xref: /linux-6.15/include/linux/mm.h (revision d34599bc)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
323 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
324 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
325 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
326 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
327 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328 
329 #ifdef CONFIG_ARCH_HAS_PKEYS
330 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
331 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
332 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
333 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
334 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
335 #ifdef CONFIG_PPC
336 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
337 #else
338 # define VM_PKEY_BIT4  0
339 #endif
340 #endif /* CONFIG_ARCH_HAS_PKEYS */
341 
342 #if defined(CONFIG_X86)
343 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
344 #elif defined(CONFIG_PPC)
345 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
346 #elif defined(CONFIG_PARISC)
347 # define VM_GROWSUP	VM_ARCH_1
348 #elif defined(CONFIG_IA64)
349 # define VM_GROWSUP	VM_ARCH_1
350 #elif defined(CONFIG_SPARC64)
351 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
352 # define VM_ARCH_CLEAR	VM_SPARC_ADI
353 #elif defined(CONFIG_ARM64)
354 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
355 # define VM_ARCH_CLEAR	VM_ARM64_BTI
356 #elif !defined(CONFIG_MMU)
357 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
358 #endif
359 
360 #if defined(CONFIG_ARM64_MTE)
361 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
362 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
363 #else
364 # define VM_MTE		VM_NONE
365 # define VM_MTE_ALLOWED	VM_NONE
366 #endif
367 
368 #ifndef VM_GROWSUP
369 # define VM_GROWSUP	VM_NONE
370 #endif
371 
372 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373 # define VM_UFFD_MINOR_BIT	37
374 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
375 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376 # define VM_UFFD_MINOR		VM_NONE
377 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378 
379 /* Bits set in the VMA until the stack is in its final location */
380 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
381 
382 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383 
384 /* Common data flag combinations */
385 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
386 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
388 				 VM_MAYWRITE | VM_MAYEXEC)
389 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
390 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391 
392 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
393 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
394 #endif
395 
396 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
397 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398 #endif
399 
400 #ifdef CONFIG_STACK_GROWSUP
401 #define VM_STACK	VM_GROWSUP
402 #define VM_STACK_EARLY	VM_GROWSDOWN
403 #else
404 #define VM_STACK	VM_GROWSDOWN
405 #define VM_STACK_EARLY	0
406 #endif
407 
408 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
409 
410 /* VMA basic access permission flags */
411 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
412 
413 
414 /*
415  * Special vmas that are non-mergable, non-mlock()able.
416  */
417 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
418 
419 /* This mask prevents VMA from being scanned with khugepaged */
420 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
421 
422 /* This mask defines which mm->def_flags a process can inherit its parent */
423 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
424 
425 /* This mask represents all the VMA flag bits used by mlock */
426 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
427 
428 /* Arch-specific flags to clear when updating VM flags on protection change */
429 #ifndef VM_ARCH_CLEAR
430 # define VM_ARCH_CLEAR	VM_NONE
431 #endif
432 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
433 
434 /*
435  * mapping from the currently active vm_flags protection bits (the
436  * low four bits) to a page protection mask..
437  */
438 
439 /*
440  * The default fault flags that should be used by most of the
441  * arch-specific page fault handlers.
442  */
443 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
444 			     FAULT_FLAG_KILLABLE | \
445 			     FAULT_FLAG_INTERRUPTIBLE)
446 
447 /**
448  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
449  * @flags: Fault flags.
450  *
451  * This is mostly used for places where we want to try to avoid taking
452  * the mmap_lock for too long a time when waiting for another condition
453  * to change, in which case we can try to be polite to release the
454  * mmap_lock in the first round to avoid potential starvation of other
455  * processes that would also want the mmap_lock.
456  *
457  * Return: true if the page fault allows retry and this is the first
458  * attempt of the fault handling; false otherwise.
459  */
460 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
461 {
462 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
463 	    (!(flags & FAULT_FLAG_TRIED));
464 }
465 
466 #define FAULT_FLAG_TRACE \
467 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
468 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
469 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
470 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
471 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
472 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
473 	{ FAULT_FLAG_USER,		"USER" }, \
474 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
475 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
476 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
477 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
478 
479 /*
480  * vm_fault is filled by the pagefault handler and passed to the vma's
481  * ->fault function. The vma's ->fault is responsible for returning a bitmask
482  * of VM_FAULT_xxx flags that give details about how the fault was handled.
483  *
484  * MM layer fills up gfp_mask for page allocations but fault handler might
485  * alter it if its implementation requires a different allocation context.
486  *
487  * pgoff should be used in favour of virtual_address, if possible.
488  */
489 struct vm_fault {
490 	const struct {
491 		struct vm_area_struct *vma;	/* Target VMA */
492 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
493 		pgoff_t pgoff;			/* Logical page offset based on vma */
494 		unsigned long address;		/* Faulting virtual address - masked */
495 		unsigned long real_address;	/* Faulting virtual address - unmasked */
496 	};
497 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
498 					 * XXX: should really be 'const' */
499 	pmd_t *pmd;			/* Pointer to pmd entry matching
500 					 * the 'address' */
501 	pud_t *pud;			/* Pointer to pud entry matching
502 					 * the 'address'
503 					 */
504 	union {
505 		pte_t orig_pte;		/* Value of PTE at the time of fault */
506 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
507 					 * used by PMD fault only.
508 					 */
509 	};
510 
511 	struct page *cow_page;		/* Page handler may use for COW fault */
512 	struct page *page;		/* ->fault handlers should return a
513 					 * page here, unless VM_FAULT_NOPAGE
514 					 * is set (which is also implied by
515 					 * VM_FAULT_ERROR).
516 					 */
517 	/* These three entries are valid only while holding ptl lock */
518 	pte_t *pte;			/* Pointer to pte entry matching
519 					 * the 'address'. NULL if the page
520 					 * table hasn't been allocated.
521 					 */
522 	spinlock_t *ptl;		/* Page table lock.
523 					 * Protects pte page table if 'pte'
524 					 * is not NULL, otherwise pmd.
525 					 */
526 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
527 					 * vm_ops->map_pages() sets up a page
528 					 * table from atomic context.
529 					 * do_fault_around() pre-allocates
530 					 * page table to avoid allocation from
531 					 * atomic context.
532 					 */
533 };
534 
535 /* page entry size for vm->huge_fault() */
536 enum page_entry_size {
537 	PE_SIZE_PTE = 0,
538 	PE_SIZE_PMD,
539 	PE_SIZE_PUD,
540 };
541 
542 /*
543  * These are the virtual MM functions - opening of an area, closing and
544  * unmapping it (needed to keep files on disk up-to-date etc), pointer
545  * to the functions called when a no-page or a wp-page exception occurs.
546  */
547 struct vm_operations_struct {
548 	void (*open)(struct vm_area_struct * area);
549 	/**
550 	 * @close: Called when the VMA is being removed from the MM.
551 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
552 	 */
553 	void (*close)(struct vm_area_struct * area);
554 	/* Called any time before splitting to check if it's allowed */
555 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
556 	int (*mremap)(struct vm_area_struct *area);
557 	/*
558 	 * Called by mprotect() to make driver-specific permission
559 	 * checks before mprotect() is finalised.   The VMA must not
560 	 * be modified.  Returns 0 if mprotect() can proceed.
561 	 */
562 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
563 			unsigned long end, unsigned long newflags);
564 	vm_fault_t (*fault)(struct vm_fault *vmf);
565 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
566 			enum page_entry_size pe_size);
567 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
568 			pgoff_t start_pgoff, pgoff_t end_pgoff);
569 	unsigned long (*pagesize)(struct vm_area_struct * area);
570 
571 	/* notification that a previously read-only page is about to become
572 	 * writable, if an error is returned it will cause a SIGBUS */
573 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
574 
575 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
576 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
577 
578 	/* called by access_process_vm when get_user_pages() fails, typically
579 	 * for use by special VMAs. See also generic_access_phys() for a generic
580 	 * implementation useful for any iomem mapping.
581 	 */
582 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
583 		      void *buf, int len, int write);
584 
585 	/* Called by the /proc/PID/maps code to ask the vma whether it
586 	 * has a special name.  Returning non-NULL will also cause this
587 	 * vma to be dumped unconditionally. */
588 	const char *(*name)(struct vm_area_struct *vma);
589 
590 #ifdef CONFIG_NUMA
591 	/*
592 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
593 	 * to hold the policy upon return.  Caller should pass NULL @new to
594 	 * remove a policy and fall back to surrounding context--i.e. do not
595 	 * install a MPOL_DEFAULT policy, nor the task or system default
596 	 * mempolicy.
597 	 */
598 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
599 
600 	/*
601 	 * get_policy() op must add reference [mpol_get()] to any policy at
602 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
603 	 * in mm/mempolicy.c will do this automatically.
604 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
605 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
606 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
607 	 * must return NULL--i.e., do not "fallback" to task or system default
608 	 * policy.
609 	 */
610 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
611 					unsigned long addr);
612 #endif
613 	/*
614 	 * Called by vm_normal_page() for special PTEs to find the
615 	 * page for @addr.  This is useful if the default behavior
616 	 * (using pte_page()) would not find the correct page.
617 	 */
618 	struct page *(*find_special_page)(struct vm_area_struct *vma,
619 					  unsigned long addr);
620 };
621 
622 #ifdef CONFIG_NUMA_BALANCING
623 static inline void vma_numab_state_init(struct vm_area_struct *vma)
624 {
625 	vma->numab_state = NULL;
626 }
627 static inline void vma_numab_state_free(struct vm_area_struct *vma)
628 {
629 	kfree(vma->numab_state);
630 }
631 #else
632 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
633 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
634 #endif /* CONFIG_NUMA_BALANCING */
635 
636 #ifdef CONFIG_PER_VMA_LOCK
637 /*
638  * Try to read-lock a vma. The function is allowed to occasionally yield false
639  * locked result to avoid performance overhead, in which case we fall back to
640  * using mmap_lock. The function should never yield false unlocked result.
641  */
642 static inline bool vma_start_read(struct vm_area_struct *vma)
643 {
644 	/* Check before locking. A race might cause false locked result. */
645 	if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
646 		return false;
647 
648 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
649 		return false;
650 
651 	/*
652 	 * Overflow might produce false locked result.
653 	 * False unlocked result is impossible because we modify and check
654 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
655 	 * modification invalidates all existing locks.
656 	 */
657 	if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
658 		up_read(&vma->vm_lock->lock);
659 		return false;
660 	}
661 	return true;
662 }
663 
664 static inline void vma_end_read(struct vm_area_struct *vma)
665 {
666 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
667 	up_read(&vma->vm_lock->lock);
668 	rcu_read_unlock();
669 }
670 
671 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
672 {
673 	mmap_assert_write_locked(vma->vm_mm);
674 
675 	/*
676 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
677 	 * mm->mm_lock_seq can't be concurrently modified.
678 	 */
679 	*mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
680 	return (vma->vm_lock_seq == *mm_lock_seq);
681 }
682 
683 static inline void vma_start_write(struct vm_area_struct *vma)
684 {
685 	int mm_lock_seq;
686 
687 	if (__is_vma_write_locked(vma, &mm_lock_seq))
688 		return;
689 
690 	down_write(&vma->vm_lock->lock);
691 	vma->vm_lock_seq = mm_lock_seq;
692 	up_write(&vma->vm_lock->lock);
693 }
694 
695 static inline bool vma_try_start_write(struct vm_area_struct *vma)
696 {
697 	int mm_lock_seq;
698 
699 	if (__is_vma_write_locked(vma, &mm_lock_seq))
700 		return true;
701 
702 	if (!down_write_trylock(&vma->vm_lock->lock))
703 		return false;
704 
705 	vma->vm_lock_seq = mm_lock_seq;
706 	up_write(&vma->vm_lock->lock);
707 	return true;
708 }
709 
710 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
711 {
712 	int mm_lock_seq;
713 
714 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
715 }
716 
717 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
718 {
719 	/* When detaching vma should be write-locked */
720 	if (detached)
721 		vma_assert_write_locked(vma);
722 	vma->detached = detached;
723 }
724 
725 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
726 					  unsigned long address);
727 
728 #else /* CONFIG_PER_VMA_LOCK */
729 
730 static inline bool vma_start_read(struct vm_area_struct *vma)
731 		{ return false; }
732 static inline void vma_end_read(struct vm_area_struct *vma) {}
733 static inline void vma_start_write(struct vm_area_struct *vma) {}
734 static inline bool vma_try_start_write(struct vm_area_struct *vma)
735 		{ return true; }
736 static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
737 static inline void vma_mark_detached(struct vm_area_struct *vma,
738 				     bool detached) {}
739 
740 #endif /* CONFIG_PER_VMA_LOCK */
741 
742 /*
743  * WARNING: vma_init does not initialize vma->vm_lock.
744  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
745  */
746 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
747 {
748 	static const struct vm_operations_struct dummy_vm_ops = {};
749 
750 	memset(vma, 0, sizeof(*vma));
751 	vma->vm_mm = mm;
752 	vma->vm_ops = &dummy_vm_ops;
753 	INIT_LIST_HEAD(&vma->anon_vma_chain);
754 	vma_mark_detached(vma, false);
755 	vma_numab_state_init(vma);
756 }
757 
758 /* Use when VMA is not part of the VMA tree and needs no locking */
759 static inline void vm_flags_init(struct vm_area_struct *vma,
760 				 vm_flags_t flags)
761 {
762 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
763 }
764 
765 /* Use when VMA is part of the VMA tree and modifications need coordination */
766 static inline void vm_flags_reset(struct vm_area_struct *vma,
767 				  vm_flags_t flags)
768 {
769 	vma_start_write(vma);
770 	vm_flags_init(vma, flags);
771 }
772 
773 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
774 				       vm_flags_t flags)
775 {
776 	vma_start_write(vma);
777 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
778 }
779 
780 static inline void vm_flags_set(struct vm_area_struct *vma,
781 				vm_flags_t flags)
782 {
783 	vma_start_write(vma);
784 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
785 }
786 
787 static inline void vm_flags_clear(struct vm_area_struct *vma,
788 				  vm_flags_t flags)
789 {
790 	vma_start_write(vma);
791 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
792 }
793 
794 /*
795  * Use only if VMA is not part of the VMA tree or has no other users and
796  * therefore needs no locking.
797  */
798 static inline void __vm_flags_mod(struct vm_area_struct *vma,
799 				  vm_flags_t set, vm_flags_t clear)
800 {
801 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
802 }
803 
804 /*
805  * Use only when the order of set/clear operations is unimportant, otherwise
806  * use vm_flags_{set|clear} explicitly.
807  */
808 static inline void vm_flags_mod(struct vm_area_struct *vma,
809 				vm_flags_t set, vm_flags_t clear)
810 {
811 	vma_start_write(vma);
812 	__vm_flags_mod(vma, set, clear);
813 }
814 
815 static inline void vma_set_anonymous(struct vm_area_struct *vma)
816 {
817 	vma->vm_ops = NULL;
818 }
819 
820 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
821 {
822 	return !vma->vm_ops;
823 }
824 
825 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
826 {
827 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
828 
829 	if (!maybe_stack)
830 		return false;
831 
832 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
833 						VM_STACK_INCOMPLETE_SETUP)
834 		return true;
835 
836 	return false;
837 }
838 
839 static inline bool vma_is_foreign(struct vm_area_struct *vma)
840 {
841 	if (!current->mm)
842 		return true;
843 
844 	if (current->mm != vma->vm_mm)
845 		return true;
846 
847 	return false;
848 }
849 
850 static inline bool vma_is_accessible(struct vm_area_struct *vma)
851 {
852 	return vma->vm_flags & VM_ACCESS_FLAGS;
853 }
854 
855 static inline
856 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
857 {
858 	return mas_find(&vmi->mas, max - 1);
859 }
860 
861 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
862 {
863 	/*
864 	 * Uses mas_find() to get the first VMA when the iterator starts.
865 	 * Calling mas_next() could skip the first entry.
866 	 */
867 	return mas_find(&vmi->mas, ULONG_MAX);
868 }
869 
870 static inline
871 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
872 {
873 	return mas_next_range(&vmi->mas, ULONG_MAX);
874 }
875 
876 
877 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
878 {
879 	return mas_prev(&vmi->mas, 0);
880 }
881 
882 static inline
883 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
884 {
885 	return mas_prev_range(&vmi->mas, 0);
886 }
887 
888 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
889 {
890 	return vmi->mas.index;
891 }
892 
893 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
894 {
895 	return vmi->mas.last + 1;
896 }
897 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
898 				      unsigned long count)
899 {
900 	return mas_expected_entries(&vmi->mas, count);
901 }
902 
903 /* Free any unused preallocations */
904 static inline void vma_iter_free(struct vma_iterator *vmi)
905 {
906 	mas_destroy(&vmi->mas);
907 }
908 
909 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
910 				      struct vm_area_struct *vma)
911 {
912 	vmi->mas.index = vma->vm_start;
913 	vmi->mas.last = vma->vm_end - 1;
914 	mas_store(&vmi->mas, vma);
915 	if (unlikely(mas_is_err(&vmi->mas)))
916 		return -ENOMEM;
917 
918 	return 0;
919 }
920 
921 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
922 {
923 	mas_pause(&vmi->mas);
924 }
925 
926 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
927 {
928 	mas_set(&vmi->mas, addr);
929 }
930 
931 #define for_each_vma(__vmi, __vma)					\
932 	while (((__vma) = vma_next(&(__vmi))) != NULL)
933 
934 /* The MM code likes to work with exclusive end addresses */
935 #define for_each_vma_range(__vmi, __vma, __end)				\
936 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
937 
938 #ifdef CONFIG_SHMEM
939 /*
940  * The vma_is_shmem is not inline because it is used only by slow
941  * paths in userfault.
942  */
943 bool vma_is_shmem(struct vm_area_struct *vma);
944 bool vma_is_anon_shmem(struct vm_area_struct *vma);
945 #else
946 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
947 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
948 #endif
949 
950 int vma_is_stack_for_current(struct vm_area_struct *vma);
951 
952 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
953 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
954 
955 struct mmu_gather;
956 struct inode;
957 
958 /*
959  * compound_order() can be called without holding a reference, which means
960  * that niceties like page_folio() don't work.  These callers should be
961  * prepared to handle wild return values.  For example, PG_head may be
962  * set before _folio_order is initialised, or this may be a tail page.
963  * See compaction.c for some good examples.
964  */
965 static inline unsigned int compound_order(struct page *page)
966 {
967 	struct folio *folio = (struct folio *)page;
968 
969 	if (!test_bit(PG_head, &folio->flags))
970 		return 0;
971 	return folio->_folio_order;
972 }
973 
974 /**
975  * folio_order - The allocation order of a folio.
976  * @folio: The folio.
977  *
978  * A folio is composed of 2^order pages.  See get_order() for the definition
979  * of order.
980  *
981  * Return: The order of the folio.
982  */
983 static inline unsigned int folio_order(struct folio *folio)
984 {
985 	if (!folio_test_large(folio))
986 		return 0;
987 	return folio->_folio_order;
988 }
989 
990 #include <linux/huge_mm.h>
991 
992 /*
993  * Methods to modify the page usage count.
994  *
995  * What counts for a page usage:
996  * - cache mapping   (page->mapping)
997  * - private data    (page->private)
998  * - page mapped in a task's page tables, each mapping
999  *   is counted separately
1000  *
1001  * Also, many kernel routines increase the page count before a critical
1002  * routine so they can be sure the page doesn't go away from under them.
1003  */
1004 
1005 /*
1006  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1007  */
1008 static inline int put_page_testzero(struct page *page)
1009 {
1010 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1011 	return page_ref_dec_and_test(page);
1012 }
1013 
1014 static inline int folio_put_testzero(struct folio *folio)
1015 {
1016 	return put_page_testzero(&folio->page);
1017 }
1018 
1019 /*
1020  * Try to grab a ref unless the page has a refcount of zero, return false if
1021  * that is the case.
1022  * This can be called when MMU is off so it must not access
1023  * any of the virtual mappings.
1024  */
1025 static inline bool get_page_unless_zero(struct page *page)
1026 {
1027 	return page_ref_add_unless(page, 1, 0);
1028 }
1029 
1030 static inline struct folio *folio_get_nontail_page(struct page *page)
1031 {
1032 	if (unlikely(!get_page_unless_zero(page)))
1033 		return NULL;
1034 	return (struct folio *)page;
1035 }
1036 
1037 extern int page_is_ram(unsigned long pfn);
1038 
1039 enum {
1040 	REGION_INTERSECTS,
1041 	REGION_DISJOINT,
1042 	REGION_MIXED,
1043 };
1044 
1045 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1046 		      unsigned long desc);
1047 
1048 /* Support for virtually mapped pages */
1049 struct page *vmalloc_to_page(const void *addr);
1050 unsigned long vmalloc_to_pfn(const void *addr);
1051 
1052 /*
1053  * Determine if an address is within the vmalloc range
1054  *
1055  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1056  * is no special casing required.
1057  */
1058 
1059 #ifndef is_ioremap_addr
1060 #define is_ioremap_addr(x) is_vmalloc_addr(x)
1061 #endif
1062 
1063 #ifdef CONFIG_MMU
1064 extern bool is_vmalloc_addr(const void *x);
1065 extern int is_vmalloc_or_module_addr(const void *x);
1066 #else
1067 static inline bool is_vmalloc_addr(const void *x)
1068 {
1069 	return false;
1070 }
1071 static inline int is_vmalloc_or_module_addr(const void *x)
1072 {
1073 	return 0;
1074 }
1075 #endif
1076 
1077 /*
1078  * How many times the entire folio is mapped as a single unit (eg by a
1079  * PMD or PUD entry).  This is probably not what you want, except for
1080  * debugging purposes - it does not include PTE-mapped sub-pages; look
1081  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1082  */
1083 static inline int folio_entire_mapcount(struct folio *folio)
1084 {
1085 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1086 	return atomic_read(&folio->_entire_mapcount) + 1;
1087 }
1088 
1089 /*
1090  * The atomic page->_mapcount, starts from -1: so that transitions
1091  * both from it and to it can be tracked, using atomic_inc_and_test
1092  * and atomic_add_negative(-1).
1093  */
1094 static inline void page_mapcount_reset(struct page *page)
1095 {
1096 	atomic_set(&(page)->_mapcount, -1);
1097 }
1098 
1099 /**
1100  * page_mapcount() - Number of times this precise page is mapped.
1101  * @page: The page.
1102  *
1103  * The number of times this page is mapped.  If this page is part of
1104  * a large folio, it includes the number of times this page is mapped
1105  * as part of that folio.
1106  *
1107  * The result is undefined for pages which cannot be mapped into userspace.
1108  * For example SLAB or special types of pages. See function page_has_type().
1109  * They use this field in struct page differently.
1110  */
1111 static inline int page_mapcount(struct page *page)
1112 {
1113 	int mapcount = atomic_read(&page->_mapcount) + 1;
1114 
1115 	if (unlikely(PageCompound(page)))
1116 		mapcount += folio_entire_mapcount(page_folio(page));
1117 
1118 	return mapcount;
1119 }
1120 
1121 int folio_total_mapcount(struct folio *folio);
1122 
1123 /**
1124  * folio_mapcount() - Calculate the number of mappings of this folio.
1125  * @folio: The folio.
1126  *
1127  * A large folio tracks both how many times the entire folio is mapped,
1128  * and how many times each individual page in the folio is mapped.
1129  * This function calculates the total number of times the folio is
1130  * mapped.
1131  *
1132  * Return: The number of times this folio is mapped.
1133  */
1134 static inline int folio_mapcount(struct folio *folio)
1135 {
1136 	if (likely(!folio_test_large(folio)))
1137 		return atomic_read(&folio->_mapcount) + 1;
1138 	return folio_total_mapcount(folio);
1139 }
1140 
1141 static inline int total_mapcount(struct page *page)
1142 {
1143 	if (likely(!PageCompound(page)))
1144 		return atomic_read(&page->_mapcount) + 1;
1145 	return folio_total_mapcount(page_folio(page));
1146 }
1147 
1148 static inline bool folio_large_is_mapped(struct folio *folio)
1149 {
1150 	/*
1151 	 * Reading _entire_mapcount below could be omitted if hugetlb
1152 	 * participated in incrementing nr_pages_mapped when compound mapped.
1153 	 */
1154 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1155 		atomic_read(&folio->_entire_mapcount) >= 0;
1156 }
1157 
1158 /**
1159  * folio_mapped - Is this folio mapped into userspace?
1160  * @folio: The folio.
1161  *
1162  * Return: True if any page in this folio is referenced by user page tables.
1163  */
1164 static inline bool folio_mapped(struct folio *folio)
1165 {
1166 	if (likely(!folio_test_large(folio)))
1167 		return atomic_read(&folio->_mapcount) >= 0;
1168 	return folio_large_is_mapped(folio);
1169 }
1170 
1171 /*
1172  * Return true if this page is mapped into pagetables.
1173  * For compound page it returns true if any sub-page of compound page is mapped,
1174  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1175  */
1176 static inline bool page_mapped(struct page *page)
1177 {
1178 	if (likely(!PageCompound(page)))
1179 		return atomic_read(&page->_mapcount) >= 0;
1180 	return folio_large_is_mapped(page_folio(page));
1181 }
1182 
1183 static inline struct page *virt_to_head_page(const void *x)
1184 {
1185 	struct page *page = virt_to_page(x);
1186 
1187 	return compound_head(page);
1188 }
1189 
1190 static inline struct folio *virt_to_folio(const void *x)
1191 {
1192 	struct page *page = virt_to_page(x);
1193 
1194 	return page_folio(page);
1195 }
1196 
1197 void __folio_put(struct folio *folio);
1198 
1199 void put_pages_list(struct list_head *pages);
1200 
1201 void split_page(struct page *page, unsigned int order);
1202 void folio_copy(struct folio *dst, struct folio *src);
1203 
1204 unsigned long nr_free_buffer_pages(void);
1205 
1206 /*
1207  * Compound pages have a destructor function.  Provide a
1208  * prototype for that function and accessor functions.
1209  * These are _only_ valid on the head of a compound page.
1210  */
1211 typedef void compound_page_dtor(struct page *);
1212 
1213 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1214 enum compound_dtor_id {
1215 	NULL_COMPOUND_DTOR,
1216 	COMPOUND_PAGE_DTOR,
1217 #ifdef CONFIG_HUGETLB_PAGE
1218 	HUGETLB_PAGE_DTOR,
1219 #endif
1220 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1221 	TRANSHUGE_PAGE_DTOR,
1222 #endif
1223 	NR_COMPOUND_DTORS,
1224 };
1225 
1226 static inline void folio_set_compound_dtor(struct folio *folio,
1227 		enum compound_dtor_id compound_dtor)
1228 {
1229 	VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1230 	folio->_folio_dtor = compound_dtor;
1231 }
1232 
1233 void destroy_large_folio(struct folio *folio);
1234 
1235 /* Returns the number of bytes in this potentially compound page. */
1236 static inline unsigned long page_size(struct page *page)
1237 {
1238 	return PAGE_SIZE << compound_order(page);
1239 }
1240 
1241 /* Returns the number of bits needed for the number of bytes in a page */
1242 static inline unsigned int page_shift(struct page *page)
1243 {
1244 	return PAGE_SHIFT + compound_order(page);
1245 }
1246 
1247 /**
1248  * thp_order - Order of a transparent huge page.
1249  * @page: Head page of a transparent huge page.
1250  */
1251 static inline unsigned int thp_order(struct page *page)
1252 {
1253 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1254 	return compound_order(page);
1255 }
1256 
1257 /**
1258  * thp_size - Size of a transparent huge page.
1259  * @page: Head page of a transparent huge page.
1260  *
1261  * Return: Number of bytes in this page.
1262  */
1263 static inline unsigned long thp_size(struct page *page)
1264 {
1265 	return PAGE_SIZE << thp_order(page);
1266 }
1267 
1268 void free_compound_page(struct page *page);
1269 
1270 #ifdef CONFIG_MMU
1271 /*
1272  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1273  * servicing faults for write access.  In the normal case, do always want
1274  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1275  * that do not have writing enabled, when used by access_process_vm.
1276  */
1277 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1278 {
1279 	if (likely(vma->vm_flags & VM_WRITE))
1280 		pte = pte_mkwrite(pte);
1281 	return pte;
1282 }
1283 
1284 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1285 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1286 
1287 vm_fault_t finish_fault(struct vm_fault *vmf);
1288 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1289 #endif
1290 
1291 /*
1292  * Multiple processes may "see" the same page. E.g. for untouched
1293  * mappings of /dev/null, all processes see the same page full of
1294  * zeroes, and text pages of executables and shared libraries have
1295  * only one copy in memory, at most, normally.
1296  *
1297  * For the non-reserved pages, page_count(page) denotes a reference count.
1298  *   page_count() == 0 means the page is free. page->lru is then used for
1299  *   freelist management in the buddy allocator.
1300  *   page_count() > 0  means the page has been allocated.
1301  *
1302  * Pages are allocated by the slab allocator in order to provide memory
1303  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1304  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1305  * unless a particular usage is carefully commented. (the responsibility of
1306  * freeing the kmalloc memory is the caller's, of course).
1307  *
1308  * A page may be used by anyone else who does a __get_free_page().
1309  * In this case, page_count still tracks the references, and should only
1310  * be used through the normal accessor functions. The top bits of page->flags
1311  * and page->virtual store page management information, but all other fields
1312  * are unused and could be used privately, carefully. The management of this
1313  * page is the responsibility of the one who allocated it, and those who have
1314  * subsequently been given references to it.
1315  *
1316  * The other pages (we may call them "pagecache pages") are completely
1317  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1318  * The following discussion applies only to them.
1319  *
1320  * A pagecache page contains an opaque `private' member, which belongs to the
1321  * page's address_space. Usually, this is the address of a circular list of
1322  * the page's disk buffers. PG_private must be set to tell the VM to call
1323  * into the filesystem to release these pages.
1324  *
1325  * A page may belong to an inode's memory mapping. In this case, page->mapping
1326  * is the pointer to the inode, and page->index is the file offset of the page,
1327  * in units of PAGE_SIZE.
1328  *
1329  * If pagecache pages are not associated with an inode, they are said to be
1330  * anonymous pages. These may become associated with the swapcache, and in that
1331  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1332  *
1333  * In either case (swapcache or inode backed), the pagecache itself holds one
1334  * reference to the page. Setting PG_private should also increment the
1335  * refcount. The each user mapping also has a reference to the page.
1336  *
1337  * The pagecache pages are stored in a per-mapping radix tree, which is
1338  * rooted at mapping->i_pages, and indexed by offset.
1339  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1340  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1341  *
1342  * All pagecache pages may be subject to I/O:
1343  * - inode pages may need to be read from disk,
1344  * - inode pages which have been modified and are MAP_SHARED may need
1345  *   to be written back to the inode on disk,
1346  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1347  *   modified may need to be swapped out to swap space and (later) to be read
1348  *   back into memory.
1349  */
1350 
1351 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1352 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1353 
1354 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1355 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1356 {
1357 	if (!static_branch_unlikely(&devmap_managed_key))
1358 		return false;
1359 	if (!is_zone_device_page(page))
1360 		return false;
1361 	return __put_devmap_managed_page_refs(page, refs);
1362 }
1363 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1364 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1365 {
1366 	return false;
1367 }
1368 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1369 
1370 static inline bool put_devmap_managed_page(struct page *page)
1371 {
1372 	return put_devmap_managed_page_refs(page, 1);
1373 }
1374 
1375 /* 127: arbitrary random number, small enough to assemble well */
1376 #define folio_ref_zero_or_close_to_overflow(folio) \
1377 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1378 
1379 /**
1380  * folio_get - Increment the reference count on a folio.
1381  * @folio: The folio.
1382  *
1383  * Context: May be called in any context, as long as you know that
1384  * you have a refcount on the folio.  If you do not already have one,
1385  * folio_try_get() may be the right interface for you to use.
1386  */
1387 static inline void folio_get(struct folio *folio)
1388 {
1389 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1390 	folio_ref_inc(folio);
1391 }
1392 
1393 static inline void get_page(struct page *page)
1394 {
1395 	folio_get(page_folio(page));
1396 }
1397 
1398 static inline __must_check bool try_get_page(struct page *page)
1399 {
1400 	page = compound_head(page);
1401 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1402 		return false;
1403 	page_ref_inc(page);
1404 	return true;
1405 }
1406 
1407 /**
1408  * folio_put - Decrement the reference count on a folio.
1409  * @folio: The folio.
1410  *
1411  * If the folio's reference count reaches zero, the memory will be
1412  * released back to the page allocator and may be used by another
1413  * allocation immediately.  Do not access the memory or the struct folio
1414  * after calling folio_put() unless you can be sure that it wasn't the
1415  * last reference.
1416  *
1417  * Context: May be called in process or interrupt context, but not in NMI
1418  * context.  May be called while holding a spinlock.
1419  */
1420 static inline void folio_put(struct folio *folio)
1421 {
1422 	if (folio_put_testzero(folio))
1423 		__folio_put(folio);
1424 }
1425 
1426 /**
1427  * folio_put_refs - Reduce the reference count on a folio.
1428  * @folio: The folio.
1429  * @refs: The amount to subtract from the folio's reference count.
1430  *
1431  * If the folio's reference count reaches zero, the memory will be
1432  * released back to the page allocator and may be used by another
1433  * allocation immediately.  Do not access the memory or the struct folio
1434  * after calling folio_put_refs() unless you can be sure that these weren't
1435  * the last references.
1436  *
1437  * Context: May be called in process or interrupt context, but not in NMI
1438  * context.  May be called while holding a spinlock.
1439  */
1440 static inline void folio_put_refs(struct folio *folio, int refs)
1441 {
1442 	if (folio_ref_sub_and_test(folio, refs))
1443 		__folio_put(folio);
1444 }
1445 
1446 /*
1447  * union release_pages_arg - an array of pages or folios
1448  *
1449  * release_pages() releases a simple array of multiple pages, and
1450  * accepts various different forms of said page array: either
1451  * a regular old boring array of pages, an array of folios, or
1452  * an array of encoded page pointers.
1453  *
1454  * The transparent union syntax for this kind of "any of these
1455  * argument types" is all kinds of ugly, so look away.
1456  */
1457 typedef union {
1458 	struct page **pages;
1459 	struct folio **folios;
1460 	struct encoded_page **encoded_pages;
1461 } release_pages_arg __attribute__ ((__transparent_union__));
1462 
1463 void release_pages(release_pages_arg, int nr);
1464 
1465 /**
1466  * folios_put - Decrement the reference count on an array of folios.
1467  * @folios: The folios.
1468  * @nr: How many folios there are.
1469  *
1470  * Like folio_put(), but for an array of folios.  This is more efficient
1471  * than writing the loop yourself as it will optimise the locks which
1472  * need to be taken if the folios are freed.
1473  *
1474  * Context: May be called in process or interrupt context, but not in NMI
1475  * context.  May be called while holding a spinlock.
1476  */
1477 static inline void folios_put(struct folio **folios, unsigned int nr)
1478 {
1479 	release_pages(folios, nr);
1480 }
1481 
1482 static inline void put_page(struct page *page)
1483 {
1484 	struct folio *folio = page_folio(page);
1485 
1486 	/*
1487 	 * For some devmap managed pages we need to catch refcount transition
1488 	 * from 2 to 1:
1489 	 */
1490 	if (put_devmap_managed_page(&folio->page))
1491 		return;
1492 	folio_put(folio);
1493 }
1494 
1495 /*
1496  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1497  * the page's refcount so that two separate items are tracked: the original page
1498  * reference count, and also a new count of how many pin_user_pages() calls were
1499  * made against the page. ("gup-pinned" is another term for the latter).
1500  *
1501  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1502  * distinct from normal pages. As such, the unpin_user_page() call (and its
1503  * variants) must be used in order to release gup-pinned pages.
1504  *
1505  * Choice of value:
1506  *
1507  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1508  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1509  * simpler, due to the fact that adding an even power of two to the page
1510  * refcount has the effect of using only the upper N bits, for the code that
1511  * counts up using the bias value. This means that the lower bits are left for
1512  * the exclusive use of the original code that increments and decrements by one
1513  * (or at least, by much smaller values than the bias value).
1514  *
1515  * Of course, once the lower bits overflow into the upper bits (and this is
1516  * OK, because subtraction recovers the original values), then visual inspection
1517  * no longer suffices to directly view the separate counts. However, for normal
1518  * applications that don't have huge page reference counts, this won't be an
1519  * issue.
1520  *
1521  * Locking: the lockless algorithm described in folio_try_get_rcu()
1522  * provides safe operation for get_user_pages(), page_mkclean() and
1523  * other calls that race to set up page table entries.
1524  */
1525 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1526 
1527 void unpin_user_page(struct page *page);
1528 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1529 				 bool make_dirty);
1530 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1531 				      bool make_dirty);
1532 void unpin_user_pages(struct page **pages, unsigned long npages);
1533 
1534 static inline bool is_cow_mapping(vm_flags_t flags)
1535 {
1536 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1537 }
1538 
1539 #ifndef CONFIG_MMU
1540 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1541 {
1542 	/*
1543 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1544 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1545 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1546 	 * underlying memory if ptrace is active, so this is only possible if
1547 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1548 	 * write permissions later.
1549 	 */
1550 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1551 }
1552 #endif
1553 
1554 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1555 #define SECTION_IN_PAGE_FLAGS
1556 #endif
1557 
1558 /*
1559  * The identification function is mainly used by the buddy allocator for
1560  * determining if two pages could be buddies. We are not really identifying
1561  * the zone since we could be using the section number id if we do not have
1562  * node id available in page flags.
1563  * We only guarantee that it will return the same value for two combinable
1564  * pages in a zone.
1565  */
1566 static inline int page_zone_id(struct page *page)
1567 {
1568 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1569 }
1570 
1571 #ifdef NODE_NOT_IN_PAGE_FLAGS
1572 extern int page_to_nid(const struct page *page);
1573 #else
1574 static inline int page_to_nid(const struct page *page)
1575 {
1576 	struct page *p = (struct page *)page;
1577 
1578 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1579 }
1580 #endif
1581 
1582 static inline int folio_nid(const struct folio *folio)
1583 {
1584 	return page_to_nid(&folio->page);
1585 }
1586 
1587 #ifdef CONFIG_NUMA_BALANCING
1588 /* page access time bits needs to hold at least 4 seconds */
1589 #define PAGE_ACCESS_TIME_MIN_BITS	12
1590 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1591 #define PAGE_ACCESS_TIME_BUCKETS				\
1592 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1593 #else
1594 #define PAGE_ACCESS_TIME_BUCKETS	0
1595 #endif
1596 
1597 #define PAGE_ACCESS_TIME_MASK				\
1598 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1599 
1600 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1601 {
1602 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1603 }
1604 
1605 static inline int cpupid_to_pid(int cpupid)
1606 {
1607 	return cpupid & LAST__PID_MASK;
1608 }
1609 
1610 static inline int cpupid_to_cpu(int cpupid)
1611 {
1612 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1613 }
1614 
1615 static inline int cpupid_to_nid(int cpupid)
1616 {
1617 	return cpu_to_node(cpupid_to_cpu(cpupid));
1618 }
1619 
1620 static inline bool cpupid_pid_unset(int cpupid)
1621 {
1622 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1623 }
1624 
1625 static inline bool cpupid_cpu_unset(int cpupid)
1626 {
1627 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1628 }
1629 
1630 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1631 {
1632 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1633 }
1634 
1635 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1636 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1637 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1638 {
1639 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1640 }
1641 
1642 static inline int page_cpupid_last(struct page *page)
1643 {
1644 	return page->_last_cpupid;
1645 }
1646 static inline void page_cpupid_reset_last(struct page *page)
1647 {
1648 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1649 }
1650 #else
1651 static inline int page_cpupid_last(struct page *page)
1652 {
1653 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1654 }
1655 
1656 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1657 
1658 static inline void page_cpupid_reset_last(struct page *page)
1659 {
1660 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1661 }
1662 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1663 
1664 static inline int xchg_page_access_time(struct page *page, int time)
1665 {
1666 	int last_time;
1667 
1668 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1669 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1670 }
1671 
1672 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1673 {
1674 	unsigned int pid_bit;
1675 
1676 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1677 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1678 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1679 	}
1680 }
1681 #else /* !CONFIG_NUMA_BALANCING */
1682 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1683 {
1684 	return page_to_nid(page); /* XXX */
1685 }
1686 
1687 static inline int xchg_page_access_time(struct page *page, int time)
1688 {
1689 	return 0;
1690 }
1691 
1692 static inline int page_cpupid_last(struct page *page)
1693 {
1694 	return page_to_nid(page); /* XXX */
1695 }
1696 
1697 static inline int cpupid_to_nid(int cpupid)
1698 {
1699 	return -1;
1700 }
1701 
1702 static inline int cpupid_to_pid(int cpupid)
1703 {
1704 	return -1;
1705 }
1706 
1707 static inline int cpupid_to_cpu(int cpupid)
1708 {
1709 	return -1;
1710 }
1711 
1712 static inline int cpu_pid_to_cpupid(int nid, int pid)
1713 {
1714 	return -1;
1715 }
1716 
1717 static inline bool cpupid_pid_unset(int cpupid)
1718 {
1719 	return true;
1720 }
1721 
1722 static inline void page_cpupid_reset_last(struct page *page)
1723 {
1724 }
1725 
1726 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1727 {
1728 	return false;
1729 }
1730 
1731 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1732 {
1733 }
1734 #endif /* CONFIG_NUMA_BALANCING */
1735 
1736 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1737 
1738 /*
1739  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1740  * setting tags for all pages to native kernel tag value 0xff, as the default
1741  * value 0x00 maps to 0xff.
1742  */
1743 
1744 static inline u8 page_kasan_tag(const struct page *page)
1745 {
1746 	u8 tag = 0xff;
1747 
1748 	if (kasan_enabled()) {
1749 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1750 		tag ^= 0xff;
1751 	}
1752 
1753 	return tag;
1754 }
1755 
1756 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1757 {
1758 	unsigned long old_flags, flags;
1759 
1760 	if (!kasan_enabled())
1761 		return;
1762 
1763 	tag ^= 0xff;
1764 	old_flags = READ_ONCE(page->flags);
1765 	do {
1766 		flags = old_flags;
1767 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1768 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1769 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1770 }
1771 
1772 static inline void page_kasan_tag_reset(struct page *page)
1773 {
1774 	if (kasan_enabled())
1775 		page_kasan_tag_set(page, 0xff);
1776 }
1777 
1778 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1779 
1780 static inline u8 page_kasan_tag(const struct page *page)
1781 {
1782 	return 0xff;
1783 }
1784 
1785 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1786 static inline void page_kasan_tag_reset(struct page *page) { }
1787 
1788 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1789 
1790 static inline struct zone *page_zone(const struct page *page)
1791 {
1792 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1793 }
1794 
1795 static inline pg_data_t *page_pgdat(const struct page *page)
1796 {
1797 	return NODE_DATA(page_to_nid(page));
1798 }
1799 
1800 static inline struct zone *folio_zone(const struct folio *folio)
1801 {
1802 	return page_zone(&folio->page);
1803 }
1804 
1805 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1806 {
1807 	return page_pgdat(&folio->page);
1808 }
1809 
1810 #ifdef SECTION_IN_PAGE_FLAGS
1811 static inline void set_page_section(struct page *page, unsigned long section)
1812 {
1813 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1814 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1815 }
1816 
1817 static inline unsigned long page_to_section(const struct page *page)
1818 {
1819 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1820 }
1821 #endif
1822 
1823 /**
1824  * folio_pfn - Return the Page Frame Number of a folio.
1825  * @folio: The folio.
1826  *
1827  * A folio may contain multiple pages.  The pages have consecutive
1828  * Page Frame Numbers.
1829  *
1830  * Return: The Page Frame Number of the first page in the folio.
1831  */
1832 static inline unsigned long folio_pfn(struct folio *folio)
1833 {
1834 	return page_to_pfn(&folio->page);
1835 }
1836 
1837 static inline struct folio *pfn_folio(unsigned long pfn)
1838 {
1839 	return page_folio(pfn_to_page(pfn));
1840 }
1841 
1842 /**
1843  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1844  * @folio: The folio.
1845  *
1846  * This function checks if a folio has been pinned via a call to
1847  * a function in the pin_user_pages() family.
1848  *
1849  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1850  * because it means "definitely not pinned for DMA", but true means "probably
1851  * pinned for DMA, but possibly a false positive due to having at least
1852  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1853  *
1854  * False positives are OK, because: a) it's unlikely for a folio to
1855  * get that many refcounts, and b) all the callers of this routine are
1856  * expected to be able to deal gracefully with a false positive.
1857  *
1858  * For large folios, the result will be exactly correct. That's because
1859  * we have more tracking data available: the _pincount field is used
1860  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1861  *
1862  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1863  *
1864  * Return: True, if it is likely that the page has been "dma-pinned".
1865  * False, if the page is definitely not dma-pinned.
1866  */
1867 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1868 {
1869 	if (folio_test_large(folio))
1870 		return atomic_read(&folio->_pincount) > 0;
1871 
1872 	/*
1873 	 * folio_ref_count() is signed. If that refcount overflows, then
1874 	 * folio_ref_count() returns a negative value, and callers will avoid
1875 	 * further incrementing the refcount.
1876 	 *
1877 	 * Here, for that overflow case, use the sign bit to count a little
1878 	 * bit higher via unsigned math, and thus still get an accurate result.
1879 	 */
1880 	return ((unsigned int)folio_ref_count(folio)) >=
1881 		GUP_PIN_COUNTING_BIAS;
1882 }
1883 
1884 static inline bool page_maybe_dma_pinned(struct page *page)
1885 {
1886 	return folio_maybe_dma_pinned(page_folio(page));
1887 }
1888 
1889 /*
1890  * This should most likely only be called during fork() to see whether we
1891  * should break the cow immediately for an anon page on the src mm.
1892  *
1893  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1894  */
1895 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1896 					  struct page *page)
1897 {
1898 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1899 
1900 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1901 		return false;
1902 
1903 	return page_maybe_dma_pinned(page);
1904 }
1905 
1906 /**
1907  * is_zero_page - Query if a page is a zero page
1908  * @page: The page to query
1909  *
1910  * This returns true if @page is one of the permanent zero pages.
1911  */
1912 static inline bool is_zero_page(const struct page *page)
1913 {
1914 	return is_zero_pfn(page_to_pfn(page));
1915 }
1916 
1917 /**
1918  * is_zero_folio - Query if a folio is a zero page
1919  * @folio: The folio to query
1920  *
1921  * This returns true if @folio is one of the permanent zero pages.
1922  */
1923 static inline bool is_zero_folio(const struct folio *folio)
1924 {
1925 	return is_zero_page(&folio->page);
1926 }
1927 
1928 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1929 #ifdef CONFIG_MIGRATION
1930 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1931 {
1932 #ifdef CONFIG_CMA
1933 	int mt = folio_migratetype(folio);
1934 
1935 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1936 		return false;
1937 #endif
1938 	/* The zero page can be "pinned" but gets special handling. */
1939 	if (is_zero_folio(folio))
1940 		return true;
1941 
1942 	/* Coherent device memory must always allow eviction. */
1943 	if (folio_is_device_coherent(folio))
1944 		return false;
1945 
1946 	/* Otherwise, non-movable zone folios can be pinned. */
1947 	return !folio_is_zone_movable(folio);
1948 
1949 }
1950 #else
1951 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1952 {
1953 	return true;
1954 }
1955 #endif
1956 
1957 static inline void set_page_zone(struct page *page, enum zone_type zone)
1958 {
1959 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1960 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1961 }
1962 
1963 static inline void set_page_node(struct page *page, unsigned long node)
1964 {
1965 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1966 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1967 }
1968 
1969 static inline void set_page_links(struct page *page, enum zone_type zone,
1970 	unsigned long node, unsigned long pfn)
1971 {
1972 	set_page_zone(page, zone);
1973 	set_page_node(page, node);
1974 #ifdef SECTION_IN_PAGE_FLAGS
1975 	set_page_section(page, pfn_to_section_nr(pfn));
1976 #endif
1977 }
1978 
1979 /**
1980  * folio_nr_pages - The number of pages in the folio.
1981  * @folio: The folio.
1982  *
1983  * Return: A positive power of two.
1984  */
1985 static inline long folio_nr_pages(struct folio *folio)
1986 {
1987 	if (!folio_test_large(folio))
1988 		return 1;
1989 #ifdef CONFIG_64BIT
1990 	return folio->_folio_nr_pages;
1991 #else
1992 	return 1L << folio->_folio_order;
1993 #endif
1994 }
1995 
1996 /*
1997  * compound_nr() returns the number of pages in this potentially compound
1998  * page.  compound_nr() can be called on a tail page, and is defined to
1999  * return 1 in that case.
2000  */
2001 static inline unsigned long compound_nr(struct page *page)
2002 {
2003 	struct folio *folio = (struct folio *)page;
2004 
2005 	if (!test_bit(PG_head, &folio->flags))
2006 		return 1;
2007 #ifdef CONFIG_64BIT
2008 	return folio->_folio_nr_pages;
2009 #else
2010 	return 1L << folio->_folio_order;
2011 #endif
2012 }
2013 
2014 /**
2015  * thp_nr_pages - The number of regular pages in this huge page.
2016  * @page: The head page of a huge page.
2017  */
2018 static inline int thp_nr_pages(struct page *page)
2019 {
2020 	return folio_nr_pages((struct folio *)page);
2021 }
2022 
2023 /**
2024  * folio_next - Move to the next physical folio.
2025  * @folio: The folio we're currently operating on.
2026  *
2027  * If you have physically contiguous memory which may span more than
2028  * one folio (eg a &struct bio_vec), use this function to move from one
2029  * folio to the next.  Do not use it if the memory is only virtually
2030  * contiguous as the folios are almost certainly not adjacent to each
2031  * other.  This is the folio equivalent to writing ``page++``.
2032  *
2033  * Context: We assume that the folios are refcounted and/or locked at a
2034  * higher level and do not adjust the reference counts.
2035  * Return: The next struct folio.
2036  */
2037 static inline struct folio *folio_next(struct folio *folio)
2038 {
2039 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2040 }
2041 
2042 /**
2043  * folio_shift - The size of the memory described by this folio.
2044  * @folio: The folio.
2045  *
2046  * A folio represents a number of bytes which is a power-of-two in size.
2047  * This function tells you which power-of-two the folio is.  See also
2048  * folio_size() and folio_order().
2049  *
2050  * Context: The caller should have a reference on the folio to prevent
2051  * it from being split.  It is not necessary for the folio to be locked.
2052  * Return: The base-2 logarithm of the size of this folio.
2053  */
2054 static inline unsigned int folio_shift(struct folio *folio)
2055 {
2056 	return PAGE_SHIFT + folio_order(folio);
2057 }
2058 
2059 /**
2060  * folio_size - The number of bytes in a folio.
2061  * @folio: The folio.
2062  *
2063  * Context: The caller should have a reference on the folio to prevent
2064  * it from being split.  It is not necessary for the folio to be locked.
2065  * Return: The number of bytes in this folio.
2066  */
2067 static inline size_t folio_size(struct folio *folio)
2068 {
2069 	return PAGE_SIZE << folio_order(folio);
2070 }
2071 
2072 /**
2073  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2074  * @folio: The folio.
2075  *
2076  * folio_estimated_sharers() aims to serve as a function to efficiently
2077  * estimate the number of processes sharing a folio. This is done by
2078  * looking at the precise mapcount of the first subpage in the folio, and
2079  * assuming the other subpages are the same. This may not be true for large
2080  * folios. If you want exact mapcounts for exact calculations, look at
2081  * page_mapcount() or folio_total_mapcount().
2082  *
2083  * Return: The estimated number of processes sharing a folio.
2084  */
2085 static inline int folio_estimated_sharers(struct folio *folio)
2086 {
2087 	return page_mapcount(folio_page(folio, 0));
2088 }
2089 
2090 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2091 static inline int arch_make_page_accessible(struct page *page)
2092 {
2093 	return 0;
2094 }
2095 #endif
2096 
2097 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2098 static inline int arch_make_folio_accessible(struct folio *folio)
2099 {
2100 	int ret;
2101 	long i, nr = folio_nr_pages(folio);
2102 
2103 	for (i = 0; i < nr; i++) {
2104 		ret = arch_make_page_accessible(folio_page(folio, i));
2105 		if (ret)
2106 			break;
2107 	}
2108 
2109 	return ret;
2110 }
2111 #endif
2112 
2113 /*
2114  * Some inline functions in vmstat.h depend on page_zone()
2115  */
2116 #include <linux/vmstat.h>
2117 
2118 static __always_inline void *lowmem_page_address(const struct page *page)
2119 {
2120 	return page_to_virt(page);
2121 }
2122 
2123 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2124 #define HASHED_PAGE_VIRTUAL
2125 #endif
2126 
2127 #if defined(WANT_PAGE_VIRTUAL)
2128 static inline void *page_address(const struct page *page)
2129 {
2130 	return page->virtual;
2131 }
2132 static inline void set_page_address(struct page *page, void *address)
2133 {
2134 	page->virtual = address;
2135 }
2136 #define page_address_init()  do { } while(0)
2137 #endif
2138 
2139 #if defined(HASHED_PAGE_VIRTUAL)
2140 void *page_address(const struct page *page);
2141 void set_page_address(struct page *page, void *virtual);
2142 void page_address_init(void);
2143 #endif
2144 
2145 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2146 #define page_address(page) lowmem_page_address(page)
2147 #define set_page_address(page, address)  do { } while(0)
2148 #define page_address_init()  do { } while(0)
2149 #endif
2150 
2151 static inline void *folio_address(const struct folio *folio)
2152 {
2153 	return page_address(&folio->page);
2154 }
2155 
2156 extern void *page_rmapping(struct page *page);
2157 extern pgoff_t __page_file_index(struct page *page);
2158 
2159 /*
2160  * Return the pagecache index of the passed page.  Regular pagecache pages
2161  * use ->index whereas swapcache pages use swp_offset(->private)
2162  */
2163 static inline pgoff_t page_index(struct page *page)
2164 {
2165 	if (unlikely(PageSwapCache(page)))
2166 		return __page_file_index(page);
2167 	return page->index;
2168 }
2169 
2170 /*
2171  * Return true only if the page has been allocated with
2172  * ALLOC_NO_WATERMARKS and the low watermark was not
2173  * met implying that the system is under some pressure.
2174  */
2175 static inline bool page_is_pfmemalloc(const struct page *page)
2176 {
2177 	/*
2178 	 * lru.next has bit 1 set if the page is allocated from the
2179 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2180 	 * they do not need to preserve that information.
2181 	 */
2182 	return (uintptr_t)page->lru.next & BIT(1);
2183 }
2184 
2185 /*
2186  * Return true only if the folio has been allocated with
2187  * ALLOC_NO_WATERMARKS and the low watermark was not
2188  * met implying that the system is under some pressure.
2189  */
2190 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2191 {
2192 	/*
2193 	 * lru.next has bit 1 set if the page is allocated from the
2194 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2195 	 * they do not need to preserve that information.
2196 	 */
2197 	return (uintptr_t)folio->lru.next & BIT(1);
2198 }
2199 
2200 /*
2201  * Only to be called by the page allocator on a freshly allocated
2202  * page.
2203  */
2204 static inline void set_page_pfmemalloc(struct page *page)
2205 {
2206 	page->lru.next = (void *)BIT(1);
2207 }
2208 
2209 static inline void clear_page_pfmemalloc(struct page *page)
2210 {
2211 	page->lru.next = NULL;
2212 }
2213 
2214 /*
2215  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2216  */
2217 extern void pagefault_out_of_memory(void);
2218 
2219 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2220 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2221 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2222 
2223 /*
2224  * Flags passed to show_mem() and show_free_areas() to suppress output in
2225  * various contexts.
2226  */
2227 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
2228 
2229 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2230 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2231 {
2232 	__show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2233 }
2234 
2235 /*
2236  * Parameter block passed down to zap_pte_range in exceptional cases.
2237  */
2238 struct zap_details {
2239 	struct folio *single_folio;	/* Locked folio to be unmapped */
2240 	bool even_cows;			/* Zap COWed private pages too? */
2241 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2242 };
2243 
2244 /*
2245  * Whether to drop the pte markers, for example, the uffd-wp information for
2246  * file-backed memory.  This should only be specified when we will completely
2247  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2248  * default, the flag is not set.
2249  */
2250 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2251 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2252 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2253 
2254 #ifdef CONFIG_SCHED_MM_CID
2255 void sched_mm_cid_before_execve(struct task_struct *t);
2256 void sched_mm_cid_after_execve(struct task_struct *t);
2257 void sched_mm_cid_fork(struct task_struct *t);
2258 void sched_mm_cid_exit_signals(struct task_struct *t);
2259 static inline int task_mm_cid(struct task_struct *t)
2260 {
2261 	return t->mm_cid;
2262 }
2263 #else
2264 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2265 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2266 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2267 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2268 static inline int task_mm_cid(struct task_struct *t)
2269 {
2270 	/*
2271 	 * Use the processor id as a fall-back when the mm cid feature is
2272 	 * disabled. This provides functional per-cpu data structure accesses
2273 	 * in user-space, althrough it won't provide the memory usage benefits.
2274 	 */
2275 	return raw_smp_processor_id();
2276 }
2277 #endif
2278 
2279 #ifdef CONFIG_MMU
2280 extern bool can_do_mlock(void);
2281 #else
2282 static inline bool can_do_mlock(void) { return false; }
2283 #endif
2284 extern int user_shm_lock(size_t, struct ucounts *);
2285 extern void user_shm_unlock(size_t, struct ucounts *);
2286 
2287 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2288 			     pte_t pte);
2289 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2290 			     pte_t pte);
2291 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2292 				pmd_t pmd);
2293 
2294 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2295 		  unsigned long size);
2296 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2297 			   unsigned long size, struct zap_details *details);
2298 static inline void zap_vma_pages(struct vm_area_struct *vma)
2299 {
2300 	zap_page_range_single(vma, vma->vm_start,
2301 			      vma->vm_end - vma->vm_start, NULL);
2302 }
2303 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2304 		struct vm_area_struct *start_vma, unsigned long start,
2305 		unsigned long end, bool mm_wr_locked);
2306 
2307 struct mmu_notifier_range;
2308 
2309 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2310 		unsigned long end, unsigned long floor, unsigned long ceiling);
2311 int
2312 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2313 int follow_pte(struct mm_struct *mm, unsigned long address,
2314 	       pte_t **ptepp, spinlock_t **ptlp);
2315 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2316 	unsigned long *pfn);
2317 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2318 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2319 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2320 			void *buf, int len, int write);
2321 
2322 extern void truncate_pagecache(struct inode *inode, loff_t new);
2323 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2324 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2325 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2326 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2327 
2328 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2329 		unsigned long address, struct pt_regs *regs);
2330 
2331 #ifdef CONFIG_MMU
2332 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2333 				  unsigned long address, unsigned int flags,
2334 				  struct pt_regs *regs);
2335 extern int fixup_user_fault(struct mm_struct *mm,
2336 			    unsigned long address, unsigned int fault_flags,
2337 			    bool *unlocked);
2338 void unmap_mapping_pages(struct address_space *mapping,
2339 		pgoff_t start, pgoff_t nr, bool even_cows);
2340 void unmap_mapping_range(struct address_space *mapping,
2341 		loff_t const holebegin, loff_t const holelen, int even_cows);
2342 #else
2343 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2344 					 unsigned long address, unsigned int flags,
2345 					 struct pt_regs *regs)
2346 {
2347 	/* should never happen if there's no MMU */
2348 	BUG();
2349 	return VM_FAULT_SIGBUS;
2350 }
2351 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2352 		unsigned int fault_flags, bool *unlocked)
2353 {
2354 	/* should never happen if there's no MMU */
2355 	BUG();
2356 	return -EFAULT;
2357 }
2358 static inline void unmap_mapping_pages(struct address_space *mapping,
2359 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2360 static inline void unmap_mapping_range(struct address_space *mapping,
2361 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2362 #endif
2363 
2364 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2365 		loff_t const holebegin, loff_t const holelen)
2366 {
2367 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2368 }
2369 
2370 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2371 						unsigned long addr);
2372 
2373 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2374 		void *buf, int len, unsigned int gup_flags);
2375 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2376 		void *buf, int len, unsigned int gup_flags);
2377 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2378 			      void *buf, int len, unsigned int gup_flags);
2379 
2380 long get_user_pages_remote(struct mm_struct *mm,
2381 			   unsigned long start, unsigned long nr_pages,
2382 			   unsigned int gup_flags, struct page **pages,
2383 			   int *locked);
2384 long pin_user_pages_remote(struct mm_struct *mm,
2385 			   unsigned long start, unsigned long nr_pages,
2386 			   unsigned int gup_flags, struct page **pages,
2387 			   int *locked);
2388 
2389 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2390 						    unsigned long addr,
2391 						    int gup_flags,
2392 						    struct vm_area_struct **vmap)
2393 {
2394 	struct page *page;
2395 	struct vm_area_struct *vma;
2396 	int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2397 
2398 	if (got < 0)
2399 		return ERR_PTR(got);
2400 	if (got == 0)
2401 		return NULL;
2402 
2403 	vma = vma_lookup(mm, addr);
2404 	if (WARN_ON_ONCE(!vma)) {
2405 		put_page(page);
2406 		return ERR_PTR(-EINVAL);
2407 	}
2408 
2409 	*vmap = vma;
2410 	return page;
2411 }
2412 
2413 long get_user_pages(unsigned long start, unsigned long nr_pages,
2414 		    unsigned int gup_flags, struct page **pages);
2415 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2416 		    unsigned int gup_flags, struct page **pages);
2417 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2418 		    struct page **pages, unsigned int gup_flags);
2419 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2420 		    struct page **pages, unsigned int gup_flags);
2421 
2422 int get_user_pages_fast(unsigned long start, int nr_pages,
2423 			unsigned int gup_flags, struct page **pages);
2424 int pin_user_pages_fast(unsigned long start, int nr_pages,
2425 			unsigned int gup_flags, struct page **pages);
2426 void folio_add_pin(struct folio *folio);
2427 
2428 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2429 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2430 			struct task_struct *task, bool bypass_rlim);
2431 
2432 struct kvec;
2433 struct page *get_dump_page(unsigned long addr);
2434 
2435 bool folio_mark_dirty(struct folio *folio);
2436 bool set_page_dirty(struct page *page);
2437 int set_page_dirty_lock(struct page *page);
2438 
2439 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2440 
2441 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2442 		unsigned long old_addr, struct vm_area_struct *new_vma,
2443 		unsigned long new_addr, unsigned long len,
2444 		bool need_rmap_locks);
2445 
2446 /*
2447  * Flags used by change_protection().  For now we make it a bitmap so
2448  * that we can pass in multiple flags just like parameters.  However
2449  * for now all the callers are only use one of the flags at the same
2450  * time.
2451  */
2452 /*
2453  * Whether we should manually check if we can map individual PTEs writable,
2454  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2455  * PTEs automatically in a writable mapping.
2456  */
2457 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2458 /* Whether this protection change is for NUMA hints */
2459 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2460 /* Whether this change is for write protecting */
2461 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2462 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2463 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2464 					    MM_CP_UFFD_WP_RESOLVE)
2465 
2466 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2467 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2468 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2469 {
2470 	/*
2471 	 * We want to check manually if we can change individual PTEs writable
2472 	 * if we can't do that automatically for all PTEs in a mapping. For
2473 	 * private mappings, that's always the case when we have write
2474 	 * permissions as we properly have to handle COW.
2475 	 */
2476 	if (vma->vm_flags & VM_SHARED)
2477 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2478 	return !!(vma->vm_flags & VM_WRITE);
2479 
2480 }
2481 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2482 			     pte_t pte);
2483 extern long change_protection(struct mmu_gather *tlb,
2484 			      struct vm_area_struct *vma, unsigned long start,
2485 			      unsigned long end, unsigned long cp_flags);
2486 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2487 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2488 	  unsigned long start, unsigned long end, unsigned long newflags);
2489 
2490 /*
2491  * doesn't attempt to fault and will return short.
2492  */
2493 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2494 			     unsigned int gup_flags, struct page **pages);
2495 
2496 static inline bool get_user_page_fast_only(unsigned long addr,
2497 			unsigned int gup_flags, struct page **pagep)
2498 {
2499 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2500 }
2501 /*
2502  * per-process(per-mm_struct) statistics.
2503  */
2504 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2505 {
2506 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2507 }
2508 
2509 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2510 
2511 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2512 {
2513 	percpu_counter_add(&mm->rss_stat[member], value);
2514 
2515 	mm_trace_rss_stat(mm, member);
2516 }
2517 
2518 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2519 {
2520 	percpu_counter_inc(&mm->rss_stat[member]);
2521 
2522 	mm_trace_rss_stat(mm, member);
2523 }
2524 
2525 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2526 {
2527 	percpu_counter_dec(&mm->rss_stat[member]);
2528 
2529 	mm_trace_rss_stat(mm, member);
2530 }
2531 
2532 /* Optimized variant when page is already known not to be PageAnon */
2533 static inline int mm_counter_file(struct page *page)
2534 {
2535 	if (PageSwapBacked(page))
2536 		return MM_SHMEMPAGES;
2537 	return MM_FILEPAGES;
2538 }
2539 
2540 static inline int mm_counter(struct page *page)
2541 {
2542 	if (PageAnon(page))
2543 		return MM_ANONPAGES;
2544 	return mm_counter_file(page);
2545 }
2546 
2547 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2548 {
2549 	return get_mm_counter(mm, MM_FILEPAGES) +
2550 		get_mm_counter(mm, MM_ANONPAGES) +
2551 		get_mm_counter(mm, MM_SHMEMPAGES);
2552 }
2553 
2554 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2555 {
2556 	return max(mm->hiwater_rss, get_mm_rss(mm));
2557 }
2558 
2559 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2560 {
2561 	return max(mm->hiwater_vm, mm->total_vm);
2562 }
2563 
2564 static inline void update_hiwater_rss(struct mm_struct *mm)
2565 {
2566 	unsigned long _rss = get_mm_rss(mm);
2567 
2568 	if ((mm)->hiwater_rss < _rss)
2569 		(mm)->hiwater_rss = _rss;
2570 }
2571 
2572 static inline void update_hiwater_vm(struct mm_struct *mm)
2573 {
2574 	if (mm->hiwater_vm < mm->total_vm)
2575 		mm->hiwater_vm = mm->total_vm;
2576 }
2577 
2578 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2579 {
2580 	mm->hiwater_rss = get_mm_rss(mm);
2581 }
2582 
2583 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2584 					 struct mm_struct *mm)
2585 {
2586 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2587 
2588 	if (*maxrss < hiwater_rss)
2589 		*maxrss = hiwater_rss;
2590 }
2591 
2592 #if defined(SPLIT_RSS_COUNTING)
2593 void sync_mm_rss(struct mm_struct *mm);
2594 #else
2595 static inline void sync_mm_rss(struct mm_struct *mm)
2596 {
2597 }
2598 #endif
2599 
2600 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2601 static inline int pte_special(pte_t pte)
2602 {
2603 	return 0;
2604 }
2605 
2606 static inline pte_t pte_mkspecial(pte_t pte)
2607 {
2608 	return pte;
2609 }
2610 #endif
2611 
2612 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2613 static inline int pte_devmap(pte_t pte)
2614 {
2615 	return 0;
2616 }
2617 #endif
2618 
2619 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2620 			       spinlock_t **ptl);
2621 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2622 				    spinlock_t **ptl)
2623 {
2624 	pte_t *ptep;
2625 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2626 	return ptep;
2627 }
2628 
2629 #ifdef __PAGETABLE_P4D_FOLDED
2630 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2631 						unsigned long address)
2632 {
2633 	return 0;
2634 }
2635 #else
2636 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2637 #endif
2638 
2639 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2640 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2641 						unsigned long address)
2642 {
2643 	return 0;
2644 }
2645 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2646 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2647 
2648 #else
2649 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2650 
2651 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2652 {
2653 	if (mm_pud_folded(mm))
2654 		return;
2655 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2656 }
2657 
2658 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2659 {
2660 	if (mm_pud_folded(mm))
2661 		return;
2662 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2663 }
2664 #endif
2665 
2666 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2667 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2668 						unsigned long address)
2669 {
2670 	return 0;
2671 }
2672 
2673 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2674 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2675 
2676 #else
2677 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2678 
2679 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2680 {
2681 	if (mm_pmd_folded(mm))
2682 		return;
2683 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2684 }
2685 
2686 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2687 {
2688 	if (mm_pmd_folded(mm))
2689 		return;
2690 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2691 }
2692 #endif
2693 
2694 #ifdef CONFIG_MMU
2695 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2696 {
2697 	atomic_long_set(&mm->pgtables_bytes, 0);
2698 }
2699 
2700 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2701 {
2702 	return atomic_long_read(&mm->pgtables_bytes);
2703 }
2704 
2705 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2706 {
2707 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2708 }
2709 
2710 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2711 {
2712 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2713 }
2714 #else
2715 
2716 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2717 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2718 {
2719 	return 0;
2720 }
2721 
2722 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2723 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2724 #endif
2725 
2726 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2727 int __pte_alloc_kernel(pmd_t *pmd);
2728 
2729 #if defined(CONFIG_MMU)
2730 
2731 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2732 		unsigned long address)
2733 {
2734 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2735 		NULL : p4d_offset(pgd, address);
2736 }
2737 
2738 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2739 		unsigned long address)
2740 {
2741 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2742 		NULL : pud_offset(p4d, address);
2743 }
2744 
2745 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2746 {
2747 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2748 		NULL: pmd_offset(pud, address);
2749 }
2750 #endif /* CONFIG_MMU */
2751 
2752 #if USE_SPLIT_PTE_PTLOCKS
2753 #if ALLOC_SPLIT_PTLOCKS
2754 void __init ptlock_cache_init(void);
2755 extern bool ptlock_alloc(struct page *page);
2756 extern void ptlock_free(struct page *page);
2757 
2758 static inline spinlock_t *ptlock_ptr(struct page *page)
2759 {
2760 	return page->ptl;
2761 }
2762 #else /* ALLOC_SPLIT_PTLOCKS */
2763 static inline void ptlock_cache_init(void)
2764 {
2765 }
2766 
2767 static inline bool ptlock_alloc(struct page *page)
2768 {
2769 	return true;
2770 }
2771 
2772 static inline void ptlock_free(struct page *page)
2773 {
2774 }
2775 
2776 static inline spinlock_t *ptlock_ptr(struct page *page)
2777 {
2778 	return &page->ptl;
2779 }
2780 #endif /* ALLOC_SPLIT_PTLOCKS */
2781 
2782 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2783 {
2784 	return ptlock_ptr(pmd_page(*pmd));
2785 }
2786 
2787 static inline bool ptlock_init(struct page *page)
2788 {
2789 	/*
2790 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2791 	 * with 0. Make sure nobody took it in use in between.
2792 	 *
2793 	 * It can happen if arch try to use slab for page table allocation:
2794 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2795 	 */
2796 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2797 	if (!ptlock_alloc(page))
2798 		return false;
2799 	spin_lock_init(ptlock_ptr(page));
2800 	return true;
2801 }
2802 
2803 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2804 /*
2805  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2806  */
2807 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2808 {
2809 	return &mm->page_table_lock;
2810 }
2811 static inline void ptlock_cache_init(void) {}
2812 static inline bool ptlock_init(struct page *page) { return true; }
2813 static inline void ptlock_free(struct page *page) {}
2814 #endif /* USE_SPLIT_PTE_PTLOCKS */
2815 
2816 static inline bool pgtable_pte_page_ctor(struct page *page)
2817 {
2818 	if (!ptlock_init(page))
2819 		return false;
2820 	__SetPageTable(page);
2821 	inc_lruvec_page_state(page, NR_PAGETABLE);
2822 	return true;
2823 }
2824 
2825 static inline void pgtable_pte_page_dtor(struct page *page)
2826 {
2827 	ptlock_free(page);
2828 	__ClearPageTable(page);
2829 	dec_lruvec_page_state(page, NR_PAGETABLE);
2830 }
2831 
2832 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2833 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2834 {
2835 	return __pte_offset_map(pmd, addr, NULL);
2836 }
2837 
2838 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2839 			unsigned long addr, spinlock_t **ptlp);
2840 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2841 			unsigned long addr, spinlock_t **ptlp)
2842 {
2843 	pte_t *pte;
2844 
2845 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2846 	return pte;
2847 }
2848 
2849 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2850 			unsigned long addr, spinlock_t **ptlp);
2851 
2852 #define pte_unmap_unlock(pte, ptl)	do {		\
2853 	spin_unlock(ptl);				\
2854 	pte_unmap(pte);					\
2855 } while (0)
2856 
2857 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2858 
2859 #define pte_alloc_map(mm, pmd, address)			\
2860 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2861 
2862 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2863 	(pte_alloc(mm, pmd) ?			\
2864 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2865 
2866 #define pte_alloc_kernel(pmd, address)			\
2867 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2868 		NULL: pte_offset_kernel(pmd, address))
2869 
2870 #if USE_SPLIT_PMD_PTLOCKS
2871 
2872 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2873 {
2874 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2875 	return virt_to_page((void *)((unsigned long) pmd & mask));
2876 }
2877 
2878 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2879 {
2880 	return ptlock_ptr(pmd_pgtable_page(pmd));
2881 }
2882 
2883 static inline bool pmd_ptlock_init(struct page *page)
2884 {
2885 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2886 	page->pmd_huge_pte = NULL;
2887 #endif
2888 	return ptlock_init(page);
2889 }
2890 
2891 static inline void pmd_ptlock_free(struct page *page)
2892 {
2893 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2894 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2895 #endif
2896 	ptlock_free(page);
2897 }
2898 
2899 #define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2900 
2901 #else
2902 
2903 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2904 {
2905 	return &mm->page_table_lock;
2906 }
2907 
2908 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2909 static inline void pmd_ptlock_free(struct page *page) {}
2910 
2911 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2912 
2913 #endif
2914 
2915 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2916 {
2917 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2918 	spin_lock(ptl);
2919 	return ptl;
2920 }
2921 
2922 static inline bool pgtable_pmd_page_ctor(struct page *page)
2923 {
2924 	if (!pmd_ptlock_init(page))
2925 		return false;
2926 	__SetPageTable(page);
2927 	inc_lruvec_page_state(page, NR_PAGETABLE);
2928 	return true;
2929 }
2930 
2931 static inline void pgtable_pmd_page_dtor(struct page *page)
2932 {
2933 	pmd_ptlock_free(page);
2934 	__ClearPageTable(page);
2935 	dec_lruvec_page_state(page, NR_PAGETABLE);
2936 }
2937 
2938 /*
2939  * No scalability reason to split PUD locks yet, but follow the same pattern
2940  * as the PMD locks to make it easier if we decide to.  The VM should not be
2941  * considered ready to switch to split PUD locks yet; there may be places
2942  * which need to be converted from page_table_lock.
2943  */
2944 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2945 {
2946 	return &mm->page_table_lock;
2947 }
2948 
2949 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2950 {
2951 	spinlock_t *ptl = pud_lockptr(mm, pud);
2952 
2953 	spin_lock(ptl);
2954 	return ptl;
2955 }
2956 
2957 extern void __init pagecache_init(void);
2958 extern void free_initmem(void);
2959 
2960 /*
2961  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2962  * into the buddy system. The freed pages will be poisoned with pattern
2963  * "poison" if it's within range [0, UCHAR_MAX].
2964  * Return pages freed into the buddy system.
2965  */
2966 extern unsigned long free_reserved_area(void *start, void *end,
2967 					int poison, const char *s);
2968 
2969 extern void adjust_managed_page_count(struct page *page, long count);
2970 
2971 extern void reserve_bootmem_region(phys_addr_t start,
2972 				   phys_addr_t end, int nid);
2973 
2974 /* Free the reserved page into the buddy system, so it gets managed. */
2975 static inline void free_reserved_page(struct page *page)
2976 {
2977 	ClearPageReserved(page);
2978 	init_page_count(page);
2979 	__free_page(page);
2980 	adjust_managed_page_count(page, 1);
2981 }
2982 #define free_highmem_page(page) free_reserved_page(page)
2983 
2984 static inline void mark_page_reserved(struct page *page)
2985 {
2986 	SetPageReserved(page);
2987 	adjust_managed_page_count(page, -1);
2988 }
2989 
2990 /*
2991  * Default method to free all the __init memory into the buddy system.
2992  * The freed pages will be poisoned with pattern "poison" if it's within
2993  * range [0, UCHAR_MAX].
2994  * Return pages freed into the buddy system.
2995  */
2996 static inline unsigned long free_initmem_default(int poison)
2997 {
2998 	extern char __init_begin[], __init_end[];
2999 
3000 	return free_reserved_area(&__init_begin, &__init_end,
3001 				  poison, "unused kernel image (initmem)");
3002 }
3003 
3004 static inline unsigned long get_num_physpages(void)
3005 {
3006 	int nid;
3007 	unsigned long phys_pages = 0;
3008 
3009 	for_each_online_node(nid)
3010 		phys_pages += node_present_pages(nid);
3011 
3012 	return phys_pages;
3013 }
3014 
3015 /*
3016  * Using memblock node mappings, an architecture may initialise its
3017  * zones, allocate the backing mem_map and account for memory holes in an
3018  * architecture independent manner.
3019  *
3020  * An architecture is expected to register range of page frames backed by
3021  * physical memory with memblock_add[_node]() before calling
3022  * free_area_init() passing in the PFN each zone ends at. At a basic
3023  * usage, an architecture is expected to do something like
3024  *
3025  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3026  * 							 max_highmem_pfn};
3027  * for_each_valid_physical_page_range()
3028  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3029  * free_area_init(max_zone_pfns);
3030  */
3031 void free_area_init(unsigned long *max_zone_pfn);
3032 unsigned long node_map_pfn_alignment(void);
3033 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3034 						unsigned long end_pfn);
3035 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3036 						unsigned long end_pfn);
3037 extern void get_pfn_range_for_nid(unsigned int nid,
3038 			unsigned long *start_pfn, unsigned long *end_pfn);
3039 
3040 #ifndef CONFIG_NUMA
3041 static inline int early_pfn_to_nid(unsigned long pfn)
3042 {
3043 	return 0;
3044 }
3045 #else
3046 /* please see mm/page_alloc.c */
3047 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3048 #endif
3049 
3050 extern void set_dma_reserve(unsigned long new_dma_reserve);
3051 extern void mem_init(void);
3052 extern void __init mmap_init(void);
3053 
3054 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3055 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3056 {
3057 	__show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3058 }
3059 extern long si_mem_available(void);
3060 extern void si_meminfo(struct sysinfo * val);
3061 extern void si_meminfo_node(struct sysinfo *val, int nid);
3062 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3063 extern unsigned long arch_reserved_kernel_pages(void);
3064 #endif
3065 
3066 extern __printf(3, 4)
3067 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3068 
3069 extern void setup_per_cpu_pageset(void);
3070 
3071 /* nommu.c */
3072 extern atomic_long_t mmap_pages_allocated;
3073 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3074 
3075 /* interval_tree.c */
3076 void vma_interval_tree_insert(struct vm_area_struct *node,
3077 			      struct rb_root_cached *root);
3078 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3079 				    struct vm_area_struct *prev,
3080 				    struct rb_root_cached *root);
3081 void vma_interval_tree_remove(struct vm_area_struct *node,
3082 			      struct rb_root_cached *root);
3083 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3084 				unsigned long start, unsigned long last);
3085 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3086 				unsigned long start, unsigned long last);
3087 
3088 #define vma_interval_tree_foreach(vma, root, start, last)		\
3089 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3090 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3091 
3092 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3093 				   struct rb_root_cached *root);
3094 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3095 				   struct rb_root_cached *root);
3096 struct anon_vma_chain *
3097 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3098 				  unsigned long start, unsigned long last);
3099 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3100 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3101 #ifdef CONFIG_DEBUG_VM_RB
3102 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3103 #endif
3104 
3105 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3106 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3107 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3108 
3109 /* mmap.c */
3110 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3111 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3112 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3113 		      struct vm_area_struct *next);
3114 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3115 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3116 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3117 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3118 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3119 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3120 	struct anon_vma_name *);
3121 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3122 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3123 		       unsigned long addr, int new_below);
3124 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3125 			 unsigned long addr, int new_below);
3126 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3127 extern void unlink_file_vma(struct vm_area_struct *);
3128 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3129 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3130 	bool *need_rmap_locks);
3131 extern void exit_mmap(struct mm_struct *);
3132 
3133 static inline int check_data_rlimit(unsigned long rlim,
3134 				    unsigned long new,
3135 				    unsigned long start,
3136 				    unsigned long end_data,
3137 				    unsigned long start_data)
3138 {
3139 	if (rlim < RLIM_INFINITY) {
3140 		if (((new - start) + (end_data - start_data)) > rlim)
3141 			return -ENOSPC;
3142 	}
3143 
3144 	return 0;
3145 }
3146 
3147 extern int mm_take_all_locks(struct mm_struct *mm);
3148 extern void mm_drop_all_locks(struct mm_struct *mm);
3149 
3150 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3151 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3152 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3153 extern struct file *get_task_exe_file(struct task_struct *task);
3154 
3155 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3156 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3157 
3158 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3159 				   const struct vm_special_mapping *sm);
3160 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3161 				   unsigned long addr, unsigned long len,
3162 				   unsigned long flags,
3163 				   const struct vm_special_mapping *spec);
3164 /* This is an obsolete alternative to _install_special_mapping. */
3165 extern int install_special_mapping(struct mm_struct *mm,
3166 				   unsigned long addr, unsigned long len,
3167 				   unsigned long flags, struct page **pages);
3168 
3169 unsigned long randomize_stack_top(unsigned long stack_top);
3170 unsigned long randomize_page(unsigned long start, unsigned long range);
3171 
3172 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3173 
3174 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3175 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3176 	struct list_head *uf);
3177 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3178 	unsigned long len, unsigned long prot, unsigned long flags,
3179 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3180 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3181 			 unsigned long start, size_t len, struct list_head *uf,
3182 			 bool unlock);
3183 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3184 		     struct list_head *uf);
3185 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3186 
3187 #ifdef CONFIG_MMU
3188 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3189 			 unsigned long start, unsigned long end,
3190 			 struct list_head *uf, bool unlock);
3191 extern int __mm_populate(unsigned long addr, unsigned long len,
3192 			 int ignore_errors);
3193 static inline void mm_populate(unsigned long addr, unsigned long len)
3194 {
3195 	/* Ignore errors */
3196 	(void) __mm_populate(addr, len, 1);
3197 }
3198 #else
3199 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3200 #endif
3201 
3202 /* These take the mm semaphore themselves */
3203 extern int __must_check vm_brk(unsigned long, unsigned long);
3204 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3205 extern int vm_munmap(unsigned long, size_t);
3206 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3207         unsigned long, unsigned long,
3208         unsigned long, unsigned long);
3209 
3210 struct vm_unmapped_area_info {
3211 #define VM_UNMAPPED_AREA_TOPDOWN 1
3212 	unsigned long flags;
3213 	unsigned long length;
3214 	unsigned long low_limit;
3215 	unsigned long high_limit;
3216 	unsigned long align_mask;
3217 	unsigned long align_offset;
3218 };
3219 
3220 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3221 
3222 /* truncate.c */
3223 extern void truncate_inode_pages(struct address_space *, loff_t);
3224 extern void truncate_inode_pages_range(struct address_space *,
3225 				       loff_t lstart, loff_t lend);
3226 extern void truncate_inode_pages_final(struct address_space *);
3227 
3228 /* generic vm_area_ops exported for stackable file systems */
3229 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3230 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3231 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3232 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3233 
3234 extern unsigned long stack_guard_gap;
3235 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3236 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3237 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3238 
3239 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3240 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3241 
3242 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3243 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3244 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3245 					     struct vm_area_struct **pprev);
3246 
3247 /*
3248  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3249  * NULL if none.  Assume start_addr < end_addr.
3250  */
3251 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3252 			unsigned long start_addr, unsigned long end_addr);
3253 
3254 /**
3255  * vma_lookup() - Find a VMA at a specific address
3256  * @mm: The process address space.
3257  * @addr: The user address.
3258  *
3259  * Return: The vm_area_struct at the given address, %NULL otherwise.
3260  */
3261 static inline
3262 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3263 {
3264 	return mtree_load(&mm->mm_mt, addr);
3265 }
3266 
3267 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3268 {
3269 	unsigned long vm_start = vma->vm_start;
3270 
3271 	if (vma->vm_flags & VM_GROWSDOWN) {
3272 		vm_start -= stack_guard_gap;
3273 		if (vm_start > vma->vm_start)
3274 			vm_start = 0;
3275 	}
3276 	return vm_start;
3277 }
3278 
3279 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3280 {
3281 	unsigned long vm_end = vma->vm_end;
3282 
3283 	if (vma->vm_flags & VM_GROWSUP) {
3284 		vm_end += stack_guard_gap;
3285 		if (vm_end < vma->vm_end)
3286 			vm_end = -PAGE_SIZE;
3287 	}
3288 	return vm_end;
3289 }
3290 
3291 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3292 {
3293 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3294 }
3295 
3296 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3297 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3298 				unsigned long vm_start, unsigned long vm_end)
3299 {
3300 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3301 
3302 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3303 		vma = NULL;
3304 
3305 	return vma;
3306 }
3307 
3308 static inline bool range_in_vma(struct vm_area_struct *vma,
3309 				unsigned long start, unsigned long end)
3310 {
3311 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3312 }
3313 
3314 #ifdef CONFIG_MMU
3315 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3316 void vma_set_page_prot(struct vm_area_struct *vma);
3317 #else
3318 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3319 {
3320 	return __pgprot(0);
3321 }
3322 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3323 {
3324 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3325 }
3326 #endif
3327 
3328 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3329 
3330 #ifdef CONFIG_NUMA_BALANCING
3331 unsigned long change_prot_numa(struct vm_area_struct *vma,
3332 			unsigned long start, unsigned long end);
3333 #endif
3334 
3335 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3336 		unsigned long addr);
3337 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3338 			unsigned long pfn, unsigned long size, pgprot_t);
3339 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3340 		unsigned long pfn, unsigned long size, pgprot_t prot);
3341 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3342 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3343 			struct page **pages, unsigned long *num);
3344 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3345 				unsigned long num);
3346 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3347 				unsigned long num);
3348 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3349 			unsigned long pfn);
3350 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3351 			unsigned long pfn, pgprot_t pgprot);
3352 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3353 			pfn_t pfn);
3354 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3355 		unsigned long addr, pfn_t pfn);
3356 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3357 
3358 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3359 				unsigned long addr, struct page *page)
3360 {
3361 	int err = vm_insert_page(vma, addr, page);
3362 
3363 	if (err == -ENOMEM)
3364 		return VM_FAULT_OOM;
3365 	if (err < 0 && err != -EBUSY)
3366 		return VM_FAULT_SIGBUS;
3367 
3368 	return VM_FAULT_NOPAGE;
3369 }
3370 
3371 #ifndef io_remap_pfn_range
3372 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3373 				     unsigned long addr, unsigned long pfn,
3374 				     unsigned long size, pgprot_t prot)
3375 {
3376 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3377 }
3378 #endif
3379 
3380 static inline vm_fault_t vmf_error(int err)
3381 {
3382 	if (err == -ENOMEM)
3383 		return VM_FAULT_OOM;
3384 	else if (err == -EHWPOISON)
3385 		return VM_FAULT_HWPOISON;
3386 	return VM_FAULT_SIGBUS;
3387 }
3388 
3389 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3390 			 unsigned int foll_flags);
3391 
3392 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3393 {
3394 	if (vm_fault & VM_FAULT_OOM)
3395 		return -ENOMEM;
3396 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3397 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3398 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3399 		return -EFAULT;
3400 	return 0;
3401 }
3402 
3403 /*
3404  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3405  * a (NUMA hinting) fault is required.
3406  */
3407 static inline bool gup_can_follow_protnone(unsigned int flags)
3408 {
3409 	/*
3410 	 * FOLL_FORCE has to be able to make progress even if the VMA is
3411 	 * inaccessible. Further, FOLL_FORCE access usually does not represent
3412 	 * application behaviour and we should avoid triggering NUMA hinting
3413 	 * faults.
3414 	 */
3415 	return flags & FOLL_FORCE;
3416 }
3417 
3418 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3419 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3420 			       unsigned long size, pte_fn_t fn, void *data);
3421 extern int apply_to_existing_page_range(struct mm_struct *mm,
3422 				   unsigned long address, unsigned long size,
3423 				   pte_fn_t fn, void *data);
3424 
3425 #ifdef CONFIG_PAGE_POISONING
3426 extern void __kernel_poison_pages(struct page *page, int numpages);
3427 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3428 extern bool _page_poisoning_enabled_early;
3429 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3430 static inline bool page_poisoning_enabled(void)
3431 {
3432 	return _page_poisoning_enabled_early;
3433 }
3434 /*
3435  * For use in fast paths after init_mem_debugging() has run, or when a
3436  * false negative result is not harmful when called too early.
3437  */
3438 static inline bool page_poisoning_enabled_static(void)
3439 {
3440 	return static_branch_unlikely(&_page_poisoning_enabled);
3441 }
3442 static inline void kernel_poison_pages(struct page *page, int numpages)
3443 {
3444 	if (page_poisoning_enabled_static())
3445 		__kernel_poison_pages(page, numpages);
3446 }
3447 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3448 {
3449 	if (page_poisoning_enabled_static())
3450 		__kernel_unpoison_pages(page, numpages);
3451 }
3452 #else
3453 static inline bool page_poisoning_enabled(void) { return false; }
3454 static inline bool page_poisoning_enabled_static(void) { return false; }
3455 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3456 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3457 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3458 #endif
3459 
3460 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3461 static inline bool want_init_on_alloc(gfp_t flags)
3462 {
3463 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3464 				&init_on_alloc))
3465 		return true;
3466 	return flags & __GFP_ZERO;
3467 }
3468 
3469 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3470 static inline bool want_init_on_free(void)
3471 {
3472 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3473 				   &init_on_free);
3474 }
3475 
3476 extern bool _debug_pagealloc_enabled_early;
3477 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3478 
3479 static inline bool debug_pagealloc_enabled(void)
3480 {
3481 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3482 		_debug_pagealloc_enabled_early;
3483 }
3484 
3485 /*
3486  * For use in fast paths after init_debug_pagealloc() has run, or when a
3487  * false negative result is not harmful when called too early.
3488  */
3489 static inline bool debug_pagealloc_enabled_static(void)
3490 {
3491 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3492 		return false;
3493 
3494 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3495 }
3496 
3497 /*
3498  * To support DEBUG_PAGEALLOC architecture must ensure that
3499  * __kernel_map_pages() never fails
3500  */
3501 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3502 #ifdef CONFIG_DEBUG_PAGEALLOC
3503 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3504 {
3505 	if (debug_pagealloc_enabled_static())
3506 		__kernel_map_pages(page, numpages, 1);
3507 }
3508 
3509 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3510 {
3511 	if (debug_pagealloc_enabled_static())
3512 		__kernel_map_pages(page, numpages, 0);
3513 }
3514 
3515 extern unsigned int _debug_guardpage_minorder;
3516 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3517 
3518 static inline unsigned int debug_guardpage_minorder(void)
3519 {
3520 	return _debug_guardpage_minorder;
3521 }
3522 
3523 static inline bool debug_guardpage_enabled(void)
3524 {
3525 	return static_branch_unlikely(&_debug_guardpage_enabled);
3526 }
3527 
3528 static inline bool page_is_guard(struct page *page)
3529 {
3530 	if (!debug_guardpage_enabled())
3531 		return false;
3532 
3533 	return PageGuard(page);
3534 }
3535 
3536 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3537 		      int migratetype);
3538 static inline bool set_page_guard(struct zone *zone, struct page *page,
3539 				  unsigned int order, int migratetype)
3540 {
3541 	if (!debug_guardpage_enabled())
3542 		return false;
3543 	return __set_page_guard(zone, page, order, migratetype);
3544 }
3545 
3546 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3547 			int migratetype);
3548 static inline void clear_page_guard(struct zone *zone, struct page *page,
3549 				    unsigned int order, int migratetype)
3550 {
3551 	if (!debug_guardpage_enabled())
3552 		return;
3553 	__clear_page_guard(zone, page, order, migratetype);
3554 }
3555 
3556 #else	/* CONFIG_DEBUG_PAGEALLOC */
3557 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3558 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3559 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3560 static inline bool debug_guardpage_enabled(void) { return false; }
3561 static inline bool page_is_guard(struct page *page) { return false; }
3562 static inline bool set_page_guard(struct zone *zone, struct page *page,
3563 			unsigned int order, int migratetype) { return false; }
3564 static inline void clear_page_guard(struct zone *zone, struct page *page,
3565 				unsigned int order, int migratetype) {}
3566 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3567 
3568 #ifdef __HAVE_ARCH_GATE_AREA
3569 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3570 extern int in_gate_area_no_mm(unsigned long addr);
3571 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3572 #else
3573 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3574 {
3575 	return NULL;
3576 }
3577 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3578 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3579 {
3580 	return 0;
3581 }
3582 #endif	/* __HAVE_ARCH_GATE_AREA */
3583 
3584 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3585 
3586 #ifdef CONFIG_SYSCTL
3587 extern int sysctl_drop_caches;
3588 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3589 		loff_t *);
3590 #endif
3591 
3592 void drop_slab(void);
3593 
3594 #ifndef CONFIG_MMU
3595 #define randomize_va_space 0
3596 #else
3597 extern int randomize_va_space;
3598 #endif
3599 
3600 const char * arch_vma_name(struct vm_area_struct *vma);
3601 #ifdef CONFIG_MMU
3602 void print_vma_addr(char *prefix, unsigned long rip);
3603 #else
3604 static inline void print_vma_addr(char *prefix, unsigned long rip)
3605 {
3606 }
3607 #endif
3608 
3609 void *sparse_buffer_alloc(unsigned long size);
3610 struct page * __populate_section_memmap(unsigned long pfn,
3611 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3612 		struct dev_pagemap *pgmap);
3613 void pmd_init(void *addr);
3614 void pud_init(void *addr);
3615 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3616 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3617 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3618 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3619 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3620 			    struct vmem_altmap *altmap, struct page *reuse);
3621 void *vmemmap_alloc_block(unsigned long size, int node);
3622 struct vmem_altmap;
3623 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3624 			      struct vmem_altmap *altmap);
3625 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3626 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3627 		     unsigned long addr, unsigned long next);
3628 int vmemmap_check_pmd(pmd_t *pmd, int node,
3629 		      unsigned long addr, unsigned long next);
3630 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3631 			       int node, struct vmem_altmap *altmap);
3632 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3633 			       int node, struct vmem_altmap *altmap);
3634 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3635 		struct vmem_altmap *altmap);
3636 void vmemmap_populate_print_last(void);
3637 #ifdef CONFIG_MEMORY_HOTPLUG
3638 void vmemmap_free(unsigned long start, unsigned long end,
3639 		struct vmem_altmap *altmap);
3640 #endif
3641 
3642 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3643 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3644 					   struct dev_pagemap *pgmap)
3645 {
3646 	return is_power_of_2(sizeof(struct page)) &&
3647 		pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3648 }
3649 #else
3650 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3651 					   struct dev_pagemap *pgmap)
3652 {
3653 	return false;
3654 }
3655 #endif
3656 
3657 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3658 				  unsigned long nr_pages);
3659 
3660 enum mf_flags {
3661 	MF_COUNT_INCREASED = 1 << 0,
3662 	MF_ACTION_REQUIRED = 1 << 1,
3663 	MF_MUST_KILL = 1 << 2,
3664 	MF_SOFT_OFFLINE = 1 << 3,
3665 	MF_UNPOISON = 1 << 4,
3666 	MF_SW_SIMULATED = 1 << 5,
3667 	MF_NO_RETRY = 1 << 6,
3668 };
3669 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3670 		      unsigned long count, int mf_flags);
3671 extern int memory_failure(unsigned long pfn, int flags);
3672 extern void memory_failure_queue_kick(int cpu);
3673 extern int unpoison_memory(unsigned long pfn);
3674 extern void shake_page(struct page *p);
3675 extern atomic_long_t num_poisoned_pages __read_mostly;
3676 extern int soft_offline_page(unsigned long pfn, int flags);
3677 #ifdef CONFIG_MEMORY_FAILURE
3678 /*
3679  * Sysfs entries for memory failure handling statistics.
3680  */
3681 extern const struct attribute_group memory_failure_attr_group;
3682 extern void memory_failure_queue(unsigned long pfn, int flags);
3683 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3684 					bool *migratable_cleared);
3685 void num_poisoned_pages_inc(unsigned long pfn);
3686 void num_poisoned_pages_sub(unsigned long pfn, long i);
3687 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3688 #else
3689 static inline void memory_failure_queue(unsigned long pfn, int flags)
3690 {
3691 }
3692 
3693 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3694 					bool *migratable_cleared)
3695 {
3696 	return 0;
3697 }
3698 
3699 static inline void num_poisoned_pages_inc(unsigned long pfn)
3700 {
3701 }
3702 
3703 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3704 {
3705 }
3706 #endif
3707 
3708 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3709 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3710 		     struct vm_area_struct *vma, struct list_head *to_kill,
3711 		     unsigned long ksm_addr);
3712 #endif
3713 
3714 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3715 extern void memblk_nr_poison_inc(unsigned long pfn);
3716 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3717 #else
3718 static inline void memblk_nr_poison_inc(unsigned long pfn)
3719 {
3720 }
3721 
3722 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3723 {
3724 }
3725 #endif
3726 
3727 #ifndef arch_memory_failure
3728 static inline int arch_memory_failure(unsigned long pfn, int flags)
3729 {
3730 	return -ENXIO;
3731 }
3732 #endif
3733 
3734 #ifndef arch_is_platform_page
3735 static inline bool arch_is_platform_page(u64 paddr)
3736 {
3737 	return false;
3738 }
3739 #endif
3740 
3741 /*
3742  * Error handlers for various types of pages.
3743  */
3744 enum mf_result {
3745 	MF_IGNORED,	/* Error: cannot be handled */
3746 	MF_FAILED,	/* Error: handling failed */
3747 	MF_DELAYED,	/* Will be handled later */
3748 	MF_RECOVERED,	/* Successfully recovered */
3749 };
3750 
3751 enum mf_action_page_type {
3752 	MF_MSG_KERNEL,
3753 	MF_MSG_KERNEL_HIGH_ORDER,
3754 	MF_MSG_SLAB,
3755 	MF_MSG_DIFFERENT_COMPOUND,
3756 	MF_MSG_HUGE,
3757 	MF_MSG_FREE_HUGE,
3758 	MF_MSG_UNMAP_FAILED,
3759 	MF_MSG_DIRTY_SWAPCACHE,
3760 	MF_MSG_CLEAN_SWAPCACHE,
3761 	MF_MSG_DIRTY_MLOCKED_LRU,
3762 	MF_MSG_CLEAN_MLOCKED_LRU,
3763 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3764 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3765 	MF_MSG_DIRTY_LRU,
3766 	MF_MSG_CLEAN_LRU,
3767 	MF_MSG_TRUNCATED_LRU,
3768 	MF_MSG_BUDDY,
3769 	MF_MSG_DAX,
3770 	MF_MSG_UNSPLIT_THP,
3771 	MF_MSG_UNKNOWN,
3772 };
3773 
3774 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3775 extern void clear_huge_page(struct page *page,
3776 			    unsigned long addr_hint,
3777 			    unsigned int pages_per_huge_page);
3778 int copy_user_large_folio(struct folio *dst, struct folio *src,
3779 			  unsigned long addr_hint,
3780 			  struct vm_area_struct *vma);
3781 long copy_folio_from_user(struct folio *dst_folio,
3782 			   const void __user *usr_src,
3783 			   bool allow_pagefault);
3784 
3785 /**
3786  * vma_is_special_huge - Are transhuge page-table entries considered special?
3787  * @vma: Pointer to the struct vm_area_struct to consider
3788  *
3789  * Whether transhuge page-table entries are considered "special" following
3790  * the definition in vm_normal_page().
3791  *
3792  * Return: true if transhuge page-table entries should be considered special,
3793  * false otherwise.
3794  */
3795 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3796 {
3797 	return vma_is_dax(vma) || (vma->vm_file &&
3798 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3799 }
3800 
3801 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3802 
3803 #if MAX_NUMNODES > 1
3804 void __init setup_nr_node_ids(void);
3805 #else
3806 static inline void setup_nr_node_ids(void) {}
3807 #endif
3808 
3809 extern int memcmp_pages(struct page *page1, struct page *page2);
3810 
3811 static inline int pages_identical(struct page *page1, struct page *page2)
3812 {
3813 	return !memcmp_pages(page1, page2);
3814 }
3815 
3816 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3817 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3818 						pgoff_t first_index, pgoff_t nr,
3819 						pgoff_t bitmap_pgoff,
3820 						unsigned long *bitmap,
3821 						pgoff_t *start,
3822 						pgoff_t *end);
3823 
3824 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3825 				      pgoff_t first_index, pgoff_t nr);
3826 #endif
3827 
3828 extern int sysctl_nr_trim_pages;
3829 
3830 #ifdef CONFIG_PRINTK
3831 void mem_dump_obj(void *object);
3832 #else
3833 static inline void mem_dump_obj(void *object) {}
3834 #endif
3835 
3836 /**
3837  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3838  * @seals: the seals to check
3839  * @vma: the vma to operate on
3840  *
3841  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3842  * the vma flags.  Return 0 if check pass, or <0 for errors.
3843  */
3844 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3845 {
3846 	if (seals & F_SEAL_FUTURE_WRITE) {
3847 		/*
3848 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3849 		 * "future write" seal active.
3850 		 */
3851 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3852 			return -EPERM;
3853 
3854 		/*
3855 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3856 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3857 		 * revert protections on such mappings. Do this only for shared
3858 		 * mappings. For private mappings, don't need to mask
3859 		 * VM_MAYWRITE as we still want them to be COW-writable.
3860 		 */
3861 		if (vma->vm_flags & VM_SHARED)
3862 			vm_flags_clear(vma, VM_MAYWRITE);
3863 	}
3864 
3865 	return 0;
3866 }
3867 
3868 #ifdef CONFIG_ANON_VMA_NAME
3869 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3870 			  unsigned long len_in,
3871 			  struct anon_vma_name *anon_name);
3872 #else
3873 static inline int
3874 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3875 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3876 	return 0;
3877 }
3878 #endif
3879 
3880 #ifdef CONFIG_UNACCEPTED_MEMORY
3881 
3882 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
3883 void accept_memory(phys_addr_t start, phys_addr_t end);
3884 
3885 #else
3886 
3887 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
3888 						    phys_addr_t end)
3889 {
3890 	return false;
3891 }
3892 
3893 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
3894 {
3895 }
3896 
3897 #endif
3898 
3899 #endif /* _LINUX_MM_H */
3900