xref: /linux-6.15/include/linux/mm.h (revision ccc9971e)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 static inline void totalram_pages_set(long val)
74 {
75 	atomic_long_set(&_totalram_pages, val);
76 }
77 
78 extern void * high_memory;
79 extern int page_cluster;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/pgtable.h>
100 #include <asm/processor.h>
101 
102 /*
103  * Architectures that support memory tagging (assigning tags to memory regions,
104  * embedding these tags into addresses that point to these memory regions, and
105  * checking that the memory and the pointer tags match on memory accesses)
106  * redefine this macro to strip tags from pointers.
107  * It's defined as noop for arcitectures that don't support memory tagging.
108  */
109 #ifndef untagged_addr
110 #define untagged_addr(addr) (addr)
111 #endif
112 
113 #ifndef __pa_symbol
114 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
115 #endif
116 
117 #ifndef page_to_virt
118 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
119 #endif
120 
121 #ifndef lm_alias
122 #define lm_alias(x)	__va(__pa_symbol(x))
123 #endif
124 
125 /*
126  * To prevent common memory management code establishing
127  * a zero page mapping on a read fault.
128  * This macro should be defined within <asm/pgtable.h>.
129  * s390 does this to prevent multiplexing of hardware bits
130  * related to the physical page in case of virtualization.
131  */
132 #ifndef mm_forbids_zeropage
133 #define mm_forbids_zeropage(X)	(0)
134 #endif
135 
136 /*
137  * On some architectures it is expensive to call memset() for small sizes.
138  * If an architecture decides to implement their own version of
139  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
140  * define their own version of this macro in <asm/pgtable.h>
141  */
142 #if BITS_PER_LONG == 64
143 /* This function must be updated when the size of struct page grows above 80
144  * or reduces below 56. The idea that compiler optimizes out switch()
145  * statement, and only leaves move/store instructions. Also the compiler can
146  * combine write statments if they are both assignments and can be reordered,
147  * this can result in several of the writes here being dropped.
148  */
149 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
150 static inline void __mm_zero_struct_page(struct page *page)
151 {
152 	unsigned long *_pp = (void *)page;
153 
154 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
155 	BUILD_BUG_ON(sizeof(struct page) & 7);
156 	BUILD_BUG_ON(sizeof(struct page) < 56);
157 	BUILD_BUG_ON(sizeof(struct page) > 80);
158 
159 	switch (sizeof(struct page)) {
160 	case 80:
161 		_pp[9] = 0;	/* fallthrough */
162 	case 72:
163 		_pp[8] = 0;	/* fallthrough */
164 	case 64:
165 		_pp[7] = 0;	/* fallthrough */
166 	case 56:
167 		_pp[6] = 0;
168 		_pp[5] = 0;
169 		_pp[4] = 0;
170 		_pp[3] = 0;
171 		_pp[2] = 0;
172 		_pp[1] = 0;
173 		_pp[0] = 0;
174 	}
175 }
176 #else
177 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
178 #endif
179 
180 /*
181  * Default maximum number of active map areas, this limits the number of vmas
182  * per mm struct. Users can overwrite this number by sysctl but there is a
183  * problem.
184  *
185  * When a program's coredump is generated as ELF format, a section is created
186  * per a vma. In ELF, the number of sections is represented in unsigned short.
187  * This means the number of sections should be smaller than 65535 at coredump.
188  * Because the kernel adds some informative sections to a image of program at
189  * generating coredump, we need some margin. The number of extra sections is
190  * 1-3 now and depends on arch. We use "5" as safe margin, here.
191  *
192  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
193  * not a hard limit any more. Although some userspace tools can be surprised by
194  * that.
195  */
196 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
197 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
198 
199 extern int sysctl_max_map_count;
200 
201 extern unsigned long sysctl_user_reserve_kbytes;
202 extern unsigned long sysctl_admin_reserve_kbytes;
203 
204 extern int sysctl_overcommit_memory;
205 extern int sysctl_overcommit_ratio;
206 extern unsigned long sysctl_overcommit_kbytes;
207 
208 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
209 				    size_t *, loff_t *);
210 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
211 				    size_t *, loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PPC)
324 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
325 #elif defined(CONFIG_PARISC)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_IA64)
328 # define VM_GROWSUP	VM_ARCH_1
329 #elif defined(CONFIG_SPARC64)
330 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
331 # define VM_ARCH_CLEAR	VM_SPARC_ADI
332 #elif !defined(CONFIG_MMU)
333 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
334 #endif
335 
336 #if defined(CONFIG_X86_INTEL_MPX)
337 /* MPX specific bounds table or bounds directory */
338 # define VM_MPX		VM_HIGH_ARCH_4
339 #else
340 # define VM_MPX		VM_NONE
341 #endif
342 
343 #ifndef VM_GROWSUP
344 # define VM_GROWSUP	VM_NONE
345 #endif
346 
347 /* Bits set in the VMA until the stack is in its final location */
348 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
349 
350 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
351 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
352 #endif
353 
354 #ifdef CONFIG_STACK_GROWSUP
355 #define VM_STACK	VM_GROWSUP
356 #else
357 #define VM_STACK	VM_GROWSDOWN
358 #endif
359 
360 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
361 
362 /*
363  * Special vmas that are non-mergable, non-mlock()able.
364  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
365  */
366 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
367 
368 /* This mask defines which mm->def_flags a process can inherit its parent */
369 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
370 
371 /* This mask is used to clear all the VMA flags used by mlock */
372 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
373 
374 /* Arch-specific flags to clear when updating VM flags on protection change */
375 #ifndef VM_ARCH_CLEAR
376 # define VM_ARCH_CLEAR	VM_NONE
377 #endif
378 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
379 
380 /*
381  * mapping from the currently active vm_flags protection bits (the
382  * low four bits) to a page protection mask..
383  */
384 extern pgprot_t protection_map[16];
385 
386 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
387 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
388 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
389 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
390 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
391 #define FAULT_FLAG_TRIED	0x20	/* Second try */
392 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
393 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
394 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
395 
396 #define FAULT_FLAG_TRACE \
397 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
398 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
399 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
400 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
401 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
402 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
403 	{ FAULT_FLAG_USER,		"USER" }, \
404 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
405 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
406 
407 /*
408  * vm_fault is filled by the the pagefault handler and passed to the vma's
409  * ->fault function. The vma's ->fault is responsible for returning a bitmask
410  * of VM_FAULT_xxx flags that give details about how the fault was handled.
411  *
412  * MM layer fills up gfp_mask for page allocations but fault handler might
413  * alter it if its implementation requires a different allocation context.
414  *
415  * pgoff should be used in favour of virtual_address, if possible.
416  */
417 struct vm_fault {
418 	struct vm_area_struct *vma;	/* Target VMA */
419 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
420 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
421 	pgoff_t pgoff;			/* Logical page offset based on vma */
422 	unsigned long address;		/* Faulting virtual address */
423 	pmd_t *pmd;			/* Pointer to pmd entry matching
424 					 * the 'address' */
425 	pud_t *pud;			/* Pointer to pud entry matching
426 					 * the 'address'
427 					 */
428 	pte_t orig_pte;			/* Value of PTE at the time of fault */
429 
430 	struct page *cow_page;		/* Page handler may use for COW fault */
431 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
432 	struct page *page;		/* ->fault handlers should return a
433 					 * page here, unless VM_FAULT_NOPAGE
434 					 * is set (which is also implied by
435 					 * VM_FAULT_ERROR).
436 					 */
437 	/* These three entries are valid only while holding ptl lock */
438 	pte_t *pte;			/* Pointer to pte entry matching
439 					 * the 'address'. NULL if the page
440 					 * table hasn't been allocated.
441 					 */
442 	spinlock_t *ptl;		/* Page table lock.
443 					 * Protects pte page table if 'pte'
444 					 * is not NULL, otherwise pmd.
445 					 */
446 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
447 					 * vm_ops->map_pages() calls
448 					 * alloc_set_pte() from atomic context.
449 					 * do_fault_around() pre-allocates
450 					 * page table to avoid allocation from
451 					 * atomic context.
452 					 */
453 };
454 
455 /* page entry size for vm->huge_fault() */
456 enum page_entry_size {
457 	PE_SIZE_PTE = 0,
458 	PE_SIZE_PMD,
459 	PE_SIZE_PUD,
460 };
461 
462 /*
463  * These are the virtual MM functions - opening of an area, closing and
464  * unmapping it (needed to keep files on disk up-to-date etc), pointer
465  * to the functions called when a no-page or a wp-page exception occurs.
466  */
467 struct vm_operations_struct {
468 	void (*open)(struct vm_area_struct * area);
469 	void (*close)(struct vm_area_struct * area);
470 	int (*split)(struct vm_area_struct * area, unsigned long addr);
471 	int (*mremap)(struct vm_area_struct * area);
472 	vm_fault_t (*fault)(struct vm_fault *vmf);
473 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
474 			enum page_entry_size pe_size);
475 	void (*map_pages)(struct vm_fault *vmf,
476 			pgoff_t start_pgoff, pgoff_t end_pgoff);
477 	unsigned long (*pagesize)(struct vm_area_struct * area);
478 
479 	/* notification that a previously read-only page is about to become
480 	 * writable, if an error is returned it will cause a SIGBUS */
481 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
482 
483 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
484 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
485 
486 	/* called by access_process_vm when get_user_pages() fails, typically
487 	 * for use by special VMAs that can switch between memory and hardware
488 	 */
489 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
490 		      void *buf, int len, int write);
491 
492 	/* Called by the /proc/PID/maps code to ask the vma whether it
493 	 * has a special name.  Returning non-NULL will also cause this
494 	 * vma to be dumped unconditionally. */
495 	const char *(*name)(struct vm_area_struct *vma);
496 
497 #ifdef CONFIG_NUMA
498 	/*
499 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
500 	 * to hold the policy upon return.  Caller should pass NULL @new to
501 	 * remove a policy and fall back to surrounding context--i.e. do not
502 	 * install a MPOL_DEFAULT policy, nor the task or system default
503 	 * mempolicy.
504 	 */
505 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
506 
507 	/*
508 	 * get_policy() op must add reference [mpol_get()] to any policy at
509 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
510 	 * in mm/mempolicy.c will do this automatically.
511 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
512 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
513 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
514 	 * must return NULL--i.e., do not "fallback" to task or system default
515 	 * policy.
516 	 */
517 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
518 					unsigned long addr);
519 #endif
520 	/*
521 	 * Called by vm_normal_page() for special PTEs to find the
522 	 * page for @addr.  This is useful if the default behavior
523 	 * (using pte_page()) would not find the correct page.
524 	 */
525 	struct page *(*find_special_page)(struct vm_area_struct *vma,
526 					  unsigned long addr);
527 };
528 
529 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
530 {
531 	static const struct vm_operations_struct dummy_vm_ops = {};
532 
533 	memset(vma, 0, sizeof(*vma));
534 	vma->vm_mm = mm;
535 	vma->vm_ops = &dummy_vm_ops;
536 	INIT_LIST_HEAD(&vma->anon_vma_chain);
537 }
538 
539 static inline void vma_set_anonymous(struct vm_area_struct *vma)
540 {
541 	vma->vm_ops = NULL;
542 }
543 
544 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
545 {
546 	return !vma->vm_ops;
547 }
548 
549 #ifdef CONFIG_SHMEM
550 /*
551  * The vma_is_shmem is not inline because it is used only by slow
552  * paths in userfault.
553  */
554 bool vma_is_shmem(struct vm_area_struct *vma);
555 #else
556 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
557 #endif
558 
559 int vma_is_stack_for_current(struct vm_area_struct *vma);
560 
561 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
562 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
563 
564 struct mmu_gather;
565 struct inode;
566 
567 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
568 static inline int pmd_devmap(pmd_t pmd)
569 {
570 	return 0;
571 }
572 static inline int pud_devmap(pud_t pud)
573 {
574 	return 0;
575 }
576 static inline int pgd_devmap(pgd_t pgd)
577 {
578 	return 0;
579 }
580 #endif
581 
582 /*
583  * FIXME: take this include out, include page-flags.h in
584  * files which need it (119 of them)
585  */
586 #include <linux/page-flags.h>
587 #include <linux/huge_mm.h>
588 
589 /*
590  * Methods to modify the page usage count.
591  *
592  * What counts for a page usage:
593  * - cache mapping   (page->mapping)
594  * - private data    (page->private)
595  * - page mapped in a task's page tables, each mapping
596  *   is counted separately
597  *
598  * Also, many kernel routines increase the page count before a critical
599  * routine so they can be sure the page doesn't go away from under them.
600  */
601 
602 /*
603  * Drop a ref, return true if the refcount fell to zero (the page has no users)
604  */
605 static inline int put_page_testzero(struct page *page)
606 {
607 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
608 	return page_ref_dec_and_test(page);
609 }
610 
611 /*
612  * Try to grab a ref unless the page has a refcount of zero, return false if
613  * that is the case.
614  * This can be called when MMU is off so it must not access
615  * any of the virtual mappings.
616  */
617 static inline int get_page_unless_zero(struct page *page)
618 {
619 	return page_ref_add_unless(page, 1, 0);
620 }
621 
622 extern int page_is_ram(unsigned long pfn);
623 
624 enum {
625 	REGION_INTERSECTS,
626 	REGION_DISJOINT,
627 	REGION_MIXED,
628 };
629 
630 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
631 		      unsigned long desc);
632 
633 /* Support for virtually mapped pages */
634 struct page *vmalloc_to_page(const void *addr);
635 unsigned long vmalloc_to_pfn(const void *addr);
636 
637 /*
638  * Determine if an address is within the vmalloc range
639  *
640  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
641  * is no special casing required.
642  */
643 static inline bool is_vmalloc_addr(const void *x)
644 {
645 #ifdef CONFIG_MMU
646 	unsigned long addr = (unsigned long)x;
647 
648 	return addr >= VMALLOC_START && addr < VMALLOC_END;
649 #else
650 	return false;
651 #endif
652 }
653 
654 #ifndef is_ioremap_addr
655 #define is_ioremap_addr(x) is_vmalloc_addr(x)
656 #endif
657 
658 #ifdef CONFIG_MMU
659 extern int is_vmalloc_or_module_addr(const void *x);
660 #else
661 static inline int is_vmalloc_or_module_addr(const void *x)
662 {
663 	return 0;
664 }
665 #endif
666 
667 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
668 static inline void *kvmalloc(size_t size, gfp_t flags)
669 {
670 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
671 }
672 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
673 {
674 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
675 }
676 static inline void *kvzalloc(size_t size, gfp_t flags)
677 {
678 	return kvmalloc(size, flags | __GFP_ZERO);
679 }
680 
681 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
682 {
683 	size_t bytes;
684 
685 	if (unlikely(check_mul_overflow(n, size, &bytes)))
686 		return NULL;
687 
688 	return kvmalloc(bytes, flags);
689 }
690 
691 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
692 {
693 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
694 }
695 
696 extern void kvfree(const void *addr);
697 
698 static inline atomic_t *compound_mapcount_ptr(struct page *page)
699 {
700 	return &page[1].compound_mapcount;
701 }
702 
703 static inline int compound_mapcount(struct page *page)
704 {
705 	VM_BUG_ON_PAGE(!PageCompound(page), page);
706 	page = compound_head(page);
707 	return atomic_read(compound_mapcount_ptr(page)) + 1;
708 }
709 
710 /*
711  * The atomic page->_mapcount, starts from -1: so that transitions
712  * both from it and to it can be tracked, using atomic_inc_and_test
713  * and atomic_add_negative(-1).
714  */
715 static inline void page_mapcount_reset(struct page *page)
716 {
717 	atomic_set(&(page)->_mapcount, -1);
718 }
719 
720 int __page_mapcount(struct page *page);
721 
722 static inline int page_mapcount(struct page *page)
723 {
724 	VM_BUG_ON_PAGE(PageSlab(page), page);
725 
726 	if (unlikely(PageCompound(page)))
727 		return __page_mapcount(page);
728 	return atomic_read(&page->_mapcount) + 1;
729 }
730 
731 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
732 int total_mapcount(struct page *page);
733 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
734 #else
735 static inline int total_mapcount(struct page *page)
736 {
737 	return page_mapcount(page);
738 }
739 static inline int page_trans_huge_mapcount(struct page *page,
740 					   int *total_mapcount)
741 {
742 	int mapcount = page_mapcount(page);
743 	if (total_mapcount)
744 		*total_mapcount = mapcount;
745 	return mapcount;
746 }
747 #endif
748 
749 static inline struct page *virt_to_head_page(const void *x)
750 {
751 	struct page *page = virt_to_page(x);
752 
753 	return compound_head(page);
754 }
755 
756 void __put_page(struct page *page);
757 
758 void put_pages_list(struct list_head *pages);
759 
760 void split_page(struct page *page, unsigned int order);
761 
762 /*
763  * Compound pages have a destructor function.  Provide a
764  * prototype for that function and accessor functions.
765  * These are _only_ valid on the head of a compound page.
766  */
767 typedef void compound_page_dtor(struct page *);
768 
769 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
770 enum compound_dtor_id {
771 	NULL_COMPOUND_DTOR,
772 	COMPOUND_PAGE_DTOR,
773 #ifdef CONFIG_HUGETLB_PAGE
774 	HUGETLB_PAGE_DTOR,
775 #endif
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 	TRANSHUGE_PAGE_DTOR,
778 #endif
779 	NR_COMPOUND_DTORS,
780 };
781 extern compound_page_dtor * const compound_page_dtors[];
782 
783 static inline void set_compound_page_dtor(struct page *page,
784 		enum compound_dtor_id compound_dtor)
785 {
786 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
787 	page[1].compound_dtor = compound_dtor;
788 }
789 
790 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
791 {
792 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
793 	return compound_page_dtors[page[1].compound_dtor];
794 }
795 
796 static inline unsigned int compound_order(struct page *page)
797 {
798 	if (!PageHead(page))
799 		return 0;
800 	return page[1].compound_order;
801 }
802 
803 static inline void set_compound_order(struct page *page, unsigned int order)
804 {
805 	page[1].compound_order = order;
806 }
807 
808 /* Returns the number of pages in this potentially compound page. */
809 static inline unsigned long compound_nr(struct page *page)
810 {
811 	return 1UL << compound_order(page);
812 }
813 
814 /* Returns the number of bytes in this potentially compound page. */
815 static inline unsigned long page_size(struct page *page)
816 {
817 	return PAGE_SIZE << compound_order(page);
818 }
819 
820 /* Returns the number of bits needed for the number of bytes in a page */
821 static inline unsigned int page_shift(struct page *page)
822 {
823 	return PAGE_SHIFT + compound_order(page);
824 }
825 
826 void free_compound_page(struct page *page);
827 
828 #ifdef CONFIG_MMU
829 /*
830  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
831  * servicing faults for write access.  In the normal case, do always want
832  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
833  * that do not have writing enabled, when used by access_process_vm.
834  */
835 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
836 {
837 	if (likely(vma->vm_flags & VM_WRITE))
838 		pte = pte_mkwrite(pte);
839 	return pte;
840 }
841 
842 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
843 		struct page *page);
844 vm_fault_t finish_fault(struct vm_fault *vmf);
845 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
846 #endif
847 
848 /*
849  * Multiple processes may "see" the same page. E.g. for untouched
850  * mappings of /dev/null, all processes see the same page full of
851  * zeroes, and text pages of executables and shared libraries have
852  * only one copy in memory, at most, normally.
853  *
854  * For the non-reserved pages, page_count(page) denotes a reference count.
855  *   page_count() == 0 means the page is free. page->lru is then used for
856  *   freelist management in the buddy allocator.
857  *   page_count() > 0  means the page has been allocated.
858  *
859  * Pages are allocated by the slab allocator in order to provide memory
860  * to kmalloc and kmem_cache_alloc. In this case, the management of the
861  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
862  * unless a particular usage is carefully commented. (the responsibility of
863  * freeing the kmalloc memory is the caller's, of course).
864  *
865  * A page may be used by anyone else who does a __get_free_page().
866  * In this case, page_count still tracks the references, and should only
867  * be used through the normal accessor functions. The top bits of page->flags
868  * and page->virtual store page management information, but all other fields
869  * are unused and could be used privately, carefully. The management of this
870  * page is the responsibility of the one who allocated it, and those who have
871  * subsequently been given references to it.
872  *
873  * The other pages (we may call them "pagecache pages") are completely
874  * managed by the Linux memory manager: I/O, buffers, swapping etc.
875  * The following discussion applies only to them.
876  *
877  * A pagecache page contains an opaque `private' member, which belongs to the
878  * page's address_space. Usually, this is the address of a circular list of
879  * the page's disk buffers. PG_private must be set to tell the VM to call
880  * into the filesystem to release these pages.
881  *
882  * A page may belong to an inode's memory mapping. In this case, page->mapping
883  * is the pointer to the inode, and page->index is the file offset of the page,
884  * in units of PAGE_SIZE.
885  *
886  * If pagecache pages are not associated with an inode, they are said to be
887  * anonymous pages. These may become associated with the swapcache, and in that
888  * case PG_swapcache is set, and page->private is an offset into the swapcache.
889  *
890  * In either case (swapcache or inode backed), the pagecache itself holds one
891  * reference to the page. Setting PG_private should also increment the
892  * refcount. The each user mapping also has a reference to the page.
893  *
894  * The pagecache pages are stored in a per-mapping radix tree, which is
895  * rooted at mapping->i_pages, and indexed by offset.
896  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
897  * lists, we instead now tag pages as dirty/writeback in the radix tree.
898  *
899  * All pagecache pages may be subject to I/O:
900  * - inode pages may need to be read from disk,
901  * - inode pages which have been modified and are MAP_SHARED may need
902  *   to be written back to the inode on disk,
903  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
904  *   modified may need to be swapped out to swap space and (later) to be read
905  *   back into memory.
906  */
907 
908 /*
909  * The zone field is never updated after free_area_init_core()
910  * sets it, so none of the operations on it need to be atomic.
911  */
912 
913 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
914 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
915 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
916 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
917 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
918 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
919 
920 /*
921  * Define the bit shifts to access each section.  For non-existent
922  * sections we define the shift as 0; that plus a 0 mask ensures
923  * the compiler will optimise away reference to them.
924  */
925 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
926 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
927 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
928 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
929 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
930 
931 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
932 #ifdef NODE_NOT_IN_PAGE_FLAGS
933 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
934 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
935 						SECTIONS_PGOFF : ZONES_PGOFF)
936 #else
937 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
938 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
939 						NODES_PGOFF : ZONES_PGOFF)
940 #endif
941 
942 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
943 
944 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
945 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
946 #endif
947 
948 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
949 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
950 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
951 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
952 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
953 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
954 
955 static inline enum zone_type page_zonenum(const struct page *page)
956 {
957 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
958 }
959 
960 #ifdef CONFIG_ZONE_DEVICE
961 static inline bool is_zone_device_page(const struct page *page)
962 {
963 	return page_zonenum(page) == ZONE_DEVICE;
964 }
965 extern void memmap_init_zone_device(struct zone *, unsigned long,
966 				    unsigned long, struct dev_pagemap *);
967 #else
968 static inline bool is_zone_device_page(const struct page *page)
969 {
970 	return false;
971 }
972 #endif
973 
974 #ifdef CONFIG_DEV_PAGEMAP_OPS
975 void __put_devmap_managed_page(struct page *page);
976 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
977 static inline bool put_devmap_managed_page(struct page *page)
978 {
979 	if (!static_branch_unlikely(&devmap_managed_key))
980 		return false;
981 	if (!is_zone_device_page(page))
982 		return false;
983 	switch (page->pgmap->type) {
984 	case MEMORY_DEVICE_PRIVATE:
985 	case MEMORY_DEVICE_FS_DAX:
986 		__put_devmap_managed_page(page);
987 		return true;
988 	default:
989 		break;
990 	}
991 	return false;
992 }
993 
994 #else /* CONFIG_DEV_PAGEMAP_OPS */
995 static inline bool put_devmap_managed_page(struct page *page)
996 {
997 	return false;
998 }
999 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1000 
1001 static inline bool is_device_private_page(const struct page *page)
1002 {
1003 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1004 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1005 		is_zone_device_page(page) &&
1006 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1007 }
1008 
1009 static inline bool is_pci_p2pdma_page(const struct page *page)
1010 {
1011 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1012 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1013 		is_zone_device_page(page) &&
1014 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1015 }
1016 
1017 /* 127: arbitrary random number, small enough to assemble well */
1018 #define page_ref_zero_or_close_to_overflow(page) \
1019 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1020 
1021 static inline void get_page(struct page *page)
1022 {
1023 	page = compound_head(page);
1024 	/*
1025 	 * Getting a normal page or the head of a compound page
1026 	 * requires to already have an elevated page->_refcount.
1027 	 */
1028 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1029 	page_ref_inc(page);
1030 }
1031 
1032 static inline __must_check bool try_get_page(struct page *page)
1033 {
1034 	page = compound_head(page);
1035 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1036 		return false;
1037 	page_ref_inc(page);
1038 	return true;
1039 }
1040 
1041 static inline void put_page(struct page *page)
1042 {
1043 	page = compound_head(page);
1044 
1045 	/*
1046 	 * For devmap managed pages we need to catch refcount transition from
1047 	 * 2 to 1, when refcount reach one it means the page is free and we
1048 	 * need to inform the device driver through callback. See
1049 	 * include/linux/memremap.h and HMM for details.
1050 	 */
1051 	if (put_devmap_managed_page(page))
1052 		return;
1053 
1054 	if (put_page_testzero(page))
1055 		__put_page(page);
1056 }
1057 
1058 /**
1059  * put_user_page() - release a gup-pinned page
1060  * @page:            pointer to page to be released
1061  *
1062  * Pages that were pinned via get_user_pages*() must be released via
1063  * either put_user_page(), or one of the put_user_pages*() routines
1064  * below. This is so that eventually, pages that are pinned via
1065  * get_user_pages*() can be separately tracked and uniquely handled. In
1066  * particular, interactions with RDMA and filesystems need special
1067  * handling.
1068  *
1069  * put_user_page() and put_page() are not interchangeable, despite this early
1070  * implementation that makes them look the same. put_user_page() calls must
1071  * be perfectly matched up with get_user_page() calls.
1072  */
1073 static inline void put_user_page(struct page *page)
1074 {
1075 	put_page(page);
1076 }
1077 
1078 void put_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1079 			       bool make_dirty);
1080 
1081 void put_user_pages(struct page **pages, unsigned long npages);
1082 
1083 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1084 #define SECTION_IN_PAGE_FLAGS
1085 #endif
1086 
1087 /*
1088  * The identification function is mainly used by the buddy allocator for
1089  * determining if two pages could be buddies. We are not really identifying
1090  * the zone since we could be using the section number id if we do not have
1091  * node id available in page flags.
1092  * We only guarantee that it will return the same value for two combinable
1093  * pages in a zone.
1094  */
1095 static inline int page_zone_id(struct page *page)
1096 {
1097 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1098 }
1099 
1100 #ifdef NODE_NOT_IN_PAGE_FLAGS
1101 extern int page_to_nid(const struct page *page);
1102 #else
1103 static inline int page_to_nid(const struct page *page)
1104 {
1105 	struct page *p = (struct page *)page;
1106 
1107 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1108 }
1109 #endif
1110 
1111 #ifdef CONFIG_NUMA_BALANCING
1112 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1113 {
1114 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1115 }
1116 
1117 static inline int cpupid_to_pid(int cpupid)
1118 {
1119 	return cpupid & LAST__PID_MASK;
1120 }
1121 
1122 static inline int cpupid_to_cpu(int cpupid)
1123 {
1124 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1125 }
1126 
1127 static inline int cpupid_to_nid(int cpupid)
1128 {
1129 	return cpu_to_node(cpupid_to_cpu(cpupid));
1130 }
1131 
1132 static inline bool cpupid_pid_unset(int cpupid)
1133 {
1134 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1135 }
1136 
1137 static inline bool cpupid_cpu_unset(int cpupid)
1138 {
1139 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1140 }
1141 
1142 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1143 {
1144 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1145 }
1146 
1147 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1148 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1149 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1150 {
1151 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1152 }
1153 
1154 static inline int page_cpupid_last(struct page *page)
1155 {
1156 	return page->_last_cpupid;
1157 }
1158 static inline void page_cpupid_reset_last(struct page *page)
1159 {
1160 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1161 }
1162 #else
1163 static inline int page_cpupid_last(struct page *page)
1164 {
1165 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1166 }
1167 
1168 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1169 
1170 static inline void page_cpupid_reset_last(struct page *page)
1171 {
1172 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1173 }
1174 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1175 #else /* !CONFIG_NUMA_BALANCING */
1176 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1177 {
1178 	return page_to_nid(page); /* XXX */
1179 }
1180 
1181 static inline int page_cpupid_last(struct page *page)
1182 {
1183 	return page_to_nid(page); /* XXX */
1184 }
1185 
1186 static inline int cpupid_to_nid(int cpupid)
1187 {
1188 	return -1;
1189 }
1190 
1191 static inline int cpupid_to_pid(int cpupid)
1192 {
1193 	return -1;
1194 }
1195 
1196 static inline int cpupid_to_cpu(int cpupid)
1197 {
1198 	return -1;
1199 }
1200 
1201 static inline int cpu_pid_to_cpupid(int nid, int pid)
1202 {
1203 	return -1;
1204 }
1205 
1206 static inline bool cpupid_pid_unset(int cpupid)
1207 {
1208 	return 1;
1209 }
1210 
1211 static inline void page_cpupid_reset_last(struct page *page)
1212 {
1213 }
1214 
1215 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1216 {
1217 	return false;
1218 }
1219 #endif /* CONFIG_NUMA_BALANCING */
1220 
1221 #ifdef CONFIG_KASAN_SW_TAGS
1222 static inline u8 page_kasan_tag(const struct page *page)
1223 {
1224 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1225 }
1226 
1227 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1228 {
1229 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1230 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1231 }
1232 
1233 static inline void page_kasan_tag_reset(struct page *page)
1234 {
1235 	page_kasan_tag_set(page, 0xff);
1236 }
1237 #else
1238 static inline u8 page_kasan_tag(const struct page *page)
1239 {
1240 	return 0xff;
1241 }
1242 
1243 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1244 static inline void page_kasan_tag_reset(struct page *page) { }
1245 #endif
1246 
1247 static inline struct zone *page_zone(const struct page *page)
1248 {
1249 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1250 }
1251 
1252 static inline pg_data_t *page_pgdat(const struct page *page)
1253 {
1254 	return NODE_DATA(page_to_nid(page));
1255 }
1256 
1257 #ifdef SECTION_IN_PAGE_FLAGS
1258 static inline void set_page_section(struct page *page, unsigned long section)
1259 {
1260 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1261 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1262 }
1263 
1264 static inline unsigned long page_to_section(const struct page *page)
1265 {
1266 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1267 }
1268 #endif
1269 
1270 static inline void set_page_zone(struct page *page, enum zone_type zone)
1271 {
1272 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1273 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1274 }
1275 
1276 static inline void set_page_node(struct page *page, unsigned long node)
1277 {
1278 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1279 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1280 }
1281 
1282 static inline void set_page_links(struct page *page, enum zone_type zone,
1283 	unsigned long node, unsigned long pfn)
1284 {
1285 	set_page_zone(page, zone);
1286 	set_page_node(page, node);
1287 #ifdef SECTION_IN_PAGE_FLAGS
1288 	set_page_section(page, pfn_to_section_nr(pfn));
1289 #endif
1290 }
1291 
1292 #ifdef CONFIG_MEMCG
1293 static inline struct mem_cgroup *page_memcg(struct page *page)
1294 {
1295 	return page->mem_cgroup;
1296 }
1297 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1298 {
1299 	WARN_ON_ONCE(!rcu_read_lock_held());
1300 	return READ_ONCE(page->mem_cgroup);
1301 }
1302 #else
1303 static inline struct mem_cgroup *page_memcg(struct page *page)
1304 {
1305 	return NULL;
1306 }
1307 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1308 {
1309 	WARN_ON_ONCE(!rcu_read_lock_held());
1310 	return NULL;
1311 }
1312 #endif
1313 
1314 /*
1315  * Some inline functions in vmstat.h depend on page_zone()
1316  */
1317 #include <linux/vmstat.h>
1318 
1319 static __always_inline void *lowmem_page_address(const struct page *page)
1320 {
1321 	return page_to_virt(page);
1322 }
1323 
1324 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1325 #define HASHED_PAGE_VIRTUAL
1326 #endif
1327 
1328 #if defined(WANT_PAGE_VIRTUAL)
1329 static inline void *page_address(const struct page *page)
1330 {
1331 	return page->virtual;
1332 }
1333 static inline void set_page_address(struct page *page, void *address)
1334 {
1335 	page->virtual = address;
1336 }
1337 #define page_address_init()  do { } while(0)
1338 #endif
1339 
1340 #if defined(HASHED_PAGE_VIRTUAL)
1341 void *page_address(const struct page *page);
1342 void set_page_address(struct page *page, void *virtual);
1343 void page_address_init(void);
1344 #endif
1345 
1346 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1347 #define page_address(page) lowmem_page_address(page)
1348 #define set_page_address(page, address)  do { } while(0)
1349 #define page_address_init()  do { } while(0)
1350 #endif
1351 
1352 extern void *page_rmapping(struct page *page);
1353 extern struct anon_vma *page_anon_vma(struct page *page);
1354 extern struct address_space *page_mapping(struct page *page);
1355 
1356 extern struct address_space *__page_file_mapping(struct page *);
1357 
1358 static inline
1359 struct address_space *page_file_mapping(struct page *page)
1360 {
1361 	if (unlikely(PageSwapCache(page)))
1362 		return __page_file_mapping(page);
1363 
1364 	return page->mapping;
1365 }
1366 
1367 extern pgoff_t __page_file_index(struct page *page);
1368 
1369 /*
1370  * Return the pagecache index of the passed page.  Regular pagecache pages
1371  * use ->index whereas swapcache pages use swp_offset(->private)
1372  */
1373 static inline pgoff_t page_index(struct page *page)
1374 {
1375 	if (unlikely(PageSwapCache(page)))
1376 		return __page_file_index(page);
1377 	return page->index;
1378 }
1379 
1380 bool page_mapped(struct page *page);
1381 struct address_space *page_mapping(struct page *page);
1382 struct address_space *page_mapping_file(struct page *page);
1383 
1384 /*
1385  * Return true only if the page has been allocated with
1386  * ALLOC_NO_WATERMARKS and the low watermark was not
1387  * met implying that the system is under some pressure.
1388  */
1389 static inline bool page_is_pfmemalloc(struct page *page)
1390 {
1391 	/*
1392 	 * Page index cannot be this large so this must be
1393 	 * a pfmemalloc page.
1394 	 */
1395 	return page->index == -1UL;
1396 }
1397 
1398 /*
1399  * Only to be called by the page allocator on a freshly allocated
1400  * page.
1401  */
1402 static inline void set_page_pfmemalloc(struct page *page)
1403 {
1404 	page->index = -1UL;
1405 }
1406 
1407 static inline void clear_page_pfmemalloc(struct page *page)
1408 {
1409 	page->index = 0;
1410 }
1411 
1412 /*
1413  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1414  */
1415 extern void pagefault_out_of_memory(void);
1416 
1417 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1418 
1419 /*
1420  * Flags passed to show_mem() and show_free_areas() to suppress output in
1421  * various contexts.
1422  */
1423 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1424 
1425 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1426 
1427 #ifdef CONFIG_MMU
1428 extern bool can_do_mlock(void);
1429 #else
1430 static inline bool can_do_mlock(void) { return false; }
1431 #endif
1432 extern int user_shm_lock(size_t, struct user_struct *);
1433 extern void user_shm_unlock(size_t, struct user_struct *);
1434 
1435 /*
1436  * Parameter block passed down to zap_pte_range in exceptional cases.
1437  */
1438 struct zap_details {
1439 	struct address_space *check_mapping;	/* Check page->mapping if set */
1440 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1441 	pgoff_t last_index;			/* Highest page->index to unmap */
1442 };
1443 
1444 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1445 			     pte_t pte);
1446 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1447 				pmd_t pmd);
1448 
1449 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1450 		  unsigned long size);
1451 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1452 		    unsigned long size);
1453 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1454 		unsigned long start, unsigned long end);
1455 
1456 struct mmu_notifier_range;
1457 
1458 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1459 		unsigned long end, unsigned long floor, unsigned long ceiling);
1460 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1461 			struct vm_area_struct *vma);
1462 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1463 		   struct mmu_notifier_range *range,
1464 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1465 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1466 	unsigned long *pfn);
1467 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1468 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1469 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1470 			void *buf, int len, int write);
1471 
1472 extern void truncate_pagecache(struct inode *inode, loff_t new);
1473 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1474 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1475 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1476 int truncate_inode_page(struct address_space *mapping, struct page *page);
1477 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1478 int invalidate_inode_page(struct page *page);
1479 
1480 #ifdef CONFIG_MMU
1481 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1482 			unsigned long address, unsigned int flags);
1483 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1484 			    unsigned long address, unsigned int fault_flags,
1485 			    bool *unlocked);
1486 void unmap_mapping_pages(struct address_space *mapping,
1487 		pgoff_t start, pgoff_t nr, bool even_cows);
1488 void unmap_mapping_range(struct address_space *mapping,
1489 		loff_t const holebegin, loff_t const holelen, int even_cows);
1490 #else
1491 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1492 		unsigned long address, unsigned int flags)
1493 {
1494 	/* should never happen if there's no MMU */
1495 	BUG();
1496 	return VM_FAULT_SIGBUS;
1497 }
1498 static inline int fixup_user_fault(struct task_struct *tsk,
1499 		struct mm_struct *mm, unsigned long address,
1500 		unsigned int fault_flags, bool *unlocked)
1501 {
1502 	/* should never happen if there's no MMU */
1503 	BUG();
1504 	return -EFAULT;
1505 }
1506 static inline void unmap_mapping_pages(struct address_space *mapping,
1507 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1508 static inline void unmap_mapping_range(struct address_space *mapping,
1509 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1510 #endif
1511 
1512 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1513 		loff_t const holebegin, loff_t const holelen)
1514 {
1515 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1516 }
1517 
1518 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1519 		void *buf, int len, unsigned int gup_flags);
1520 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1521 		void *buf, int len, unsigned int gup_flags);
1522 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1523 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1524 
1525 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1526 			    unsigned long start, unsigned long nr_pages,
1527 			    unsigned int gup_flags, struct page **pages,
1528 			    struct vm_area_struct **vmas, int *locked);
1529 long get_user_pages(unsigned long start, unsigned long nr_pages,
1530 			    unsigned int gup_flags, struct page **pages,
1531 			    struct vm_area_struct **vmas);
1532 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1533 		    unsigned int gup_flags, struct page **pages, int *locked);
1534 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1535 		    struct page **pages, unsigned int gup_flags);
1536 
1537 int get_user_pages_fast(unsigned long start, int nr_pages,
1538 			unsigned int gup_flags, struct page **pages);
1539 
1540 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1541 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1542 			struct task_struct *task, bool bypass_rlim);
1543 
1544 /* Container for pinned pfns / pages */
1545 struct frame_vector {
1546 	unsigned int nr_allocated;	/* Number of frames we have space for */
1547 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1548 	bool got_ref;		/* Did we pin pages by getting page ref? */
1549 	bool is_pfns;		/* Does array contain pages or pfns? */
1550 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1551 				 * pfns_vector_pages() or pfns_vector_pfns()
1552 				 * for access */
1553 };
1554 
1555 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1556 void frame_vector_destroy(struct frame_vector *vec);
1557 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1558 		     unsigned int gup_flags, struct frame_vector *vec);
1559 void put_vaddr_frames(struct frame_vector *vec);
1560 int frame_vector_to_pages(struct frame_vector *vec);
1561 void frame_vector_to_pfns(struct frame_vector *vec);
1562 
1563 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1564 {
1565 	return vec->nr_frames;
1566 }
1567 
1568 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1569 {
1570 	if (vec->is_pfns) {
1571 		int err = frame_vector_to_pages(vec);
1572 
1573 		if (err)
1574 			return ERR_PTR(err);
1575 	}
1576 	return (struct page **)(vec->ptrs);
1577 }
1578 
1579 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1580 {
1581 	if (!vec->is_pfns)
1582 		frame_vector_to_pfns(vec);
1583 	return (unsigned long *)(vec->ptrs);
1584 }
1585 
1586 struct kvec;
1587 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1588 			struct page **pages);
1589 int get_kernel_page(unsigned long start, int write, struct page **pages);
1590 struct page *get_dump_page(unsigned long addr);
1591 
1592 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1593 extern void do_invalidatepage(struct page *page, unsigned int offset,
1594 			      unsigned int length);
1595 
1596 void __set_page_dirty(struct page *, struct address_space *, int warn);
1597 int __set_page_dirty_nobuffers(struct page *page);
1598 int __set_page_dirty_no_writeback(struct page *page);
1599 int redirty_page_for_writepage(struct writeback_control *wbc,
1600 				struct page *page);
1601 void account_page_dirtied(struct page *page, struct address_space *mapping);
1602 void account_page_cleaned(struct page *page, struct address_space *mapping,
1603 			  struct bdi_writeback *wb);
1604 int set_page_dirty(struct page *page);
1605 int set_page_dirty_lock(struct page *page);
1606 void __cancel_dirty_page(struct page *page);
1607 static inline void cancel_dirty_page(struct page *page)
1608 {
1609 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1610 	if (PageDirty(page))
1611 		__cancel_dirty_page(page);
1612 }
1613 int clear_page_dirty_for_io(struct page *page);
1614 
1615 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1616 
1617 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1618 		unsigned long old_addr, struct vm_area_struct *new_vma,
1619 		unsigned long new_addr, unsigned long len,
1620 		bool need_rmap_locks);
1621 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1622 			      unsigned long end, pgprot_t newprot,
1623 			      int dirty_accountable, int prot_numa);
1624 extern int mprotect_fixup(struct vm_area_struct *vma,
1625 			  struct vm_area_struct **pprev, unsigned long start,
1626 			  unsigned long end, unsigned long newflags);
1627 
1628 /*
1629  * doesn't attempt to fault and will return short.
1630  */
1631 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1632 			  struct page **pages);
1633 /*
1634  * per-process(per-mm_struct) statistics.
1635  */
1636 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1637 {
1638 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1639 
1640 #ifdef SPLIT_RSS_COUNTING
1641 	/*
1642 	 * counter is updated in asynchronous manner and may go to minus.
1643 	 * But it's never be expected number for users.
1644 	 */
1645 	if (val < 0)
1646 		val = 0;
1647 #endif
1648 	return (unsigned long)val;
1649 }
1650 
1651 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1652 {
1653 	atomic_long_add(value, &mm->rss_stat.count[member]);
1654 }
1655 
1656 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1657 {
1658 	atomic_long_inc(&mm->rss_stat.count[member]);
1659 }
1660 
1661 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1662 {
1663 	atomic_long_dec(&mm->rss_stat.count[member]);
1664 }
1665 
1666 /* Optimized variant when page is already known not to be PageAnon */
1667 static inline int mm_counter_file(struct page *page)
1668 {
1669 	if (PageSwapBacked(page))
1670 		return MM_SHMEMPAGES;
1671 	return MM_FILEPAGES;
1672 }
1673 
1674 static inline int mm_counter(struct page *page)
1675 {
1676 	if (PageAnon(page))
1677 		return MM_ANONPAGES;
1678 	return mm_counter_file(page);
1679 }
1680 
1681 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1682 {
1683 	return get_mm_counter(mm, MM_FILEPAGES) +
1684 		get_mm_counter(mm, MM_ANONPAGES) +
1685 		get_mm_counter(mm, MM_SHMEMPAGES);
1686 }
1687 
1688 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1689 {
1690 	return max(mm->hiwater_rss, get_mm_rss(mm));
1691 }
1692 
1693 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1694 {
1695 	return max(mm->hiwater_vm, mm->total_vm);
1696 }
1697 
1698 static inline void update_hiwater_rss(struct mm_struct *mm)
1699 {
1700 	unsigned long _rss = get_mm_rss(mm);
1701 
1702 	if ((mm)->hiwater_rss < _rss)
1703 		(mm)->hiwater_rss = _rss;
1704 }
1705 
1706 static inline void update_hiwater_vm(struct mm_struct *mm)
1707 {
1708 	if (mm->hiwater_vm < mm->total_vm)
1709 		mm->hiwater_vm = mm->total_vm;
1710 }
1711 
1712 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1713 {
1714 	mm->hiwater_rss = get_mm_rss(mm);
1715 }
1716 
1717 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1718 					 struct mm_struct *mm)
1719 {
1720 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1721 
1722 	if (*maxrss < hiwater_rss)
1723 		*maxrss = hiwater_rss;
1724 }
1725 
1726 #if defined(SPLIT_RSS_COUNTING)
1727 void sync_mm_rss(struct mm_struct *mm);
1728 #else
1729 static inline void sync_mm_rss(struct mm_struct *mm)
1730 {
1731 }
1732 #endif
1733 
1734 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1735 static inline int pte_devmap(pte_t pte)
1736 {
1737 	return 0;
1738 }
1739 #endif
1740 
1741 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1742 
1743 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1744 			       spinlock_t **ptl);
1745 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1746 				    spinlock_t **ptl)
1747 {
1748 	pte_t *ptep;
1749 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1750 	return ptep;
1751 }
1752 
1753 #ifdef __PAGETABLE_P4D_FOLDED
1754 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1755 						unsigned long address)
1756 {
1757 	return 0;
1758 }
1759 #else
1760 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1761 #endif
1762 
1763 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1764 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1765 						unsigned long address)
1766 {
1767 	return 0;
1768 }
1769 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1770 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1771 
1772 #else
1773 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1774 
1775 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1776 {
1777 	if (mm_pud_folded(mm))
1778 		return;
1779 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1780 }
1781 
1782 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1783 {
1784 	if (mm_pud_folded(mm))
1785 		return;
1786 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1787 }
1788 #endif
1789 
1790 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1791 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1792 						unsigned long address)
1793 {
1794 	return 0;
1795 }
1796 
1797 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1798 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1799 
1800 #else
1801 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1802 
1803 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1804 {
1805 	if (mm_pmd_folded(mm))
1806 		return;
1807 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1808 }
1809 
1810 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1811 {
1812 	if (mm_pmd_folded(mm))
1813 		return;
1814 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1815 }
1816 #endif
1817 
1818 #ifdef CONFIG_MMU
1819 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1820 {
1821 	atomic_long_set(&mm->pgtables_bytes, 0);
1822 }
1823 
1824 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1825 {
1826 	return atomic_long_read(&mm->pgtables_bytes);
1827 }
1828 
1829 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1830 {
1831 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1832 }
1833 
1834 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1835 {
1836 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1837 }
1838 #else
1839 
1840 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1841 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1842 {
1843 	return 0;
1844 }
1845 
1846 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1847 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1848 #endif
1849 
1850 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1851 int __pte_alloc_kernel(pmd_t *pmd);
1852 
1853 /*
1854  * The following ifdef needed to get the 4level-fixup.h header to work.
1855  * Remove it when 4level-fixup.h has been removed.
1856  */
1857 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1858 
1859 #ifndef __ARCH_HAS_5LEVEL_HACK
1860 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1861 		unsigned long address)
1862 {
1863 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1864 		NULL : p4d_offset(pgd, address);
1865 }
1866 
1867 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1868 		unsigned long address)
1869 {
1870 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1871 		NULL : pud_offset(p4d, address);
1872 }
1873 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1874 
1875 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1876 {
1877 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1878 		NULL: pmd_offset(pud, address);
1879 }
1880 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1881 
1882 #if USE_SPLIT_PTE_PTLOCKS
1883 #if ALLOC_SPLIT_PTLOCKS
1884 void __init ptlock_cache_init(void);
1885 extern bool ptlock_alloc(struct page *page);
1886 extern void ptlock_free(struct page *page);
1887 
1888 static inline spinlock_t *ptlock_ptr(struct page *page)
1889 {
1890 	return page->ptl;
1891 }
1892 #else /* ALLOC_SPLIT_PTLOCKS */
1893 static inline void ptlock_cache_init(void)
1894 {
1895 }
1896 
1897 static inline bool ptlock_alloc(struct page *page)
1898 {
1899 	return true;
1900 }
1901 
1902 static inline void ptlock_free(struct page *page)
1903 {
1904 }
1905 
1906 static inline spinlock_t *ptlock_ptr(struct page *page)
1907 {
1908 	return &page->ptl;
1909 }
1910 #endif /* ALLOC_SPLIT_PTLOCKS */
1911 
1912 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1913 {
1914 	return ptlock_ptr(pmd_page(*pmd));
1915 }
1916 
1917 static inline bool ptlock_init(struct page *page)
1918 {
1919 	/*
1920 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1921 	 * with 0. Make sure nobody took it in use in between.
1922 	 *
1923 	 * It can happen if arch try to use slab for page table allocation:
1924 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1925 	 */
1926 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1927 	if (!ptlock_alloc(page))
1928 		return false;
1929 	spin_lock_init(ptlock_ptr(page));
1930 	return true;
1931 }
1932 
1933 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1934 /*
1935  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1936  */
1937 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1938 {
1939 	return &mm->page_table_lock;
1940 }
1941 static inline void ptlock_cache_init(void) {}
1942 static inline bool ptlock_init(struct page *page) { return true; }
1943 static inline void ptlock_free(struct page *page) {}
1944 #endif /* USE_SPLIT_PTE_PTLOCKS */
1945 
1946 static inline void pgtable_init(void)
1947 {
1948 	ptlock_cache_init();
1949 	pgtable_cache_init();
1950 }
1951 
1952 static inline bool pgtable_pte_page_ctor(struct page *page)
1953 {
1954 	if (!ptlock_init(page))
1955 		return false;
1956 	__SetPageTable(page);
1957 	inc_zone_page_state(page, NR_PAGETABLE);
1958 	return true;
1959 }
1960 
1961 static inline void pgtable_pte_page_dtor(struct page *page)
1962 {
1963 	ptlock_free(page);
1964 	__ClearPageTable(page);
1965 	dec_zone_page_state(page, NR_PAGETABLE);
1966 }
1967 
1968 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1969 ({							\
1970 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1971 	pte_t *__pte = pte_offset_map(pmd, address);	\
1972 	*(ptlp) = __ptl;				\
1973 	spin_lock(__ptl);				\
1974 	__pte;						\
1975 })
1976 
1977 #define pte_unmap_unlock(pte, ptl)	do {		\
1978 	spin_unlock(ptl);				\
1979 	pte_unmap(pte);					\
1980 } while (0)
1981 
1982 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1983 
1984 #define pte_alloc_map(mm, pmd, address)			\
1985 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1986 
1987 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1988 	(pte_alloc(mm, pmd) ?			\
1989 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1990 
1991 #define pte_alloc_kernel(pmd, address)			\
1992 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1993 		NULL: pte_offset_kernel(pmd, address))
1994 
1995 #if USE_SPLIT_PMD_PTLOCKS
1996 
1997 static struct page *pmd_to_page(pmd_t *pmd)
1998 {
1999 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2000 	return virt_to_page((void *)((unsigned long) pmd & mask));
2001 }
2002 
2003 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2004 {
2005 	return ptlock_ptr(pmd_to_page(pmd));
2006 }
2007 
2008 static inline bool pgtable_pmd_page_ctor(struct page *page)
2009 {
2010 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2011 	page->pmd_huge_pte = NULL;
2012 #endif
2013 	return ptlock_init(page);
2014 }
2015 
2016 static inline void pgtable_pmd_page_dtor(struct page *page)
2017 {
2018 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2019 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2020 #endif
2021 	ptlock_free(page);
2022 }
2023 
2024 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2025 
2026 #else
2027 
2028 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2029 {
2030 	return &mm->page_table_lock;
2031 }
2032 
2033 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2034 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2035 
2036 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2037 
2038 #endif
2039 
2040 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2041 {
2042 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2043 	spin_lock(ptl);
2044 	return ptl;
2045 }
2046 
2047 /*
2048  * No scalability reason to split PUD locks yet, but follow the same pattern
2049  * as the PMD locks to make it easier if we decide to.  The VM should not be
2050  * considered ready to switch to split PUD locks yet; there may be places
2051  * which need to be converted from page_table_lock.
2052  */
2053 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2054 {
2055 	return &mm->page_table_lock;
2056 }
2057 
2058 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2059 {
2060 	spinlock_t *ptl = pud_lockptr(mm, pud);
2061 
2062 	spin_lock(ptl);
2063 	return ptl;
2064 }
2065 
2066 extern void __init pagecache_init(void);
2067 extern void free_area_init(unsigned long * zones_size);
2068 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2069 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2070 extern void free_initmem(void);
2071 
2072 /*
2073  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2074  * into the buddy system. The freed pages will be poisoned with pattern
2075  * "poison" if it's within range [0, UCHAR_MAX].
2076  * Return pages freed into the buddy system.
2077  */
2078 extern unsigned long free_reserved_area(void *start, void *end,
2079 					int poison, const char *s);
2080 
2081 #ifdef	CONFIG_HIGHMEM
2082 /*
2083  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2084  * and totalram_pages.
2085  */
2086 extern void free_highmem_page(struct page *page);
2087 #endif
2088 
2089 extern void adjust_managed_page_count(struct page *page, long count);
2090 extern void mem_init_print_info(const char *str);
2091 
2092 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2093 
2094 /* Free the reserved page into the buddy system, so it gets managed. */
2095 static inline void __free_reserved_page(struct page *page)
2096 {
2097 	ClearPageReserved(page);
2098 	init_page_count(page);
2099 	__free_page(page);
2100 }
2101 
2102 static inline void free_reserved_page(struct page *page)
2103 {
2104 	__free_reserved_page(page);
2105 	adjust_managed_page_count(page, 1);
2106 }
2107 
2108 static inline void mark_page_reserved(struct page *page)
2109 {
2110 	SetPageReserved(page);
2111 	adjust_managed_page_count(page, -1);
2112 }
2113 
2114 /*
2115  * Default method to free all the __init memory into the buddy system.
2116  * The freed pages will be poisoned with pattern "poison" if it's within
2117  * range [0, UCHAR_MAX].
2118  * Return pages freed into the buddy system.
2119  */
2120 static inline unsigned long free_initmem_default(int poison)
2121 {
2122 	extern char __init_begin[], __init_end[];
2123 
2124 	return free_reserved_area(&__init_begin, &__init_end,
2125 				  poison, "unused kernel");
2126 }
2127 
2128 static inline unsigned long get_num_physpages(void)
2129 {
2130 	int nid;
2131 	unsigned long phys_pages = 0;
2132 
2133 	for_each_online_node(nid)
2134 		phys_pages += node_present_pages(nid);
2135 
2136 	return phys_pages;
2137 }
2138 
2139 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2140 /*
2141  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2142  * zones, allocate the backing mem_map and account for memory holes in a more
2143  * architecture independent manner. This is a substitute for creating the
2144  * zone_sizes[] and zholes_size[] arrays and passing them to
2145  * free_area_init_node()
2146  *
2147  * An architecture is expected to register range of page frames backed by
2148  * physical memory with memblock_add[_node]() before calling
2149  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2150  * usage, an architecture is expected to do something like
2151  *
2152  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2153  * 							 max_highmem_pfn};
2154  * for_each_valid_physical_page_range()
2155  * 	memblock_add_node(base, size, nid)
2156  * free_area_init_nodes(max_zone_pfns);
2157  *
2158  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2159  * registered physical page range.  Similarly
2160  * sparse_memory_present_with_active_regions() calls memory_present() for
2161  * each range when SPARSEMEM is enabled.
2162  *
2163  * See mm/page_alloc.c for more information on each function exposed by
2164  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2165  */
2166 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2167 unsigned long node_map_pfn_alignment(void);
2168 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2169 						unsigned long end_pfn);
2170 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2171 						unsigned long end_pfn);
2172 extern void get_pfn_range_for_nid(unsigned int nid,
2173 			unsigned long *start_pfn, unsigned long *end_pfn);
2174 extern unsigned long find_min_pfn_with_active_regions(void);
2175 extern void free_bootmem_with_active_regions(int nid,
2176 						unsigned long max_low_pfn);
2177 extern void sparse_memory_present_with_active_regions(int nid);
2178 
2179 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2180 
2181 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2182     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2183 static inline int __early_pfn_to_nid(unsigned long pfn,
2184 					struct mminit_pfnnid_cache *state)
2185 {
2186 	return 0;
2187 }
2188 #else
2189 /* please see mm/page_alloc.c */
2190 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2191 /* there is a per-arch backend function. */
2192 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2193 					struct mminit_pfnnid_cache *state);
2194 #endif
2195 
2196 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
2197 void zero_resv_unavail(void);
2198 #else
2199 static inline void zero_resv_unavail(void) {}
2200 #endif
2201 
2202 extern void set_dma_reserve(unsigned long new_dma_reserve);
2203 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2204 		enum memmap_context, struct vmem_altmap *);
2205 extern void setup_per_zone_wmarks(void);
2206 extern int __meminit init_per_zone_wmark_min(void);
2207 extern void mem_init(void);
2208 extern void __init mmap_init(void);
2209 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2210 extern long si_mem_available(void);
2211 extern void si_meminfo(struct sysinfo * val);
2212 extern void si_meminfo_node(struct sysinfo *val, int nid);
2213 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2214 extern unsigned long arch_reserved_kernel_pages(void);
2215 #endif
2216 
2217 extern __printf(3, 4)
2218 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2219 
2220 extern void setup_per_cpu_pageset(void);
2221 
2222 extern void zone_pcp_update(struct zone *zone);
2223 extern void zone_pcp_reset(struct zone *zone);
2224 
2225 /* page_alloc.c */
2226 extern int min_free_kbytes;
2227 extern int watermark_boost_factor;
2228 extern int watermark_scale_factor;
2229 
2230 /* nommu.c */
2231 extern atomic_long_t mmap_pages_allocated;
2232 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2233 
2234 /* interval_tree.c */
2235 void vma_interval_tree_insert(struct vm_area_struct *node,
2236 			      struct rb_root_cached *root);
2237 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2238 				    struct vm_area_struct *prev,
2239 				    struct rb_root_cached *root);
2240 void vma_interval_tree_remove(struct vm_area_struct *node,
2241 			      struct rb_root_cached *root);
2242 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2243 				unsigned long start, unsigned long last);
2244 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2245 				unsigned long start, unsigned long last);
2246 
2247 #define vma_interval_tree_foreach(vma, root, start, last)		\
2248 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2249 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2250 
2251 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2252 				   struct rb_root_cached *root);
2253 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2254 				   struct rb_root_cached *root);
2255 struct anon_vma_chain *
2256 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2257 				  unsigned long start, unsigned long last);
2258 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2259 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2260 #ifdef CONFIG_DEBUG_VM_RB
2261 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2262 #endif
2263 
2264 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2265 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2266 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2267 
2268 /* mmap.c */
2269 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2270 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2271 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2272 	struct vm_area_struct *expand);
2273 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2274 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2275 {
2276 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2277 }
2278 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2279 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2280 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2281 	struct mempolicy *, struct vm_userfaultfd_ctx);
2282 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2283 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2284 	unsigned long addr, int new_below);
2285 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2286 	unsigned long addr, int new_below);
2287 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2288 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2289 	struct rb_node **, struct rb_node *);
2290 extern void unlink_file_vma(struct vm_area_struct *);
2291 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2292 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2293 	bool *need_rmap_locks);
2294 extern void exit_mmap(struct mm_struct *);
2295 
2296 static inline int check_data_rlimit(unsigned long rlim,
2297 				    unsigned long new,
2298 				    unsigned long start,
2299 				    unsigned long end_data,
2300 				    unsigned long start_data)
2301 {
2302 	if (rlim < RLIM_INFINITY) {
2303 		if (((new - start) + (end_data - start_data)) > rlim)
2304 			return -ENOSPC;
2305 	}
2306 
2307 	return 0;
2308 }
2309 
2310 extern int mm_take_all_locks(struct mm_struct *mm);
2311 extern void mm_drop_all_locks(struct mm_struct *mm);
2312 
2313 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2314 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2315 extern struct file *get_task_exe_file(struct task_struct *task);
2316 
2317 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2318 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2319 
2320 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2321 				   const struct vm_special_mapping *sm);
2322 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2323 				   unsigned long addr, unsigned long len,
2324 				   unsigned long flags,
2325 				   const struct vm_special_mapping *spec);
2326 /* This is an obsolete alternative to _install_special_mapping. */
2327 extern int install_special_mapping(struct mm_struct *mm,
2328 				   unsigned long addr, unsigned long len,
2329 				   unsigned long flags, struct page **pages);
2330 
2331 unsigned long randomize_stack_top(unsigned long stack_top);
2332 
2333 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2334 
2335 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2336 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2337 	struct list_head *uf);
2338 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2339 	unsigned long len, unsigned long prot, unsigned long flags,
2340 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2341 	struct list_head *uf);
2342 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2343 		       struct list_head *uf, bool downgrade);
2344 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2345 		     struct list_head *uf);
2346 
2347 static inline unsigned long
2348 do_mmap_pgoff(struct file *file, unsigned long addr,
2349 	unsigned long len, unsigned long prot, unsigned long flags,
2350 	unsigned long pgoff, unsigned long *populate,
2351 	struct list_head *uf)
2352 {
2353 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2354 }
2355 
2356 #ifdef CONFIG_MMU
2357 extern int __mm_populate(unsigned long addr, unsigned long len,
2358 			 int ignore_errors);
2359 static inline void mm_populate(unsigned long addr, unsigned long len)
2360 {
2361 	/* Ignore errors */
2362 	(void) __mm_populate(addr, len, 1);
2363 }
2364 #else
2365 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2366 #endif
2367 
2368 /* These take the mm semaphore themselves */
2369 extern int __must_check vm_brk(unsigned long, unsigned long);
2370 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2371 extern int vm_munmap(unsigned long, size_t);
2372 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2373         unsigned long, unsigned long,
2374         unsigned long, unsigned long);
2375 
2376 struct vm_unmapped_area_info {
2377 #define VM_UNMAPPED_AREA_TOPDOWN 1
2378 	unsigned long flags;
2379 	unsigned long length;
2380 	unsigned long low_limit;
2381 	unsigned long high_limit;
2382 	unsigned long align_mask;
2383 	unsigned long align_offset;
2384 };
2385 
2386 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2387 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2388 
2389 /*
2390  * Search for an unmapped address range.
2391  *
2392  * We are looking for a range that:
2393  * - does not intersect with any VMA;
2394  * - is contained within the [low_limit, high_limit) interval;
2395  * - is at least the desired size.
2396  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2397  */
2398 static inline unsigned long
2399 vm_unmapped_area(struct vm_unmapped_area_info *info)
2400 {
2401 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2402 		return unmapped_area_topdown(info);
2403 	else
2404 		return unmapped_area(info);
2405 }
2406 
2407 /* truncate.c */
2408 extern void truncate_inode_pages(struct address_space *, loff_t);
2409 extern void truncate_inode_pages_range(struct address_space *,
2410 				       loff_t lstart, loff_t lend);
2411 extern void truncate_inode_pages_final(struct address_space *);
2412 
2413 /* generic vm_area_ops exported for stackable file systems */
2414 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2415 extern void filemap_map_pages(struct vm_fault *vmf,
2416 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2417 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2418 
2419 /* mm/page-writeback.c */
2420 int __must_check write_one_page(struct page *page);
2421 void task_dirty_inc(struct task_struct *tsk);
2422 
2423 /* readahead.c */
2424 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2425 
2426 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2427 			pgoff_t offset, unsigned long nr_to_read);
2428 
2429 void page_cache_sync_readahead(struct address_space *mapping,
2430 			       struct file_ra_state *ra,
2431 			       struct file *filp,
2432 			       pgoff_t offset,
2433 			       unsigned long size);
2434 
2435 void page_cache_async_readahead(struct address_space *mapping,
2436 				struct file_ra_state *ra,
2437 				struct file *filp,
2438 				struct page *pg,
2439 				pgoff_t offset,
2440 				unsigned long size);
2441 
2442 extern unsigned long stack_guard_gap;
2443 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2444 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2445 
2446 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2447 extern int expand_downwards(struct vm_area_struct *vma,
2448 		unsigned long address);
2449 #if VM_GROWSUP
2450 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2451 #else
2452   #define expand_upwards(vma, address) (0)
2453 #endif
2454 
2455 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2456 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2457 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2458 					     struct vm_area_struct **pprev);
2459 
2460 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2461    NULL if none.  Assume start_addr < end_addr. */
2462 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2463 {
2464 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2465 
2466 	if (vma && end_addr <= vma->vm_start)
2467 		vma = NULL;
2468 	return vma;
2469 }
2470 
2471 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2472 {
2473 	unsigned long vm_start = vma->vm_start;
2474 
2475 	if (vma->vm_flags & VM_GROWSDOWN) {
2476 		vm_start -= stack_guard_gap;
2477 		if (vm_start > vma->vm_start)
2478 			vm_start = 0;
2479 	}
2480 	return vm_start;
2481 }
2482 
2483 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2484 {
2485 	unsigned long vm_end = vma->vm_end;
2486 
2487 	if (vma->vm_flags & VM_GROWSUP) {
2488 		vm_end += stack_guard_gap;
2489 		if (vm_end < vma->vm_end)
2490 			vm_end = -PAGE_SIZE;
2491 	}
2492 	return vm_end;
2493 }
2494 
2495 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2496 {
2497 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2498 }
2499 
2500 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2501 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2502 				unsigned long vm_start, unsigned long vm_end)
2503 {
2504 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2505 
2506 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2507 		vma = NULL;
2508 
2509 	return vma;
2510 }
2511 
2512 static inline bool range_in_vma(struct vm_area_struct *vma,
2513 				unsigned long start, unsigned long end)
2514 {
2515 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2516 }
2517 
2518 #ifdef CONFIG_MMU
2519 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2520 void vma_set_page_prot(struct vm_area_struct *vma);
2521 #else
2522 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2523 {
2524 	return __pgprot(0);
2525 }
2526 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2527 {
2528 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2529 }
2530 #endif
2531 
2532 #ifdef CONFIG_NUMA_BALANCING
2533 unsigned long change_prot_numa(struct vm_area_struct *vma,
2534 			unsigned long start, unsigned long end);
2535 #endif
2536 
2537 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2538 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2539 			unsigned long pfn, unsigned long size, pgprot_t);
2540 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2541 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2542 				unsigned long num);
2543 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2544 				unsigned long num);
2545 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2546 			unsigned long pfn);
2547 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2548 			unsigned long pfn, pgprot_t pgprot);
2549 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2550 			pfn_t pfn);
2551 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2552 		unsigned long addr, pfn_t pfn);
2553 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2554 
2555 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2556 				unsigned long addr, struct page *page)
2557 {
2558 	int err = vm_insert_page(vma, addr, page);
2559 
2560 	if (err == -ENOMEM)
2561 		return VM_FAULT_OOM;
2562 	if (err < 0 && err != -EBUSY)
2563 		return VM_FAULT_SIGBUS;
2564 
2565 	return VM_FAULT_NOPAGE;
2566 }
2567 
2568 static inline vm_fault_t vmf_error(int err)
2569 {
2570 	if (err == -ENOMEM)
2571 		return VM_FAULT_OOM;
2572 	return VM_FAULT_SIGBUS;
2573 }
2574 
2575 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2576 			 unsigned int foll_flags);
2577 
2578 #define FOLL_WRITE	0x01	/* check pte is writable */
2579 #define FOLL_TOUCH	0x02	/* mark page accessed */
2580 #define FOLL_GET	0x04	/* do get_page on page */
2581 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2582 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2583 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2584 				 * and return without waiting upon it */
2585 #define FOLL_POPULATE	0x40	/* fault in page */
2586 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2587 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2588 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2589 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2590 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2591 #define FOLL_MLOCK	0x1000	/* lock present pages */
2592 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2593 #define FOLL_COW	0x4000	/* internal GUP flag */
2594 #define FOLL_ANON	0x8000	/* don't do file mappings */
2595 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2596 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2597 
2598 /*
2599  * NOTE on FOLL_LONGTERM:
2600  *
2601  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2602  * period _often_ under userspace control.  This is contrasted with
2603  * iov_iter_get_pages() where usages which are transient.
2604  *
2605  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2606  * lifetime enforced by the filesystem and we need guarantees that longterm
2607  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2608  * the filesystem.  Ideas for this coordination include revoking the longterm
2609  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2610  * added after the problem with filesystems was found FS DAX VMAs are
2611  * specifically failed.  Filesystem pages are still subject to bugs and use of
2612  * FOLL_LONGTERM should be avoided on those pages.
2613  *
2614  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2615  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2616  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2617  * is due to an incompatibility with the FS DAX check and
2618  * FAULT_FLAG_ALLOW_RETRY
2619  *
2620  * In the CMA case: longterm pins in a CMA region would unnecessarily fragment
2621  * that region.  And so CMA attempts to migrate the page before pinning when
2622  * FOLL_LONGTERM is specified.
2623  */
2624 
2625 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2626 {
2627 	if (vm_fault & VM_FAULT_OOM)
2628 		return -ENOMEM;
2629 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2630 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2631 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2632 		return -EFAULT;
2633 	return 0;
2634 }
2635 
2636 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2637 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2638 			       unsigned long size, pte_fn_t fn, void *data);
2639 
2640 
2641 #ifdef CONFIG_PAGE_POISONING
2642 extern bool page_poisoning_enabled(void);
2643 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2644 #else
2645 static inline bool page_poisoning_enabled(void) { return false; }
2646 static inline void kernel_poison_pages(struct page *page, int numpages,
2647 					int enable) { }
2648 #endif
2649 
2650 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2651 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2652 #else
2653 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2654 #endif
2655 static inline bool want_init_on_alloc(gfp_t flags)
2656 {
2657 	if (static_branch_unlikely(&init_on_alloc) &&
2658 	    !page_poisoning_enabled())
2659 		return true;
2660 	return flags & __GFP_ZERO;
2661 }
2662 
2663 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2664 DECLARE_STATIC_KEY_TRUE(init_on_free);
2665 #else
2666 DECLARE_STATIC_KEY_FALSE(init_on_free);
2667 #endif
2668 static inline bool want_init_on_free(void)
2669 {
2670 	return static_branch_unlikely(&init_on_free) &&
2671 	       !page_poisoning_enabled();
2672 }
2673 
2674 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
2675 DECLARE_STATIC_KEY_TRUE(_debug_pagealloc_enabled);
2676 #else
2677 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2678 #endif
2679 
2680 static inline bool debug_pagealloc_enabled(void)
2681 {
2682 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2683 		return false;
2684 
2685 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2686 }
2687 
2688 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2689 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2690 
2691 static inline void
2692 kernel_map_pages(struct page *page, int numpages, int enable)
2693 {
2694 	__kernel_map_pages(page, numpages, enable);
2695 }
2696 #ifdef CONFIG_HIBERNATION
2697 extern bool kernel_page_present(struct page *page);
2698 #endif	/* CONFIG_HIBERNATION */
2699 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2700 static inline void
2701 kernel_map_pages(struct page *page, int numpages, int enable) {}
2702 #ifdef CONFIG_HIBERNATION
2703 static inline bool kernel_page_present(struct page *page) { return true; }
2704 #endif	/* CONFIG_HIBERNATION */
2705 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2706 
2707 #ifdef __HAVE_ARCH_GATE_AREA
2708 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2709 extern int in_gate_area_no_mm(unsigned long addr);
2710 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2711 #else
2712 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2713 {
2714 	return NULL;
2715 }
2716 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2717 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2718 {
2719 	return 0;
2720 }
2721 #endif	/* __HAVE_ARCH_GATE_AREA */
2722 
2723 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2724 
2725 #ifdef CONFIG_SYSCTL
2726 extern int sysctl_drop_caches;
2727 int drop_caches_sysctl_handler(struct ctl_table *, int,
2728 					void __user *, size_t *, loff_t *);
2729 #endif
2730 
2731 void drop_slab(void);
2732 void drop_slab_node(int nid);
2733 
2734 #ifndef CONFIG_MMU
2735 #define randomize_va_space 0
2736 #else
2737 extern int randomize_va_space;
2738 #endif
2739 
2740 const char * arch_vma_name(struct vm_area_struct *vma);
2741 #ifdef CONFIG_MMU
2742 void print_vma_addr(char *prefix, unsigned long rip);
2743 #else
2744 static inline void print_vma_addr(char *prefix, unsigned long rip)
2745 {
2746 }
2747 #endif
2748 
2749 void *sparse_buffer_alloc(unsigned long size);
2750 struct page * __populate_section_memmap(unsigned long pfn,
2751 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2752 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2753 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2754 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2755 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2756 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2757 void *vmemmap_alloc_block(unsigned long size, int node);
2758 struct vmem_altmap;
2759 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2760 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2761 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2762 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2763 			       int node);
2764 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2765 		struct vmem_altmap *altmap);
2766 void vmemmap_populate_print_last(void);
2767 #ifdef CONFIG_MEMORY_HOTPLUG
2768 void vmemmap_free(unsigned long start, unsigned long end,
2769 		struct vmem_altmap *altmap);
2770 #endif
2771 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2772 				  unsigned long nr_pages);
2773 
2774 enum mf_flags {
2775 	MF_COUNT_INCREASED = 1 << 0,
2776 	MF_ACTION_REQUIRED = 1 << 1,
2777 	MF_MUST_KILL = 1 << 2,
2778 	MF_SOFT_OFFLINE = 1 << 3,
2779 };
2780 extern int memory_failure(unsigned long pfn, int flags);
2781 extern void memory_failure_queue(unsigned long pfn, int flags);
2782 extern int unpoison_memory(unsigned long pfn);
2783 extern int get_hwpoison_page(struct page *page);
2784 #define put_hwpoison_page(page)	put_page(page)
2785 extern int sysctl_memory_failure_early_kill;
2786 extern int sysctl_memory_failure_recovery;
2787 extern void shake_page(struct page *p, int access);
2788 extern atomic_long_t num_poisoned_pages __read_mostly;
2789 extern int soft_offline_page(struct page *page, int flags);
2790 
2791 
2792 /*
2793  * Error handlers for various types of pages.
2794  */
2795 enum mf_result {
2796 	MF_IGNORED,	/* Error: cannot be handled */
2797 	MF_FAILED,	/* Error: handling failed */
2798 	MF_DELAYED,	/* Will be handled later */
2799 	MF_RECOVERED,	/* Successfully recovered */
2800 };
2801 
2802 enum mf_action_page_type {
2803 	MF_MSG_KERNEL,
2804 	MF_MSG_KERNEL_HIGH_ORDER,
2805 	MF_MSG_SLAB,
2806 	MF_MSG_DIFFERENT_COMPOUND,
2807 	MF_MSG_POISONED_HUGE,
2808 	MF_MSG_HUGE,
2809 	MF_MSG_FREE_HUGE,
2810 	MF_MSG_NON_PMD_HUGE,
2811 	MF_MSG_UNMAP_FAILED,
2812 	MF_MSG_DIRTY_SWAPCACHE,
2813 	MF_MSG_CLEAN_SWAPCACHE,
2814 	MF_MSG_DIRTY_MLOCKED_LRU,
2815 	MF_MSG_CLEAN_MLOCKED_LRU,
2816 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2817 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2818 	MF_MSG_DIRTY_LRU,
2819 	MF_MSG_CLEAN_LRU,
2820 	MF_MSG_TRUNCATED_LRU,
2821 	MF_MSG_BUDDY,
2822 	MF_MSG_BUDDY_2ND,
2823 	MF_MSG_DAX,
2824 	MF_MSG_UNKNOWN,
2825 };
2826 
2827 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2828 extern void clear_huge_page(struct page *page,
2829 			    unsigned long addr_hint,
2830 			    unsigned int pages_per_huge_page);
2831 extern void copy_user_huge_page(struct page *dst, struct page *src,
2832 				unsigned long addr_hint,
2833 				struct vm_area_struct *vma,
2834 				unsigned int pages_per_huge_page);
2835 extern long copy_huge_page_from_user(struct page *dst_page,
2836 				const void __user *usr_src,
2837 				unsigned int pages_per_huge_page,
2838 				bool allow_pagefault);
2839 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2840 
2841 #ifdef CONFIG_DEBUG_PAGEALLOC
2842 extern unsigned int _debug_guardpage_minorder;
2843 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2844 
2845 static inline unsigned int debug_guardpage_minorder(void)
2846 {
2847 	return _debug_guardpage_minorder;
2848 }
2849 
2850 static inline bool debug_guardpage_enabled(void)
2851 {
2852 	return static_branch_unlikely(&_debug_guardpage_enabled);
2853 }
2854 
2855 static inline bool page_is_guard(struct page *page)
2856 {
2857 	if (!debug_guardpage_enabled())
2858 		return false;
2859 
2860 	return PageGuard(page);
2861 }
2862 #else
2863 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2864 static inline bool debug_guardpage_enabled(void) { return false; }
2865 static inline bool page_is_guard(struct page *page) { return false; }
2866 #endif /* CONFIG_DEBUG_PAGEALLOC */
2867 
2868 #if MAX_NUMNODES > 1
2869 void __init setup_nr_node_ids(void);
2870 #else
2871 static inline void setup_nr_node_ids(void) {}
2872 #endif
2873 
2874 extern int memcmp_pages(struct page *page1, struct page *page2);
2875 
2876 static inline int pages_identical(struct page *page1, struct page *page2)
2877 {
2878 	return !memcmp_pages(page1, page2);
2879 }
2880 
2881 #endif /* __KERNEL__ */
2882 #endif /* _LINUX_MM_H */
2883