1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/gfp.h> 9 #include <linux/bug.h> 10 #include <linux/list.h> 11 #include <linux/mmzone.h> 12 #include <linux/rbtree.h> 13 #include <linux/atomic.h> 14 #include <linux/debug_locks.h> 15 #include <linux/mm_types.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/bit_spinlock.h> 19 #include <linux/shrinker.h> 20 21 struct mempolicy; 22 struct anon_vma; 23 struct anon_vma_chain; 24 struct file_ra_state; 25 struct user_struct; 26 struct writeback_control; 27 28 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */ 29 extern unsigned long max_mapnr; 30 #endif 31 32 extern unsigned long num_physpages; 33 extern unsigned long totalram_pages; 34 extern void * high_memory; 35 extern int page_cluster; 36 37 #ifdef CONFIG_SYSCTL 38 extern int sysctl_legacy_va_layout; 39 #else 40 #define sysctl_legacy_va_layout 0 41 #endif 42 43 #include <asm/page.h> 44 #include <asm/pgtable.h> 45 #include <asm/processor.h> 46 47 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 48 49 /* to align the pointer to the (next) page boundary */ 50 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 51 52 /* 53 * Linux kernel virtual memory manager primitives. 54 * The idea being to have a "virtual" mm in the same way 55 * we have a virtual fs - giving a cleaner interface to the 56 * mm details, and allowing different kinds of memory mappings 57 * (from shared memory to executable loading to arbitrary 58 * mmap() functions). 59 */ 60 61 extern struct kmem_cache *vm_area_cachep; 62 63 #ifndef CONFIG_MMU 64 extern struct rb_root nommu_region_tree; 65 extern struct rw_semaphore nommu_region_sem; 66 67 extern unsigned int kobjsize(const void *objp); 68 #endif 69 70 /* 71 * vm_flags in vm_area_struct, see mm_types.h. 72 */ 73 #define VM_NONE 0x00000000 74 75 #define VM_READ 0x00000001 /* currently active flags */ 76 #define VM_WRITE 0x00000002 77 #define VM_EXEC 0x00000004 78 #define VM_SHARED 0x00000008 79 80 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 81 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 82 #define VM_MAYWRITE 0x00000020 83 #define VM_MAYEXEC 0x00000040 84 #define VM_MAYSHARE 0x00000080 85 86 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 87 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 88 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 89 90 #define VM_LOCKED 0x00002000 91 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 92 93 /* Used by sys_madvise() */ 94 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 95 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 96 97 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 98 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */ 103 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 104 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 105 106 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 107 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 108 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 109 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 110 111 #if defined(CONFIG_X86) 112 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 113 #elif defined(CONFIG_PPC) 114 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 115 #elif defined(CONFIG_PARISC) 116 # define VM_GROWSUP VM_ARCH_1 117 #elif defined(CONFIG_IA64) 118 # define VM_GROWSUP VM_ARCH_1 119 #elif !defined(CONFIG_MMU) 120 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 121 #endif 122 123 #ifndef VM_GROWSUP 124 # define VM_GROWSUP VM_NONE 125 #endif 126 127 /* Bits set in the VMA until the stack is in its final location */ 128 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 129 130 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 131 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 132 #endif 133 134 #ifdef CONFIG_STACK_GROWSUP 135 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 136 #else 137 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 138 #endif 139 140 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ) 141 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK 142 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK)) 143 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ) 144 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ) 145 146 /* 147 * Special vmas that are non-mergable, non-mlock()able. 148 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 149 */ 150 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP) 151 152 /* 153 * mapping from the currently active vm_flags protection bits (the 154 * low four bits) to a page protection mask.. 155 */ 156 extern pgprot_t protection_map[16]; 157 158 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 159 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */ 160 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */ 161 #define FAULT_FLAG_ALLOW_RETRY 0x08 /* Retry fault if blocking */ 162 #define FAULT_FLAG_RETRY_NOWAIT 0x10 /* Don't drop mmap_sem and wait when retrying */ 163 #define FAULT_FLAG_KILLABLE 0x20 /* The fault task is in SIGKILL killable region */ 164 #define FAULT_FLAG_TRIED 0x40 /* second try */ 165 166 /* 167 * vm_fault is filled by the the pagefault handler and passed to the vma's 168 * ->fault function. The vma's ->fault is responsible for returning a bitmask 169 * of VM_FAULT_xxx flags that give details about how the fault was handled. 170 * 171 * pgoff should be used in favour of virtual_address, if possible. If pgoff 172 * is used, one may implement ->remap_pages to get nonlinear mapping support. 173 */ 174 struct vm_fault { 175 unsigned int flags; /* FAULT_FLAG_xxx flags */ 176 pgoff_t pgoff; /* Logical page offset based on vma */ 177 void __user *virtual_address; /* Faulting virtual address */ 178 179 struct page *page; /* ->fault handlers should return a 180 * page here, unless VM_FAULT_NOPAGE 181 * is set (which is also implied by 182 * VM_FAULT_ERROR). 183 */ 184 }; 185 186 /* 187 * These are the virtual MM functions - opening of an area, closing and 188 * unmapping it (needed to keep files on disk up-to-date etc), pointer 189 * to the functions called when a no-page or a wp-page exception occurs. 190 */ 191 struct vm_operations_struct { 192 void (*open)(struct vm_area_struct * area); 193 void (*close)(struct vm_area_struct * area); 194 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 195 196 /* notification that a previously read-only page is about to become 197 * writable, if an error is returned it will cause a SIGBUS */ 198 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 199 200 /* called by access_process_vm when get_user_pages() fails, typically 201 * for use by special VMAs that can switch between memory and hardware 202 */ 203 int (*access)(struct vm_area_struct *vma, unsigned long addr, 204 void *buf, int len, int write); 205 #ifdef CONFIG_NUMA 206 /* 207 * set_policy() op must add a reference to any non-NULL @new mempolicy 208 * to hold the policy upon return. Caller should pass NULL @new to 209 * remove a policy and fall back to surrounding context--i.e. do not 210 * install a MPOL_DEFAULT policy, nor the task or system default 211 * mempolicy. 212 */ 213 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 214 215 /* 216 * get_policy() op must add reference [mpol_get()] to any policy at 217 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 218 * in mm/mempolicy.c will do this automatically. 219 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 220 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 221 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 222 * must return NULL--i.e., do not "fallback" to task or system default 223 * policy. 224 */ 225 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 226 unsigned long addr); 227 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, 228 const nodemask_t *to, unsigned long flags); 229 #endif 230 /* called by sys_remap_file_pages() to populate non-linear mapping */ 231 int (*remap_pages)(struct vm_area_struct *vma, unsigned long addr, 232 unsigned long size, pgoff_t pgoff); 233 }; 234 235 struct mmu_gather; 236 struct inode; 237 238 #define page_private(page) ((page)->private) 239 #define set_page_private(page, v) ((page)->private = (v)) 240 241 /* It's valid only if the page is free path or free_list */ 242 static inline void set_freepage_migratetype(struct page *page, int migratetype) 243 { 244 page->index = migratetype; 245 } 246 247 /* It's valid only if the page is free path or free_list */ 248 static inline int get_freepage_migratetype(struct page *page) 249 { 250 return page->index; 251 } 252 253 /* 254 * FIXME: take this include out, include page-flags.h in 255 * files which need it (119 of them) 256 */ 257 #include <linux/page-flags.h> 258 #include <linux/huge_mm.h> 259 260 /* 261 * Methods to modify the page usage count. 262 * 263 * What counts for a page usage: 264 * - cache mapping (page->mapping) 265 * - private data (page->private) 266 * - page mapped in a task's page tables, each mapping 267 * is counted separately 268 * 269 * Also, many kernel routines increase the page count before a critical 270 * routine so they can be sure the page doesn't go away from under them. 271 */ 272 273 /* 274 * Drop a ref, return true if the refcount fell to zero (the page has no users) 275 */ 276 static inline int put_page_testzero(struct page *page) 277 { 278 VM_BUG_ON(atomic_read(&page->_count) == 0); 279 return atomic_dec_and_test(&page->_count); 280 } 281 282 /* 283 * Try to grab a ref unless the page has a refcount of zero, return false if 284 * that is the case. 285 */ 286 static inline int get_page_unless_zero(struct page *page) 287 { 288 return atomic_inc_not_zero(&page->_count); 289 } 290 291 extern int page_is_ram(unsigned long pfn); 292 293 /* Support for virtually mapped pages */ 294 struct page *vmalloc_to_page(const void *addr); 295 unsigned long vmalloc_to_pfn(const void *addr); 296 297 /* 298 * Determine if an address is within the vmalloc range 299 * 300 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 301 * is no special casing required. 302 */ 303 static inline int is_vmalloc_addr(const void *x) 304 { 305 #ifdef CONFIG_MMU 306 unsigned long addr = (unsigned long)x; 307 308 return addr >= VMALLOC_START && addr < VMALLOC_END; 309 #else 310 return 0; 311 #endif 312 } 313 #ifdef CONFIG_MMU 314 extern int is_vmalloc_or_module_addr(const void *x); 315 #else 316 static inline int is_vmalloc_or_module_addr(const void *x) 317 { 318 return 0; 319 } 320 #endif 321 322 static inline void compound_lock(struct page *page) 323 { 324 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 325 VM_BUG_ON(PageSlab(page)); 326 bit_spin_lock(PG_compound_lock, &page->flags); 327 #endif 328 } 329 330 static inline void compound_unlock(struct page *page) 331 { 332 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 333 VM_BUG_ON(PageSlab(page)); 334 bit_spin_unlock(PG_compound_lock, &page->flags); 335 #endif 336 } 337 338 static inline unsigned long compound_lock_irqsave(struct page *page) 339 { 340 unsigned long uninitialized_var(flags); 341 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 342 local_irq_save(flags); 343 compound_lock(page); 344 #endif 345 return flags; 346 } 347 348 static inline void compound_unlock_irqrestore(struct page *page, 349 unsigned long flags) 350 { 351 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 352 compound_unlock(page); 353 local_irq_restore(flags); 354 #endif 355 } 356 357 static inline struct page *compound_head(struct page *page) 358 { 359 if (unlikely(PageTail(page))) 360 return page->first_page; 361 return page; 362 } 363 364 /* 365 * The atomic page->_mapcount, starts from -1: so that transitions 366 * both from it and to it can be tracked, using atomic_inc_and_test 367 * and atomic_add_negative(-1). 368 */ 369 static inline void reset_page_mapcount(struct page *page) 370 { 371 atomic_set(&(page)->_mapcount, -1); 372 } 373 374 static inline int page_mapcount(struct page *page) 375 { 376 return atomic_read(&(page)->_mapcount) + 1; 377 } 378 379 static inline int page_count(struct page *page) 380 { 381 return atomic_read(&compound_head(page)->_count); 382 } 383 384 static inline void get_huge_page_tail(struct page *page) 385 { 386 /* 387 * __split_huge_page_refcount() cannot run 388 * from under us. 389 */ 390 VM_BUG_ON(page_mapcount(page) < 0); 391 VM_BUG_ON(atomic_read(&page->_count) != 0); 392 atomic_inc(&page->_mapcount); 393 } 394 395 extern bool __get_page_tail(struct page *page); 396 397 static inline void get_page(struct page *page) 398 { 399 if (unlikely(PageTail(page))) 400 if (likely(__get_page_tail(page))) 401 return; 402 /* 403 * Getting a normal page or the head of a compound page 404 * requires to already have an elevated page->_count. 405 */ 406 VM_BUG_ON(atomic_read(&page->_count) <= 0); 407 atomic_inc(&page->_count); 408 } 409 410 static inline struct page *virt_to_head_page(const void *x) 411 { 412 struct page *page = virt_to_page(x); 413 return compound_head(page); 414 } 415 416 /* 417 * Setup the page count before being freed into the page allocator for 418 * the first time (boot or memory hotplug) 419 */ 420 static inline void init_page_count(struct page *page) 421 { 422 atomic_set(&page->_count, 1); 423 } 424 425 /* 426 * PageBuddy() indicate that the page is free and in the buddy system 427 * (see mm/page_alloc.c). 428 * 429 * PAGE_BUDDY_MAPCOUNT_VALUE must be <= -2 but better not too close to 430 * -2 so that an underflow of the page_mapcount() won't be mistaken 431 * for a genuine PAGE_BUDDY_MAPCOUNT_VALUE. -128 can be created very 432 * efficiently by most CPU architectures. 433 */ 434 #define PAGE_BUDDY_MAPCOUNT_VALUE (-128) 435 436 static inline int PageBuddy(struct page *page) 437 { 438 return atomic_read(&page->_mapcount) == PAGE_BUDDY_MAPCOUNT_VALUE; 439 } 440 441 static inline void __SetPageBuddy(struct page *page) 442 { 443 VM_BUG_ON(atomic_read(&page->_mapcount) != -1); 444 atomic_set(&page->_mapcount, PAGE_BUDDY_MAPCOUNT_VALUE); 445 } 446 447 static inline void __ClearPageBuddy(struct page *page) 448 { 449 VM_BUG_ON(!PageBuddy(page)); 450 atomic_set(&page->_mapcount, -1); 451 } 452 453 void put_page(struct page *page); 454 void put_pages_list(struct list_head *pages); 455 456 void split_page(struct page *page, unsigned int order); 457 int split_free_page(struct page *page); 458 459 /* 460 * Compound pages have a destructor function. Provide a 461 * prototype for that function and accessor functions. 462 * These are _only_ valid on the head of a PG_compound page. 463 */ 464 typedef void compound_page_dtor(struct page *); 465 466 static inline void set_compound_page_dtor(struct page *page, 467 compound_page_dtor *dtor) 468 { 469 page[1].lru.next = (void *)dtor; 470 } 471 472 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 473 { 474 return (compound_page_dtor *)page[1].lru.next; 475 } 476 477 static inline int compound_order(struct page *page) 478 { 479 if (!PageHead(page)) 480 return 0; 481 return (unsigned long)page[1].lru.prev; 482 } 483 484 static inline int compound_trans_order(struct page *page) 485 { 486 int order; 487 unsigned long flags; 488 489 if (!PageHead(page)) 490 return 0; 491 492 flags = compound_lock_irqsave(page); 493 order = compound_order(page); 494 compound_unlock_irqrestore(page, flags); 495 return order; 496 } 497 498 static inline void set_compound_order(struct page *page, unsigned long order) 499 { 500 page[1].lru.prev = (void *)order; 501 } 502 503 #ifdef CONFIG_MMU 504 /* 505 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 506 * servicing faults for write access. In the normal case, do always want 507 * pte_mkwrite. But get_user_pages can cause write faults for mappings 508 * that do not have writing enabled, when used by access_process_vm. 509 */ 510 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 511 { 512 if (likely(vma->vm_flags & VM_WRITE)) 513 pte = pte_mkwrite(pte); 514 return pte; 515 } 516 #endif 517 518 /* 519 * Multiple processes may "see" the same page. E.g. for untouched 520 * mappings of /dev/null, all processes see the same page full of 521 * zeroes, and text pages of executables and shared libraries have 522 * only one copy in memory, at most, normally. 523 * 524 * For the non-reserved pages, page_count(page) denotes a reference count. 525 * page_count() == 0 means the page is free. page->lru is then used for 526 * freelist management in the buddy allocator. 527 * page_count() > 0 means the page has been allocated. 528 * 529 * Pages are allocated by the slab allocator in order to provide memory 530 * to kmalloc and kmem_cache_alloc. In this case, the management of the 531 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 532 * unless a particular usage is carefully commented. (the responsibility of 533 * freeing the kmalloc memory is the caller's, of course). 534 * 535 * A page may be used by anyone else who does a __get_free_page(). 536 * In this case, page_count still tracks the references, and should only 537 * be used through the normal accessor functions. The top bits of page->flags 538 * and page->virtual store page management information, but all other fields 539 * are unused and could be used privately, carefully. The management of this 540 * page is the responsibility of the one who allocated it, and those who have 541 * subsequently been given references to it. 542 * 543 * The other pages (we may call them "pagecache pages") are completely 544 * managed by the Linux memory manager: I/O, buffers, swapping etc. 545 * The following discussion applies only to them. 546 * 547 * A pagecache page contains an opaque `private' member, which belongs to the 548 * page's address_space. Usually, this is the address of a circular list of 549 * the page's disk buffers. PG_private must be set to tell the VM to call 550 * into the filesystem to release these pages. 551 * 552 * A page may belong to an inode's memory mapping. In this case, page->mapping 553 * is the pointer to the inode, and page->index is the file offset of the page, 554 * in units of PAGE_CACHE_SIZE. 555 * 556 * If pagecache pages are not associated with an inode, they are said to be 557 * anonymous pages. These may become associated with the swapcache, and in that 558 * case PG_swapcache is set, and page->private is an offset into the swapcache. 559 * 560 * In either case (swapcache or inode backed), the pagecache itself holds one 561 * reference to the page. Setting PG_private should also increment the 562 * refcount. The each user mapping also has a reference to the page. 563 * 564 * The pagecache pages are stored in a per-mapping radix tree, which is 565 * rooted at mapping->page_tree, and indexed by offset. 566 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 567 * lists, we instead now tag pages as dirty/writeback in the radix tree. 568 * 569 * All pagecache pages may be subject to I/O: 570 * - inode pages may need to be read from disk, 571 * - inode pages which have been modified and are MAP_SHARED may need 572 * to be written back to the inode on disk, 573 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 574 * modified may need to be swapped out to swap space and (later) to be read 575 * back into memory. 576 */ 577 578 /* 579 * The zone field is never updated after free_area_init_core() 580 * sets it, so none of the operations on it need to be atomic. 581 */ 582 583 584 /* 585 * page->flags layout: 586 * 587 * There are three possibilities for how page->flags get 588 * laid out. The first is for the normal case, without 589 * sparsemem. The second is for sparsemem when there is 590 * plenty of space for node and section. The last is when 591 * we have run out of space and have to fall back to an 592 * alternate (slower) way of determining the node. 593 * 594 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS | 595 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS | 596 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS | 597 */ 598 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 599 #define SECTIONS_WIDTH SECTIONS_SHIFT 600 #else 601 #define SECTIONS_WIDTH 0 602 #endif 603 604 #define ZONES_WIDTH ZONES_SHIFT 605 606 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS 607 #define NODES_WIDTH NODES_SHIFT 608 #else 609 #ifdef CONFIG_SPARSEMEM_VMEMMAP 610 #error "Vmemmap: No space for nodes field in page flags" 611 #endif 612 #define NODES_WIDTH 0 613 #endif 614 615 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ 616 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 617 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 618 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 619 620 /* 621 * We are going to use the flags for the page to node mapping if its in 622 * there. This includes the case where there is no node, so it is implicit. 623 */ 624 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) 625 #define NODE_NOT_IN_PAGE_FLAGS 626 #endif 627 628 /* 629 * Define the bit shifts to access each section. For non-existent 630 * sections we define the shift as 0; that plus a 0 mask ensures 631 * the compiler will optimise away reference to them. 632 */ 633 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 634 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 635 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 636 637 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 638 #ifdef NODE_NOT_IN_PAGE_FLAGS 639 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 640 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 641 SECTIONS_PGOFF : ZONES_PGOFF) 642 #else 643 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 644 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 645 NODES_PGOFF : ZONES_PGOFF) 646 #endif 647 648 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 649 650 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 651 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 652 #endif 653 654 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 655 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 656 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 657 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 658 659 static inline enum zone_type page_zonenum(const struct page *page) 660 { 661 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 662 } 663 664 /* 665 * The identification function is only used by the buddy allocator for 666 * determining if two pages could be buddies. We are not really 667 * identifying a zone since we could be using a the section number 668 * id if we have not node id available in page flags. 669 * We guarantee only that it will return the same value for two 670 * combinable pages in a zone. 671 */ 672 static inline int page_zone_id(struct page *page) 673 { 674 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 675 } 676 677 static inline int zone_to_nid(struct zone *zone) 678 { 679 #ifdef CONFIG_NUMA 680 return zone->node; 681 #else 682 return 0; 683 #endif 684 } 685 686 #ifdef NODE_NOT_IN_PAGE_FLAGS 687 extern int page_to_nid(const struct page *page); 688 #else 689 static inline int page_to_nid(const struct page *page) 690 { 691 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 692 } 693 #endif 694 695 #ifdef CONFIG_NUMA_BALANCING 696 static inline int page_xchg_last_nid(struct page *page, int nid) 697 { 698 return xchg(&page->_last_nid, nid); 699 } 700 701 static inline int page_last_nid(struct page *page) 702 { 703 return page->_last_nid; 704 } 705 static inline void reset_page_last_nid(struct page *page) 706 { 707 page->_last_nid = -1; 708 } 709 #else 710 static inline int page_xchg_last_nid(struct page *page, int nid) 711 { 712 return page_to_nid(page); 713 } 714 715 static inline int page_last_nid(struct page *page) 716 { 717 return page_to_nid(page); 718 } 719 720 static inline void reset_page_last_nid(struct page *page) 721 { 722 } 723 #endif 724 725 static inline struct zone *page_zone(const struct page *page) 726 { 727 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 728 } 729 730 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 731 static inline void set_page_section(struct page *page, unsigned long section) 732 { 733 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 734 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 735 } 736 737 static inline unsigned long page_to_section(const struct page *page) 738 { 739 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 740 } 741 #endif 742 743 static inline void set_page_zone(struct page *page, enum zone_type zone) 744 { 745 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 746 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 747 } 748 749 static inline void set_page_node(struct page *page, unsigned long node) 750 { 751 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 752 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 753 } 754 755 static inline void set_page_links(struct page *page, enum zone_type zone, 756 unsigned long node, unsigned long pfn) 757 { 758 set_page_zone(page, zone); 759 set_page_node(page, node); 760 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 761 set_page_section(page, pfn_to_section_nr(pfn)); 762 #endif 763 } 764 765 /* 766 * Some inline functions in vmstat.h depend on page_zone() 767 */ 768 #include <linux/vmstat.h> 769 770 static __always_inline void *lowmem_page_address(const struct page *page) 771 { 772 return __va(PFN_PHYS(page_to_pfn(page))); 773 } 774 775 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 776 #define HASHED_PAGE_VIRTUAL 777 #endif 778 779 #if defined(WANT_PAGE_VIRTUAL) 780 #define page_address(page) ((page)->virtual) 781 #define set_page_address(page, address) \ 782 do { \ 783 (page)->virtual = (address); \ 784 } while(0) 785 #define page_address_init() do { } while(0) 786 #endif 787 788 #if defined(HASHED_PAGE_VIRTUAL) 789 void *page_address(const struct page *page); 790 void set_page_address(struct page *page, void *virtual); 791 void page_address_init(void); 792 #endif 793 794 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 795 #define page_address(page) lowmem_page_address(page) 796 #define set_page_address(page, address) do { } while(0) 797 #define page_address_init() do { } while(0) 798 #endif 799 800 /* 801 * On an anonymous page mapped into a user virtual memory area, 802 * page->mapping points to its anon_vma, not to a struct address_space; 803 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 804 * 805 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 806 * the PAGE_MAPPING_KSM bit may be set along with the PAGE_MAPPING_ANON bit; 807 * and then page->mapping points, not to an anon_vma, but to a private 808 * structure which KSM associates with that merged page. See ksm.h. 809 * 810 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is currently never used. 811 * 812 * Please note that, confusingly, "page_mapping" refers to the inode 813 * address_space which maps the page from disk; whereas "page_mapped" 814 * refers to user virtual address space into which the page is mapped. 815 */ 816 #define PAGE_MAPPING_ANON 1 817 #define PAGE_MAPPING_KSM 2 818 #define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM) 819 820 extern struct address_space swapper_space; 821 static inline struct address_space *page_mapping(struct page *page) 822 { 823 struct address_space *mapping = page->mapping; 824 825 VM_BUG_ON(PageSlab(page)); 826 if (unlikely(PageSwapCache(page))) 827 mapping = &swapper_space; 828 else if ((unsigned long)mapping & PAGE_MAPPING_ANON) 829 mapping = NULL; 830 return mapping; 831 } 832 833 /* Neutral page->mapping pointer to address_space or anon_vma or other */ 834 static inline void *page_rmapping(struct page *page) 835 { 836 return (void *)((unsigned long)page->mapping & ~PAGE_MAPPING_FLAGS); 837 } 838 839 extern struct address_space *__page_file_mapping(struct page *); 840 841 static inline 842 struct address_space *page_file_mapping(struct page *page) 843 { 844 if (unlikely(PageSwapCache(page))) 845 return __page_file_mapping(page); 846 847 return page->mapping; 848 } 849 850 static inline int PageAnon(struct page *page) 851 { 852 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; 853 } 854 855 /* 856 * Return the pagecache index of the passed page. Regular pagecache pages 857 * use ->index whereas swapcache pages use ->private 858 */ 859 static inline pgoff_t page_index(struct page *page) 860 { 861 if (unlikely(PageSwapCache(page))) 862 return page_private(page); 863 return page->index; 864 } 865 866 extern pgoff_t __page_file_index(struct page *page); 867 868 /* 869 * Return the file index of the page. Regular pagecache pages use ->index 870 * whereas swapcache pages use swp_offset(->private) 871 */ 872 static inline pgoff_t page_file_index(struct page *page) 873 { 874 if (unlikely(PageSwapCache(page))) 875 return __page_file_index(page); 876 877 return page->index; 878 } 879 880 /* 881 * Return true if this page is mapped into pagetables. 882 */ 883 static inline int page_mapped(struct page *page) 884 { 885 return atomic_read(&(page)->_mapcount) >= 0; 886 } 887 888 /* 889 * Different kinds of faults, as returned by handle_mm_fault(). 890 * Used to decide whether a process gets delivered SIGBUS or 891 * just gets major/minor fault counters bumped up. 892 */ 893 894 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 895 896 #define VM_FAULT_OOM 0x0001 897 #define VM_FAULT_SIGBUS 0x0002 898 #define VM_FAULT_MAJOR 0x0004 899 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 900 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 901 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 902 903 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 904 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 905 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 906 907 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 908 909 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON | \ 910 VM_FAULT_HWPOISON_LARGE) 911 912 /* Encode hstate index for a hwpoisoned large page */ 913 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 914 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 915 916 /* 917 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 918 */ 919 extern void pagefault_out_of_memory(void); 920 921 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 922 923 /* 924 * Flags passed to show_mem() and show_free_areas() to suppress output in 925 * various contexts. 926 */ 927 #define SHOW_MEM_FILTER_NODES (0x0001u) /* filter disallowed nodes */ 928 929 extern void show_free_areas(unsigned int flags); 930 extern bool skip_free_areas_node(unsigned int flags, int nid); 931 932 int shmem_zero_setup(struct vm_area_struct *); 933 934 extern int can_do_mlock(void); 935 extern int user_shm_lock(size_t, struct user_struct *); 936 extern void user_shm_unlock(size_t, struct user_struct *); 937 938 /* 939 * Parameter block passed down to zap_pte_range in exceptional cases. 940 */ 941 struct zap_details { 942 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */ 943 struct address_space *check_mapping; /* Check page->mapping if set */ 944 pgoff_t first_index; /* Lowest page->index to unmap */ 945 pgoff_t last_index; /* Highest page->index to unmap */ 946 }; 947 948 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 949 pte_t pte); 950 951 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 952 unsigned long size); 953 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 954 unsigned long size, struct zap_details *); 955 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 956 unsigned long start, unsigned long end); 957 958 /** 959 * mm_walk - callbacks for walk_page_range 960 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry 961 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 962 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 963 * this handler is required to be able to handle 964 * pmd_trans_huge() pmds. They may simply choose to 965 * split_huge_page() instead of handling it explicitly. 966 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 967 * @pte_hole: if set, called for each hole at all levels 968 * @hugetlb_entry: if set, called for each hugetlb entry 969 * *Caution*: The caller must hold mmap_sem() if @hugetlb_entry 970 * is used. 971 * 972 * (see walk_page_range for more details) 973 */ 974 struct mm_walk { 975 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *); 976 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *); 977 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *); 978 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *); 979 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *); 980 int (*hugetlb_entry)(pte_t *, unsigned long, 981 unsigned long, unsigned long, struct mm_walk *); 982 struct mm_struct *mm; 983 void *private; 984 }; 985 986 int walk_page_range(unsigned long addr, unsigned long end, 987 struct mm_walk *walk); 988 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 989 unsigned long end, unsigned long floor, unsigned long ceiling); 990 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 991 struct vm_area_struct *vma); 992 void unmap_mapping_range(struct address_space *mapping, 993 loff_t const holebegin, loff_t const holelen, int even_cows); 994 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 995 unsigned long *pfn); 996 int follow_phys(struct vm_area_struct *vma, unsigned long address, 997 unsigned int flags, unsigned long *prot, resource_size_t *phys); 998 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 999 void *buf, int len, int write); 1000 1001 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1002 loff_t const holebegin, loff_t const holelen) 1003 { 1004 unmap_mapping_range(mapping, holebegin, holelen, 0); 1005 } 1006 1007 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new); 1008 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1009 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1010 int truncate_inode_page(struct address_space *mapping, struct page *page); 1011 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1012 int invalidate_inode_page(struct page *page); 1013 1014 #ifdef CONFIG_MMU 1015 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1016 unsigned long address, unsigned int flags); 1017 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1018 unsigned long address, unsigned int fault_flags); 1019 #else 1020 static inline int handle_mm_fault(struct mm_struct *mm, 1021 struct vm_area_struct *vma, unsigned long address, 1022 unsigned int flags) 1023 { 1024 /* should never happen if there's no MMU */ 1025 BUG(); 1026 return VM_FAULT_SIGBUS; 1027 } 1028 static inline int fixup_user_fault(struct task_struct *tsk, 1029 struct mm_struct *mm, unsigned long address, 1030 unsigned int fault_flags) 1031 { 1032 /* should never happen if there's no MMU */ 1033 BUG(); 1034 return -EFAULT; 1035 } 1036 #endif 1037 1038 extern int make_pages_present(unsigned long addr, unsigned long end); 1039 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1040 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1041 void *buf, int len, int write); 1042 1043 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1044 unsigned long start, int len, unsigned int foll_flags, 1045 struct page **pages, struct vm_area_struct **vmas, 1046 int *nonblocking); 1047 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1048 unsigned long start, int nr_pages, int write, int force, 1049 struct page **pages, struct vm_area_struct **vmas); 1050 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1051 struct page **pages); 1052 struct kvec; 1053 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1054 struct page **pages); 1055 int get_kernel_page(unsigned long start, int write, struct page **pages); 1056 struct page *get_dump_page(unsigned long addr); 1057 1058 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1059 extern void do_invalidatepage(struct page *page, unsigned long offset); 1060 1061 int __set_page_dirty_nobuffers(struct page *page); 1062 int __set_page_dirty_no_writeback(struct page *page); 1063 int redirty_page_for_writepage(struct writeback_control *wbc, 1064 struct page *page); 1065 void account_page_dirtied(struct page *page, struct address_space *mapping); 1066 void account_page_writeback(struct page *page); 1067 int set_page_dirty(struct page *page); 1068 int set_page_dirty_lock(struct page *page); 1069 int clear_page_dirty_for_io(struct page *page); 1070 1071 /* Is the vma a continuation of the stack vma above it? */ 1072 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1073 { 1074 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1075 } 1076 1077 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1078 unsigned long addr) 1079 { 1080 return (vma->vm_flags & VM_GROWSDOWN) && 1081 (vma->vm_start == addr) && 1082 !vma_growsdown(vma->vm_prev, addr); 1083 } 1084 1085 /* Is the vma a continuation of the stack vma below it? */ 1086 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1087 { 1088 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1089 } 1090 1091 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1092 unsigned long addr) 1093 { 1094 return (vma->vm_flags & VM_GROWSUP) && 1095 (vma->vm_end == addr) && 1096 !vma_growsup(vma->vm_next, addr); 1097 } 1098 1099 extern pid_t 1100 vm_is_stack(struct task_struct *task, struct vm_area_struct *vma, int in_group); 1101 1102 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1103 unsigned long old_addr, struct vm_area_struct *new_vma, 1104 unsigned long new_addr, unsigned long len, 1105 bool need_rmap_locks); 1106 extern unsigned long do_mremap(unsigned long addr, 1107 unsigned long old_len, unsigned long new_len, 1108 unsigned long flags, unsigned long new_addr); 1109 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1110 unsigned long end, pgprot_t newprot, 1111 int dirty_accountable, int prot_numa); 1112 extern int mprotect_fixup(struct vm_area_struct *vma, 1113 struct vm_area_struct **pprev, unsigned long start, 1114 unsigned long end, unsigned long newflags); 1115 1116 /* 1117 * doesn't attempt to fault and will return short. 1118 */ 1119 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1120 struct page **pages); 1121 /* 1122 * per-process(per-mm_struct) statistics. 1123 */ 1124 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1125 { 1126 long val = atomic_long_read(&mm->rss_stat.count[member]); 1127 1128 #ifdef SPLIT_RSS_COUNTING 1129 /* 1130 * counter is updated in asynchronous manner and may go to minus. 1131 * But it's never be expected number for users. 1132 */ 1133 if (val < 0) 1134 val = 0; 1135 #endif 1136 return (unsigned long)val; 1137 } 1138 1139 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1140 { 1141 atomic_long_add(value, &mm->rss_stat.count[member]); 1142 } 1143 1144 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1145 { 1146 atomic_long_inc(&mm->rss_stat.count[member]); 1147 } 1148 1149 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1150 { 1151 atomic_long_dec(&mm->rss_stat.count[member]); 1152 } 1153 1154 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1155 { 1156 return get_mm_counter(mm, MM_FILEPAGES) + 1157 get_mm_counter(mm, MM_ANONPAGES); 1158 } 1159 1160 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1161 { 1162 return max(mm->hiwater_rss, get_mm_rss(mm)); 1163 } 1164 1165 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1166 { 1167 return max(mm->hiwater_vm, mm->total_vm); 1168 } 1169 1170 static inline void update_hiwater_rss(struct mm_struct *mm) 1171 { 1172 unsigned long _rss = get_mm_rss(mm); 1173 1174 if ((mm)->hiwater_rss < _rss) 1175 (mm)->hiwater_rss = _rss; 1176 } 1177 1178 static inline void update_hiwater_vm(struct mm_struct *mm) 1179 { 1180 if (mm->hiwater_vm < mm->total_vm) 1181 mm->hiwater_vm = mm->total_vm; 1182 } 1183 1184 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1185 struct mm_struct *mm) 1186 { 1187 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1188 1189 if (*maxrss < hiwater_rss) 1190 *maxrss = hiwater_rss; 1191 } 1192 1193 #if defined(SPLIT_RSS_COUNTING) 1194 void sync_mm_rss(struct mm_struct *mm); 1195 #else 1196 static inline void sync_mm_rss(struct mm_struct *mm) 1197 { 1198 } 1199 #endif 1200 1201 int vma_wants_writenotify(struct vm_area_struct *vma); 1202 1203 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1204 spinlock_t **ptl); 1205 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1206 spinlock_t **ptl) 1207 { 1208 pte_t *ptep; 1209 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1210 return ptep; 1211 } 1212 1213 #ifdef __PAGETABLE_PUD_FOLDED 1214 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1215 unsigned long address) 1216 { 1217 return 0; 1218 } 1219 #else 1220 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1221 #endif 1222 1223 #ifdef __PAGETABLE_PMD_FOLDED 1224 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1225 unsigned long address) 1226 { 1227 return 0; 1228 } 1229 #else 1230 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1231 #endif 1232 1233 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1234 pmd_t *pmd, unsigned long address); 1235 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1236 1237 /* 1238 * The following ifdef needed to get the 4level-fixup.h header to work. 1239 * Remove it when 4level-fixup.h has been removed. 1240 */ 1241 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1242 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1243 { 1244 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1245 NULL: pud_offset(pgd, address); 1246 } 1247 1248 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1249 { 1250 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1251 NULL: pmd_offset(pud, address); 1252 } 1253 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1254 1255 #if USE_SPLIT_PTLOCKS 1256 /* 1257 * We tuck a spinlock to guard each pagetable page into its struct page, 1258 * at page->private, with BUILD_BUG_ON to make sure that this will not 1259 * overflow into the next struct page (as it might with DEBUG_SPINLOCK). 1260 * When freeing, reset page->mapping so free_pages_check won't complain. 1261 */ 1262 #define __pte_lockptr(page) &((page)->ptl) 1263 #define pte_lock_init(_page) do { \ 1264 spin_lock_init(__pte_lockptr(_page)); \ 1265 } while (0) 1266 #define pte_lock_deinit(page) ((page)->mapping = NULL) 1267 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) 1268 #else /* !USE_SPLIT_PTLOCKS */ 1269 /* 1270 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1271 */ 1272 #define pte_lock_init(page) do {} while (0) 1273 #define pte_lock_deinit(page) do {} while (0) 1274 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;}) 1275 #endif /* USE_SPLIT_PTLOCKS */ 1276 1277 static inline void pgtable_page_ctor(struct page *page) 1278 { 1279 pte_lock_init(page); 1280 inc_zone_page_state(page, NR_PAGETABLE); 1281 } 1282 1283 static inline void pgtable_page_dtor(struct page *page) 1284 { 1285 pte_lock_deinit(page); 1286 dec_zone_page_state(page, NR_PAGETABLE); 1287 } 1288 1289 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1290 ({ \ 1291 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1292 pte_t *__pte = pte_offset_map(pmd, address); \ 1293 *(ptlp) = __ptl; \ 1294 spin_lock(__ptl); \ 1295 __pte; \ 1296 }) 1297 1298 #define pte_unmap_unlock(pte, ptl) do { \ 1299 spin_unlock(ptl); \ 1300 pte_unmap(pte); \ 1301 } while (0) 1302 1303 #define pte_alloc_map(mm, vma, pmd, address) \ 1304 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1305 pmd, address))? \ 1306 NULL: pte_offset_map(pmd, address)) 1307 1308 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1309 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1310 pmd, address))? \ 1311 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1312 1313 #define pte_alloc_kernel(pmd, address) \ 1314 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1315 NULL: pte_offset_kernel(pmd, address)) 1316 1317 extern void free_area_init(unsigned long * zones_size); 1318 extern void free_area_init_node(int nid, unsigned long * zones_size, 1319 unsigned long zone_start_pfn, unsigned long *zholes_size); 1320 extern void free_initmem(void); 1321 1322 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1323 /* 1324 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1325 * zones, allocate the backing mem_map and account for memory holes in a more 1326 * architecture independent manner. This is a substitute for creating the 1327 * zone_sizes[] and zholes_size[] arrays and passing them to 1328 * free_area_init_node() 1329 * 1330 * An architecture is expected to register range of page frames backed by 1331 * physical memory with memblock_add[_node]() before calling 1332 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1333 * usage, an architecture is expected to do something like 1334 * 1335 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1336 * max_highmem_pfn}; 1337 * for_each_valid_physical_page_range() 1338 * memblock_add_node(base, size, nid) 1339 * free_area_init_nodes(max_zone_pfns); 1340 * 1341 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1342 * registered physical page range. Similarly 1343 * sparse_memory_present_with_active_regions() calls memory_present() for 1344 * each range when SPARSEMEM is enabled. 1345 * 1346 * See mm/page_alloc.c for more information on each function exposed by 1347 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1348 */ 1349 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1350 unsigned long node_map_pfn_alignment(void); 1351 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1352 unsigned long end_pfn); 1353 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1354 unsigned long end_pfn); 1355 extern void get_pfn_range_for_nid(unsigned int nid, 1356 unsigned long *start_pfn, unsigned long *end_pfn); 1357 extern unsigned long find_min_pfn_with_active_regions(void); 1358 extern void free_bootmem_with_active_regions(int nid, 1359 unsigned long max_low_pfn); 1360 extern void sparse_memory_present_with_active_regions(int nid); 1361 1362 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1363 1364 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1365 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1366 static inline int __early_pfn_to_nid(unsigned long pfn) 1367 { 1368 return 0; 1369 } 1370 #else 1371 /* please see mm/page_alloc.c */ 1372 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1373 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1374 /* there is a per-arch backend function. */ 1375 extern int __meminit __early_pfn_to_nid(unsigned long pfn); 1376 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1377 #endif 1378 1379 extern void set_dma_reserve(unsigned long new_dma_reserve); 1380 extern void memmap_init_zone(unsigned long, int, unsigned long, 1381 unsigned long, enum memmap_context); 1382 extern void setup_per_zone_wmarks(void); 1383 extern int __meminit init_per_zone_wmark_min(void); 1384 extern void mem_init(void); 1385 extern void __init mmap_init(void); 1386 extern void show_mem(unsigned int flags); 1387 extern void si_meminfo(struct sysinfo * val); 1388 extern void si_meminfo_node(struct sysinfo *val, int nid); 1389 extern int after_bootmem; 1390 1391 extern __printf(3, 4) 1392 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1393 1394 extern void setup_per_cpu_pageset(void); 1395 1396 extern void zone_pcp_update(struct zone *zone); 1397 extern void zone_pcp_reset(struct zone *zone); 1398 1399 /* nommu.c */ 1400 extern atomic_long_t mmap_pages_allocated; 1401 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1402 1403 /* interval_tree.c */ 1404 void vma_interval_tree_insert(struct vm_area_struct *node, 1405 struct rb_root *root); 1406 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1407 struct vm_area_struct *prev, 1408 struct rb_root *root); 1409 void vma_interval_tree_remove(struct vm_area_struct *node, 1410 struct rb_root *root); 1411 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1412 unsigned long start, unsigned long last); 1413 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1414 unsigned long start, unsigned long last); 1415 1416 #define vma_interval_tree_foreach(vma, root, start, last) \ 1417 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1418 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1419 1420 static inline void vma_nonlinear_insert(struct vm_area_struct *vma, 1421 struct list_head *list) 1422 { 1423 list_add_tail(&vma->shared.nonlinear, list); 1424 } 1425 1426 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1427 struct rb_root *root); 1428 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1429 struct rb_root *root); 1430 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1431 struct rb_root *root, unsigned long start, unsigned long last); 1432 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1433 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1434 #ifdef CONFIG_DEBUG_VM_RB 1435 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1436 #endif 1437 1438 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1439 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1440 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1441 1442 /* mmap.c */ 1443 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1444 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1445 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1446 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1447 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1448 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1449 struct mempolicy *); 1450 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1451 extern int split_vma(struct mm_struct *, 1452 struct vm_area_struct *, unsigned long addr, int new_below); 1453 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1454 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1455 struct rb_node **, struct rb_node *); 1456 extern void unlink_file_vma(struct vm_area_struct *); 1457 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1458 unsigned long addr, unsigned long len, pgoff_t pgoff, 1459 bool *need_rmap_locks); 1460 extern void exit_mmap(struct mm_struct *); 1461 1462 extern int mm_take_all_locks(struct mm_struct *mm); 1463 extern void mm_drop_all_locks(struct mm_struct *mm); 1464 1465 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1466 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1467 1468 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1469 extern int install_special_mapping(struct mm_struct *mm, 1470 unsigned long addr, unsigned long len, 1471 unsigned long flags, struct page **pages); 1472 1473 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1474 1475 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1476 unsigned long len, unsigned long flags, 1477 vm_flags_t vm_flags, unsigned long pgoff); 1478 extern unsigned long do_mmap_pgoff(struct file *, unsigned long, 1479 unsigned long, unsigned long, 1480 unsigned long, unsigned long); 1481 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1482 1483 /* These take the mm semaphore themselves */ 1484 extern unsigned long vm_brk(unsigned long, unsigned long); 1485 extern int vm_munmap(unsigned long, size_t); 1486 extern unsigned long vm_mmap(struct file *, unsigned long, 1487 unsigned long, unsigned long, 1488 unsigned long, unsigned long); 1489 1490 struct vm_unmapped_area_info { 1491 #define VM_UNMAPPED_AREA_TOPDOWN 1 1492 unsigned long flags; 1493 unsigned long length; 1494 unsigned long low_limit; 1495 unsigned long high_limit; 1496 unsigned long align_mask; 1497 unsigned long align_offset; 1498 }; 1499 1500 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1501 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1502 1503 /* 1504 * Search for an unmapped address range. 1505 * 1506 * We are looking for a range that: 1507 * - does not intersect with any VMA; 1508 * - is contained within the [low_limit, high_limit) interval; 1509 * - is at least the desired size. 1510 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1511 */ 1512 static inline unsigned long 1513 vm_unmapped_area(struct vm_unmapped_area_info *info) 1514 { 1515 if (!(info->flags & VM_UNMAPPED_AREA_TOPDOWN)) 1516 return unmapped_area(info); 1517 else 1518 return unmapped_area_topdown(info); 1519 } 1520 1521 /* truncate.c */ 1522 extern void truncate_inode_pages(struct address_space *, loff_t); 1523 extern void truncate_inode_pages_range(struct address_space *, 1524 loff_t lstart, loff_t lend); 1525 1526 /* generic vm_area_ops exported for stackable file systems */ 1527 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1528 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1529 1530 /* mm/page-writeback.c */ 1531 int write_one_page(struct page *page, int wait); 1532 void task_dirty_inc(struct task_struct *tsk); 1533 1534 /* readahead.c */ 1535 #define VM_MAX_READAHEAD 128 /* kbytes */ 1536 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1537 1538 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1539 pgoff_t offset, unsigned long nr_to_read); 1540 1541 void page_cache_sync_readahead(struct address_space *mapping, 1542 struct file_ra_state *ra, 1543 struct file *filp, 1544 pgoff_t offset, 1545 unsigned long size); 1546 1547 void page_cache_async_readahead(struct address_space *mapping, 1548 struct file_ra_state *ra, 1549 struct file *filp, 1550 struct page *pg, 1551 pgoff_t offset, 1552 unsigned long size); 1553 1554 unsigned long max_sane_readahead(unsigned long nr); 1555 unsigned long ra_submit(struct file_ra_state *ra, 1556 struct address_space *mapping, 1557 struct file *filp); 1558 1559 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1560 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1561 1562 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1563 extern int expand_downwards(struct vm_area_struct *vma, 1564 unsigned long address); 1565 #if VM_GROWSUP 1566 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1567 #else 1568 #define expand_upwards(vma, address) do { } while (0) 1569 #endif 1570 1571 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1572 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1573 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1574 struct vm_area_struct **pprev); 1575 1576 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1577 NULL if none. Assume start_addr < end_addr. */ 1578 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1579 { 1580 struct vm_area_struct * vma = find_vma(mm,start_addr); 1581 1582 if (vma && end_addr <= vma->vm_start) 1583 vma = NULL; 1584 return vma; 1585 } 1586 1587 static inline unsigned long vma_pages(struct vm_area_struct *vma) 1588 { 1589 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 1590 } 1591 1592 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 1593 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 1594 unsigned long vm_start, unsigned long vm_end) 1595 { 1596 struct vm_area_struct *vma = find_vma(mm, vm_start); 1597 1598 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 1599 vma = NULL; 1600 1601 return vma; 1602 } 1603 1604 #ifdef CONFIG_MMU 1605 pgprot_t vm_get_page_prot(unsigned long vm_flags); 1606 #else 1607 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 1608 { 1609 return __pgprot(0); 1610 } 1611 #endif 1612 1613 #ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE 1614 unsigned long change_prot_numa(struct vm_area_struct *vma, 1615 unsigned long start, unsigned long end); 1616 #endif 1617 1618 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 1619 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 1620 unsigned long pfn, unsigned long size, pgprot_t); 1621 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 1622 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 1623 unsigned long pfn); 1624 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 1625 unsigned long pfn); 1626 1627 struct page *follow_page(struct vm_area_struct *, unsigned long address, 1628 unsigned int foll_flags); 1629 #define FOLL_WRITE 0x01 /* check pte is writable */ 1630 #define FOLL_TOUCH 0x02 /* mark page accessed */ 1631 #define FOLL_GET 0x04 /* do get_page on page */ 1632 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 1633 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 1634 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 1635 * and return without waiting upon it */ 1636 #define FOLL_MLOCK 0x40 /* mark page as mlocked */ 1637 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 1638 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 1639 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 1640 1641 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 1642 void *data); 1643 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 1644 unsigned long size, pte_fn_t fn, void *data); 1645 1646 #ifdef CONFIG_PROC_FS 1647 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 1648 #else 1649 static inline void vm_stat_account(struct mm_struct *mm, 1650 unsigned long flags, struct file *file, long pages) 1651 { 1652 mm->total_vm += pages; 1653 } 1654 #endif /* CONFIG_PROC_FS */ 1655 1656 #ifdef CONFIG_DEBUG_PAGEALLOC 1657 extern void kernel_map_pages(struct page *page, int numpages, int enable); 1658 #ifdef CONFIG_HIBERNATION 1659 extern bool kernel_page_present(struct page *page); 1660 #endif /* CONFIG_HIBERNATION */ 1661 #else 1662 static inline void 1663 kernel_map_pages(struct page *page, int numpages, int enable) {} 1664 #ifdef CONFIG_HIBERNATION 1665 static inline bool kernel_page_present(struct page *page) { return true; } 1666 #endif /* CONFIG_HIBERNATION */ 1667 #endif 1668 1669 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 1670 #ifdef __HAVE_ARCH_GATE_AREA 1671 int in_gate_area_no_mm(unsigned long addr); 1672 int in_gate_area(struct mm_struct *mm, unsigned long addr); 1673 #else 1674 int in_gate_area_no_mm(unsigned long addr); 1675 #define in_gate_area(mm, addr) ({(void)mm; in_gate_area_no_mm(addr);}) 1676 #endif /* __HAVE_ARCH_GATE_AREA */ 1677 1678 int drop_caches_sysctl_handler(struct ctl_table *, int, 1679 void __user *, size_t *, loff_t *); 1680 unsigned long shrink_slab(struct shrink_control *shrink, 1681 unsigned long nr_pages_scanned, 1682 unsigned long lru_pages); 1683 1684 #ifndef CONFIG_MMU 1685 #define randomize_va_space 0 1686 #else 1687 extern int randomize_va_space; 1688 #endif 1689 1690 const char * arch_vma_name(struct vm_area_struct *vma); 1691 void print_vma_addr(char *prefix, unsigned long rip); 1692 1693 void sparse_mem_maps_populate_node(struct page **map_map, 1694 unsigned long pnum_begin, 1695 unsigned long pnum_end, 1696 unsigned long map_count, 1697 int nodeid); 1698 1699 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 1700 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 1701 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 1702 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 1703 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 1704 void *vmemmap_alloc_block(unsigned long size, int node); 1705 void *vmemmap_alloc_block_buf(unsigned long size, int node); 1706 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 1707 int vmemmap_populate_basepages(struct page *start_page, 1708 unsigned long pages, int node); 1709 int vmemmap_populate(struct page *start_page, unsigned long pages, int node); 1710 void vmemmap_populate_print_last(void); 1711 1712 1713 enum mf_flags { 1714 MF_COUNT_INCREASED = 1 << 0, 1715 MF_ACTION_REQUIRED = 1 << 1, 1716 MF_MUST_KILL = 1 << 2, 1717 }; 1718 extern int memory_failure(unsigned long pfn, int trapno, int flags); 1719 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 1720 extern int unpoison_memory(unsigned long pfn); 1721 extern int sysctl_memory_failure_early_kill; 1722 extern int sysctl_memory_failure_recovery; 1723 extern void shake_page(struct page *p, int access); 1724 extern atomic_long_t mce_bad_pages; 1725 extern int soft_offline_page(struct page *page, int flags); 1726 1727 extern void dump_page(struct page *page); 1728 1729 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 1730 extern void clear_huge_page(struct page *page, 1731 unsigned long addr, 1732 unsigned int pages_per_huge_page); 1733 extern void copy_user_huge_page(struct page *dst, struct page *src, 1734 unsigned long addr, struct vm_area_struct *vma, 1735 unsigned int pages_per_huge_page); 1736 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 1737 1738 #ifdef CONFIG_DEBUG_PAGEALLOC 1739 extern unsigned int _debug_guardpage_minorder; 1740 1741 static inline unsigned int debug_guardpage_minorder(void) 1742 { 1743 return _debug_guardpage_minorder; 1744 } 1745 1746 static inline bool page_is_guard(struct page *page) 1747 { 1748 return test_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 1749 } 1750 #else 1751 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 1752 static inline bool page_is_guard(struct page *page) { return false; } 1753 #endif /* CONFIG_DEBUG_PAGEALLOC */ 1754 1755 #endif /* __KERNEL__ */ 1756 #endif /* _LINUX_MM_H */ 1757