1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/prio_tree.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 16 struct mempolicy; 17 struct anon_vma; 18 struct file_ra_state; 19 struct user_struct; 20 struct writeback_control; 21 22 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 23 extern unsigned long max_mapnr; 24 #endif 25 26 extern unsigned long num_physpages; 27 extern void * high_memory; 28 extern int page_cluster; 29 30 #ifdef CONFIG_SYSCTL 31 extern int sysctl_legacy_va_layout; 32 #else 33 #define sysctl_legacy_va_layout 0 34 #endif 35 36 extern unsigned long mmap_min_addr; 37 38 #include <asm/page.h> 39 #include <asm/pgtable.h> 40 #include <asm/processor.h> 41 42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 43 44 /* 45 * Linux kernel virtual memory manager primitives. 46 * The idea being to have a "virtual" mm in the same way 47 * we have a virtual fs - giving a cleaner interface to the 48 * mm details, and allowing different kinds of memory mappings 49 * (from shared memory to executable loading to arbitrary 50 * mmap() functions). 51 */ 52 53 extern struct kmem_cache *vm_area_cachep; 54 55 /* 56 * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is 57 * disabled, then there's a single shared list of VMAs maintained by the 58 * system, and mm's subscribe to these individually 59 */ 60 struct vm_list_struct { 61 struct vm_list_struct *next; 62 struct vm_area_struct *vma; 63 }; 64 65 #ifndef CONFIG_MMU 66 extern struct rb_root nommu_vma_tree; 67 extern struct rw_semaphore nommu_vma_sem; 68 69 extern unsigned int kobjsize(const void *objp); 70 #endif 71 72 /* 73 * vm_flags.. 74 */ 75 #define VM_READ 0x00000001 /* currently active flags */ 76 #define VM_WRITE 0x00000002 77 #define VM_EXEC 0x00000004 78 #define VM_SHARED 0x00000008 79 80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82 #define VM_MAYWRITE 0x00000020 83 #define VM_MAYEXEC 0x00000040 84 #define VM_MAYSHARE 0x00000080 85 86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87 #define VM_GROWSUP 0x00000200 88 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 89 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 90 91 #define VM_EXECUTABLE 0x00001000 92 #define VM_LOCKED 0x00002000 93 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 94 95 /* Used by sys_madvise() */ 96 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 97 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 98 99 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 100 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 101 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */ 102 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 103 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 104 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 105 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */ 106 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */ 107 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */ 108 109 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */ 110 111 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 112 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 113 #endif 114 115 #ifdef CONFIG_STACK_GROWSUP 116 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 117 #else 118 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 119 #endif 120 121 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 122 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 123 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 124 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 125 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 126 127 /* 128 * mapping from the currently active vm_flags protection bits (the 129 * low four bits) to a page protection mask.. 130 */ 131 extern pgprot_t protection_map[16]; 132 133 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 134 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 135 136 137 /* 138 * vm_fault is filled by the the pagefault handler and passed to the vma's 139 * ->fault function. The vma's ->fault is responsible for returning a bitmask 140 * of VM_FAULT_xxx flags that give details about how the fault was handled. 141 * 142 * pgoff should be used in favour of virtual_address, if possible. If pgoff 143 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear 144 * mapping support. 145 */ 146 struct vm_fault { 147 unsigned int flags; /* FAULT_FLAG_xxx flags */ 148 pgoff_t pgoff; /* Logical page offset based on vma */ 149 void __user *virtual_address; /* Faulting virtual address */ 150 151 struct page *page; /* ->fault handlers should return a 152 * page here, unless VM_FAULT_NOPAGE 153 * is set (which is also implied by 154 * VM_FAULT_ERROR). 155 */ 156 }; 157 158 /* 159 * These are the virtual MM functions - opening of an area, closing and 160 * unmapping it (needed to keep files on disk up-to-date etc), pointer 161 * to the functions called when a no-page or a wp-page exception occurs. 162 */ 163 struct vm_operations_struct { 164 void (*open)(struct vm_area_struct * area); 165 void (*close)(struct vm_area_struct * area); 166 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 167 struct page *(*nopage)(struct vm_area_struct *area, 168 unsigned long address, int *type); 169 unsigned long (*nopfn)(struct vm_area_struct *area, 170 unsigned long address); 171 172 /* notification that a previously read-only page is about to become 173 * writable, if an error is returned it will cause a SIGBUS */ 174 int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); 175 #ifdef CONFIG_NUMA 176 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 177 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 178 unsigned long addr); 179 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 180 const nodemask_t *to, unsigned long flags); 181 #endif 182 }; 183 184 struct mmu_gather; 185 struct inode; 186 187 #define page_private(page) ((page)->private) 188 #define set_page_private(page, v) ((page)->private = (v)) 189 190 /* 191 * FIXME: take this include out, include page-flags.h in 192 * files which need it (119 of them) 193 */ 194 #include <linux/page-flags.h> 195 196 #ifdef CONFIG_DEBUG_VM 197 #define VM_BUG_ON(cond) BUG_ON(cond) 198 #else 199 #define VM_BUG_ON(condition) do { } while(0) 200 #endif 201 202 /* 203 * Methods to modify the page usage count. 204 * 205 * What counts for a page usage: 206 * - cache mapping (page->mapping) 207 * - private data (page->private) 208 * - page mapped in a task's page tables, each mapping 209 * is counted separately 210 * 211 * Also, many kernel routines increase the page count before a critical 212 * routine so they can be sure the page doesn't go away from under them. 213 */ 214 215 /* 216 * Drop a ref, return true if the refcount fell to zero (the page has no users) 217 */ 218 static inline int put_page_testzero(struct page *page) 219 { 220 VM_BUG_ON(atomic_read(&page->_count) == 0); 221 return atomic_dec_and_test(&page->_count); 222 } 223 224 /* 225 * Try to grab a ref unless the page has a refcount of zero, return false if 226 * that is the case. 227 */ 228 static inline int get_page_unless_zero(struct page *page) 229 { 230 VM_BUG_ON(PageTail(page)); 231 return atomic_inc_not_zero(&page->_count); 232 } 233 234 /* Support for virtually mapped pages */ 235 struct page *vmalloc_to_page(const void *addr); 236 unsigned long vmalloc_to_pfn(const void *addr); 237 238 /* 239 * Determine if an address is within the vmalloc range 240 * 241 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 242 * is no special casing required. 243 */ 244 static inline int is_vmalloc_addr(const void *x) 245 { 246 #ifdef CONFIG_MMU 247 unsigned long addr = (unsigned long)x; 248 249 return addr >= VMALLOC_START && addr < VMALLOC_END; 250 #else 251 return 0; 252 #endif 253 } 254 255 static inline struct page *compound_head(struct page *page) 256 { 257 if (unlikely(PageTail(page))) 258 return page->first_page; 259 return page; 260 } 261 262 static inline int page_count(struct page *page) 263 { 264 return atomic_read(&compound_head(page)->_count); 265 } 266 267 static inline void get_page(struct page *page) 268 { 269 page = compound_head(page); 270 VM_BUG_ON(atomic_read(&page->_count) == 0); 271 atomic_inc(&page->_count); 272 } 273 274 static inline struct page *virt_to_head_page(const void *x) 275 { 276 struct page *page = virt_to_page(x); 277 return compound_head(page); 278 } 279 280 /* 281 * Setup the page count before being freed into the page allocator for 282 * the first time (boot or memory hotplug) 283 */ 284 static inline void init_page_count(struct page *page) 285 { 286 atomic_set(&page->_count, 1); 287 } 288 289 void put_page(struct page *page); 290 void put_pages_list(struct list_head *pages); 291 292 void split_page(struct page *page, unsigned int order); 293 294 /* 295 * Compound pages have a destructor function. Provide a 296 * prototype for that function and accessor functions. 297 * These are _only_ valid on the head of a PG_compound page. 298 */ 299 typedef void compound_page_dtor(struct page *); 300 301 static inline void set_compound_page_dtor(struct page *page, 302 compound_page_dtor *dtor) 303 { 304 page[1].lru.next = (void *)dtor; 305 } 306 307 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 308 { 309 return (compound_page_dtor *)page[1].lru.next; 310 } 311 312 static inline int compound_order(struct page *page) 313 { 314 if (!PageHead(page)) 315 return 0; 316 return (unsigned long)page[1].lru.prev; 317 } 318 319 static inline void set_compound_order(struct page *page, unsigned long order) 320 { 321 page[1].lru.prev = (void *)order; 322 } 323 324 /* 325 * Multiple processes may "see" the same page. E.g. for untouched 326 * mappings of /dev/null, all processes see the same page full of 327 * zeroes, and text pages of executables and shared libraries have 328 * only one copy in memory, at most, normally. 329 * 330 * For the non-reserved pages, page_count(page) denotes a reference count. 331 * page_count() == 0 means the page is free. page->lru is then used for 332 * freelist management in the buddy allocator. 333 * page_count() > 0 means the page has been allocated. 334 * 335 * Pages are allocated by the slab allocator in order to provide memory 336 * to kmalloc and kmem_cache_alloc. In this case, the management of the 337 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 338 * unless a particular usage is carefully commented. (the responsibility of 339 * freeing the kmalloc memory is the caller's, of course). 340 * 341 * A page may be used by anyone else who does a __get_free_page(). 342 * In this case, page_count still tracks the references, and should only 343 * be used through the normal accessor functions. The top bits of page->flags 344 * and page->virtual store page management information, but all other fields 345 * are unused and could be used privately, carefully. The management of this 346 * page is the responsibility of the one who allocated it, and those who have 347 * subsequently been given references to it. 348 * 349 * The other pages (we may call them "pagecache pages") are completely 350 * managed by the Linux memory manager: I/O, buffers, swapping etc. 351 * The following discussion applies only to them. 352 * 353 * A pagecache page contains an opaque `private' member, which belongs to the 354 * page's address_space. Usually, this is the address of a circular list of 355 * the page's disk buffers. PG_private must be set to tell the VM to call 356 * into the filesystem to release these pages. 357 * 358 * A page may belong to an inode's memory mapping. In this case, page->mapping 359 * is the pointer to the inode, and page->index is the file offset of the page, 360 * in units of PAGE_CACHE_SIZE. 361 * 362 * If pagecache pages are not associated with an inode, they are said to be 363 * anonymous pages. These may become associated with the swapcache, and in that 364 * case PG_swapcache is set, and page->private is an offset into the swapcache. 365 * 366 * In either case (swapcache or inode backed), the pagecache itself holds one 367 * reference to the page. Setting PG_private should also increment the 368 * refcount. The each user mapping also has a reference to the page. 369 * 370 * The pagecache pages are stored in a per-mapping radix tree, which is 371 * rooted at mapping->page_tree, and indexed by offset. 372 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 373 * lists, we instead now tag pages as dirty/writeback in the radix tree. 374 * 375 * All pagecache pages may be subject to I/O: 376 * - inode pages may need to be read from disk, 377 * - inode pages which have been modified and are MAP_SHARED may need 378 * to be written back to the inode on disk, 379 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 380 * modified may need to be swapped out to swap space and (later) to be read 381 * back into memory. 382 */ 383 384 /* 385 * The zone field is never updated after free_area_init_core() 386 * sets it, so none of the operations on it need to be atomic. 387 */ 388 389 390 /* 391 * page->flags layout: 392 * 393 * There are three possibilities for how page->flags get 394 * laid out. The first is for the normal case, without 395 * sparsemem. The second is for sparsemem when there is 396 * plenty of space for node and section. The last is when 397 * we have run out of space and have to fall back to an 398 * alternate (slower) way of determining the node. 399 * 400 * No sparsemem: | NODE | ZONE | ... | FLAGS | 401 * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | 402 * no space for node: | SECTION | ZONE | ... | FLAGS | 403 */ 404 #ifdef CONFIG_SPARSEMEM 405 #define SECTIONS_WIDTH SECTIONS_SHIFT 406 #else 407 #define SECTIONS_WIDTH 0 408 #endif 409 410 #define ZONES_WIDTH ZONES_SHIFT 411 412 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED 413 #define NODES_WIDTH NODES_SHIFT 414 #else 415 #define NODES_WIDTH 0 416 #endif 417 418 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 419 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 420 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 421 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 422 423 /* 424 * We are going to use the flags for the page to node mapping if its in 425 * there. This includes the case where there is no node, so it is implicit. 426 */ 427 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 428 #define NODE_NOT_IN_PAGE_FLAGS 429 #endif 430 431 #ifndef PFN_SECTION_SHIFT 432 #define PFN_SECTION_SHIFT 0 433 #endif 434 435 /* 436 * Define the bit shifts to access each section. For non-existant 437 * sections we define the shift as 0; that plus a 0 mask ensures 438 * the compiler will optimise away reference to them. 439 */ 440 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 441 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 442 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 443 444 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ 445 #ifdef NODE_NOT_IN_PAGEFLAGS 446 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 447 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 448 SECTIONS_PGOFF : ZONES_PGOFF) 449 #else 450 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 451 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 452 NODES_PGOFF : ZONES_PGOFF) 453 #endif 454 455 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 456 457 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 458 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED 459 #endif 460 461 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 462 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 463 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 464 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 465 466 static inline enum zone_type page_zonenum(struct page *page) 467 { 468 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 469 } 470 471 /* 472 * The identification function is only used by the buddy allocator for 473 * determining if two pages could be buddies. We are not really 474 * identifying a zone since we could be using a the section number 475 * id if we have not node id available in page flags. 476 * We guarantee only that it will return the same value for two 477 * combinable pages in a zone. 478 */ 479 static inline int page_zone_id(struct page *page) 480 { 481 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 482 } 483 484 static inline int zone_to_nid(struct zone *zone) 485 { 486 #ifdef CONFIG_NUMA 487 return zone->node; 488 #else 489 return 0; 490 #endif 491 } 492 493 #ifdef NODE_NOT_IN_PAGE_FLAGS 494 extern int page_to_nid(struct page *page); 495 #else 496 static inline int page_to_nid(struct page *page) 497 { 498 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 499 } 500 #endif 501 502 static inline struct zone *page_zone(struct page *page) 503 { 504 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 505 } 506 507 static inline unsigned long page_to_section(struct page *page) 508 { 509 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 510 } 511 512 static inline void set_page_zone(struct page *page, enum zone_type zone) 513 { 514 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 515 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 516 } 517 518 static inline void set_page_node(struct page *page, unsigned long node) 519 { 520 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 521 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 522 } 523 524 static inline void set_page_section(struct page *page, unsigned long section) 525 { 526 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 527 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 528 } 529 530 static inline void set_page_links(struct page *page, enum zone_type zone, 531 unsigned long node, unsigned long pfn) 532 { 533 set_page_zone(page, zone); 534 set_page_node(page, node); 535 set_page_section(page, pfn_to_section_nr(pfn)); 536 } 537 538 /* 539 * If a hint addr is less than mmap_min_addr change hint to be as 540 * low as possible but still greater than mmap_min_addr 541 */ 542 static inline unsigned long round_hint_to_min(unsigned long hint) 543 { 544 #ifdef CONFIG_SECURITY 545 hint &= PAGE_MASK; 546 if (((void *)hint != NULL) && 547 (hint < mmap_min_addr)) 548 return PAGE_ALIGN(mmap_min_addr); 549 #endif 550 return hint; 551 } 552 553 /* 554 * Some inline functions in vmstat.h depend on page_zone() 555 */ 556 #include <linux/vmstat.h> 557 558 static __always_inline void *lowmem_page_address(struct page *page) 559 { 560 return __va(page_to_pfn(page) << PAGE_SHIFT); 561 } 562 563 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 564 #define HASHED_PAGE_VIRTUAL 565 #endif 566 567 #if defined(WANT_PAGE_VIRTUAL) 568 #define page_address(page) ((page)->virtual) 569 #define set_page_address(page, address) \ 570 do { \ 571 (page)->virtual = (address); \ 572 } while(0) 573 #define page_address_init() do { } while(0) 574 #endif 575 576 #if defined(HASHED_PAGE_VIRTUAL) 577 void *page_address(struct page *page); 578 void set_page_address(struct page *page, void *virtual); 579 void page_address_init(void); 580 #endif 581 582 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 583 #define page_address(page) lowmem_page_address(page) 584 #define set_page_address(page, address) do { } while(0) 585 #define page_address_init() do { } while(0) 586 #endif 587 588 /* 589 * On an anonymous page mapped into a user virtual memory area, 590 * page->mapping points to its anon_vma, not to a struct address_space; 591 * with the PAGE_MAPPING_ANON bit set to distinguish it. 592 * 593 * Please note that, confusingly, "page_mapping" refers to the inode 594 * address_space which maps the page from disk; whereas "page_mapped" 595 * refers to user virtual address space into which the page is mapped. 596 */ 597 #define PAGE_MAPPING_ANON 1 598 599 extern struct address_space swapper_space; 600 static inline struct address_space *page_mapping(struct page *page) 601 { 602 struct address_space *mapping = page->mapping; 603 604 VM_BUG_ON(PageSlab(page)); 605 if (unlikely(PageSwapCache(page))) 606 mapping = &swapper_space; 607 else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) 608 mapping = NULL; 609 return mapping; 610 } 611 612 static inline int PageAnon(struct page *page) 613 { 614 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 615 } 616 617 /* 618 * Return the pagecache index of the passed page. Regular pagecache pages 619 * use ->index whereas swapcache pages use ->private 620 */ 621 static inline pgoff_t page_index(struct page *page) 622 { 623 if (unlikely(PageSwapCache(page))) 624 return page_private(page); 625 return page->index; 626 } 627 628 /* 629 * The atomic page->_mapcount, like _count, starts from -1: 630 * so that transitions both from it and to it can be tracked, 631 * using atomic_inc_and_test and atomic_add_negative(-1). 632 */ 633 static inline void reset_page_mapcount(struct page *page) 634 { 635 atomic_set(&(page)->_mapcount, -1); 636 } 637 638 static inline int page_mapcount(struct page *page) 639 { 640 return atomic_read(&(page)->_mapcount) + 1; 641 } 642 643 /* 644 * Return true if this page is mapped into pagetables. 645 */ 646 static inline int page_mapped(struct page *page) 647 { 648 return atomic_read(&(page)->_mapcount) >= 0; 649 } 650 651 /* 652 * Error return values for the *_nopage functions 653 */ 654 #define NOPAGE_SIGBUS (NULL) 655 #define NOPAGE_OOM ((struct page *) (-1)) 656 657 /* 658 * Error return values for the *_nopfn functions 659 */ 660 #define NOPFN_SIGBUS ((unsigned long) -1) 661 #define NOPFN_OOM ((unsigned long) -2) 662 #define NOPFN_REFAULT ((unsigned long) -3) 663 664 /* 665 * Different kinds of faults, as returned by handle_mm_fault(). 666 * Used to decide whether a process gets delivered SIGBUS or 667 * just gets major/minor fault counters bumped up. 668 */ 669 670 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 671 672 #define VM_FAULT_OOM 0x0001 673 #define VM_FAULT_SIGBUS 0x0002 674 #define VM_FAULT_MAJOR 0x0004 675 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 676 677 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 678 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 679 680 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS) 681 682 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 683 684 extern void show_free_areas(void); 685 686 #ifdef CONFIG_SHMEM 687 int shmem_lock(struct file *file, int lock, struct user_struct *user); 688 #else 689 static inline int shmem_lock(struct file *file, int lock, 690 struct user_struct *user) 691 { 692 return 0; 693 } 694 #endif 695 struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); 696 697 int shmem_zero_setup(struct vm_area_struct *); 698 699 #ifndef CONFIG_MMU 700 extern unsigned long shmem_get_unmapped_area(struct file *file, 701 unsigned long addr, 702 unsigned long len, 703 unsigned long pgoff, 704 unsigned long flags); 705 #endif 706 707 extern int can_do_mlock(void); 708 extern int user_shm_lock(size_t, struct user_struct *); 709 extern void user_shm_unlock(size_t, struct user_struct *); 710 711 /* 712 * Parameter block passed down to zap_pte_range in exceptional cases. 713 */ 714 struct zap_details { 715 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 716 struct address_space *check_mapping; /* Check page->mapping if set */ 717 pgoff_t first_index; /* Lowest page->index to unmap */ 718 pgoff_t last_index; /* Highest page->index to unmap */ 719 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */ 720 unsigned long truncate_count; /* Compare vm_truncate_count */ 721 }; 722 723 struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); 724 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, 725 unsigned long size, struct zap_details *); 726 unsigned long unmap_vmas(struct mmu_gather **tlb, 727 struct vm_area_struct *start_vma, unsigned long start_addr, 728 unsigned long end_addr, unsigned long *nr_accounted, 729 struct zap_details *); 730 731 /** 732 * mm_walk - callbacks for walk_page_range 733 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 734 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 735 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 736 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 737 * @pte_hole: if set, called for each hole at all levels 738 * 739 * (see walk_page_range for more details) 740 */ 741 struct mm_walk { 742 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, void *); 743 int (*pud_entry)(pud_t *, unsigned long, unsigned long, void *); 744 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, void *); 745 int (*pte_entry)(pte_t *, unsigned long, unsigned long, void *); 746 int (*pte_hole)(unsigned long, unsigned long, void *); 747 }; 748 749 int walk_page_range(const struct mm_struct *, unsigned long addr, 750 unsigned long end, const struct mm_walk *walk, 751 void *private); 752 void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, 753 unsigned long end, unsigned long floor, unsigned long ceiling); 754 void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, 755 unsigned long floor, unsigned long ceiling); 756 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 757 struct vm_area_struct *vma); 758 void unmap_mapping_range(struct address_space *mapping, 759 loff_t const holebegin, loff_t const holelen, int even_cows); 760 761 static inline void unmap_shared_mapping_range(struct address_space *mapping, 762 loff_t const holebegin, loff_t const holelen) 763 { 764 unmap_mapping_range(mapping, holebegin, holelen, 0); 765 } 766 767 extern int vmtruncate(struct inode * inode, loff_t offset); 768 extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); 769 770 #ifdef CONFIG_MMU 771 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 772 unsigned long address, int write_access); 773 #else 774 static inline int handle_mm_fault(struct mm_struct *mm, 775 struct vm_area_struct *vma, unsigned long address, 776 int write_access) 777 { 778 /* should never happen if there's no MMU */ 779 BUG(); 780 return VM_FAULT_SIGBUS; 781 } 782 #endif 783 784 extern int make_pages_present(unsigned long addr, unsigned long end); 785 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 786 787 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, 788 int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); 789 void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); 790 791 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 792 extern void do_invalidatepage(struct page *page, unsigned long offset); 793 794 int __set_page_dirty_nobuffers(struct page *page); 795 int __set_page_dirty_no_writeback(struct page *page); 796 int redirty_page_for_writepage(struct writeback_control *wbc, 797 struct page *page); 798 int set_page_dirty(struct page *page); 799 int set_page_dirty_lock(struct page *page); 800 int clear_page_dirty_for_io(struct page *page); 801 802 extern unsigned long move_page_tables(struct vm_area_struct *vma, 803 unsigned long old_addr, struct vm_area_struct *new_vma, 804 unsigned long new_addr, unsigned long len); 805 extern unsigned long do_mremap(unsigned long addr, 806 unsigned long old_len, unsigned long new_len, 807 unsigned long flags, unsigned long new_addr); 808 extern int mprotect_fixup(struct vm_area_struct *vma, 809 struct vm_area_struct **pprev, unsigned long start, 810 unsigned long end, unsigned long newflags); 811 812 /* 813 * A callback you can register to apply pressure to ageable caches. 814 * 815 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should 816 * look through the least-recently-used 'nr_to_scan' entries and 817 * attempt to free them up. It should return the number of objects 818 * which remain in the cache. If it returns -1, it means it cannot do 819 * any scanning at this time (eg. there is a risk of deadlock). 820 * 821 * The 'gfpmask' refers to the allocation we are currently trying to 822 * fulfil. 823 * 824 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is 825 * querying the cache size, so a fastpath for that case is appropriate. 826 */ 827 struct shrinker { 828 int (*shrink)(int nr_to_scan, gfp_t gfp_mask); 829 int seeks; /* seeks to recreate an obj */ 830 831 /* These are for internal use */ 832 struct list_head list; 833 long nr; /* objs pending delete */ 834 }; 835 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ 836 extern void register_shrinker(struct shrinker *); 837 extern void unregister_shrinker(struct shrinker *); 838 839 int vma_wants_writenotify(struct vm_area_struct *vma); 840 841 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl); 842 843 #ifdef __PAGETABLE_PUD_FOLDED 844 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 845 unsigned long address) 846 { 847 return 0; 848 } 849 #else 850 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 851 #endif 852 853 #ifdef __PAGETABLE_PMD_FOLDED 854 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 855 unsigned long address) 856 { 857 return 0; 858 } 859 #else 860 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 861 #endif 862 863 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 864 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 865 866 /* 867 * The following ifdef needed to get the 4level-fixup.h header to work. 868 * Remove it when 4level-fixup.h has been removed. 869 */ 870 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 871 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 872 { 873 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 874 NULL: pud_offset(pgd, address); 875 } 876 877 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 878 { 879 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 880 NULL: pmd_offset(pud, address); 881 } 882 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 883 884 #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS 885 /* 886 * We tuck a spinlock to guard each pagetable page into its struct page, 887 * at page->private, with BUILD_BUG_ON to make sure that this will not 888 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 889 * When freeing, reset page->mapping so free_pages_check won't complain. 890 */ 891 #define __pte_lockptr(page) &((page)->ptl) 892 #define pte_lock_init(_page) do { \ 893 spin_lock_init(__pte_lockptr(_page)); \ 894 } while (0) 895 #define pte_lock_deinit(page) ((page)->mapping = NULL) 896 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 897 #else 898 /* 899 * We use mm->page_table_lock to guard all pagetable pages of the mm. 900 */ 901 #define pte_lock_init(page) do {} while (0) 902 #define pte_lock_deinit(page) do {} while (0) 903 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 904 #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ 905 906 static inline void pgtable_page_ctor(struct page *page) 907 { 908 pte_lock_init(page); 909 inc_zone_page_state(page, NR_PAGETABLE); 910 } 911 912 static inline void pgtable_page_dtor(struct page *page) 913 { 914 pte_lock_deinit(page); 915 dec_zone_page_state(page, NR_PAGETABLE); 916 } 917 918 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 919 ({ \ 920 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 921 pte_t *__pte = pte_offset_map(pmd, address); \ 922 *(ptlp) = __ptl; \ 923 spin_lock(__ptl); \ 924 __pte; \ 925 }) 926 927 #define pte_unmap_unlock(pte, ptl) do { \ 928 spin_unlock(ptl); \ 929 pte_unmap(pte); \ 930 } while (0) 931 932 #define pte_alloc_map(mm, pmd, address) \ 933 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 934 NULL: pte_offset_map(pmd, address)) 935 936 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 937 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ 938 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 939 940 #define pte_alloc_kernel(pmd, address) \ 941 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 942 NULL: pte_offset_kernel(pmd, address)) 943 944 extern void free_area_init(unsigned long * zones_size); 945 extern void free_area_init_node(int nid, pg_data_t *pgdat, 946 unsigned long * zones_size, unsigned long zone_start_pfn, 947 unsigned long *zholes_size); 948 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP 949 /* 950 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its 951 * zones, allocate the backing mem_map and account for memory holes in a more 952 * architecture independent manner. This is a substitute for creating the 953 * zone_sizes[] and zholes_size[] arrays and passing them to 954 * free_area_init_node() 955 * 956 * An architecture is expected to register range of page frames backed by 957 * physical memory with add_active_range() before calling 958 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 959 * usage, an architecture is expected to do something like 960 * 961 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 962 * max_highmem_pfn}; 963 * for_each_valid_physical_page_range() 964 * add_active_range(node_id, start_pfn, end_pfn) 965 * free_area_init_nodes(max_zone_pfns); 966 * 967 * If the architecture guarantees that there are no holes in the ranges 968 * registered with add_active_range(), free_bootmem_active_regions() 969 * will call free_bootmem_node() for each registered physical page range. 970 * Similarly sparse_memory_present_with_active_regions() calls 971 * memory_present() for each range when SPARSEMEM is enabled. 972 * 973 * See mm/page_alloc.c for more information on each function exposed by 974 * CONFIG_ARCH_POPULATES_NODE_MAP 975 */ 976 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 977 extern void add_active_range(unsigned int nid, unsigned long start_pfn, 978 unsigned long end_pfn); 979 extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, 980 unsigned long new_end_pfn); 981 extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, 982 unsigned long end_pfn); 983 extern void remove_all_active_ranges(void); 984 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 985 unsigned long end_pfn); 986 extern void get_pfn_range_for_nid(unsigned int nid, 987 unsigned long *start_pfn, unsigned long *end_pfn); 988 extern unsigned long find_min_pfn_with_active_regions(void); 989 extern unsigned long find_max_pfn_with_active_regions(void); 990 extern void free_bootmem_with_active_regions(int nid, 991 unsigned long max_low_pfn); 992 extern void sparse_memory_present_with_active_regions(int nid); 993 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 994 extern int early_pfn_to_nid(unsigned long pfn); 995 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 996 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ 997 extern void set_dma_reserve(unsigned long new_dma_reserve); 998 extern void memmap_init_zone(unsigned long, int, unsigned long, 999 unsigned long, enum memmap_context); 1000 extern void setup_per_zone_pages_min(void); 1001 extern void mem_init(void); 1002 extern void show_mem(void); 1003 extern void si_meminfo(struct sysinfo * val); 1004 extern void si_meminfo_node(struct sysinfo *val, int nid); 1005 1006 #ifdef CONFIG_NUMA 1007 extern void setup_per_cpu_pageset(void); 1008 #else 1009 static inline void setup_per_cpu_pageset(void) {} 1010 #endif 1011 1012 /* prio_tree.c */ 1013 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); 1014 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); 1015 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); 1016 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, 1017 struct prio_tree_iter *iter); 1018 1019 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \ 1020 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \ 1021 (vma = vma_prio_tree_next(vma, iter)); ) 1022 1023 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1024 struct list_head *list) 1025 { 1026 vma->shared.vm_set.parent = NULL; 1027 list_add_tail(&vma->shared.vm_set.list, list); 1028 } 1029 1030 /* mmap.c */ 1031 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1032 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, 1033 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1034 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1035 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1036 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1037 struct mempolicy *); 1038 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1039 extern int split_vma(struct mm_struct *, 1040 struct vm_area_struct *, unsigned long addr, int new_below); 1041 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1042 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1043 struct rb_node **, struct rb_node *); 1044 extern void unlink_file_vma(struct vm_area_struct *); 1045 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1046 unsigned long addr, unsigned long len, pgoff_t pgoff); 1047 extern void exit_mmap(struct mm_struct *); 1048 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1049 extern int install_special_mapping(struct mm_struct *mm, 1050 unsigned long addr, unsigned long len, 1051 unsigned long flags, struct page **pages); 1052 1053 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1054 1055 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1056 unsigned long len, unsigned long prot, 1057 unsigned long flag, unsigned long pgoff); 1058 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1059 unsigned long len, unsigned long flags, 1060 unsigned int vm_flags, unsigned long pgoff, 1061 int accountable); 1062 1063 static inline unsigned long do_mmap(struct file *file, unsigned long addr, 1064 unsigned long len, unsigned long prot, 1065 unsigned long flag, unsigned long offset) 1066 { 1067 unsigned long ret = -EINVAL; 1068 if ((offset + PAGE_ALIGN(len)) < offset) 1069 goto out; 1070 if (!(offset & ~PAGE_MASK)) 1071 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); 1072 out: 1073 return ret; 1074 } 1075 1076 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1077 1078 extern unsigned long do_brk(unsigned long, unsigned long); 1079 1080 /* filemap.c */ 1081 extern unsigned long page_unuse(struct page *); 1082 extern void truncate_inode_pages(struct address_space *, loff_t); 1083 extern void truncate_inode_pages_range(struct address_space *, 1084 loff_t lstart, loff_t lend); 1085 1086 /* generic vm_area_ops exported for stackable file systems */ 1087 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1088 1089 /* mm/page-writeback.c */ 1090 int write_one_page(struct page *page, int wait); 1091 1092 /* readahead.c */ 1093 #define VM_MAX_READAHEAD 128 /* kbytes */ 1094 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1095 1096 int do_page_cache_readahead(struct address_space *mapping, struct file *filp, 1097 pgoff_t offset, unsigned long nr_to_read); 1098 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1099 pgoff_t offset, unsigned long nr_to_read); 1100 1101 void page_cache_sync_readahead(struct address_space *mapping, 1102 struct file_ra_state *ra, 1103 struct file *filp, 1104 pgoff_t offset, 1105 unsigned long size); 1106 1107 void page_cache_async_readahead(struct address_space *mapping, 1108 struct file_ra_state *ra, 1109 struct file *filp, 1110 struct page *pg, 1111 pgoff_t offset, 1112 unsigned long size); 1113 1114 unsigned long max_sane_readahead(unsigned long nr); 1115 1116 /* Do stack extension */ 1117 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1118 #ifdef CONFIG_IA64 1119 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1120 #endif 1121 extern int expand_stack_downwards(struct vm_area_struct *vma, 1122 unsigned long address); 1123 1124 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1125 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1126 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1127 struct vm_area_struct **pprev); 1128 1129 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1130 NULL if none. Assume start_addr < end_addr. */ 1131 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1132 { 1133 struct vm_area_struct * vma = find_vma(mm,start_addr); 1134 1135 if (vma && end_addr <= vma->vm_start) 1136 vma = NULL; 1137 return vma; 1138 } 1139 1140 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1141 { 1142 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1143 } 1144 1145 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1146 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1147 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1148 unsigned long pfn, unsigned long size, pgprot_t); 1149 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1150 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1151 unsigned long pfn); 1152 1153 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1154 unsigned int foll_flags); 1155 #define FOLL_WRITE 0x01 /* check pte is writable */ 1156 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1157 #define FOLL_GET 0x04 /* do get_page on page */ 1158 #define FOLL_ANON 0x08 /* give ZERO_PAGE if no pgtable */ 1159 1160 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1161 void *data); 1162 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1163 unsigned long size, pte_fn_t fn, void *data); 1164 1165 #ifdef CONFIG_PROC_FS 1166 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1167 #else 1168 static inline void vm_stat_account(struct mm_struct *mm, 1169 unsigned long flags, struct file *file, long pages) 1170 { 1171 } 1172 #endif /* CONFIG_PROC_FS */ 1173 1174 #ifdef CONFIG_DEBUG_PAGEALLOC 1175 extern int debug_pagealloc_enabled; 1176 1177 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1178 1179 static inline void enable_debug_pagealloc(void) 1180 { 1181 debug_pagealloc_enabled = 1; 1182 } 1183 #ifdef CONFIG_HIBERNATION 1184 extern bool kernel_page_present(struct page *page); 1185 #endif /* CONFIG_HIBERNATION */ 1186 #else 1187 static inline void 1188 kernel_map_pages(struct page *page, int numpages, int enable) {} 1189 static inline void enable_debug_pagealloc(void) 1190 { 1191 } 1192 #ifdef CONFIG_HIBERNATION 1193 static inline bool kernel_page_present(struct page *page) { return true; } 1194 #endif /* CONFIG_HIBERNATION */ 1195 #endif 1196 1197 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); 1198 #ifdef __HAVE_ARCH_GATE_AREA 1199 int in_gate_area_no_task(unsigned long addr); 1200 int in_gate_area(struct task_struct *task, unsigned long addr); 1201 #else 1202 int in_gate_area_no_task(unsigned long addr); 1203 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) 1204 #endif /* __HAVE_ARCH_GATE_AREA */ 1205 1206 int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, 1207 void __user *, size_t *, loff_t *); 1208 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, 1209 unsigned long lru_pages); 1210 void drop_pagecache(void); 1211 void drop_slab(void); 1212 1213 #ifndef CONFIG_MMU 1214 #define randomize_va_space 0 1215 #else 1216 extern int randomize_va_space; 1217 #endif 1218 1219 const char * arch_vma_name(struct vm_area_struct *vma); 1220 void print_vma_addr(char *prefix, unsigned long rip); 1221 1222 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1223 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1224 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1225 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1226 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1227 void *vmemmap_alloc_block(unsigned long size, int node); 1228 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1229 int vmemmap_populate_basepages(struct page *start_page, 1230 unsigned long pages, int node); 1231 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1232 1233 #endif /* __KERNEL__ */ 1234 #endif /* _LINUX_MM_H */ 1235