1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 #include <linux/slab.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct user_struct; 38 struct pt_regs; 39 40 extern int sysctl_page_lock_unfairness; 41 42 void mm_core_init(void); 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 extern const int page_cluster_max; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 #ifndef __pa_symbol 102 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 103 #endif 104 105 #ifndef page_to_virt 106 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 107 #endif 108 109 #ifndef lm_alias 110 #define lm_alias(x) __va(__pa_symbol(x)) 111 #endif 112 113 /* 114 * To prevent common memory management code establishing 115 * a zero page mapping on a read fault. 116 * This macro should be defined within <asm/pgtable.h>. 117 * s390 does this to prevent multiplexing of hardware bits 118 * related to the physical page in case of virtualization. 119 */ 120 #ifndef mm_forbids_zeropage 121 #define mm_forbids_zeropage(X) (0) 122 #endif 123 124 /* 125 * On some architectures it is expensive to call memset() for small sizes. 126 * If an architecture decides to implement their own version of 127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 128 * define their own version of this macro in <asm/pgtable.h> 129 */ 130 #if BITS_PER_LONG == 64 131 /* This function must be updated when the size of struct page grows above 96 132 * or reduces below 56. The idea that compiler optimizes out switch() 133 * statement, and only leaves move/store instructions. Also the compiler can 134 * combine write statements if they are both assignments and can be reordered, 135 * this can result in several of the writes here being dropped. 136 */ 137 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 138 static inline void __mm_zero_struct_page(struct page *page) 139 { 140 unsigned long *_pp = (void *)page; 141 142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */ 143 BUILD_BUG_ON(sizeof(struct page) & 7); 144 BUILD_BUG_ON(sizeof(struct page) < 56); 145 BUILD_BUG_ON(sizeof(struct page) > 96); 146 147 switch (sizeof(struct page)) { 148 case 96: 149 _pp[11] = 0; 150 fallthrough; 151 case 88: 152 _pp[10] = 0; 153 fallthrough; 154 case 80: 155 _pp[9] = 0; 156 fallthrough; 157 case 72: 158 _pp[8] = 0; 159 fallthrough; 160 case 64: 161 _pp[7] = 0; 162 fallthrough; 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 215 #else 216 #define nth_page(page,n) ((page) + (n)) 217 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 218 #endif 219 220 /* to align the pointer to the (next) page boundary */ 221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 222 223 /* to align the pointer to the (prev) page boundary */ 224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 225 226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 227 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 228 229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 230 static inline struct folio *lru_to_folio(struct list_head *head) 231 { 232 return list_entry((head)->prev, struct folio, lru); 233 } 234 235 void setup_initial_init_mm(void *start_code, void *end_code, 236 void *end_data, void *brk); 237 238 /* 239 * Linux kernel virtual memory manager primitives. 240 * The idea being to have a "virtual" mm in the same way 241 * we have a virtual fs - giving a cleaner interface to the 242 * mm details, and allowing different kinds of memory mappings 243 * (from shared memory to executable loading to arbitrary 244 * mmap() functions). 245 */ 246 247 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 249 void vm_area_free(struct vm_area_struct *); 250 /* Use only if VMA has no other users */ 251 void __vm_area_free(struct vm_area_struct *vma); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #ifdef CONFIG_MMU 279 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 280 #else /* CONFIG_MMU */ 281 #define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */ 282 #define VM_UFFD_MISSING 0 283 #endif /* CONFIG_MMU */ 284 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 285 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 286 287 #define VM_LOCKED 0x00002000 288 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 289 290 /* Used by sys_madvise() */ 291 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 292 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 293 294 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 295 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 296 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 297 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 298 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 299 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 300 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 301 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 302 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 303 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 304 305 #ifdef CONFIG_MEM_SOFT_DIRTY 306 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 307 #else 308 # define VM_SOFTDIRTY 0 309 #endif 310 311 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 312 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 313 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 314 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 315 316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 317 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 318 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 319 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 320 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 321 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 322 #define VM_HIGH_ARCH_BIT_5 37 /* bit only usable on 64-bit architectures */ 323 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 324 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 325 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 326 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 327 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 328 #define VM_HIGH_ARCH_5 BIT(VM_HIGH_ARCH_BIT_5) 329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 330 331 #ifdef CONFIG_ARCH_HAS_PKEYS 332 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 333 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 334 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 335 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 336 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 337 #ifdef CONFIG_PPC 338 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 339 #else 340 # define VM_PKEY_BIT4 0 341 #endif 342 #endif /* CONFIG_ARCH_HAS_PKEYS */ 343 344 #ifdef CONFIG_X86_USER_SHADOW_STACK 345 /* 346 * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of 347 * support core mm. 348 * 349 * These VMAs will get a single end guard page. This helps userspace protect 350 * itself from attacks. A single page is enough for current shadow stack archs 351 * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c 352 * for more details on the guard size. 353 */ 354 # define VM_SHADOW_STACK VM_HIGH_ARCH_5 355 #else 356 # define VM_SHADOW_STACK VM_NONE 357 #endif 358 359 #if defined(CONFIG_X86) 360 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 361 #elif defined(CONFIG_PPC) 362 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 363 #elif defined(CONFIG_PARISC) 364 # define VM_GROWSUP VM_ARCH_1 365 #elif defined(CONFIG_SPARC64) 366 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 367 # define VM_ARCH_CLEAR VM_SPARC_ADI 368 #elif defined(CONFIG_ARM64) 369 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 370 # define VM_ARCH_CLEAR VM_ARM64_BTI 371 #elif !defined(CONFIG_MMU) 372 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 373 #endif 374 375 #if defined(CONFIG_ARM64_MTE) 376 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 377 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 378 #else 379 # define VM_MTE VM_NONE 380 # define VM_MTE_ALLOWED VM_NONE 381 #endif 382 383 #ifndef VM_GROWSUP 384 # define VM_GROWSUP VM_NONE 385 #endif 386 387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 388 # define VM_UFFD_MINOR_BIT 38 389 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 391 # define VM_UFFD_MINOR VM_NONE 392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 393 394 /* Bits set in the VMA until the stack is in its final location */ 395 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY) 396 397 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 398 399 /* Common data flag combinations */ 400 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 401 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 402 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 403 VM_MAYWRITE | VM_MAYEXEC) 404 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 405 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 406 407 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 408 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 409 #endif 410 411 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 412 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 413 #endif 414 415 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK) 416 417 #ifdef CONFIG_STACK_GROWSUP 418 #define VM_STACK VM_GROWSUP 419 #define VM_STACK_EARLY VM_GROWSDOWN 420 #else 421 #define VM_STACK VM_GROWSDOWN 422 #define VM_STACK_EARLY 0 423 #endif 424 425 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 426 427 /* VMA basic access permission flags */ 428 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 429 430 431 /* 432 * Special vmas that are non-mergable, non-mlock()able. 433 */ 434 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 435 436 /* This mask prevents VMA from being scanned with khugepaged */ 437 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 438 439 /* This mask defines which mm->def_flags a process can inherit its parent */ 440 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 441 442 /* This mask represents all the VMA flag bits used by mlock */ 443 #define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT) 444 445 /* Arch-specific flags to clear when updating VM flags on protection change */ 446 #ifndef VM_ARCH_CLEAR 447 # define VM_ARCH_CLEAR VM_NONE 448 #endif 449 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 450 451 /* 452 * mapping from the currently active vm_flags protection bits (the 453 * low four bits) to a page protection mask.. 454 */ 455 456 /* 457 * The default fault flags that should be used by most of the 458 * arch-specific page fault handlers. 459 */ 460 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 461 FAULT_FLAG_KILLABLE | \ 462 FAULT_FLAG_INTERRUPTIBLE) 463 464 /** 465 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 466 * @flags: Fault flags. 467 * 468 * This is mostly used for places where we want to try to avoid taking 469 * the mmap_lock for too long a time when waiting for another condition 470 * to change, in which case we can try to be polite to release the 471 * mmap_lock in the first round to avoid potential starvation of other 472 * processes that would also want the mmap_lock. 473 * 474 * Return: true if the page fault allows retry and this is the first 475 * attempt of the fault handling; false otherwise. 476 */ 477 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 478 { 479 return (flags & FAULT_FLAG_ALLOW_RETRY) && 480 (!(flags & FAULT_FLAG_TRIED)); 481 } 482 483 #define FAULT_FLAG_TRACE \ 484 { FAULT_FLAG_WRITE, "WRITE" }, \ 485 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 486 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 487 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 488 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 489 { FAULT_FLAG_TRIED, "TRIED" }, \ 490 { FAULT_FLAG_USER, "USER" }, \ 491 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 492 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 493 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \ 494 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" } 495 496 /* 497 * vm_fault is filled by the pagefault handler and passed to the vma's 498 * ->fault function. The vma's ->fault is responsible for returning a bitmask 499 * of VM_FAULT_xxx flags that give details about how the fault was handled. 500 * 501 * MM layer fills up gfp_mask for page allocations but fault handler might 502 * alter it if its implementation requires a different allocation context. 503 * 504 * pgoff should be used in favour of virtual_address, if possible. 505 */ 506 struct vm_fault { 507 const struct { 508 struct vm_area_struct *vma; /* Target VMA */ 509 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 510 pgoff_t pgoff; /* Logical page offset based on vma */ 511 unsigned long address; /* Faulting virtual address - masked */ 512 unsigned long real_address; /* Faulting virtual address - unmasked */ 513 }; 514 enum fault_flag flags; /* FAULT_FLAG_xxx flags 515 * XXX: should really be 'const' */ 516 pmd_t *pmd; /* Pointer to pmd entry matching 517 * the 'address' */ 518 pud_t *pud; /* Pointer to pud entry matching 519 * the 'address' 520 */ 521 union { 522 pte_t orig_pte; /* Value of PTE at the time of fault */ 523 pmd_t orig_pmd; /* Value of PMD at the time of fault, 524 * used by PMD fault only. 525 */ 526 }; 527 528 struct page *cow_page; /* Page handler may use for COW fault */ 529 struct page *page; /* ->fault handlers should return a 530 * page here, unless VM_FAULT_NOPAGE 531 * is set (which is also implied by 532 * VM_FAULT_ERROR). 533 */ 534 /* These three entries are valid only while holding ptl lock */ 535 pte_t *pte; /* Pointer to pte entry matching 536 * the 'address'. NULL if the page 537 * table hasn't been allocated. 538 */ 539 spinlock_t *ptl; /* Page table lock. 540 * Protects pte page table if 'pte' 541 * is not NULL, otherwise pmd. 542 */ 543 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 544 * vm_ops->map_pages() sets up a page 545 * table from atomic context. 546 * do_fault_around() pre-allocates 547 * page table to avoid allocation from 548 * atomic context. 549 */ 550 }; 551 552 /* 553 * These are the virtual MM functions - opening of an area, closing and 554 * unmapping it (needed to keep files on disk up-to-date etc), pointer 555 * to the functions called when a no-page or a wp-page exception occurs. 556 */ 557 struct vm_operations_struct { 558 void (*open)(struct vm_area_struct * area); 559 /** 560 * @close: Called when the VMA is being removed from the MM. 561 * Context: User context. May sleep. Caller holds mmap_lock. 562 */ 563 void (*close)(struct vm_area_struct * area); 564 /* Called any time before splitting to check if it's allowed */ 565 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 566 int (*mremap)(struct vm_area_struct *area); 567 /* 568 * Called by mprotect() to make driver-specific permission 569 * checks before mprotect() is finalised. The VMA must not 570 * be modified. Returns 0 if mprotect() can proceed. 571 */ 572 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 573 unsigned long end, unsigned long newflags); 574 vm_fault_t (*fault)(struct vm_fault *vmf); 575 vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order); 576 vm_fault_t (*map_pages)(struct vm_fault *vmf, 577 pgoff_t start_pgoff, pgoff_t end_pgoff); 578 unsigned long (*pagesize)(struct vm_area_struct * area); 579 580 /* notification that a previously read-only page is about to become 581 * writable, if an error is returned it will cause a SIGBUS */ 582 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 583 584 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 585 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 586 587 /* called by access_process_vm when get_user_pages() fails, typically 588 * for use by special VMAs. See also generic_access_phys() for a generic 589 * implementation useful for any iomem mapping. 590 */ 591 int (*access)(struct vm_area_struct *vma, unsigned long addr, 592 void *buf, int len, int write); 593 594 /* Called by the /proc/PID/maps code to ask the vma whether it 595 * has a special name. Returning non-NULL will also cause this 596 * vma to be dumped unconditionally. */ 597 const char *(*name)(struct vm_area_struct *vma); 598 599 #ifdef CONFIG_NUMA 600 /* 601 * set_policy() op must add a reference to any non-NULL @new mempolicy 602 * to hold the policy upon return. Caller should pass NULL @new to 603 * remove a policy and fall back to surrounding context--i.e. do not 604 * install a MPOL_DEFAULT policy, nor the task or system default 605 * mempolicy. 606 */ 607 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 608 609 /* 610 * get_policy() op must add reference [mpol_get()] to any policy at 611 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 612 * in mm/mempolicy.c will do this automatically. 613 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 614 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 615 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 616 * must return NULL--i.e., do not "fallback" to task or system default 617 * policy. 618 */ 619 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 620 unsigned long addr); 621 #endif 622 /* 623 * Called by vm_normal_page() for special PTEs to find the 624 * page for @addr. This is useful if the default behavior 625 * (using pte_page()) would not find the correct page. 626 */ 627 struct page *(*find_special_page)(struct vm_area_struct *vma, 628 unsigned long addr); 629 }; 630 631 #ifdef CONFIG_NUMA_BALANCING 632 static inline void vma_numab_state_init(struct vm_area_struct *vma) 633 { 634 vma->numab_state = NULL; 635 } 636 static inline void vma_numab_state_free(struct vm_area_struct *vma) 637 { 638 kfree(vma->numab_state); 639 } 640 #else 641 static inline void vma_numab_state_init(struct vm_area_struct *vma) {} 642 static inline void vma_numab_state_free(struct vm_area_struct *vma) {} 643 #endif /* CONFIG_NUMA_BALANCING */ 644 645 #ifdef CONFIG_PER_VMA_LOCK 646 /* 647 * Try to read-lock a vma. The function is allowed to occasionally yield false 648 * locked result to avoid performance overhead, in which case we fall back to 649 * using mmap_lock. The function should never yield false unlocked result. 650 */ 651 static inline bool vma_start_read(struct vm_area_struct *vma) 652 { 653 /* 654 * Check before locking. A race might cause false locked result. 655 * We can use READ_ONCE() for the mm_lock_seq here, and don't need 656 * ACQUIRE semantics, because this is just a lockless check whose result 657 * we don't rely on for anything - the mm_lock_seq read against which we 658 * need ordering is below. 659 */ 660 if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq)) 661 return false; 662 663 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0)) 664 return false; 665 666 /* 667 * Overflow might produce false locked result. 668 * False unlocked result is impossible because we modify and check 669 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq 670 * modification invalidates all existing locks. 671 * 672 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are 673 * racing with vma_end_write_all(), we only start reading from the VMA 674 * after it has been unlocked. 675 * This pairs with RELEASE semantics in vma_end_write_all(). 676 */ 677 if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) { 678 up_read(&vma->vm_lock->lock); 679 return false; 680 } 681 return true; 682 } 683 684 static inline void vma_end_read(struct vm_area_struct *vma) 685 { 686 rcu_read_lock(); /* keeps vma alive till the end of up_read */ 687 up_read(&vma->vm_lock->lock); 688 rcu_read_unlock(); 689 } 690 691 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */ 692 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq) 693 { 694 mmap_assert_write_locked(vma->vm_mm); 695 696 /* 697 * current task is holding mmap_write_lock, both vma->vm_lock_seq and 698 * mm->mm_lock_seq can't be concurrently modified. 699 */ 700 *mm_lock_seq = vma->vm_mm->mm_lock_seq; 701 return (vma->vm_lock_seq == *mm_lock_seq); 702 } 703 704 /* 705 * Begin writing to a VMA. 706 * Exclude concurrent readers under the per-VMA lock until the currently 707 * write-locked mmap_lock is dropped or downgraded. 708 */ 709 static inline void vma_start_write(struct vm_area_struct *vma) 710 { 711 int mm_lock_seq; 712 713 if (__is_vma_write_locked(vma, &mm_lock_seq)) 714 return; 715 716 down_write(&vma->vm_lock->lock); 717 /* 718 * We should use WRITE_ONCE() here because we can have concurrent reads 719 * from the early lockless pessimistic check in vma_start_read(). 720 * We don't really care about the correctness of that early check, but 721 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy. 722 */ 723 WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq); 724 up_write(&vma->vm_lock->lock); 725 } 726 727 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 728 { 729 int mm_lock_seq; 730 731 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma); 732 } 733 734 static inline void vma_assert_locked(struct vm_area_struct *vma) 735 { 736 if (!rwsem_is_locked(&vma->vm_lock->lock)) 737 vma_assert_write_locked(vma); 738 } 739 740 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached) 741 { 742 /* When detaching vma should be write-locked */ 743 if (detached) 744 vma_assert_write_locked(vma); 745 vma->detached = detached; 746 } 747 748 static inline void release_fault_lock(struct vm_fault *vmf) 749 { 750 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 751 vma_end_read(vmf->vma); 752 else 753 mmap_read_unlock(vmf->vma->vm_mm); 754 } 755 756 static inline void assert_fault_locked(struct vm_fault *vmf) 757 { 758 if (vmf->flags & FAULT_FLAG_VMA_LOCK) 759 vma_assert_locked(vmf->vma); 760 else 761 mmap_assert_locked(vmf->vma->vm_mm); 762 } 763 764 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 765 unsigned long address); 766 767 #else /* CONFIG_PER_VMA_LOCK */ 768 769 static inline bool vma_start_read(struct vm_area_struct *vma) 770 { return false; } 771 static inline void vma_end_read(struct vm_area_struct *vma) {} 772 static inline void vma_start_write(struct vm_area_struct *vma) {} 773 static inline void vma_assert_write_locked(struct vm_area_struct *vma) 774 { mmap_assert_write_locked(vma->vm_mm); } 775 static inline void vma_mark_detached(struct vm_area_struct *vma, 776 bool detached) {} 777 778 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm, 779 unsigned long address) 780 { 781 return NULL; 782 } 783 784 static inline void release_fault_lock(struct vm_fault *vmf) 785 { 786 mmap_read_unlock(vmf->vma->vm_mm); 787 } 788 789 static inline void assert_fault_locked(struct vm_fault *vmf) 790 { 791 mmap_assert_locked(vmf->vma->vm_mm); 792 } 793 794 #endif /* CONFIG_PER_VMA_LOCK */ 795 796 extern const struct vm_operations_struct vma_dummy_vm_ops; 797 798 /* 799 * WARNING: vma_init does not initialize vma->vm_lock. 800 * Use vm_area_alloc()/vm_area_free() if vma needs locking. 801 */ 802 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 803 { 804 memset(vma, 0, sizeof(*vma)); 805 vma->vm_mm = mm; 806 vma->vm_ops = &vma_dummy_vm_ops; 807 INIT_LIST_HEAD(&vma->anon_vma_chain); 808 vma_mark_detached(vma, false); 809 vma_numab_state_init(vma); 810 } 811 812 /* Use when VMA is not part of the VMA tree and needs no locking */ 813 static inline void vm_flags_init(struct vm_area_struct *vma, 814 vm_flags_t flags) 815 { 816 ACCESS_PRIVATE(vma, __vm_flags) = flags; 817 } 818 819 /* 820 * Use when VMA is part of the VMA tree and modifications need coordination 821 * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and 822 * it should be locked explicitly beforehand. 823 */ 824 static inline void vm_flags_reset(struct vm_area_struct *vma, 825 vm_flags_t flags) 826 { 827 vma_assert_write_locked(vma); 828 vm_flags_init(vma, flags); 829 } 830 831 static inline void vm_flags_reset_once(struct vm_area_struct *vma, 832 vm_flags_t flags) 833 { 834 vma_assert_write_locked(vma); 835 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags); 836 } 837 838 static inline void vm_flags_set(struct vm_area_struct *vma, 839 vm_flags_t flags) 840 { 841 vma_start_write(vma); 842 ACCESS_PRIVATE(vma, __vm_flags) |= flags; 843 } 844 845 static inline void vm_flags_clear(struct vm_area_struct *vma, 846 vm_flags_t flags) 847 { 848 vma_start_write(vma); 849 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags; 850 } 851 852 /* 853 * Use only if VMA is not part of the VMA tree or has no other users and 854 * therefore needs no locking. 855 */ 856 static inline void __vm_flags_mod(struct vm_area_struct *vma, 857 vm_flags_t set, vm_flags_t clear) 858 { 859 vm_flags_init(vma, (vma->vm_flags | set) & ~clear); 860 } 861 862 /* 863 * Use only when the order of set/clear operations is unimportant, otherwise 864 * use vm_flags_{set|clear} explicitly. 865 */ 866 static inline void vm_flags_mod(struct vm_area_struct *vma, 867 vm_flags_t set, vm_flags_t clear) 868 { 869 vma_start_write(vma); 870 __vm_flags_mod(vma, set, clear); 871 } 872 873 static inline void vma_set_anonymous(struct vm_area_struct *vma) 874 { 875 vma->vm_ops = NULL; 876 } 877 878 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 879 { 880 return !vma->vm_ops; 881 } 882 883 /* 884 * Indicate if the VMA is a heap for the given task; for 885 * /proc/PID/maps that is the heap of the main task. 886 */ 887 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma) 888 { 889 return vma->vm_start <= vma->vm_mm->brk && 890 vma->vm_end >= vma->vm_mm->start_brk; 891 } 892 893 /* 894 * Indicate if the VMA is a stack for the given task; for 895 * /proc/PID/maps that is the stack of the main task. 896 */ 897 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma) 898 { 899 /* 900 * We make no effort to guess what a given thread considers to be 901 * its "stack". It's not even well-defined for programs written 902 * languages like Go. 903 */ 904 return vma->vm_start <= vma->vm_mm->start_stack && 905 vma->vm_end >= vma->vm_mm->start_stack; 906 } 907 908 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 909 { 910 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 911 912 if (!maybe_stack) 913 return false; 914 915 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 916 VM_STACK_INCOMPLETE_SETUP) 917 return true; 918 919 return false; 920 } 921 922 static inline bool vma_is_foreign(struct vm_area_struct *vma) 923 { 924 if (!current->mm) 925 return true; 926 927 if (current->mm != vma->vm_mm) 928 return true; 929 930 return false; 931 } 932 933 static inline bool vma_is_accessible(struct vm_area_struct *vma) 934 { 935 return vma->vm_flags & VM_ACCESS_FLAGS; 936 } 937 938 static inline 939 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max) 940 { 941 return mas_find(&vmi->mas, max - 1); 942 } 943 944 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi) 945 { 946 /* 947 * Uses mas_find() to get the first VMA when the iterator starts. 948 * Calling mas_next() could skip the first entry. 949 */ 950 return mas_find(&vmi->mas, ULONG_MAX); 951 } 952 953 static inline 954 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi) 955 { 956 return mas_next_range(&vmi->mas, ULONG_MAX); 957 } 958 959 960 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi) 961 { 962 return mas_prev(&vmi->mas, 0); 963 } 964 965 static inline 966 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi) 967 { 968 return mas_prev_range(&vmi->mas, 0); 969 } 970 971 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi) 972 { 973 return vmi->mas.index; 974 } 975 976 static inline unsigned long vma_iter_end(struct vma_iterator *vmi) 977 { 978 return vmi->mas.last + 1; 979 } 980 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi, 981 unsigned long count) 982 { 983 return mas_expected_entries(&vmi->mas, count); 984 } 985 986 /* Free any unused preallocations */ 987 static inline void vma_iter_free(struct vma_iterator *vmi) 988 { 989 mas_destroy(&vmi->mas); 990 } 991 992 static inline int vma_iter_bulk_store(struct vma_iterator *vmi, 993 struct vm_area_struct *vma) 994 { 995 vmi->mas.index = vma->vm_start; 996 vmi->mas.last = vma->vm_end - 1; 997 mas_store(&vmi->mas, vma); 998 if (unlikely(mas_is_err(&vmi->mas))) 999 return -ENOMEM; 1000 1001 return 0; 1002 } 1003 1004 static inline void vma_iter_invalidate(struct vma_iterator *vmi) 1005 { 1006 mas_pause(&vmi->mas); 1007 } 1008 1009 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr) 1010 { 1011 mas_set(&vmi->mas, addr); 1012 } 1013 1014 #define for_each_vma(__vmi, __vma) \ 1015 while (((__vma) = vma_next(&(__vmi))) != NULL) 1016 1017 /* The MM code likes to work with exclusive end addresses */ 1018 #define for_each_vma_range(__vmi, __vma, __end) \ 1019 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL) 1020 1021 #ifdef CONFIG_SHMEM 1022 /* 1023 * The vma_is_shmem is not inline because it is used only by slow 1024 * paths in userfault. 1025 */ 1026 bool vma_is_shmem(struct vm_area_struct *vma); 1027 bool vma_is_anon_shmem(struct vm_area_struct *vma); 1028 #else 1029 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1030 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; } 1031 #endif 1032 1033 int vma_is_stack_for_current(struct vm_area_struct *vma); 1034 1035 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 1036 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 1037 1038 struct mmu_gather; 1039 struct inode; 1040 1041 /* 1042 * compound_order() can be called without holding a reference, which means 1043 * that niceties like page_folio() don't work. These callers should be 1044 * prepared to handle wild return values. For example, PG_head may be 1045 * set before the order is initialised, or this may be a tail page. 1046 * See compaction.c for some good examples. 1047 */ 1048 static inline unsigned int compound_order(struct page *page) 1049 { 1050 struct folio *folio = (struct folio *)page; 1051 1052 if (!test_bit(PG_head, &folio->flags)) 1053 return 0; 1054 return folio->_flags_1 & 0xff; 1055 } 1056 1057 /** 1058 * folio_order - The allocation order of a folio. 1059 * @folio: The folio. 1060 * 1061 * A folio is composed of 2^order pages. See get_order() for the definition 1062 * of order. 1063 * 1064 * Return: The order of the folio. 1065 */ 1066 static inline unsigned int folio_order(struct folio *folio) 1067 { 1068 if (!folio_test_large(folio)) 1069 return 0; 1070 return folio->_flags_1 & 0xff; 1071 } 1072 1073 #include <linux/huge_mm.h> 1074 1075 /* 1076 * Methods to modify the page usage count. 1077 * 1078 * What counts for a page usage: 1079 * - cache mapping (page->mapping) 1080 * - private data (page->private) 1081 * - page mapped in a task's page tables, each mapping 1082 * is counted separately 1083 * 1084 * Also, many kernel routines increase the page count before a critical 1085 * routine so they can be sure the page doesn't go away from under them. 1086 */ 1087 1088 /* 1089 * Drop a ref, return true if the refcount fell to zero (the page has no users) 1090 */ 1091 static inline int put_page_testzero(struct page *page) 1092 { 1093 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 1094 return page_ref_dec_and_test(page); 1095 } 1096 1097 static inline int folio_put_testzero(struct folio *folio) 1098 { 1099 return put_page_testzero(&folio->page); 1100 } 1101 1102 /* 1103 * Try to grab a ref unless the page has a refcount of zero, return false if 1104 * that is the case. 1105 * This can be called when MMU is off so it must not access 1106 * any of the virtual mappings. 1107 */ 1108 static inline bool get_page_unless_zero(struct page *page) 1109 { 1110 return page_ref_add_unless(page, 1, 0); 1111 } 1112 1113 static inline struct folio *folio_get_nontail_page(struct page *page) 1114 { 1115 if (unlikely(!get_page_unless_zero(page))) 1116 return NULL; 1117 return (struct folio *)page; 1118 } 1119 1120 extern int page_is_ram(unsigned long pfn); 1121 1122 enum { 1123 REGION_INTERSECTS, 1124 REGION_DISJOINT, 1125 REGION_MIXED, 1126 }; 1127 1128 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 1129 unsigned long desc); 1130 1131 /* Support for virtually mapped pages */ 1132 struct page *vmalloc_to_page(const void *addr); 1133 unsigned long vmalloc_to_pfn(const void *addr); 1134 1135 /* 1136 * Determine if an address is within the vmalloc range 1137 * 1138 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 1139 * is no special casing required. 1140 */ 1141 #ifdef CONFIG_MMU 1142 extern bool is_vmalloc_addr(const void *x); 1143 extern int is_vmalloc_or_module_addr(const void *x); 1144 #else 1145 static inline bool is_vmalloc_addr(const void *x) 1146 { 1147 return false; 1148 } 1149 static inline int is_vmalloc_or_module_addr(const void *x) 1150 { 1151 return 0; 1152 } 1153 #endif 1154 1155 /* 1156 * How many times the entire folio is mapped as a single unit (eg by a 1157 * PMD or PUD entry). This is probably not what you want, except for 1158 * debugging purposes - it does not include PTE-mapped sub-pages; look 1159 * at folio_mapcount() or page_mapcount() or total_mapcount() instead. 1160 */ 1161 static inline int folio_entire_mapcount(struct folio *folio) 1162 { 1163 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 1164 return atomic_read(&folio->_entire_mapcount) + 1; 1165 } 1166 1167 /* 1168 * The atomic page->_mapcount, starts from -1: so that transitions 1169 * both from it and to it can be tracked, using atomic_inc_and_test 1170 * and atomic_add_negative(-1). 1171 */ 1172 static inline void page_mapcount_reset(struct page *page) 1173 { 1174 atomic_set(&(page)->_mapcount, -1); 1175 } 1176 1177 /** 1178 * page_mapcount() - Number of times this precise page is mapped. 1179 * @page: The page. 1180 * 1181 * The number of times this page is mapped. If this page is part of 1182 * a large folio, it includes the number of times this page is mapped 1183 * as part of that folio. 1184 * 1185 * The result is undefined for pages which cannot be mapped into userspace. 1186 * For example SLAB or special types of pages. See function page_has_type(). 1187 * They use this field in struct page differently. 1188 */ 1189 static inline int page_mapcount(struct page *page) 1190 { 1191 int mapcount = atomic_read(&page->_mapcount) + 1; 1192 1193 if (unlikely(PageCompound(page))) 1194 mapcount += folio_entire_mapcount(page_folio(page)); 1195 1196 return mapcount; 1197 } 1198 1199 int folio_total_mapcount(struct folio *folio); 1200 1201 /** 1202 * folio_mapcount() - Calculate the number of mappings of this folio. 1203 * @folio: The folio. 1204 * 1205 * A large folio tracks both how many times the entire folio is mapped, 1206 * and how many times each individual page in the folio is mapped. 1207 * This function calculates the total number of times the folio is 1208 * mapped. 1209 * 1210 * Return: The number of times this folio is mapped. 1211 */ 1212 static inline int folio_mapcount(struct folio *folio) 1213 { 1214 if (likely(!folio_test_large(folio))) 1215 return atomic_read(&folio->_mapcount) + 1; 1216 return folio_total_mapcount(folio); 1217 } 1218 1219 static inline int total_mapcount(struct page *page) 1220 { 1221 if (likely(!PageCompound(page))) 1222 return atomic_read(&page->_mapcount) + 1; 1223 return folio_total_mapcount(page_folio(page)); 1224 } 1225 1226 static inline bool folio_large_is_mapped(struct folio *folio) 1227 { 1228 /* 1229 * Reading _entire_mapcount below could be omitted if hugetlb 1230 * participated in incrementing nr_pages_mapped when compound mapped. 1231 */ 1232 return atomic_read(&folio->_nr_pages_mapped) > 0 || 1233 atomic_read(&folio->_entire_mapcount) >= 0; 1234 } 1235 1236 /** 1237 * folio_mapped - Is this folio mapped into userspace? 1238 * @folio: The folio. 1239 * 1240 * Return: True if any page in this folio is referenced by user page tables. 1241 */ 1242 static inline bool folio_mapped(struct folio *folio) 1243 { 1244 if (likely(!folio_test_large(folio))) 1245 return atomic_read(&folio->_mapcount) >= 0; 1246 return folio_large_is_mapped(folio); 1247 } 1248 1249 /* 1250 * Return true if this page is mapped into pagetables. 1251 * For compound page it returns true if any sub-page of compound page is mapped, 1252 * even if this particular sub-page is not itself mapped by any PTE or PMD. 1253 */ 1254 static inline bool page_mapped(struct page *page) 1255 { 1256 if (likely(!PageCompound(page))) 1257 return atomic_read(&page->_mapcount) >= 0; 1258 return folio_large_is_mapped(page_folio(page)); 1259 } 1260 1261 static inline struct page *virt_to_head_page(const void *x) 1262 { 1263 struct page *page = virt_to_page(x); 1264 1265 return compound_head(page); 1266 } 1267 1268 static inline struct folio *virt_to_folio(const void *x) 1269 { 1270 struct page *page = virt_to_page(x); 1271 1272 return page_folio(page); 1273 } 1274 1275 void __folio_put(struct folio *folio); 1276 1277 void put_pages_list(struct list_head *pages); 1278 1279 void split_page(struct page *page, unsigned int order); 1280 void folio_copy(struct folio *dst, struct folio *src); 1281 1282 unsigned long nr_free_buffer_pages(void); 1283 1284 void destroy_large_folio(struct folio *folio); 1285 1286 /* Returns the number of bytes in this potentially compound page. */ 1287 static inline unsigned long page_size(struct page *page) 1288 { 1289 return PAGE_SIZE << compound_order(page); 1290 } 1291 1292 /* Returns the number of bits needed for the number of bytes in a page */ 1293 static inline unsigned int page_shift(struct page *page) 1294 { 1295 return PAGE_SHIFT + compound_order(page); 1296 } 1297 1298 /** 1299 * thp_order - Order of a transparent huge page. 1300 * @page: Head page of a transparent huge page. 1301 */ 1302 static inline unsigned int thp_order(struct page *page) 1303 { 1304 VM_BUG_ON_PGFLAGS(PageTail(page), page); 1305 return compound_order(page); 1306 } 1307 1308 /** 1309 * thp_size - Size of a transparent huge page. 1310 * @page: Head page of a transparent huge page. 1311 * 1312 * Return: Number of bytes in this page. 1313 */ 1314 static inline unsigned long thp_size(struct page *page) 1315 { 1316 return PAGE_SIZE << thp_order(page); 1317 } 1318 1319 #ifdef CONFIG_MMU 1320 /* 1321 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 1322 * servicing faults for write access. In the normal case, do always want 1323 * pte_mkwrite. But get_user_pages can cause write faults for mappings 1324 * that do not have writing enabled, when used by access_process_vm. 1325 */ 1326 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 1327 { 1328 if (likely(vma->vm_flags & VM_WRITE)) 1329 pte = pte_mkwrite(pte, vma); 1330 return pte; 1331 } 1332 1333 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 1334 void set_pte_range(struct vm_fault *vmf, struct folio *folio, 1335 struct page *page, unsigned int nr, unsigned long addr); 1336 1337 vm_fault_t finish_fault(struct vm_fault *vmf); 1338 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 1339 #endif 1340 1341 /* 1342 * Multiple processes may "see" the same page. E.g. for untouched 1343 * mappings of /dev/null, all processes see the same page full of 1344 * zeroes, and text pages of executables and shared libraries have 1345 * only one copy in memory, at most, normally. 1346 * 1347 * For the non-reserved pages, page_count(page) denotes a reference count. 1348 * page_count() == 0 means the page is free. page->lru is then used for 1349 * freelist management in the buddy allocator. 1350 * page_count() > 0 means the page has been allocated. 1351 * 1352 * Pages are allocated by the slab allocator in order to provide memory 1353 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1354 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1355 * unless a particular usage is carefully commented. (the responsibility of 1356 * freeing the kmalloc memory is the caller's, of course). 1357 * 1358 * A page may be used by anyone else who does a __get_free_page(). 1359 * In this case, page_count still tracks the references, and should only 1360 * be used through the normal accessor functions. The top bits of page->flags 1361 * and page->virtual store page management information, but all other fields 1362 * are unused and could be used privately, carefully. The management of this 1363 * page is the responsibility of the one who allocated it, and those who have 1364 * subsequently been given references to it. 1365 * 1366 * The other pages (we may call them "pagecache pages") are completely 1367 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1368 * The following discussion applies only to them. 1369 * 1370 * A pagecache page contains an opaque `private' member, which belongs to the 1371 * page's address_space. Usually, this is the address of a circular list of 1372 * the page's disk buffers. PG_private must be set to tell the VM to call 1373 * into the filesystem to release these pages. 1374 * 1375 * A page may belong to an inode's memory mapping. In this case, page->mapping 1376 * is the pointer to the inode, and page->index is the file offset of the page, 1377 * in units of PAGE_SIZE. 1378 * 1379 * If pagecache pages are not associated with an inode, they are said to be 1380 * anonymous pages. These may become associated with the swapcache, and in that 1381 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1382 * 1383 * In either case (swapcache or inode backed), the pagecache itself holds one 1384 * reference to the page. Setting PG_private should also increment the 1385 * refcount. The each user mapping also has a reference to the page. 1386 * 1387 * The pagecache pages are stored in a per-mapping radix tree, which is 1388 * rooted at mapping->i_pages, and indexed by offset. 1389 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1390 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1391 * 1392 * All pagecache pages may be subject to I/O: 1393 * - inode pages may need to be read from disk, 1394 * - inode pages which have been modified and are MAP_SHARED may need 1395 * to be written back to the inode on disk, 1396 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1397 * modified may need to be swapped out to swap space and (later) to be read 1398 * back into memory. 1399 */ 1400 1401 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1402 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1403 1404 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1405 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1406 { 1407 if (!static_branch_unlikely(&devmap_managed_key)) 1408 return false; 1409 if (!is_zone_device_page(page)) 1410 return false; 1411 return __put_devmap_managed_page_refs(page, refs); 1412 } 1413 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1414 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1415 { 1416 return false; 1417 } 1418 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1419 1420 static inline bool put_devmap_managed_page(struct page *page) 1421 { 1422 return put_devmap_managed_page_refs(page, 1); 1423 } 1424 1425 /* 127: arbitrary random number, small enough to assemble well */ 1426 #define folio_ref_zero_or_close_to_overflow(folio) \ 1427 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1428 1429 /** 1430 * folio_get - Increment the reference count on a folio. 1431 * @folio: The folio. 1432 * 1433 * Context: May be called in any context, as long as you know that 1434 * you have a refcount on the folio. If you do not already have one, 1435 * folio_try_get() may be the right interface for you to use. 1436 */ 1437 static inline void folio_get(struct folio *folio) 1438 { 1439 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1440 folio_ref_inc(folio); 1441 } 1442 1443 static inline void get_page(struct page *page) 1444 { 1445 folio_get(page_folio(page)); 1446 } 1447 1448 static inline __must_check bool try_get_page(struct page *page) 1449 { 1450 page = compound_head(page); 1451 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1452 return false; 1453 page_ref_inc(page); 1454 return true; 1455 } 1456 1457 /** 1458 * folio_put - Decrement the reference count on a folio. 1459 * @folio: The folio. 1460 * 1461 * If the folio's reference count reaches zero, the memory will be 1462 * released back to the page allocator and may be used by another 1463 * allocation immediately. Do not access the memory or the struct folio 1464 * after calling folio_put() unless you can be sure that it wasn't the 1465 * last reference. 1466 * 1467 * Context: May be called in process or interrupt context, but not in NMI 1468 * context. May be called while holding a spinlock. 1469 */ 1470 static inline void folio_put(struct folio *folio) 1471 { 1472 if (folio_put_testzero(folio)) 1473 __folio_put(folio); 1474 } 1475 1476 /** 1477 * folio_put_refs - Reduce the reference count on a folio. 1478 * @folio: The folio. 1479 * @refs: The amount to subtract from the folio's reference count. 1480 * 1481 * If the folio's reference count reaches zero, the memory will be 1482 * released back to the page allocator and may be used by another 1483 * allocation immediately. Do not access the memory or the struct folio 1484 * after calling folio_put_refs() unless you can be sure that these weren't 1485 * the last references. 1486 * 1487 * Context: May be called in process or interrupt context, but not in NMI 1488 * context. May be called while holding a spinlock. 1489 */ 1490 static inline void folio_put_refs(struct folio *folio, int refs) 1491 { 1492 if (folio_ref_sub_and_test(folio, refs)) 1493 __folio_put(folio); 1494 } 1495 1496 /* 1497 * union release_pages_arg - an array of pages or folios 1498 * 1499 * release_pages() releases a simple array of multiple pages, and 1500 * accepts various different forms of said page array: either 1501 * a regular old boring array of pages, an array of folios, or 1502 * an array of encoded page pointers. 1503 * 1504 * The transparent union syntax for this kind of "any of these 1505 * argument types" is all kinds of ugly, so look away. 1506 */ 1507 typedef union { 1508 struct page **pages; 1509 struct folio **folios; 1510 struct encoded_page **encoded_pages; 1511 } release_pages_arg __attribute__ ((__transparent_union__)); 1512 1513 void release_pages(release_pages_arg, int nr); 1514 1515 /** 1516 * folios_put - Decrement the reference count on an array of folios. 1517 * @folios: The folios. 1518 * @nr: How many folios there are. 1519 * 1520 * Like folio_put(), but for an array of folios. This is more efficient 1521 * than writing the loop yourself as it will optimise the locks which 1522 * need to be taken if the folios are freed. 1523 * 1524 * Context: May be called in process or interrupt context, but not in NMI 1525 * context. May be called while holding a spinlock. 1526 */ 1527 static inline void folios_put(struct folio **folios, unsigned int nr) 1528 { 1529 release_pages(folios, nr); 1530 } 1531 1532 static inline void put_page(struct page *page) 1533 { 1534 struct folio *folio = page_folio(page); 1535 1536 /* 1537 * For some devmap managed pages we need to catch refcount transition 1538 * from 2 to 1: 1539 */ 1540 if (put_devmap_managed_page(&folio->page)) 1541 return; 1542 folio_put(folio); 1543 } 1544 1545 /* 1546 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1547 * the page's refcount so that two separate items are tracked: the original page 1548 * reference count, and also a new count of how many pin_user_pages() calls were 1549 * made against the page. ("gup-pinned" is another term for the latter). 1550 * 1551 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1552 * distinct from normal pages. As such, the unpin_user_page() call (and its 1553 * variants) must be used in order to release gup-pinned pages. 1554 * 1555 * Choice of value: 1556 * 1557 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1558 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1559 * simpler, due to the fact that adding an even power of two to the page 1560 * refcount has the effect of using only the upper N bits, for the code that 1561 * counts up using the bias value. This means that the lower bits are left for 1562 * the exclusive use of the original code that increments and decrements by one 1563 * (or at least, by much smaller values than the bias value). 1564 * 1565 * Of course, once the lower bits overflow into the upper bits (and this is 1566 * OK, because subtraction recovers the original values), then visual inspection 1567 * no longer suffices to directly view the separate counts. However, for normal 1568 * applications that don't have huge page reference counts, this won't be an 1569 * issue. 1570 * 1571 * Locking: the lockless algorithm described in folio_try_get_rcu() 1572 * provides safe operation for get_user_pages(), page_mkclean() and 1573 * other calls that race to set up page table entries. 1574 */ 1575 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1576 1577 void unpin_user_page(struct page *page); 1578 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1579 bool make_dirty); 1580 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1581 bool make_dirty); 1582 void unpin_user_pages(struct page **pages, unsigned long npages); 1583 1584 static inline bool is_cow_mapping(vm_flags_t flags) 1585 { 1586 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1587 } 1588 1589 #ifndef CONFIG_MMU 1590 static inline bool is_nommu_shared_mapping(vm_flags_t flags) 1591 { 1592 /* 1593 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected 1594 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of 1595 * a file mapping. R/O MAP_PRIVATE mappings might still modify 1596 * underlying memory if ptrace is active, so this is only possible if 1597 * ptrace does not apply. Note that there is no mprotect() to upgrade 1598 * write permissions later. 1599 */ 1600 return flags & (VM_MAYSHARE | VM_MAYOVERLAY); 1601 } 1602 #endif 1603 1604 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1605 #define SECTION_IN_PAGE_FLAGS 1606 #endif 1607 1608 /* 1609 * The identification function is mainly used by the buddy allocator for 1610 * determining if two pages could be buddies. We are not really identifying 1611 * the zone since we could be using the section number id if we do not have 1612 * node id available in page flags. 1613 * We only guarantee that it will return the same value for two combinable 1614 * pages in a zone. 1615 */ 1616 static inline int page_zone_id(struct page *page) 1617 { 1618 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1619 } 1620 1621 #ifdef NODE_NOT_IN_PAGE_FLAGS 1622 extern int page_to_nid(const struct page *page); 1623 #else 1624 static inline int page_to_nid(const struct page *page) 1625 { 1626 struct page *p = (struct page *)page; 1627 1628 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1629 } 1630 #endif 1631 1632 static inline int folio_nid(const struct folio *folio) 1633 { 1634 return page_to_nid(&folio->page); 1635 } 1636 1637 #ifdef CONFIG_NUMA_BALANCING 1638 /* page access time bits needs to hold at least 4 seconds */ 1639 #define PAGE_ACCESS_TIME_MIN_BITS 12 1640 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS 1641 #define PAGE_ACCESS_TIME_BUCKETS \ 1642 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT) 1643 #else 1644 #define PAGE_ACCESS_TIME_BUCKETS 0 1645 #endif 1646 1647 #define PAGE_ACCESS_TIME_MASK \ 1648 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS) 1649 1650 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1651 { 1652 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1653 } 1654 1655 static inline int cpupid_to_pid(int cpupid) 1656 { 1657 return cpupid & LAST__PID_MASK; 1658 } 1659 1660 static inline int cpupid_to_cpu(int cpupid) 1661 { 1662 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1663 } 1664 1665 static inline int cpupid_to_nid(int cpupid) 1666 { 1667 return cpu_to_node(cpupid_to_cpu(cpupid)); 1668 } 1669 1670 static inline bool cpupid_pid_unset(int cpupid) 1671 { 1672 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1673 } 1674 1675 static inline bool cpupid_cpu_unset(int cpupid) 1676 { 1677 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1678 } 1679 1680 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1681 { 1682 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1683 } 1684 1685 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1686 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1687 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1688 { 1689 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1690 } 1691 1692 static inline int page_cpupid_last(struct page *page) 1693 { 1694 return page->_last_cpupid; 1695 } 1696 static inline void page_cpupid_reset_last(struct page *page) 1697 { 1698 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1699 } 1700 #else 1701 static inline int page_cpupid_last(struct page *page) 1702 { 1703 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1704 } 1705 1706 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1707 1708 static inline void page_cpupid_reset_last(struct page *page) 1709 { 1710 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1711 } 1712 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1713 1714 static inline int xchg_page_access_time(struct page *page, int time) 1715 { 1716 int last_time; 1717 1718 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS); 1719 return last_time << PAGE_ACCESS_TIME_BUCKETS; 1720 } 1721 1722 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1723 { 1724 unsigned int pid_bit; 1725 1726 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG)); 1727 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) { 1728 __set_bit(pid_bit, &vma->numab_state->access_pids[1]); 1729 } 1730 } 1731 #else /* !CONFIG_NUMA_BALANCING */ 1732 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1733 { 1734 return page_to_nid(page); /* XXX */ 1735 } 1736 1737 static inline int xchg_page_access_time(struct page *page, int time) 1738 { 1739 return 0; 1740 } 1741 1742 static inline int page_cpupid_last(struct page *page) 1743 { 1744 return page_to_nid(page); /* XXX */ 1745 } 1746 1747 static inline int cpupid_to_nid(int cpupid) 1748 { 1749 return -1; 1750 } 1751 1752 static inline int cpupid_to_pid(int cpupid) 1753 { 1754 return -1; 1755 } 1756 1757 static inline int cpupid_to_cpu(int cpupid) 1758 { 1759 return -1; 1760 } 1761 1762 static inline int cpu_pid_to_cpupid(int nid, int pid) 1763 { 1764 return -1; 1765 } 1766 1767 static inline bool cpupid_pid_unset(int cpupid) 1768 { 1769 return true; 1770 } 1771 1772 static inline void page_cpupid_reset_last(struct page *page) 1773 { 1774 } 1775 1776 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1777 { 1778 return false; 1779 } 1780 1781 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma) 1782 { 1783 } 1784 #endif /* CONFIG_NUMA_BALANCING */ 1785 1786 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1787 1788 /* 1789 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1790 * setting tags for all pages to native kernel tag value 0xff, as the default 1791 * value 0x00 maps to 0xff. 1792 */ 1793 1794 static inline u8 page_kasan_tag(const struct page *page) 1795 { 1796 u8 tag = 0xff; 1797 1798 if (kasan_enabled()) { 1799 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1800 tag ^= 0xff; 1801 } 1802 1803 return tag; 1804 } 1805 1806 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1807 { 1808 unsigned long old_flags, flags; 1809 1810 if (!kasan_enabled()) 1811 return; 1812 1813 tag ^= 0xff; 1814 old_flags = READ_ONCE(page->flags); 1815 do { 1816 flags = old_flags; 1817 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1818 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1819 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1820 } 1821 1822 static inline void page_kasan_tag_reset(struct page *page) 1823 { 1824 if (kasan_enabled()) 1825 page_kasan_tag_set(page, 0xff); 1826 } 1827 1828 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1829 1830 static inline u8 page_kasan_tag(const struct page *page) 1831 { 1832 return 0xff; 1833 } 1834 1835 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1836 static inline void page_kasan_tag_reset(struct page *page) { } 1837 1838 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1839 1840 static inline struct zone *page_zone(const struct page *page) 1841 { 1842 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1843 } 1844 1845 static inline pg_data_t *page_pgdat(const struct page *page) 1846 { 1847 return NODE_DATA(page_to_nid(page)); 1848 } 1849 1850 static inline struct zone *folio_zone(const struct folio *folio) 1851 { 1852 return page_zone(&folio->page); 1853 } 1854 1855 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1856 { 1857 return page_pgdat(&folio->page); 1858 } 1859 1860 #ifdef SECTION_IN_PAGE_FLAGS 1861 static inline void set_page_section(struct page *page, unsigned long section) 1862 { 1863 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1864 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1865 } 1866 1867 static inline unsigned long page_to_section(const struct page *page) 1868 { 1869 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1870 } 1871 #endif 1872 1873 /** 1874 * folio_pfn - Return the Page Frame Number of a folio. 1875 * @folio: The folio. 1876 * 1877 * A folio may contain multiple pages. The pages have consecutive 1878 * Page Frame Numbers. 1879 * 1880 * Return: The Page Frame Number of the first page in the folio. 1881 */ 1882 static inline unsigned long folio_pfn(struct folio *folio) 1883 { 1884 return page_to_pfn(&folio->page); 1885 } 1886 1887 static inline struct folio *pfn_folio(unsigned long pfn) 1888 { 1889 return page_folio(pfn_to_page(pfn)); 1890 } 1891 1892 /** 1893 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1894 * @folio: The folio. 1895 * 1896 * This function checks if a folio has been pinned via a call to 1897 * a function in the pin_user_pages() family. 1898 * 1899 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1900 * because it means "definitely not pinned for DMA", but true means "probably 1901 * pinned for DMA, but possibly a false positive due to having at least 1902 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1903 * 1904 * False positives are OK, because: a) it's unlikely for a folio to 1905 * get that many refcounts, and b) all the callers of this routine are 1906 * expected to be able to deal gracefully with a false positive. 1907 * 1908 * For large folios, the result will be exactly correct. That's because 1909 * we have more tracking data available: the _pincount field is used 1910 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1911 * 1912 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1913 * 1914 * Return: True, if it is likely that the page has been "dma-pinned". 1915 * False, if the page is definitely not dma-pinned. 1916 */ 1917 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1918 { 1919 if (folio_test_large(folio)) 1920 return atomic_read(&folio->_pincount) > 0; 1921 1922 /* 1923 * folio_ref_count() is signed. If that refcount overflows, then 1924 * folio_ref_count() returns a negative value, and callers will avoid 1925 * further incrementing the refcount. 1926 * 1927 * Here, for that overflow case, use the sign bit to count a little 1928 * bit higher via unsigned math, and thus still get an accurate result. 1929 */ 1930 return ((unsigned int)folio_ref_count(folio)) >= 1931 GUP_PIN_COUNTING_BIAS; 1932 } 1933 1934 static inline bool page_maybe_dma_pinned(struct page *page) 1935 { 1936 return folio_maybe_dma_pinned(page_folio(page)); 1937 } 1938 1939 /* 1940 * This should most likely only be called during fork() to see whether we 1941 * should break the cow immediately for an anon page on the src mm. 1942 * 1943 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1944 */ 1945 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1946 struct page *page) 1947 { 1948 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1949 1950 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1951 return false; 1952 1953 return page_maybe_dma_pinned(page); 1954 } 1955 1956 /** 1957 * is_zero_page - Query if a page is a zero page 1958 * @page: The page to query 1959 * 1960 * This returns true if @page is one of the permanent zero pages. 1961 */ 1962 static inline bool is_zero_page(const struct page *page) 1963 { 1964 return is_zero_pfn(page_to_pfn(page)); 1965 } 1966 1967 /** 1968 * is_zero_folio - Query if a folio is a zero page 1969 * @folio: The folio to query 1970 * 1971 * This returns true if @folio is one of the permanent zero pages. 1972 */ 1973 static inline bool is_zero_folio(const struct folio *folio) 1974 { 1975 return is_zero_page(&folio->page); 1976 } 1977 1978 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */ 1979 #ifdef CONFIG_MIGRATION 1980 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1981 { 1982 #ifdef CONFIG_CMA 1983 int mt = folio_migratetype(folio); 1984 1985 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1986 return false; 1987 #endif 1988 /* The zero page can be "pinned" but gets special handling. */ 1989 if (is_zero_folio(folio)) 1990 return true; 1991 1992 /* Coherent device memory must always allow eviction. */ 1993 if (folio_is_device_coherent(folio)) 1994 return false; 1995 1996 /* Otherwise, non-movable zone folios can be pinned. */ 1997 return !folio_is_zone_movable(folio); 1998 1999 } 2000 #else 2001 static inline bool folio_is_longterm_pinnable(struct folio *folio) 2002 { 2003 return true; 2004 } 2005 #endif 2006 2007 static inline void set_page_zone(struct page *page, enum zone_type zone) 2008 { 2009 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 2010 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 2011 } 2012 2013 static inline void set_page_node(struct page *page, unsigned long node) 2014 { 2015 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 2016 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 2017 } 2018 2019 static inline void set_page_links(struct page *page, enum zone_type zone, 2020 unsigned long node, unsigned long pfn) 2021 { 2022 set_page_zone(page, zone); 2023 set_page_node(page, node); 2024 #ifdef SECTION_IN_PAGE_FLAGS 2025 set_page_section(page, pfn_to_section_nr(pfn)); 2026 #endif 2027 } 2028 2029 /** 2030 * folio_nr_pages - The number of pages in the folio. 2031 * @folio: The folio. 2032 * 2033 * Return: A positive power of two. 2034 */ 2035 static inline long folio_nr_pages(struct folio *folio) 2036 { 2037 if (!folio_test_large(folio)) 2038 return 1; 2039 #ifdef CONFIG_64BIT 2040 return folio->_folio_nr_pages; 2041 #else 2042 return 1L << (folio->_flags_1 & 0xff); 2043 #endif 2044 } 2045 2046 /* 2047 * compound_nr() returns the number of pages in this potentially compound 2048 * page. compound_nr() can be called on a tail page, and is defined to 2049 * return 1 in that case. 2050 */ 2051 static inline unsigned long compound_nr(struct page *page) 2052 { 2053 struct folio *folio = (struct folio *)page; 2054 2055 if (!test_bit(PG_head, &folio->flags)) 2056 return 1; 2057 #ifdef CONFIG_64BIT 2058 return folio->_folio_nr_pages; 2059 #else 2060 return 1L << (folio->_flags_1 & 0xff); 2061 #endif 2062 } 2063 2064 /** 2065 * thp_nr_pages - The number of regular pages in this huge page. 2066 * @page: The head page of a huge page. 2067 */ 2068 static inline int thp_nr_pages(struct page *page) 2069 { 2070 return folio_nr_pages((struct folio *)page); 2071 } 2072 2073 /** 2074 * folio_next - Move to the next physical folio. 2075 * @folio: The folio we're currently operating on. 2076 * 2077 * If you have physically contiguous memory which may span more than 2078 * one folio (eg a &struct bio_vec), use this function to move from one 2079 * folio to the next. Do not use it if the memory is only virtually 2080 * contiguous as the folios are almost certainly not adjacent to each 2081 * other. This is the folio equivalent to writing ``page++``. 2082 * 2083 * Context: We assume that the folios are refcounted and/or locked at a 2084 * higher level and do not adjust the reference counts. 2085 * Return: The next struct folio. 2086 */ 2087 static inline struct folio *folio_next(struct folio *folio) 2088 { 2089 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 2090 } 2091 2092 /** 2093 * folio_shift - The size of the memory described by this folio. 2094 * @folio: The folio. 2095 * 2096 * A folio represents a number of bytes which is a power-of-two in size. 2097 * This function tells you which power-of-two the folio is. See also 2098 * folio_size() and folio_order(). 2099 * 2100 * Context: The caller should have a reference on the folio to prevent 2101 * it from being split. It is not necessary for the folio to be locked. 2102 * Return: The base-2 logarithm of the size of this folio. 2103 */ 2104 static inline unsigned int folio_shift(struct folio *folio) 2105 { 2106 return PAGE_SHIFT + folio_order(folio); 2107 } 2108 2109 /** 2110 * folio_size - The number of bytes in a folio. 2111 * @folio: The folio. 2112 * 2113 * Context: The caller should have a reference on the folio to prevent 2114 * it from being split. It is not necessary for the folio to be locked. 2115 * Return: The number of bytes in this folio. 2116 */ 2117 static inline size_t folio_size(struct folio *folio) 2118 { 2119 return PAGE_SIZE << folio_order(folio); 2120 } 2121 2122 /** 2123 * folio_estimated_sharers - Estimate the number of sharers of a folio. 2124 * @folio: The folio. 2125 * 2126 * folio_estimated_sharers() aims to serve as a function to efficiently 2127 * estimate the number of processes sharing a folio. This is done by 2128 * looking at the precise mapcount of the first subpage in the folio, and 2129 * assuming the other subpages are the same. This may not be true for large 2130 * folios. If you want exact mapcounts for exact calculations, look at 2131 * page_mapcount() or folio_total_mapcount(). 2132 * 2133 * Return: The estimated number of processes sharing a folio. 2134 */ 2135 static inline int folio_estimated_sharers(struct folio *folio) 2136 { 2137 return page_mapcount(folio_page(folio, 0)); 2138 } 2139 2140 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 2141 static inline int arch_make_page_accessible(struct page *page) 2142 { 2143 return 0; 2144 } 2145 #endif 2146 2147 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 2148 static inline int arch_make_folio_accessible(struct folio *folio) 2149 { 2150 int ret; 2151 long i, nr = folio_nr_pages(folio); 2152 2153 for (i = 0; i < nr; i++) { 2154 ret = arch_make_page_accessible(folio_page(folio, i)); 2155 if (ret) 2156 break; 2157 } 2158 2159 return ret; 2160 } 2161 #endif 2162 2163 /* 2164 * Some inline functions in vmstat.h depend on page_zone() 2165 */ 2166 #include <linux/vmstat.h> 2167 2168 static __always_inline void *lowmem_page_address(const struct page *page) 2169 { 2170 return page_to_virt(page); 2171 } 2172 2173 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 2174 #define HASHED_PAGE_VIRTUAL 2175 #endif 2176 2177 #if defined(WANT_PAGE_VIRTUAL) 2178 static inline void *page_address(const struct page *page) 2179 { 2180 return page->virtual; 2181 } 2182 static inline void set_page_address(struct page *page, void *address) 2183 { 2184 page->virtual = address; 2185 } 2186 #define page_address_init() do { } while(0) 2187 #endif 2188 2189 #if defined(HASHED_PAGE_VIRTUAL) 2190 void *page_address(const struct page *page); 2191 void set_page_address(struct page *page, void *virtual); 2192 void page_address_init(void); 2193 #endif 2194 2195 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 2196 #define page_address(page) lowmem_page_address(page) 2197 #define set_page_address(page, address) do { } while(0) 2198 #define page_address_init() do { } while(0) 2199 #endif 2200 2201 static inline void *folio_address(const struct folio *folio) 2202 { 2203 return page_address(&folio->page); 2204 } 2205 2206 extern pgoff_t __page_file_index(struct page *page); 2207 2208 /* 2209 * Return the pagecache index of the passed page. Regular pagecache pages 2210 * use ->index whereas swapcache pages use swp_offset(->private) 2211 */ 2212 static inline pgoff_t page_index(struct page *page) 2213 { 2214 if (unlikely(PageSwapCache(page))) 2215 return __page_file_index(page); 2216 return page->index; 2217 } 2218 2219 /* 2220 * Return true only if the page has been allocated with 2221 * ALLOC_NO_WATERMARKS and the low watermark was not 2222 * met implying that the system is under some pressure. 2223 */ 2224 static inline bool page_is_pfmemalloc(const struct page *page) 2225 { 2226 /* 2227 * lru.next has bit 1 set if the page is allocated from the 2228 * pfmemalloc reserves. Callers may simply overwrite it if 2229 * they do not need to preserve that information. 2230 */ 2231 return (uintptr_t)page->lru.next & BIT(1); 2232 } 2233 2234 /* 2235 * Return true only if the folio has been allocated with 2236 * ALLOC_NO_WATERMARKS and the low watermark was not 2237 * met implying that the system is under some pressure. 2238 */ 2239 static inline bool folio_is_pfmemalloc(const struct folio *folio) 2240 { 2241 /* 2242 * lru.next has bit 1 set if the page is allocated from the 2243 * pfmemalloc reserves. Callers may simply overwrite it if 2244 * they do not need to preserve that information. 2245 */ 2246 return (uintptr_t)folio->lru.next & BIT(1); 2247 } 2248 2249 /* 2250 * Only to be called by the page allocator on a freshly allocated 2251 * page. 2252 */ 2253 static inline void set_page_pfmemalloc(struct page *page) 2254 { 2255 page->lru.next = (void *)BIT(1); 2256 } 2257 2258 static inline void clear_page_pfmemalloc(struct page *page) 2259 { 2260 page->lru.next = NULL; 2261 } 2262 2263 /* 2264 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 2265 */ 2266 extern void pagefault_out_of_memory(void); 2267 2268 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 2269 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 2270 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 2271 2272 /* 2273 * Parameter block passed down to zap_pte_range in exceptional cases. 2274 */ 2275 struct zap_details { 2276 struct folio *single_folio; /* Locked folio to be unmapped */ 2277 bool even_cows; /* Zap COWed private pages too? */ 2278 zap_flags_t zap_flags; /* Extra flags for zapping */ 2279 }; 2280 2281 /* 2282 * Whether to drop the pte markers, for example, the uffd-wp information for 2283 * file-backed memory. This should only be specified when we will completely 2284 * drop the page in the mm, either by truncation or unmapping of the vma. By 2285 * default, the flag is not set. 2286 */ 2287 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 2288 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */ 2289 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1)) 2290 2291 #ifdef CONFIG_SCHED_MM_CID 2292 void sched_mm_cid_before_execve(struct task_struct *t); 2293 void sched_mm_cid_after_execve(struct task_struct *t); 2294 void sched_mm_cid_fork(struct task_struct *t); 2295 void sched_mm_cid_exit_signals(struct task_struct *t); 2296 static inline int task_mm_cid(struct task_struct *t) 2297 { 2298 return t->mm_cid; 2299 } 2300 #else 2301 static inline void sched_mm_cid_before_execve(struct task_struct *t) { } 2302 static inline void sched_mm_cid_after_execve(struct task_struct *t) { } 2303 static inline void sched_mm_cid_fork(struct task_struct *t) { } 2304 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { } 2305 static inline int task_mm_cid(struct task_struct *t) 2306 { 2307 /* 2308 * Use the processor id as a fall-back when the mm cid feature is 2309 * disabled. This provides functional per-cpu data structure accesses 2310 * in user-space, althrough it won't provide the memory usage benefits. 2311 */ 2312 return raw_smp_processor_id(); 2313 } 2314 #endif 2315 2316 #ifdef CONFIG_MMU 2317 extern bool can_do_mlock(void); 2318 #else 2319 static inline bool can_do_mlock(void) { return false; } 2320 #endif 2321 extern int user_shm_lock(size_t, struct ucounts *); 2322 extern void user_shm_unlock(size_t, struct ucounts *); 2323 2324 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr, 2325 pte_t pte); 2326 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 2327 pte_t pte); 2328 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 2329 pmd_t pmd); 2330 2331 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 2332 unsigned long size); 2333 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address, 2334 unsigned long size, struct zap_details *details); 2335 static inline void zap_vma_pages(struct vm_area_struct *vma) 2336 { 2337 zap_page_range_single(vma, vma->vm_start, 2338 vma->vm_end - vma->vm_start, NULL); 2339 } 2340 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas, 2341 struct vm_area_struct *start_vma, unsigned long start, 2342 unsigned long end, unsigned long tree_end, bool mm_wr_locked); 2343 2344 struct mmu_notifier_range; 2345 2346 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 2347 unsigned long end, unsigned long floor, unsigned long ceiling); 2348 int 2349 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 2350 int follow_pte(struct mm_struct *mm, unsigned long address, 2351 pte_t **ptepp, spinlock_t **ptlp); 2352 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 2353 unsigned long *pfn); 2354 int follow_phys(struct vm_area_struct *vma, unsigned long address, 2355 unsigned int flags, unsigned long *prot, resource_size_t *phys); 2356 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 2357 void *buf, int len, int write); 2358 2359 extern void truncate_pagecache(struct inode *inode, loff_t new); 2360 extern void truncate_setsize(struct inode *inode, loff_t newsize); 2361 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 2362 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 2363 int generic_error_remove_page(struct address_space *mapping, struct page *page); 2364 2365 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm, 2366 unsigned long address, struct pt_regs *regs); 2367 2368 #ifdef CONFIG_MMU 2369 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2370 unsigned long address, unsigned int flags, 2371 struct pt_regs *regs); 2372 extern int fixup_user_fault(struct mm_struct *mm, 2373 unsigned long address, unsigned int fault_flags, 2374 bool *unlocked); 2375 void unmap_mapping_pages(struct address_space *mapping, 2376 pgoff_t start, pgoff_t nr, bool even_cows); 2377 void unmap_mapping_range(struct address_space *mapping, 2378 loff_t const holebegin, loff_t const holelen, int even_cows); 2379 #else 2380 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 2381 unsigned long address, unsigned int flags, 2382 struct pt_regs *regs) 2383 { 2384 /* should never happen if there's no MMU */ 2385 BUG(); 2386 return VM_FAULT_SIGBUS; 2387 } 2388 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 2389 unsigned int fault_flags, bool *unlocked) 2390 { 2391 /* should never happen if there's no MMU */ 2392 BUG(); 2393 return -EFAULT; 2394 } 2395 static inline void unmap_mapping_pages(struct address_space *mapping, 2396 pgoff_t start, pgoff_t nr, bool even_cows) { } 2397 static inline void unmap_mapping_range(struct address_space *mapping, 2398 loff_t const holebegin, loff_t const holelen, int even_cows) { } 2399 #endif 2400 2401 static inline void unmap_shared_mapping_range(struct address_space *mapping, 2402 loff_t const holebegin, loff_t const holelen) 2403 { 2404 unmap_mapping_range(mapping, holebegin, holelen, 0); 2405 } 2406 2407 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm, 2408 unsigned long addr); 2409 2410 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 2411 void *buf, int len, unsigned int gup_flags); 2412 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 2413 void *buf, int len, unsigned int gup_flags); 2414 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 2415 void *buf, int len, unsigned int gup_flags); 2416 2417 long get_user_pages_remote(struct mm_struct *mm, 2418 unsigned long start, unsigned long nr_pages, 2419 unsigned int gup_flags, struct page **pages, 2420 int *locked); 2421 long pin_user_pages_remote(struct mm_struct *mm, 2422 unsigned long start, unsigned long nr_pages, 2423 unsigned int gup_flags, struct page **pages, 2424 int *locked); 2425 2426 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm, 2427 unsigned long addr, 2428 int gup_flags, 2429 struct vm_area_struct **vmap) 2430 { 2431 struct page *page; 2432 struct vm_area_struct *vma; 2433 int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL); 2434 2435 if (got < 0) 2436 return ERR_PTR(got); 2437 if (got == 0) 2438 return NULL; 2439 2440 vma = vma_lookup(mm, addr); 2441 if (WARN_ON_ONCE(!vma)) { 2442 put_page(page); 2443 return ERR_PTR(-EINVAL); 2444 } 2445 2446 *vmap = vma; 2447 return page; 2448 } 2449 2450 long get_user_pages(unsigned long start, unsigned long nr_pages, 2451 unsigned int gup_flags, struct page **pages); 2452 long pin_user_pages(unsigned long start, unsigned long nr_pages, 2453 unsigned int gup_flags, struct page **pages); 2454 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2455 struct page **pages, unsigned int gup_flags); 2456 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 2457 struct page **pages, unsigned int gup_flags); 2458 2459 int get_user_pages_fast(unsigned long start, int nr_pages, 2460 unsigned int gup_flags, struct page **pages); 2461 int pin_user_pages_fast(unsigned long start, int nr_pages, 2462 unsigned int gup_flags, struct page **pages); 2463 void folio_add_pin(struct folio *folio); 2464 2465 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 2466 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 2467 struct task_struct *task, bool bypass_rlim); 2468 2469 struct kvec; 2470 struct page *get_dump_page(unsigned long addr); 2471 2472 bool folio_mark_dirty(struct folio *folio); 2473 bool set_page_dirty(struct page *page); 2474 int set_page_dirty_lock(struct page *page); 2475 2476 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 2477 2478 extern unsigned long move_page_tables(struct vm_area_struct *vma, 2479 unsigned long old_addr, struct vm_area_struct *new_vma, 2480 unsigned long new_addr, unsigned long len, 2481 bool need_rmap_locks); 2482 2483 /* 2484 * Flags used by change_protection(). For now we make it a bitmap so 2485 * that we can pass in multiple flags just like parameters. However 2486 * for now all the callers are only use one of the flags at the same 2487 * time. 2488 */ 2489 /* 2490 * Whether we should manually check if we can map individual PTEs writable, 2491 * because something (e.g., COW, uffd-wp) blocks that from happening for all 2492 * PTEs automatically in a writable mapping. 2493 */ 2494 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 2495 /* Whether this protection change is for NUMA hints */ 2496 #define MM_CP_PROT_NUMA (1UL << 1) 2497 /* Whether this change is for write protecting */ 2498 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 2499 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 2500 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 2501 MM_CP_UFFD_WP_RESOLVE) 2502 2503 bool vma_needs_dirty_tracking(struct vm_area_struct *vma); 2504 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2505 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma) 2506 { 2507 /* 2508 * We want to check manually if we can change individual PTEs writable 2509 * if we can't do that automatically for all PTEs in a mapping. For 2510 * private mappings, that's always the case when we have write 2511 * permissions as we properly have to handle COW. 2512 */ 2513 if (vma->vm_flags & VM_SHARED) 2514 return vma_wants_writenotify(vma, vma->vm_page_prot); 2515 return !!(vma->vm_flags & VM_WRITE); 2516 2517 } 2518 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr, 2519 pte_t pte); 2520 extern long change_protection(struct mmu_gather *tlb, 2521 struct vm_area_struct *vma, unsigned long start, 2522 unsigned long end, unsigned long cp_flags); 2523 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb, 2524 struct vm_area_struct *vma, struct vm_area_struct **pprev, 2525 unsigned long start, unsigned long end, unsigned long newflags); 2526 2527 /* 2528 * doesn't attempt to fault and will return short. 2529 */ 2530 int get_user_pages_fast_only(unsigned long start, int nr_pages, 2531 unsigned int gup_flags, struct page **pages); 2532 2533 static inline bool get_user_page_fast_only(unsigned long addr, 2534 unsigned int gup_flags, struct page **pagep) 2535 { 2536 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 2537 } 2538 /* 2539 * per-process(per-mm_struct) statistics. 2540 */ 2541 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 2542 { 2543 return percpu_counter_read_positive(&mm->rss_stat[member]); 2544 } 2545 2546 void mm_trace_rss_stat(struct mm_struct *mm, int member); 2547 2548 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 2549 { 2550 percpu_counter_add(&mm->rss_stat[member], value); 2551 2552 mm_trace_rss_stat(mm, member); 2553 } 2554 2555 static inline void inc_mm_counter(struct mm_struct *mm, int member) 2556 { 2557 percpu_counter_inc(&mm->rss_stat[member]); 2558 2559 mm_trace_rss_stat(mm, member); 2560 } 2561 2562 static inline void dec_mm_counter(struct mm_struct *mm, int member) 2563 { 2564 percpu_counter_dec(&mm->rss_stat[member]); 2565 2566 mm_trace_rss_stat(mm, member); 2567 } 2568 2569 /* Optimized variant when page is already known not to be PageAnon */ 2570 static inline int mm_counter_file(struct page *page) 2571 { 2572 if (PageSwapBacked(page)) 2573 return MM_SHMEMPAGES; 2574 return MM_FILEPAGES; 2575 } 2576 2577 static inline int mm_counter(struct page *page) 2578 { 2579 if (PageAnon(page)) 2580 return MM_ANONPAGES; 2581 return mm_counter_file(page); 2582 } 2583 2584 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2585 { 2586 return get_mm_counter(mm, MM_FILEPAGES) + 2587 get_mm_counter(mm, MM_ANONPAGES) + 2588 get_mm_counter(mm, MM_SHMEMPAGES); 2589 } 2590 2591 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2592 { 2593 return max(mm->hiwater_rss, get_mm_rss(mm)); 2594 } 2595 2596 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2597 { 2598 return max(mm->hiwater_vm, mm->total_vm); 2599 } 2600 2601 static inline void update_hiwater_rss(struct mm_struct *mm) 2602 { 2603 unsigned long _rss = get_mm_rss(mm); 2604 2605 if ((mm)->hiwater_rss < _rss) 2606 (mm)->hiwater_rss = _rss; 2607 } 2608 2609 static inline void update_hiwater_vm(struct mm_struct *mm) 2610 { 2611 if (mm->hiwater_vm < mm->total_vm) 2612 mm->hiwater_vm = mm->total_vm; 2613 } 2614 2615 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2616 { 2617 mm->hiwater_rss = get_mm_rss(mm); 2618 } 2619 2620 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2621 struct mm_struct *mm) 2622 { 2623 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2624 2625 if (*maxrss < hiwater_rss) 2626 *maxrss = hiwater_rss; 2627 } 2628 2629 #if defined(SPLIT_RSS_COUNTING) 2630 void sync_mm_rss(struct mm_struct *mm); 2631 #else 2632 static inline void sync_mm_rss(struct mm_struct *mm) 2633 { 2634 } 2635 #endif 2636 2637 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2638 static inline int pte_special(pte_t pte) 2639 { 2640 return 0; 2641 } 2642 2643 static inline pte_t pte_mkspecial(pte_t pte) 2644 { 2645 return pte; 2646 } 2647 #endif 2648 2649 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2650 static inline int pte_devmap(pte_t pte) 2651 { 2652 return 0; 2653 } 2654 #endif 2655 2656 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2657 spinlock_t **ptl); 2658 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2659 spinlock_t **ptl) 2660 { 2661 pte_t *ptep; 2662 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2663 return ptep; 2664 } 2665 2666 #ifdef __PAGETABLE_P4D_FOLDED 2667 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2668 unsigned long address) 2669 { 2670 return 0; 2671 } 2672 #else 2673 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2674 #endif 2675 2676 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2677 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2678 unsigned long address) 2679 { 2680 return 0; 2681 } 2682 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2683 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2684 2685 #else 2686 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2687 2688 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2689 { 2690 if (mm_pud_folded(mm)) 2691 return; 2692 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2693 } 2694 2695 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2696 { 2697 if (mm_pud_folded(mm)) 2698 return; 2699 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2700 } 2701 #endif 2702 2703 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2704 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2705 unsigned long address) 2706 { 2707 return 0; 2708 } 2709 2710 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2711 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2712 2713 #else 2714 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2715 2716 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2717 { 2718 if (mm_pmd_folded(mm)) 2719 return; 2720 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2721 } 2722 2723 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2724 { 2725 if (mm_pmd_folded(mm)) 2726 return; 2727 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2728 } 2729 #endif 2730 2731 #ifdef CONFIG_MMU 2732 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2733 { 2734 atomic_long_set(&mm->pgtables_bytes, 0); 2735 } 2736 2737 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2738 { 2739 return atomic_long_read(&mm->pgtables_bytes); 2740 } 2741 2742 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2743 { 2744 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2745 } 2746 2747 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2748 { 2749 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2750 } 2751 #else 2752 2753 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2754 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2755 { 2756 return 0; 2757 } 2758 2759 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2760 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2761 #endif 2762 2763 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2764 int __pte_alloc_kernel(pmd_t *pmd); 2765 2766 #if defined(CONFIG_MMU) 2767 2768 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2769 unsigned long address) 2770 { 2771 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2772 NULL : p4d_offset(pgd, address); 2773 } 2774 2775 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2776 unsigned long address) 2777 { 2778 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2779 NULL : pud_offset(p4d, address); 2780 } 2781 2782 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2783 { 2784 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2785 NULL: pmd_offset(pud, address); 2786 } 2787 #endif /* CONFIG_MMU */ 2788 2789 static inline struct ptdesc *virt_to_ptdesc(const void *x) 2790 { 2791 return page_ptdesc(virt_to_page(x)); 2792 } 2793 2794 static inline void *ptdesc_to_virt(const struct ptdesc *pt) 2795 { 2796 return page_to_virt(ptdesc_page(pt)); 2797 } 2798 2799 static inline void *ptdesc_address(const struct ptdesc *pt) 2800 { 2801 return folio_address(ptdesc_folio(pt)); 2802 } 2803 2804 static inline bool pagetable_is_reserved(struct ptdesc *pt) 2805 { 2806 return folio_test_reserved(ptdesc_folio(pt)); 2807 } 2808 2809 /** 2810 * pagetable_alloc - Allocate pagetables 2811 * @gfp: GFP flags 2812 * @order: desired pagetable order 2813 * 2814 * pagetable_alloc allocates memory for page tables as well as a page table 2815 * descriptor to describe that memory. 2816 * 2817 * Return: The ptdesc describing the allocated page tables. 2818 */ 2819 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order) 2820 { 2821 struct page *page = alloc_pages(gfp | __GFP_COMP, order); 2822 2823 return page_ptdesc(page); 2824 } 2825 2826 /** 2827 * pagetable_free - Free pagetables 2828 * @pt: The page table descriptor 2829 * 2830 * pagetable_free frees the memory of all page tables described by a page 2831 * table descriptor and the memory for the descriptor itself. 2832 */ 2833 static inline void pagetable_free(struct ptdesc *pt) 2834 { 2835 struct page *page = ptdesc_page(pt); 2836 2837 __free_pages(page, compound_order(page)); 2838 } 2839 2840 #if USE_SPLIT_PTE_PTLOCKS 2841 #if ALLOC_SPLIT_PTLOCKS 2842 void __init ptlock_cache_init(void); 2843 bool ptlock_alloc(struct ptdesc *ptdesc); 2844 void ptlock_free(struct ptdesc *ptdesc); 2845 2846 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2847 { 2848 return ptdesc->ptl; 2849 } 2850 #else /* ALLOC_SPLIT_PTLOCKS */ 2851 static inline void ptlock_cache_init(void) 2852 { 2853 } 2854 2855 static inline bool ptlock_alloc(struct ptdesc *ptdesc) 2856 { 2857 return true; 2858 } 2859 2860 static inline void ptlock_free(struct ptdesc *ptdesc) 2861 { 2862 } 2863 2864 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc) 2865 { 2866 return &ptdesc->ptl; 2867 } 2868 #endif /* ALLOC_SPLIT_PTLOCKS */ 2869 2870 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2871 { 2872 return ptlock_ptr(page_ptdesc(pmd_page(*pmd))); 2873 } 2874 2875 static inline bool ptlock_init(struct ptdesc *ptdesc) 2876 { 2877 /* 2878 * prep_new_page() initialize page->private (and therefore page->ptl) 2879 * with 0. Make sure nobody took it in use in between. 2880 * 2881 * It can happen if arch try to use slab for page table allocation: 2882 * slab code uses page->slab_cache, which share storage with page->ptl. 2883 */ 2884 VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc)); 2885 if (!ptlock_alloc(ptdesc)) 2886 return false; 2887 spin_lock_init(ptlock_ptr(ptdesc)); 2888 return true; 2889 } 2890 2891 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2892 /* 2893 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2894 */ 2895 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2896 { 2897 return &mm->page_table_lock; 2898 } 2899 static inline void ptlock_cache_init(void) {} 2900 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; } 2901 static inline void ptlock_free(struct ptdesc *ptdesc) {} 2902 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2903 2904 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc) 2905 { 2906 struct folio *folio = ptdesc_folio(ptdesc); 2907 2908 if (!ptlock_init(ptdesc)) 2909 return false; 2910 __folio_set_pgtable(folio); 2911 lruvec_stat_add_folio(folio, NR_PAGETABLE); 2912 return true; 2913 } 2914 2915 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc) 2916 { 2917 struct folio *folio = ptdesc_folio(ptdesc); 2918 2919 ptlock_free(ptdesc); 2920 __folio_clear_pgtable(folio); 2921 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 2922 } 2923 2924 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp); 2925 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr) 2926 { 2927 return __pte_offset_map(pmd, addr, NULL); 2928 } 2929 2930 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2931 unsigned long addr, spinlock_t **ptlp); 2932 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd, 2933 unsigned long addr, spinlock_t **ptlp) 2934 { 2935 pte_t *pte; 2936 2937 __cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp)); 2938 return pte; 2939 } 2940 2941 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd, 2942 unsigned long addr, spinlock_t **ptlp); 2943 2944 #define pte_unmap_unlock(pte, ptl) do { \ 2945 spin_unlock(ptl); \ 2946 pte_unmap(pte); \ 2947 } while (0) 2948 2949 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2950 2951 #define pte_alloc_map(mm, pmd, address) \ 2952 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2953 2954 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2955 (pte_alloc(mm, pmd) ? \ 2956 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2957 2958 #define pte_alloc_kernel(pmd, address) \ 2959 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2960 NULL: pte_offset_kernel(pmd, address)) 2961 2962 #if USE_SPLIT_PMD_PTLOCKS 2963 2964 static inline struct page *pmd_pgtable_page(pmd_t *pmd) 2965 { 2966 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2967 return virt_to_page((void *)((unsigned long) pmd & mask)); 2968 } 2969 2970 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd) 2971 { 2972 return page_ptdesc(pmd_pgtable_page(pmd)); 2973 } 2974 2975 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2976 { 2977 return ptlock_ptr(pmd_ptdesc(pmd)); 2978 } 2979 2980 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) 2981 { 2982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2983 ptdesc->pmd_huge_pte = NULL; 2984 #endif 2985 return ptlock_init(ptdesc); 2986 } 2987 2988 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) 2989 { 2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2991 VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc)); 2992 #endif 2993 ptlock_free(ptdesc); 2994 } 2995 2996 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte) 2997 2998 #else 2999 3000 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 3001 { 3002 return &mm->page_table_lock; 3003 } 3004 3005 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; } 3006 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {} 3007 3008 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 3009 3010 #endif 3011 3012 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 3013 { 3014 spinlock_t *ptl = pmd_lockptr(mm, pmd); 3015 spin_lock(ptl); 3016 return ptl; 3017 } 3018 3019 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc) 3020 { 3021 struct folio *folio = ptdesc_folio(ptdesc); 3022 3023 if (!pmd_ptlock_init(ptdesc)) 3024 return false; 3025 __folio_set_pgtable(folio); 3026 lruvec_stat_add_folio(folio, NR_PAGETABLE); 3027 return true; 3028 } 3029 3030 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc) 3031 { 3032 struct folio *folio = ptdesc_folio(ptdesc); 3033 3034 pmd_ptlock_free(ptdesc); 3035 __folio_clear_pgtable(folio); 3036 lruvec_stat_sub_folio(folio, NR_PAGETABLE); 3037 } 3038 3039 /* 3040 * No scalability reason to split PUD locks yet, but follow the same pattern 3041 * as the PMD locks to make it easier if we decide to. The VM should not be 3042 * considered ready to switch to split PUD locks yet; there may be places 3043 * which need to be converted from page_table_lock. 3044 */ 3045 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 3046 { 3047 return &mm->page_table_lock; 3048 } 3049 3050 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 3051 { 3052 spinlock_t *ptl = pud_lockptr(mm, pud); 3053 3054 spin_lock(ptl); 3055 return ptl; 3056 } 3057 3058 extern void __init pagecache_init(void); 3059 extern void free_initmem(void); 3060 3061 /* 3062 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 3063 * into the buddy system. The freed pages will be poisoned with pattern 3064 * "poison" if it's within range [0, UCHAR_MAX]. 3065 * Return pages freed into the buddy system. 3066 */ 3067 extern unsigned long free_reserved_area(void *start, void *end, 3068 int poison, const char *s); 3069 3070 extern void adjust_managed_page_count(struct page *page, long count); 3071 3072 extern void reserve_bootmem_region(phys_addr_t start, 3073 phys_addr_t end, int nid); 3074 3075 /* Free the reserved page into the buddy system, so it gets managed. */ 3076 static inline void free_reserved_page(struct page *page) 3077 { 3078 ClearPageReserved(page); 3079 init_page_count(page); 3080 __free_page(page); 3081 adjust_managed_page_count(page, 1); 3082 } 3083 #define free_highmem_page(page) free_reserved_page(page) 3084 3085 static inline void mark_page_reserved(struct page *page) 3086 { 3087 SetPageReserved(page); 3088 adjust_managed_page_count(page, -1); 3089 } 3090 3091 static inline void free_reserved_ptdesc(struct ptdesc *pt) 3092 { 3093 free_reserved_page(ptdesc_page(pt)); 3094 } 3095 3096 /* 3097 * Default method to free all the __init memory into the buddy system. 3098 * The freed pages will be poisoned with pattern "poison" if it's within 3099 * range [0, UCHAR_MAX]. 3100 * Return pages freed into the buddy system. 3101 */ 3102 static inline unsigned long free_initmem_default(int poison) 3103 { 3104 extern char __init_begin[], __init_end[]; 3105 3106 return free_reserved_area(&__init_begin, &__init_end, 3107 poison, "unused kernel image (initmem)"); 3108 } 3109 3110 static inline unsigned long get_num_physpages(void) 3111 { 3112 int nid; 3113 unsigned long phys_pages = 0; 3114 3115 for_each_online_node(nid) 3116 phys_pages += node_present_pages(nid); 3117 3118 return phys_pages; 3119 } 3120 3121 /* 3122 * Using memblock node mappings, an architecture may initialise its 3123 * zones, allocate the backing mem_map and account for memory holes in an 3124 * architecture independent manner. 3125 * 3126 * An architecture is expected to register range of page frames backed by 3127 * physical memory with memblock_add[_node]() before calling 3128 * free_area_init() passing in the PFN each zone ends at. At a basic 3129 * usage, an architecture is expected to do something like 3130 * 3131 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 3132 * max_highmem_pfn}; 3133 * for_each_valid_physical_page_range() 3134 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 3135 * free_area_init(max_zone_pfns); 3136 */ 3137 void free_area_init(unsigned long *max_zone_pfn); 3138 unsigned long node_map_pfn_alignment(void); 3139 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 3140 unsigned long end_pfn); 3141 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 3142 unsigned long end_pfn); 3143 extern void get_pfn_range_for_nid(unsigned int nid, 3144 unsigned long *start_pfn, unsigned long *end_pfn); 3145 3146 #ifndef CONFIG_NUMA 3147 static inline int early_pfn_to_nid(unsigned long pfn) 3148 { 3149 return 0; 3150 } 3151 #else 3152 /* please see mm/page_alloc.c */ 3153 extern int __meminit early_pfn_to_nid(unsigned long pfn); 3154 #endif 3155 3156 extern void set_dma_reserve(unsigned long new_dma_reserve); 3157 extern void mem_init(void); 3158 extern void __init mmap_init(void); 3159 3160 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx); 3161 static inline void show_mem(void) 3162 { 3163 __show_mem(0, NULL, MAX_NR_ZONES - 1); 3164 } 3165 extern long si_mem_available(void); 3166 extern void si_meminfo(struct sysinfo * val); 3167 extern void si_meminfo_node(struct sysinfo *val, int nid); 3168 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 3169 extern unsigned long arch_reserved_kernel_pages(void); 3170 #endif 3171 3172 extern __printf(3, 4) 3173 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 3174 3175 extern void setup_per_cpu_pageset(void); 3176 3177 /* nommu.c */ 3178 extern atomic_long_t mmap_pages_allocated; 3179 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 3180 3181 /* interval_tree.c */ 3182 void vma_interval_tree_insert(struct vm_area_struct *node, 3183 struct rb_root_cached *root); 3184 void vma_interval_tree_insert_after(struct vm_area_struct *node, 3185 struct vm_area_struct *prev, 3186 struct rb_root_cached *root); 3187 void vma_interval_tree_remove(struct vm_area_struct *node, 3188 struct rb_root_cached *root); 3189 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 3190 unsigned long start, unsigned long last); 3191 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 3192 unsigned long start, unsigned long last); 3193 3194 #define vma_interval_tree_foreach(vma, root, start, last) \ 3195 for (vma = vma_interval_tree_iter_first(root, start, last); \ 3196 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 3197 3198 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 3199 struct rb_root_cached *root); 3200 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 3201 struct rb_root_cached *root); 3202 struct anon_vma_chain * 3203 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 3204 unsigned long start, unsigned long last); 3205 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 3206 struct anon_vma_chain *node, unsigned long start, unsigned long last); 3207 #ifdef CONFIG_DEBUG_VM_RB 3208 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 3209 #endif 3210 3211 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 3212 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 3213 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 3214 3215 /* mmap.c */ 3216 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 3217 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma, 3218 unsigned long start, unsigned long end, pgoff_t pgoff, 3219 struct vm_area_struct *next); 3220 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma, 3221 unsigned long start, unsigned long end, pgoff_t pgoff); 3222 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi, 3223 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr, 3224 unsigned long end, unsigned long vm_flags, struct anon_vma *, 3225 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx, 3226 struct anon_vma_name *); 3227 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 3228 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3229 unsigned long addr, int new_below); 3230 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *, 3231 unsigned long addr, int new_below); 3232 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 3233 extern void unlink_file_vma(struct vm_area_struct *); 3234 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 3235 unsigned long addr, unsigned long len, pgoff_t pgoff, 3236 bool *need_rmap_locks); 3237 extern void exit_mmap(struct mm_struct *); 3238 3239 static inline int check_data_rlimit(unsigned long rlim, 3240 unsigned long new, 3241 unsigned long start, 3242 unsigned long end_data, 3243 unsigned long start_data) 3244 { 3245 if (rlim < RLIM_INFINITY) { 3246 if (((new - start) + (end_data - start_data)) > rlim) 3247 return -ENOSPC; 3248 } 3249 3250 return 0; 3251 } 3252 3253 extern int mm_take_all_locks(struct mm_struct *mm); 3254 extern void mm_drop_all_locks(struct mm_struct *mm); 3255 3256 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3257 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 3258 extern struct file *get_mm_exe_file(struct mm_struct *mm); 3259 extern struct file *get_task_exe_file(struct task_struct *task); 3260 3261 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 3262 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 3263 3264 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 3265 const struct vm_special_mapping *sm); 3266 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 3267 unsigned long addr, unsigned long len, 3268 unsigned long flags, 3269 const struct vm_special_mapping *spec); 3270 /* This is an obsolete alternative to _install_special_mapping. */ 3271 extern int install_special_mapping(struct mm_struct *mm, 3272 unsigned long addr, unsigned long len, 3273 unsigned long flags, struct page **pages); 3274 3275 unsigned long randomize_stack_top(unsigned long stack_top); 3276 unsigned long randomize_page(unsigned long start, unsigned long range); 3277 3278 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 3279 3280 extern unsigned long mmap_region(struct file *file, unsigned long addr, 3281 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 3282 struct list_head *uf); 3283 extern unsigned long do_mmap(struct file *file, unsigned long addr, 3284 unsigned long len, unsigned long prot, unsigned long flags, 3285 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 3286 struct list_head *uf); 3287 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm, 3288 unsigned long start, size_t len, struct list_head *uf, 3289 bool unlock); 3290 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 3291 struct list_head *uf); 3292 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 3293 3294 #ifdef CONFIG_MMU 3295 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma, 3296 unsigned long start, unsigned long end, 3297 struct list_head *uf, bool unlock); 3298 extern int __mm_populate(unsigned long addr, unsigned long len, 3299 int ignore_errors); 3300 static inline void mm_populate(unsigned long addr, unsigned long len) 3301 { 3302 /* Ignore errors */ 3303 (void) __mm_populate(addr, len, 1); 3304 } 3305 #else 3306 static inline void mm_populate(unsigned long addr, unsigned long len) {} 3307 #endif 3308 3309 /* These take the mm semaphore themselves */ 3310 extern int __must_check vm_brk(unsigned long, unsigned long); 3311 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 3312 extern int vm_munmap(unsigned long, size_t); 3313 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 3314 unsigned long, unsigned long, 3315 unsigned long, unsigned long); 3316 3317 struct vm_unmapped_area_info { 3318 #define VM_UNMAPPED_AREA_TOPDOWN 1 3319 unsigned long flags; 3320 unsigned long length; 3321 unsigned long low_limit; 3322 unsigned long high_limit; 3323 unsigned long align_mask; 3324 unsigned long align_offset; 3325 }; 3326 3327 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 3328 3329 /* truncate.c */ 3330 extern void truncate_inode_pages(struct address_space *, loff_t); 3331 extern void truncate_inode_pages_range(struct address_space *, 3332 loff_t lstart, loff_t lend); 3333 extern void truncate_inode_pages_final(struct address_space *); 3334 3335 /* generic vm_area_ops exported for stackable file systems */ 3336 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 3337 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3338 pgoff_t start_pgoff, pgoff_t end_pgoff); 3339 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 3340 3341 extern unsigned long stack_guard_gap; 3342 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 3343 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address); 3344 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr); 3345 3346 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 3347 int expand_downwards(struct vm_area_struct *vma, unsigned long address); 3348 3349 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 3350 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 3351 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 3352 struct vm_area_struct **pprev); 3353 3354 /* 3355 * Look up the first VMA which intersects the interval [start_addr, end_addr) 3356 * NULL if none. Assume start_addr < end_addr. 3357 */ 3358 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 3359 unsigned long start_addr, unsigned long end_addr); 3360 3361 /** 3362 * vma_lookup() - Find a VMA at a specific address 3363 * @mm: The process address space. 3364 * @addr: The user address. 3365 * 3366 * Return: The vm_area_struct at the given address, %NULL otherwise. 3367 */ 3368 static inline 3369 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 3370 { 3371 return mtree_load(&mm->mm_mt, addr); 3372 } 3373 3374 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma) 3375 { 3376 if (vma->vm_flags & VM_GROWSDOWN) 3377 return stack_guard_gap; 3378 3379 /* See reasoning around the VM_SHADOW_STACK definition */ 3380 if (vma->vm_flags & VM_SHADOW_STACK) 3381 return PAGE_SIZE; 3382 3383 return 0; 3384 } 3385 3386 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 3387 { 3388 unsigned long gap = stack_guard_start_gap(vma); 3389 unsigned long vm_start = vma->vm_start; 3390 3391 vm_start -= gap; 3392 if (vm_start > vma->vm_start) 3393 vm_start = 0; 3394 return vm_start; 3395 } 3396 3397 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 3398 { 3399 unsigned long vm_end = vma->vm_end; 3400 3401 if (vma->vm_flags & VM_GROWSUP) { 3402 vm_end += stack_guard_gap; 3403 if (vm_end < vma->vm_end) 3404 vm_end = -PAGE_SIZE; 3405 } 3406 return vm_end; 3407 } 3408 3409 static inline unsigned long vma_pages(struct vm_area_struct *vma) 3410 { 3411 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 3412 } 3413 3414 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 3415 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 3416 unsigned long vm_start, unsigned long vm_end) 3417 { 3418 struct vm_area_struct *vma = vma_lookup(mm, vm_start); 3419 3420 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 3421 vma = NULL; 3422 3423 return vma; 3424 } 3425 3426 static inline bool range_in_vma(struct vm_area_struct *vma, 3427 unsigned long start, unsigned long end) 3428 { 3429 return (vma && vma->vm_start <= start && end <= vma->vm_end); 3430 } 3431 3432 #ifdef CONFIG_MMU 3433 pgprot_t vm_get_page_prot(unsigned long vm_flags); 3434 void vma_set_page_prot(struct vm_area_struct *vma); 3435 #else 3436 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 3437 { 3438 return __pgprot(0); 3439 } 3440 static inline void vma_set_page_prot(struct vm_area_struct *vma) 3441 { 3442 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 3443 } 3444 #endif 3445 3446 void vma_set_file(struct vm_area_struct *vma, struct file *file); 3447 3448 #ifdef CONFIG_NUMA_BALANCING 3449 unsigned long change_prot_numa(struct vm_area_struct *vma, 3450 unsigned long start, unsigned long end); 3451 #endif 3452 3453 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *, 3454 unsigned long addr); 3455 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 3456 unsigned long pfn, unsigned long size, pgprot_t); 3457 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 3458 unsigned long pfn, unsigned long size, pgprot_t prot); 3459 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 3460 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 3461 struct page **pages, unsigned long *num); 3462 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 3463 unsigned long num); 3464 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 3465 unsigned long num); 3466 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 3467 unsigned long pfn); 3468 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 3469 unsigned long pfn, pgprot_t pgprot); 3470 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 3471 pfn_t pfn); 3472 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 3473 unsigned long addr, pfn_t pfn); 3474 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 3475 3476 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 3477 unsigned long addr, struct page *page) 3478 { 3479 int err = vm_insert_page(vma, addr, page); 3480 3481 if (err == -ENOMEM) 3482 return VM_FAULT_OOM; 3483 if (err < 0 && err != -EBUSY) 3484 return VM_FAULT_SIGBUS; 3485 3486 return VM_FAULT_NOPAGE; 3487 } 3488 3489 #ifndef io_remap_pfn_range 3490 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 3491 unsigned long addr, unsigned long pfn, 3492 unsigned long size, pgprot_t prot) 3493 { 3494 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 3495 } 3496 #endif 3497 3498 static inline vm_fault_t vmf_error(int err) 3499 { 3500 if (err == -ENOMEM) 3501 return VM_FAULT_OOM; 3502 else if (err == -EHWPOISON) 3503 return VM_FAULT_HWPOISON; 3504 return VM_FAULT_SIGBUS; 3505 } 3506 3507 /* 3508 * Convert errno to return value for ->page_mkwrite() calls. 3509 * 3510 * This should eventually be merged with vmf_error() above, but will need a 3511 * careful audit of all vmf_error() callers. 3512 */ 3513 static inline vm_fault_t vmf_fs_error(int err) 3514 { 3515 if (err == 0) 3516 return VM_FAULT_LOCKED; 3517 if (err == -EFAULT || err == -EAGAIN) 3518 return VM_FAULT_NOPAGE; 3519 if (err == -ENOMEM) 3520 return VM_FAULT_OOM; 3521 /* -ENOSPC, -EDQUOT, -EIO ... */ 3522 return VM_FAULT_SIGBUS; 3523 } 3524 3525 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 3526 unsigned int foll_flags); 3527 3528 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 3529 { 3530 if (vm_fault & VM_FAULT_OOM) 3531 return -ENOMEM; 3532 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 3533 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 3534 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 3535 return -EFAULT; 3536 return 0; 3537 } 3538 3539 /* 3540 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether 3541 * a (NUMA hinting) fault is required. 3542 */ 3543 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma, 3544 unsigned int flags) 3545 { 3546 /* 3547 * If callers don't want to honor NUMA hinting faults, no need to 3548 * determine if we would actually have to trigger a NUMA hinting fault. 3549 */ 3550 if (!(flags & FOLL_HONOR_NUMA_FAULT)) 3551 return true; 3552 3553 /* 3554 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs. 3555 * 3556 * Requiring a fault here even for inaccessible VMAs would mean that 3557 * FOLL_FORCE cannot make any progress, because handle_mm_fault() 3558 * refuses to process NUMA hinting faults in inaccessible VMAs. 3559 */ 3560 return !vma_is_accessible(vma); 3561 } 3562 3563 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3564 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3565 unsigned long size, pte_fn_t fn, void *data); 3566 extern int apply_to_existing_page_range(struct mm_struct *mm, 3567 unsigned long address, unsigned long size, 3568 pte_fn_t fn, void *data); 3569 3570 #ifdef CONFIG_PAGE_POISONING 3571 extern void __kernel_poison_pages(struct page *page, int numpages); 3572 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3573 extern bool _page_poisoning_enabled_early; 3574 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3575 static inline bool page_poisoning_enabled(void) 3576 { 3577 return _page_poisoning_enabled_early; 3578 } 3579 /* 3580 * For use in fast paths after init_mem_debugging() has run, or when a 3581 * false negative result is not harmful when called too early. 3582 */ 3583 static inline bool page_poisoning_enabled_static(void) 3584 { 3585 return static_branch_unlikely(&_page_poisoning_enabled); 3586 } 3587 static inline void kernel_poison_pages(struct page *page, int numpages) 3588 { 3589 if (page_poisoning_enabled_static()) 3590 __kernel_poison_pages(page, numpages); 3591 } 3592 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3593 { 3594 if (page_poisoning_enabled_static()) 3595 __kernel_unpoison_pages(page, numpages); 3596 } 3597 #else 3598 static inline bool page_poisoning_enabled(void) { return false; } 3599 static inline bool page_poisoning_enabled_static(void) { return false; } 3600 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3601 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3602 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3603 #endif 3604 3605 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3606 static inline bool want_init_on_alloc(gfp_t flags) 3607 { 3608 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3609 &init_on_alloc)) 3610 return true; 3611 return flags & __GFP_ZERO; 3612 } 3613 3614 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3615 static inline bool want_init_on_free(void) 3616 { 3617 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3618 &init_on_free); 3619 } 3620 3621 extern bool _debug_pagealloc_enabled_early; 3622 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3623 3624 static inline bool debug_pagealloc_enabled(void) 3625 { 3626 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3627 _debug_pagealloc_enabled_early; 3628 } 3629 3630 /* 3631 * For use in fast paths after mem_debugging_and_hardening_init() has run, 3632 * or when a false negative result is not harmful when called too early. 3633 */ 3634 static inline bool debug_pagealloc_enabled_static(void) 3635 { 3636 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3637 return false; 3638 3639 return static_branch_unlikely(&_debug_pagealloc_enabled); 3640 } 3641 3642 /* 3643 * To support DEBUG_PAGEALLOC architecture must ensure that 3644 * __kernel_map_pages() never fails 3645 */ 3646 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3647 #ifdef CONFIG_DEBUG_PAGEALLOC 3648 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3649 { 3650 if (debug_pagealloc_enabled_static()) 3651 __kernel_map_pages(page, numpages, 1); 3652 } 3653 3654 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3655 { 3656 if (debug_pagealloc_enabled_static()) 3657 __kernel_map_pages(page, numpages, 0); 3658 } 3659 3660 extern unsigned int _debug_guardpage_minorder; 3661 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3662 3663 static inline unsigned int debug_guardpage_minorder(void) 3664 { 3665 return _debug_guardpage_minorder; 3666 } 3667 3668 static inline bool debug_guardpage_enabled(void) 3669 { 3670 return static_branch_unlikely(&_debug_guardpage_enabled); 3671 } 3672 3673 static inline bool page_is_guard(struct page *page) 3674 { 3675 if (!debug_guardpage_enabled()) 3676 return false; 3677 3678 return PageGuard(page); 3679 } 3680 3681 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order, 3682 int migratetype); 3683 static inline bool set_page_guard(struct zone *zone, struct page *page, 3684 unsigned int order, int migratetype) 3685 { 3686 if (!debug_guardpage_enabled()) 3687 return false; 3688 return __set_page_guard(zone, page, order, migratetype); 3689 } 3690 3691 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order, 3692 int migratetype); 3693 static inline void clear_page_guard(struct zone *zone, struct page *page, 3694 unsigned int order, int migratetype) 3695 { 3696 if (!debug_guardpage_enabled()) 3697 return; 3698 __clear_page_guard(zone, page, order, migratetype); 3699 } 3700 3701 #else /* CONFIG_DEBUG_PAGEALLOC */ 3702 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3703 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3704 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3705 static inline bool debug_guardpage_enabled(void) { return false; } 3706 static inline bool page_is_guard(struct page *page) { return false; } 3707 static inline bool set_page_guard(struct zone *zone, struct page *page, 3708 unsigned int order, int migratetype) { return false; } 3709 static inline void clear_page_guard(struct zone *zone, struct page *page, 3710 unsigned int order, int migratetype) {} 3711 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3712 3713 #ifdef __HAVE_ARCH_GATE_AREA 3714 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3715 extern int in_gate_area_no_mm(unsigned long addr); 3716 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3717 #else 3718 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3719 { 3720 return NULL; 3721 } 3722 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3723 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3724 { 3725 return 0; 3726 } 3727 #endif /* __HAVE_ARCH_GATE_AREA */ 3728 3729 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3730 3731 #ifdef CONFIG_SYSCTL 3732 extern int sysctl_drop_caches; 3733 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3734 loff_t *); 3735 #endif 3736 3737 void drop_slab(void); 3738 3739 #ifndef CONFIG_MMU 3740 #define randomize_va_space 0 3741 #else 3742 extern int randomize_va_space; 3743 #endif 3744 3745 const char * arch_vma_name(struct vm_area_struct *vma); 3746 #ifdef CONFIG_MMU 3747 void print_vma_addr(char *prefix, unsigned long rip); 3748 #else 3749 static inline void print_vma_addr(char *prefix, unsigned long rip) 3750 { 3751 } 3752 #endif 3753 3754 void *sparse_buffer_alloc(unsigned long size); 3755 struct page * __populate_section_memmap(unsigned long pfn, 3756 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3757 struct dev_pagemap *pgmap); 3758 void pmd_init(void *addr); 3759 void pud_init(void *addr); 3760 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3761 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3762 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3763 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3764 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3765 struct vmem_altmap *altmap, struct page *reuse); 3766 void *vmemmap_alloc_block(unsigned long size, int node); 3767 struct vmem_altmap; 3768 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3769 struct vmem_altmap *altmap); 3770 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3771 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node, 3772 unsigned long addr, unsigned long next); 3773 int vmemmap_check_pmd(pmd_t *pmd, int node, 3774 unsigned long addr, unsigned long next); 3775 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3776 int node, struct vmem_altmap *altmap); 3777 int vmemmap_populate_hugepages(unsigned long start, unsigned long end, 3778 int node, struct vmem_altmap *altmap); 3779 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3780 struct vmem_altmap *altmap); 3781 void vmemmap_populate_print_last(void); 3782 #ifdef CONFIG_MEMORY_HOTPLUG 3783 void vmemmap_free(unsigned long start, unsigned long end, 3784 struct vmem_altmap *altmap); 3785 #endif 3786 3787 #define VMEMMAP_RESERVE_NR 2 3788 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP 3789 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap, 3790 struct dev_pagemap *pgmap) 3791 { 3792 unsigned long nr_pages; 3793 unsigned long nr_vmemmap_pages; 3794 3795 if (!pgmap || !is_power_of_2(sizeof(struct page))) 3796 return false; 3797 3798 nr_pages = pgmap_vmemmap_nr(pgmap); 3799 nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT); 3800 /* 3801 * For vmemmap optimization with DAX we need minimum 2 vmemmap 3802 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst 3803 */ 3804 return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR); 3805 } 3806 /* 3807 * If we don't have an architecture override, use the generic rule 3808 */ 3809 #ifndef vmemmap_can_optimize 3810 #define vmemmap_can_optimize __vmemmap_can_optimize 3811 #endif 3812 3813 #else 3814 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap, 3815 struct dev_pagemap *pgmap) 3816 { 3817 return false; 3818 } 3819 #endif 3820 3821 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3822 unsigned long nr_pages); 3823 3824 enum mf_flags { 3825 MF_COUNT_INCREASED = 1 << 0, 3826 MF_ACTION_REQUIRED = 1 << 1, 3827 MF_MUST_KILL = 1 << 2, 3828 MF_SOFT_OFFLINE = 1 << 3, 3829 MF_UNPOISON = 1 << 4, 3830 MF_SW_SIMULATED = 1 << 5, 3831 MF_NO_RETRY = 1 << 6, 3832 }; 3833 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3834 unsigned long count, int mf_flags); 3835 extern int memory_failure(unsigned long pfn, int flags); 3836 extern void memory_failure_queue_kick(int cpu); 3837 extern int unpoison_memory(unsigned long pfn); 3838 extern void shake_page(struct page *p); 3839 extern atomic_long_t num_poisoned_pages __read_mostly; 3840 extern int soft_offline_page(unsigned long pfn, int flags); 3841 #ifdef CONFIG_MEMORY_FAILURE 3842 /* 3843 * Sysfs entries for memory failure handling statistics. 3844 */ 3845 extern const struct attribute_group memory_failure_attr_group; 3846 extern void memory_failure_queue(unsigned long pfn, int flags); 3847 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3848 bool *migratable_cleared); 3849 void num_poisoned_pages_inc(unsigned long pfn); 3850 void num_poisoned_pages_sub(unsigned long pfn, long i); 3851 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early); 3852 #else 3853 static inline void memory_failure_queue(unsigned long pfn, int flags) 3854 { 3855 } 3856 3857 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags, 3858 bool *migratable_cleared) 3859 { 3860 return 0; 3861 } 3862 3863 static inline void num_poisoned_pages_inc(unsigned long pfn) 3864 { 3865 } 3866 3867 static inline void num_poisoned_pages_sub(unsigned long pfn, long i) 3868 { 3869 } 3870 #endif 3871 3872 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM) 3873 void add_to_kill_ksm(struct task_struct *tsk, struct page *p, 3874 struct vm_area_struct *vma, struct list_head *to_kill, 3875 unsigned long ksm_addr); 3876 #endif 3877 3878 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG) 3879 extern void memblk_nr_poison_inc(unsigned long pfn); 3880 extern void memblk_nr_poison_sub(unsigned long pfn, long i); 3881 #else 3882 static inline void memblk_nr_poison_inc(unsigned long pfn) 3883 { 3884 } 3885 3886 static inline void memblk_nr_poison_sub(unsigned long pfn, long i) 3887 { 3888 } 3889 #endif 3890 3891 #ifndef arch_memory_failure 3892 static inline int arch_memory_failure(unsigned long pfn, int flags) 3893 { 3894 return -ENXIO; 3895 } 3896 #endif 3897 3898 #ifndef arch_is_platform_page 3899 static inline bool arch_is_platform_page(u64 paddr) 3900 { 3901 return false; 3902 } 3903 #endif 3904 3905 /* 3906 * Error handlers for various types of pages. 3907 */ 3908 enum mf_result { 3909 MF_IGNORED, /* Error: cannot be handled */ 3910 MF_FAILED, /* Error: handling failed */ 3911 MF_DELAYED, /* Will be handled later */ 3912 MF_RECOVERED, /* Successfully recovered */ 3913 }; 3914 3915 enum mf_action_page_type { 3916 MF_MSG_KERNEL, 3917 MF_MSG_KERNEL_HIGH_ORDER, 3918 MF_MSG_SLAB, 3919 MF_MSG_DIFFERENT_COMPOUND, 3920 MF_MSG_HUGE, 3921 MF_MSG_FREE_HUGE, 3922 MF_MSG_UNMAP_FAILED, 3923 MF_MSG_DIRTY_SWAPCACHE, 3924 MF_MSG_CLEAN_SWAPCACHE, 3925 MF_MSG_DIRTY_MLOCKED_LRU, 3926 MF_MSG_CLEAN_MLOCKED_LRU, 3927 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3928 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3929 MF_MSG_DIRTY_LRU, 3930 MF_MSG_CLEAN_LRU, 3931 MF_MSG_TRUNCATED_LRU, 3932 MF_MSG_BUDDY, 3933 MF_MSG_DAX, 3934 MF_MSG_UNSPLIT_THP, 3935 MF_MSG_UNKNOWN, 3936 }; 3937 3938 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3939 extern void clear_huge_page(struct page *page, 3940 unsigned long addr_hint, 3941 unsigned int pages_per_huge_page); 3942 int copy_user_large_folio(struct folio *dst, struct folio *src, 3943 unsigned long addr_hint, 3944 struct vm_area_struct *vma); 3945 long copy_folio_from_user(struct folio *dst_folio, 3946 const void __user *usr_src, 3947 bool allow_pagefault); 3948 3949 /** 3950 * vma_is_special_huge - Are transhuge page-table entries considered special? 3951 * @vma: Pointer to the struct vm_area_struct to consider 3952 * 3953 * Whether transhuge page-table entries are considered "special" following 3954 * the definition in vm_normal_page(). 3955 * 3956 * Return: true if transhuge page-table entries should be considered special, 3957 * false otherwise. 3958 */ 3959 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3960 { 3961 return vma_is_dax(vma) || (vma->vm_file && 3962 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3963 } 3964 3965 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3966 3967 #if MAX_NUMNODES > 1 3968 void __init setup_nr_node_ids(void); 3969 #else 3970 static inline void setup_nr_node_ids(void) {} 3971 #endif 3972 3973 extern int memcmp_pages(struct page *page1, struct page *page2); 3974 3975 static inline int pages_identical(struct page *page1, struct page *page2) 3976 { 3977 return !memcmp_pages(page1, page2); 3978 } 3979 3980 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3981 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3982 pgoff_t first_index, pgoff_t nr, 3983 pgoff_t bitmap_pgoff, 3984 unsigned long *bitmap, 3985 pgoff_t *start, 3986 pgoff_t *end); 3987 3988 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3989 pgoff_t first_index, pgoff_t nr); 3990 #endif 3991 3992 extern int sysctl_nr_trim_pages; 3993 3994 #ifdef CONFIG_PRINTK 3995 void mem_dump_obj(void *object); 3996 #else 3997 static inline void mem_dump_obj(void *object) {} 3998 #endif 3999 4000 /** 4001 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 4002 * @seals: the seals to check 4003 * @vma: the vma to operate on 4004 * 4005 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 4006 * the vma flags. Return 0 if check pass, or <0 for errors. 4007 */ 4008 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 4009 { 4010 if (seals & F_SEAL_FUTURE_WRITE) { 4011 /* 4012 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 4013 * "future write" seal active. 4014 */ 4015 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 4016 return -EPERM; 4017 4018 /* 4019 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 4020 * MAP_SHARED and read-only, take care to not allow mprotect to 4021 * revert protections on such mappings. Do this only for shared 4022 * mappings. For private mappings, don't need to mask 4023 * VM_MAYWRITE as we still want them to be COW-writable. 4024 */ 4025 if (vma->vm_flags & VM_SHARED) 4026 vm_flags_clear(vma, VM_MAYWRITE); 4027 } 4028 4029 return 0; 4030 } 4031 4032 #ifdef CONFIG_ANON_VMA_NAME 4033 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4034 unsigned long len_in, 4035 struct anon_vma_name *anon_name); 4036 #else 4037 static inline int 4038 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 4039 unsigned long len_in, struct anon_vma_name *anon_name) { 4040 return 0; 4041 } 4042 #endif 4043 4044 #ifdef CONFIG_UNACCEPTED_MEMORY 4045 4046 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end); 4047 void accept_memory(phys_addr_t start, phys_addr_t end); 4048 4049 #else 4050 4051 static inline bool range_contains_unaccepted_memory(phys_addr_t start, 4052 phys_addr_t end) 4053 { 4054 return false; 4055 } 4056 4057 static inline void accept_memory(phys_addr_t start, phys_addr_t end) 4058 { 4059 } 4060 4061 #endif 4062 4063 #endif /* _LINUX_MM_H */ 4064