1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 31 struct mempolicy; 32 struct anon_vma; 33 struct anon_vma_chain; 34 struct file_ra_state; 35 struct user_struct; 36 struct writeback_control; 37 struct bdi_writeback; 38 39 void init_mm_internals(void); 40 41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42 extern unsigned long max_mapnr; 43 44 static inline void set_max_mapnr(unsigned long limit) 45 { 46 max_mapnr = limit; 47 } 48 #else 49 static inline void set_max_mapnr(unsigned long limit) { } 50 #endif 51 52 extern atomic_long_t _totalram_pages; 53 static inline unsigned long totalram_pages(void) 54 { 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56 } 57 58 static inline void totalram_pages_inc(void) 59 { 60 atomic_long_inc(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_dec(void) 64 { 65 atomic_long_dec(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_add(long count) 69 { 70 atomic_long_add(count, &_totalram_pages); 71 } 72 73 static inline void totalram_pages_set(long val) 74 { 75 atomic_long_set(&_totalram_pages, val); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/pgtable.h> 100 #include <asm/processor.h> 101 102 /* 103 * Architectures that support memory tagging (assigning tags to memory regions, 104 * embedding these tags into addresses that point to these memory regions, and 105 * checking that the memory and the pointer tags match on memory accesses) 106 * redefine this macro to strip tags from pointers. 107 * It's defined as noop for arcitectures that don't support memory tagging. 108 */ 109 #ifndef untagged_addr 110 #define untagged_addr(addr) (addr) 111 #endif 112 113 #ifndef __pa_symbol 114 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 115 #endif 116 117 #ifndef page_to_virt 118 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 119 #endif 120 121 #ifndef lm_alias 122 #define lm_alias(x) __va(__pa_symbol(x)) 123 #endif 124 125 /* 126 * To prevent common memory management code establishing 127 * a zero page mapping on a read fault. 128 * This macro should be defined within <asm/pgtable.h>. 129 * s390 does this to prevent multiplexing of hardware bits 130 * related to the physical page in case of virtualization. 131 */ 132 #ifndef mm_forbids_zeropage 133 #define mm_forbids_zeropage(X) (0) 134 #endif 135 136 /* 137 * On some architectures it is expensive to call memset() for small sizes. 138 * If an architecture decides to implement their own version of 139 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 140 * define their own version of this macro in <asm/pgtable.h> 141 */ 142 #if BITS_PER_LONG == 64 143 /* This function must be updated when the size of struct page grows above 80 144 * or reduces below 56. The idea that compiler optimizes out switch() 145 * statement, and only leaves move/store instructions. Also the compiler can 146 * combine write statments if they are both assignments and can be reordered, 147 * this can result in several of the writes here being dropped. 148 */ 149 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 150 static inline void __mm_zero_struct_page(struct page *page) 151 { 152 unsigned long *_pp = (void *)page; 153 154 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 155 BUILD_BUG_ON(sizeof(struct page) & 7); 156 BUILD_BUG_ON(sizeof(struct page) < 56); 157 BUILD_BUG_ON(sizeof(struct page) > 80); 158 159 switch (sizeof(struct page)) { 160 case 80: 161 _pp[9] = 0; /* fallthrough */ 162 case 72: 163 _pp[8] = 0; /* fallthrough */ 164 case 64: 165 _pp[7] = 0; /* fallthrough */ 166 case 56: 167 _pp[6] = 0; 168 _pp[5] = 0; 169 _pp[4] = 0; 170 _pp[3] = 0; 171 _pp[2] = 0; 172 _pp[1] = 0; 173 _pp[0] = 0; 174 } 175 } 176 #else 177 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 178 #endif 179 180 /* 181 * Default maximum number of active map areas, this limits the number of vmas 182 * per mm struct. Users can overwrite this number by sysctl but there is a 183 * problem. 184 * 185 * When a program's coredump is generated as ELF format, a section is created 186 * per a vma. In ELF, the number of sections is represented in unsigned short. 187 * This means the number of sections should be smaller than 65535 at coredump. 188 * Because the kernel adds some informative sections to a image of program at 189 * generating coredump, we need some margin. The number of extra sections is 190 * 1-3 now and depends on arch. We use "5" as safe margin, here. 191 * 192 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 193 * not a hard limit any more. Although some userspace tools can be surprised by 194 * that. 195 */ 196 #define MAPCOUNT_ELF_CORE_MARGIN (5) 197 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 198 199 extern int sysctl_max_map_count; 200 201 extern unsigned long sysctl_user_reserve_kbytes; 202 extern unsigned long sysctl_admin_reserve_kbytes; 203 204 extern int sysctl_overcommit_memory; 205 extern int sysctl_overcommit_ratio; 206 extern unsigned long sysctl_overcommit_kbytes; 207 208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 209 size_t *, loff_t *); 210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 211 size_t *, loff_t *); 212 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215 /* to align the pointer to the (next) page boundary */ 216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223 /* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234 void vm_area_free(struct vm_area_struct *); 235 236 #ifndef CONFIG_MMU 237 extern struct rb_root nommu_region_tree; 238 extern struct rw_semaphore nommu_region_sem; 239 240 extern unsigned int kobjsize(const void *objp); 241 #endif 242 243 /* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247 #define VM_NONE 0x00000000 248 249 #define VM_READ 0x00000001 /* currently active flags */ 250 #define VM_WRITE 0x00000002 251 #define VM_EXEC 0x00000004 252 #define VM_SHARED 0x00000008 253 254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256 #define VM_MAYWRITE 0x00000020 257 #define VM_MAYEXEC 0x00000040 258 #define VM_MAYSHARE 0x00000080 259 260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266 #define VM_LOCKED 0x00002000 267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284 #ifdef CONFIG_MEM_SOFT_DIRTY 285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286 #else 287 # define VM_SOFTDIRTY 0 288 #endif 289 290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308 #ifdef CONFIG_ARCH_HAS_PKEYS 309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314 #ifdef CONFIG_PPC 315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316 #else 317 # define VM_PKEY_BIT4 0 318 #endif 319 #endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321 #if defined(CONFIG_X86) 322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323 #elif defined(CONFIG_PPC) 324 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 325 #elif defined(CONFIG_PARISC) 326 # define VM_GROWSUP VM_ARCH_1 327 #elif defined(CONFIG_IA64) 328 # define VM_GROWSUP VM_ARCH_1 329 #elif defined(CONFIG_SPARC64) 330 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 331 # define VM_ARCH_CLEAR VM_SPARC_ADI 332 #elif !defined(CONFIG_MMU) 333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334 #endif 335 336 #if defined(CONFIG_X86_INTEL_MPX) 337 /* MPX specific bounds table or bounds directory */ 338 # define VM_MPX VM_HIGH_ARCH_4 339 #else 340 # define VM_MPX VM_NONE 341 #endif 342 343 #ifndef VM_GROWSUP 344 # define VM_GROWSUP VM_NONE 345 #endif 346 347 /* Bits set in the VMA until the stack is in its final location */ 348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 352 #endif 353 354 #ifdef CONFIG_STACK_GROWSUP 355 #define VM_STACK VM_GROWSUP 356 #else 357 #define VM_STACK VM_GROWSDOWN 358 #endif 359 360 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 361 362 /* 363 * Special vmas that are non-mergable, non-mlock()able. 364 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 365 */ 366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 367 368 /* This mask defines which mm->def_flags a process can inherit its parent */ 369 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 370 371 /* This mask is used to clear all the VMA flags used by mlock */ 372 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 373 374 /* Arch-specific flags to clear when updating VM flags on protection change */ 375 #ifndef VM_ARCH_CLEAR 376 # define VM_ARCH_CLEAR VM_NONE 377 #endif 378 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 379 380 /* 381 * mapping from the currently active vm_flags protection bits (the 382 * low four bits) to a page protection mask.. 383 */ 384 extern pgprot_t protection_map[16]; 385 386 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 387 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 388 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 389 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 390 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 391 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 392 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 393 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 394 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 395 396 #define FAULT_FLAG_TRACE \ 397 { FAULT_FLAG_WRITE, "WRITE" }, \ 398 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 399 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 400 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 401 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 402 { FAULT_FLAG_TRIED, "TRIED" }, \ 403 { FAULT_FLAG_USER, "USER" }, \ 404 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 405 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 406 407 /* 408 * vm_fault is filled by the the pagefault handler and passed to the vma's 409 * ->fault function. The vma's ->fault is responsible for returning a bitmask 410 * of VM_FAULT_xxx flags that give details about how the fault was handled. 411 * 412 * MM layer fills up gfp_mask for page allocations but fault handler might 413 * alter it if its implementation requires a different allocation context. 414 * 415 * pgoff should be used in favour of virtual_address, if possible. 416 */ 417 struct vm_fault { 418 struct vm_area_struct *vma; /* Target VMA */ 419 unsigned int flags; /* FAULT_FLAG_xxx flags */ 420 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 421 pgoff_t pgoff; /* Logical page offset based on vma */ 422 unsigned long address; /* Faulting virtual address */ 423 pmd_t *pmd; /* Pointer to pmd entry matching 424 * the 'address' */ 425 pud_t *pud; /* Pointer to pud entry matching 426 * the 'address' 427 */ 428 pte_t orig_pte; /* Value of PTE at the time of fault */ 429 430 struct page *cow_page; /* Page handler may use for COW fault */ 431 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 432 struct page *page; /* ->fault handlers should return a 433 * page here, unless VM_FAULT_NOPAGE 434 * is set (which is also implied by 435 * VM_FAULT_ERROR). 436 */ 437 /* These three entries are valid only while holding ptl lock */ 438 pte_t *pte; /* Pointer to pte entry matching 439 * the 'address'. NULL if the page 440 * table hasn't been allocated. 441 */ 442 spinlock_t *ptl; /* Page table lock. 443 * Protects pte page table if 'pte' 444 * is not NULL, otherwise pmd. 445 */ 446 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 447 * vm_ops->map_pages() calls 448 * alloc_set_pte() from atomic context. 449 * do_fault_around() pre-allocates 450 * page table to avoid allocation from 451 * atomic context. 452 */ 453 }; 454 455 /* page entry size for vm->huge_fault() */ 456 enum page_entry_size { 457 PE_SIZE_PTE = 0, 458 PE_SIZE_PMD, 459 PE_SIZE_PUD, 460 }; 461 462 /* 463 * These are the virtual MM functions - opening of an area, closing and 464 * unmapping it (needed to keep files on disk up-to-date etc), pointer 465 * to the functions called when a no-page or a wp-page exception occurs. 466 */ 467 struct vm_operations_struct { 468 void (*open)(struct vm_area_struct * area); 469 void (*close)(struct vm_area_struct * area); 470 int (*split)(struct vm_area_struct * area, unsigned long addr); 471 int (*mremap)(struct vm_area_struct * area); 472 vm_fault_t (*fault)(struct vm_fault *vmf); 473 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 474 enum page_entry_size pe_size); 475 void (*map_pages)(struct vm_fault *vmf, 476 pgoff_t start_pgoff, pgoff_t end_pgoff); 477 unsigned long (*pagesize)(struct vm_area_struct * area); 478 479 /* notification that a previously read-only page is about to become 480 * writable, if an error is returned it will cause a SIGBUS */ 481 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 482 483 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 484 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 485 486 /* called by access_process_vm when get_user_pages() fails, typically 487 * for use by special VMAs that can switch between memory and hardware 488 */ 489 int (*access)(struct vm_area_struct *vma, unsigned long addr, 490 void *buf, int len, int write); 491 492 /* Called by the /proc/PID/maps code to ask the vma whether it 493 * has a special name. Returning non-NULL will also cause this 494 * vma to be dumped unconditionally. */ 495 const char *(*name)(struct vm_area_struct *vma); 496 497 #ifdef CONFIG_NUMA 498 /* 499 * set_policy() op must add a reference to any non-NULL @new mempolicy 500 * to hold the policy upon return. Caller should pass NULL @new to 501 * remove a policy and fall back to surrounding context--i.e. do not 502 * install a MPOL_DEFAULT policy, nor the task or system default 503 * mempolicy. 504 */ 505 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 506 507 /* 508 * get_policy() op must add reference [mpol_get()] to any policy at 509 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 510 * in mm/mempolicy.c will do this automatically. 511 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 512 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 513 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 514 * must return NULL--i.e., do not "fallback" to task or system default 515 * policy. 516 */ 517 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 518 unsigned long addr); 519 #endif 520 /* 521 * Called by vm_normal_page() for special PTEs to find the 522 * page for @addr. This is useful if the default behavior 523 * (using pte_page()) would not find the correct page. 524 */ 525 struct page *(*find_special_page)(struct vm_area_struct *vma, 526 unsigned long addr); 527 }; 528 529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 530 { 531 static const struct vm_operations_struct dummy_vm_ops = {}; 532 533 memset(vma, 0, sizeof(*vma)); 534 vma->vm_mm = mm; 535 vma->vm_ops = &dummy_vm_ops; 536 INIT_LIST_HEAD(&vma->anon_vma_chain); 537 } 538 539 static inline void vma_set_anonymous(struct vm_area_struct *vma) 540 { 541 vma->vm_ops = NULL; 542 } 543 544 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 545 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 546 547 struct mmu_gather; 548 struct inode; 549 550 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 551 static inline int pmd_devmap(pmd_t pmd) 552 { 553 return 0; 554 } 555 static inline int pud_devmap(pud_t pud) 556 { 557 return 0; 558 } 559 static inline int pgd_devmap(pgd_t pgd) 560 { 561 return 0; 562 } 563 #endif 564 565 /* 566 * FIXME: take this include out, include page-flags.h in 567 * files which need it (119 of them) 568 */ 569 #include <linux/page-flags.h> 570 #include <linux/huge_mm.h> 571 572 /* 573 * Methods to modify the page usage count. 574 * 575 * What counts for a page usage: 576 * - cache mapping (page->mapping) 577 * - private data (page->private) 578 * - page mapped in a task's page tables, each mapping 579 * is counted separately 580 * 581 * Also, many kernel routines increase the page count before a critical 582 * routine so they can be sure the page doesn't go away from under them. 583 */ 584 585 /* 586 * Drop a ref, return true if the refcount fell to zero (the page has no users) 587 */ 588 static inline int put_page_testzero(struct page *page) 589 { 590 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 591 return page_ref_dec_and_test(page); 592 } 593 594 /* 595 * Try to grab a ref unless the page has a refcount of zero, return false if 596 * that is the case. 597 * This can be called when MMU is off so it must not access 598 * any of the virtual mappings. 599 */ 600 static inline int get_page_unless_zero(struct page *page) 601 { 602 return page_ref_add_unless(page, 1, 0); 603 } 604 605 extern int page_is_ram(unsigned long pfn); 606 607 enum { 608 REGION_INTERSECTS, 609 REGION_DISJOINT, 610 REGION_MIXED, 611 }; 612 613 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 614 unsigned long desc); 615 616 /* Support for virtually mapped pages */ 617 struct page *vmalloc_to_page(const void *addr); 618 unsigned long vmalloc_to_pfn(const void *addr); 619 620 /* 621 * Determine if an address is within the vmalloc range 622 * 623 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 624 * is no special casing required. 625 */ 626 static inline bool is_vmalloc_addr(const void *x) 627 { 628 #ifdef CONFIG_MMU 629 unsigned long addr = (unsigned long)x; 630 631 return addr >= VMALLOC_START && addr < VMALLOC_END; 632 #else 633 return false; 634 #endif 635 } 636 637 #ifndef is_ioremap_addr 638 #define is_ioremap_addr(x) is_vmalloc_addr(x) 639 #endif 640 641 #ifdef CONFIG_MMU 642 extern int is_vmalloc_or_module_addr(const void *x); 643 #else 644 static inline int is_vmalloc_or_module_addr(const void *x) 645 { 646 return 0; 647 } 648 #endif 649 650 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 651 static inline void *kvmalloc(size_t size, gfp_t flags) 652 { 653 return kvmalloc_node(size, flags, NUMA_NO_NODE); 654 } 655 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 656 { 657 return kvmalloc_node(size, flags | __GFP_ZERO, node); 658 } 659 static inline void *kvzalloc(size_t size, gfp_t flags) 660 { 661 return kvmalloc(size, flags | __GFP_ZERO); 662 } 663 664 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 665 { 666 size_t bytes; 667 668 if (unlikely(check_mul_overflow(n, size, &bytes))) 669 return NULL; 670 671 return kvmalloc(bytes, flags); 672 } 673 674 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 675 { 676 return kvmalloc_array(n, size, flags | __GFP_ZERO); 677 } 678 679 extern void kvfree(const void *addr); 680 681 static inline atomic_t *compound_mapcount_ptr(struct page *page) 682 { 683 return &page[1].compound_mapcount; 684 } 685 686 static inline int compound_mapcount(struct page *page) 687 { 688 VM_BUG_ON_PAGE(!PageCompound(page), page); 689 page = compound_head(page); 690 return atomic_read(compound_mapcount_ptr(page)) + 1; 691 } 692 693 /* 694 * The atomic page->_mapcount, starts from -1: so that transitions 695 * both from it and to it can be tracked, using atomic_inc_and_test 696 * and atomic_add_negative(-1). 697 */ 698 static inline void page_mapcount_reset(struct page *page) 699 { 700 atomic_set(&(page)->_mapcount, -1); 701 } 702 703 int __page_mapcount(struct page *page); 704 705 static inline int page_mapcount(struct page *page) 706 { 707 VM_BUG_ON_PAGE(PageSlab(page), page); 708 709 if (unlikely(PageCompound(page))) 710 return __page_mapcount(page); 711 return atomic_read(&page->_mapcount) + 1; 712 } 713 714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 715 int total_mapcount(struct page *page); 716 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 717 #else 718 static inline int total_mapcount(struct page *page) 719 { 720 return page_mapcount(page); 721 } 722 static inline int page_trans_huge_mapcount(struct page *page, 723 int *total_mapcount) 724 { 725 int mapcount = page_mapcount(page); 726 if (total_mapcount) 727 *total_mapcount = mapcount; 728 return mapcount; 729 } 730 #endif 731 732 static inline struct page *virt_to_head_page(const void *x) 733 { 734 struct page *page = virt_to_page(x); 735 736 return compound_head(page); 737 } 738 739 void __put_page(struct page *page); 740 741 void put_pages_list(struct list_head *pages); 742 743 void split_page(struct page *page, unsigned int order); 744 745 /* 746 * Compound pages have a destructor function. Provide a 747 * prototype for that function and accessor functions. 748 * These are _only_ valid on the head of a compound page. 749 */ 750 typedef void compound_page_dtor(struct page *); 751 752 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 753 enum compound_dtor_id { 754 NULL_COMPOUND_DTOR, 755 COMPOUND_PAGE_DTOR, 756 #ifdef CONFIG_HUGETLB_PAGE 757 HUGETLB_PAGE_DTOR, 758 #endif 759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 760 TRANSHUGE_PAGE_DTOR, 761 #endif 762 NR_COMPOUND_DTORS, 763 }; 764 extern compound_page_dtor * const compound_page_dtors[]; 765 766 static inline void set_compound_page_dtor(struct page *page, 767 enum compound_dtor_id compound_dtor) 768 { 769 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 770 page[1].compound_dtor = compound_dtor; 771 } 772 773 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 774 { 775 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 776 return compound_page_dtors[page[1].compound_dtor]; 777 } 778 779 static inline unsigned int compound_order(struct page *page) 780 { 781 if (!PageHead(page)) 782 return 0; 783 return page[1].compound_order; 784 } 785 786 static inline void set_compound_order(struct page *page, unsigned int order) 787 { 788 page[1].compound_order = order; 789 } 790 791 void free_compound_page(struct page *page); 792 793 #ifdef CONFIG_MMU 794 /* 795 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 796 * servicing faults for write access. In the normal case, do always want 797 * pte_mkwrite. But get_user_pages can cause write faults for mappings 798 * that do not have writing enabled, when used by access_process_vm. 799 */ 800 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 801 { 802 if (likely(vma->vm_flags & VM_WRITE)) 803 pte = pte_mkwrite(pte); 804 return pte; 805 } 806 807 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 808 struct page *page); 809 vm_fault_t finish_fault(struct vm_fault *vmf); 810 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 811 #endif 812 813 /* 814 * Multiple processes may "see" the same page. E.g. for untouched 815 * mappings of /dev/null, all processes see the same page full of 816 * zeroes, and text pages of executables and shared libraries have 817 * only one copy in memory, at most, normally. 818 * 819 * For the non-reserved pages, page_count(page) denotes a reference count. 820 * page_count() == 0 means the page is free. page->lru is then used for 821 * freelist management in the buddy allocator. 822 * page_count() > 0 means the page has been allocated. 823 * 824 * Pages are allocated by the slab allocator in order to provide memory 825 * to kmalloc and kmem_cache_alloc. In this case, the management of the 826 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 827 * unless a particular usage is carefully commented. (the responsibility of 828 * freeing the kmalloc memory is the caller's, of course). 829 * 830 * A page may be used by anyone else who does a __get_free_page(). 831 * In this case, page_count still tracks the references, and should only 832 * be used through the normal accessor functions. The top bits of page->flags 833 * and page->virtual store page management information, but all other fields 834 * are unused and could be used privately, carefully. The management of this 835 * page is the responsibility of the one who allocated it, and those who have 836 * subsequently been given references to it. 837 * 838 * The other pages (we may call them "pagecache pages") are completely 839 * managed by the Linux memory manager: I/O, buffers, swapping etc. 840 * The following discussion applies only to them. 841 * 842 * A pagecache page contains an opaque `private' member, which belongs to the 843 * page's address_space. Usually, this is the address of a circular list of 844 * the page's disk buffers. PG_private must be set to tell the VM to call 845 * into the filesystem to release these pages. 846 * 847 * A page may belong to an inode's memory mapping. In this case, page->mapping 848 * is the pointer to the inode, and page->index is the file offset of the page, 849 * in units of PAGE_SIZE. 850 * 851 * If pagecache pages are not associated with an inode, they are said to be 852 * anonymous pages. These may become associated with the swapcache, and in that 853 * case PG_swapcache is set, and page->private is an offset into the swapcache. 854 * 855 * In either case (swapcache or inode backed), the pagecache itself holds one 856 * reference to the page. Setting PG_private should also increment the 857 * refcount. The each user mapping also has a reference to the page. 858 * 859 * The pagecache pages are stored in a per-mapping radix tree, which is 860 * rooted at mapping->i_pages, and indexed by offset. 861 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 862 * lists, we instead now tag pages as dirty/writeback in the radix tree. 863 * 864 * All pagecache pages may be subject to I/O: 865 * - inode pages may need to be read from disk, 866 * - inode pages which have been modified and are MAP_SHARED may need 867 * to be written back to the inode on disk, 868 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 869 * modified may need to be swapped out to swap space and (later) to be read 870 * back into memory. 871 */ 872 873 /* 874 * The zone field is never updated after free_area_init_core() 875 * sets it, so none of the operations on it need to be atomic. 876 */ 877 878 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 879 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 880 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 881 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 882 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 883 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 884 885 /* 886 * Define the bit shifts to access each section. For non-existent 887 * sections we define the shift as 0; that plus a 0 mask ensures 888 * the compiler will optimise away reference to them. 889 */ 890 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 891 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 892 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 893 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 894 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 895 896 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 897 #ifdef NODE_NOT_IN_PAGE_FLAGS 898 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 899 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 900 SECTIONS_PGOFF : ZONES_PGOFF) 901 #else 902 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 903 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 904 NODES_PGOFF : ZONES_PGOFF) 905 #endif 906 907 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 908 909 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 910 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 911 #endif 912 913 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 914 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 915 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 916 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 917 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 918 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 919 920 static inline enum zone_type page_zonenum(const struct page *page) 921 { 922 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 923 } 924 925 #ifdef CONFIG_ZONE_DEVICE 926 static inline bool is_zone_device_page(const struct page *page) 927 { 928 return page_zonenum(page) == ZONE_DEVICE; 929 } 930 extern void memmap_init_zone_device(struct zone *, unsigned long, 931 unsigned long, struct dev_pagemap *); 932 #else 933 static inline bool is_zone_device_page(const struct page *page) 934 { 935 return false; 936 } 937 #endif 938 939 #ifdef CONFIG_DEV_PAGEMAP_OPS 940 void __put_devmap_managed_page(struct page *page); 941 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 942 static inline bool put_devmap_managed_page(struct page *page) 943 { 944 if (!static_branch_unlikely(&devmap_managed_key)) 945 return false; 946 if (!is_zone_device_page(page)) 947 return false; 948 switch (page->pgmap->type) { 949 case MEMORY_DEVICE_PRIVATE: 950 case MEMORY_DEVICE_FS_DAX: 951 __put_devmap_managed_page(page); 952 return true; 953 default: 954 break; 955 } 956 return false; 957 } 958 959 static inline bool is_device_private_page(const struct page *page) 960 { 961 return is_zone_device_page(page) && 962 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 963 } 964 965 #ifdef CONFIG_PCI_P2PDMA 966 static inline bool is_pci_p2pdma_page(const struct page *page) 967 { 968 return is_zone_device_page(page) && 969 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 970 } 971 #else /* CONFIG_PCI_P2PDMA */ 972 static inline bool is_pci_p2pdma_page(const struct page *page) 973 { 974 return false; 975 } 976 #endif /* CONFIG_PCI_P2PDMA */ 977 978 #else /* CONFIG_DEV_PAGEMAP_OPS */ 979 static inline bool put_devmap_managed_page(struct page *page) 980 { 981 return false; 982 } 983 984 static inline bool is_device_private_page(const struct page *page) 985 { 986 return false; 987 } 988 989 static inline bool is_pci_p2pdma_page(const struct page *page) 990 { 991 return false; 992 } 993 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 994 995 /* 127: arbitrary random number, small enough to assemble well */ 996 #define page_ref_zero_or_close_to_overflow(page) \ 997 ((unsigned int) page_ref_count(page) + 127u <= 127u) 998 999 static inline void get_page(struct page *page) 1000 { 1001 page = compound_head(page); 1002 /* 1003 * Getting a normal page or the head of a compound page 1004 * requires to already have an elevated page->_refcount. 1005 */ 1006 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1007 page_ref_inc(page); 1008 } 1009 1010 static inline __must_check bool try_get_page(struct page *page) 1011 { 1012 page = compound_head(page); 1013 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1014 return false; 1015 page_ref_inc(page); 1016 return true; 1017 } 1018 1019 static inline void put_page(struct page *page) 1020 { 1021 page = compound_head(page); 1022 1023 /* 1024 * For devmap managed pages we need to catch refcount transition from 1025 * 2 to 1, when refcount reach one it means the page is free and we 1026 * need to inform the device driver through callback. See 1027 * include/linux/memremap.h and HMM for details. 1028 */ 1029 if (put_devmap_managed_page(page)) 1030 return; 1031 1032 if (put_page_testzero(page)) 1033 __put_page(page); 1034 } 1035 1036 /** 1037 * put_user_page() - release a gup-pinned page 1038 * @page: pointer to page to be released 1039 * 1040 * Pages that were pinned via get_user_pages*() must be released via 1041 * either put_user_page(), or one of the put_user_pages*() routines 1042 * below. This is so that eventually, pages that are pinned via 1043 * get_user_pages*() can be separately tracked and uniquely handled. In 1044 * particular, interactions with RDMA and filesystems need special 1045 * handling. 1046 * 1047 * put_user_page() and put_page() are not interchangeable, despite this early 1048 * implementation that makes them look the same. put_user_page() calls must 1049 * be perfectly matched up with get_user_page() calls. 1050 */ 1051 static inline void put_user_page(struct page *page) 1052 { 1053 put_page(page); 1054 } 1055 1056 void put_user_pages_dirty(struct page **pages, unsigned long npages); 1057 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages); 1058 void put_user_pages(struct page **pages, unsigned long npages); 1059 1060 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1061 #define SECTION_IN_PAGE_FLAGS 1062 #endif 1063 1064 /* 1065 * The identification function is mainly used by the buddy allocator for 1066 * determining if two pages could be buddies. We are not really identifying 1067 * the zone since we could be using the section number id if we do not have 1068 * node id available in page flags. 1069 * We only guarantee that it will return the same value for two combinable 1070 * pages in a zone. 1071 */ 1072 static inline int page_zone_id(struct page *page) 1073 { 1074 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1075 } 1076 1077 #ifdef NODE_NOT_IN_PAGE_FLAGS 1078 extern int page_to_nid(const struct page *page); 1079 #else 1080 static inline int page_to_nid(const struct page *page) 1081 { 1082 struct page *p = (struct page *)page; 1083 1084 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1085 } 1086 #endif 1087 1088 #ifdef CONFIG_NUMA_BALANCING 1089 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1090 { 1091 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1092 } 1093 1094 static inline int cpupid_to_pid(int cpupid) 1095 { 1096 return cpupid & LAST__PID_MASK; 1097 } 1098 1099 static inline int cpupid_to_cpu(int cpupid) 1100 { 1101 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1102 } 1103 1104 static inline int cpupid_to_nid(int cpupid) 1105 { 1106 return cpu_to_node(cpupid_to_cpu(cpupid)); 1107 } 1108 1109 static inline bool cpupid_pid_unset(int cpupid) 1110 { 1111 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1112 } 1113 1114 static inline bool cpupid_cpu_unset(int cpupid) 1115 { 1116 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1117 } 1118 1119 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1120 { 1121 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1122 } 1123 1124 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1125 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1126 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1127 { 1128 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1129 } 1130 1131 static inline int page_cpupid_last(struct page *page) 1132 { 1133 return page->_last_cpupid; 1134 } 1135 static inline void page_cpupid_reset_last(struct page *page) 1136 { 1137 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1138 } 1139 #else 1140 static inline int page_cpupid_last(struct page *page) 1141 { 1142 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1143 } 1144 1145 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1146 1147 static inline void page_cpupid_reset_last(struct page *page) 1148 { 1149 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1150 } 1151 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1152 #else /* !CONFIG_NUMA_BALANCING */ 1153 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1154 { 1155 return page_to_nid(page); /* XXX */ 1156 } 1157 1158 static inline int page_cpupid_last(struct page *page) 1159 { 1160 return page_to_nid(page); /* XXX */ 1161 } 1162 1163 static inline int cpupid_to_nid(int cpupid) 1164 { 1165 return -1; 1166 } 1167 1168 static inline int cpupid_to_pid(int cpupid) 1169 { 1170 return -1; 1171 } 1172 1173 static inline int cpupid_to_cpu(int cpupid) 1174 { 1175 return -1; 1176 } 1177 1178 static inline int cpu_pid_to_cpupid(int nid, int pid) 1179 { 1180 return -1; 1181 } 1182 1183 static inline bool cpupid_pid_unset(int cpupid) 1184 { 1185 return 1; 1186 } 1187 1188 static inline void page_cpupid_reset_last(struct page *page) 1189 { 1190 } 1191 1192 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1193 { 1194 return false; 1195 } 1196 #endif /* CONFIG_NUMA_BALANCING */ 1197 1198 #ifdef CONFIG_KASAN_SW_TAGS 1199 static inline u8 page_kasan_tag(const struct page *page) 1200 { 1201 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1202 } 1203 1204 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1205 { 1206 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1207 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1208 } 1209 1210 static inline void page_kasan_tag_reset(struct page *page) 1211 { 1212 page_kasan_tag_set(page, 0xff); 1213 } 1214 #else 1215 static inline u8 page_kasan_tag(const struct page *page) 1216 { 1217 return 0xff; 1218 } 1219 1220 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1221 static inline void page_kasan_tag_reset(struct page *page) { } 1222 #endif 1223 1224 static inline struct zone *page_zone(const struct page *page) 1225 { 1226 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1227 } 1228 1229 static inline pg_data_t *page_pgdat(const struct page *page) 1230 { 1231 return NODE_DATA(page_to_nid(page)); 1232 } 1233 1234 #ifdef SECTION_IN_PAGE_FLAGS 1235 static inline void set_page_section(struct page *page, unsigned long section) 1236 { 1237 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1238 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1239 } 1240 1241 static inline unsigned long page_to_section(const struct page *page) 1242 { 1243 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1244 } 1245 #endif 1246 1247 static inline void set_page_zone(struct page *page, enum zone_type zone) 1248 { 1249 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1250 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1251 } 1252 1253 static inline void set_page_node(struct page *page, unsigned long node) 1254 { 1255 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1256 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1257 } 1258 1259 static inline void set_page_links(struct page *page, enum zone_type zone, 1260 unsigned long node, unsigned long pfn) 1261 { 1262 set_page_zone(page, zone); 1263 set_page_node(page, node); 1264 #ifdef SECTION_IN_PAGE_FLAGS 1265 set_page_section(page, pfn_to_section_nr(pfn)); 1266 #endif 1267 } 1268 1269 #ifdef CONFIG_MEMCG 1270 static inline struct mem_cgroup *page_memcg(struct page *page) 1271 { 1272 return page->mem_cgroup; 1273 } 1274 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1275 { 1276 WARN_ON_ONCE(!rcu_read_lock_held()); 1277 return READ_ONCE(page->mem_cgroup); 1278 } 1279 #else 1280 static inline struct mem_cgroup *page_memcg(struct page *page) 1281 { 1282 return NULL; 1283 } 1284 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1285 { 1286 WARN_ON_ONCE(!rcu_read_lock_held()); 1287 return NULL; 1288 } 1289 #endif 1290 1291 /* 1292 * Some inline functions in vmstat.h depend on page_zone() 1293 */ 1294 #include <linux/vmstat.h> 1295 1296 static __always_inline void *lowmem_page_address(const struct page *page) 1297 { 1298 return page_to_virt(page); 1299 } 1300 1301 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1302 #define HASHED_PAGE_VIRTUAL 1303 #endif 1304 1305 #if defined(WANT_PAGE_VIRTUAL) 1306 static inline void *page_address(const struct page *page) 1307 { 1308 return page->virtual; 1309 } 1310 static inline void set_page_address(struct page *page, void *address) 1311 { 1312 page->virtual = address; 1313 } 1314 #define page_address_init() do { } while(0) 1315 #endif 1316 1317 #if defined(HASHED_PAGE_VIRTUAL) 1318 void *page_address(const struct page *page); 1319 void set_page_address(struct page *page, void *virtual); 1320 void page_address_init(void); 1321 #endif 1322 1323 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1324 #define page_address(page) lowmem_page_address(page) 1325 #define set_page_address(page, address) do { } while(0) 1326 #define page_address_init() do { } while(0) 1327 #endif 1328 1329 extern void *page_rmapping(struct page *page); 1330 extern struct anon_vma *page_anon_vma(struct page *page); 1331 extern struct address_space *page_mapping(struct page *page); 1332 1333 extern struct address_space *__page_file_mapping(struct page *); 1334 1335 static inline 1336 struct address_space *page_file_mapping(struct page *page) 1337 { 1338 if (unlikely(PageSwapCache(page))) 1339 return __page_file_mapping(page); 1340 1341 return page->mapping; 1342 } 1343 1344 extern pgoff_t __page_file_index(struct page *page); 1345 1346 /* 1347 * Return the pagecache index of the passed page. Regular pagecache pages 1348 * use ->index whereas swapcache pages use swp_offset(->private) 1349 */ 1350 static inline pgoff_t page_index(struct page *page) 1351 { 1352 if (unlikely(PageSwapCache(page))) 1353 return __page_file_index(page); 1354 return page->index; 1355 } 1356 1357 bool page_mapped(struct page *page); 1358 struct address_space *page_mapping(struct page *page); 1359 struct address_space *page_mapping_file(struct page *page); 1360 1361 /* 1362 * Return true only if the page has been allocated with 1363 * ALLOC_NO_WATERMARKS and the low watermark was not 1364 * met implying that the system is under some pressure. 1365 */ 1366 static inline bool page_is_pfmemalloc(struct page *page) 1367 { 1368 /* 1369 * Page index cannot be this large so this must be 1370 * a pfmemalloc page. 1371 */ 1372 return page->index == -1UL; 1373 } 1374 1375 /* 1376 * Only to be called by the page allocator on a freshly allocated 1377 * page. 1378 */ 1379 static inline void set_page_pfmemalloc(struct page *page) 1380 { 1381 page->index = -1UL; 1382 } 1383 1384 static inline void clear_page_pfmemalloc(struct page *page) 1385 { 1386 page->index = 0; 1387 } 1388 1389 /* 1390 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1391 */ 1392 extern void pagefault_out_of_memory(void); 1393 1394 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1395 1396 /* 1397 * Flags passed to show_mem() and show_free_areas() to suppress output in 1398 * various contexts. 1399 */ 1400 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1401 1402 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1403 1404 extern bool can_do_mlock(void); 1405 extern int user_shm_lock(size_t, struct user_struct *); 1406 extern void user_shm_unlock(size_t, struct user_struct *); 1407 1408 /* 1409 * Parameter block passed down to zap_pte_range in exceptional cases. 1410 */ 1411 struct zap_details { 1412 struct address_space *check_mapping; /* Check page->mapping if set */ 1413 pgoff_t first_index; /* Lowest page->index to unmap */ 1414 pgoff_t last_index; /* Highest page->index to unmap */ 1415 }; 1416 1417 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1418 pte_t pte); 1419 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1420 pmd_t pmd); 1421 1422 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1423 unsigned long size); 1424 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1425 unsigned long size); 1426 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1427 unsigned long start, unsigned long end); 1428 1429 /** 1430 * mm_walk - callbacks for walk_page_range 1431 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1432 * this handler should only handle pud_trans_huge() puds. 1433 * the pmd_entry or pte_entry callbacks will be used for 1434 * regular PUDs. 1435 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1436 * this handler is required to be able to handle 1437 * pmd_trans_huge() pmds. They may simply choose to 1438 * split_huge_page() instead of handling it explicitly. 1439 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1440 * @pte_hole: if set, called for each hole at all levels 1441 * @hugetlb_entry: if set, called for each hugetlb entry 1442 * @test_walk: caller specific callback function to determine whether 1443 * we walk over the current vma or not. Returning 0 1444 * value means "do page table walk over the current vma," 1445 * and a negative one means "abort current page table walk 1446 * right now." 1 means "skip the current vma." 1447 * @mm: mm_struct representing the target process of page table walk 1448 * @vma: vma currently walked (NULL if walking outside vmas) 1449 * @private: private data for callbacks' usage 1450 * 1451 * (see the comment on walk_page_range() for more details) 1452 */ 1453 struct mm_walk { 1454 int (*pud_entry)(pud_t *pud, unsigned long addr, 1455 unsigned long next, struct mm_walk *walk); 1456 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1457 unsigned long next, struct mm_walk *walk); 1458 int (*pte_entry)(pte_t *pte, unsigned long addr, 1459 unsigned long next, struct mm_walk *walk); 1460 int (*pte_hole)(unsigned long addr, unsigned long next, 1461 struct mm_walk *walk); 1462 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1463 unsigned long addr, unsigned long next, 1464 struct mm_walk *walk); 1465 int (*test_walk)(unsigned long addr, unsigned long next, 1466 struct mm_walk *walk); 1467 struct mm_struct *mm; 1468 struct vm_area_struct *vma; 1469 void *private; 1470 }; 1471 1472 struct mmu_notifier_range; 1473 1474 int walk_page_range(unsigned long addr, unsigned long end, 1475 struct mm_walk *walk); 1476 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1477 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1478 unsigned long end, unsigned long floor, unsigned long ceiling); 1479 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1480 struct vm_area_struct *vma); 1481 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1482 struct mmu_notifier_range *range, 1483 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1484 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1485 unsigned long *pfn); 1486 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1487 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1488 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1489 void *buf, int len, int write); 1490 1491 extern void truncate_pagecache(struct inode *inode, loff_t new); 1492 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1493 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1494 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1495 int truncate_inode_page(struct address_space *mapping, struct page *page); 1496 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1497 int invalidate_inode_page(struct page *page); 1498 1499 #ifdef CONFIG_MMU 1500 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1501 unsigned long address, unsigned int flags); 1502 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1503 unsigned long address, unsigned int fault_flags, 1504 bool *unlocked); 1505 void unmap_mapping_pages(struct address_space *mapping, 1506 pgoff_t start, pgoff_t nr, bool even_cows); 1507 void unmap_mapping_range(struct address_space *mapping, 1508 loff_t const holebegin, loff_t const holelen, int even_cows); 1509 #else 1510 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1511 unsigned long address, unsigned int flags) 1512 { 1513 /* should never happen if there's no MMU */ 1514 BUG(); 1515 return VM_FAULT_SIGBUS; 1516 } 1517 static inline int fixup_user_fault(struct task_struct *tsk, 1518 struct mm_struct *mm, unsigned long address, 1519 unsigned int fault_flags, bool *unlocked) 1520 { 1521 /* should never happen if there's no MMU */ 1522 BUG(); 1523 return -EFAULT; 1524 } 1525 static inline void unmap_mapping_pages(struct address_space *mapping, 1526 pgoff_t start, pgoff_t nr, bool even_cows) { } 1527 static inline void unmap_mapping_range(struct address_space *mapping, 1528 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1529 #endif 1530 1531 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1532 loff_t const holebegin, loff_t const holelen) 1533 { 1534 unmap_mapping_range(mapping, holebegin, holelen, 0); 1535 } 1536 1537 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1538 void *buf, int len, unsigned int gup_flags); 1539 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1540 void *buf, int len, unsigned int gup_flags); 1541 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1542 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1543 1544 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1545 unsigned long start, unsigned long nr_pages, 1546 unsigned int gup_flags, struct page **pages, 1547 struct vm_area_struct **vmas, int *locked); 1548 long get_user_pages(unsigned long start, unsigned long nr_pages, 1549 unsigned int gup_flags, struct page **pages, 1550 struct vm_area_struct **vmas); 1551 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1552 unsigned int gup_flags, struct page **pages, int *locked); 1553 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1554 struct page **pages, unsigned int gup_flags); 1555 1556 int get_user_pages_fast(unsigned long start, int nr_pages, 1557 unsigned int gup_flags, struct page **pages); 1558 1559 /* Container for pinned pfns / pages */ 1560 struct frame_vector { 1561 unsigned int nr_allocated; /* Number of frames we have space for */ 1562 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1563 bool got_ref; /* Did we pin pages by getting page ref? */ 1564 bool is_pfns; /* Does array contain pages or pfns? */ 1565 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1566 * pfns_vector_pages() or pfns_vector_pfns() 1567 * for access */ 1568 }; 1569 1570 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1571 void frame_vector_destroy(struct frame_vector *vec); 1572 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1573 unsigned int gup_flags, struct frame_vector *vec); 1574 void put_vaddr_frames(struct frame_vector *vec); 1575 int frame_vector_to_pages(struct frame_vector *vec); 1576 void frame_vector_to_pfns(struct frame_vector *vec); 1577 1578 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1579 { 1580 return vec->nr_frames; 1581 } 1582 1583 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1584 { 1585 if (vec->is_pfns) { 1586 int err = frame_vector_to_pages(vec); 1587 1588 if (err) 1589 return ERR_PTR(err); 1590 } 1591 return (struct page **)(vec->ptrs); 1592 } 1593 1594 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1595 { 1596 if (!vec->is_pfns) 1597 frame_vector_to_pfns(vec); 1598 return (unsigned long *)(vec->ptrs); 1599 } 1600 1601 struct kvec; 1602 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1603 struct page **pages); 1604 int get_kernel_page(unsigned long start, int write, struct page **pages); 1605 struct page *get_dump_page(unsigned long addr); 1606 1607 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1608 extern void do_invalidatepage(struct page *page, unsigned int offset, 1609 unsigned int length); 1610 1611 void __set_page_dirty(struct page *, struct address_space *, int warn); 1612 int __set_page_dirty_nobuffers(struct page *page); 1613 int __set_page_dirty_no_writeback(struct page *page); 1614 int redirty_page_for_writepage(struct writeback_control *wbc, 1615 struct page *page); 1616 void account_page_dirtied(struct page *page, struct address_space *mapping); 1617 void account_page_cleaned(struct page *page, struct address_space *mapping, 1618 struct bdi_writeback *wb); 1619 int set_page_dirty(struct page *page); 1620 int set_page_dirty_lock(struct page *page); 1621 void __cancel_dirty_page(struct page *page); 1622 static inline void cancel_dirty_page(struct page *page) 1623 { 1624 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1625 if (PageDirty(page)) 1626 __cancel_dirty_page(page); 1627 } 1628 int clear_page_dirty_for_io(struct page *page); 1629 1630 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1631 1632 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1633 { 1634 return !vma->vm_ops; 1635 } 1636 1637 #ifdef CONFIG_SHMEM 1638 /* 1639 * The vma_is_shmem is not inline because it is used only by slow 1640 * paths in userfault. 1641 */ 1642 bool vma_is_shmem(struct vm_area_struct *vma); 1643 #else 1644 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1645 #endif 1646 1647 int vma_is_stack_for_current(struct vm_area_struct *vma); 1648 1649 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1650 unsigned long old_addr, struct vm_area_struct *new_vma, 1651 unsigned long new_addr, unsigned long len, 1652 bool need_rmap_locks); 1653 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1654 unsigned long end, pgprot_t newprot, 1655 int dirty_accountable, int prot_numa); 1656 extern int mprotect_fixup(struct vm_area_struct *vma, 1657 struct vm_area_struct **pprev, unsigned long start, 1658 unsigned long end, unsigned long newflags); 1659 1660 /* 1661 * doesn't attempt to fault and will return short. 1662 */ 1663 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1664 struct page **pages); 1665 /* 1666 * per-process(per-mm_struct) statistics. 1667 */ 1668 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1669 { 1670 long val = atomic_long_read(&mm->rss_stat.count[member]); 1671 1672 #ifdef SPLIT_RSS_COUNTING 1673 /* 1674 * counter is updated in asynchronous manner and may go to minus. 1675 * But it's never be expected number for users. 1676 */ 1677 if (val < 0) 1678 val = 0; 1679 #endif 1680 return (unsigned long)val; 1681 } 1682 1683 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1684 { 1685 atomic_long_add(value, &mm->rss_stat.count[member]); 1686 } 1687 1688 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1689 { 1690 atomic_long_inc(&mm->rss_stat.count[member]); 1691 } 1692 1693 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1694 { 1695 atomic_long_dec(&mm->rss_stat.count[member]); 1696 } 1697 1698 /* Optimized variant when page is already known not to be PageAnon */ 1699 static inline int mm_counter_file(struct page *page) 1700 { 1701 if (PageSwapBacked(page)) 1702 return MM_SHMEMPAGES; 1703 return MM_FILEPAGES; 1704 } 1705 1706 static inline int mm_counter(struct page *page) 1707 { 1708 if (PageAnon(page)) 1709 return MM_ANONPAGES; 1710 return mm_counter_file(page); 1711 } 1712 1713 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1714 { 1715 return get_mm_counter(mm, MM_FILEPAGES) + 1716 get_mm_counter(mm, MM_ANONPAGES) + 1717 get_mm_counter(mm, MM_SHMEMPAGES); 1718 } 1719 1720 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1721 { 1722 return max(mm->hiwater_rss, get_mm_rss(mm)); 1723 } 1724 1725 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1726 { 1727 return max(mm->hiwater_vm, mm->total_vm); 1728 } 1729 1730 static inline void update_hiwater_rss(struct mm_struct *mm) 1731 { 1732 unsigned long _rss = get_mm_rss(mm); 1733 1734 if ((mm)->hiwater_rss < _rss) 1735 (mm)->hiwater_rss = _rss; 1736 } 1737 1738 static inline void update_hiwater_vm(struct mm_struct *mm) 1739 { 1740 if (mm->hiwater_vm < mm->total_vm) 1741 mm->hiwater_vm = mm->total_vm; 1742 } 1743 1744 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1745 { 1746 mm->hiwater_rss = get_mm_rss(mm); 1747 } 1748 1749 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1750 struct mm_struct *mm) 1751 { 1752 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1753 1754 if (*maxrss < hiwater_rss) 1755 *maxrss = hiwater_rss; 1756 } 1757 1758 #if defined(SPLIT_RSS_COUNTING) 1759 void sync_mm_rss(struct mm_struct *mm); 1760 #else 1761 static inline void sync_mm_rss(struct mm_struct *mm) 1762 { 1763 } 1764 #endif 1765 1766 #ifndef __HAVE_ARCH_PTE_DEVMAP 1767 static inline int pte_devmap(pte_t pte) 1768 { 1769 return 0; 1770 } 1771 #endif 1772 1773 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1774 1775 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1776 spinlock_t **ptl); 1777 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1778 spinlock_t **ptl) 1779 { 1780 pte_t *ptep; 1781 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1782 return ptep; 1783 } 1784 1785 #ifdef __PAGETABLE_P4D_FOLDED 1786 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1787 unsigned long address) 1788 { 1789 return 0; 1790 } 1791 #else 1792 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1793 #endif 1794 1795 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1796 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1797 unsigned long address) 1798 { 1799 return 0; 1800 } 1801 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1802 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1803 1804 #else 1805 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1806 1807 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1808 { 1809 if (mm_pud_folded(mm)) 1810 return; 1811 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1812 } 1813 1814 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1815 { 1816 if (mm_pud_folded(mm)) 1817 return; 1818 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1819 } 1820 #endif 1821 1822 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1823 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1824 unsigned long address) 1825 { 1826 return 0; 1827 } 1828 1829 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1830 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1831 1832 #else 1833 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1834 1835 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1836 { 1837 if (mm_pmd_folded(mm)) 1838 return; 1839 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1840 } 1841 1842 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1843 { 1844 if (mm_pmd_folded(mm)) 1845 return; 1846 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1847 } 1848 #endif 1849 1850 #ifdef CONFIG_MMU 1851 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1852 { 1853 atomic_long_set(&mm->pgtables_bytes, 0); 1854 } 1855 1856 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1857 { 1858 return atomic_long_read(&mm->pgtables_bytes); 1859 } 1860 1861 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1862 { 1863 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1864 } 1865 1866 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1867 { 1868 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1869 } 1870 #else 1871 1872 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1873 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1874 { 1875 return 0; 1876 } 1877 1878 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1879 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1880 #endif 1881 1882 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1883 int __pte_alloc_kernel(pmd_t *pmd); 1884 1885 /* 1886 * The following ifdef needed to get the 4level-fixup.h header to work. 1887 * Remove it when 4level-fixup.h has been removed. 1888 */ 1889 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1890 1891 #ifndef __ARCH_HAS_5LEVEL_HACK 1892 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1893 unsigned long address) 1894 { 1895 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1896 NULL : p4d_offset(pgd, address); 1897 } 1898 1899 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1900 unsigned long address) 1901 { 1902 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1903 NULL : pud_offset(p4d, address); 1904 } 1905 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1906 1907 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1908 { 1909 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1910 NULL: pmd_offset(pud, address); 1911 } 1912 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1913 1914 #if USE_SPLIT_PTE_PTLOCKS 1915 #if ALLOC_SPLIT_PTLOCKS 1916 void __init ptlock_cache_init(void); 1917 extern bool ptlock_alloc(struct page *page); 1918 extern void ptlock_free(struct page *page); 1919 1920 static inline spinlock_t *ptlock_ptr(struct page *page) 1921 { 1922 return page->ptl; 1923 } 1924 #else /* ALLOC_SPLIT_PTLOCKS */ 1925 static inline void ptlock_cache_init(void) 1926 { 1927 } 1928 1929 static inline bool ptlock_alloc(struct page *page) 1930 { 1931 return true; 1932 } 1933 1934 static inline void ptlock_free(struct page *page) 1935 { 1936 } 1937 1938 static inline spinlock_t *ptlock_ptr(struct page *page) 1939 { 1940 return &page->ptl; 1941 } 1942 #endif /* ALLOC_SPLIT_PTLOCKS */ 1943 1944 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1945 { 1946 return ptlock_ptr(pmd_page(*pmd)); 1947 } 1948 1949 static inline bool ptlock_init(struct page *page) 1950 { 1951 /* 1952 * prep_new_page() initialize page->private (and therefore page->ptl) 1953 * with 0. Make sure nobody took it in use in between. 1954 * 1955 * It can happen if arch try to use slab for page table allocation: 1956 * slab code uses page->slab_cache, which share storage with page->ptl. 1957 */ 1958 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1959 if (!ptlock_alloc(page)) 1960 return false; 1961 spin_lock_init(ptlock_ptr(page)); 1962 return true; 1963 } 1964 1965 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1966 /* 1967 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1968 */ 1969 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1970 { 1971 return &mm->page_table_lock; 1972 } 1973 static inline void ptlock_cache_init(void) {} 1974 static inline bool ptlock_init(struct page *page) { return true; } 1975 static inline void ptlock_free(struct page *page) {} 1976 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1977 1978 static inline void pgtable_init(void) 1979 { 1980 ptlock_cache_init(); 1981 pgtable_cache_init(); 1982 } 1983 1984 static inline bool pgtable_page_ctor(struct page *page) 1985 { 1986 if (!ptlock_init(page)) 1987 return false; 1988 __SetPageTable(page); 1989 inc_zone_page_state(page, NR_PAGETABLE); 1990 return true; 1991 } 1992 1993 static inline void pgtable_page_dtor(struct page *page) 1994 { 1995 ptlock_free(page); 1996 __ClearPageTable(page); 1997 dec_zone_page_state(page, NR_PAGETABLE); 1998 } 1999 2000 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2001 ({ \ 2002 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2003 pte_t *__pte = pte_offset_map(pmd, address); \ 2004 *(ptlp) = __ptl; \ 2005 spin_lock(__ptl); \ 2006 __pte; \ 2007 }) 2008 2009 #define pte_unmap_unlock(pte, ptl) do { \ 2010 spin_unlock(ptl); \ 2011 pte_unmap(pte); \ 2012 } while (0) 2013 2014 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2015 2016 #define pte_alloc_map(mm, pmd, address) \ 2017 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2018 2019 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2020 (pte_alloc(mm, pmd) ? \ 2021 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2022 2023 #define pte_alloc_kernel(pmd, address) \ 2024 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2025 NULL: pte_offset_kernel(pmd, address)) 2026 2027 #if USE_SPLIT_PMD_PTLOCKS 2028 2029 static struct page *pmd_to_page(pmd_t *pmd) 2030 { 2031 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2032 return virt_to_page((void *)((unsigned long) pmd & mask)); 2033 } 2034 2035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2036 { 2037 return ptlock_ptr(pmd_to_page(pmd)); 2038 } 2039 2040 static inline bool pgtable_pmd_page_ctor(struct page *page) 2041 { 2042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2043 page->pmd_huge_pte = NULL; 2044 #endif 2045 return ptlock_init(page); 2046 } 2047 2048 static inline void pgtable_pmd_page_dtor(struct page *page) 2049 { 2050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2051 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2052 #endif 2053 ptlock_free(page); 2054 } 2055 2056 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2057 2058 #else 2059 2060 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2061 { 2062 return &mm->page_table_lock; 2063 } 2064 2065 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2066 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2067 2068 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2069 2070 #endif 2071 2072 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2073 { 2074 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2075 spin_lock(ptl); 2076 return ptl; 2077 } 2078 2079 /* 2080 * No scalability reason to split PUD locks yet, but follow the same pattern 2081 * as the PMD locks to make it easier if we decide to. The VM should not be 2082 * considered ready to switch to split PUD locks yet; there may be places 2083 * which need to be converted from page_table_lock. 2084 */ 2085 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2086 { 2087 return &mm->page_table_lock; 2088 } 2089 2090 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2091 { 2092 spinlock_t *ptl = pud_lockptr(mm, pud); 2093 2094 spin_lock(ptl); 2095 return ptl; 2096 } 2097 2098 extern void __init pagecache_init(void); 2099 extern void free_area_init(unsigned long * zones_size); 2100 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2101 unsigned long zone_start_pfn, unsigned long *zholes_size); 2102 extern void free_initmem(void); 2103 2104 /* 2105 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2106 * into the buddy system. The freed pages will be poisoned with pattern 2107 * "poison" if it's within range [0, UCHAR_MAX]. 2108 * Return pages freed into the buddy system. 2109 */ 2110 extern unsigned long free_reserved_area(void *start, void *end, 2111 int poison, const char *s); 2112 2113 #ifdef CONFIG_HIGHMEM 2114 /* 2115 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2116 * and totalram_pages. 2117 */ 2118 extern void free_highmem_page(struct page *page); 2119 #endif 2120 2121 extern void adjust_managed_page_count(struct page *page, long count); 2122 extern void mem_init_print_info(const char *str); 2123 2124 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2125 2126 /* Free the reserved page into the buddy system, so it gets managed. */ 2127 static inline void __free_reserved_page(struct page *page) 2128 { 2129 ClearPageReserved(page); 2130 init_page_count(page); 2131 __free_page(page); 2132 } 2133 2134 static inline void free_reserved_page(struct page *page) 2135 { 2136 __free_reserved_page(page); 2137 adjust_managed_page_count(page, 1); 2138 } 2139 2140 static inline void mark_page_reserved(struct page *page) 2141 { 2142 SetPageReserved(page); 2143 adjust_managed_page_count(page, -1); 2144 } 2145 2146 /* 2147 * Default method to free all the __init memory into the buddy system. 2148 * The freed pages will be poisoned with pattern "poison" if it's within 2149 * range [0, UCHAR_MAX]. 2150 * Return pages freed into the buddy system. 2151 */ 2152 static inline unsigned long free_initmem_default(int poison) 2153 { 2154 extern char __init_begin[], __init_end[]; 2155 2156 return free_reserved_area(&__init_begin, &__init_end, 2157 poison, "unused kernel"); 2158 } 2159 2160 static inline unsigned long get_num_physpages(void) 2161 { 2162 int nid; 2163 unsigned long phys_pages = 0; 2164 2165 for_each_online_node(nid) 2166 phys_pages += node_present_pages(nid); 2167 2168 return phys_pages; 2169 } 2170 2171 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2172 /* 2173 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2174 * zones, allocate the backing mem_map and account for memory holes in a more 2175 * architecture independent manner. This is a substitute for creating the 2176 * zone_sizes[] and zholes_size[] arrays and passing them to 2177 * free_area_init_node() 2178 * 2179 * An architecture is expected to register range of page frames backed by 2180 * physical memory with memblock_add[_node]() before calling 2181 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2182 * usage, an architecture is expected to do something like 2183 * 2184 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2185 * max_highmem_pfn}; 2186 * for_each_valid_physical_page_range() 2187 * memblock_add_node(base, size, nid) 2188 * free_area_init_nodes(max_zone_pfns); 2189 * 2190 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2191 * registered physical page range. Similarly 2192 * sparse_memory_present_with_active_regions() calls memory_present() for 2193 * each range when SPARSEMEM is enabled. 2194 * 2195 * See mm/page_alloc.c for more information on each function exposed by 2196 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2197 */ 2198 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2199 unsigned long node_map_pfn_alignment(void); 2200 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2201 unsigned long end_pfn); 2202 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2203 unsigned long end_pfn); 2204 extern void get_pfn_range_for_nid(unsigned int nid, 2205 unsigned long *start_pfn, unsigned long *end_pfn); 2206 extern unsigned long find_min_pfn_with_active_regions(void); 2207 extern void free_bootmem_with_active_regions(int nid, 2208 unsigned long max_low_pfn); 2209 extern void sparse_memory_present_with_active_regions(int nid); 2210 2211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2212 2213 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2214 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2215 static inline int __early_pfn_to_nid(unsigned long pfn, 2216 struct mminit_pfnnid_cache *state) 2217 { 2218 return 0; 2219 } 2220 #else 2221 /* please see mm/page_alloc.c */ 2222 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2223 /* there is a per-arch backend function. */ 2224 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2225 struct mminit_pfnnid_cache *state); 2226 #endif 2227 2228 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 2229 void zero_resv_unavail(void); 2230 #else 2231 static inline void zero_resv_unavail(void) {} 2232 #endif 2233 2234 extern void set_dma_reserve(unsigned long new_dma_reserve); 2235 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2236 enum memmap_context, struct vmem_altmap *); 2237 extern void setup_per_zone_wmarks(void); 2238 extern int __meminit init_per_zone_wmark_min(void); 2239 extern void mem_init(void); 2240 extern void __init mmap_init(void); 2241 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2242 extern long si_mem_available(void); 2243 extern void si_meminfo(struct sysinfo * val); 2244 extern void si_meminfo_node(struct sysinfo *val, int nid); 2245 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2246 extern unsigned long arch_reserved_kernel_pages(void); 2247 #endif 2248 2249 extern __printf(3, 4) 2250 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2251 2252 extern void setup_per_cpu_pageset(void); 2253 2254 extern void zone_pcp_update(struct zone *zone); 2255 extern void zone_pcp_reset(struct zone *zone); 2256 2257 /* page_alloc.c */ 2258 extern int min_free_kbytes; 2259 extern int watermark_boost_factor; 2260 extern int watermark_scale_factor; 2261 2262 /* nommu.c */ 2263 extern atomic_long_t mmap_pages_allocated; 2264 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2265 2266 /* interval_tree.c */ 2267 void vma_interval_tree_insert(struct vm_area_struct *node, 2268 struct rb_root_cached *root); 2269 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2270 struct vm_area_struct *prev, 2271 struct rb_root_cached *root); 2272 void vma_interval_tree_remove(struct vm_area_struct *node, 2273 struct rb_root_cached *root); 2274 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2275 unsigned long start, unsigned long last); 2276 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2277 unsigned long start, unsigned long last); 2278 2279 #define vma_interval_tree_foreach(vma, root, start, last) \ 2280 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2281 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2282 2283 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2284 struct rb_root_cached *root); 2285 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2286 struct rb_root_cached *root); 2287 struct anon_vma_chain * 2288 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2289 unsigned long start, unsigned long last); 2290 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2291 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2292 #ifdef CONFIG_DEBUG_VM_RB 2293 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2294 #endif 2295 2296 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2297 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2298 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2299 2300 /* mmap.c */ 2301 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2302 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2303 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2304 struct vm_area_struct *expand); 2305 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2306 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2307 { 2308 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2309 } 2310 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2311 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2312 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2313 struct mempolicy *, struct vm_userfaultfd_ctx); 2314 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2315 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2316 unsigned long addr, int new_below); 2317 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2318 unsigned long addr, int new_below); 2319 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2320 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2321 struct rb_node **, struct rb_node *); 2322 extern void unlink_file_vma(struct vm_area_struct *); 2323 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2324 unsigned long addr, unsigned long len, pgoff_t pgoff, 2325 bool *need_rmap_locks); 2326 extern void exit_mmap(struct mm_struct *); 2327 2328 static inline int check_data_rlimit(unsigned long rlim, 2329 unsigned long new, 2330 unsigned long start, 2331 unsigned long end_data, 2332 unsigned long start_data) 2333 { 2334 if (rlim < RLIM_INFINITY) { 2335 if (((new - start) + (end_data - start_data)) > rlim) 2336 return -ENOSPC; 2337 } 2338 2339 return 0; 2340 } 2341 2342 extern int mm_take_all_locks(struct mm_struct *mm); 2343 extern void mm_drop_all_locks(struct mm_struct *mm); 2344 2345 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2346 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2347 extern struct file *get_task_exe_file(struct task_struct *task); 2348 2349 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2350 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2351 2352 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2353 const struct vm_special_mapping *sm); 2354 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2355 unsigned long addr, unsigned long len, 2356 unsigned long flags, 2357 const struct vm_special_mapping *spec); 2358 /* This is an obsolete alternative to _install_special_mapping. */ 2359 extern int install_special_mapping(struct mm_struct *mm, 2360 unsigned long addr, unsigned long len, 2361 unsigned long flags, struct page **pages); 2362 2363 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2364 2365 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2366 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2367 struct list_head *uf); 2368 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2369 unsigned long len, unsigned long prot, unsigned long flags, 2370 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2371 struct list_head *uf); 2372 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2373 struct list_head *uf, bool downgrade); 2374 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2375 struct list_head *uf); 2376 2377 static inline unsigned long 2378 do_mmap_pgoff(struct file *file, unsigned long addr, 2379 unsigned long len, unsigned long prot, unsigned long flags, 2380 unsigned long pgoff, unsigned long *populate, 2381 struct list_head *uf) 2382 { 2383 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2384 } 2385 2386 #ifdef CONFIG_MMU 2387 extern int __mm_populate(unsigned long addr, unsigned long len, 2388 int ignore_errors); 2389 static inline void mm_populate(unsigned long addr, unsigned long len) 2390 { 2391 /* Ignore errors */ 2392 (void) __mm_populate(addr, len, 1); 2393 } 2394 #else 2395 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2396 #endif 2397 2398 /* These take the mm semaphore themselves */ 2399 extern int __must_check vm_brk(unsigned long, unsigned long); 2400 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2401 extern int vm_munmap(unsigned long, size_t); 2402 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2403 unsigned long, unsigned long, 2404 unsigned long, unsigned long); 2405 2406 struct vm_unmapped_area_info { 2407 #define VM_UNMAPPED_AREA_TOPDOWN 1 2408 unsigned long flags; 2409 unsigned long length; 2410 unsigned long low_limit; 2411 unsigned long high_limit; 2412 unsigned long align_mask; 2413 unsigned long align_offset; 2414 }; 2415 2416 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2417 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2418 2419 /* 2420 * Search for an unmapped address range. 2421 * 2422 * We are looking for a range that: 2423 * - does not intersect with any VMA; 2424 * - is contained within the [low_limit, high_limit) interval; 2425 * - is at least the desired size. 2426 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2427 */ 2428 static inline unsigned long 2429 vm_unmapped_area(struct vm_unmapped_area_info *info) 2430 { 2431 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2432 return unmapped_area_topdown(info); 2433 else 2434 return unmapped_area(info); 2435 } 2436 2437 /* truncate.c */ 2438 extern void truncate_inode_pages(struct address_space *, loff_t); 2439 extern void truncate_inode_pages_range(struct address_space *, 2440 loff_t lstart, loff_t lend); 2441 extern void truncate_inode_pages_final(struct address_space *); 2442 2443 /* generic vm_area_ops exported for stackable file systems */ 2444 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2445 extern void filemap_map_pages(struct vm_fault *vmf, 2446 pgoff_t start_pgoff, pgoff_t end_pgoff); 2447 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2448 2449 /* mm/page-writeback.c */ 2450 int __must_check write_one_page(struct page *page); 2451 void task_dirty_inc(struct task_struct *tsk); 2452 2453 /* readahead.c */ 2454 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2455 2456 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2457 pgoff_t offset, unsigned long nr_to_read); 2458 2459 void page_cache_sync_readahead(struct address_space *mapping, 2460 struct file_ra_state *ra, 2461 struct file *filp, 2462 pgoff_t offset, 2463 unsigned long size); 2464 2465 void page_cache_async_readahead(struct address_space *mapping, 2466 struct file_ra_state *ra, 2467 struct file *filp, 2468 struct page *pg, 2469 pgoff_t offset, 2470 unsigned long size); 2471 2472 extern unsigned long stack_guard_gap; 2473 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2474 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2475 2476 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2477 extern int expand_downwards(struct vm_area_struct *vma, 2478 unsigned long address); 2479 #if VM_GROWSUP 2480 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2481 #else 2482 #define expand_upwards(vma, address) (0) 2483 #endif 2484 2485 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2486 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2487 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2488 struct vm_area_struct **pprev); 2489 2490 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2491 NULL if none. Assume start_addr < end_addr. */ 2492 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2493 { 2494 struct vm_area_struct * vma = find_vma(mm,start_addr); 2495 2496 if (vma && end_addr <= vma->vm_start) 2497 vma = NULL; 2498 return vma; 2499 } 2500 2501 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2502 { 2503 unsigned long vm_start = vma->vm_start; 2504 2505 if (vma->vm_flags & VM_GROWSDOWN) { 2506 vm_start -= stack_guard_gap; 2507 if (vm_start > vma->vm_start) 2508 vm_start = 0; 2509 } 2510 return vm_start; 2511 } 2512 2513 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2514 { 2515 unsigned long vm_end = vma->vm_end; 2516 2517 if (vma->vm_flags & VM_GROWSUP) { 2518 vm_end += stack_guard_gap; 2519 if (vm_end < vma->vm_end) 2520 vm_end = -PAGE_SIZE; 2521 } 2522 return vm_end; 2523 } 2524 2525 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2526 { 2527 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2528 } 2529 2530 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2531 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2532 unsigned long vm_start, unsigned long vm_end) 2533 { 2534 struct vm_area_struct *vma = find_vma(mm, vm_start); 2535 2536 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2537 vma = NULL; 2538 2539 return vma; 2540 } 2541 2542 static inline bool range_in_vma(struct vm_area_struct *vma, 2543 unsigned long start, unsigned long end) 2544 { 2545 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2546 } 2547 2548 #ifdef CONFIG_MMU 2549 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2550 void vma_set_page_prot(struct vm_area_struct *vma); 2551 #else 2552 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2553 { 2554 return __pgprot(0); 2555 } 2556 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2557 { 2558 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2559 } 2560 #endif 2561 2562 #ifdef CONFIG_NUMA_BALANCING 2563 unsigned long change_prot_numa(struct vm_area_struct *vma, 2564 unsigned long start, unsigned long end); 2565 #endif 2566 2567 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2568 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2569 unsigned long pfn, unsigned long size, pgprot_t); 2570 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2571 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2572 unsigned long num); 2573 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2574 unsigned long num); 2575 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2576 unsigned long pfn); 2577 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2578 unsigned long pfn, pgprot_t pgprot); 2579 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2580 pfn_t pfn); 2581 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2582 unsigned long addr, pfn_t pfn); 2583 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2584 2585 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2586 unsigned long addr, struct page *page) 2587 { 2588 int err = vm_insert_page(vma, addr, page); 2589 2590 if (err == -ENOMEM) 2591 return VM_FAULT_OOM; 2592 if (err < 0 && err != -EBUSY) 2593 return VM_FAULT_SIGBUS; 2594 2595 return VM_FAULT_NOPAGE; 2596 } 2597 2598 static inline vm_fault_t vmf_error(int err) 2599 { 2600 if (err == -ENOMEM) 2601 return VM_FAULT_OOM; 2602 return VM_FAULT_SIGBUS; 2603 } 2604 2605 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2606 unsigned int foll_flags); 2607 2608 #define FOLL_WRITE 0x01 /* check pte is writable */ 2609 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2610 #define FOLL_GET 0x04 /* do get_page on page */ 2611 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2612 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2613 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2614 * and return without waiting upon it */ 2615 #define FOLL_POPULATE 0x40 /* fault in page */ 2616 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2617 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2618 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2619 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2620 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2621 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2622 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2623 #define FOLL_COW 0x4000 /* internal GUP flag */ 2624 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2625 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2626 2627 /* 2628 * NOTE on FOLL_LONGTERM: 2629 * 2630 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2631 * period _often_ under userspace control. This is contrasted with 2632 * iov_iter_get_pages() where usages which are transient. 2633 * 2634 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2635 * lifetime enforced by the filesystem and we need guarantees that longterm 2636 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2637 * the filesystem. Ideas for this coordination include revoking the longterm 2638 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2639 * added after the problem with filesystems was found FS DAX VMAs are 2640 * specifically failed. Filesystem pages are still subject to bugs and use of 2641 * FOLL_LONGTERM should be avoided on those pages. 2642 * 2643 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2644 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2645 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2646 * is due to an incompatibility with the FS DAX check and 2647 * FAULT_FLAG_ALLOW_RETRY 2648 * 2649 * In the CMA case: longterm pins in a CMA region would unnecessarily fragment 2650 * that region. And so CMA attempts to migrate the page before pinning when 2651 * FOLL_LONGTERM is specified. 2652 */ 2653 2654 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2655 { 2656 if (vm_fault & VM_FAULT_OOM) 2657 return -ENOMEM; 2658 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2659 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2660 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2661 return -EFAULT; 2662 return 0; 2663 } 2664 2665 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2666 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2667 unsigned long size, pte_fn_t fn, void *data); 2668 2669 2670 #ifdef CONFIG_PAGE_POISONING 2671 extern bool page_poisoning_enabled(void); 2672 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2673 #else 2674 static inline bool page_poisoning_enabled(void) { return false; } 2675 static inline void kernel_poison_pages(struct page *page, int numpages, 2676 int enable) { } 2677 #endif 2678 2679 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2680 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2681 #else 2682 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2683 #endif 2684 static inline bool want_init_on_alloc(gfp_t flags) 2685 { 2686 if (static_branch_unlikely(&init_on_alloc) && 2687 !page_poisoning_enabled()) 2688 return true; 2689 return flags & __GFP_ZERO; 2690 } 2691 2692 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2693 DECLARE_STATIC_KEY_TRUE(init_on_free); 2694 #else 2695 DECLARE_STATIC_KEY_FALSE(init_on_free); 2696 #endif 2697 static inline bool want_init_on_free(void) 2698 { 2699 return static_branch_unlikely(&init_on_free) && 2700 !page_poisoning_enabled(); 2701 } 2702 2703 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 2704 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 2705 #else 2706 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2707 #endif 2708 2709 static inline bool debug_pagealloc_enabled(void) 2710 { 2711 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2712 return false; 2713 2714 return static_branch_unlikely(&_debug_pagealloc_enabled); 2715 } 2716 2717 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2718 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2719 2720 static inline void 2721 kernel_map_pages(struct page *page, int numpages, int enable) 2722 { 2723 __kernel_map_pages(page, numpages, enable); 2724 } 2725 #ifdef CONFIG_HIBERNATION 2726 extern bool kernel_page_present(struct page *page); 2727 #endif /* CONFIG_HIBERNATION */ 2728 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2729 static inline void 2730 kernel_map_pages(struct page *page, int numpages, int enable) {} 2731 #ifdef CONFIG_HIBERNATION 2732 static inline bool kernel_page_present(struct page *page) { return true; } 2733 #endif /* CONFIG_HIBERNATION */ 2734 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2735 2736 #ifdef __HAVE_ARCH_GATE_AREA 2737 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2738 extern int in_gate_area_no_mm(unsigned long addr); 2739 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2740 #else 2741 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2742 { 2743 return NULL; 2744 } 2745 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2746 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2747 { 2748 return 0; 2749 } 2750 #endif /* __HAVE_ARCH_GATE_AREA */ 2751 2752 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2753 2754 #ifdef CONFIG_SYSCTL 2755 extern int sysctl_drop_caches; 2756 int drop_caches_sysctl_handler(struct ctl_table *, int, 2757 void __user *, size_t *, loff_t *); 2758 #endif 2759 2760 void drop_slab(void); 2761 void drop_slab_node(int nid); 2762 2763 #ifndef CONFIG_MMU 2764 #define randomize_va_space 0 2765 #else 2766 extern int randomize_va_space; 2767 #endif 2768 2769 const char * arch_vma_name(struct vm_area_struct *vma); 2770 void print_vma_addr(char *prefix, unsigned long rip); 2771 2772 void *sparse_buffer_alloc(unsigned long size); 2773 struct page *sparse_mem_map_populate(unsigned long pnum, int nid, 2774 struct vmem_altmap *altmap); 2775 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2776 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2777 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2778 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2779 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2780 void *vmemmap_alloc_block(unsigned long size, int node); 2781 struct vmem_altmap; 2782 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2783 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2784 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2785 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2786 int node); 2787 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2788 struct vmem_altmap *altmap); 2789 void vmemmap_populate_print_last(void); 2790 #ifdef CONFIG_MEMORY_HOTPLUG 2791 void vmemmap_free(unsigned long start, unsigned long end, 2792 struct vmem_altmap *altmap); 2793 #endif 2794 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2795 unsigned long nr_pages); 2796 2797 enum mf_flags { 2798 MF_COUNT_INCREASED = 1 << 0, 2799 MF_ACTION_REQUIRED = 1 << 1, 2800 MF_MUST_KILL = 1 << 2, 2801 MF_SOFT_OFFLINE = 1 << 3, 2802 }; 2803 extern int memory_failure(unsigned long pfn, int flags); 2804 extern void memory_failure_queue(unsigned long pfn, int flags); 2805 extern int unpoison_memory(unsigned long pfn); 2806 extern int get_hwpoison_page(struct page *page); 2807 #define put_hwpoison_page(page) put_page(page) 2808 extern int sysctl_memory_failure_early_kill; 2809 extern int sysctl_memory_failure_recovery; 2810 extern void shake_page(struct page *p, int access); 2811 extern atomic_long_t num_poisoned_pages __read_mostly; 2812 extern int soft_offline_page(struct page *page, int flags); 2813 2814 2815 /* 2816 * Error handlers for various types of pages. 2817 */ 2818 enum mf_result { 2819 MF_IGNORED, /* Error: cannot be handled */ 2820 MF_FAILED, /* Error: handling failed */ 2821 MF_DELAYED, /* Will be handled later */ 2822 MF_RECOVERED, /* Successfully recovered */ 2823 }; 2824 2825 enum mf_action_page_type { 2826 MF_MSG_KERNEL, 2827 MF_MSG_KERNEL_HIGH_ORDER, 2828 MF_MSG_SLAB, 2829 MF_MSG_DIFFERENT_COMPOUND, 2830 MF_MSG_POISONED_HUGE, 2831 MF_MSG_HUGE, 2832 MF_MSG_FREE_HUGE, 2833 MF_MSG_NON_PMD_HUGE, 2834 MF_MSG_UNMAP_FAILED, 2835 MF_MSG_DIRTY_SWAPCACHE, 2836 MF_MSG_CLEAN_SWAPCACHE, 2837 MF_MSG_DIRTY_MLOCKED_LRU, 2838 MF_MSG_CLEAN_MLOCKED_LRU, 2839 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2840 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2841 MF_MSG_DIRTY_LRU, 2842 MF_MSG_CLEAN_LRU, 2843 MF_MSG_TRUNCATED_LRU, 2844 MF_MSG_BUDDY, 2845 MF_MSG_BUDDY_2ND, 2846 MF_MSG_DAX, 2847 MF_MSG_UNKNOWN, 2848 }; 2849 2850 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2851 extern void clear_huge_page(struct page *page, 2852 unsigned long addr_hint, 2853 unsigned int pages_per_huge_page); 2854 extern void copy_user_huge_page(struct page *dst, struct page *src, 2855 unsigned long addr_hint, 2856 struct vm_area_struct *vma, 2857 unsigned int pages_per_huge_page); 2858 extern long copy_huge_page_from_user(struct page *dst_page, 2859 const void __user *usr_src, 2860 unsigned int pages_per_huge_page, 2861 bool allow_pagefault); 2862 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2863 2864 #ifdef CONFIG_DEBUG_PAGEALLOC 2865 extern unsigned int _debug_guardpage_minorder; 2866 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2867 2868 static inline unsigned int debug_guardpage_minorder(void) 2869 { 2870 return _debug_guardpage_minorder; 2871 } 2872 2873 static inline bool debug_guardpage_enabled(void) 2874 { 2875 return static_branch_unlikely(&_debug_guardpage_enabled); 2876 } 2877 2878 static inline bool page_is_guard(struct page *page) 2879 { 2880 if (!debug_guardpage_enabled()) 2881 return false; 2882 2883 return PageGuard(page); 2884 } 2885 #else 2886 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2887 static inline bool debug_guardpage_enabled(void) { return false; } 2888 static inline bool page_is_guard(struct page *page) { return false; } 2889 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2890 2891 #if MAX_NUMNODES > 1 2892 void __init setup_nr_node_ids(void); 2893 #else 2894 static inline void setup_nr_node_ids(void) {} 2895 #endif 2896 2897 #endif /* __KERNEL__ */ 2898 #endif /* _LINUX_MM_H */ 2899