xref: /linux-6.15/include/linux/mm.h (revision d2bdd48a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 /*
103  * Architectures that support memory tagging (assigning tags to memory regions,
104  * embedding these tags into addresses that point to these memory regions, and
105  * checking that the memory and the pointer tags match on memory accesses)
106  * redefine this macro to strip tags from pointers.
107  * It's defined as noop for arcitectures that don't support memory tagging.
108  */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statments if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 80);
158 
159 	switch (sizeof(struct page)) {
160 	case 80:
161 		_pp[9] = 0;	/* fallthrough */
162 	case 72:
163 		_pp[8] = 0;	/* fallthrough */
164 	case 64:
165 		_pp[7] = 0;	/* fallthrough */
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 				    size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 				    size_t *, loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP	VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR	VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX		VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX		VM_NONE
341 #endif
342 
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP	VM_NONE
345 #endif
346 
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
349 
350 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353 
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK	VM_GROWSUP
356 #else
357 #define VM_STACK	VM_GROWSDOWN
358 #endif
359 
360 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361 
362 /*
363  * Special vmas that are non-mergable, non-mlock()able.
364  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365  */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367 
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
370 
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
373 
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR	VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379 
380 /*
381  * mapping from the currently active vm_flags protection bits (the
382  * low four bits) to a page protection mask..
383  */
384 extern pgprot_t protection_map[16];
385 
386 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED	0x20	/* Second try */
392 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
395 
396 #define FAULT_FLAG_TRACE \
397 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
398 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
399 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
400 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
401 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
402 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
403 	{ FAULT_FLAG_USER,		"USER" }, \
404 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
405 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
406 
407 /*
408  * vm_fault is filled by the the pagefault handler and passed to the vma's
409  * ->fault function. The vma's ->fault is responsible for returning a bitmask
410  * of VM_FAULT_xxx flags that give details about how the fault was handled.
411  *
412  * MM layer fills up gfp_mask for page allocations but fault handler might
413  * alter it if its implementation requires a different allocation context.
414  *
415  * pgoff should be used in favour of virtual_address, if possible.
416  */
417 struct vm_fault {
418 	struct vm_area_struct *vma;	/* Target VMA */
419 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
420 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
421 	pgoff_t pgoff;			/* Logical page offset based on vma */
422 	unsigned long address;		/* Faulting virtual address */
423 	pmd_t *pmd;			/* Pointer to pmd entry matching
424 					 * the 'address' */
425 	pud_t *pud;			/* Pointer to pud entry matching
426 					 * the 'address'
427 					 */
428 	pte_t orig_pte;			/* Value of PTE at the time of fault */
429 
430 	struct page *cow_page;		/* Page handler may use for COW fault */
431 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
432 	struct page *page;		/* ->fault handlers should return a
433 					 * page here, unless VM_FAULT_NOPAGE
434 					 * is set (which is also implied by
435 					 * VM_FAULT_ERROR).
436 					 */
437 	/* These three entries are valid only while holding ptl lock */
438 	pte_t *pte;			/* Pointer to pte entry matching
439 					 * the 'address'. NULL if the page
440 					 * table hasn't been allocated.
441 					 */
442 	spinlock_t *ptl;		/* Page table lock.
443 					 * Protects pte page table if 'pte'
444 					 * is not NULL, otherwise pmd.
445 					 */
446 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
447 					 * vm_ops->map_pages() calls
448 					 * alloc_set_pte() from atomic context.
449 					 * do_fault_around() pre-allocates
450 					 * page table to avoid allocation from
451 					 * atomic context.
452 					 */
453 };
454 
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 	PE_SIZE_PTE = 0,
458 	PE_SIZE_PMD,
459 	PE_SIZE_PUD,
460 };
461 
462 /*
463  * These are the virtual MM functions - opening of an area, closing and
464  * unmapping it (needed to keep files on disk up-to-date etc), pointer
465  * to the functions called when a no-page or a wp-page exception occurs.
466  */
467 struct vm_operations_struct {
468 	void (*open)(struct vm_area_struct * area);
469 	void (*close)(struct vm_area_struct * area);
470 	int (*split)(struct vm_area_struct * area, unsigned long addr);
471 	int (*mremap)(struct vm_area_struct * area);
472 	vm_fault_t (*fault)(struct vm_fault *vmf);
473 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 			enum page_entry_size pe_size);
475 	void (*map_pages)(struct vm_fault *vmf,
476 			pgoff_t start_pgoff, pgoff_t end_pgoff);
477 	unsigned long (*pagesize)(struct vm_area_struct * area);
478 
479 	/* notification that a previously read-only page is about to become
480 	 * writable, if an error is returned it will cause a SIGBUS */
481 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482 
483 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485 
486 	/* called by access_process_vm when get_user_pages() fails, typically
487 	 * for use by special VMAs that can switch between memory and hardware
488 	 */
489 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 		      void *buf, int len, int write);
491 
492 	/* Called by the /proc/PID/maps code to ask the vma whether it
493 	 * has a special name.  Returning non-NULL will also cause this
494 	 * vma to be dumped unconditionally. */
495 	const char *(*name)(struct vm_area_struct *vma);
496 
497 #ifdef CONFIG_NUMA
498 	/*
499 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 	 * to hold the policy upon return.  Caller should pass NULL @new to
501 	 * remove a policy and fall back to surrounding context--i.e. do not
502 	 * install a MPOL_DEFAULT policy, nor the task or system default
503 	 * mempolicy.
504 	 */
505 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506 
507 	/*
508 	 * get_policy() op must add reference [mpol_get()] to any policy at
509 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
510 	 * in mm/mempolicy.c will do this automatically.
511 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 	 * must return NULL--i.e., do not "fallback" to task or system default
515 	 * policy.
516 	 */
517 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 					unsigned long addr);
519 #endif
520 	/*
521 	 * Called by vm_normal_page() for special PTEs to find the
522 	 * page for @addr.  This is useful if the default behavior
523 	 * (using pte_page()) would not find the correct page.
524 	 */
525 	struct page *(*find_special_page)(struct vm_area_struct *vma,
526 					  unsigned long addr);
527 };
528 
529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 	static const struct vm_operations_struct dummy_vm_ops = {};
532 
533 	memset(vma, 0, sizeof(*vma));
534 	vma->vm_mm = mm;
535 	vma->vm_ops = &dummy_vm_ops;
536 	INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538 
539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 	vma->vm_ops = NULL;
542 }
543 
544 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
545 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
546 
547 struct mmu_gather;
548 struct inode;
549 
550 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
551 static inline int pmd_devmap(pmd_t pmd)
552 {
553 	return 0;
554 }
555 static inline int pud_devmap(pud_t pud)
556 {
557 	return 0;
558 }
559 static inline int pgd_devmap(pgd_t pgd)
560 {
561 	return 0;
562 }
563 #endif
564 
565 /*
566  * FIXME: take this include out, include page-flags.h in
567  * files which need it (119 of them)
568  */
569 #include <linux/page-flags.h>
570 #include <linux/huge_mm.h>
571 
572 /*
573  * Methods to modify the page usage count.
574  *
575  * What counts for a page usage:
576  * - cache mapping   (page->mapping)
577  * - private data    (page->private)
578  * - page mapped in a task's page tables, each mapping
579  *   is counted separately
580  *
581  * Also, many kernel routines increase the page count before a critical
582  * routine so they can be sure the page doesn't go away from under them.
583  */
584 
585 /*
586  * Drop a ref, return true if the refcount fell to zero (the page has no users)
587  */
588 static inline int put_page_testzero(struct page *page)
589 {
590 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
591 	return page_ref_dec_and_test(page);
592 }
593 
594 /*
595  * Try to grab a ref unless the page has a refcount of zero, return false if
596  * that is the case.
597  * This can be called when MMU is off so it must not access
598  * any of the virtual mappings.
599  */
600 static inline int get_page_unless_zero(struct page *page)
601 {
602 	return page_ref_add_unless(page, 1, 0);
603 }
604 
605 extern int page_is_ram(unsigned long pfn);
606 
607 enum {
608 	REGION_INTERSECTS,
609 	REGION_DISJOINT,
610 	REGION_MIXED,
611 };
612 
613 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
614 		      unsigned long desc);
615 
616 /* Support for virtually mapped pages */
617 struct page *vmalloc_to_page(const void *addr);
618 unsigned long vmalloc_to_pfn(const void *addr);
619 
620 /*
621  * Determine if an address is within the vmalloc range
622  *
623  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
624  * is no special casing required.
625  */
626 static inline bool is_vmalloc_addr(const void *x)
627 {
628 #ifdef CONFIG_MMU
629 	unsigned long addr = (unsigned long)x;
630 
631 	return addr >= VMALLOC_START && addr < VMALLOC_END;
632 #else
633 	return false;
634 #endif
635 }
636 
637 #ifndef is_ioremap_addr
638 #define is_ioremap_addr(x) is_vmalloc_addr(x)
639 #endif
640 
641 #ifdef CONFIG_MMU
642 extern int is_vmalloc_or_module_addr(const void *x);
643 #else
644 static inline int is_vmalloc_or_module_addr(const void *x)
645 {
646 	return 0;
647 }
648 #endif
649 
650 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
651 static inline void *kvmalloc(size_t size, gfp_t flags)
652 {
653 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
654 }
655 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
656 {
657 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
658 }
659 static inline void *kvzalloc(size_t size, gfp_t flags)
660 {
661 	return kvmalloc(size, flags | __GFP_ZERO);
662 }
663 
664 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
665 {
666 	size_t bytes;
667 
668 	if (unlikely(check_mul_overflow(n, size, &bytes)))
669 		return NULL;
670 
671 	return kvmalloc(bytes, flags);
672 }
673 
674 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
675 {
676 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
677 }
678 
679 extern void kvfree(const void *addr);
680 
681 static inline atomic_t *compound_mapcount_ptr(struct page *page)
682 {
683 	return &page[1].compound_mapcount;
684 }
685 
686 static inline int compound_mapcount(struct page *page)
687 {
688 	VM_BUG_ON_PAGE(!PageCompound(page), page);
689 	page = compound_head(page);
690 	return atomic_read(compound_mapcount_ptr(page)) + 1;
691 }
692 
693 /*
694  * The atomic page->_mapcount, starts from -1: so that transitions
695  * both from it and to it can be tracked, using atomic_inc_and_test
696  * and atomic_add_negative(-1).
697  */
698 static inline void page_mapcount_reset(struct page *page)
699 {
700 	atomic_set(&(page)->_mapcount, -1);
701 }
702 
703 int __page_mapcount(struct page *page);
704 
705 static inline int page_mapcount(struct page *page)
706 {
707 	VM_BUG_ON_PAGE(PageSlab(page), page);
708 
709 	if (unlikely(PageCompound(page)))
710 		return __page_mapcount(page);
711 	return atomic_read(&page->_mapcount) + 1;
712 }
713 
714 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
715 int total_mapcount(struct page *page);
716 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
717 #else
718 static inline int total_mapcount(struct page *page)
719 {
720 	return page_mapcount(page);
721 }
722 static inline int page_trans_huge_mapcount(struct page *page,
723 					   int *total_mapcount)
724 {
725 	int mapcount = page_mapcount(page);
726 	if (total_mapcount)
727 		*total_mapcount = mapcount;
728 	return mapcount;
729 }
730 #endif
731 
732 static inline struct page *virt_to_head_page(const void *x)
733 {
734 	struct page *page = virt_to_page(x);
735 
736 	return compound_head(page);
737 }
738 
739 void __put_page(struct page *page);
740 
741 void put_pages_list(struct list_head *pages);
742 
743 void split_page(struct page *page, unsigned int order);
744 
745 /*
746  * Compound pages have a destructor function.  Provide a
747  * prototype for that function and accessor functions.
748  * These are _only_ valid on the head of a compound page.
749  */
750 typedef void compound_page_dtor(struct page *);
751 
752 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
753 enum compound_dtor_id {
754 	NULL_COMPOUND_DTOR,
755 	COMPOUND_PAGE_DTOR,
756 #ifdef CONFIG_HUGETLB_PAGE
757 	HUGETLB_PAGE_DTOR,
758 #endif
759 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
760 	TRANSHUGE_PAGE_DTOR,
761 #endif
762 	NR_COMPOUND_DTORS,
763 };
764 extern compound_page_dtor * const compound_page_dtors[];
765 
766 static inline void set_compound_page_dtor(struct page *page,
767 		enum compound_dtor_id compound_dtor)
768 {
769 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
770 	page[1].compound_dtor = compound_dtor;
771 }
772 
773 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
774 {
775 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
776 	return compound_page_dtors[page[1].compound_dtor];
777 }
778 
779 static inline unsigned int compound_order(struct page *page)
780 {
781 	if (!PageHead(page))
782 		return 0;
783 	return page[1].compound_order;
784 }
785 
786 static inline void set_compound_order(struct page *page, unsigned int order)
787 {
788 	page[1].compound_order = order;
789 }
790 
791 void free_compound_page(struct page *page);
792 
793 #ifdef CONFIG_MMU
794 /*
795  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
796  * servicing faults for write access.  In the normal case, do always want
797  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
798  * that do not have writing enabled, when used by access_process_vm.
799  */
800 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
801 {
802 	if (likely(vma->vm_flags & VM_WRITE))
803 		pte = pte_mkwrite(pte);
804 	return pte;
805 }
806 
807 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
808 		struct page *page);
809 vm_fault_t finish_fault(struct vm_fault *vmf);
810 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
811 #endif
812 
813 /*
814  * Multiple processes may "see" the same page. E.g. for untouched
815  * mappings of /dev/null, all processes see the same page full of
816  * zeroes, and text pages of executables and shared libraries have
817  * only one copy in memory, at most, normally.
818  *
819  * For the non-reserved pages, page_count(page) denotes a reference count.
820  *   page_count() == 0 means the page is free. page->lru is then used for
821  *   freelist management in the buddy allocator.
822  *   page_count() > 0  means the page has been allocated.
823  *
824  * Pages are allocated by the slab allocator in order to provide memory
825  * to kmalloc and kmem_cache_alloc. In this case, the management of the
826  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
827  * unless a particular usage is carefully commented. (the responsibility of
828  * freeing the kmalloc memory is the caller's, of course).
829  *
830  * A page may be used by anyone else who does a __get_free_page().
831  * In this case, page_count still tracks the references, and should only
832  * be used through the normal accessor functions. The top bits of page->flags
833  * and page->virtual store page management information, but all other fields
834  * are unused and could be used privately, carefully. The management of this
835  * page is the responsibility of the one who allocated it, and those who have
836  * subsequently been given references to it.
837  *
838  * The other pages (we may call them "pagecache pages") are completely
839  * managed by the Linux memory manager: I/O, buffers, swapping etc.
840  * The following discussion applies only to them.
841  *
842  * A pagecache page contains an opaque `private' member, which belongs to the
843  * page's address_space. Usually, this is the address of a circular list of
844  * the page's disk buffers. PG_private must be set to tell the VM to call
845  * into the filesystem to release these pages.
846  *
847  * A page may belong to an inode's memory mapping. In this case, page->mapping
848  * is the pointer to the inode, and page->index is the file offset of the page,
849  * in units of PAGE_SIZE.
850  *
851  * If pagecache pages are not associated with an inode, they are said to be
852  * anonymous pages. These may become associated with the swapcache, and in that
853  * case PG_swapcache is set, and page->private is an offset into the swapcache.
854  *
855  * In either case (swapcache or inode backed), the pagecache itself holds one
856  * reference to the page. Setting PG_private should also increment the
857  * refcount. The each user mapping also has a reference to the page.
858  *
859  * The pagecache pages are stored in a per-mapping radix tree, which is
860  * rooted at mapping->i_pages, and indexed by offset.
861  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
862  * lists, we instead now tag pages as dirty/writeback in the radix tree.
863  *
864  * All pagecache pages may be subject to I/O:
865  * - inode pages may need to be read from disk,
866  * - inode pages which have been modified and are MAP_SHARED may need
867  *   to be written back to the inode on disk,
868  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
869  *   modified may need to be swapped out to swap space and (later) to be read
870  *   back into memory.
871  */
872 
873 /*
874  * The zone field is never updated after free_area_init_core()
875  * sets it, so none of the operations on it need to be atomic.
876  */
877 
878 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
879 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
880 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
881 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
882 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
883 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
884 
885 /*
886  * Define the bit shifts to access each section.  For non-existent
887  * sections we define the shift as 0; that plus a 0 mask ensures
888  * the compiler will optimise away reference to them.
889  */
890 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
891 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
892 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
893 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
894 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
895 
896 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
897 #ifdef NODE_NOT_IN_PAGE_FLAGS
898 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
899 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
900 						SECTIONS_PGOFF : ZONES_PGOFF)
901 #else
902 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
903 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
904 						NODES_PGOFF : ZONES_PGOFF)
905 #endif
906 
907 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
908 
909 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
910 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
911 #endif
912 
913 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
914 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
915 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
916 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
917 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
918 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
919 
920 static inline enum zone_type page_zonenum(const struct page *page)
921 {
922 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
923 }
924 
925 #ifdef CONFIG_ZONE_DEVICE
926 static inline bool is_zone_device_page(const struct page *page)
927 {
928 	return page_zonenum(page) == ZONE_DEVICE;
929 }
930 extern void memmap_init_zone_device(struct zone *, unsigned long,
931 				    unsigned long, struct dev_pagemap *);
932 #else
933 static inline bool is_zone_device_page(const struct page *page)
934 {
935 	return false;
936 }
937 #endif
938 
939 #ifdef CONFIG_DEV_PAGEMAP_OPS
940 void __put_devmap_managed_page(struct page *page);
941 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
942 static inline bool put_devmap_managed_page(struct page *page)
943 {
944 	if (!static_branch_unlikely(&devmap_managed_key))
945 		return false;
946 	if (!is_zone_device_page(page))
947 		return false;
948 	switch (page->pgmap->type) {
949 	case MEMORY_DEVICE_PRIVATE:
950 	case MEMORY_DEVICE_FS_DAX:
951 		__put_devmap_managed_page(page);
952 		return true;
953 	default:
954 		break;
955 	}
956 	return false;
957 }
958 
959 static inline bool is_device_private_page(const struct page *page)
960 {
961 	return is_zone_device_page(page) &&
962 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
963 }
964 
965 #ifdef CONFIG_PCI_P2PDMA
966 static inline bool is_pci_p2pdma_page(const struct page *page)
967 {
968 	return is_zone_device_page(page) &&
969 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
970 }
971 #else /* CONFIG_PCI_P2PDMA */
972 static inline bool is_pci_p2pdma_page(const struct page *page)
973 {
974 	return false;
975 }
976 #endif /* CONFIG_PCI_P2PDMA */
977 
978 #else /* CONFIG_DEV_PAGEMAP_OPS */
979 static inline bool put_devmap_managed_page(struct page *page)
980 {
981 	return false;
982 }
983 
984 static inline bool is_device_private_page(const struct page *page)
985 {
986 	return false;
987 }
988 
989 static inline bool is_pci_p2pdma_page(const struct page *page)
990 {
991 	return false;
992 }
993 #endif /* CONFIG_DEV_PAGEMAP_OPS */
994 
995 /* 127: arbitrary random number, small enough to assemble well */
996 #define page_ref_zero_or_close_to_overflow(page) \
997 	((unsigned int) page_ref_count(page) + 127u <= 127u)
998 
999 static inline void get_page(struct page *page)
1000 {
1001 	page = compound_head(page);
1002 	/*
1003 	 * Getting a normal page or the head of a compound page
1004 	 * requires to already have an elevated page->_refcount.
1005 	 */
1006 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1007 	page_ref_inc(page);
1008 }
1009 
1010 static inline __must_check bool try_get_page(struct page *page)
1011 {
1012 	page = compound_head(page);
1013 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1014 		return false;
1015 	page_ref_inc(page);
1016 	return true;
1017 }
1018 
1019 static inline void put_page(struct page *page)
1020 {
1021 	page = compound_head(page);
1022 
1023 	/*
1024 	 * For devmap managed pages we need to catch refcount transition from
1025 	 * 2 to 1, when refcount reach one it means the page is free and we
1026 	 * need to inform the device driver through callback. See
1027 	 * include/linux/memremap.h and HMM for details.
1028 	 */
1029 	if (put_devmap_managed_page(page))
1030 		return;
1031 
1032 	if (put_page_testzero(page))
1033 		__put_page(page);
1034 }
1035 
1036 /**
1037  * put_user_page() - release a gup-pinned page
1038  * @page:            pointer to page to be released
1039  *
1040  * Pages that were pinned via get_user_pages*() must be released via
1041  * either put_user_page(), or one of the put_user_pages*() routines
1042  * below. This is so that eventually, pages that are pinned via
1043  * get_user_pages*() can be separately tracked and uniquely handled. In
1044  * particular, interactions with RDMA and filesystems need special
1045  * handling.
1046  *
1047  * put_user_page() and put_page() are not interchangeable, despite this early
1048  * implementation that makes them look the same. put_user_page() calls must
1049  * be perfectly matched up with get_user_page() calls.
1050  */
1051 static inline void put_user_page(struct page *page)
1052 {
1053 	put_page(page);
1054 }
1055 
1056 void put_user_pages_dirty(struct page **pages, unsigned long npages);
1057 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages);
1058 void put_user_pages(struct page **pages, unsigned long npages);
1059 
1060 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1061 #define SECTION_IN_PAGE_FLAGS
1062 #endif
1063 
1064 /*
1065  * The identification function is mainly used by the buddy allocator for
1066  * determining if two pages could be buddies. We are not really identifying
1067  * the zone since we could be using the section number id if we do not have
1068  * node id available in page flags.
1069  * We only guarantee that it will return the same value for two combinable
1070  * pages in a zone.
1071  */
1072 static inline int page_zone_id(struct page *page)
1073 {
1074 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1075 }
1076 
1077 #ifdef NODE_NOT_IN_PAGE_FLAGS
1078 extern int page_to_nid(const struct page *page);
1079 #else
1080 static inline int page_to_nid(const struct page *page)
1081 {
1082 	struct page *p = (struct page *)page;
1083 
1084 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1085 }
1086 #endif
1087 
1088 #ifdef CONFIG_NUMA_BALANCING
1089 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1090 {
1091 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1092 }
1093 
1094 static inline int cpupid_to_pid(int cpupid)
1095 {
1096 	return cpupid & LAST__PID_MASK;
1097 }
1098 
1099 static inline int cpupid_to_cpu(int cpupid)
1100 {
1101 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1102 }
1103 
1104 static inline int cpupid_to_nid(int cpupid)
1105 {
1106 	return cpu_to_node(cpupid_to_cpu(cpupid));
1107 }
1108 
1109 static inline bool cpupid_pid_unset(int cpupid)
1110 {
1111 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1112 }
1113 
1114 static inline bool cpupid_cpu_unset(int cpupid)
1115 {
1116 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1117 }
1118 
1119 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1120 {
1121 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1122 }
1123 
1124 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1125 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1126 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1127 {
1128 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1129 }
1130 
1131 static inline int page_cpupid_last(struct page *page)
1132 {
1133 	return page->_last_cpupid;
1134 }
1135 static inline void page_cpupid_reset_last(struct page *page)
1136 {
1137 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1138 }
1139 #else
1140 static inline int page_cpupid_last(struct page *page)
1141 {
1142 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1143 }
1144 
1145 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1146 
1147 static inline void page_cpupid_reset_last(struct page *page)
1148 {
1149 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1150 }
1151 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1152 #else /* !CONFIG_NUMA_BALANCING */
1153 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1154 {
1155 	return page_to_nid(page); /* XXX */
1156 }
1157 
1158 static inline int page_cpupid_last(struct page *page)
1159 {
1160 	return page_to_nid(page); /* XXX */
1161 }
1162 
1163 static inline int cpupid_to_nid(int cpupid)
1164 {
1165 	return -1;
1166 }
1167 
1168 static inline int cpupid_to_pid(int cpupid)
1169 {
1170 	return -1;
1171 }
1172 
1173 static inline int cpupid_to_cpu(int cpupid)
1174 {
1175 	return -1;
1176 }
1177 
1178 static inline int cpu_pid_to_cpupid(int nid, int pid)
1179 {
1180 	return -1;
1181 }
1182 
1183 static inline bool cpupid_pid_unset(int cpupid)
1184 {
1185 	return 1;
1186 }
1187 
1188 static inline void page_cpupid_reset_last(struct page *page)
1189 {
1190 }
1191 
1192 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1193 {
1194 	return false;
1195 }
1196 #endif /* CONFIG_NUMA_BALANCING */
1197 
1198 #ifdef CONFIG_KASAN_SW_TAGS
1199 static inline u8 page_kasan_tag(const struct page *page)
1200 {
1201 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1202 }
1203 
1204 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1205 {
1206 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1207 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1208 }
1209 
1210 static inline void page_kasan_tag_reset(struct page *page)
1211 {
1212 	page_kasan_tag_set(page, 0xff);
1213 }
1214 #else
1215 static inline u8 page_kasan_tag(const struct page *page)
1216 {
1217 	return 0xff;
1218 }
1219 
1220 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1221 static inline void page_kasan_tag_reset(struct page *page) { }
1222 #endif
1223 
1224 static inline struct zone *page_zone(const struct page *page)
1225 {
1226 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1227 }
1228 
1229 static inline pg_data_t *page_pgdat(const struct page *page)
1230 {
1231 	return NODE_DATA(page_to_nid(page));
1232 }
1233 
1234 #ifdef SECTION_IN_PAGE_FLAGS
1235 static inline void set_page_section(struct page *page, unsigned long section)
1236 {
1237 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1238 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1239 }
1240 
1241 static inline unsigned long page_to_section(const struct page *page)
1242 {
1243 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1244 }
1245 #endif
1246 
1247 static inline void set_page_zone(struct page *page, enum zone_type zone)
1248 {
1249 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1250 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1251 }
1252 
1253 static inline void set_page_node(struct page *page, unsigned long node)
1254 {
1255 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1256 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1257 }
1258 
1259 static inline void set_page_links(struct page *page, enum zone_type zone,
1260 	unsigned long node, unsigned long pfn)
1261 {
1262 	set_page_zone(page, zone);
1263 	set_page_node(page, node);
1264 #ifdef SECTION_IN_PAGE_FLAGS
1265 	set_page_section(page, pfn_to_section_nr(pfn));
1266 #endif
1267 }
1268 
1269 #ifdef CONFIG_MEMCG
1270 static inline struct mem_cgroup *page_memcg(struct page *page)
1271 {
1272 	return page->mem_cgroup;
1273 }
1274 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1275 {
1276 	WARN_ON_ONCE(!rcu_read_lock_held());
1277 	return READ_ONCE(page->mem_cgroup);
1278 }
1279 #else
1280 static inline struct mem_cgroup *page_memcg(struct page *page)
1281 {
1282 	return NULL;
1283 }
1284 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1285 {
1286 	WARN_ON_ONCE(!rcu_read_lock_held());
1287 	return NULL;
1288 }
1289 #endif
1290 
1291 /*
1292  * Some inline functions in vmstat.h depend on page_zone()
1293  */
1294 #include <linux/vmstat.h>
1295 
1296 static __always_inline void *lowmem_page_address(const struct page *page)
1297 {
1298 	return page_to_virt(page);
1299 }
1300 
1301 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1302 #define HASHED_PAGE_VIRTUAL
1303 #endif
1304 
1305 #if defined(WANT_PAGE_VIRTUAL)
1306 static inline void *page_address(const struct page *page)
1307 {
1308 	return page->virtual;
1309 }
1310 static inline void set_page_address(struct page *page, void *address)
1311 {
1312 	page->virtual = address;
1313 }
1314 #define page_address_init()  do { } while(0)
1315 #endif
1316 
1317 #if defined(HASHED_PAGE_VIRTUAL)
1318 void *page_address(const struct page *page);
1319 void set_page_address(struct page *page, void *virtual);
1320 void page_address_init(void);
1321 #endif
1322 
1323 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1324 #define page_address(page) lowmem_page_address(page)
1325 #define set_page_address(page, address)  do { } while(0)
1326 #define page_address_init()  do { } while(0)
1327 #endif
1328 
1329 extern void *page_rmapping(struct page *page);
1330 extern struct anon_vma *page_anon_vma(struct page *page);
1331 extern struct address_space *page_mapping(struct page *page);
1332 
1333 extern struct address_space *__page_file_mapping(struct page *);
1334 
1335 static inline
1336 struct address_space *page_file_mapping(struct page *page)
1337 {
1338 	if (unlikely(PageSwapCache(page)))
1339 		return __page_file_mapping(page);
1340 
1341 	return page->mapping;
1342 }
1343 
1344 extern pgoff_t __page_file_index(struct page *page);
1345 
1346 /*
1347  * Return the pagecache index of the passed page.  Regular pagecache pages
1348  * use ->index whereas swapcache pages use swp_offset(->private)
1349  */
1350 static inline pgoff_t page_index(struct page *page)
1351 {
1352 	if (unlikely(PageSwapCache(page)))
1353 		return __page_file_index(page);
1354 	return page->index;
1355 }
1356 
1357 bool page_mapped(struct page *page);
1358 struct address_space *page_mapping(struct page *page);
1359 struct address_space *page_mapping_file(struct page *page);
1360 
1361 /*
1362  * Return true only if the page has been allocated with
1363  * ALLOC_NO_WATERMARKS and the low watermark was not
1364  * met implying that the system is under some pressure.
1365  */
1366 static inline bool page_is_pfmemalloc(struct page *page)
1367 {
1368 	/*
1369 	 * Page index cannot be this large so this must be
1370 	 * a pfmemalloc page.
1371 	 */
1372 	return page->index == -1UL;
1373 }
1374 
1375 /*
1376  * Only to be called by the page allocator on a freshly allocated
1377  * page.
1378  */
1379 static inline void set_page_pfmemalloc(struct page *page)
1380 {
1381 	page->index = -1UL;
1382 }
1383 
1384 static inline void clear_page_pfmemalloc(struct page *page)
1385 {
1386 	page->index = 0;
1387 }
1388 
1389 /*
1390  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1391  */
1392 extern void pagefault_out_of_memory(void);
1393 
1394 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1395 
1396 /*
1397  * Flags passed to show_mem() and show_free_areas() to suppress output in
1398  * various contexts.
1399  */
1400 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1401 
1402 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1403 
1404 extern bool can_do_mlock(void);
1405 extern int user_shm_lock(size_t, struct user_struct *);
1406 extern void user_shm_unlock(size_t, struct user_struct *);
1407 
1408 /*
1409  * Parameter block passed down to zap_pte_range in exceptional cases.
1410  */
1411 struct zap_details {
1412 	struct address_space *check_mapping;	/* Check page->mapping if set */
1413 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1414 	pgoff_t last_index;			/* Highest page->index to unmap */
1415 };
1416 
1417 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1418 			     pte_t pte);
1419 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1420 				pmd_t pmd);
1421 
1422 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1423 		  unsigned long size);
1424 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1425 		    unsigned long size);
1426 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1427 		unsigned long start, unsigned long end);
1428 
1429 /**
1430  * mm_walk - callbacks for walk_page_range
1431  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1432  *	       this handler should only handle pud_trans_huge() puds.
1433  *	       the pmd_entry or pte_entry callbacks will be used for
1434  *	       regular PUDs.
1435  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1436  *	       this handler is required to be able to handle
1437  *	       pmd_trans_huge() pmds.  They may simply choose to
1438  *	       split_huge_page() instead of handling it explicitly.
1439  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1440  * @pte_hole: if set, called for each hole at all levels
1441  * @hugetlb_entry: if set, called for each hugetlb entry
1442  * @test_walk: caller specific callback function to determine whether
1443  *             we walk over the current vma or not. Returning 0
1444  *             value means "do page table walk over the current vma,"
1445  *             and a negative one means "abort current page table walk
1446  *             right now." 1 means "skip the current vma."
1447  * @mm:        mm_struct representing the target process of page table walk
1448  * @vma:       vma currently walked (NULL if walking outside vmas)
1449  * @private:   private data for callbacks' usage
1450  *
1451  * (see the comment on walk_page_range() for more details)
1452  */
1453 struct mm_walk {
1454 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1455 			 unsigned long next, struct mm_walk *walk);
1456 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1457 			 unsigned long next, struct mm_walk *walk);
1458 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1459 			 unsigned long next, struct mm_walk *walk);
1460 	int (*pte_hole)(unsigned long addr, unsigned long next,
1461 			struct mm_walk *walk);
1462 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1463 			     unsigned long addr, unsigned long next,
1464 			     struct mm_walk *walk);
1465 	int (*test_walk)(unsigned long addr, unsigned long next,
1466 			struct mm_walk *walk);
1467 	struct mm_struct *mm;
1468 	struct vm_area_struct *vma;
1469 	void *private;
1470 };
1471 
1472 struct mmu_notifier_range;
1473 
1474 int walk_page_range(unsigned long addr, unsigned long end,
1475 		struct mm_walk *walk);
1476 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1477 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1478 		unsigned long end, unsigned long floor, unsigned long ceiling);
1479 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1480 			struct vm_area_struct *vma);
1481 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1482 		   struct mmu_notifier_range *range,
1483 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1484 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1485 	unsigned long *pfn);
1486 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1487 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1488 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1489 			void *buf, int len, int write);
1490 
1491 extern void truncate_pagecache(struct inode *inode, loff_t new);
1492 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1493 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1494 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1495 int truncate_inode_page(struct address_space *mapping, struct page *page);
1496 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1497 int invalidate_inode_page(struct page *page);
1498 
1499 #ifdef CONFIG_MMU
1500 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1501 			unsigned long address, unsigned int flags);
1502 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1503 			    unsigned long address, unsigned int fault_flags,
1504 			    bool *unlocked);
1505 void unmap_mapping_pages(struct address_space *mapping,
1506 		pgoff_t start, pgoff_t nr, bool even_cows);
1507 void unmap_mapping_range(struct address_space *mapping,
1508 		loff_t const holebegin, loff_t const holelen, int even_cows);
1509 #else
1510 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1511 		unsigned long address, unsigned int flags)
1512 {
1513 	/* should never happen if there's no MMU */
1514 	BUG();
1515 	return VM_FAULT_SIGBUS;
1516 }
1517 static inline int fixup_user_fault(struct task_struct *tsk,
1518 		struct mm_struct *mm, unsigned long address,
1519 		unsigned int fault_flags, bool *unlocked)
1520 {
1521 	/* should never happen if there's no MMU */
1522 	BUG();
1523 	return -EFAULT;
1524 }
1525 static inline void unmap_mapping_pages(struct address_space *mapping,
1526 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1527 static inline void unmap_mapping_range(struct address_space *mapping,
1528 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1529 #endif
1530 
1531 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1532 		loff_t const holebegin, loff_t const holelen)
1533 {
1534 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1535 }
1536 
1537 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1538 		void *buf, int len, unsigned int gup_flags);
1539 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1540 		void *buf, int len, unsigned int gup_flags);
1541 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1542 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1543 
1544 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1545 			    unsigned long start, unsigned long nr_pages,
1546 			    unsigned int gup_flags, struct page **pages,
1547 			    struct vm_area_struct **vmas, int *locked);
1548 long get_user_pages(unsigned long start, unsigned long nr_pages,
1549 			    unsigned int gup_flags, struct page **pages,
1550 			    struct vm_area_struct **vmas);
1551 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1552 		    unsigned int gup_flags, struct page **pages, int *locked);
1553 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1554 		    struct page **pages, unsigned int gup_flags);
1555 
1556 int get_user_pages_fast(unsigned long start, int nr_pages,
1557 			unsigned int gup_flags, struct page **pages);
1558 
1559 /* Container for pinned pfns / pages */
1560 struct frame_vector {
1561 	unsigned int nr_allocated;	/* Number of frames we have space for */
1562 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1563 	bool got_ref;		/* Did we pin pages by getting page ref? */
1564 	bool is_pfns;		/* Does array contain pages or pfns? */
1565 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1566 				 * pfns_vector_pages() or pfns_vector_pfns()
1567 				 * for access */
1568 };
1569 
1570 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1571 void frame_vector_destroy(struct frame_vector *vec);
1572 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1573 		     unsigned int gup_flags, struct frame_vector *vec);
1574 void put_vaddr_frames(struct frame_vector *vec);
1575 int frame_vector_to_pages(struct frame_vector *vec);
1576 void frame_vector_to_pfns(struct frame_vector *vec);
1577 
1578 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1579 {
1580 	return vec->nr_frames;
1581 }
1582 
1583 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1584 {
1585 	if (vec->is_pfns) {
1586 		int err = frame_vector_to_pages(vec);
1587 
1588 		if (err)
1589 			return ERR_PTR(err);
1590 	}
1591 	return (struct page **)(vec->ptrs);
1592 }
1593 
1594 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1595 {
1596 	if (!vec->is_pfns)
1597 		frame_vector_to_pfns(vec);
1598 	return (unsigned long *)(vec->ptrs);
1599 }
1600 
1601 struct kvec;
1602 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1603 			struct page **pages);
1604 int get_kernel_page(unsigned long start, int write, struct page **pages);
1605 struct page *get_dump_page(unsigned long addr);
1606 
1607 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1608 extern void do_invalidatepage(struct page *page, unsigned int offset,
1609 			      unsigned int length);
1610 
1611 void __set_page_dirty(struct page *, struct address_space *, int warn);
1612 int __set_page_dirty_nobuffers(struct page *page);
1613 int __set_page_dirty_no_writeback(struct page *page);
1614 int redirty_page_for_writepage(struct writeback_control *wbc,
1615 				struct page *page);
1616 void account_page_dirtied(struct page *page, struct address_space *mapping);
1617 void account_page_cleaned(struct page *page, struct address_space *mapping,
1618 			  struct bdi_writeback *wb);
1619 int set_page_dirty(struct page *page);
1620 int set_page_dirty_lock(struct page *page);
1621 void __cancel_dirty_page(struct page *page);
1622 static inline void cancel_dirty_page(struct page *page)
1623 {
1624 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1625 	if (PageDirty(page))
1626 		__cancel_dirty_page(page);
1627 }
1628 int clear_page_dirty_for_io(struct page *page);
1629 
1630 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1631 
1632 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1633 {
1634 	return !vma->vm_ops;
1635 }
1636 
1637 #ifdef CONFIG_SHMEM
1638 /*
1639  * The vma_is_shmem is not inline because it is used only by slow
1640  * paths in userfault.
1641  */
1642 bool vma_is_shmem(struct vm_area_struct *vma);
1643 #else
1644 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1645 #endif
1646 
1647 int vma_is_stack_for_current(struct vm_area_struct *vma);
1648 
1649 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1650 		unsigned long old_addr, struct vm_area_struct *new_vma,
1651 		unsigned long new_addr, unsigned long len,
1652 		bool need_rmap_locks);
1653 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1654 			      unsigned long end, pgprot_t newprot,
1655 			      int dirty_accountable, int prot_numa);
1656 extern int mprotect_fixup(struct vm_area_struct *vma,
1657 			  struct vm_area_struct **pprev, unsigned long start,
1658 			  unsigned long end, unsigned long newflags);
1659 
1660 /*
1661  * doesn't attempt to fault and will return short.
1662  */
1663 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1664 			  struct page **pages);
1665 /*
1666  * per-process(per-mm_struct) statistics.
1667  */
1668 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1669 {
1670 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1671 
1672 #ifdef SPLIT_RSS_COUNTING
1673 	/*
1674 	 * counter is updated in asynchronous manner and may go to minus.
1675 	 * But it's never be expected number for users.
1676 	 */
1677 	if (val < 0)
1678 		val = 0;
1679 #endif
1680 	return (unsigned long)val;
1681 }
1682 
1683 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1684 {
1685 	atomic_long_add(value, &mm->rss_stat.count[member]);
1686 }
1687 
1688 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1689 {
1690 	atomic_long_inc(&mm->rss_stat.count[member]);
1691 }
1692 
1693 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1694 {
1695 	atomic_long_dec(&mm->rss_stat.count[member]);
1696 }
1697 
1698 /* Optimized variant when page is already known not to be PageAnon */
1699 static inline int mm_counter_file(struct page *page)
1700 {
1701 	if (PageSwapBacked(page))
1702 		return MM_SHMEMPAGES;
1703 	return MM_FILEPAGES;
1704 }
1705 
1706 static inline int mm_counter(struct page *page)
1707 {
1708 	if (PageAnon(page))
1709 		return MM_ANONPAGES;
1710 	return mm_counter_file(page);
1711 }
1712 
1713 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1714 {
1715 	return get_mm_counter(mm, MM_FILEPAGES) +
1716 		get_mm_counter(mm, MM_ANONPAGES) +
1717 		get_mm_counter(mm, MM_SHMEMPAGES);
1718 }
1719 
1720 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1721 {
1722 	return max(mm->hiwater_rss, get_mm_rss(mm));
1723 }
1724 
1725 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1726 {
1727 	return max(mm->hiwater_vm, mm->total_vm);
1728 }
1729 
1730 static inline void update_hiwater_rss(struct mm_struct *mm)
1731 {
1732 	unsigned long _rss = get_mm_rss(mm);
1733 
1734 	if ((mm)->hiwater_rss < _rss)
1735 		(mm)->hiwater_rss = _rss;
1736 }
1737 
1738 static inline void update_hiwater_vm(struct mm_struct *mm)
1739 {
1740 	if (mm->hiwater_vm < mm->total_vm)
1741 		mm->hiwater_vm = mm->total_vm;
1742 }
1743 
1744 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1745 {
1746 	mm->hiwater_rss = get_mm_rss(mm);
1747 }
1748 
1749 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1750 					 struct mm_struct *mm)
1751 {
1752 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1753 
1754 	if (*maxrss < hiwater_rss)
1755 		*maxrss = hiwater_rss;
1756 }
1757 
1758 #if defined(SPLIT_RSS_COUNTING)
1759 void sync_mm_rss(struct mm_struct *mm);
1760 #else
1761 static inline void sync_mm_rss(struct mm_struct *mm)
1762 {
1763 }
1764 #endif
1765 
1766 #ifndef __HAVE_ARCH_PTE_DEVMAP
1767 static inline int pte_devmap(pte_t pte)
1768 {
1769 	return 0;
1770 }
1771 #endif
1772 
1773 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1774 
1775 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1776 			       spinlock_t **ptl);
1777 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1778 				    spinlock_t **ptl)
1779 {
1780 	pte_t *ptep;
1781 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1782 	return ptep;
1783 }
1784 
1785 #ifdef __PAGETABLE_P4D_FOLDED
1786 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1787 						unsigned long address)
1788 {
1789 	return 0;
1790 }
1791 #else
1792 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1793 #endif
1794 
1795 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1796 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1797 						unsigned long address)
1798 {
1799 	return 0;
1800 }
1801 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1802 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1803 
1804 #else
1805 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1806 
1807 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1808 {
1809 	if (mm_pud_folded(mm))
1810 		return;
1811 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1812 }
1813 
1814 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1815 {
1816 	if (mm_pud_folded(mm))
1817 		return;
1818 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1819 }
1820 #endif
1821 
1822 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1823 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1824 						unsigned long address)
1825 {
1826 	return 0;
1827 }
1828 
1829 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1830 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1831 
1832 #else
1833 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1834 
1835 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1836 {
1837 	if (mm_pmd_folded(mm))
1838 		return;
1839 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1840 }
1841 
1842 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1843 {
1844 	if (mm_pmd_folded(mm))
1845 		return;
1846 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1847 }
1848 #endif
1849 
1850 #ifdef CONFIG_MMU
1851 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1852 {
1853 	atomic_long_set(&mm->pgtables_bytes, 0);
1854 }
1855 
1856 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1857 {
1858 	return atomic_long_read(&mm->pgtables_bytes);
1859 }
1860 
1861 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1862 {
1863 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1864 }
1865 
1866 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1867 {
1868 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1869 }
1870 #else
1871 
1872 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1873 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1874 {
1875 	return 0;
1876 }
1877 
1878 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1879 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1880 #endif
1881 
1882 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1883 int __pte_alloc_kernel(pmd_t *pmd);
1884 
1885 /*
1886  * The following ifdef needed to get the 4level-fixup.h header to work.
1887  * Remove it when 4level-fixup.h has been removed.
1888  */
1889 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1890 
1891 #ifndef __ARCH_HAS_5LEVEL_HACK
1892 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1893 		unsigned long address)
1894 {
1895 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1896 		NULL : p4d_offset(pgd, address);
1897 }
1898 
1899 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1900 		unsigned long address)
1901 {
1902 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1903 		NULL : pud_offset(p4d, address);
1904 }
1905 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1906 
1907 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1908 {
1909 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1910 		NULL: pmd_offset(pud, address);
1911 }
1912 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1913 
1914 #if USE_SPLIT_PTE_PTLOCKS
1915 #if ALLOC_SPLIT_PTLOCKS
1916 void __init ptlock_cache_init(void);
1917 extern bool ptlock_alloc(struct page *page);
1918 extern void ptlock_free(struct page *page);
1919 
1920 static inline spinlock_t *ptlock_ptr(struct page *page)
1921 {
1922 	return page->ptl;
1923 }
1924 #else /* ALLOC_SPLIT_PTLOCKS */
1925 static inline void ptlock_cache_init(void)
1926 {
1927 }
1928 
1929 static inline bool ptlock_alloc(struct page *page)
1930 {
1931 	return true;
1932 }
1933 
1934 static inline void ptlock_free(struct page *page)
1935 {
1936 }
1937 
1938 static inline spinlock_t *ptlock_ptr(struct page *page)
1939 {
1940 	return &page->ptl;
1941 }
1942 #endif /* ALLOC_SPLIT_PTLOCKS */
1943 
1944 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1945 {
1946 	return ptlock_ptr(pmd_page(*pmd));
1947 }
1948 
1949 static inline bool ptlock_init(struct page *page)
1950 {
1951 	/*
1952 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1953 	 * with 0. Make sure nobody took it in use in between.
1954 	 *
1955 	 * It can happen if arch try to use slab for page table allocation:
1956 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1957 	 */
1958 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1959 	if (!ptlock_alloc(page))
1960 		return false;
1961 	spin_lock_init(ptlock_ptr(page));
1962 	return true;
1963 }
1964 
1965 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1966 /*
1967  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1968  */
1969 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1970 {
1971 	return &mm->page_table_lock;
1972 }
1973 static inline void ptlock_cache_init(void) {}
1974 static inline bool ptlock_init(struct page *page) { return true; }
1975 static inline void ptlock_free(struct page *page) {}
1976 #endif /* USE_SPLIT_PTE_PTLOCKS */
1977 
1978 static inline void pgtable_init(void)
1979 {
1980 	ptlock_cache_init();
1981 	pgtable_cache_init();
1982 }
1983 
1984 static inline bool pgtable_page_ctor(struct page *page)
1985 {
1986 	if (!ptlock_init(page))
1987 		return false;
1988 	__SetPageTable(page);
1989 	inc_zone_page_state(page, NR_PAGETABLE);
1990 	return true;
1991 }
1992 
1993 static inline void pgtable_page_dtor(struct page *page)
1994 {
1995 	ptlock_free(page);
1996 	__ClearPageTable(page);
1997 	dec_zone_page_state(page, NR_PAGETABLE);
1998 }
1999 
2000 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2001 ({							\
2002 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2003 	pte_t *__pte = pte_offset_map(pmd, address);	\
2004 	*(ptlp) = __ptl;				\
2005 	spin_lock(__ptl);				\
2006 	__pte;						\
2007 })
2008 
2009 #define pte_unmap_unlock(pte, ptl)	do {		\
2010 	spin_unlock(ptl);				\
2011 	pte_unmap(pte);					\
2012 } while (0)
2013 
2014 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2015 
2016 #define pte_alloc_map(mm, pmd, address)			\
2017 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2018 
2019 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2020 	(pte_alloc(mm, pmd) ?			\
2021 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2022 
2023 #define pte_alloc_kernel(pmd, address)			\
2024 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2025 		NULL: pte_offset_kernel(pmd, address))
2026 
2027 #if USE_SPLIT_PMD_PTLOCKS
2028 
2029 static struct page *pmd_to_page(pmd_t *pmd)
2030 {
2031 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2032 	return virt_to_page((void *)((unsigned long) pmd & mask));
2033 }
2034 
2035 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2036 {
2037 	return ptlock_ptr(pmd_to_page(pmd));
2038 }
2039 
2040 static inline bool pgtable_pmd_page_ctor(struct page *page)
2041 {
2042 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2043 	page->pmd_huge_pte = NULL;
2044 #endif
2045 	return ptlock_init(page);
2046 }
2047 
2048 static inline void pgtable_pmd_page_dtor(struct page *page)
2049 {
2050 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2051 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2052 #endif
2053 	ptlock_free(page);
2054 }
2055 
2056 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2057 
2058 #else
2059 
2060 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2061 {
2062 	return &mm->page_table_lock;
2063 }
2064 
2065 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2066 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2067 
2068 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2069 
2070 #endif
2071 
2072 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2073 {
2074 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2075 	spin_lock(ptl);
2076 	return ptl;
2077 }
2078 
2079 /*
2080  * No scalability reason to split PUD locks yet, but follow the same pattern
2081  * as the PMD locks to make it easier if we decide to.  The VM should not be
2082  * considered ready to switch to split PUD locks yet; there may be places
2083  * which need to be converted from page_table_lock.
2084  */
2085 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2086 {
2087 	return &mm->page_table_lock;
2088 }
2089 
2090 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2091 {
2092 	spinlock_t *ptl = pud_lockptr(mm, pud);
2093 
2094 	spin_lock(ptl);
2095 	return ptl;
2096 }
2097 
2098 extern void __init pagecache_init(void);
2099 extern void free_area_init(unsigned long * zones_size);
2100 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2101 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2102 extern void free_initmem(void);
2103 
2104 /*
2105  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2106  * into the buddy system. The freed pages will be poisoned with pattern
2107  * "poison" if it's within range [0, UCHAR_MAX].
2108  * Return pages freed into the buddy system.
2109  */
2110 extern unsigned long free_reserved_area(void *start, void *end,
2111 					int poison, const char *s);
2112 
2113 #ifdef	CONFIG_HIGHMEM
2114 /*
2115  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2116  * and totalram_pages.
2117  */
2118 extern void free_highmem_page(struct page *page);
2119 #endif
2120 
2121 extern void adjust_managed_page_count(struct page *page, long count);
2122 extern void mem_init_print_info(const char *str);
2123 
2124 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2125 
2126 /* Free the reserved page into the buddy system, so it gets managed. */
2127 static inline void __free_reserved_page(struct page *page)
2128 {
2129 	ClearPageReserved(page);
2130 	init_page_count(page);
2131 	__free_page(page);
2132 }
2133 
2134 static inline void free_reserved_page(struct page *page)
2135 {
2136 	__free_reserved_page(page);
2137 	adjust_managed_page_count(page, 1);
2138 }
2139 
2140 static inline void mark_page_reserved(struct page *page)
2141 {
2142 	SetPageReserved(page);
2143 	adjust_managed_page_count(page, -1);
2144 }
2145 
2146 /*
2147  * Default method to free all the __init memory into the buddy system.
2148  * The freed pages will be poisoned with pattern "poison" if it's within
2149  * range [0, UCHAR_MAX].
2150  * Return pages freed into the buddy system.
2151  */
2152 static inline unsigned long free_initmem_default(int poison)
2153 {
2154 	extern char __init_begin[], __init_end[];
2155 
2156 	return free_reserved_area(&__init_begin, &__init_end,
2157 				  poison, "unused kernel");
2158 }
2159 
2160 static inline unsigned long get_num_physpages(void)
2161 {
2162 	int nid;
2163 	unsigned long phys_pages = 0;
2164 
2165 	for_each_online_node(nid)
2166 		phys_pages += node_present_pages(nid);
2167 
2168 	return phys_pages;
2169 }
2170 
2171 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2172 /*
2173  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2174  * zones, allocate the backing mem_map and account for memory holes in a more
2175  * architecture independent manner. This is a substitute for creating the
2176  * zone_sizes[] and zholes_size[] arrays and passing them to
2177  * free_area_init_node()
2178  *
2179  * An architecture is expected to register range of page frames backed by
2180  * physical memory with memblock_add[_node]() before calling
2181  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2182  * usage, an architecture is expected to do something like
2183  *
2184  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2185  * 							 max_highmem_pfn};
2186  * for_each_valid_physical_page_range()
2187  * 	memblock_add_node(base, size, nid)
2188  * free_area_init_nodes(max_zone_pfns);
2189  *
2190  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2191  * registered physical page range.  Similarly
2192  * sparse_memory_present_with_active_regions() calls memory_present() for
2193  * each range when SPARSEMEM is enabled.
2194  *
2195  * See mm/page_alloc.c for more information on each function exposed by
2196  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2197  */
2198 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2199 unsigned long node_map_pfn_alignment(void);
2200 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2201 						unsigned long end_pfn);
2202 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2203 						unsigned long end_pfn);
2204 extern void get_pfn_range_for_nid(unsigned int nid,
2205 			unsigned long *start_pfn, unsigned long *end_pfn);
2206 extern unsigned long find_min_pfn_with_active_regions(void);
2207 extern void free_bootmem_with_active_regions(int nid,
2208 						unsigned long max_low_pfn);
2209 extern void sparse_memory_present_with_active_regions(int nid);
2210 
2211 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2212 
2213 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2214     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2215 static inline int __early_pfn_to_nid(unsigned long pfn,
2216 					struct mminit_pfnnid_cache *state)
2217 {
2218 	return 0;
2219 }
2220 #else
2221 /* please see mm/page_alloc.c */
2222 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2223 /* there is a per-arch backend function. */
2224 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2225 					struct mminit_pfnnid_cache *state);
2226 #endif
2227 
2228 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2229 void zero_resv_unavail(void);
2230 #else
2231 static inline void zero_resv_unavail(void) {}
2232 #endif
2233 
2234 extern void set_dma_reserve(unsigned long new_dma_reserve);
2235 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2236 		enum memmap_context, struct vmem_altmap *);
2237 extern void setup_per_zone_wmarks(void);
2238 extern int __meminit init_per_zone_wmark_min(void);
2239 extern void mem_init(void);
2240 extern void __init mmap_init(void);
2241 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2242 extern long si_mem_available(void);
2243 extern void si_meminfo(struct sysinfo * val);
2244 extern void si_meminfo_node(struct sysinfo *val, int nid);
2245 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2246 extern unsigned long arch_reserved_kernel_pages(void);
2247 #endif
2248 
2249 extern __printf(3, 4)
2250 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2251 
2252 extern void setup_per_cpu_pageset(void);
2253 
2254 extern void zone_pcp_update(struct zone *zone);
2255 extern void zone_pcp_reset(struct zone *zone);
2256 
2257 /* page_alloc.c */
2258 extern int min_free_kbytes;
2259 extern int watermark_boost_factor;
2260 extern int watermark_scale_factor;
2261 
2262 /* nommu.c */
2263 extern atomic_long_t mmap_pages_allocated;
2264 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2265 
2266 /* interval_tree.c */
2267 void vma_interval_tree_insert(struct vm_area_struct *node,
2268 			      struct rb_root_cached *root);
2269 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2270 				    struct vm_area_struct *prev,
2271 				    struct rb_root_cached *root);
2272 void vma_interval_tree_remove(struct vm_area_struct *node,
2273 			      struct rb_root_cached *root);
2274 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2275 				unsigned long start, unsigned long last);
2276 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2277 				unsigned long start, unsigned long last);
2278 
2279 #define vma_interval_tree_foreach(vma, root, start, last)		\
2280 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2281 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2282 
2283 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2284 				   struct rb_root_cached *root);
2285 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2286 				   struct rb_root_cached *root);
2287 struct anon_vma_chain *
2288 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2289 				  unsigned long start, unsigned long last);
2290 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2291 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2292 #ifdef CONFIG_DEBUG_VM_RB
2293 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2294 #endif
2295 
2296 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2297 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2298 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2299 
2300 /* mmap.c */
2301 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2302 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2303 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2304 	struct vm_area_struct *expand);
2305 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2306 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2307 {
2308 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2309 }
2310 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2311 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2312 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2313 	struct mempolicy *, struct vm_userfaultfd_ctx);
2314 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2315 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2316 	unsigned long addr, int new_below);
2317 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2318 	unsigned long addr, int new_below);
2319 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2320 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2321 	struct rb_node **, struct rb_node *);
2322 extern void unlink_file_vma(struct vm_area_struct *);
2323 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2324 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2325 	bool *need_rmap_locks);
2326 extern void exit_mmap(struct mm_struct *);
2327 
2328 static inline int check_data_rlimit(unsigned long rlim,
2329 				    unsigned long new,
2330 				    unsigned long start,
2331 				    unsigned long end_data,
2332 				    unsigned long start_data)
2333 {
2334 	if (rlim < RLIM_INFINITY) {
2335 		if (((new - start) + (end_data - start_data)) > rlim)
2336 			return -ENOSPC;
2337 	}
2338 
2339 	return 0;
2340 }
2341 
2342 extern int mm_take_all_locks(struct mm_struct *mm);
2343 extern void mm_drop_all_locks(struct mm_struct *mm);
2344 
2345 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2346 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2347 extern struct file *get_task_exe_file(struct task_struct *task);
2348 
2349 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2350 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2351 
2352 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2353 				   const struct vm_special_mapping *sm);
2354 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2355 				   unsigned long addr, unsigned long len,
2356 				   unsigned long flags,
2357 				   const struct vm_special_mapping *spec);
2358 /* This is an obsolete alternative to _install_special_mapping. */
2359 extern int install_special_mapping(struct mm_struct *mm,
2360 				   unsigned long addr, unsigned long len,
2361 				   unsigned long flags, struct page **pages);
2362 
2363 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2364 
2365 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2366 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2367 	struct list_head *uf);
2368 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2369 	unsigned long len, unsigned long prot, unsigned long flags,
2370 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2371 	struct list_head *uf);
2372 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2373 		       struct list_head *uf, bool downgrade);
2374 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2375 		     struct list_head *uf);
2376 
2377 static inline unsigned long
2378 do_mmap_pgoff(struct file *file, unsigned long addr,
2379 	unsigned long len, unsigned long prot, unsigned long flags,
2380 	unsigned long pgoff, unsigned long *populate,
2381 	struct list_head *uf)
2382 {
2383 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2384 }
2385 
2386 #ifdef CONFIG_MMU
2387 extern int __mm_populate(unsigned long addr, unsigned long len,
2388 			 int ignore_errors);
2389 static inline void mm_populate(unsigned long addr, unsigned long len)
2390 {
2391 	/* Ignore errors */
2392 	(void) __mm_populate(addr, len, 1);
2393 }
2394 #else
2395 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2396 #endif
2397 
2398 /* These take the mm semaphore themselves */
2399 extern int __must_check vm_brk(unsigned long, unsigned long);
2400 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2401 extern int vm_munmap(unsigned long, size_t);
2402 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2403         unsigned long, unsigned long,
2404         unsigned long, unsigned long);
2405 
2406 struct vm_unmapped_area_info {
2407 #define VM_UNMAPPED_AREA_TOPDOWN 1
2408 	unsigned long flags;
2409 	unsigned long length;
2410 	unsigned long low_limit;
2411 	unsigned long high_limit;
2412 	unsigned long align_mask;
2413 	unsigned long align_offset;
2414 };
2415 
2416 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2417 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2418 
2419 /*
2420  * Search for an unmapped address range.
2421  *
2422  * We are looking for a range that:
2423  * - does not intersect with any VMA;
2424  * - is contained within the [low_limit, high_limit) interval;
2425  * - is at least the desired size.
2426  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2427  */
2428 static inline unsigned long
2429 vm_unmapped_area(struct vm_unmapped_area_info *info)
2430 {
2431 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2432 		return unmapped_area_topdown(info);
2433 	else
2434 		return unmapped_area(info);
2435 }
2436 
2437 /* truncate.c */
2438 extern void truncate_inode_pages(struct address_space *, loff_t);
2439 extern void truncate_inode_pages_range(struct address_space *,
2440 				       loff_t lstart, loff_t lend);
2441 extern void truncate_inode_pages_final(struct address_space *);
2442 
2443 /* generic vm_area_ops exported for stackable file systems */
2444 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2445 extern void filemap_map_pages(struct vm_fault *vmf,
2446 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2447 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2448 
2449 /* mm/page-writeback.c */
2450 int __must_check write_one_page(struct page *page);
2451 void task_dirty_inc(struct task_struct *tsk);
2452 
2453 /* readahead.c */
2454 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2455 
2456 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2457 			pgoff_t offset, unsigned long nr_to_read);
2458 
2459 void page_cache_sync_readahead(struct address_space *mapping,
2460 			       struct file_ra_state *ra,
2461 			       struct file *filp,
2462 			       pgoff_t offset,
2463 			       unsigned long size);
2464 
2465 void page_cache_async_readahead(struct address_space *mapping,
2466 				struct file_ra_state *ra,
2467 				struct file *filp,
2468 				struct page *pg,
2469 				pgoff_t offset,
2470 				unsigned long size);
2471 
2472 extern unsigned long stack_guard_gap;
2473 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2474 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2475 
2476 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2477 extern int expand_downwards(struct vm_area_struct *vma,
2478 		unsigned long address);
2479 #if VM_GROWSUP
2480 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2481 #else
2482   #define expand_upwards(vma, address) (0)
2483 #endif
2484 
2485 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2486 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2487 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2488 					     struct vm_area_struct **pprev);
2489 
2490 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2491    NULL if none.  Assume start_addr < end_addr. */
2492 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2493 {
2494 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2495 
2496 	if (vma && end_addr <= vma->vm_start)
2497 		vma = NULL;
2498 	return vma;
2499 }
2500 
2501 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2502 {
2503 	unsigned long vm_start = vma->vm_start;
2504 
2505 	if (vma->vm_flags & VM_GROWSDOWN) {
2506 		vm_start -= stack_guard_gap;
2507 		if (vm_start > vma->vm_start)
2508 			vm_start = 0;
2509 	}
2510 	return vm_start;
2511 }
2512 
2513 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2514 {
2515 	unsigned long vm_end = vma->vm_end;
2516 
2517 	if (vma->vm_flags & VM_GROWSUP) {
2518 		vm_end += stack_guard_gap;
2519 		if (vm_end < vma->vm_end)
2520 			vm_end = -PAGE_SIZE;
2521 	}
2522 	return vm_end;
2523 }
2524 
2525 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2526 {
2527 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2528 }
2529 
2530 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2531 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2532 				unsigned long vm_start, unsigned long vm_end)
2533 {
2534 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2535 
2536 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2537 		vma = NULL;
2538 
2539 	return vma;
2540 }
2541 
2542 static inline bool range_in_vma(struct vm_area_struct *vma,
2543 				unsigned long start, unsigned long end)
2544 {
2545 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2546 }
2547 
2548 #ifdef CONFIG_MMU
2549 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2550 void vma_set_page_prot(struct vm_area_struct *vma);
2551 #else
2552 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2553 {
2554 	return __pgprot(0);
2555 }
2556 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2557 {
2558 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2559 }
2560 #endif
2561 
2562 #ifdef CONFIG_NUMA_BALANCING
2563 unsigned long change_prot_numa(struct vm_area_struct *vma,
2564 			unsigned long start, unsigned long end);
2565 #endif
2566 
2567 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2568 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2569 			unsigned long pfn, unsigned long size, pgprot_t);
2570 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2571 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2572 				unsigned long num);
2573 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2574 				unsigned long num);
2575 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2576 			unsigned long pfn);
2577 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2578 			unsigned long pfn, pgprot_t pgprot);
2579 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2580 			pfn_t pfn);
2581 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2582 		unsigned long addr, pfn_t pfn);
2583 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2584 
2585 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2586 				unsigned long addr, struct page *page)
2587 {
2588 	int err = vm_insert_page(vma, addr, page);
2589 
2590 	if (err == -ENOMEM)
2591 		return VM_FAULT_OOM;
2592 	if (err < 0 && err != -EBUSY)
2593 		return VM_FAULT_SIGBUS;
2594 
2595 	return VM_FAULT_NOPAGE;
2596 }
2597 
2598 static inline vm_fault_t vmf_error(int err)
2599 {
2600 	if (err == -ENOMEM)
2601 		return VM_FAULT_OOM;
2602 	return VM_FAULT_SIGBUS;
2603 }
2604 
2605 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2606 			 unsigned int foll_flags);
2607 
2608 #define FOLL_WRITE	0x01	/* check pte is writable */
2609 #define FOLL_TOUCH	0x02	/* mark page accessed */
2610 #define FOLL_GET	0x04	/* do get_page on page */
2611 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2612 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2613 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2614 				 * and return without waiting upon it */
2615 #define FOLL_POPULATE	0x40	/* fault in page */
2616 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2617 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2618 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2619 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2620 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2621 #define FOLL_MLOCK	0x1000	/* lock present pages */
2622 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2623 #define FOLL_COW	0x4000	/* internal GUP flag */
2624 #define FOLL_ANON	0x8000	/* don't do file mappings */
2625 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2626 
2627 /*
2628  * NOTE on FOLL_LONGTERM:
2629  *
2630  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2631  * period _often_ under userspace control.  This is contrasted with
2632  * iov_iter_get_pages() where usages which are transient.
2633  *
2634  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2635  * lifetime enforced by the filesystem and we need guarantees that longterm
2636  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2637  * the filesystem.  Ideas for this coordination include revoking the longterm
2638  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2639  * added after the problem with filesystems was found FS DAX VMAs are
2640  * specifically failed.  Filesystem pages are still subject to bugs and use of
2641  * FOLL_LONGTERM should be avoided on those pages.
2642  *
2643  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2644  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2645  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2646  * is due to an incompatibility with the FS DAX check and
2647  * FAULT_FLAG_ALLOW_RETRY
2648  *
2649  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2650  * that region.  And so CMA attempts to migrate the page before pinning when
2651  * FOLL_LONGTERM is specified.
2652  */
2653 
2654 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2655 {
2656 	if (vm_fault & VM_FAULT_OOM)
2657 		return -ENOMEM;
2658 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2659 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2660 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2661 		return -EFAULT;
2662 	return 0;
2663 }
2664 
2665 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2666 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2667 			       unsigned long size, pte_fn_t fn, void *data);
2668 
2669 
2670 #ifdef CONFIG_PAGE_POISONING
2671 extern bool page_poisoning_enabled(void);
2672 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2673 #else
2674 static inline bool page_poisoning_enabled(void) { return false; }
2675 static inline void kernel_poison_pages(struct page *page, int numpages,
2676 					int enable) { }
2677 #endif
2678 
2679 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2680 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2681 #else
2682 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2683 #endif
2684 static inline bool want_init_on_alloc(gfp_t flags)
2685 {
2686 	if (static_branch_unlikely(&init_on_alloc) &&
2687 	    !page_poisoning_enabled())
2688 		return true;
2689 	return flags & __GFP_ZERO;
2690 }
2691 
2692 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2693 DECLARE_STATIC_KEY_TRUE(init_on_free);
2694 #else
2695 DECLARE_STATIC_KEY_FALSE(init_on_free);
2696 #endif
2697 static inline bool want_init_on_free(void)
2698 {
2699 	return static_branch_unlikely(&init_on_free) &&
2700 	       !page_poisoning_enabled();
2701 }
2702 
2703 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2704 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2705 #else
2706 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2707 #endif
2708 
2709 static inline bool debug_pagealloc_enabled(void)
2710 {
2711 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2712 		return false;
2713 
2714 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2715 }
2716 
2717 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2718 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2719 
2720 static inline void
2721 kernel_map_pages(struct page *page, int numpages, int enable)
2722 {
2723 	__kernel_map_pages(page, numpages, enable);
2724 }
2725 #ifdef CONFIG_HIBERNATION
2726 extern bool kernel_page_present(struct page *page);
2727 #endif	/* CONFIG_HIBERNATION */
2728 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2729 static inline void
2730 kernel_map_pages(struct page *page, int numpages, int enable) {}
2731 #ifdef CONFIG_HIBERNATION
2732 static inline bool kernel_page_present(struct page *page) { return true; }
2733 #endif	/* CONFIG_HIBERNATION */
2734 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2735 
2736 #ifdef __HAVE_ARCH_GATE_AREA
2737 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2738 extern int in_gate_area_no_mm(unsigned long addr);
2739 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2740 #else
2741 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2742 {
2743 	return NULL;
2744 }
2745 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2746 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2747 {
2748 	return 0;
2749 }
2750 #endif	/* __HAVE_ARCH_GATE_AREA */
2751 
2752 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2753 
2754 #ifdef CONFIG_SYSCTL
2755 extern int sysctl_drop_caches;
2756 int drop_caches_sysctl_handler(struct ctl_table *, int,
2757 					void __user *, size_t *, loff_t *);
2758 #endif
2759 
2760 void drop_slab(void);
2761 void drop_slab_node(int nid);
2762 
2763 #ifndef CONFIG_MMU
2764 #define randomize_va_space 0
2765 #else
2766 extern int randomize_va_space;
2767 #endif
2768 
2769 const char * arch_vma_name(struct vm_area_struct *vma);
2770 void print_vma_addr(char *prefix, unsigned long rip);
2771 
2772 void *sparse_buffer_alloc(unsigned long size);
2773 struct page *sparse_mem_map_populate(unsigned long pnum, int nid,
2774 		struct vmem_altmap *altmap);
2775 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2776 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2777 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2778 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2779 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2780 void *vmemmap_alloc_block(unsigned long size, int node);
2781 struct vmem_altmap;
2782 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2783 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2784 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2785 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2786 			       int node);
2787 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2788 		struct vmem_altmap *altmap);
2789 void vmemmap_populate_print_last(void);
2790 #ifdef CONFIG_MEMORY_HOTPLUG
2791 void vmemmap_free(unsigned long start, unsigned long end,
2792 		struct vmem_altmap *altmap);
2793 #endif
2794 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2795 				  unsigned long nr_pages);
2796 
2797 enum mf_flags {
2798 	MF_COUNT_INCREASED = 1 << 0,
2799 	MF_ACTION_REQUIRED = 1 << 1,
2800 	MF_MUST_KILL = 1 << 2,
2801 	MF_SOFT_OFFLINE = 1 << 3,
2802 };
2803 extern int memory_failure(unsigned long pfn, int flags);
2804 extern void memory_failure_queue(unsigned long pfn, int flags);
2805 extern int unpoison_memory(unsigned long pfn);
2806 extern int get_hwpoison_page(struct page *page);
2807 #define put_hwpoison_page(page)	put_page(page)
2808 extern int sysctl_memory_failure_early_kill;
2809 extern int sysctl_memory_failure_recovery;
2810 extern void shake_page(struct page *p, int access);
2811 extern atomic_long_t num_poisoned_pages __read_mostly;
2812 extern int soft_offline_page(struct page *page, int flags);
2813 
2814 
2815 /*
2816  * Error handlers for various types of pages.
2817  */
2818 enum mf_result {
2819 	MF_IGNORED,	/* Error: cannot be handled */
2820 	MF_FAILED,	/* Error: handling failed */
2821 	MF_DELAYED,	/* Will be handled later */
2822 	MF_RECOVERED,	/* Successfully recovered */
2823 };
2824 
2825 enum mf_action_page_type {
2826 	MF_MSG_KERNEL,
2827 	MF_MSG_KERNEL_HIGH_ORDER,
2828 	MF_MSG_SLAB,
2829 	MF_MSG_DIFFERENT_COMPOUND,
2830 	MF_MSG_POISONED_HUGE,
2831 	MF_MSG_HUGE,
2832 	MF_MSG_FREE_HUGE,
2833 	MF_MSG_NON_PMD_HUGE,
2834 	MF_MSG_UNMAP_FAILED,
2835 	MF_MSG_DIRTY_SWAPCACHE,
2836 	MF_MSG_CLEAN_SWAPCACHE,
2837 	MF_MSG_DIRTY_MLOCKED_LRU,
2838 	MF_MSG_CLEAN_MLOCKED_LRU,
2839 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2840 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2841 	MF_MSG_DIRTY_LRU,
2842 	MF_MSG_CLEAN_LRU,
2843 	MF_MSG_TRUNCATED_LRU,
2844 	MF_MSG_BUDDY,
2845 	MF_MSG_BUDDY_2ND,
2846 	MF_MSG_DAX,
2847 	MF_MSG_UNKNOWN,
2848 };
2849 
2850 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2851 extern void clear_huge_page(struct page *page,
2852 			    unsigned long addr_hint,
2853 			    unsigned int pages_per_huge_page);
2854 extern void copy_user_huge_page(struct page *dst, struct page *src,
2855 				unsigned long addr_hint,
2856 				struct vm_area_struct *vma,
2857 				unsigned int pages_per_huge_page);
2858 extern long copy_huge_page_from_user(struct page *dst_page,
2859 				const void __user *usr_src,
2860 				unsigned int pages_per_huge_page,
2861 				bool allow_pagefault);
2862 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2863 
2864 #ifdef CONFIG_DEBUG_PAGEALLOC
2865 extern unsigned int _debug_guardpage_minorder;
2866 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2867 
2868 static inline unsigned int debug_guardpage_minorder(void)
2869 {
2870 	return _debug_guardpage_minorder;
2871 }
2872 
2873 static inline bool debug_guardpage_enabled(void)
2874 {
2875 	return static_branch_unlikely(&_debug_guardpage_enabled);
2876 }
2877 
2878 static inline bool page_is_guard(struct page *page)
2879 {
2880 	if (!debug_guardpage_enabled())
2881 		return false;
2882 
2883 	return PageGuard(page);
2884 }
2885 #else
2886 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2887 static inline bool debug_guardpage_enabled(void) { return false; }
2888 static inline bool page_is_guard(struct page *page) { return false; }
2889 #endif /* CONFIG_DEBUG_PAGEALLOC */
2890 
2891 #if MAX_NUMNODES > 1
2892 void __init setup_nr_node_ids(void);
2893 #else
2894 static inline void setup_nr_node_ids(void) {}
2895 #endif
2896 
2897 #endif /* __KERNEL__ */
2898 #endif /* _LINUX_MM_H */
2899