int flags) 3408 { 3409 /* 3410 * FOLL_FORCE has to be able to make progress even if the VMA is 3411 * inaccessible. Further, FOLL_FORCE access usually does not represent 3412 * application behaviour and we should avoid triggering NUMA hinting 3413 * faults. 3414 */ 3415 return flags & FOLL_FORCE; 3416 } 3417 3418 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3419 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3420 unsigned long size, pte_fn_t fn, void *data); 3421 extern int apply_to_existing_page_range(struct mm_struct *mm, 3422 unsigned long address, unsigned long size, 3423 pte_fn_t fn, void *data); 3424 3425 #ifdef CONFIG_PAGE_POISONING 3426 extern void __kernel_poison_pages(struct page *page, int numpages); 3427 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3428 extern bool _page_poisoning_enabled_early; 3429 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3430 static inline bool page_poisoning_enabled(void) 3431 { 3432 return _page_poisoning_enabled_early; 3433 } 3434 /* 3435 * For use in fast paths after init_mem_debugging() has run, or when a 3436 * false negative result is not harmful when called too early. 3437 */ 3438 static inline bool page_poisoning_enabled_static(void) 3439 { 3440 return static_branch_unlikely(&_page_poisoning_enabled); 3441 } 3442 static inline void kernel_poison_pages(struct page *page, int numpages) 3443 { 3444 if (page_poisoning_enabled_static()) 3445 __kernel_poison_pages(page, numpages); 3446 } 3447 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3448 { 3449 if (page_poisoning_enabled_static()) 3450 __kernel_unpoison_pages(page, numpages); 3451 } 3452 #else 3453 static inline bool page_poisoning_enabled(void) { return false; } 3454 static inline bool page_poisoning_enabled_static(void) { return false; } 3455 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3456 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3457 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3458 #endif 3459 3460 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3461 static inline bool want_init_on_alloc(gfp_t flags) 3462 { 3463 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3464 &init_on_alloc)) 3465 return true; 3466 return flags & __GFP_ZERO; 3467 } 3468 3469 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3470 static inline bool want_init_on_free(void) 3471 { 3472 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3473 &init_on_free); 3474 } 3475 3476 extern bool _debug_pagealloc_enabled_early; 3477 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3478 3479 static inline bool debug_pagealloc_enabled(void) 3480 { 3481 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3482 _debug_pagealloc_enabled_early; 3483 } 3484 3485 /* 3486 * For use in fast paths after init_debug_pagealloc() has run, or when a 3487 * false negative result is not harmful when called too early. 3488 */ 3489 static inline bool debug_pagealloc_enabled_static(void) 3490 { 3491 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3492 return false; 3493 3494 return static_branch_unlikely(&_debug_pagealloc_enabled); 3495 } 3496 3497 /* 3498 * To support DEBUG_PAGEALLOC architecture must ensure that 3499 * __kernel_map_pages() never fails 3500 */ 3501 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3502 #ifdef CONFIG_DEBUG_PAGEALLOC 3503 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3504 { 3505 if (debug_pagealloc_enabled_static()) 3506 __kernel_map_pages(page, numpages, 1); 3507 } 3508 3509 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3510 { 3511 if (debug_pagealloc_enabled_static()) 3512 __kernel_map_pages(page, numpages, 0); 3513 } 3514 3515 extern unsigned int _debug_guardpage_minorder; 3516 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3517 3518 static inline unsigned int debug_guardpage_minorder(void) 3519 { 3520 return _debug_guardpage_minorder; 3521 } 3522 3523 static inline bool debug_guardpage_enabled(void) 3524 { 3525 return static_branch_unlikely(&_debug_guardpage_enabled); 3526 } 3527 3528 static inline bool page_is_guard(struct page *page) 3529 { 3530 if (!debug_guardpage_enabled()) 3531 return false; 3532 3533 return PageGuard(page); 3534 } 3535 3536 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3537 int migratetype); 3538 static inline bool set_page_guard(struct zone *zone, struct page *page, 3539 unsigned int order, int migratetype) 3540 { 3541 if (!debug_guardpage_enabled()) 3542 return false; 3543 return __set_page_guard(zone, page, order, migratetype); 3544 } 3545 3546 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3547 int migratetype); 3548 static inline void clear_page_guard(struct zone *zone, struct page *page, 3549 unsigned int order, int migratetype) 3550 { 3551 if (!debug_guardpage_enabled()) 3552 return; 3553 __clear_page_guard(zone, page, order, migratetype); 3554 } 3555 3556 #else /* CONFIG_DEBUG_PAGEALLOC */ 3557 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3558 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3559 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3560 static inline bool debug_guardpage_enabled(void) { return false; } 3561 static inline bool page_is_guard(struct page *page) { return false; } 3562 static inline bool set_page_guard(struct zone *zone, struct page *page, 3563 unsigned int order, int migratetype) { return false; } 3564 static inline void clear_page_guard(struct zone *zone, struct page *page, 3565 unsigned int order, int migratetype) {} 3566 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3567 3568 #ifdef __HAVE_ARCH_GATE_AREA 3569 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3570 extern int in_gate_area_no_mm(unsigned long addr); 3571 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3572 #else 3573 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3574 { 3575 return NULL; 3576 } 3577 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3578 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3579 { 3580 return 0; 3581 } 3582 #endif /* __HAVE_ARCH_GATE_AREA */ 3583 3584 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3585 3586 #ifdef CONFIG_SYSCTL 3587 extern int sysctl_drop_caches; 3588 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3589 loff_t *); 3590 #endif 3591 3592 void drop_slab(void); 3593 3594 #ifndef CONFIG_MMU 3595 #define randomize_va_space 0 3596 #else 3597 extern int randomize_va_space; 3598 #endif 3599 3600 const char * arch_vma_name(struct vm_area_struct *vma); 3601 #ifdef CONFIG_MMU 3602 void print_vma_addr(char *prefix, unsigned long rip); 3603 #else 3604 static inline void print_vma_addr(char *prefix, unsigned long rip) 3605 { 3606 } 3607 #endif 3608 3609 void *sparse_buffer_alloc(unsigned long size); 3610 struct page * __populate_section_memmap(unsigned long pfn, 3611 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3612 struct dev_pagemap *pgmap); 3613 void pmd_init(void *addr); 3614 void pud_init(void *addr); 3615 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3616 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3617 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3618 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3619 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3620 struct vmem_altmap *altmap, struct page *reuse); 3621 void *vmemmap_alloc_block(unsigned long size, int node); 3622 struct vmem_altmap; 3623 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3624 struct vmem_altmap *altmap); 3625 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3626 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3627 unsigned long addr, unsigned long next); 3628 int vmemmap_check_pmd(pmd_t *pmd, int node, 3629 unsigned long addr, unsigned long next); 3630 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3631 int node, struct vmem_altmap *altmap); 3632 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3633 int node, struct vmem_altmap *altmap); 3634 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3635 struct vmem_altmap *altmap); 3636 void vmemmap_populate_print_last(void); 3637 #ifdef CONFIG_MEMORY_HOTPLUG 3638 void vmemmap_free(unsigned long start, unsigned long end, 3639 struct vmem_altmap *altmap); 3640 #endif 3641 3642 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP 3643 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3644 struct dev_pagemap *pgmap) 3645 { 3646 return is_power_of_2(sizeof(struct page)) && 3647 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap; 3648 } 3649 #else 3650 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3651 struct dev_pagemap *pgmap) 3652 { 3653 return false; 3654 } 3655 #endif 3656 3657 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3658 unsigned long nr_pages); 3659 3660 enum mf_flags { 3661 MF_COUNT_INCREASED = 1 << 0, 3662 MF_ACTION_REQUIRED = 1 << 1, 3663 MF_MUST_KILL = 1 << 2, 3664 MF_SOFT_OFFLINE = 1 << 3, 3665 MF_UNPOISON = 1 << 4, 3666 MF_SW_SIMULATED = 1 << 5, 3667 MF_NO_RETRY = 1 << 6, 3668 }; 3669 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3670 unsigned long count, int mf_flags); 3671 extern int memory_failure(unsigned long pfn, int flags); 3672 extern void memory_failure_queue_kick(int cpu); 3673 extern int unpoison_memory(unsigned long pfn); 3674 extern void shake_page(struct page *p); 3675 extern atomic_long_t num_poisoned_pages __read_mostly; 3676 extern int soft_offline_page(unsigned long pfn, int flags); 3677 #ifdef CONFIG_MEMORY_FAILURE 3678 /* 3679 * Sysfs entries for memory failure handling statistics. 3680 */ 3681 extern const struct attribute_group memory_failure_attr_group; 3682 extern void memory_failure_queue(unsigned long pfn, int flags); 3683 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3684 bool *migratable_cleared); 3685 void num_poisoned_pages_inc(unsigned long pfn); 3686 void num_poisoned_pages_sub(unsigned long pfn, long i); 3687 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3688 #else 3689 static inline void memory_failure_queue(unsigned long pfn, int flags) 3690 { 3691 } 3692 3693 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3694 bool *migratable_cleared) 3695 { 3696 return 0; 3697 } 3698 3699 static inline void num_poisoned_pages_inc(unsigned long pfn) 3700 { 3701 } 3702 3703 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3704 { 3705 } 3706 #endif 3707 3708 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3709 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3710 struct vm_area_struct *vma, struct list_head *to_kill, 3711 unsigned long ksm_addr); 3712 #endif 3713 3714 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3715 extern void memblk_nr_poison_inc(unsigned long pfn); 3716 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3717 #else 3718 static inline void memblk_nr_poison_inc(unsigned long pfn) 3719 { 3720 } 3721 3722 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3723 { 3724 } 3725 #endif 3726 3727 #ifndef arch_memory_failure 3728 static inline int arch_memory_failure(unsigned long pfn, int flags) 3729 { 3730 return -ENXIO; 3731 } 3732 #endif 3733 3734 #ifndef arch_is_platform_page 3735 static inline bool arch_is_platform_page(u64 paddr) 3736 { 3737 return false; 3738 } 3739 #endif 3740 3741 /* 3742 * Error handlers for various types of pages. 3743 */ 3744 enum mf_result { 3745 MF_IGNORED, /* Error: cannot be handled */ 3746 MF_FAILED, /* Error: handling failed */ 3747 MF_DELAYED, /* Will be handled later */ 3748 MF_RECOVERED, /* Successfully recovered */ 3749 }; 3750 3751 enum mf_action_page_type { 3752 MF_MSG_KERNEL, 3753 MF_MSG_KERNEL_HIGH_ORDER, 3754 MF_MSG_SLAB, 3755 MF_MSG_DIFFERENT_COMPOUND, 3756 MF_MSG_HUGE, 3757 MF_MSG_FREE_HUGE, 3758 MF_MSG_UNMAP_FAILED, 3759 MF_MSG_DIRTY_SWAPCACHE, 3760 MF_MSG_CLEAN_SWAPCACHE, 3761 MF_MSG_DIRTY_MLOCKED_LRU, 3762 MF_MSG_CLEAN_MLOCKED_LRU, 3763 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3764 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3765 MF_MSG_DIRTY_LRU, 3766 MF_MSG_CLEAN_LRU, 3767 MF_MSG_TRUNCATED_LRU, 3768 MF_MSG_BUDDY, 3769 MF_MSG_DAX, 3770 MF_MSG_UNSPLIT_THP, 3771 MF_MSG_UNKNOWN, 3772 }; 3773 3774 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3775 extern void clear_huge_page(struct page *page, 3776 unsigned long addr_hint, 3777 unsigned int pages_per_huge_page); 3778 int copy_user_large_folio(struct folio *dst, struct folio *src, 3779 unsigned long addr_hint, 3780 struct vm_area_struct *vma); 3781 long copy_folio_from_user(struct folio *dst_folio, 3782 const void __user *usr_src, 3783 bool allow_pagefault); 3784 3785 /** 3786 * vma_is_special_huge - Are transhuge page-table entries considered special? 3787 * @vma: Pointer to the struct vm_area_struct to consider 3788 * 3789 * Whether transhuge page-table entries are considered "special" following 3790 * the definition in vm_normal_page(). 3791 * 3792 * Return: true if transhuge page-table entries should be considered special, 3793 * false otherwise. 3794 */ 3795 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3796 { 3797 return vma_is_dax(vma) || (vma->vm_file && 3798 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3799 } 3800 3801 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3802 3803 #if MAX_NUMNODES > 1 3804 void __init setup_nr_node_ids(void); 3805 #else 3806 static inline void setup_nr_node_ids(void) {} 3807 #endif 3808 3809 extern int memcmp_pages(struct page *page1, struct page *page2); 3810 3811 static inline int pages_identical(struct page *page1, struct page *page2) 3812 { 3813 return !memcmp_pages(page1, page2); 3814 } 3815 3816 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3817 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3818 pgoff_t first_index, pgoff_t nr, 3819 pgoff_t bitmap_pgoff, 3820 unsigned long *bitmap, 3821 pgoff_t *start, 3822 pgoff_t *end); 3823 3824 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3825 pgoff_t first_index, pgoff_t nr); 3826 #endif 3827 3828 extern int sysctl_nr_trim_pages; 3829 3830 #ifdef CONFIG_PRINTK 3831 void mem_dump_obj(void *object); 3832 #else 3833 static inline void mem_dump_obj(void *object) {} 3834 #endif 3835 3836 /** 3837 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3838 * @seals: the seals to check 3839 * @vma: the vma to operate on 3840 * 3841 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3842 * the vma flags. Return 0 if check pass, or <0 for errors. 3843 */ 3844 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3845 { 3846 if (seals & F_SEAL_FUTURE_WRITE) { 3847 /* 3848 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3849 * "future write" seal active. 3850 */ 3851 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3852 return -EPERM; 3853 3854 /* 3855 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3856 * MAP_SHARED and read-only, take care to not allow mprotect to 3857 * revert protections on such mappings. Do this only for shared 3858 * mappings. For private mappings, don't need to mask 3859 * VM_MAYWRITE as we still want them to be COW-writable. 3860 */ 3861 if (vma->vm_flags & VM_SHARED) 3862 vm_flags_clear(vma, VM_MAYWRITE); 3863 } 3864 3865 return 0; 3866 } 3867 3868 #ifdef CONFIG_ANON_VMA_NAME 3869 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3870 unsigned long len_in, 3871 struct anon_vma_name *anon_name); 3872 #else 3873 static inline int 3874 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3875 unsigned long len_in, struct anon_vma_name *anon_name) { 3876 return 0; 3877 } 3878 #endif 3879 3880 #ifdef CONFIG_UNACCEPTED_MEMORY 3881 3882 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 3883 void accept_memory(phys_addr_t start, phys_addr_t end); 3884 3885 #else 3886 3887 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 3888 phys_addr_t end) 3889 { 3890 return false; 3891 } 3892 3893 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 3894 { 3895 } 3896 3897 #endif 3898 3899 #endif /* _LINUX_MM_H */ 3900