1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 #include <linux/kasan.h> 35 36 struct mempolicy; 37 struct anon_vma; 38 struct anon_vma_chain; 39 struct user_struct; 40 struct pt_regs; 41 42 extern int sysctl_page_lock_unfairness; 43 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 /* 102 * Architectures that support memory tagging (assigning tags to memory regions, 103 * embedding these tags into addresses that point to these memory regions, and 104 * checking that the memory and the pointer tags match on memory accesses) 105 * redefine this macro to strip tags from pointers. 106 * It's defined as noop for architectures that don't support memory tagging. 107 */ 108 #ifndef untagged_addr 109 #define untagged_addr(addr) (addr) 110 #endif 111 112 #ifndef __pa_symbol 113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114 #endif 115 116 #ifndef page_to_virt 117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118 #endif 119 120 #ifndef lm_alias 121 #define lm_alias(x) __va(__pa_symbol(x)) 122 #endif 123 124 /* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131 #ifndef mm_forbids_zeropage 132 #define mm_forbids_zeropage(X) (0) 133 #endif 134 135 /* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141 #if BITS_PER_LONG == 64 142 /* This function must be updated when the size of struct page grows above 80 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statements if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149 static inline void __mm_zero_struct_page(struct page *page) 150 { 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 80); 157 158 switch (sizeof(struct page)) { 159 case 80: 160 _pp[9] = 0; 161 fallthrough; 162 case 72: 163 _pp[8] = 0; 164 fallthrough; 165 case 64: 166 _pp[7] = 0; 167 fallthrough; 168 case 56: 169 _pp[6] = 0; 170 _pp[5] = 0; 171 _pp[4] = 0; 172 _pp[3] = 0; 173 _pp[2] = 0; 174 _pp[1] = 0; 175 _pp[0] = 0; 176 } 177 } 178 #else 179 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 180 #endif 181 182 /* 183 * Default maximum number of active map areas, this limits the number of vmas 184 * per mm struct. Users can overwrite this number by sysctl but there is a 185 * problem. 186 * 187 * When a program's coredump is generated as ELF format, a section is created 188 * per a vma. In ELF, the number of sections is represented in unsigned short. 189 * This means the number of sections should be smaller than 65535 at coredump. 190 * Because the kernel adds some informative sections to a image of program at 191 * generating coredump, we need some margin. The number of extra sections is 192 * 1-3 now and depends on arch. We use "5" as safe margin, here. 193 * 194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 195 * not a hard limit any more. Although some userspace tools can be surprised by 196 * that. 197 */ 198 #define MAPCOUNT_ELF_CORE_MARGIN (5) 199 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 200 201 extern int sysctl_max_map_count; 202 203 extern unsigned long sysctl_user_reserve_kbytes; 204 extern unsigned long sysctl_admin_reserve_kbytes; 205 206 extern int sysctl_overcommit_memory; 207 extern int sysctl_overcommit_ratio; 208 extern unsigned long sysctl_overcommit_kbytes; 209 210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216 217 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 218 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 219 #else 220 #define nth_page(page,n) ((page) + (n)) 221 #endif 222 223 /* to align the pointer to the (next) page boundary */ 224 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 231 void setup_initial_init_mm(void *start_code, void *end_code, 232 void *end_data, void *brk); 233 234 /* 235 * Linux kernel virtual memory manager primitives. 236 * The idea being to have a "virtual" mm in the same way 237 * we have a virtual fs - giving a cleaner interface to the 238 * mm details, and allowing different kinds of memory mappings 239 * (from shared memory to executable loading to arbitrary 240 * mmap() functions). 241 */ 242 243 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 244 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 245 void vm_area_free(struct vm_area_struct *); 246 247 #ifndef CONFIG_MMU 248 extern struct rb_root nommu_region_tree; 249 extern struct rw_semaphore nommu_region_sem; 250 251 extern unsigned int kobjsize(const void *objp); 252 #endif 253 254 /* 255 * vm_flags in vm_area_struct, see mm_types.h. 256 * When changing, update also include/trace/events/mmflags.h 257 */ 258 #define VM_NONE 0x00000000 259 260 #define VM_READ 0x00000001 /* currently active flags */ 261 #define VM_WRITE 0x00000002 262 #define VM_EXEC 0x00000004 263 #define VM_SHARED 0x00000008 264 265 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 266 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 267 #define VM_MAYWRITE 0x00000020 268 #define VM_MAYEXEC 0x00000040 269 #define VM_MAYSHARE 0x00000080 270 271 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 272 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 273 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 274 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 275 276 #define VM_LOCKED 0x00002000 277 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 278 279 /* Used by sys_madvise() */ 280 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 281 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 282 283 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 284 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 285 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 286 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 287 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 288 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 289 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 290 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 291 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 292 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 293 294 #ifdef CONFIG_MEM_SOFT_DIRTY 295 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 296 #else 297 # define VM_SOFTDIRTY 0 298 #endif 299 300 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 301 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 302 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 303 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 304 305 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 306 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 307 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 308 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 309 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 310 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 311 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 312 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 313 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 314 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 315 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 316 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 317 318 #ifdef CONFIG_ARCH_HAS_PKEYS 319 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 320 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 321 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 322 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 323 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 324 #ifdef CONFIG_PPC 325 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 326 #else 327 # define VM_PKEY_BIT4 0 328 #endif 329 #endif /* CONFIG_ARCH_HAS_PKEYS */ 330 331 #if defined(CONFIG_X86) 332 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 333 #elif defined(CONFIG_PPC) 334 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 335 #elif defined(CONFIG_PARISC) 336 # define VM_GROWSUP VM_ARCH_1 337 #elif defined(CONFIG_IA64) 338 # define VM_GROWSUP VM_ARCH_1 339 #elif defined(CONFIG_SPARC64) 340 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 341 # define VM_ARCH_CLEAR VM_SPARC_ADI 342 #elif defined(CONFIG_ARM64) 343 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 344 # define VM_ARCH_CLEAR VM_ARM64_BTI 345 #elif !defined(CONFIG_MMU) 346 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 347 #endif 348 349 #if defined(CONFIG_ARM64_MTE) 350 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 351 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 352 #else 353 # define VM_MTE VM_NONE 354 # define VM_MTE_ALLOWED VM_NONE 355 #endif 356 357 #ifndef VM_GROWSUP 358 # define VM_GROWSUP VM_NONE 359 #endif 360 361 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 362 # define VM_UFFD_MINOR_BIT 37 363 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 364 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 365 # define VM_UFFD_MINOR VM_NONE 366 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 367 368 /* Bits set in the VMA until the stack is in its final location */ 369 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 370 371 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 372 373 /* Common data flag combinations */ 374 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 375 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 376 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 377 VM_MAYWRITE | VM_MAYEXEC) 378 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 379 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 380 381 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 382 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 383 #endif 384 385 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 386 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 387 #endif 388 389 #ifdef CONFIG_STACK_GROWSUP 390 #define VM_STACK VM_GROWSUP 391 #else 392 #define VM_STACK VM_GROWSDOWN 393 #endif 394 395 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 396 397 /* VMA basic access permission flags */ 398 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 399 400 401 /* 402 * Special vmas that are non-mergable, non-mlock()able. 403 */ 404 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 405 406 /* This mask prevents VMA from being scanned with khugepaged */ 407 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 408 409 /* This mask defines which mm->def_flags a process can inherit its parent */ 410 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 411 412 /* This mask is used to clear all the VMA flags used by mlock */ 413 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 414 415 /* Arch-specific flags to clear when updating VM flags on protection change */ 416 #ifndef VM_ARCH_CLEAR 417 # define VM_ARCH_CLEAR VM_NONE 418 #endif 419 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 420 421 /* 422 * mapping from the currently active vm_flags protection bits (the 423 * low four bits) to a page protection mask.. 424 */ 425 extern pgprot_t protection_map[16]; 426 427 /** 428 * enum fault_flag - Fault flag definitions. 429 * @FAULT_FLAG_WRITE: Fault was a write fault. 430 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 431 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 432 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 433 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 434 * @FAULT_FLAG_TRIED: The fault has been tried once. 435 * @FAULT_FLAG_USER: The fault originated in userspace. 436 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 437 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 438 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 439 * 440 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 441 * whether we would allow page faults to retry by specifying these two 442 * fault flags correctly. Currently there can be three legal combinations: 443 * 444 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 445 * this is the first try 446 * 447 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 448 * we've already tried at least once 449 * 450 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 451 * 452 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 453 * be used. Note that page faults can be allowed to retry for multiple times, 454 * in which case we'll have an initial fault with flags (a) then later on 455 * continuous faults with flags (b). We should always try to detect pending 456 * signals before a retry to make sure the continuous page faults can still be 457 * interrupted if necessary. 458 */ 459 enum fault_flag { 460 FAULT_FLAG_WRITE = 1 << 0, 461 FAULT_FLAG_MKWRITE = 1 << 1, 462 FAULT_FLAG_ALLOW_RETRY = 1 << 2, 463 FAULT_FLAG_RETRY_NOWAIT = 1 << 3, 464 FAULT_FLAG_KILLABLE = 1 << 4, 465 FAULT_FLAG_TRIED = 1 << 5, 466 FAULT_FLAG_USER = 1 << 6, 467 FAULT_FLAG_REMOTE = 1 << 7, 468 FAULT_FLAG_INSTRUCTION = 1 << 8, 469 FAULT_FLAG_INTERRUPTIBLE = 1 << 9, 470 }; 471 472 /* 473 * The default fault flags that should be used by most of the 474 * arch-specific page fault handlers. 475 */ 476 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 477 FAULT_FLAG_KILLABLE | \ 478 FAULT_FLAG_INTERRUPTIBLE) 479 480 /** 481 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 482 * @flags: Fault flags. 483 * 484 * This is mostly used for places where we want to try to avoid taking 485 * the mmap_lock for too long a time when waiting for another condition 486 * to change, in which case we can try to be polite to release the 487 * mmap_lock in the first round to avoid potential starvation of other 488 * processes that would also want the mmap_lock. 489 * 490 * Return: true if the page fault allows retry and this is the first 491 * attempt of the fault handling; false otherwise. 492 */ 493 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 494 { 495 return (flags & FAULT_FLAG_ALLOW_RETRY) && 496 (!(flags & FAULT_FLAG_TRIED)); 497 } 498 499 #define FAULT_FLAG_TRACE \ 500 { FAULT_FLAG_WRITE, "WRITE" }, \ 501 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 502 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 503 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 504 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 505 { FAULT_FLAG_TRIED, "TRIED" }, \ 506 { FAULT_FLAG_USER, "USER" }, \ 507 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 508 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 509 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 510 511 /* 512 * vm_fault is filled by the pagefault handler and passed to the vma's 513 * ->fault function. The vma's ->fault is responsible for returning a bitmask 514 * of VM_FAULT_xxx flags that give details about how the fault was handled. 515 * 516 * MM layer fills up gfp_mask for page allocations but fault handler might 517 * alter it if its implementation requires a different allocation context. 518 * 519 * pgoff should be used in favour of virtual_address, if possible. 520 */ 521 struct vm_fault { 522 const struct { 523 struct vm_area_struct *vma; /* Target VMA */ 524 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 525 pgoff_t pgoff; /* Logical page offset based on vma */ 526 unsigned long address; /* Faulting virtual address */ 527 }; 528 enum fault_flag flags; /* FAULT_FLAG_xxx flags 529 * XXX: should really be 'const' */ 530 pmd_t *pmd; /* Pointer to pmd entry matching 531 * the 'address' */ 532 pud_t *pud; /* Pointer to pud entry matching 533 * the 'address' 534 */ 535 union { 536 pte_t orig_pte; /* Value of PTE at the time of fault */ 537 pmd_t orig_pmd; /* Value of PMD at the time of fault, 538 * used by PMD fault only. 539 */ 540 }; 541 542 struct page *cow_page; /* Page handler may use for COW fault */ 543 struct page *page; /* ->fault handlers should return a 544 * page here, unless VM_FAULT_NOPAGE 545 * is set (which is also implied by 546 * VM_FAULT_ERROR). 547 */ 548 /* These three entries are valid only while holding ptl lock */ 549 pte_t *pte; /* Pointer to pte entry matching 550 * the 'address'. NULL if the page 551 * table hasn't been allocated. 552 */ 553 spinlock_t *ptl; /* Page table lock. 554 * Protects pte page table if 'pte' 555 * is not NULL, otherwise pmd. 556 */ 557 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 558 * vm_ops->map_pages() sets up a page 559 * table from atomic context. 560 * do_fault_around() pre-allocates 561 * page table to avoid allocation from 562 * atomic context. 563 */ 564 }; 565 566 /* page entry size for vm->huge_fault() */ 567 enum page_entry_size { 568 PE_SIZE_PTE = 0, 569 PE_SIZE_PMD, 570 PE_SIZE_PUD, 571 }; 572 573 /* 574 * These are the virtual MM functions - opening of an area, closing and 575 * unmapping it (needed to keep files on disk up-to-date etc), pointer 576 * to the functions called when a no-page or a wp-page exception occurs. 577 */ 578 struct vm_operations_struct { 579 void (*open)(struct vm_area_struct * area); 580 void (*close)(struct vm_area_struct * area); 581 /* Called any time before splitting to check if it's allowed */ 582 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 583 int (*mremap)(struct vm_area_struct *area); 584 /* 585 * Called by mprotect() to make driver-specific permission 586 * checks before mprotect() is finalised. The VMA must not 587 * be modified. Returns 0 if eprotect() can proceed. 588 */ 589 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 590 unsigned long end, unsigned long newflags); 591 vm_fault_t (*fault)(struct vm_fault *vmf); 592 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 593 enum page_entry_size pe_size); 594 vm_fault_t (*map_pages)(struct vm_fault *vmf, 595 pgoff_t start_pgoff, pgoff_t end_pgoff); 596 unsigned long (*pagesize)(struct vm_area_struct * area); 597 598 /* notification that a previously read-only page is about to become 599 * writable, if an error is returned it will cause a SIGBUS */ 600 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 601 602 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 603 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 604 605 /* called by access_process_vm when get_user_pages() fails, typically 606 * for use by special VMAs. See also generic_access_phys() for a generic 607 * implementation useful for any iomem mapping. 608 */ 609 int (*access)(struct vm_area_struct *vma, unsigned long addr, 610 void *buf, int len, int write); 611 612 /* Called by the /proc/PID/maps code to ask the vma whether it 613 * has a special name. Returning non-NULL will also cause this 614 * vma to be dumped unconditionally. */ 615 const char *(*name)(struct vm_area_struct *vma); 616 617 #ifdef CONFIG_NUMA 618 /* 619 * set_policy() op must add a reference to any non-NULL @new mempolicy 620 * to hold the policy upon return. Caller should pass NULL @new to 621 * remove a policy and fall back to surrounding context--i.e. do not 622 * install a MPOL_DEFAULT policy, nor the task or system default 623 * mempolicy. 624 */ 625 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 626 627 /* 628 * get_policy() op must add reference [mpol_get()] to any policy at 629 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 630 * in mm/mempolicy.c will do this automatically. 631 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 632 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 633 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 634 * must return NULL--i.e., do not "fallback" to task or system default 635 * policy. 636 */ 637 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 638 unsigned long addr); 639 #endif 640 /* 641 * Called by vm_normal_page() for special PTEs to find the 642 * page for @addr. This is useful if the default behavior 643 * (using pte_page()) would not find the correct page. 644 */ 645 struct page *(*find_special_page)(struct vm_area_struct *vma, 646 unsigned long addr); 647 }; 648 649 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 650 { 651 static const struct vm_operations_struct dummy_vm_ops = {}; 652 653 memset(vma, 0, sizeof(*vma)); 654 vma->vm_mm = mm; 655 vma->vm_ops = &dummy_vm_ops; 656 INIT_LIST_HEAD(&vma->anon_vma_chain); 657 } 658 659 static inline void vma_set_anonymous(struct vm_area_struct *vma) 660 { 661 vma->vm_ops = NULL; 662 } 663 664 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 665 { 666 return !vma->vm_ops; 667 } 668 669 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 670 { 671 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 672 673 if (!maybe_stack) 674 return false; 675 676 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 677 VM_STACK_INCOMPLETE_SETUP) 678 return true; 679 680 return false; 681 } 682 683 static inline bool vma_is_foreign(struct vm_area_struct *vma) 684 { 685 if (!current->mm) 686 return true; 687 688 if (current->mm != vma->vm_mm) 689 return true; 690 691 return false; 692 } 693 694 static inline bool vma_is_accessible(struct vm_area_struct *vma) 695 { 696 return vma->vm_flags & VM_ACCESS_FLAGS; 697 } 698 699 #ifdef CONFIG_SHMEM 700 /* 701 * The vma_is_shmem is not inline because it is used only by slow 702 * paths in userfault. 703 */ 704 bool vma_is_shmem(struct vm_area_struct *vma); 705 #else 706 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 707 #endif 708 709 int vma_is_stack_for_current(struct vm_area_struct *vma); 710 711 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 712 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 713 714 struct mmu_gather; 715 struct inode; 716 717 static inline unsigned int compound_order(struct page *page) 718 { 719 if (!PageHead(page)) 720 return 0; 721 return page[1].compound_order; 722 } 723 724 /** 725 * folio_order - The allocation order of a folio. 726 * @folio: The folio. 727 * 728 * A folio is composed of 2^order pages. See get_order() for the definition 729 * of order. 730 * 731 * Return: The order of the folio. 732 */ 733 static inline unsigned int folio_order(struct folio *folio) 734 { 735 return compound_order(&folio->page); 736 } 737 738 #include <linux/huge_mm.h> 739 740 /* 741 * Methods to modify the page usage count. 742 * 743 * What counts for a page usage: 744 * - cache mapping (page->mapping) 745 * - private data (page->private) 746 * - page mapped in a task's page tables, each mapping 747 * is counted separately 748 * 749 * Also, many kernel routines increase the page count before a critical 750 * routine so they can be sure the page doesn't go away from under them. 751 */ 752 753 /* 754 * Drop a ref, return true if the refcount fell to zero (the page has no users) 755 */ 756 static inline int put_page_testzero(struct page *page) 757 { 758 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 759 return page_ref_dec_and_test(page); 760 } 761 762 static inline int folio_put_testzero(struct folio *folio) 763 { 764 return put_page_testzero(&folio->page); 765 } 766 767 /* 768 * Try to grab a ref unless the page has a refcount of zero, return false if 769 * that is the case. 770 * This can be called when MMU is off so it must not access 771 * any of the virtual mappings. 772 */ 773 static inline bool get_page_unless_zero(struct page *page) 774 { 775 return page_ref_add_unless(page, 1, 0); 776 } 777 778 extern int page_is_ram(unsigned long pfn); 779 780 enum { 781 REGION_INTERSECTS, 782 REGION_DISJOINT, 783 REGION_MIXED, 784 }; 785 786 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 787 unsigned long desc); 788 789 /* Support for virtually mapped pages */ 790 struct page *vmalloc_to_page(const void *addr); 791 unsigned long vmalloc_to_pfn(const void *addr); 792 793 /* 794 * Determine if an address is within the vmalloc range 795 * 796 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 797 * is no special casing required. 798 */ 799 800 #ifndef is_ioremap_addr 801 #define is_ioremap_addr(x) is_vmalloc_addr(x) 802 #endif 803 804 #ifdef CONFIG_MMU 805 extern bool is_vmalloc_addr(const void *x); 806 extern int is_vmalloc_or_module_addr(const void *x); 807 #else 808 static inline bool is_vmalloc_addr(const void *x) 809 { 810 return false; 811 } 812 static inline int is_vmalloc_or_module_addr(const void *x) 813 { 814 return 0; 815 } 816 #endif 817 818 static inline int head_compound_mapcount(struct page *head) 819 { 820 return atomic_read(compound_mapcount_ptr(head)) + 1; 821 } 822 823 /* 824 * Mapcount of compound page as a whole, does not include mapped sub-pages. 825 * 826 * Must be called only for compound pages or any their tail sub-pages. 827 */ 828 static inline int compound_mapcount(struct page *page) 829 { 830 VM_BUG_ON_PAGE(!PageCompound(page), page); 831 page = compound_head(page); 832 return head_compound_mapcount(page); 833 } 834 835 /* 836 * The atomic page->_mapcount, starts from -1: so that transitions 837 * both from it and to it can be tracked, using atomic_inc_and_test 838 * and atomic_add_negative(-1). 839 */ 840 static inline void page_mapcount_reset(struct page *page) 841 { 842 atomic_set(&(page)->_mapcount, -1); 843 } 844 845 int __page_mapcount(struct page *page); 846 847 /* 848 * Mapcount of 0-order page; when compound sub-page, includes 849 * compound_mapcount(). 850 * 851 * Result is undefined for pages which cannot be mapped into userspace. 852 * For example SLAB or special types of pages. See function page_has_type(). 853 * They use this place in struct page differently. 854 */ 855 static inline int page_mapcount(struct page *page) 856 { 857 if (unlikely(PageCompound(page))) 858 return __page_mapcount(page); 859 return atomic_read(&page->_mapcount) + 1; 860 } 861 862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 863 int total_mapcount(struct page *page); 864 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 865 #else 866 static inline int total_mapcount(struct page *page) 867 { 868 return page_mapcount(page); 869 } 870 static inline int page_trans_huge_mapcount(struct page *page, 871 int *total_mapcount) 872 { 873 int mapcount = page_mapcount(page); 874 if (total_mapcount) 875 *total_mapcount = mapcount; 876 return mapcount; 877 } 878 #endif 879 880 static inline struct page *virt_to_head_page(const void *x) 881 { 882 struct page *page = virt_to_page(x); 883 884 return compound_head(page); 885 } 886 887 static inline struct folio *virt_to_folio(const void *x) 888 { 889 struct page *page = virt_to_page(x); 890 891 return page_folio(page); 892 } 893 894 void __put_page(struct page *page); 895 896 void put_pages_list(struct list_head *pages); 897 898 void split_page(struct page *page, unsigned int order); 899 void folio_copy(struct folio *dst, struct folio *src); 900 901 unsigned long nr_free_buffer_pages(void); 902 903 /* 904 * Compound pages have a destructor function. Provide a 905 * prototype for that function and accessor functions. 906 * These are _only_ valid on the head of a compound page. 907 */ 908 typedef void compound_page_dtor(struct page *); 909 910 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 911 enum compound_dtor_id { 912 NULL_COMPOUND_DTOR, 913 COMPOUND_PAGE_DTOR, 914 #ifdef CONFIG_HUGETLB_PAGE 915 HUGETLB_PAGE_DTOR, 916 #endif 917 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 918 TRANSHUGE_PAGE_DTOR, 919 #endif 920 NR_COMPOUND_DTORS, 921 }; 922 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 923 924 static inline void set_compound_page_dtor(struct page *page, 925 enum compound_dtor_id compound_dtor) 926 { 927 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 928 page[1].compound_dtor = compound_dtor; 929 } 930 931 static inline void destroy_compound_page(struct page *page) 932 { 933 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 934 compound_page_dtors[page[1].compound_dtor](page); 935 } 936 937 static inline bool hpage_pincount_available(struct page *page) 938 { 939 /* 940 * Can the page->hpage_pinned_refcount field be used? That field is in 941 * the 3rd page of the compound page, so the smallest (2-page) compound 942 * pages cannot support it. 943 */ 944 page = compound_head(page); 945 return PageCompound(page) && compound_order(page) > 1; 946 } 947 948 static inline int head_compound_pincount(struct page *head) 949 { 950 return atomic_read(compound_pincount_ptr(head)); 951 } 952 953 static inline int compound_pincount(struct page *page) 954 { 955 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 956 page = compound_head(page); 957 return head_compound_pincount(page); 958 } 959 960 static inline void set_compound_order(struct page *page, unsigned int order) 961 { 962 page[1].compound_order = order; 963 page[1].compound_nr = 1U << order; 964 } 965 966 /* Returns the number of pages in this potentially compound page. */ 967 static inline unsigned long compound_nr(struct page *page) 968 { 969 if (!PageHead(page)) 970 return 1; 971 return page[1].compound_nr; 972 } 973 974 /* Returns the number of bytes in this potentially compound page. */ 975 static inline unsigned long page_size(struct page *page) 976 { 977 return PAGE_SIZE << compound_order(page); 978 } 979 980 /* Returns the number of bits needed for the number of bytes in a page */ 981 static inline unsigned int page_shift(struct page *page) 982 { 983 return PAGE_SHIFT + compound_order(page); 984 } 985 986 void free_compound_page(struct page *page); 987 988 #ifdef CONFIG_MMU 989 /* 990 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 991 * servicing faults for write access. In the normal case, do always want 992 * pte_mkwrite. But get_user_pages can cause write faults for mappings 993 * that do not have writing enabled, when used by access_process_vm. 994 */ 995 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 996 { 997 if (likely(vma->vm_flags & VM_WRITE)) 998 pte = pte_mkwrite(pte); 999 return pte; 1000 } 1001 1002 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1003 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 1004 1005 vm_fault_t finish_fault(struct vm_fault *vmf); 1006 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1007 #endif 1008 1009 /* 1010 * Multiple processes may "see" the same page. E.g. for untouched 1011 * mappings of /dev/null, all processes see the same page full of 1012 * zeroes, and text pages of executables and shared libraries have 1013 * only one copy in memory, at most, normally. 1014 * 1015 * For the non-reserved pages, page_count(page) denotes a reference count. 1016 * page_count() == 0 means the page is free. page->lru is then used for 1017 * freelist management in the buddy allocator. 1018 * page_count() > 0 means the page has been allocated. 1019 * 1020 * Pages are allocated by the slab allocator in order to provide memory 1021 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1022 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1023 * unless a particular usage is carefully commented. (the responsibility of 1024 * freeing the kmalloc memory is the caller's, of course). 1025 * 1026 * A page may be used by anyone else who does a __get_free_page(). 1027 * In this case, page_count still tracks the references, and should only 1028 * be used through the normal accessor functions. The top bits of page->flags 1029 * and page->virtual store page management information, but all other fields 1030 * are unused and could be used privately, carefully. The management of this 1031 * page is the responsibility of the one who allocated it, and those who have 1032 * subsequently been given references to it. 1033 * 1034 * The other pages (we may call them "pagecache pages") are completely 1035 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1036 * The following discussion applies only to them. 1037 * 1038 * A pagecache page contains an opaque `private' member, which belongs to the 1039 * page's address_space. Usually, this is the address of a circular list of 1040 * the page's disk buffers. PG_private must be set to tell the VM to call 1041 * into the filesystem to release these pages. 1042 * 1043 * A page may belong to an inode's memory mapping. In this case, page->mapping 1044 * is the pointer to the inode, and page->index is the file offset of the page, 1045 * in units of PAGE_SIZE. 1046 * 1047 * If pagecache pages are not associated with an inode, they are said to be 1048 * anonymous pages. These may become associated with the swapcache, and in that 1049 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1050 * 1051 * In either case (swapcache or inode backed), the pagecache itself holds one 1052 * reference to the page. Setting PG_private should also increment the 1053 * refcount. The each user mapping also has a reference to the page. 1054 * 1055 * The pagecache pages are stored in a per-mapping radix tree, which is 1056 * rooted at mapping->i_pages, and indexed by offset. 1057 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1058 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1059 * 1060 * All pagecache pages may be subject to I/O: 1061 * - inode pages may need to be read from disk, 1062 * - inode pages which have been modified and are MAP_SHARED may need 1063 * to be written back to the inode on disk, 1064 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1065 * modified may need to be swapped out to swap space and (later) to be read 1066 * back into memory. 1067 */ 1068 1069 /* 1070 * The zone field is never updated after free_area_init_core() 1071 * sets it, so none of the operations on it need to be atomic. 1072 */ 1073 1074 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1075 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1076 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1077 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1078 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1079 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1080 1081 /* 1082 * Define the bit shifts to access each section. For non-existent 1083 * sections we define the shift as 0; that plus a 0 mask ensures 1084 * the compiler will optimise away reference to them. 1085 */ 1086 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1087 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1088 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1089 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1090 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1091 1092 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1093 #ifdef NODE_NOT_IN_PAGE_FLAGS 1094 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1095 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1096 SECTIONS_PGOFF : ZONES_PGOFF) 1097 #else 1098 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1099 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1100 NODES_PGOFF : ZONES_PGOFF) 1101 #endif 1102 1103 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1104 1105 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1106 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1107 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1108 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1109 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1110 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1111 1112 static inline enum zone_type page_zonenum(const struct page *page) 1113 { 1114 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1115 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1116 } 1117 1118 static inline enum zone_type folio_zonenum(const struct folio *folio) 1119 { 1120 return page_zonenum(&folio->page); 1121 } 1122 1123 #ifdef CONFIG_ZONE_DEVICE 1124 static inline bool is_zone_device_page(const struct page *page) 1125 { 1126 return page_zonenum(page) == ZONE_DEVICE; 1127 } 1128 extern void memmap_init_zone_device(struct zone *, unsigned long, 1129 unsigned long, struct dev_pagemap *); 1130 #else 1131 static inline bool is_zone_device_page(const struct page *page) 1132 { 1133 return false; 1134 } 1135 #endif 1136 1137 static inline bool is_zone_movable_page(const struct page *page) 1138 { 1139 return page_zonenum(page) == ZONE_MOVABLE; 1140 } 1141 1142 #ifdef CONFIG_DEV_PAGEMAP_OPS 1143 void free_devmap_managed_page(struct page *page); 1144 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1145 1146 static inline bool page_is_devmap_managed(struct page *page) 1147 { 1148 if (!static_branch_unlikely(&devmap_managed_key)) 1149 return false; 1150 if (!is_zone_device_page(page)) 1151 return false; 1152 switch (page->pgmap->type) { 1153 case MEMORY_DEVICE_PRIVATE: 1154 case MEMORY_DEVICE_FS_DAX: 1155 return true; 1156 default: 1157 break; 1158 } 1159 return false; 1160 } 1161 1162 void put_devmap_managed_page(struct page *page); 1163 1164 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1165 static inline bool page_is_devmap_managed(struct page *page) 1166 { 1167 return false; 1168 } 1169 1170 static inline void put_devmap_managed_page(struct page *page) 1171 { 1172 } 1173 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1174 1175 static inline bool is_device_private_page(const struct page *page) 1176 { 1177 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1178 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1179 is_zone_device_page(page) && 1180 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1181 } 1182 1183 static inline bool is_pci_p2pdma_page(const struct page *page) 1184 { 1185 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1186 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1187 is_zone_device_page(page) && 1188 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1189 } 1190 1191 /* 127: arbitrary random number, small enough to assemble well */ 1192 #define folio_ref_zero_or_close_to_overflow(folio) \ 1193 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1194 1195 /** 1196 * folio_get - Increment the reference count on a folio. 1197 * @folio: The folio. 1198 * 1199 * Context: May be called in any context, as long as you know that 1200 * you have a refcount on the folio. If you do not already have one, 1201 * folio_try_get() may be the right interface for you to use. 1202 */ 1203 static inline void folio_get(struct folio *folio) 1204 { 1205 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1206 folio_ref_inc(folio); 1207 } 1208 1209 static inline void get_page(struct page *page) 1210 { 1211 folio_get(page_folio(page)); 1212 } 1213 1214 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1215 struct page *try_grab_compound_head(struct page *page, int refs, 1216 unsigned int flags); 1217 1218 1219 static inline __must_check bool try_get_page(struct page *page) 1220 { 1221 page = compound_head(page); 1222 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1223 return false; 1224 page_ref_inc(page); 1225 return true; 1226 } 1227 1228 /** 1229 * folio_put - Decrement the reference count on a folio. 1230 * @folio: The folio. 1231 * 1232 * If the folio's reference count reaches zero, the memory will be 1233 * released back to the page allocator and may be used by another 1234 * allocation immediately. Do not access the memory or the struct folio 1235 * after calling folio_put() unless you can be sure that it wasn't the 1236 * last reference. 1237 * 1238 * Context: May be called in process or interrupt context, but not in NMI 1239 * context. May be called while holding a spinlock. 1240 */ 1241 static inline void folio_put(struct folio *folio) 1242 { 1243 if (folio_put_testzero(folio)) 1244 __put_page(&folio->page); 1245 } 1246 1247 static inline void put_page(struct page *page) 1248 { 1249 struct folio *folio = page_folio(page); 1250 1251 /* 1252 * For devmap managed pages we need to catch refcount transition from 1253 * 2 to 1, when refcount reach one it means the page is free and we 1254 * need to inform the device driver through callback. See 1255 * include/linux/memremap.h and HMM for details. 1256 */ 1257 if (page_is_devmap_managed(&folio->page)) { 1258 put_devmap_managed_page(&folio->page); 1259 return; 1260 } 1261 1262 folio_put(folio); 1263 } 1264 1265 /* 1266 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1267 * the page's refcount so that two separate items are tracked: the original page 1268 * reference count, and also a new count of how many pin_user_pages() calls were 1269 * made against the page. ("gup-pinned" is another term for the latter). 1270 * 1271 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1272 * distinct from normal pages. As such, the unpin_user_page() call (and its 1273 * variants) must be used in order to release gup-pinned pages. 1274 * 1275 * Choice of value: 1276 * 1277 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1278 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1279 * simpler, due to the fact that adding an even power of two to the page 1280 * refcount has the effect of using only the upper N bits, for the code that 1281 * counts up using the bias value. This means that the lower bits are left for 1282 * the exclusive use of the original code that increments and decrements by one 1283 * (or at least, by much smaller values than the bias value). 1284 * 1285 * Of course, once the lower bits overflow into the upper bits (and this is 1286 * OK, because subtraction recovers the original values), then visual inspection 1287 * no longer suffices to directly view the separate counts. However, for normal 1288 * applications that don't have huge page reference counts, this won't be an 1289 * issue. 1290 * 1291 * Locking: the lockless algorithm described in page_cache_get_speculative() 1292 * and page_cache_gup_pin_speculative() provides safe operation for 1293 * get_user_pages and page_mkclean and other calls that race to set up page 1294 * table entries. 1295 */ 1296 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1297 1298 void unpin_user_page(struct page *page); 1299 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1300 bool make_dirty); 1301 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1302 bool make_dirty); 1303 void unpin_user_pages(struct page **pages, unsigned long npages); 1304 1305 /** 1306 * page_maybe_dma_pinned - Report if a page is pinned for DMA. 1307 * @page: The page. 1308 * 1309 * This function checks if a page has been pinned via a call to 1310 * a function in the pin_user_pages() family. 1311 * 1312 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1313 * because it means "definitely not pinned for DMA", but true means "probably 1314 * pinned for DMA, but possibly a false positive due to having at least 1315 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1316 * 1317 * False positives are OK, because: a) it's unlikely for a page to get that many 1318 * refcounts, and b) all the callers of this routine are expected to be able to 1319 * deal gracefully with a false positive. 1320 * 1321 * For huge pages, the result will be exactly correct. That's because we have 1322 * more tracking data available: the 3rd struct page in the compound page is 1323 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1324 * scheme). 1325 * 1326 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1327 * 1328 * Return: True, if it is likely that the page has been "dma-pinned". 1329 * False, if the page is definitely not dma-pinned. 1330 */ 1331 static inline bool page_maybe_dma_pinned(struct page *page) 1332 { 1333 if (hpage_pincount_available(page)) 1334 return compound_pincount(page) > 0; 1335 1336 /* 1337 * page_ref_count() is signed. If that refcount overflows, then 1338 * page_ref_count() returns a negative value, and callers will avoid 1339 * further incrementing the refcount. 1340 * 1341 * Here, for that overflow case, use the signed bit to count a little 1342 * bit higher via unsigned math, and thus still get an accurate result. 1343 */ 1344 return ((unsigned int)page_ref_count(compound_head(page))) >= 1345 GUP_PIN_COUNTING_BIAS; 1346 } 1347 1348 static inline bool is_cow_mapping(vm_flags_t flags) 1349 { 1350 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1351 } 1352 1353 /* 1354 * This should most likely only be called during fork() to see whether we 1355 * should break the cow immediately for a page on the src mm. 1356 */ 1357 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1358 struct page *page) 1359 { 1360 if (!is_cow_mapping(vma->vm_flags)) 1361 return false; 1362 1363 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1364 return false; 1365 1366 return page_maybe_dma_pinned(page); 1367 } 1368 1369 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1370 #define SECTION_IN_PAGE_FLAGS 1371 #endif 1372 1373 /* 1374 * The identification function is mainly used by the buddy allocator for 1375 * determining if two pages could be buddies. We are not really identifying 1376 * the zone since we could be using the section number id if we do not have 1377 * node id available in page flags. 1378 * We only guarantee that it will return the same value for two combinable 1379 * pages in a zone. 1380 */ 1381 static inline int page_zone_id(struct page *page) 1382 { 1383 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1384 } 1385 1386 #ifdef NODE_NOT_IN_PAGE_FLAGS 1387 extern int page_to_nid(const struct page *page); 1388 #else 1389 static inline int page_to_nid(const struct page *page) 1390 { 1391 struct page *p = (struct page *)page; 1392 1393 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1394 } 1395 #endif 1396 1397 static inline int folio_nid(const struct folio *folio) 1398 { 1399 return page_to_nid(&folio->page); 1400 } 1401 1402 #ifdef CONFIG_NUMA_BALANCING 1403 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1404 { 1405 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1406 } 1407 1408 static inline int cpupid_to_pid(int cpupid) 1409 { 1410 return cpupid & LAST__PID_MASK; 1411 } 1412 1413 static inline int cpupid_to_cpu(int cpupid) 1414 { 1415 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1416 } 1417 1418 static inline int cpupid_to_nid(int cpupid) 1419 { 1420 return cpu_to_node(cpupid_to_cpu(cpupid)); 1421 } 1422 1423 static inline bool cpupid_pid_unset(int cpupid) 1424 { 1425 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1426 } 1427 1428 static inline bool cpupid_cpu_unset(int cpupid) 1429 { 1430 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1431 } 1432 1433 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1434 { 1435 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1436 } 1437 1438 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1439 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1440 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1441 { 1442 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1443 } 1444 1445 static inline int page_cpupid_last(struct page *page) 1446 { 1447 return page->_last_cpupid; 1448 } 1449 static inline void page_cpupid_reset_last(struct page *page) 1450 { 1451 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1452 } 1453 #else 1454 static inline int page_cpupid_last(struct page *page) 1455 { 1456 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1457 } 1458 1459 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1460 1461 static inline void page_cpupid_reset_last(struct page *page) 1462 { 1463 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1464 } 1465 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1466 #else /* !CONFIG_NUMA_BALANCING */ 1467 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1468 { 1469 return page_to_nid(page); /* XXX */ 1470 } 1471 1472 static inline int page_cpupid_last(struct page *page) 1473 { 1474 return page_to_nid(page); /* XXX */ 1475 } 1476 1477 static inline int cpupid_to_nid(int cpupid) 1478 { 1479 return -1; 1480 } 1481 1482 static inline int cpupid_to_pid(int cpupid) 1483 { 1484 return -1; 1485 } 1486 1487 static inline int cpupid_to_cpu(int cpupid) 1488 { 1489 return -1; 1490 } 1491 1492 static inline int cpu_pid_to_cpupid(int nid, int pid) 1493 { 1494 return -1; 1495 } 1496 1497 static inline bool cpupid_pid_unset(int cpupid) 1498 { 1499 return true; 1500 } 1501 1502 static inline void page_cpupid_reset_last(struct page *page) 1503 { 1504 } 1505 1506 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1507 { 1508 return false; 1509 } 1510 #endif /* CONFIG_NUMA_BALANCING */ 1511 1512 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1513 1514 /* 1515 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1516 * setting tags for all pages to native kernel tag value 0xff, as the default 1517 * value 0x00 maps to 0xff. 1518 */ 1519 1520 static inline u8 page_kasan_tag(const struct page *page) 1521 { 1522 u8 tag = 0xff; 1523 1524 if (kasan_enabled()) { 1525 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1526 tag ^= 0xff; 1527 } 1528 1529 return tag; 1530 } 1531 1532 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1533 { 1534 if (kasan_enabled()) { 1535 tag ^= 0xff; 1536 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1537 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1538 } 1539 } 1540 1541 static inline void page_kasan_tag_reset(struct page *page) 1542 { 1543 if (kasan_enabled()) 1544 page_kasan_tag_set(page, 0xff); 1545 } 1546 1547 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1548 1549 static inline u8 page_kasan_tag(const struct page *page) 1550 { 1551 return 0xff; 1552 } 1553 1554 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1555 static inline void page_kasan_tag_reset(struct page *page) { } 1556 1557 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1558 1559 static inline struct zone *page_zone(const struct page *page) 1560 { 1561 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1562 } 1563 1564 static inline pg_data_t *page_pgdat(const struct page *page) 1565 { 1566 return NODE_DATA(page_to_nid(page)); 1567 } 1568 1569 static inline struct zone *folio_zone(const struct folio *folio) 1570 { 1571 return page_zone(&folio->page); 1572 } 1573 1574 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1575 { 1576 return page_pgdat(&folio->page); 1577 } 1578 1579 #ifdef SECTION_IN_PAGE_FLAGS 1580 static inline void set_page_section(struct page *page, unsigned long section) 1581 { 1582 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1583 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1584 } 1585 1586 static inline unsigned long page_to_section(const struct page *page) 1587 { 1588 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1589 } 1590 #endif 1591 1592 /** 1593 * folio_pfn - Return the Page Frame Number of a folio. 1594 * @folio: The folio. 1595 * 1596 * A folio may contain multiple pages. The pages have consecutive 1597 * Page Frame Numbers. 1598 * 1599 * Return: The Page Frame Number of the first page in the folio. 1600 */ 1601 static inline unsigned long folio_pfn(struct folio *folio) 1602 { 1603 return page_to_pfn(&folio->page); 1604 } 1605 1606 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1607 #ifdef CONFIG_MIGRATION 1608 static inline bool is_pinnable_page(struct page *page) 1609 { 1610 return !(is_zone_movable_page(page) || is_migrate_cma_page(page)) || 1611 is_zero_pfn(page_to_pfn(page)); 1612 } 1613 #else 1614 static inline bool is_pinnable_page(struct page *page) 1615 { 1616 return true; 1617 } 1618 #endif 1619 1620 static inline void set_page_zone(struct page *page, enum zone_type zone) 1621 { 1622 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1623 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1624 } 1625 1626 static inline void set_page_node(struct page *page, unsigned long node) 1627 { 1628 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1629 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1630 } 1631 1632 static inline void set_page_links(struct page *page, enum zone_type zone, 1633 unsigned long node, unsigned long pfn) 1634 { 1635 set_page_zone(page, zone); 1636 set_page_node(page, node); 1637 #ifdef SECTION_IN_PAGE_FLAGS 1638 set_page_section(page, pfn_to_section_nr(pfn)); 1639 #endif 1640 } 1641 1642 /** 1643 * folio_nr_pages - The number of pages in the folio. 1644 * @folio: The folio. 1645 * 1646 * Return: A positive power of two. 1647 */ 1648 static inline long folio_nr_pages(struct folio *folio) 1649 { 1650 return compound_nr(&folio->page); 1651 } 1652 1653 /** 1654 * folio_next - Move to the next physical folio. 1655 * @folio: The folio we're currently operating on. 1656 * 1657 * If you have physically contiguous memory which may span more than 1658 * one folio (eg a &struct bio_vec), use this function to move from one 1659 * folio to the next. Do not use it if the memory is only virtually 1660 * contiguous as the folios are almost certainly not adjacent to each 1661 * other. This is the folio equivalent to writing ``page++``. 1662 * 1663 * Context: We assume that the folios are refcounted and/or locked at a 1664 * higher level and do not adjust the reference counts. 1665 * Return: The next struct folio. 1666 */ 1667 static inline struct folio *folio_next(struct folio *folio) 1668 { 1669 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1670 } 1671 1672 /** 1673 * folio_shift - The size of the memory described by this folio. 1674 * @folio: The folio. 1675 * 1676 * A folio represents a number of bytes which is a power-of-two in size. 1677 * This function tells you which power-of-two the folio is. See also 1678 * folio_size() and folio_order(). 1679 * 1680 * Context: The caller should have a reference on the folio to prevent 1681 * it from being split. It is not necessary for the folio to be locked. 1682 * Return: The base-2 logarithm of the size of this folio. 1683 */ 1684 static inline unsigned int folio_shift(struct folio *folio) 1685 { 1686 return PAGE_SHIFT + folio_order(folio); 1687 } 1688 1689 /** 1690 * folio_size - The number of bytes in a folio. 1691 * @folio: The folio. 1692 * 1693 * Context: The caller should have a reference on the folio to prevent 1694 * it from being split. It is not necessary for the folio to be locked. 1695 * Return: The number of bytes in this folio. 1696 */ 1697 static inline size_t folio_size(struct folio *folio) 1698 { 1699 return PAGE_SIZE << folio_order(folio); 1700 } 1701 1702 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1703 static inline int arch_make_page_accessible(struct page *page) 1704 { 1705 return 0; 1706 } 1707 #endif 1708 1709 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1710 static inline int arch_make_folio_accessible(struct folio *folio) 1711 { 1712 int ret; 1713 long i, nr = folio_nr_pages(folio); 1714 1715 for (i = 0; i < nr; i++) { 1716 ret = arch_make_page_accessible(folio_page(folio, i)); 1717 if (ret) 1718 break; 1719 } 1720 1721 return ret; 1722 } 1723 #endif 1724 1725 /* 1726 * Some inline functions in vmstat.h depend on page_zone() 1727 */ 1728 #include <linux/vmstat.h> 1729 1730 static __always_inline void *lowmem_page_address(const struct page *page) 1731 { 1732 return page_to_virt(page); 1733 } 1734 1735 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1736 #define HASHED_PAGE_VIRTUAL 1737 #endif 1738 1739 #if defined(WANT_PAGE_VIRTUAL) 1740 static inline void *page_address(const struct page *page) 1741 { 1742 return page->virtual; 1743 } 1744 static inline void set_page_address(struct page *page, void *address) 1745 { 1746 page->virtual = address; 1747 } 1748 #define page_address_init() do { } while(0) 1749 #endif 1750 1751 #if defined(HASHED_PAGE_VIRTUAL) 1752 void *page_address(const struct page *page); 1753 void set_page_address(struct page *page, void *virtual); 1754 void page_address_init(void); 1755 #endif 1756 1757 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1758 #define page_address(page) lowmem_page_address(page) 1759 #define set_page_address(page, address) do { } while(0) 1760 #define page_address_init() do { } while(0) 1761 #endif 1762 1763 static inline void *folio_address(const struct folio *folio) 1764 { 1765 return page_address(&folio->page); 1766 } 1767 1768 extern void *page_rmapping(struct page *page); 1769 extern struct anon_vma *page_anon_vma(struct page *page); 1770 extern pgoff_t __page_file_index(struct page *page); 1771 1772 /* 1773 * Return the pagecache index of the passed page. Regular pagecache pages 1774 * use ->index whereas swapcache pages use swp_offset(->private) 1775 */ 1776 static inline pgoff_t page_index(struct page *page) 1777 { 1778 if (unlikely(PageSwapCache(page))) 1779 return __page_file_index(page); 1780 return page->index; 1781 } 1782 1783 bool page_mapped(struct page *page); 1784 bool folio_mapped(struct folio *folio); 1785 1786 /* 1787 * Return true only if the page has been allocated with 1788 * ALLOC_NO_WATERMARKS and the low watermark was not 1789 * met implying that the system is under some pressure. 1790 */ 1791 static inline bool page_is_pfmemalloc(const struct page *page) 1792 { 1793 /* 1794 * lru.next has bit 1 set if the page is allocated from the 1795 * pfmemalloc reserves. Callers may simply overwrite it if 1796 * they do not need to preserve that information. 1797 */ 1798 return (uintptr_t)page->lru.next & BIT(1); 1799 } 1800 1801 /* 1802 * Only to be called by the page allocator on a freshly allocated 1803 * page. 1804 */ 1805 static inline void set_page_pfmemalloc(struct page *page) 1806 { 1807 page->lru.next = (void *)BIT(1); 1808 } 1809 1810 static inline void clear_page_pfmemalloc(struct page *page) 1811 { 1812 page->lru.next = NULL; 1813 } 1814 1815 /* 1816 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1817 */ 1818 extern void pagefault_out_of_memory(void); 1819 1820 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1821 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1822 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1823 1824 /* 1825 * Flags passed to show_mem() and show_free_areas() to suppress output in 1826 * various contexts. 1827 */ 1828 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1829 1830 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1831 1832 #ifdef CONFIG_MMU 1833 extern bool can_do_mlock(void); 1834 #else 1835 static inline bool can_do_mlock(void) { return false; } 1836 #endif 1837 extern int user_shm_lock(size_t, struct ucounts *); 1838 extern void user_shm_unlock(size_t, struct ucounts *); 1839 1840 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1841 pte_t pte); 1842 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1843 pmd_t pmd); 1844 1845 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1846 unsigned long size); 1847 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1848 unsigned long size); 1849 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1850 unsigned long start, unsigned long end); 1851 1852 struct mmu_notifier_range; 1853 1854 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1855 unsigned long end, unsigned long floor, unsigned long ceiling); 1856 int 1857 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1858 int follow_invalidate_pte(struct mm_struct *mm, unsigned long address, 1859 struct mmu_notifier_range *range, pte_t **ptepp, 1860 pmd_t **pmdpp, spinlock_t **ptlp); 1861 int follow_pte(struct mm_struct *mm, unsigned long address, 1862 pte_t **ptepp, spinlock_t **ptlp); 1863 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1864 unsigned long *pfn); 1865 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1866 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1867 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1868 void *buf, int len, int write); 1869 1870 extern void truncate_pagecache(struct inode *inode, loff_t new); 1871 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1872 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1873 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1874 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1875 int invalidate_inode_page(struct page *page); 1876 1877 #ifdef CONFIG_MMU 1878 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1879 unsigned long address, unsigned int flags, 1880 struct pt_regs *regs); 1881 extern int fixup_user_fault(struct mm_struct *mm, 1882 unsigned long address, unsigned int fault_flags, 1883 bool *unlocked); 1884 void unmap_mapping_pages(struct address_space *mapping, 1885 pgoff_t start, pgoff_t nr, bool even_cows); 1886 void unmap_mapping_range(struct address_space *mapping, 1887 loff_t const holebegin, loff_t const holelen, int even_cows); 1888 #else 1889 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1890 unsigned long address, unsigned int flags, 1891 struct pt_regs *regs) 1892 { 1893 /* should never happen if there's no MMU */ 1894 BUG(); 1895 return VM_FAULT_SIGBUS; 1896 } 1897 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1898 unsigned int fault_flags, bool *unlocked) 1899 { 1900 /* should never happen if there's no MMU */ 1901 BUG(); 1902 return -EFAULT; 1903 } 1904 static inline void unmap_mapping_pages(struct address_space *mapping, 1905 pgoff_t start, pgoff_t nr, bool even_cows) { } 1906 static inline void unmap_mapping_range(struct address_space *mapping, 1907 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1908 #endif 1909 1910 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1911 loff_t const holebegin, loff_t const holelen) 1912 { 1913 unmap_mapping_range(mapping, holebegin, holelen, 0); 1914 } 1915 1916 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1917 void *buf, int len, unsigned int gup_flags); 1918 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1919 void *buf, int len, unsigned int gup_flags); 1920 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1921 void *buf, int len, unsigned int gup_flags); 1922 1923 long get_user_pages_remote(struct mm_struct *mm, 1924 unsigned long start, unsigned long nr_pages, 1925 unsigned int gup_flags, struct page **pages, 1926 struct vm_area_struct **vmas, int *locked); 1927 long pin_user_pages_remote(struct mm_struct *mm, 1928 unsigned long start, unsigned long nr_pages, 1929 unsigned int gup_flags, struct page **pages, 1930 struct vm_area_struct **vmas, int *locked); 1931 long get_user_pages(unsigned long start, unsigned long nr_pages, 1932 unsigned int gup_flags, struct page **pages, 1933 struct vm_area_struct **vmas); 1934 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1935 unsigned int gup_flags, struct page **pages, 1936 struct vm_area_struct **vmas); 1937 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1938 unsigned int gup_flags, struct page **pages, int *locked); 1939 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1940 unsigned int gup_flags, struct page **pages, int *locked); 1941 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1942 struct page **pages, unsigned int gup_flags); 1943 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1944 struct page **pages, unsigned int gup_flags); 1945 1946 int get_user_pages_fast(unsigned long start, int nr_pages, 1947 unsigned int gup_flags, struct page **pages); 1948 int pin_user_pages_fast(unsigned long start, int nr_pages, 1949 unsigned int gup_flags, struct page **pages); 1950 1951 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1952 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1953 struct task_struct *task, bool bypass_rlim); 1954 1955 struct kvec; 1956 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1957 struct page **pages); 1958 struct page *get_dump_page(unsigned long addr); 1959 1960 extern void do_invalidatepage(struct page *page, unsigned int offset, 1961 unsigned int length); 1962 1963 bool folio_mark_dirty(struct folio *folio); 1964 bool set_page_dirty(struct page *page); 1965 int set_page_dirty_lock(struct page *page); 1966 1967 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1968 1969 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1970 unsigned long old_addr, struct vm_area_struct *new_vma, 1971 unsigned long new_addr, unsigned long len, 1972 bool need_rmap_locks); 1973 1974 /* 1975 * Flags used by change_protection(). For now we make it a bitmap so 1976 * that we can pass in multiple flags just like parameters. However 1977 * for now all the callers are only use one of the flags at the same 1978 * time. 1979 */ 1980 /* Whether we should allow dirty bit accounting */ 1981 #define MM_CP_DIRTY_ACCT (1UL << 0) 1982 /* Whether this protection change is for NUMA hints */ 1983 #define MM_CP_PROT_NUMA (1UL << 1) 1984 /* Whether this change is for write protecting */ 1985 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1986 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1987 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1988 MM_CP_UFFD_WP_RESOLVE) 1989 1990 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1991 unsigned long end, pgprot_t newprot, 1992 unsigned long cp_flags); 1993 extern int mprotect_fixup(struct vm_area_struct *vma, 1994 struct vm_area_struct **pprev, unsigned long start, 1995 unsigned long end, unsigned long newflags); 1996 1997 /* 1998 * doesn't attempt to fault and will return short. 1999 */ 2000 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2001 unsigned int gup_flags, struct page **pages); 2002 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 2003 unsigned int gup_flags, struct page **pages); 2004 2005 static inline bool get_user_page_fast_only(unsigned long addr, 2006 unsigned int gup_flags, struct page **pagep) 2007 { 2008 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2009 } 2010 /* 2011 * per-process(per-mm_struct) statistics. 2012 */ 2013 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2014 { 2015 long val = atomic_long_read(&mm->rss_stat.count[member]); 2016 2017 #ifdef SPLIT_RSS_COUNTING 2018 /* 2019 * counter is updated in asynchronous manner and may go to minus. 2020 * But it's never be expected number for users. 2021 */ 2022 if (val < 0) 2023 val = 0; 2024 #endif 2025 return (unsigned long)val; 2026 } 2027 2028 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 2029 2030 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2031 { 2032 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 2033 2034 mm_trace_rss_stat(mm, member, count); 2035 } 2036 2037 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2038 { 2039 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 2040 2041 mm_trace_rss_stat(mm, member, count); 2042 } 2043 2044 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2045 { 2046 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 2047 2048 mm_trace_rss_stat(mm, member, count); 2049 } 2050 2051 /* Optimized variant when page is already known not to be PageAnon */ 2052 static inline int mm_counter_file(struct page *page) 2053 { 2054 if (PageSwapBacked(page)) 2055 return MM_SHMEMPAGES; 2056 return MM_FILEPAGES; 2057 } 2058 2059 static inline int mm_counter(struct page *page) 2060 { 2061 if (PageAnon(page)) 2062 return MM_ANONPAGES; 2063 return mm_counter_file(page); 2064 } 2065 2066 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2067 { 2068 return get_mm_counter(mm, MM_FILEPAGES) + 2069 get_mm_counter(mm, MM_ANONPAGES) + 2070 get_mm_counter(mm, MM_SHMEMPAGES); 2071 } 2072 2073 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2074 { 2075 return max(mm->hiwater_rss, get_mm_rss(mm)); 2076 } 2077 2078 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2079 { 2080 return max(mm->hiwater_vm, mm->total_vm); 2081 } 2082 2083 static inline void update_hiwater_rss(struct mm_struct *mm) 2084 { 2085 unsigned long _rss = get_mm_rss(mm); 2086 2087 if ((mm)->hiwater_rss < _rss) 2088 (mm)->hiwater_rss = _rss; 2089 } 2090 2091 static inline void update_hiwater_vm(struct mm_struct *mm) 2092 { 2093 if (mm->hiwater_vm < mm->total_vm) 2094 mm->hiwater_vm = mm->total_vm; 2095 } 2096 2097 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2098 { 2099 mm->hiwater_rss = get_mm_rss(mm); 2100 } 2101 2102 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2103 struct mm_struct *mm) 2104 { 2105 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2106 2107 if (*maxrss < hiwater_rss) 2108 *maxrss = hiwater_rss; 2109 } 2110 2111 #if defined(SPLIT_RSS_COUNTING) 2112 void sync_mm_rss(struct mm_struct *mm); 2113 #else 2114 static inline void sync_mm_rss(struct mm_struct *mm) 2115 { 2116 } 2117 #endif 2118 2119 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2120 static inline int pte_special(pte_t pte) 2121 { 2122 return 0; 2123 } 2124 2125 static inline pte_t pte_mkspecial(pte_t pte) 2126 { 2127 return pte; 2128 } 2129 #endif 2130 2131 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2132 static inline int pte_devmap(pte_t pte) 2133 { 2134 return 0; 2135 } 2136 #endif 2137 2138 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2139 2140 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2141 spinlock_t **ptl); 2142 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2143 spinlock_t **ptl) 2144 { 2145 pte_t *ptep; 2146 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2147 return ptep; 2148 } 2149 2150 #ifdef __PAGETABLE_P4D_FOLDED 2151 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2152 unsigned long address) 2153 { 2154 return 0; 2155 } 2156 #else 2157 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2158 #endif 2159 2160 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2161 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2162 unsigned long address) 2163 { 2164 return 0; 2165 } 2166 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2167 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2168 2169 #else 2170 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2171 2172 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2173 { 2174 if (mm_pud_folded(mm)) 2175 return; 2176 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2177 } 2178 2179 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2180 { 2181 if (mm_pud_folded(mm)) 2182 return; 2183 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2184 } 2185 #endif 2186 2187 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2188 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2189 unsigned long address) 2190 { 2191 return 0; 2192 } 2193 2194 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2195 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2196 2197 #else 2198 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2199 2200 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2201 { 2202 if (mm_pmd_folded(mm)) 2203 return; 2204 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2205 } 2206 2207 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2208 { 2209 if (mm_pmd_folded(mm)) 2210 return; 2211 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2212 } 2213 #endif 2214 2215 #ifdef CONFIG_MMU 2216 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2217 { 2218 atomic_long_set(&mm->pgtables_bytes, 0); 2219 } 2220 2221 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2222 { 2223 return atomic_long_read(&mm->pgtables_bytes); 2224 } 2225 2226 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2227 { 2228 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2229 } 2230 2231 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2232 { 2233 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2234 } 2235 #else 2236 2237 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2238 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2239 { 2240 return 0; 2241 } 2242 2243 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2244 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2245 #endif 2246 2247 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2248 int __pte_alloc_kernel(pmd_t *pmd); 2249 2250 #if defined(CONFIG_MMU) 2251 2252 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2253 unsigned long address) 2254 { 2255 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2256 NULL : p4d_offset(pgd, address); 2257 } 2258 2259 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2260 unsigned long address) 2261 { 2262 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2263 NULL : pud_offset(p4d, address); 2264 } 2265 2266 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2267 { 2268 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2269 NULL: pmd_offset(pud, address); 2270 } 2271 #endif /* CONFIG_MMU */ 2272 2273 #if USE_SPLIT_PTE_PTLOCKS 2274 #if ALLOC_SPLIT_PTLOCKS 2275 void __init ptlock_cache_init(void); 2276 extern bool ptlock_alloc(struct page *page); 2277 extern void ptlock_free(struct page *page); 2278 2279 static inline spinlock_t *ptlock_ptr(struct page *page) 2280 { 2281 return page->ptl; 2282 } 2283 #else /* ALLOC_SPLIT_PTLOCKS */ 2284 static inline void ptlock_cache_init(void) 2285 { 2286 } 2287 2288 static inline bool ptlock_alloc(struct page *page) 2289 { 2290 return true; 2291 } 2292 2293 static inline void ptlock_free(struct page *page) 2294 { 2295 } 2296 2297 static inline spinlock_t *ptlock_ptr(struct page *page) 2298 { 2299 return &page->ptl; 2300 } 2301 #endif /* ALLOC_SPLIT_PTLOCKS */ 2302 2303 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2304 { 2305 return ptlock_ptr(pmd_page(*pmd)); 2306 } 2307 2308 static inline bool ptlock_init(struct page *page) 2309 { 2310 /* 2311 * prep_new_page() initialize page->private (and therefore page->ptl) 2312 * with 0. Make sure nobody took it in use in between. 2313 * 2314 * It can happen if arch try to use slab for page table allocation: 2315 * slab code uses page->slab_cache, which share storage with page->ptl. 2316 */ 2317 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2318 if (!ptlock_alloc(page)) 2319 return false; 2320 spin_lock_init(ptlock_ptr(page)); 2321 return true; 2322 } 2323 2324 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2325 /* 2326 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2327 */ 2328 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2329 { 2330 return &mm->page_table_lock; 2331 } 2332 static inline void ptlock_cache_init(void) {} 2333 static inline bool ptlock_init(struct page *page) { return true; } 2334 static inline void ptlock_free(struct page *page) {} 2335 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2336 2337 static inline void pgtable_init(void) 2338 { 2339 ptlock_cache_init(); 2340 pgtable_cache_init(); 2341 } 2342 2343 static inline bool pgtable_pte_page_ctor(struct page *page) 2344 { 2345 if (!ptlock_init(page)) 2346 return false; 2347 __SetPageTable(page); 2348 inc_lruvec_page_state(page, NR_PAGETABLE); 2349 return true; 2350 } 2351 2352 static inline void pgtable_pte_page_dtor(struct page *page) 2353 { 2354 ptlock_free(page); 2355 __ClearPageTable(page); 2356 dec_lruvec_page_state(page, NR_PAGETABLE); 2357 } 2358 2359 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2360 ({ \ 2361 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2362 pte_t *__pte = pte_offset_map(pmd, address); \ 2363 *(ptlp) = __ptl; \ 2364 spin_lock(__ptl); \ 2365 __pte; \ 2366 }) 2367 2368 #define pte_unmap_unlock(pte, ptl) do { \ 2369 spin_unlock(ptl); \ 2370 pte_unmap(pte); \ 2371 } while (0) 2372 2373 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2374 2375 #define pte_alloc_map(mm, pmd, address) \ 2376 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2377 2378 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2379 (pte_alloc(mm, pmd) ? \ 2380 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2381 2382 #define pte_alloc_kernel(pmd, address) \ 2383 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2384 NULL: pte_offset_kernel(pmd, address)) 2385 2386 #if USE_SPLIT_PMD_PTLOCKS 2387 2388 static struct page *pmd_to_page(pmd_t *pmd) 2389 { 2390 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2391 return virt_to_page((void *)((unsigned long) pmd & mask)); 2392 } 2393 2394 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2395 { 2396 return ptlock_ptr(pmd_to_page(pmd)); 2397 } 2398 2399 static inline bool pmd_ptlock_init(struct page *page) 2400 { 2401 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2402 page->pmd_huge_pte = NULL; 2403 #endif 2404 return ptlock_init(page); 2405 } 2406 2407 static inline void pmd_ptlock_free(struct page *page) 2408 { 2409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2410 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2411 #endif 2412 ptlock_free(page); 2413 } 2414 2415 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2416 2417 #else 2418 2419 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2420 { 2421 return &mm->page_table_lock; 2422 } 2423 2424 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2425 static inline void pmd_ptlock_free(struct page *page) {} 2426 2427 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2428 2429 #endif 2430 2431 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2432 { 2433 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2434 spin_lock(ptl); 2435 return ptl; 2436 } 2437 2438 static inline bool pgtable_pmd_page_ctor(struct page *page) 2439 { 2440 if (!pmd_ptlock_init(page)) 2441 return false; 2442 __SetPageTable(page); 2443 inc_lruvec_page_state(page, NR_PAGETABLE); 2444 return true; 2445 } 2446 2447 static inline void pgtable_pmd_page_dtor(struct page *page) 2448 { 2449 pmd_ptlock_free(page); 2450 __ClearPageTable(page); 2451 dec_lruvec_page_state(page, NR_PAGETABLE); 2452 } 2453 2454 /* 2455 * No scalability reason to split PUD locks yet, but follow the same pattern 2456 * as the PMD locks to make it easier if we decide to. The VM should not be 2457 * considered ready to switch to split PUD locks yet; there may be places 2458 * which need to be converted from page_table_lock. 2459 */ 2460 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2461 { 2462 return &mm->page_table_lock; 2463 } 2464 2465 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2466 { 2467 spinlock_t *ptl = pud_lockptr(mm, pud); 2468 2469 spin_lock(ptl); 2470 return ptl; 2471 } 2472 2473 extern void __init pagecache_init(void); 2474 extern void __init free_area_init_memoryless_node(int nid); 2475 extern void free_initmem(void); 2476 2477 /* 2478 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2479 * into the buddy system. The freed pages will be poisoned with pattern 2480 * "poison" if it's within range [0, UCHAR_MAX]. 2481 * Return pages freed into the buddy system. 2482 */ 2483 extern unsigned long free_reserved_area(void *start, void *end, 2484 int poison, const char *s); 2485 2486 extern void adjust_managed_page_count(struct page *page, long count); 2487 extern void mem_init_print_info(void); 2488 2489 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2490 2491 /* Free the reserved page into the buddy system, so it gets managed. */ 2492 static inline void free_reserved_page(struct page *page) 2493 { 2494 ClearPageReserved(page); 2495 init_page_count(page); 2496 __free_page(page); 2497 adjust_managed_page_count(page, 1); 2498 } 2499 #define free_highmem_page(page) free_reserved_page(page) 2500 2501 static inline void mark_page_reserved(struct page *page) 2502 { 2503 SetPageReserved(page); 2504 adjust_managed_page_count(page, -1); 2505 } 2506 2507 /* 2508 * Default method to free all the __init memory into the buddy system. 2509 * The freed pages will be poisoned with pattern "poison" if it's within 2510 * range [0, UCHAR_MAX]. 2511 * Return pages freed into the buddy system. 2512 */ 2513 static inline unsigned long free_initmem_default(int poison) 2514 { 2515 extern char __init_begin[], __init_end[]; 2516 2517 return free_reserved_area(&__init_begin, &__init_end, 2518 poison, "unused kernel image (initmem)"); 2519 } 2520 2521 static inline unsigned long get_num_physpages(void) 2522 { 2523 int nid; 2524 unsigned long phys_pages = 0; 2525 2526 for_each_online_node(nid) 2527 phys_pages += node_present_pages(nid); 2528 2529 return phys_pages; 2530 } 2531 2532 /* 2533 * Using memblock node mappings, an architecture may initialise its 2534 * zones, allocate the backing mem_map and account for memory holes in an 2535 * architecture independent manner. 2536 * 2537 * An architecture is expected to register range of page frames backed by 2538 * physical memory with memblock_add[_node]() before calling 2539 * free_area_init() passing in the PFN each zone ends at. At a basic 2540 * usage, an architecture is expected to do something like 2541 * 2542 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2543 * max_highmem_pfn}; 2544 * for_each_valid_physical_page_range() 2545 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2546 * free_area_init(max_zone_pfns); 2547 */ 2548 void free_area_init(unsigned long *max_zone_pfn); 2549 unsigned long node_map_pfn_alignment(void); 2550 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2551 unsigned long end_pfn); 2552 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2553 unsigned long end_pfn); 2554 extern void get_pfn_range_for_nid(unsigned int nid, 2555 unsigned long *start_pfn, unsigned long *end_pfn); 2556 extern unsigned long find_min_pfn_with_active_regions(void); 2557 2558 #ifndef CONFIG_NUMA 2559 static inline int early_pfn_to_nid(unsigned long pfn) 2560 { 2561 return 0; 2562 } 2563 #else 2564 /* please see mm/page_alloc.c */ 2565 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2566 #endif 2567 2568 extern void set_dma_reserve(unsigned long new_dma_reserve); 2569 extern void memmap_init_range(unsigned long, int, unsigned long, 2570 unsigned long, unsigned long, enum meminit_context, 2571 struct vmem_altmap *, int migratetype); 2572 extern void setup_per_zone_wmarks(void); 2573 extern void calculate_min_free_kbytes(void); 2574 extern int __meminit init_per_zone_wmark_min(void); 2575 extern void mem_init(void); 2576 extern void __init mmap_init(void); 2577 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2578 extern long si_mem_available(void); 2579 extern void si_meminfo(struct sysinfo * val); 2580 extern void si_meminfo_node(struct sysinfo *val, int nid); 2581 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2582 extern unsigned long arch_reserved_kernel_pages(void); 2583 #endif 2584 2585 extern __printf(3, 4) 2586 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2587 2588 extern void setup_per_cpu_pageset(void); 2589 2590 /* page_alloc.c */ 2591 extern int min_free_kbytes; 2592 extern int watermark_boost_factor; 2593 extern int watermark_scale_factor; 2594 extern bool arch_has_descending_max_zone_pfns(void); 2595 2596 /* nommu.c */ 2597 extern atomic_long_t mmap_pages_allocated; 2598 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2599 2600 /* interval_tree.c */ 2601 void vma_interval_tree_insert(struct vm_area_struct *node, 2602 struct rb_root_cached *root); 2603 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2604 struct vm_area_struct *prev, 2605 struct rb_root_cached *root); 2606 void vma_interval_tree_remove(struct vm_area_struct *node, 2607 struct rb_root_cached *root); 2608 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2609 unsigned long start, unsigned long last); 2610 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2611 unsigned long start, unsigned long last); 2612 2613 #define vma_interval_tree_foreach(vma, root, start, last) \ 2614 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2615 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2616 2617 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2618 struct rb_root_cached *root); 2619 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2620 struct rb_root_cached *root); 2621 struct anon_vma_chain * 2622 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2623 unsigned long start, unsigned long last); 2624 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2625 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2626 #ifdef CONFIG_DEBUG_VM_RB 2627 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2628 #endif 2629 2630 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2631 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2632 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2633 2634 /* mmap.c */ 2635 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2636 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2637 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2638 struct vm_area_struct *expand); 2639 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2640 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2641 { 2642 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2643 } 2644 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2645 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2646 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2647 struct mempolicy *, struct vm_userfaultfd_ctx); 2648 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2649 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2650 unsigned long addr, int new_below); 2651 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2652 unsigned long addr, int new_below); 2653 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2654 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2655 struct rb_node **, struct rb_node *); 2656 extern void unlink_file_vma(struct vm_area_struct *); 2657 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2658 unsigned long addr, unsigned long len, pgoff_t pgoff, 2659 bool *need_rmap_locks); 2660 extern void exit_mmap(struct mm_struct *); 2661 2662 static inline int check_data_rlimit(unsigned long rlim, 2663 unsigned long new, 2664 unsigned long start, 2665 unsigned long end_data, 2666 unsigned long start_data) 2667 { 2668 if (rlim < RLIM_INFINITY) { 2669 if (((new - start) + (end_data - start_data)) > rlim) 2670 return -ENOSPC; 2671 } 2672 2673 return 0; 2674 } 2675 2676 extern int mm_take_all_locks(struct mm_struct *mm); 2677 extern void mm_drop_all_locks(struct mm_struct *mm); 2678 2679 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2680 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2681 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2682 extern struct file *get_task_exe_file(struct task_struct *task); 2683 2684 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2685 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2686 2687 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2688 const struct vm_special_mapping *sm); 2689 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2690 unsigned long addr, unsigned long len, 2691 unsigned long flags, 2692 const struct vm_special_mapping *spec); 2693 /* This is an obsolete alternative to _install_special_mapping. */ 2694 extern int install_special_mapping(struct mm_struct *mm, 2695 unsigned long addr, unsigned long len, 2696 unsigned long flags, struct page **pages); 2697 2698 unsigned long randomize_stack_top(unsigned long stack_top); 2699 2700 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2701 2702 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2703 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2704 struct list_head *uf); 2705 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2706 unsigned long len, unsigned long prot, unsigned long flags, 2707 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2708 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2709 struct list_head *uf, bool downgrade); 2710 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2711 struct list_head *uf); 2712 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2713 2714 #ifdef CONFIG_MMU 2715 extern int __mm_populate(unsigned long addr, unsigned long len, 2716 int ignore_errors); 2717 static inline void mm_populate(unsigned long addr, unsigned long len) 2718 { 2719 /* Ignore errors */ 2720 (void) __mm_populate(addr, len, 1); 2721 } 2722 #else 2723 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2724 #endif 2725 2726 /* These take the mm semaphore themselves */ 2727 extern int __must_check vm_brk(unsigned long, unsigned long); 2728 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2729 extern int vm_munmap(unsigned long, size_t); 2730 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2731 unsigned long, unsigned long, 2732 unsigned long, unsigned long); 2733 2734 struct vm_unmapped_area_info { 2735 #define VM_UNMAPPED_AREA_TOPDOWN 1 2736 unsigned long flags; 2737 unsigned long length; 2738 unsigned long low_limit; 2739 unsigned long high_limit; 2740 unsigned long align_mask; 2741 unsigned long align_offset; 2742 }; 2743 2744 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2745 2746 /* truncate.c */ 2747 extern void truncate_inode_pages(struct address_space *, loff_t); 2748 extern void truncate_inode_pages_range(struct address_space *, 2749 loff_t lstart, loff_t lend); 2750 extern void truncate_inode_pages_final(struct address_space *); 2751 2752 /* generic vm_area_ops exported for stackable file systems */ 2753 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2754 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2755 pgoff_t start_pgoff, pgoff_t end_pgoff); 2756 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2757 2758 extern unsigned long stack_guard_gap; 2759 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2760 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2761 2762 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2763 extern int expand_downwards(struct vm_area_struct *vma, 2764 unsigned long address); 2765 #if VM_GROWSUP 2766 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2767 #else 2768 #define expand_upwards(vma, address) (0) 2769 #endif 2770 2771 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2772 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2773 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2774 struct vm_area_struct **pprev); 2775 2776 /** 2777 * find_vma_intersection() - Look up the first VMA which intersects the interval 2778 * @mm: The process address space. 2779 * @start_addr: The inclusive start user address. 2780 * @end_addr: The exclusive end user address. 2781 * 2782 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2783 * start_addr < end_addr. 2784 */ 2785 static inline 2786 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2787 unsigned long start_addr, 2788 unsigned long end_addr) 2789 { 2790 struct vm_area_struct *vma = find_vma(mm, start_addr); 2791 2792 if (vma && end_addr <= vma->vm_start) 2793 vma = NULL; 2794 return vma; 2795 } 2796 2797 /** 2798 * vma_lookup() - Find a VMA at a specific address 2799 * @mm: The process address space. 2800 * @addr: The user address. 2801 * 2802 * Return: The vm_area_struct at the given address, %NULL otherwise. 2803 */ 2804 static inline 2805 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2806 { 2807 struct vm_area_struct *vma = find_vma(mm, addr); 2808 2809 if (vma && addr < vma->vm_start) 2810 vma = NULL; 2811 2812 return vma; 2813 } 2814 2815 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2816 { 2817 unsigned long vm_start = vma->vm_start; 2818 2819 if (vma->vm_flags & VM_GROWSDOWN) { 2820 vm_start -= stack_guard_gap; 2821 if (vm_start > vma->vm_start) 2822 vm_start = 0; 2823 } 2824 return vm_start; 2825 } 2826 2827 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2828 { 2829 unsigned long vm_end = vma->vm_end; 2830 2831 if (vma->vm_flags & VM_GROWSUP) { 2832 vm_end += stack_guard_gap; 2833 if (vm_end < vma->vm_end) 2834 vm_end = -PAGE_SIZE; 2835 } 2836 return vm_end; 2837 } 2838 2839 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2840 { 2841 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2842 } 2843 2844 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2845 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2846 unsigned long vm_start, unsigned long vm_end) 2847 { 2848 struct vm_area_struct *vma = find_vma(mm, vm_start); 2849 2850 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2851 vma = NULL; 2852 2853 return vma; 2854 } 2855 2856 static inline bool range_in_vma(struct vm_area_struct *vma, 2857 unsigned long start, unsigned long end) 2858 { 2859 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2860 } 2861 2862 #ifdef CONFIG_MMU 2863 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2864 void vma_set_page_prot(struct vm_area_struct *vma); 2865 #else 2866 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2867 { 2868 return __pgprot(0); 2869 } 2870 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2871 { 2872 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2873 } 2874 #endif 2875 2876 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2877 2878 #ifdef CONFIG_NUMA_BALANCING 2879 unsigned long change_prot_numa(struct vm_area_struct *vma, 2880 unsigned long start, unsigned long end); 2881 #endif 2882 2883 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2884 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2885 unsigned long pfn, unsigned long size, pgprot_t); 2886 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2887 unsigned long pfn, unsigned long size, pgprot_t prot); 2888 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2889 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2890 struct page **pages, unsigned long *num); 2891 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2892 unsigned long num); 2893 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2894 unsigned long num); 2895 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2896 unsigned long pfn); 2897 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2898 unsigned long pfn, pgprot_t pgprot); 2899 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2900 pfn_t pfn); 2901 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2902 pfn_t pfn, pgprot_t pgprot); 2903 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2904 unsigned long addr, pfn_t pfn); 2905 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2906 2907 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2908 unsigned long addr, struct page *page) 2909 { 2910 int err = vm_insert_page(vma, addr, page); 2911 2912 if (err == -ENOMEM) 2913 return VM_FAULT_OOM; 2914 if (err < 0 && err != -EBUSY) 2915 return VM_FAULT_SIGBUS; 2916 2917 return VM_FAULT_NOPAGE; 2918 } 2919 2920 #ifndef io_remap_pfn_range 2921 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2922 unsigned long addr, unsigned long pfn, 2923 unsigned long size, pgprot_t prot) 2924 { 2925 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2926 } 2927 #endif 2928 2929 static inline vm_fault_t vmf_error(int err) 2930 { 2931 if (err == -ENOMEM) 2932 return VM_FAULT_OOM; 2933 return VM_FAULT_SIGBUS; 2934 } 2935 2936 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2937 unsigned int foll_flags); 2938 2939 #define FOLL_WRITE 0x01 /* check pte is writable */ 2940 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2941 #define FOLL_GET 0x04 /* do get_page on page */ 2942 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2943 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2944 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2945 * and return without waiting upon it */ 2946 #define FOLL_POPULATE 0x40 /* fault in pages (with FOLL_MLOCK) */ 2947 #define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2948 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2949 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2950 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2951 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2952 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2953 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2954 #define FOLL_COW 0x4000 /* internal GUP flag */ 2955 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2956 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2957 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2958 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2959 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2960 2961 /* 2962 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2963 * other. Here is what they mean, and how to use them: 2964 * 2965 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2966 * period _often_ under userspace control. This is in contrast to 2967 * iov_iter_get_pages(), whose usages are transient. 2968 * 2969 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2970 * lifetime enforced by the filesystem and we need guarantees that longterm 2971 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2972 * the filesystem. Ideas for this coordination include revoking the longterm 2973 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2974 * added after the problem with filesystems was found FS DAX VMAs are 2975 * specifically failed. Filesystem pages are still subject to bugs and use of 2976 * FOLL_LONGTERM should be avoided on those pages. 2977 * 2978 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2979 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2980 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2981 * is due to an incompatibility with the FS DAX check and 2982 * FAULT_FLAG_ALLOW_RETRY. 2983 * 2984 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2985 * that region. And so, CMA attempts to migrate the page before pinning, when 2986 * FOLL_LONGTERM is specified. 2987 * 2988 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2989 * but an additional pin counting system) will be invoked. This is intended for 2990 * anything that gets a page reference and then touches page data (for example, 2991 * Direct IO). This lets the filesystem know that some non-file-system entity is 2992 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2993 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2994 * a call to unpin_user_page(). 2995 * 2996 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2997 * and separate refcounting mechanisms, however, and that means that each has 2998 * its own acquire and release mechanisms: 2999 * 3000 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 3001 * 3002 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 3003 * 3004 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 3005 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 3006 * calls applied to them, and that's perfectly OK. This is a constraint on the 3007 * callers, not on the pages.) 3008 * 3009 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 3010 * directly by the caller. That's in order to help avoid mismatches when 3011 * releasing pages: get_user_pages*() pages must be released via put_page(), 3012 * while pin_user_pages*() pages must be released via unpin_user_page(). 3013 * 3014 * Please see Documentation/core-api/pin_user_pages.rst for more information. 3015 */ 3016 3017 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3018 { 3019 if (vm_fault & VM_FAULT_OOM) 3020 return -ENOMEM; 3021 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3022 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3023 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3024 return -EFAULT; 3025 return 0; 3026 } 3027 3028 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3029 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3030 unsigned long size, pte_fn_t fn, void *data); 3031 extern int apply_to_existing_page_range(struct mm_struct *mm, 3032 unsigned long address, unsigned long size, 3033 pte_fn_t fn, void *data); 3034 3035 extern void init_mem_debugging_and_hardening(void); 3036 #ifdef CONFIG_PAGE_POISONING 3037 extern void __kernel_poison_pages(struct page *page, int numpages); 3038 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3039 extern bool _page_poisoning_enabled_early; 3040 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3041 static inline bool page_poisoning_enabled(void) 3042 { 3043 return _page_poisoning_enabled_early; 3044 } 3045 /* 3046 * For use in fast paths after init_mem_debugging() has run, or when a 3047 * false negative result is not harmful when called too early. 3048 */ 3049 static inline bool page_poisoning_enabled_static(void) 3050 { 3051 return static_branch_unlikely(&_page_poisoning_enabled); 3052 } 3053 static inline void kernel_poison_pages(struct page *page, int numpages) 3054 { 3055 if (page_poisoning_enabled_static()) 3056 __kernel_poison_pages(page, numpages); 3057 } 3058 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3059 { 3060 if (page_poisoning_enabled_static()) 3061 __kernel_unpoison_pages(page, numpages); 3062 } 3063 #else 3064 static inline bool page_poisoning_enabled(void) { return false; } 3065 static inline bool page_poisoning_enabled_static(void) { return false; } 3066 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3067 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3068 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3069 #endif 3070 3071 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3072 static inline bool want_init_on_alloc(gfp_t flags) 3073 { 3074 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3075 &init_on_alloc)) 3076 return true; 3077 return flags & __GFP_ZERO; 3078 } 3079 3080 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3081 static inline bool want_init_on_free(void) 3082 { 3083 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3084 &init_on_free); 3085 } 3086 3087 extern bool _debug_pagealloc_enabled_early; 3088 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3089 3090 static inline bool debug_pagealloc_enabled(void) 3091 { 3092 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3093 _debug_pagealloc_enabled_early; 3094 } 3095 3096 /* 3097 * For use in fast paths after init_debug_pagealloc() has run, or when a 3098 * false negative result is not harmful when called too early. 3099 */ 3100 static inline bool debug_pagealloc_enabled_static(void) 3101 { 3102 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3103 return false; 3104 3105 return static_branch_unlikely(&_debug_pagealloc_enabled); 3106 } 3107 3108 #ifdef CONFIG_DEBUG_PAGEALLOC 3109 /* 3110 * To support DEBUG_PAGEALLOC architecture must ensure that 3111 * __kernel_map_pages() never fails 3112 */ 3113 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3114 3115 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3116 { 3117 if (debug_pagealloc_enabled_static()) 3118 __kernel_map_pages(page, numpages, 1); 3119 } 3120 3121 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3122 { 3123 if (debug_pagealloc_enabled_static()) 3124 __kernel_map_pages(page, numpages, 0); 3125 } 3126 #else /* CONFIG_DEBUG_PAGEALLOC */ 3127 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3128 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3129 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3130 3131 #ifdef __HAVE_ARCH_GATE_AREA 3132 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3133 extern int in_gate_area_no_mm(unsigned long addr); 3134 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3135 #else 3136 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3137 { 3138 return NULL; 3139 } 3140 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3141 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3142 { 3143 return 0; 3144 } 3145 #endif /* __HAVE_ARCH_GATE_AREA */ 3146 3147 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3148 3149 #ifdef CONFIG_SYSCTL 3150 extern int sysctl_drop_caches; 3151 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3152 loff_t *); 3153 #endif 3154 3155 void drop_slab(void); 3156 void drop_slab_node(int nid); 3157 3158 #ifndef CONFIG_MMU 3159 #define randomize_va_space 0 3160 #else 3161 extern int randomize_va_space; 3162 #endif 3163 3164 const char * arch_vma_name(struct vm_area_struct *vma); 3165 #ifdef CONFIG_MMU 3166 void print_vma_addr(char *prefix, unsigned long rip); 3167 #else 3168 static inline void print_vma_addr(char *prefix, unsigned long rip) 3169 { 3170 } 3171 #endif 3172 3173 int vmemmap_remap_free(unsigned long start, unsigned long end, 3174 unsigned long reuse); 3175 int vmemmap_remap_alloc(unsigned long start, unsigned long end, 3176 unsigned long reuse, gfp_t gfp_mask); 3177 3178 void *sparse_buffer_alloc(unsigned long size); 3179 struct page * __populate_section_memmap(unsigned long pfn, 3180 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3181 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3182 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3183 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3184 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3185 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3186 struct vmem_altmap *altmap); 3187 void *vmemmap_alloc_block(unsigned long size, int node); 3188 struct vmem_altmap; 3189 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3190 struct vmem_altmap *altmap); 3191 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3192 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3193 int node, struct vmem_altmap *altmap); 3194 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3195 struct vmem_altmap *altmap); 3196 void vmemmap_populate_print_last(void); 3197 #ifdef CONFIG_MEMORY_HOTPLUG 3198 void vmemmap_free(unsigned long start, unsigned long end, 3199 struct vmem_altmap *altmap); 3200 #endif 3201 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3202 unsigned long nr_pages); 3203 3204 enum mf_flags { 3205 MF_COUNT_INCREASED = 1 << 0, 3206 MF_ACTION_REQUIRED = 1 << 1, 3207 MF_MUST_KILL = 1 << 2, 3208 MF_SOFT_OFFLINE = 1 << 3, 3209 }; 3210 extern int memory_failure(unsigned long pfn, int flags); 3211 extern void memory_failure_queue(unsigned long pfn, int flags); 3212 extern void memory_failure_queue_kick(int cpu); 3213 extern int unpoison_memory(unsigned long pfn); 3214 extern int sysctl_memory_failure_early_kill; 3215 extern int sysctl_memory_failure_recovery; 3216 extern void shake_page(struct page *p); 3217 extern atomic_long_t num_poisoned_pages __read_mostly; 3218 extern int soft_offline_page(unsigned long pfn, int flags); 3219 3220 #ifndef arch_memory_failure 3221 static inline int arch_memory_failure(unsigned long pfn, int flags) 3222 { 3223 return -ENXIO; 3224 } 3225 #endif 3226 3227 #ifndef arch_is_platform_page 3228 static inline bool arch_is_platform_page(u64 paddr) 3229 { 3230 return false; 3231 } 3232 #endif 3233 3234 /* 3235 * Error handlers for various types of pages. 3236 */ 3237 enum mf_result { 3238 MF_IGNORED, /* Error: cannot be handled */ 3239 MF_FAILED, /* Error: handling failed */ 3240 MF_DELAYED, /* Will be handled later */ 3241 MF_RECOVERED, /* Successfully recovered */ 3242 }; 3243 3244 enum mf_action_page_type { 3245 MF_MSG_KERNEL, 3246 MF_MSG_KERNEL_HIGH_ORDER, 3247 MF_MSG_SLAB, 3248 MF_MSG_DIFFERENT_COMPOUND, 3249 MF_MSG_POISONED_HUGE, 3250 MF_MSG_HUGE, 3251 MF_MSG_FREE_HUGE, 3252 MF_MSG_NON_PMD_HUGE, 3253 MF_MSG_UNMAP_FAILED, 3254 MF_MSG_DIRTY_SWAPCACHE, 3255 MF_MSG_CLEAN_SWAPCACHE, 3256 MF_MSG_DIRTY_MLOCKED_LRU, 3257 MF_MSG_CLEAN_MLOCKED_LRU, 3258 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3259 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3260 MF_MSG_DIRTY_LRU, 3261 MF_MSG_CLEAN_LRU, 3262 MF_MSG_TRUNCATED_LRU, 3263 MF_MSG_BUDDY, 3264 MF_MSG_BUDDY_2ND, 3265 MF_MSG_DAX, 3266 MF_MSG_UNSPLIT_THP, 3267 MF_MSG_UNKNOWN, 3268 }; 3269 3270 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3271 extern void clear_huge_page(struct page *page, 3272 unsigned long addr_hint, 3273 unsigned int pages_per_huge_page); 3274 extern void copy_user_huge_page(struct page *dst, struct page *src, 3275 unsigned long addr_hint, 3276 struct vm_area_struct *vma, 3277 unsigned int pages_per_huge_page); 3278 extern long copy_huge_page_from_user(struct page *dst_page, 3279 const void __user *usr_src, 3280 unsigned int pages_per_huge_page, 3281 bool allow_pagefault); 3282 3283 /** 3284 * vma_is_special_huge - Are transhuge page-table entries considered special? 3285 * @vma: Pointer to the struct vm_area_struct to consider 3286 * 3287 * Whether transhuge page-table entries are considered "special" following 3288 * the definition in vm_normal_page(). 3289 * 3290 * Return: true if transhuge page-table entries should be considered special, 3291 * false otherwise. 3292 */ 3293 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3294 { 3295 return vma_is_dax(vma) || (vma->vm_file && 3296 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3297 } 3298 3299 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3300 3301 #ifdef CONFIG_DEBUG_PAGEALLOC 3302 extern unsigned int _debug_guardpage_minorder; 3303 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3304 3305 static inline unsigned int debug_guardpage_minorder(void) 3306 { 3307 return _debug_guardpage_minorder; 3308 } 3309 3310 static inline bool debug_guardpage_enabled(void) 3311 { 3312 return static_branch_unlikely(&_debug_guardpage_enabled); 3313 } 3314 3315 static inline bool page_is_guard(struct page *page) 3316 { 3317 if (!debug_guardpage_enabled()) 3318 return false; 3319 3320 return PageGuard(page); 3321 } 3322 #else 3323 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3324 static inline bool debug_guardpage_enabled(void) { return false; } 3325 static inline bool page_is_guard(struct page *page) { return false; } 3326 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3327 3328 #if MAX_NUMNODES > 1 3329 void __init setup_nr_node_ids(void); 3330 #else 3331 static inline void setup_nr_node_ids(void) {} 3332 #endif 3333 3334 extern int memcmp_pages(struct page *page1, struct page *page2); 3335 3336 static inline int pages_identical(struct page *page1, struct page *page2) 3337 { 3338 return !memcmp_pages(page1, page2); 3339 } 3340 3341 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3342 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3343 pgoff_t first_index, pgoff_t nr, 3344 pgoff_t bitmap_pgoff, 3345 unsigned long *bitmap, 3346 pgoff_t *start, 3347 pgoff_t *end); 3348 3349 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3350 pgoff_t first_index, pgoff_t nr); 3351 #endif 3352 3353 extern int sysctl_nr_trim_pages; 3354 3355 #ifdef CONFIG_PRINTK 3356 void mem_dump_obj(void *object); 3357 #else 3358 static inline void mem_dump_obj(void *object) {} 3359 #endif 3360 3361 /** 3362 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3363 * @seals: the seals to check 3364 * @vma: the vma to operate on 3365 * 3366 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3367 * the vma flags. Return 0 if check pass, or <0 for errors. 3368 */ 3369 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3370 { 3371 if (seals & F_SEAL_FUTURE_WRITE) { 3372 /* 3373 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3374 * "future write" seal active. 3375 */ 3376 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3377 return -EPERM; 3378 3379 /* 3380 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3381 * MAP_SHARED and read-only, take care to not allow mprotect to 3382 * revert protections on such mappings. Do this only for shared 3383 * mappings. For private mappings, don't need to mask 3384 * VM_MAYWRITE as we still want them to be COW-writable. 3385 */ 3386 if (vma->vm_flags & VM_SHARED) 3387 vma->vm_flags &= ~(VM_MAYWRITE); 3388 } 3389 3390 return 0; 3391 } 3392 3393 #endif /* __KERNEL__ */ 3394 #endif /* _LINUX_MM_H */ 3395