xref: /linux-6.15/include/linux/mm.h (revision d289bf7b)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21 
22 #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */
23 extern unsigned long max_mapnr;
24 #endif
25 
26 extern unsigned long num_physpages;
27 extern void * high_memory;
28 extern int page_cluster;
29 
30 #ifdef CONFIG_SYSCTL
31 extern int sysctl_legacy_va_layout;
32 #else
33 #define sysctl_legacy_va_layout 0
34 #endif
35 
36 extern unsigned long mmap_min_addr;
37 
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
41 
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
43 
44 /*
45  * Linux kernel virtual memory manager primitives.
46  * The idea being to have a "virtual" mm in the same way
47  * we have a virtual fs - giving a cleaner interface to the
48  * mm details, and allowing different kinds of memory mappings
49  * (from shared memory to executable loading to arbitrary
50  * mmap() functions).
51  */
52 
53 extern struct kmem_cache *vm_area_cachep;
54 
55 /*
56  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is
57  * disabled, then there's a single shared list of VMAs maintained by the
58  * system, and mm's subscribe to these individually
59  */
60 struct vm_list_struct {
61 	struct vm_list_struct	*next;
62 	struct vm_area_struct	*vma;
63 };
64 
65 #ifndef CONFIG_MMU
66 extern struct rb_root nommu_vma_tree;
67 extern struct rw_semaphore nommu_vma_sem;
68 
69 extern unsigned int kobjsize(const void *objp);
70 #endif
71 
72 /*
73  * vm_flags..
74  */
75 #define VM_READ		0x00000001	/* currently active flags */
76 #define VM_WRITE	0x00000002
77 #define VM_EXEC		0x00000004
78 #define VM_SHARED	0x00000008
79 
80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
81 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
82 #define VM_MAYWRITE	0x00000020
83 #define VM_MAYEXEC	0x00000040
84 #define VM_MAYSHARE	0x00000080
85 
86 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
87 #define VM_GROWSUP	0x00000200
88 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
89 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
90 
91 #define VM_EXECUTABLE	0x00001000
92 #define VM_LOCKED	0x00002000
93 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
94 
95 					/* Used by sys_madvise() */
96 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
97 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
98 
99 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
100 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
101 #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */
102 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
103 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
104 #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */
105 #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */
106 #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */
107 #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */
108 
109 #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */
110 
111 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
113 #endif
114 
115 #ifdef CONFIG_STACK_GROWSUP
116 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
117 #else
118 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #endif
120 
121 #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ)
122 #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK
123 #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK))
124 #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ)
125 #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ)
126 
127 /*
128  * mapping from the currently active vm_flags protection bits (the
129  * low four bits) to a page protection mask..
130  */
131 extern pgprot_t protection_map[16];
132 
133 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
134 #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */
135 
136 
137 /*
138  * vm_fault is filled by the the pagefault handler and passed to the vma's
139  * ->fault function. The vma's ->fault is responsible for returning a bitmask
140  * of VM_FAULT_xxx flags that give details about how the fault was handled.
141  *
142  * pgoff should be used in favour of virtual_address, if possible. If pgoff
143  * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
144  * mapping support.
145  */
146 struct vm_fault {
147 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
148 	pgoff_t pgoff;			/* Logical page offset based on vma */
149 	void __user *virtual_address;	/* Faulting virtual address */
150 
151 	struct page *page;		/* ->fault handlers should return a
152 					 * page here, unless VM_FAULT_NOPAGE
153 					 * is set (which is also implied by
154 					 * VM_FAULT_ERROR).
155 					 */
156 };
157 
158 /*
159  * These are the virtual MM functions - opening of an area, closing and
160  * unmapping it (needed to keep files on disk up-to-date etc), pointer
161  * to the functions called when a no-page or a wp-page exception occurs.
162  */
163 struct vm_operations_struct {
164 	void (*open)(struct vm_area_struct * area);
165 	void (*close)(struct vm_area_struct * area);
166 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
167 	struct page *(*nopage)(struct vm_area_struct *area,
168 			unsigned long address, int *type);
169 	unsigned long (*nopfn)(struct vm_area_struct *area,
170 			unsigned long address);
171 
172 	/* notification that a previously read-only page is about to become
173 	 * writable, if an error is returned it will cause a SIGBUS */
174 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page);
175 #ifdef CONFIG_NUMA
176 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
177 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
178 					unsigned long addr);
179 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
180 		const nodemask_t *to, unsigned long flags);
181 #endif
182 };
183 
184 struct mmu_gather;
185 struct inode;
186 
187 #define page_private(page)		((page)->private)
188 #define set_page_private(page, v)	((page)->private = (v))
189 
190 /*
191  * FIXME: take this include out, include page-flags.h in
192  * files which need it (119 of them)
193  */
194 #include <linux/page-flags.h>
195 
196 #ifdef CONFIG_DEBUG_VM
197 #define VM_BUG_ON(cond) BUG_ON(cond)
198 #else
199 #define VM_BUG_ON(condition) do { } while(0)
200 #endif
201 
202 /*
203  * Methods to modify the page usage count.
204  *
205  * What counts for a page usage:
206  * - cache mapping   (page->mapping)
207  * - private data    (page->private)
208  * - page mapped in a task's page tables, each mapping
209  *   is counted separately
210  *
211  * Also, many kernel routines increase the page count before a critical
212  * routine so they can be sure the page doesn't go away from under them.
213  */
214 
215 /*
216  * Drop a ref, return true if the refcount fell to zero (the page has no users)
217  */
218 static inline int put_page_testzero(struct page *page)
219 {
220 	VM_BUG_ON(atomic_read(&page->_count) == 0);
221 	return atomic_dec_and_test(&page->_count);
222 }
223 
224 /*
225  * Try to grab a ref unless the page has a refcount of zero, return false if
226  * that is the case.
227  */
228 static inline int get_page_unless_zero(struct page *page)
229 {
230 	VM_BUG_ON(PageTail(page));
231 	return atomic_inc_not_zero(&page->_count);
232 }
233 
234 /* Support for virtually mapped pages */
235 struct page *vmalloc_to_page(const void *addr);
236 unsigned long vmalloc_to_pfn(const void *addr);
237 
238 /*
239  * Determine if an address is within the vmalloc range
240  *
241  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
242  * is no special casing required.
243  */
244 static inline int is_vmalloc_addr(const void *x)
245 {
246 #ifdef CONFIG_MMU
247 	unsigned long addr = (unsigned long)x;
248 
249 	return addr >= VMALLOC_START && addr < VMALLOC_END;
250 #else
251 	return 0;
252 #endif
253 }
254 
255 static inline struct page *compound_head(struct page *page)
256 {
257 	if (unlikely(PageTail(page)))
258 		return page->first_page;
259 	return page;
260 }
261 
262 static inline int page_count(struct page *page)
263 {
264 	return atomic_read(&compound_head(page)->_count);
265 }
266 
267 static inline void get_page(struct page *page)
268 {
269 	page = compound_head(page);
270 	VM_BUG_ON(atomic_read(&page->_count) == 0);
271 	atomic_inc(&page->_count);
272 }
273 
274 static inline struct page *virt_to_head_page(const void *x)
275 {
276 	struct page *page = virt_to_page(x);
277 	return compound_head(page);
278 }
279 
280 /*
281  * Setup the page count before being freed into the page allocator for
282  * the first time (boot or memory hotplug)
283  */
284 static inline void init_page_count(struct page *page)
285 {
286 	atomic_set(&page->_count, 1);
287 }
288 
289 void put_page(struct page *page);
290 void put_pages_list(struct list_head *pages);
291 
292 void split_page(struct page *page, unsigned int order);
293 
294 /*
295  * Compound pages have a destructor function.  Provide a
296  * prototype for that function and accessor functions.
297  * These are _only_ valid on the head of a PG_compound page.
298  */
299 typedef void compound_page_dtor(struct page *);
300 
301 static inline void set_compound_page_dtor(struct page *page,
302 						compound_page_dtor *dtor)
303 {
304 	page[1].lru.next = (void *)dtor;
305 }
306 
307 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
308 {
309 	return (compound_page_dtor *)page[1].lru.next;
310 }
311 
312 static inline int compound_order(struct page *page)
313 {
314 	if (!PageHead(page))
315 		return 0;
316 	return (unsigned long)page[1].lru.prev;
317 }
318 
319 static inline void set_compound_order(struct page *page, unsigned long order)
320 {
321 	page[1].lru.prev = (void *)order;
322 }
323 
324 /*
325  * Multiple processes may "see" the same page. E.g. for untouched
326  * mappings of /dev/null, all processes see the same page full of
327  * zeroes, and text pages of executables and shared libraries have
328  * only one copy in memory, at most, normally.
329  *
330  * For the non-reserved pages, page_count(page) denotes a reference count.
331  *   page_count() == 0 means the page is free. page->lru is then used for
332  *   freelist management in the buddy allocator.
333  *   page_count() > 0  means the page has been allocated.
334  *
335  * Pages are allocated by the slab allocator in order to provide memory
336  * to kmalloc and kmem_cache_alloc. In this case, the management of the
337  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
338  * unless a particular usage is carefully commented. (the responsibility of
339  * freeing the kmalloc memory is the caller's, of course).
340  *
341  * A page may be used by anyone else who does a __get_free_page().
342  * In this case, page_count still tracks the references, and should only
343  * be used through the normal accessor functions. The top bits of page->flags
344  * and page->virtual store page management information, but all other fields
345  * are unused and could be used privately, carefully. The management of this
346  * page is the responsibility of the one who allocated it, and those who have
347  * subsequently been given references to it.
348  *
349  * The other pages (we may call them "pagecache pages") are completely
350  * managed by the Linux memory manager: I/O, buffers, swapping etc.
351  * The following discussion applies only to them.
352  *
353  * A pagecache page contains an opaque `private' member, which belongs to the
354  * page's address_space. Usually, this is the address of a circular list of
355  * the page's disk buffers. PG_private must be set to tell the VM to call
356  * into the filesystem to release these pages.
357  *
358  * A page may belong to an inode's memory mapping. In this case, page->mapping
359  * is the pointer to the inode, and page->index is the file offset of the page,
360  * in units of PAGE_CACHE_SIZE.
361  *
362  * If pagecache pages are not associated with an inode, they are said to be
363  * anonymous pages. These may become associated with the swapcache, and in that
364  * case PG_swapcache is set, and page->private is an offset into the swapcache.
365  *
366  * In either case (swapcache or inode backed), the pagecache itself holds one
367  * reference to the page. Setting PG_private should also increment the
368  * refcount. The each user mapping also has a reference to the page.
369  *
370  * The pagecache pages are stored in a per-mapping radix tree, which is
371  * rooted at mapping->page_tree, and indexed by offset.
372  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
373  * lists, we instead now tag pages as dirty/writeback in the radix tree.
374  *
375  * All pagecache pages may be subject to I/O:
376  * - inode pages may need to be read from disk,
377  * - inode pages which have been modified and are MAP_SHARED may need
378  *   to be written back to the inode on disk,
379  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
380  *   modified may need to be swapped out to swap space and (later) to be read
381  *   back into memory.
382  */
383 
384 /*
385  * The zone field is never updated after free_area_init_core()
386  * sets it, so none of the operations on it need to be atomic.
387  */
388 
389 
390 /*
391  * page->flags layout:
392  *
393  * There are three possibilities for how page->flags get
394  * laid out.  The first is for the normal case, without
395  * sparsemem.  The second is for sparsemem when there is
396  * plenty of space for node and section.  The last is when
397  * we have run out of space and have to fall back to an
398  * alternate (slower) way of determining the node.
399  *
400  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS |
401  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS |
402  *   no space for node: | SECTION |     ZONE    | ... | FLAGS |
403  */
404 #ifdef CONFIG_SPARSEMEM
405 #define SECTIONS_WIDTH		SECTIONS_SHIFT
406 #else
407 #define SECTIONS_WIDTH		0
408 #endif
409 
410 #define ZONES_WIDTH		ZONES_SHIFT
411 
412 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED
413 #define NODES_WIDTH		NODES_SHIFT
414 #else
415 #define NODES_WIDTH		0
416 #endif
417 
418 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
419 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
420 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
421 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
422 
423 /*
424  * We are going to use the flags for the page to node mapping if its in
425  * there.  This includes the case where there is no node, so it is implicit.
426  */
427 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
428 #define NODE_NOT_IN_PAGE_FLAGS
429 #endif
430 
431 #ifndef PFN_SECTION_SHIFT
432 #define PFN_SECTION_SHIFT 0
433 #endif
434 
435 /*
436  * Define the bit shifts to access each section.  For non-existant
437  * sections we define the shift as 0; that plus a 0 mask ensures
438  * the compiler will optimise away reference to them.
439  */
440 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
441 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
442 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
443 
444 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
445 #ifdef NODE_NOT_IN_PAGEFLAGS
446 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
447 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
448 						SECTIONS_PGOFF : ZONES_PGOFF)
449 #else
450 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
451 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
452 						NODES_PGOFF : ZONES_PGOFF)
453 #endif
454 
455 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
456 
457 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
458 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED
459 #endif
460 
461 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
462 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
463 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
464 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
465 
466 static inline enum zone_type page_zonenum(struct page *page)
467 {
468 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
469 }
470 
471 /*
472  * The identification function is only used by the buddy allocator for
473  * determining if two pages could be buddies. We are not really
474  * identifying a zone since we could be using a the section number
475  * id if we have not node id available in page flags.
476  * We guarantee only that it will return the same value for two
477  * combinable pages in a zone.
478  */
479 static inline int page_zone_id(struct page *page)
480 {
481 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
482 }
483 
484 static inline int zone_to_nid(struct zone *zone)
485 {
486 #ifdef CONFIG_NUMA
487 	return zone->node;
488 #else
489 	return 0;
490 #endif
491 }
492 
493 #ifdef NODE_NOT_IN_PAGE_FLAGS
494 extern int page_to_nid(struct page *page);
495 #else
496 static inline int page_to_nid(struct page *page)
497 {
498 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
499 }
500 #endif
501 
502 static inline struct zone *page_zone(struct page *page)
503 {
504 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
505 }
506 
507 static inline unsigned long page_to_section(struct page *page)
508 {
509 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
510 }
511 
512 static inline void set_page_zone(struct page *page, enum zone_type zone)
513 {
514 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
515 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
516 }
517 
518 static inline void set_page_node(struct page *page, unsigned long node)
519 {
520 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
521 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
522 }
523 
524 static inline void set_page_section(struct page *page, unsigned long section)
525 {
526 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
527 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
528 }
529 
530 static inline void set_page_links(struct page *page, enum zone_type zone,
531 	unsigned long node, unsigned long pfn)
532 {
533 	set_page_zone(page, zone);
534 	set_page_node(page, node);
535 	set_page_section(page, pfn_to_section_nr(pfn));
536 }
537 
538 /*
539  * If a hint addr is less than mmap_min_addr change hint to be as
540  * low as possible but still greater than mmap_min_addr
541  */
542 static inline unsigned long round_hint_to_min(unsigned long hint)
543 {
544 #ifdef CONFIG_SECURITY
545 	hint &= PAGE_MASK;
546 	if (((void *)hint != NULL) &&
547 	    (hint < mmap_min_addr))
548 		return PAGE_ALIGN(mmap_min_addr);
549 #endif
550 	return hint;
551 }
552 
553 /*
554  * Some inline functions in vmstat.h depend on page_zone()
555  */
556 #include <linux/vmstat.h>
557 
558 static __always_inline void *lowmem_page_address(struct page *page)
559 {
560 	return __va(page_to_pfn(page) << PAGE_SHIFT);
561 }
562 
563 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
564 #define HASHED_PAGE_VIRTUAL
565 #endif
566 
567 #if defined(WANT_PAGE_VIRTUAL)
568 #define page_address(page) ((page)->virtual)
569 #define set_page_address(page, address)			\
570 	do {						\
571 		(page)->virtual = (address);		\
572 	} while(0)
573 #define page_address_init()  do { } while(0)
574 #endif
575 
576 #if defined(HASHED_PAGE_VIRTUAL)
577 void *page_address(struct page *page);
578 void set_page_address(struct page *page, void *virtual);
579 void page_address_init(void);
580 #endif
581 
582 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
583 #define page_address(page) lowmem_page_address(page)
584 #define set_page_address(page, address)  do { } while(0)
585 #define page_address_init()  do { } while(0)
586 #endif
587 
588 /*
589  * On an anonymous page mapped into a user virtual memory area,
590  * page->mapping points to its anon_vma, not to a struct address_space;
591  * with the PAGE_MAPPING_ANON bit set to distinguish it.
592  *
593  * Please note that, confusingly, "page_mapping" refers to the inode
594  * address_space which maps the page from disk; whereas "page_mapped"
595  * refers to user virtual address space into which the page is mapped.
596  */
597 #define PAGE_MAPPING_ANON	1
598 
599 extern struct address_space swapper_space;
600 static inline struct address_space *page_mapping(struct page *page)
601 {
602 	struct address_space *mapping = page->mapping;
603 
604 	VM_BUG_ON(PageSlab(page));
605 	if (unlikely(PageSwapCache(page)))
606 		mapping = &swapper_space;
607 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
608 		mapping = NULL;
609 	return mapping;
610 }
611 
612 static inline int PageAnon(struct page *page)
613 {
614 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
615 }
616 
617 /*
618  * Return the pagecache index of the passed page.  Regular pagecache pages
619  * use ->index whereas swapcache pages use ->private
620  */
621 static inline pgoff_t page_index(struct page *page)
622 {
623 	if (unlikely(PageSwapCache(page)))
624 		return page_private(page);
625 	return page->index;
626 }
627 
628 /*
629  * The atomic page->_mapcount, like _count, starts from -1:
630  * so that transitions both from it and to it can be tracked,
631  * using atomic_inc_and_test and atomic_add_negative(-1).
632  */
633 static inline void reset_page_mapcount(struct page *page)
634 {
635 	atomic_set(&(page)->_mapcount, -1);
636 }
637 
638 static inline int page_mapcount(struct page *page)
639 {
640 	return atomic_read(&(page)->_mapcount) + 1;
641 }
642 
643 /*
644  * Return true if this page is mapped into pagetables.
645  */
646 static inline int page_mapped(struct page *page)
647 {
648 	return atomic_read(&(page)->_mapcount) >= 0;
649 }
650 
651 /*
652  * Error return values for the *_nopage functions
653  */
654 #define NOPAGE_SIGBUS	(NULL)
655 #define NOPAGE_OOM	((struct page *) (-1))
656 
657 /*
658  * Error return values for the *_nopfn functions
659  */
660 #define NOPFN_SIGBUS	((unsigned long) -1)
661 #define NOPFN_OOM	((unsigned long) -2)
662 #define NOPFN_REFAULT	((unsigned long) -3)
663 
664 /*
665  * Different kinds of faults, as returned by handle_mm_fault().
666  * Used to decide whether a process gets delivered SIGBUS or
667  * just gets major/minor fault counters bumped up.
668  */
669 
670 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
671 
672 #define VM_FAULT_OOM	0x0001
673 #define VM_FAULT_SIGBUS	0x0002
674 #define VM_FAULT_MAJOR	0x0004
675 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
676 
677 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
678 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
679 
680 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS)
681 
682 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
683 
684 extern void show_free_areas(void);
685 
686 #ifdef CONFIG_SHMEM
687 int shmem_lock(struct file *file, int lock, struct user_struct *user);
688 #else
689 static inline int shmem_lock(struct file *file, int lock,
690 			     struct user_struct *user)
691 {
692 	return 0;
693 }
694 #endif
695 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags);
696 
697 int shmem_zero_setup(struct vm_area_struct *);
698 
699 #ifndef CONFIG_MMU
700 extern unsigned long shmem_get_unmapped_area(struct file *file,
701 					     unsigned long addr,
702 					     unsigned long len,
703 					     unsigned long pgoff,
704 					     unsigned long flags);
705 #endif
706 
707 extern int can_do_mlock(void);
708 extern int user_shm_lock(size_t, struct user_struct *);
709 extern void user_shm_unlock(size_t, struct user_struct *);
710 
711 /*
712  * Parameter block passed down to zap_pte_range in exceptional cases.
713  */
714 struct zap_details {
715 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */
716 	struct address_space *check_mapping;	/* Check page->mapping if set */
717 	pgoff_t	first_index;			/* Lowest page->index to unmap */
718 	pgoff_t last_index;			/* Highest page->index to unmap */
719 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */
720 	unsigned long truncate_count;		/* Compare vm_truncate_count */
721 };
722 
723 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t);
724 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
725 		unsigned long size, struct zap_details *);
726 unsigned long unmap_vmas(struct mmu_gather **tlb,
727 		struct vm_area_struct *start_vma, unsigned long start_addr,
728 		unsigned long end_addr, unsigned long *nr_accounted,
729 		struct zap_details *);
730 
731 /**
732  * mm_walk - callbacks for walk_page_range
733  * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
734  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
735  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
736  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
737  * @pte_hole: if set, called for each hole at all levels
738  *
739  * (see walk_page_range for more details)
740  */
741 struct mm_walk {
742 	int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *);
743 	int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *);
744 	int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *);
745 	int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *);
746 	int (*pte_hole)(unsigned long, unsigned long, void *);
747 };
748 
749 int walk_page_range(const struct mm_struct *, unsigned long addr,
750 		    unsigned long end, const struct mm_walk *walk,
751 		    void *private);
752 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr,
753 		unsigned long end, unsigned long floor, unsigned long ceiling);
754 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma,
755 		unsigned long floor, unsigned long ceiling);
756 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
757 			struct vm_area_struct *vma);
758 void unmap_mapping_range(struct address_space *mapping,
759 		loff_t const holebegin, loff_t const holelen, int even_cows);
760 
761 static inline void unmap_shared_mapping_range(struct address_space *mapping,
762 		loff_t const holebegin, loff_t const holelen)
763 {
764 	unmap_mapping_range(mapping, holebegin, holelen, 0);
765 }
766 
767 extern int vmtruncate(struct inode * inode, loff_t offset);
768 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end);
769 
770 #ifdef CONFIG_MMU
771 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
772 			unsigned long address, int write_access);
773 #else
774 static inline int handle_mm_fault(struct mm_struct *mm,
775 			struct vm_area_struct *vma, unsigned long address,
776 			int write_access)
777 {
778 	/* should never happen if there's no MMU */
779 	BUG();
780 	return VM_FAULT_SIGBUS;
781 }
782 #endif
783 
784 extern int make_pages_present(unsigned long addr, unsigned long end);
785 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
786 
787 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start,
788 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas);
789 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long);
790 
791 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
792 extern void do_invalidatepage(struct page *page, unsigned long offset);
793 
794 int __set_page_dirty_nobuffers(struct page *page);
795 int __set_page_dirty_no_writeback(struct page *page);
796 int redirty_page_for_writepage(struct writeback_control *wbc,
797 				struct page *page);
798 int set_page_dirty(struct page *page);
799 int set_page_dirty_lock(struct page *page);
800 int clear_page_dirty_for_io(struct page *page);
801 
802 extern unsigned long move_page_tables(struct vm_area_struct *vma,
803 		unsigned long old_addr, struct vm_area_struct *new_vma,
804 		unsigned long new_addr, unsigned long len);
805 extern unsigned long do_mremap(unsigned long addr,
806 			       unsigned long old_len, unsigned long new_len,
807 			       unsigned long flags, unsigned long new_addr);
808 extern int mprotect_fixup(struct vm_area_struct *vma,
809 			  struct vm_area_struct **pprev, unsigned long start,
810 			  unsigned long end, unsigned long newflags);
811 
812 /*
813  * A callback you can register to apply pressure to ageable caches.
814  *
815  * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should
816  * look through the least-recently-used 'nr_to_scan' entries and
817  * attempt to free them up.  It should return the number of objects
818  * which remain in the cache.  If it returns -1, it means it cannot do
819  * any scanning at this time (eg. there is a risk of deadlock).
820  *
821  * The 'gfpmask' refers to the allocation we are currently trying to
822  * fulfil.
823  *
824  * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
825  * querying the cache size, so a fastpath for that case is appropriate.
826  */
827 struct shrinker {
828 	int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
829 	int seeks;	/* seeks to recreate an obj */
830 
831 	/* These are for internal use */
832 	struct list_head list;
833 	long nr;	/* objs pending delete */
834 };
835 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
836 extern void register_shrinker(struct shrinker *);
837 extern void unregister_shrinker(struct shrinker *);
838 
839 int vma_wants_writenotify(struct vm_area_struct *vma);
840 
841 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
842 
843 #ifdef __PAGETABLE_PUD_FOLDED
844 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
845 						unsigned long address)
846 {
847 	return 0;
848 }
849 #else
850 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
851 #endif
852 
853 #ifdef __PAGETABLE_PMD_FOLDED
854 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
855 						unsigned long address)
856 {
857 	return 0;
858 }
859 #else
860 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
861 #endif
862 
863 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
864 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
865 
866 /*
867  * The following ifdef needed to get the 4level-fixup.h header to work.
868  * Remove it when 4level-fixup.h has been removed.
869  */
870 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
871 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
872 {
873 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
874 		NULL: pud_offset(pgd, address);
875 }
876 
877 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
878 {
879 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
880 		NULL: pmd_offset(pud, address);
881 }
882 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
883 
884 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS
885 /*
886  * We tuck a spinlock to guard each pagetable page into its struct page,
887  * at page->private, with BUILD_BUG_ON to make sure that this will not
888  * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
889  * When freeing, reset page->mapping so free_pages_check won't complain.
890  */
891 #define __pte_lockptr(page)	&((page)->ptl)
892 #define pte_lock_init(_page)	do {					\
893 	spin_lock_init(__pte_lockptr(_page));				\
894 } while (0)
895 #define pte_lock_deinit(page)	((page)->mapping = NULL)
896 #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
897 #else
898 /*
899  * We use mm->page_table_lock to guard all pagetable pages of the mm.
900  */
901 #define pte_lock_init(page)	do {} while (0)
902 #define pte_lock_deinit(page)	do {} while (0)
903 #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;})
904 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */
905 
906 static inline void pgtable_page_ctor(struct page *page)
907 {
908 	pte_lock_init(page);
909 	inc_zone_page_state(page, NR_PAGETABLE);
910 }
911 
912 static inline void pgtable_page_dtor(struct page *page)
913 {
914 	pte_lock_deinit(page);
915 	dec_zone_page_state(page, NR_PAGETABLE);
916 }
917 
918 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
919 ({							\
920 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
921 	pte_t *__pte = pte_offset_map(pmd, address);	\
922 	*(ptlp) = __ptl;				\
923 	spin_lock(__ptl);				\
924 	__pte;						\
925 })
926 
927 #define pte_unmap_unlock(pte, ptl)	do {		\
928 	spin_unlock(ptl);				\
929 	pte_unmap(pte);					\
930 } while (0)
931 
932 #define pte_alloc_map(mm, pmd, address)			\
933 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
934 		NULL: pte_offset_map(pmd, address))
935 
936 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
937 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
938 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
939 
940 #define pte_alloc_kernel(pmd, address)			\
941 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
942 		NULL: pte_offset_kernel(pmd, address))
943 
944 extern void free_area_init(unsigned long * zones_size);
945 extern void free_area_init_node(int nid, pg_data_t *pgdat,
946 	unsigned long * zones_size, unsigned long zone_start_pfn,
947 	unsigned long *zholes_size);
948 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
949 /*
950  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
951  * zones, allocate the backing mem_map and account for memory holes in a more
952  * architecture independent manner. This is a substitute for creating the
953  * zone_sizes[] and zholes_size[] arrays and passing them to
954  * free_area_init_node()
955  *
956  * An architecture is expected to register range of page frames backed by
957  * physical memory with add_active_range() before calling
958  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
959  * usage, an architecture is expected to do something like
960  *
961  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
962  * 							 max_highmem_pfn};
963  * for_each_valid_physical_page_range()
964  * 	add_active_range(node_id, start_pfn, end_pfn)
965  * free_area_init_nodes(max_zone_pfns);
966  *
967  * If the architecture guarantees that there are no holes in the ranges
968  * registered with add_active_range(), free_bootmem_active_regions()
969  * will call free_bootmem_node() for each registered physical page range.
970  * Similarly sparse_memory_present_with_active_regions() calls
971  * memory_present() for each range when SPARSEMEM is enabled.
972  *
973  * See mm/page_alloc.c for more information on each function exposed by
974  * CONFIG_ARCH_POPULATES_NODE_MAP
975  */
976 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
977 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
978 					unsigned long end_pfn);
979 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn,
980 						unsigned long new_end_pfn);
981 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn,
982 					unsigned long end_pfn);
983 extern void remove_all_active_ranges(void);
984 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
985 						unsigned long end_pfn);
986 extern void get_pfn_range_for_nid(unsigned int nid,
987 			unsigned long *start_pfn, unsigned long *end_pfn);
988 extern unsigned long find_min_pfn_with_active_regions(void);
989 extern unsigned long find_max_pfn_with_active_regions(void);
990 extern void free_bootmem_with_active_regions(int nid,
991 						unsigned long max_low_pfn);
992 extern void sparse_memory_present_with_active_regions(int nid);
993 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
994 extern int early_pfn_to_nid(unsigned long pfn);
995 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
996 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
997 extern void set_dma_reserve(unsigned long new_dma_reserve);
998 extern void memmap_init_zone(unsigned long, int, unsigned long,
999 				unsigned long, enum memmap_context);
1000 extern void setup_per_zone_pages_min(void);
1001 extern void mem_init(void);
1002 extern void show_mem(void);
1003 extern void si_meminfo(struct sysinfo * val);
1004 extern void si_meminfo_node(struct sysinfo *val, int nid);
1005 
1006 #ifdef CONFIG_NUMA
1007 extern void setup_per_cpu_pageset(void);
1008 #else
1009 static inline void setup_per_cpu_pageset(void) {}
1010 #endif
1011 
1012 /* prio_tree.c */
1013 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1014 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1015 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1016 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1017 	struct prio_tree_iter *iter);
1018 
1019 #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\
1020 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\
1021 		(vma = vma_prio_tree_next(vma, iter)); )
1022 
1023 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1024 					struct list_head *list)
1025 {
1026 	vma->shared.vm_set.parent = NULL;
1027 	list_add_tail(&vma->shared.vm_set.list, list);
1028 }
1029 
1030 /* mmap.c */
1031 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1032 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1033 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1034 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1035 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1036 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1037 	struct mempolicy *);
1038 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1039 extern int split_vma(struct mm_struct *,
1040 	struct vm_area_struct *, unsigned long addr, int new_below);
1041 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1042 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1043 	struct rb_node **, struct rb_node *);
1044 extern void unlink_file_vma(struct vm_area_struct *);
1045 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1046 	unsigned long addr, unsigned long len, pgoff_t pgoff);
1047 extern void exit_mmap(struct mm_struct *);
1048 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1049 extern int install_special_mapping(struct mm_struct *mm,
1050 				   unsigned long addr, unsigned long len,
1051 				   unsigned long flags, struct page **pages);
1052 
1053 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1054 
1055 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1056 	unsigned long len, unsigned long prot,
1057 	unsigned long flag, unsigned long pgoff);
1058 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1059 	unsigned long len, unsigned long flags,
1060 	unsigned int vm_flags, unsigned long pgoff,
1061 	int accountable);
1062 
1063 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1064 	unsigned long len, unsigned long prot,
1065 	unsigned long flag, unsigned long offset)
1066 {
1067 	unsigned long ret = -EINVAL;
1068 	if ((offset + PAGE_ALIGN(len)) < offset)
1069 		goto out;
1070 	if (!(offset & ~PAGE_MASK))
1071 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1072 out:
1073 	return ret;
1074 }
1075 
1076 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1077 
1078 extern unsigned long do_brk(unsigned long, unsigned long);
1079 
1080 /* filemap.c */
1081 extern unsigned long page_unuse(struct page *);
1082 extern void truncate_inode_pages(struct address_space *, loff_t);
1083 extern void truncate_inode_pages_range(struct address_space *,
1084 				       loff_t lstart, loff_t lend);
1085 
1086 /* generic vm_area_ops exported for stackable file systems */
1087 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1088 
1089 /* mm/page-writeback.c */
1090 int write_one_page(struct page *page, int wait);
1091 
1092 /* readahead.c */
1093 #define VM_MAX_READAHEAD	128	/* kbytes */
1094 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1095 
1096 int do_page_cache_readahead(struct address_space *mapping, struct file *filp,
1097 			pgoff_t offset, unsigned long nr_to_read);
1098 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1099 			pgoff_t offset, unsigned long nr_to_read);
1100 
1101 void page_cache_sync_readahead(struct address_space *mapping,
1102 			       struct file_ra_state *ra,
1103 			       struct file *filp,
1104 			       pgoff_t offset,
1105 			       unsigned long size);
1106 
1107 void page_cache_async_readahead(struct address_space *mapping,
1108 				struct file_ra_state *ra,
1109 				struct file *filp,
1110 				struct page *pg,
1111 				pgoff_t offset,
1112 				unsigned long size);
1113 
1114 unsigned long max_sane_readahead(unsigned long nr);
1115 
1116 /* Do stack extension */
1117 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1118 #ifdef CONFIG_IA64
1119 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1120 #endif
1121 extern int expand_stack_downwards(struct vm_area_struct *vma,
1122 				  unsigned long address);
1123 
1124 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1125 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1126 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1127 					     struct vm_area_struct **pprev);
1128 
1129 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1130    NULL if none.  Assume start_addr < end_addr. */
1131 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1132 {
1133 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1134 
1135 	if (vma && end_addr <= vma->vm_start)
1136 		vma = NULL;
1137 	return vma;
1138 }
1139 
1140 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1141 {
1142 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1143 }
1144 
1145 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1146 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1147 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1148 			unsigned long pfn, unsigned long size, pgprot_t);
1149 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1150 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1151 			unsigned long pfn);
1152 
1153 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1154 			unsigned int foll_flags);
1155 #define FOLL_WRITE	0x01	/* check pte is writable */
1156 #define FOLL_TOUCH	0x02	/* mark page accessed */
1157 #define FOLL_GET	0x04	/* do get_page on page */
1158 #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */
1159 
1160 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1161 			void *data);
1162 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1163 			       unsigned long size, pte_fn_t fn, void *data);
1164 
1165 #ifdef CONFIG_PROC_FS
1166 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1167 #else
1168 static inline void vm_stat_account(struct mm_struct *mm,
1169 			unsigned long flags, struct file *file, long pages)
1170 {
1171 }
1172 #endif /* CONFIG_PROC_FS */
1173 
1174 #ifdef CONFIG_DEBUG_PAGEALLOC
1175 extern int debug_pagealloc_enabled;
1176 
1177 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1178 
1179 static inline void enable_debug_pagealloc(void)
1180 {
1181 	debug_pagealloc_enabled = 1;
1182 }
1183 #ifdef CONFIG_HIBERNATION
1184 extern bool kernel_page_present(struct page *page);
1185 #endif /* CONFIG_HIBERNATION */
1186 #else
1187 static inline void
1188 kernel_map_pages(struct page *page, int numpages, int enable) {}
1189 static inline void enable_debug_pagealloc(void)
1190 {
1191 }
1192 #ifdef CONFIG_HIBERNATION
1193 static inline bool kernel_page_present(struct page *page) { return true; }
1194 #endif /* CONFIG_HIBERNATION */
1195 #endif
1196 
1197 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1198 #ifdef	__HAVE_ARCH_GATE_AREA
1199 int in_gate_area_no_task(unsigned long addr);
1200 int in_gate_area(struct task_struct *task, unsigned long addr);
1201 #else
1202 int in_gate_area_no_task(unsigned long addr);
1203 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1204 #endif	/* __HAVE_ARCH_GATE_AREA */
1205 
1206 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *,
1207 					void __user *, size_t *, loff_t *);
1208 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1209 			unsigned long lru_pages);
1210 void drop_pagecache(void);
1211 void drop_slab(void);
1212 
1213 #ifndef CONFIG_MMU
1214 #define randomize_va_space 0
1215 #else
1216 extern int randomize_va_space;
1217 #endif
1218 
1219 const char * arch_vma_name(struct vm_area_struct *vma);
1220 void print_vma_addr(char *prefix, unsigned long rip);
1221 
1222 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1223 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1224 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1225 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1226 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1227 void *vmemmap_alloc_block(unsigned long size, int node);
1228 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1229 int vmemmap_populate_basepages(struct page *start_page,
1230 						unsigned long pages, int node);
1231 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1232 
1233 #endif /* __KERNEL__ */
1234 #endif /* _LINUX_MM_H */
1235