xref: /linux-6.15/include/linux/mm.h (revision ccab211a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 #include <linux/slab.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct user_struct;
38 struct pt_regs;
39 
40 extern int sysctl_page_lock_unfairness;
41 
42 void mm_core_init(void);
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 extern const int page_cluster_max;
80 
81 #ifdef CONFIG_SYSCTL
82 extern int sysctl_legacy_va_layout;
83 #else
84 #define sysctl_legacy_va_layout 0
85 #endif
86 
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88 extern const int mmap_rnd_bits_min;
89 extern const int mmap_rnd_bits_max;
90 extern int mmap_rnd_bits __read_mostly;
91 #endif
92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93 extern const int mmap_rnd_compat_bits_min;
94 extern const int mmap_rnd_compat_bits_max;
95 extern int mmap_rnd_compat_bits __read_mostly;
96 #endif
97 
98 #include <asm/page.h>
99 #include <asm/processor.h>
100 
101 #ifndef __pa_symbol
102 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
103 #endif
104 
105 #ifndef page_to_virt
106 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
107 #endif
108 
109 #ifndef lm_alias
110 #define lm_alias(x)	__va(__pa_symbol(x))
111 #endif
112 
113 /*
114  * To prevent common memory management code establishing
115  * a zero page mapping on a read fault.
116  * This macro should be defined within <asm/pgtable.h>.
117  * s390 does this to prevent multiplexing of hardware bits
118  * related to the physical page in case of virtualization.
119  */
120 #ifndef mm_forbids_zeropage
121 #define mm_forbids_zeropage(X)	(0)
122 #endif
123 
124 /*
125  * On some architectures it is expensive to call memset() for small sizes.
126  * If an architecture decides to implement their own version of
127  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128  * define their own version of this macro in <asm/pgtable.h>
129  */
130 #if BITS_PER_LONG == 64
131 /* This function must be updated when the size of struct page grows above 96
132  * or reduces below 56. The idea that compiler optimizes out switch()
133  * statement, and only leaves move/store instructions. Also the compiler can
134  * combine write statements if they are both assignments and can be reordered,
135  * this can result in several of the writes here being dropped.
136  */
137 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138 static inline void __mm_zero_struct_page(struct page *page)
139 {
140 	unsigned long *_pp = (void *)page;
141 
142 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 	BUILD_BUG_ON(sizeof(struct page) & 7);
144 	BUILD_BUG_ON(sizeof(struct page) < 56);
145 	BUILD_BUG_ON(sizeof(struct page) > 96);
146 
147 	switch (sizeof(struct page)) {
148 	case 96:
149 		_pp[11] = 0;
150 		fallthrough;
151 	case 88:
152 		_pp[10] = 0;
153 		fallthrough;
154 	case 80:
155 		_pp[9] = 0;
156 		fallthrough;
157 	case 72:
158 		_pp[8] = 0;
159 		fallthrough;
160 	case 64:
161 		_pp[7] = 0;
162 		fallthrough;
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 
212 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
215 #else
216 #define nth_page(page,n) ((page) + (n))
217 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
218 #endif
219 
220 /* to align the pointer to the (next) page boundary */
221 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222 
223 /* to align the pointer to the (prev) page boundary */
224 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225 
226 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228 
229 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230 static inline struct folio *lru_to_folio(struct list_head *head)
231 {
232 	return list_entry((head)->prev, struct folio, lru);
233 }
234 
235 void setup_initial_init_mm(void *start_code, void *end_code,
236 			   void *end_data, void *brk);
237 
238 /*
239  * Linux kernel virtual memory manager primitives.
240  * The idea being to have a "virtual" mm in the same way
241  * we have a virtual fs - giving a cleaner interface to the
242  * mm details, and allowing different kinds of memory mappings
243  * (from shared memory to executable loading to arbitrary
244  * mmap() functions).
245  */
246 
247 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249 void vm_area_free(struct vm_area_struct *);
250 /* Use only if VMA has no other users */
251 void __vm_area_free(struct vm_area_struct *vma);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #ifdef CONFIG_MMU
279 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
280 #else /* CONFIG_MMU */
281 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282 #define VM_UFFD_MISSING	0
283 #endif /* CONFIG_MMU */
284 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
285 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
286 
287 #define VM_LOCKED	0x00002000
288 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
289 
290 					/* Used by sys_madvise() */
291 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
292 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
293 
294 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
295 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
296 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
297 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
298 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
299 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
300 #define VM_SYNC		0x00800000	/* Synchronous page faults */
301 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
302 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
303 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
304 
305 #ifdef CONFIG_MEM_SOFT_DIRTY
306 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
307 #else
308 # define VM_SOFTDIRTY	0
309 #endif
310 
311 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
312 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
313 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
314 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
315 
316 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
318 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
324 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
325 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
326 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
327 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
328 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
329 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
330 
331 #ifdef CONFIG_ARCH_HAS_PKEYS
332 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
333 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
334 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
335 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
336 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
337 #ifdef CONFIG_PPC
338 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
339 #else
340 # define VM_PKEY_BIT4  0
341 #endif
342 #endif /* CONFIG_ARCH_HAS_PKEYS */
343 
344 #ifdef CONFIG_X86_USER_SHADOW_STACK
345 /*
346  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
347  * support core mm.
348  *
349  * These VMAs will get a single end guard page. This helps userspace protect
350  * itself from attacks. A single page is enough for current shadow stack archs
351  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
352  * for more details on the guard size.
353  */
354 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
355 #else
356 # define VM_SHADOW_STACK	VM_NONE
357 #endif
358 
359 #if defined(CONFIG_X86)
360 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
361 #elif defined(CONFIG_PPC)
362 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
363 #elif defined(CONFIG_PARISC)
364 # define VM_GROWSUP	VM_ARCH_1
365 #elif defined(CONFIG_SPARC64)
366 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
367 # define VM_ARCH_CLEAR	VM_SPARC_ADI
368 #elif defined(CONFIG_ARM64)
369 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
370 # define VM_ARCH_CLEAR	VM_ARM64_BTI
371 #elif !defined(CONFIG_MMU)
372 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
373 #endif
374 
375 #if defined(CONFIG_ARM64_MTE)
376 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
377 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
378 #else
379 # define VM_MTE		VM_NONE
380 # define VM_MTE_ALLOWED	VM_NONE
381 #endif
382 
383 #ifndef VM_GROWSUP
384 # define VM_GROWSUP	VM_NONE
385 #endif
386 
387 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
388 # define VM_UFFD_MINOR_BIT	38
389 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
390 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
391 # define VM_UFFD_MINOR		VM_NONE
392 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
393 
394 /* Bits set in the VMA until the stack is in its final location */
395 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
396 
397 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
398 
399 /* Common data flag combinations */
400 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
401 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
402 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
403 				 VM_MAYWRITE | VM_MAYEXEC)
404 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
405 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
406 
407 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
408 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
409 #endif
410 
411 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
412 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
413 #endif
414 
415 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
416 
417 #ifdef CONFIG_STACK_GROWSUP
418 #define VM_STACK	VM_GROWSUP
419 #define VM_STACK_EARLY	VM_GROWSDOWN
420 #else
421 #define VM_STACK	VM_GROWSDOWN
422 #define VM_STACK_EARLY	0
423 #endif
424 
425 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
426 
427 /* VMA basic access permission flags */
428 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
429 
430 
431 /*
432  * Special vmas that are non-mergable, non-mlock()able.
433  */
434 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
435 
436 /* This mask prevents VMA from being scanned with khugepaged */
437 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
438 
439 /* This mask defines which mm->def_flags a process can inherit its parent */
440 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
441 
442 /* This mask represents all the VMA flag bits used by mlock */
443 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
444 
445 /* Arch-specific flags to clear when updating VM flags on protection change */
446 #ifndef VM_ARCH_CLEAR
447 # define VM_ARCH_CLEAR	VM_NONE
448 #endif
449 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
450 
451 /*
452  * mapping from the currently active vm_flags protection bits (the
453  * low four bits) to a page protection mask..
454  */
455 
456 /*
457  * The default fault flags that should be used by most of the
458  * arch-specific page fault handlers.
459  */
460 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
461 			     FAULT_FLAG_KILLABLE | \
462 			     FAULT_FLAG_INTERRUPTIBLE)
463 
464 /**
465  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
466  * @flags: Fault flags.
467  *
468  * This is mostly used for places where we want to try to avoid taking
469  * the mmap_lock for too long a time when waiting for another condition
470  * to change, in which case we can try to be polite to release the
471  * mmap_lock in the first round to avoid potential starvation of other
472  * processes that would also want the mmap_lock.
473  *
474  * Return: true if the page fault allows retry and this is the first
475  * attempt of the fault handling; false otherwise.
476  */
477 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
478 {
479 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
480 	    (!(flags & FAULT_FLAG_TRIED));
481 }
482 
483 #define FAULT_FLAG_TRACE \
484 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
485 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
486 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
487 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
488 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
489 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
490 	{ FAULT_FLAG_USER,		"USER" }, \
491 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
492 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
493 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
494 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
495 
496 /*
497  * vm_fault is filled by the pagefault handler and passed to the vma's
498  * ->fault function. The vma's ->fault is responsible for returning a bitmask
499  * of VM_FAULT_xxx flags that give details about how the fault was handled.
500  *
501  * MM layer fills up gfp_mask for page allocations but fault handler might
502  * alter it if its implementation requires a different allocation context.
503  *
504  * pgoff should be used in favour of virtual_address, if possible.
505  */
506 struct vm_fault {
507 	const struct {
508 		struct vm_area_struct *vma;	/* Target VMA */
509 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
510 		pgoff_t pgoff;			/* Logical page offset based on vma */
511 		unsigned long address;		/* Faulting virtual address - masked */
512 		unsigned long real_address;	/* Faulting virtual address - unmasked */
513 	};
514 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
515 					 * XXX: should really be 'const' */
516 	pmd_t *pmd;			/* Pointer to pmd entry matching
517 					 * the 'address' */
518 	pud_t *pud;			/* Pointer to pud entry matching
519 					 * the 'address'
520 					 */
521 	union {
522 		pte_t orig_pte;		/* Value of PTE at the time of fault */
523 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
524 					 * used by PMD fault only.
525 					 */
526 	};
527 
528 	struct page *cow_page;		/* Page handler may use for COW fault */
529 	struct page *page;		/* ->fault handlers should return a
530 					 * page here, unless VM_FAULT_NOPAGE
531 					 * is set (which is also implied by
532 					 * VM_FAULT_ERROR).
533 					 */
534 	/* These three entries are valid only while holding ptl lock */
535 	pte_t *pte;			/* Pointer to pte entry matching
536 					 * the 'address'. NULL if the page
537 					 * table hasn't been allocated.
538 					 */
539 	spinlock_t *ptl;		/* Page table lock.
540 					 * Protects pte page table if 'pte'
541 					 * is not NULL, otherwise pmd.
542 					 */
543 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
544 					 * vm_ops->map_pages() sets up a page
545 					 * table from atomic context.
546 					 * do_fault_around() pre-allocates
547 					 * page table to avoid allocation from
548 					 * atomic context.
549 					 */
550 };
551 
552 /*
553  * These are the virtual MM functions - opening of an area, closing and
554  * unmapping it (needed to keep files on disk up-to-date etc), pointer
555  * to the functions called when a no-page or a wp-page exception occurs.
556  */
557 struct vm_operations_struct {
558 	void (*open)(struct vm_area_struct * area);
559 	/**
560 	 * @close: Called when the VMA is being removed from the MM.
561 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
562 	 */
563 	void (*close)(struct vm_area_struct * area);
564 	/* Called any time before splitting to check if it's allowed */
565 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
566 	int (*mremap)(struct vm_area_struct *area);
567 	/*
568 	 * Called by mprotect() to make driver-specific permission
569 	 * checks before mprotect() is finalised.   The VMA must not
570 	 * be modified.  Returns 0 if mprotect() can proceed.
571 	 */
572 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
573 			unsigned long end, unsigned long newflags);
574 	vm_fault_t (*fault)(struct vm_fault *vmf);
575 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
576 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
577 			pgoff_t start_pgoff, pgoff_t end_pgoff);
578 	unsigned long (*pagesize)(struct vm_area_struct * area);
579 
580 	/* notification that a previously read-only page is about to become
581 	 * writable, if an error is returned it will cause a SIGBUS */
582 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
583 
584 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
585 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
586 
587 	/* called by access_process_vm when get_user_pages() fails, typically
588 	 * for use by special VMAs. See also generic_access_phys() for a generic
589 	 * implementation useful for any iomem mapping.
590 	 */
591 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
592 		      void *buf, int len, int write);
593 
594 	/* Called by the /proc/PID/maps code to ask the vma whether it
595 	 * has a special name.  Returning non-NULL will also cause this
596 	 * vma to be dumped unconditionally. */
597 	const char *(*name)(struct vm_area_struct *vma);
598 
599 #ifdef CONFIG_NUMA
600 	/*
601 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
602 	 * to hold the policy upon return.  Caller should pass NULL @new to
603 	 * remove a policy and fall back to surrounding context--i.e. do not
604 	 * install a MPOL_DEFAULT policy, nor the task or system default
605 	 * mempolicy.
606 	 */
607 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
608 
609 	/*
610 	 * get_policy() op must add reference [mpol_get()] to any policy at
611 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
612 	 * in mm/mempolicy.c will do this automatically.
613 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
614 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
615 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
616 	 * must return NULL--i.e., do not "fallback" to task or system default
617 	 * policy.
618 	 */
619 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
620 					unsigned long addr);
621 #endif
622 	/*
623 	 * Called by vm_normal_page() for special PTEs to find the
624 	 * page for @addr.  This is useful if the default behavior
625 	 * (using pte_page()) would not find the correct page.
626 	 */
627 	struct page *(*find_special_page)(struct vm_area_struct *vma,
628 					  unsigned long addr);
629 };
630 
631 #ifdef CONFIG_NUMA_BALANCING
632 static inline void vma_numab_state_init(struct vm_area_struct *vma)
633 {
634 	vma->numab_state = NULL;
635 }
636 static inline void vma_numab_state_free(struct vm_area_struct *vma)
637 {
638 	kfree(vma->numab_state);
639 }
640 #else
641 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
642 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
643 #endif /* CONFIG_NUMA_BALANCING */
644 
645 #ifdef CONFIG_PER_VMA_LOCK
646 /*
647  * Try to read-lock a vma. The function is allowed to occasionally yield false
648  * locked result to avoid performance overhead, in which case we fall back to
649  * using mmap_lock. The function should never yield false unlocked result.
650  */
651 static inline bool vma_start_read(struct vm_area_struct *vma)
652 {
653 	/*
654 	 * Check before locking. A race might cause false locked result.
655 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
656 	 * ACQUIRE semantics, because this is just a lockless check whose result
657 	 * we don't rely on for anything - the mm_lock_seq read against which we
658 	 * need ordering is below.
659 	 */
660 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
661 		return false;
662 
663 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
664 		return false;
665 
666 	/*
667 	 * Overflow might produce false locked result.
668 	 * False unlocked result is impossible because we modify and check
669 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
670 	 * modification invalidates all existing locks.
671 	 *
672 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
673 	 * racing with vma_end_write_all(), we only start reading from the VMA
674 	 * after it has been unlocked.
675 	 * This pairs with RELEASE semantics in vma_end_write_all().
676 	 */
677 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
678 		up_read(&vma->vm_lock->lock);
679 		return false;
680 	}
681 	return true;
682 }
683 
684 static inline void vma_end_read(struct vm_area_struct *vma)
685 {
686 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
687 	up_read(&vma->vm_lock->lock);
688 	rcu_read_unlock();
689 }
690 
691 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
692 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
693 {
694 	mmap_assert_write_locked(vma->vm_mm);
695 
696 	/*
697 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
698 	 * mm->mm_lock_seq can't be concurrently modified.
699 	 */
700 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
701 	return (vma->vm_lock_seq == *mm_lock_seq);
702 }
703 
704 /*
705  * Begin writing to a VMA.
706  * Exclude concurrent readers under the per-VMA lock until the currently
707  * write-locked mmap_lock is dropped or downgraded.
708  */
709 static inline void vma_start_write(struct vm_area_struct *vma)
710 {
711 	int mm_lock_seq;
712 
713 	if (__is_vma_write_locked(vma, &mm_lock_seq))
714 		return;
715 
716 	down_write(&vma->vm_lock->lock);
717 	/*
718 	 * We should use WRITE_ONCE() here because we can have concurrent reads
719 	 * from the early lockless pessimistic check in vma_start_read().
720 	 * We don't really care about the correctness of that early check, but
721 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
722 	 */
723 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
724 	up_write(&vma->vm_lock->lock);
725 }
726 
727 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
728 {
729 	int mm_lock_seq;
730 
731 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
732 }
733 
734 static inline void vma_assert_locked(struct vm_area_struct *vma)
735 {
736 	if (!rwsem_is_locked(&vma->vm_lock->lock))
737 		vma_assert_write_locked(vma);
738 }
739 
740 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
741 {
742 	/* When detaching vma should be write-locked */
743 	if (detached)
744 		vma_assert_write_locked(vma);
745 	vma->detached = detached;
746 }
747 
748 static inline void release_fault_lock(struct vm_fault *vmf)
749 {
750 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
751 		vma_end_read(vmf->vma);
752 	else
753 		mmap_read_unlock(vmf->vma->vm_mm);
754 }
755 
756 static inline void assert_fault_locked(struct vm_fault *vmf)
757 {
758 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
759 		vma_assert_locked(vmf->vma);
760 	else
761 		mmap_assert_locked(vmf->vma->vm_mm);
762 }
763 
764 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
765 					  unsigned long address);
766 
767 #else /* CONFIG_PER_VMA_LOCK */
768 
769 static inline bool vma_start_read(struct vm_area_struct *vma)
770 		{ return false; }
771 static inline void vma_end_read(struct vm_area_struct *vma) {}
772 static inline void vma_start_write(struct vm_area_struct *vma) {}
773 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
774 		{ mmap_assert_write_locked(vma->vm_mm); }
775 static inline void vma_mark_detached(struct vm_area_struct *vma,
776 				     bool detached) {}
777 
778 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
779 		unsigned long address)
780 {
781 	return NULL;
782 }
783 
784 static inline void release_fault_lock(struct vm_fault *vmf)
785 {
786 	mmap_read_unlock(vmf->vma->vm_mm);
787 }
788 
789 static inline void assert_fault_locked(struct vm_fault *vmf)
790 {
791 	mmap_assert_locked(vmf->vma->vm_mm);
792 }
793 
794 #endif /* CONFIG_PER_VMA_LOCK */
795 
796 extern const struct vm_operations_struct vma_dummy_vm_ops;
797 
798 /*
799  * WARNING: vma_init does not initialize vma->vm_lock.
800  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
801  */
802 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
803 {
804 	memset(vma, 0, sizeof(*vma));
805 	vma->vm_mm = mm;
806 	vma->vm_ops = &vma_dummy_vm_ops;
807 	INIT_LIST_HEAD(&vma->anon_vma_chain);
808 	vma_mark_detached(vma, false);
809 	vma_numab_state_init(vma);
810 }
811 
812 /* Use when VMA is not part of the VMA tree and needs no locking */
813 static inline void vm_flags_init(struct vm_area_struct *vma,
814 				 vm_flags_t flags)
815 {
816 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
817 }
818 
819 /*
820  * Use when VMA is part of the VMA tree and modifications need coordination
821  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
822  * it should be locked explicitly beforehand.
823  */
824 static inline void vm_flags_reset(struct vm_area_struct *vma,
825 				  vm_flags_t flags)
826 {
827 	vma_assert_write_locked(vma);
828 	vm_flags_init(vma, flags);
829 }
830 
831 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
832 				       vm_flags_t flags)
833 {
834 	vma_assert_write_locked(vma);
835 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
836 }
837 
838 static inline void vm_flags_set(struct vm_area_struct *vma,
839 				vm_flags_t flags)
840 {
841 	vma_start_write(vma);
842 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
843 }
844 
845 static inline void vm_flags_clear(struct vm_area_struct *vma,
846 				  vm_flags_t flags)
847 {
848 	vma_start_write(vma);
849 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
850 }
851 
852 /*
853  * Use only if VMA is not part of the VMA tree or has no other users and
854  * therefore needs no locking.
855  */
856 static inline void __vm_flags_mod(struct vm_area_struct *vma,
857 				  vm_flags_t set, vm_flags_t clear)
858 {
859 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
860 }
861 
862 /*
863  * Use only when the order of set/clear operations is unimportant, otherwise
864  * use vm_flags_{set|clear} explicitly.
865  */
866 static inline void vm_flags_mod(struct vm_area_struct *vma,
867 				vm_flags_t set, vm_flags_t clear)
868 {
869 	vma_start_write(vma);
870 	__vm_flags_mod(vma, set, clear);
871 }
872 
873 static inline void vma_set_anonymous(struct vm_area_struct *vma)
874 {
875 	vma->vm_ops = NULL;
876 }
877 
878 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
879 {
880 	return !vma->vm_ops;
881 }
882 
883 /*
884  * Indicate if the VMA is a heap for the given task; for
885  * /proc/PID/maps that is the heap of the main task.
886  */
887 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
888 {
889        return vma->vm_start <= vma->vm_mm->brk &&
890 		vma->vm_end >= vma->vm_mm->start_brk;
891 }
892 
893 /*
894  * Indicate if the VMA is a stack for the given task; for
895  * /proc/PID/maps that is the stack of the main task.
896  */
897 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
898 {
899 	/*
900 	 * We make no effort to guess what a given thread considers to be
901 	 * its "stack".  It's not even well-defined for programs written
902 	 * languages like Go.
903 	 */
904        return vma->vm_start <= vma->vm_mm->start_stack &&
905 	       vma->vm_end >= vma->vm_mm->start_stack;
906 }
907 
908 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
909 {
910 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
911 
912 	if (!maybe_stack)
913 		return false;
914 
915 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
916 						VM_STACK_INCOMPLETE_SETUP)
917 		return true;
918 
919 	return false;
920 }
921 
922 static inline bool vma_is_foreign(struct vm_area_struct *vma)
923 {
924 	if (!current->mm)
925 		return true;
926 
927 	if (current->mm != vma->vm_mm)
928 		return true;
929 
930 	return false;
931 }
932 
933 static inline bool vma_is_accessible(struct vm_area_struct *vma)
934 {
935 	return vma->vm_flags & VM_ACCESS_FLAGS;
936 }
937 
938 static inline
939 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
940 {
941 	return mas_find(&vmi->mas, max - 1);
942 }
943 
944 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
945 {
946 	/*
947 	 * Uses mas_find() to get the first VMA when the iterator starts.
948 	 * Calling mas_next() could skip the first entry.
949 	 */
950 	return mas_find(&vmi->mas, ULONG_MAX);
951 }
952 
953 static inline
954 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
955 {
956 	return mas_next_range(&vmi->mas, ULONG_MAX);
957 }
958 
959 
960 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
961 {
962 	return mas_prev(&vmi->mas, 0);
963 }
964 
965 static inline
966 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
967 {
968 	return mas_prev_range(&vmi->mas, 0);
969 }
970 
971 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
972 {
973 	return vmi->mas.index;
974 }
975 
976 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
977 {
978 	return vmi->mas.last + 1;
979 }
980 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
981 				      unsigned long count)
982 {
983 	return mas_expected_entries(&vmi->mas, count);
984 }
985 
986 /* Free any unused preallocations */
987 static inline void vma_iter_free(struct vma_iterator *vmi)
988 {
989 	mas_destroy(&vmi->mas);
990 }
991 
992 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
993 				      struct vm_area_struct *vma)
994 {
995 	vmi->mas.index = vma->vm_start;
996 	vmi->mas.last = vma->vm_end - 1;
997 	mas_store(&vmi->mas, vma);
998 	if (unlikely(mas_is_err(&vmi->mas)))
999 		return -ENOMEM;
1000 
1001 	return 0;
1002 }
1003 
1004 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1005 {
1006 	mas_pause(&vmi->mas);
1007 }
1008 
1009 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1010 {
1011 	mas_set(&vmi->mas, addr);
1012 }
1013 
1014 #define for_each_vma(__vmi, __vma)					\
1015 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1016 
1017 /* The MM code likes to work with exclusive end addresses */
1018 #define for_each_vma_range(__vmi, __vma, __end)				\
1019 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1020 
1021 #ifdef CONFIG_SHMEM
1022 /*
1023  * The vma_is_shmem is not inline because it is used only by slow
1024  * paths in userfault.
1025  */
1026 bool vma_is_shmem(struct vm_area_struct *vma);
1027 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1028 #else
1029 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1030 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1031 #endif
1032 
1033 int vma_is_stack_for_current(struct vm_area_struct *vma);
1034 
1035 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1036 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1037 
1038 struct mmu_gather;
1039 struct inode;
1040 
1041 /*
1042  * compound_order() can be called without holding a reference, which means
1043  * that niceties like page_folio() don't work.  These callers should be
1044  * prepared to handle wild return values.  For example, PG_head may be
1045  * set before the order is initialised, or this may be a tail page.
1046  * See compaction.c for some good examples.
1047  */
1048 static inline unsigned int compound_order(struct page *page)
1049 {
1050 	struct folio *folio = (struct folio *)page;
1051 
1052 	if (!test_bit(PG_head, &folio->flags))
1053 		return 0;
1054 	return folio->_flags_1 & 0xff;
1055 }
1056 
1057 /**
1058  * folio_order - The allocation order of a folio.
1059  * @folio: The folio.
1060  *
1061  * A folio is composed of 2^order pages.  See get_order() for the definition
1062  * of order.
1063  *
1064  * Return: The order of the folio.
1065  */
1066 static inline unsigned int folio_order(struct folio *folio)
1067 {
1068 	if (!folio_test_large(folio))
1069 		return 0;
1070 	return folio->_flags_1 & 0xff;
1071 }
1072 
1073 #include <linux/huge_mm.h>
1074 
1075 /*
1076  * Methods to modify the page usage count.
1077  *
1078  * What counts for a page usage:
1079  * - cache mapping   (page->mapping)
1080  * - private data    (page->private)
1081  * - page mapped in a task's page tables, each mapping
1082  *   is counted separately
1083  *
1084  * Also, many kernel routines increase the page count before a critical
1085  * routine so they can be sure the page doesn't go away from under them.
1086  */
1087 
1088 /*
1089  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1090  */
1091 static inline int put_page_testzero(struct page *page)
1092 {
1093 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1094 	return page_ref_dec_and_test(page);
1095 }
1096 
1097 static inline int folio_put_testzero(struct folio *folio)
1098 {
1099 	return put_page_testzero(&folio->page);
1100 }
1101 
1102 /*
1103  * Try to grab a ref unless the page has a refcount of zero, return false if
1104  * that is the case.
1105  * This can be called when MMU is off so it must not access
1106  * any of the virtual mappings.
1107  */
1108 static inline bool get_page_unless_zero(struct page *page)
1109 {
1110 	return page_ref_add_unless(page, 1, 0);
1111 }
1112 
1113 static inline struct folio *folio_get_nontail_page(struct page *page)
1114 {
1115 	if (unlikely(!get_page_unless_zero(page)))
1116 		return NULL;
1117 	return (struct folio *)page;
1118 }
1119 
1120 extern int page_is_ram(unsigned long pfn);
1121 
1122 enum {
1123 	REGION_INTERSECTS,
1124 	REGION_DISJOINT,
1125 	REGION_MIXED,
1126 };
1127 
1128 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1129 		      unsigned long desc);
1130 
1131 /* Support for virtually mapped pages */
1132 struct page *vmalloc_to_page(const void *addr);
1133 unsigned long vmalloc_to_pfn(const void *addr);
1134 
1135 /*
1136  * Determine if an address is within the vmalloc range
1137  *
1138  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1139  * is no special casing required.
1140  */
1141 #ifdef CONFIG_MMU
1142 extern bool is_vmalloc_addr(const void *x);
1143 extern int is_vmalloc_or_module_addr(const void *x);
1144 #else
1145 static inline bool is_vmalloc_addr(const void *x)
1146 {
1147 	return false;
1148 }
1149 static inline int is_vmalloc_or_module_addr(const void *x)
1150 {
1151 	return 0;
1152 }
1153 #endif
1154 
1155 /*
1156  * How many times the entire folio is mapped as a single unit (eg by a
1157  * PMD or PUD entry).  This is probably not what you want, except for
1158  * debugging purposes - it does not include PTE-mapped sub-pages; look
1159  * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1160  */
1161 static inline int folio_entire_mapcount(struct folio *folio)
1162 {
1163 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1164 	return atomic_read(&folio->_entire_mapcount) + 1;
1165 }
1166 
1167 /*
1168  * The atomic page->_mapcount, starts from -1: so that transitions
1169  * both from it and to it can be tracked, using atomic_inc_and_test
1170  * and atomic_add_negative(-1).
1171  */
1172 static inline void page_mapcount_reset(struct page *page)
1173 {
1174 	atomic_set(&(page)->_mapcount, -1);
1175 }
1176 
1177 /**
1178  * page_mapcount() - Number of times this precise page is mapped.
1179  * @page: The page.
1180  *
1181  * The number of times this page is mapped.  If this page is part of
1182  * a large folio, it includes the number of times this page is mapped
1183  * as part of that folio.
1184  *
1185  * The result is undefined for pages which cannot be mapped into userspace.
1186  * For example SLAB or special types of pages. See function page_has_type().
1187  * They use this field in struct page differently.
1188  */
1189 static inline int page_mapcount(struct page *page)
1190 {
1191 	int mapcount = atomic_read(&page->_mapcount) + 1;
1192 
1193 	if (unlikely(PageCompound(page)))
1194 		mapcount += folio_entire_mapcount(page_folio(page));
1195 
1196 	return mapcount;
1197 }
1198 
1199 int folio_total_mapcount(struct folio *folio);
1200 
1201 /**
1202  * folio_mapcount() - Calculate the number of mappings of this folio.
1203  * @folio: The folio.
1204  *
1205  * A large folio tracks both how many times the entire folio is mapped,
1206  * and how many times each individual page in the folio is mapped.
1207  * This function calculates the total number of times the folio is
1208  * mapped.
1209  *
1210  * Return: The number of times this folio is mapped.
1211  */
1212 static inline int folio_mapcount(struct folio *folio)
1213 {
1214 	if (likely(!folio_test_large(folio)))
1215 		return atomic_read(&folio->_mapcount) + 1;
1216 	return folio_total_mapcount(folio);
1217 }
1218 
1219 static inline int total_mapcount(struct page *page)
1220 {
1221 	if (likely(!PageCompound(page)))
1222 		return atomic_read(&page->_mapcount) + 1;
1223 	return folio_total_mapcount(page_folio(page));
1224 }
1225 
1226 static inline bool folio_large_is_mapped(struct folio *folio)
1227 {
1228 	/*
1229 	 * Reading _entire_mapcount below could be omitted if hugetlb
1230 	 * participated in incrementing nr_pages_mapped when compound mapped.
1231 	 */
1232 	return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1233 		atomic_read(&folio->_entire_mapcount) >= 0;
1234 }
1235 
1236 /**
1237  * folio_mapped - Is this folio mapped into userspace?
1238  * @folio: The folio.
1239  *
1240  * Return: True if any page in this folio is referenced by user page tables.
1241  */
1242 static inline bool folio_mapped(struct folio *folio)
1243 {
1244 	if (likely(!folio_test_large(folio)))
1245 		return atomic_read(&folio->_mapcount) >= 0;
1246 	return folio_large_is_mapped(folio);
1247 }
1248 
1249 /*
1250  * Return true if this page is mapped into pagetables.
1251  * For compound page it returns true if any sub-page of compound page is mapped,
1252  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1253  */
1254 static inline bool page_mapped(struct page *page)
1255 {
1256 	if (likely(!PageCompound(page)))
1257 		return atomic_read(&page->_mapcount) >= 0;
1258 	return folio_large_is_mapped(page_folio(page));
1259 }
1260 
1261 static inline struct page *virt_to_head_page(const void *x)
1262 {
1263 	struct page *page = virt_to_page(x);
1264 
1265 	return compound_head(page);
1266 }
1267 
1268 static inline struct folio *virt_to_folio(const void *x)
1269 {
1270 	struct page *page = virt_to_page(x);
1271 
1272 	return page_folio(page);
1273 }
1274 
1275 void __folio_put(struct folio *folio);
1276 
1277 void put_pages_list(struct list_head *pages);
1278 
1279 void split_page(struct page *page, unsigned int order);
1280 void folio_copy(struct folio *dst, struct folio *src);
1281 
1282 unsigned long nr_free_buffer_pages(void);
1283 
1284 void destroy_large_folio(struct folio *folio);
1285 
1286 /* Returns the number of bytes in this potentially compound page. */
1287 static inline unsigned long page_size(struct page *page)
1288 {
1289 	return PAGE_SIZE << compound_order(page);
1290 }
1291 
1292 /* Returns the number of bits needed for the number of bytes in a page */
1293 static inline unsigned int page_shift(struct page *page)
1294 {
1295 	return PAGE_SHIFT + compound_order(page);
1296 }
1297 
1298 /**
1299  * thp_order - Order of a transparent huge page.
1300  * @page: Head page of a transparent huge page.
1301  */
1302 static inline unsigned int thp_order(struct page *page)
1303 {
1304 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1305 	return compound_order(page);
1306 }
1307 
1308 /**
1309  * thp_size - Size of a transparent huge page.
1310  * @page: Head page of a transparent huge page.
1311  *
1312  * Return: Number of bytes in this page.
1313  */
1314 static inline unsigned long thp_size(struct page *page)
1315 {
1316 	return PAGE_SIZE << thp_order(page);
1317 }
1318 
1319 #ifdef CONFIG_MMU
1320 /*
1321  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1322  * servicing faults for write access.  In the normal case, do always want
1323  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1324  * that do not have writing enabled, when used by access_process_vm.
1325  */
1326 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1327 {
1328 	if (likely(vma->vm_flags & VM_WRITE))
1329 		pte = pte_mkwrite(pte, vma);
1330 	return pte;
1331 }
1332 
1333 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1334 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1335 		struct page *page, unsigned int nr, unsigned long addr);
1336 
1337 vm_fault_t finish_fault(struct vm_fault *vmf);
1338 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1339 #endif
1340 
1341 /*
1342  * Multiple processes may "see" the same page. E.g. for untouched
1343  * mappings of /dev/null, all processes see the same page full of
1344  * zeroes, and text pages of executables and shared libraries have
1345  * only one copy in memory, at most, normally.
1346  *
1347  * For the non-reserved pages, page_count(page) denotes a reference count.
1348  *   page_count() == 0 means the page is free. page->lru is then used for
1349  *   freelist management in the buddy allocator.
1350  *   page_count() > 0  means the page has been allocated.
1351  *
1352  * Pages are allocated by the slab allocator in order to provide memory
1353  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1354  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1355  * unless a particular usage is carefully commented. (the responsibility of
1356  * freeing the kmalloc memory is the caller's, of course).
1357  *
1358  * A page may be used by anyone else who does a __get_free_page().
1359  * In this case, page_count still tracks the references, and should only
1360  * be used through the normal accessor functions. The top bits of page->flags
1361  * and page->virtual store page management information, but all other fields
1362  * are unused and could be used privately, carefully. The management of this
1363  * page is the responsibility of the one who allocated it, and those who have
1364  * subsequently been given references to it.
1365  *
1366  * The other pages (we may call them "pagecache pages") are completely
1367  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1368  * The following discussion applies only to them.
1369  *
1370  * A pagecache page contains an opaque `private' member, which belongs to the
1371  * page's address_space. Usually, this is the address of a circular list of
1372  * the page's disk buffers. PG_private must be set to tell the VM to call
1373  * into the filesystem to release these pages.
1374  *
1375  * A page may belong to an inode's memory mapping. In this case, page->mapping
1376  * is the pointer to the inode, and page->index is the file offset of the page,
1377  * in units of PAGE_SIZE.
1378  *
1379  * If pagecache pages are not associated with an inode, they are said to be
1380  * anonymous pages. These may become associated with the swapcache, and in that
1381  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1382  *
1383  * In either case (swapcache or inode backed), the pagecache itself holds one
1384  * reference to the page. Setting PG_private should also increment the
1385  * refcount. The each user mapping also has a reference to the page.
1386  *
1387  * The pagecache pages are stored in a per-mapping radix tree, which is
1388  * rooted at mapping->i_pages, and indexed by offset.
1389  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1390  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1391  *
1392  * All pagecache pages may be subject to I/O:
1393  * - inode pages may need to be read from disk,
1394  * - inode pages which have been modified and are MAP_SHARED may need
1395  *   to be written back to the inode on disk,
1396  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1397  *   modified may need to be swapped out to swap space and (later) to be read
1398  *   back into memory.
1399  */
1400 
1401 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1402 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1403 
1404 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1405 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1406 {
1407 	if (!static_branch_unlikely(&devmap_managed_key))
1408 		return false;
1409 	if (!is_zone_device_page(page))
1410 		return false;
1411 	return __put_devmap_managed_page_refs(page, refs);
1412 }
1413 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1414 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1415 {
1416 	return false;
1417 }
1418 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1419 
1420 static inline bool put_devmap_managed_page(struct page *page)
1421 {
1422 	return put_devmap_managed_page_refs(page, 1);
1423 }
1424 
1425 /* 127: arbitrary random number, small enough to assemble well */
1426 #define folio_ref_zero_or_close_to_overflow(folio) \
1427 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1428 
1429 /**
1430  * folio_get - Increment the reference count on a folio.
1431  * @folio: The folio.
1432  *
1433  * Context: May be called in any context, as long as you know that
1434  * you have a refcount on the folio.  If you do not already have one,
1435  * folio_try_get() may be the right interface for you to use.
1436  */
1437 static inline void folio_get(struct folio *folio)
1438 {
1439 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1440 	folio_ref_inc(folio);
1441 }
1442 
1443 static inline void get_page(struct page *page)
1444 {
1445 	folio_get(page_folio(page));
1446 }
1447 
1448 static inline __must_check bool try_get_page(struct page *page)
1449 {
1450 	page = compound_head(page);
1451 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1452 		return false;
1453 	page_ref_inc(page);
1454 	return true;
1455 }
1456 
1457 /**
1458  * folio_put - Decrement the reference count on a folio.
1459  * @folio: The folio.
1460  *
1461  * If the folio's reference count reaches zero, the memory will be
1462  * released back to the page allocator and may be used by another
1463  * allocation immediately.  Do not access the memory or the struct folio
1464  * after calling folio_put() unless you can be sure that it wasn't the
1465  * last reference.
1466  *
1467  * Context: May be called in process or interrupt context, but not in NMI
1468  * context.  May be called while holding a spinlock.
1469  */
1470 static inline void folio_put(struct folio *folio)
1471 {
1472 	if (folio_put_testzero(folio))
1473 		__folio_put(folio);
1474 }
1475 
1476 /**
1477  * folio_put_refs - Reduce the reference count on a folio.
1478  * @folio: The folio.
1479  * @refs: The amount to subtract from the folio's reference count.
1480  *
1481  * If the folio's reference count reaches zero, the memory will be
1482  * released back to the page allocator and may be used by another
1483  * allocation immediately.  Do not access the memory or the struct folio
1484  * after calling folio_put_refs() unless you can be sure that these weren't
1485  * the last references.
1486  *
1487  * Context: May be called in process or interrupt context, but not in NMI
1488  * context.  May be called while holding a spinlock.
1489  */
1490 static inline void folio_put_refs(struct folio *folio, int refs)
1491 {
1492 	if (folio_ref_sub_and_test(folio, refs))
1493 		__folio_put(folio);
1494 }
1495 
1496 /*
1497  * union release_pages_arg - an array of pages or folios
1498  *
1499  * release_pages() releases a simple array of multiple pages, and
1500  * accepts various different forms of said page array: either
1501  * a regular old boring array of pages, an array of folios, or
1502  * an array of encoded page pointers.
1503  *
1504  * The transparent union syntax for this kind of "any of these
1505  * argument types" is all kinds of ugly, so look away.
1506  */
1507 typedef union {
1508 	struct page **pages;
1509 	struct folio **folios;
1510 	struct encoded_page **encoded_pages;
1511 } release_pages_arg __attribute__ ((__transparent_union__));
1512 
1513 void release_pages(release_pages_arg, int nr);
1514 
1515 /**
1516  * folios_put - Decrement the reference count on an array of folios.
1517  * @folios: The folios.
1518  * @nr: How many folios there are.
1519  *
1520  * Like folio_put(), but for an array of folios.  This is more efficient
1521  * than writing the loop yourself as it will optimise the locks which
1522  * need to be taken if the folios are freed.
1523  *
1524  * Context: May be called in process or interrupt context, but not in NMI
1525  * context.  May be called while holding a spinlock.
1526  */
1527 static inline void folios_put(struct folio **folios, unsigned int nr)
1528 {
1529 	release_pages(folios, nr);
1530 }
1531 
1532 static inline void put_page(struct page *page)
1533 {
1534 	struct folio *folio = page_folio(page);
1535 
1536 	/*
1537 	 * For some devmap managed pages we need to catch refcount transition
1538 	 * from 2 to 1:
1539 	 */
1540 	if (put_devmap_managed_page(&folio->page))
1541 		return;
1542 	folio_put(folio);
1543 }
1544 
1545 /*
1546  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1547  * the page's refcount so that two separate items are tracked: the original page
1548  * reference count, and also a new count of how many pin_user_pages() calls were
1549  * made against the page. ("gup-pinned" is another term for the latter).
1550  *
1551  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1552  * distinct from normal pages. As such, the unpin_user_page() call (and its
1553  * variants) must be used in order to release gup-pinned pages.
1554  *
1555  * Choice of value:
1556  *
1557  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1558  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1559  * simpler, due to the fact that adding an even power of two to the page
1560  * refcount has the effect of using only the upper N bits, for the code that
1561  * counts up using the bias value. This means that the lower bits are left for
1562  * the exclusive use of the original code that increments and decrements by one
1563  * (or at least, by much smaller values than the bias value).
1564  *
1565  * Of course, once the lower bits overflow into the upper bits (and this is
1566  * OK, because subtraction recovers the original values), then visual inspection
1567  * no longer suffices to directly view the separate counts. However, for normal
1568  * applications that don't have huge page reference counts, this won't be an
1569  * issue.
1570  *
1571  * Locking: the lockless algorithm described in folio_try_get_rcu()
1572  * provides safe operation for get_user_pages(), page_mkclean() and
1573  * other calls that race to set up page table entries.
1574  */
1575 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1576 
1577 void unpin_user_page(struct page *page);
1578 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1579 				 bool make_dirty);
1580 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1581 				      bool make_dirty);
1582 void unpin_user_pages(struct page **pages, unsigned long npages);
1583 
1584 static inline bool is_cow_mapping(vm_flags_t flags)
1585 {
1586 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1587 }
1588 
1589 #ifndef CONFIG_MMU
1590 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1591 {
1592 	/*
1593 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1594 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1595 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1596 	 * underlying memory if ptrace is active, so this is only possible if
1597 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1598 	 * write permissions later.
1599 	 */
1600 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1601 }
1602 #endif
1603 
1604 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1605 #define SECTION_IN_PAGE_FLAGS
1606 #endif
1607 
1608 /*
1609  * The identification function is mainly used by the buddy allocator for
1610  * determining if two pages could be buddies. We are not really identifying
1611  * the zone since we could be using the section number id if we do not have
1612  * node id available in page flags.
1613  * We only guarantee that it will return the same value for two combinable
1614  * pages in a zone.
1615  */
1616 static inline int page_zone_id(struct page *page)
1617 {
1618 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1619 }
1620 
1621 #ifdef NODE_NOT_IN_PAGE_FLAGS
1622 extern int page_to_nid(const struct page *page);
1623 #else
1624 static inline int page_to_nid(const struct page *page)
1625 {
1626 	struct page *p = (struct page *)page;
1627 
1628 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1629 }
1630 #endif
1631 
1632 static inline int folio_nid(const struct folio *folio)
1633 {
1634 	return page_to_nid(&folio->page);
1635 }
1636 
1637 #ifdef CONFIG_NUMA_BALANCING
1638 /* page access time bits needs to hold at least 4 seconds */
1639 #define PAGE_ACCESS_TIME_MIN_BITS	12
1640 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1641 #define PAGE_ACCESS_TIME_BUCKETS				\
1642 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1643 #else
1644 #define PAGE_ACCESS_TIME_BUCKETS	0
1645 #endif
1646 
1647 #define PAGE_ACCESS_TIME_MASK				\
1648 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1649 
1650 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1651 {
1652 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1653 }
1654 
1655 static inline int cpupid_to_pid(int cpupid)
1656 {
1657 	return cpupid & LAST__PID_MASK;
1658 }
1659 
1660 static inline int cpupid_to_cpu(int cpupid)
1661 {
1662 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1663 }
1664 
1665 static inline int cpupid_to_nid(int cpupid)
1666 {
1667 	return cpu_to_node(cpupid_to_cpu(cpupid));
1668 }
1669 
1670 static inline bool cpupid_pid_unset(int cpupid)
1671 {
1672 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1673 }
1674 
1675 static inline bool cpupid_cpu_unset(int cpupid)
1676 {
1677 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1678 }
1679 
1680 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1681 {
1682 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1683 }
1684 
1685 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1686 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1687 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1688 {
1689 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1690 }
1691 
1692 static inline int page_cpupid_last(struct page *page)
1693 {
1694 	return page->_last_cpupid;
1695 }
1696 static inline void page_cpupid_reset_last(struct page *page)
1697 {
1698 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1699 }
1700 #else
1701 static inline int page_cpupid_last(struct page *page)
1702 {
1703 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1704 }
1705 
1706 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1707 
1708 static inline void page_cpupid_reset_last(struct page *page)
1709 {
1710 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1711 }
1712 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1713 
1714 static inline int xchg_page_access_time(struct page *page, int time)
1715 {
1716 	int last_time;
1717 
1718 	last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1719 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1720 }
1721 
1722 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1723 {
1724 	unsigned int pid_bit;
1725 
1726 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1727 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1728 		__set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1729 	}
1730 }
1731 #else /* !CONFIG_NUMA_BALANCING */
1732 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1733 {
1734 	return page_to_nid(page); /* XXX */
1735 }
1736 
1737 static inline int xchg_page_access_time(struct page *page, int time)
1738 {
1739 	return 0;
1740 }
1741 
1742 static inline int page_cpupid_last(struct page *page)
1743 {
1744 	return page_to_nid(page); /* XXX */
1745 }
1746 
1747 static inline int cpupid_to_nid(int cpupid)
1748 {
1749 	return -1;
1750 }
1751 
1752 static inline int cpupid_to_pid(int cpupid)
1753 {
1754 	return -1;
1755 }
1756 
1757 static inline int cpupid_to_cpu(int cpupid)
1758 {
1759 	return -1;
1760 }
1761 
1762 static inline int cpu_pid_to_cpupid(int nid, int pid)
1763 {
1764 	return -1;
1765 }
1766 
1767 static inline bool cpupid_pid_unset(int cpupid)
1768 {
1769 	return true;
1770 }
1771 
1772 static inline void page_cpupid_reset_last(struct page *page)
1773 {
1774 }
1775 
1776 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1777 {
1778 	return false;
1779 }
1780 
1781 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1782 {
1783 }
1784 #endif /* CONFIG_NUMA_BALANCING */
1785 
1786 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1787 
1788 /*
1789  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1790  * setting tags for all pages to native kernel tag value 0xff, as the default
1791  * value 0x00 maps to 0xff.
1792  */
1793 
1794 static inline u8 page_kasan_tag(const struct page *page)
1795 {
1796 	u8 tag = 0xff;
1797 
1798 	if (kasan_enabled()) {
1799 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1800 		tag ^= 0xff;
1801 	}
1802 
1803 	return tag;
1804 }
1805 
1806 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1807 {
1808 	unsigned long old_flags, flags;
1809 
1810 	if (!kasan_enabled())
1811 		return;
1812 
1813 	tag ^= 0xff;
1814 	old_flags = READ_ONCE(page->flags);
1815 	do {
1816 		flags = old_flags;
1817 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1818 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1819 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1820 }
1821 
1822 static inline void page_kasan_tag_reset(struct page *page)
1823 {
1824 	if (kasan_enabled())
1825 		page_kasan_tag_set(page, 0xff);
1826 }
1827 
1828 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1829 
1830 static inline u8 page_kasan_tag(const struct page *page)
1831 {
1832 	return 0xff;
1833 }
1834 
1835 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1836 static inline void page_kasan_tag_reset(struct page *page) { }
1837 
1838 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1839 
1840 static inline struct zone *page_zone(const struct page *page)
1841 {
1842 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1843 }
1844 
1845 static inline pg_data_t *page_pgdat(const struct page *page)
1846 {
1847 	return NODE_DATA(page_to_nid(page));
1848 }
1849 
1850 static inline struct zone *folio_zone(const struct folio *folio)
1851 {
1852 	return page_zone(&folio->page);
1853 }
1854 
1855 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1856 {
1857 	return page_pgdat(&folio->page);
1858 }
1859 
1860 #ifdef SECTION_IN_PAGE_FLAGS
1861 static inline void set_page_section(struct page *page, unsigned long section)
1862 {
1863 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1864 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1865 }
1866 
1867 static inline unsigned long page_to_section(const struct page *page)
1868 {
1869 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1870 }
1871 #endif
1872 
1873 /**
1874  * folio_pfn - Return the Page Frame Number of a folio.
1875  * @folio: The folio.
1876  *
1877  * A folio may contain multiple pages.  The pages have consecutive
1878  * Page Frame Numbers.
1879  *
1880  * Return: The Page Frame Number of the first page in the folio.
1881  */
1882 static inline unsigned long folio_pfn(struct folio *folio)
1883 {
1884 	return page_to_pfn(&folio->page);
1885 }
1886 
1887 static inline struct folio *pfn_folio(unsigned long pfn)
1888 {
1889 	return page_folio(pfn_to_page(pfn));
1890 }
1891 
1892 /**
1893  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1894  * @folio: The folio.
1895  *
1896  * This function checks if a folio has been pinned via a call to
1897  * a function in the pin_user_pages() family.
1898  *
1899  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1900  * because it means "definitely not pinned for DMA", but true means "probably
1901  * pinned for DMA, but possibly a false positive due to having at least
1902  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1903  *
1904  * False positives are OK, because: a) it's unlikely for a folio to
1905  * get that many refcounts, and b) all the callers of this routine are
1906  * expected to be able to deal gracefully with a false positive.
1907  *
1908  * For large folios, the result will be exactly correct. That's because
1909  * we have more tracking data available: the _pincount field is used
1910  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1911  *
1912  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1913  *
1914  * Return: True, if it is likely that the page has been "dma-pinned".
1915  * False, if the page is definitely not dma-pinned.
1916  */
1917 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1918 {
1919 	if (folio_test_large(folio))
1920 		return atomic_read(&folio->_pincount) > 0;
1921 
1922 	/*
1923 	 * folio_ref_count() is signed. If that refcount overflows, then
1924 	 * folio_ref_count() returns a negative value, and callers will avoid
1925 	 * further incrementing the refcount.
1926 	 *
1927 	 * Here, for that overflow case, use the sign bit to count a little
1928 	 * bit higher via unsigned math, and thus still get an accurate result.
1929 	 */
1930 	return ((unsigned int)folio_ref_count(folio)) >=
1931 		GUP_PIN_COUNTING_BIAS;
1932 }
1933 
1934 static inline bool page_maybe_dma_pinned(struct page *page)
1935 {
1936 	return folio_maybe_dma_pinned(page_folio(page));
1937 }
1938 
1939 /*
1940  * This should most likely only be called during fork() to see whether we
1941  * should break the cow immediately for an anon page on the src mm.
1942  *
1943  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1944  */
1945 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1946 					  struct page *page)
1947 {
1948 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1949 
1950 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1951 		return false;
1952 
1953 	return page_maybe_dma_pinned(page);
1954 }
1955 
1956 /**
1957  * is_zero_page - Query if a page is a zero page
1958  * @page: The page to query
1959  *
1960  * This returns true if @page is one of the permanent zero pages.
1961  */
1962 static inline bool is_zero_page(const struct page *page)
1963 {
1964 	return is_zero_pfn(page_to_pfn(page));
1965 }
1966 
1967 /**
1968  * is_zero_folio - Query if a folio is a zero page
1969  * @folio: The folio to query
1970  *
1971  * This returns true if @folio is one of the permanent zero pages.
1972  */
1973 static inline bool is_zero_folio(const struct folio *folio)
1974 {
1975 	return is_zero_page(&folio->page);
1976 }
1977 
1978 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1979 #ifdef CONFIG_MIGRATION
1980 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1981 {
1982 #ifdef CONFIG_CMA
1983 	int mt = folio_migratetype(folio);
1984 
1985 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1986 		return false;
1987 #endif
1988 	/* The zero page can be "pinned" but gets special handling. */
1989 	if (is_zero_folio(folio))
1990 		return true;
1991 
1992 	/* Coherent device memory must always allow eviction. */
1993 	if (folio_is_device_coherent(folio))
1994 		return false;
1995 
1996 	/* Otherwise, non-movable zone folios can be pinned. */
1997 	return !folio_is_zone_movable(folio);
1998 
1999 }
2000 #else
2001 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2002 {
2003 	return true;
2004 }
2005 #endif
2006 
2007 static inline void set_page_zone(struct page *page, enum zone_type zone)
2008 {
2009 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2010 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2011 }
2012 
2013 static inline void set_page_node(struct page *page, unsigned long node)
2014 {
2015 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2016 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2017 }
2018 
2019 static inline void set_page_links(struct page *page, enum zone_type zone,
2020 	unsigned long node, unsigned long pfn)
2021 {
2022 	set_page_zone(page, zone);
2023 	set_page_node(page, node);
2024 #ifdef SECTION_IN_PAGE_FLAGS
2025 	set_page_section(page, pfn_to_section_nr(pfn));
2026 #endif
2027 }
2028 
2029 /**
2030  * folio_nr_pages - The number of pages in the folio.
2031  * @folio: The folio.
2032  *
2033  * Return: A positive power of two.
2034  */
2035 static inline long folio_nr_pages(struct folio *folio)
2036 {
2037 	if (!folio_test_large(folio))
2038 		return 1;
2039 #ifdef CONFIG_64BIT
2040 	return folio->_folio_nr_pages;
2041 #else
2042 	return 1L << (folio->_flags_1 & 0xff);
2043 #endif
2044 }
2045 
2046 /*
2047  * compound_nr() returns the number of pages in this potentially compound
2048  * page.  compound_nr() can be called on a tail page, and is defined to
2049  * return 1 in that case.
2050  */
2051 static inline unsigned long compound_nr(struct page *page)
2052 {
2053 	struct folio *folio = (struct folio *)page;
2054 
2055 	if (!test_bit(PG_head, &folio->flags))
2056 		return 1;
2057 #ifdef CONFIG_64BIT
2058 	return folio->_folio_nr_pages;
2059 #else
2060 	return 1L << (folio->_flags_1 & 0xff);
2061 #endif
2062 }
2063 
2064 /**
2065  * thp_nr_pages - The number of regular pages in this huge page.
2066  * @page: The head page of a huge page.
2067  */
2068 static inline int thp_nr_pages(struct page *page)
2069 {
2070 	return folio_nr_pages((struct folio *)page);
2071 }
2072 
2073 /**
2074  * folio_next - Move to the next physical folio.
2075  * @folio: The folio we're currently operating on.
2076  *
2077  * If you have physically contiguous memory which may span more than
2078  * one folio (eg a &struct bio_vec), use this function to move from one
2079  * folio to the next.  Do not use it if the memory is only virtually
2080  * contiguous as the folios are almost certainly not adjacent to each
2081  * other.  This is the folio equivalent to writing ``page++``.
2082  *
2083  * Context: We assume that the folios are refcounted and/or locked at a
2084  * higher level and do not adjust the reference counts.
2085  * Return: The next struct folio.
2086  */
2087 static inline struct folio *folio_next(struct folio *folio)
2088 {
2089 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2090 }
2091 
2092 /**
2093  * folio_shift - The size of the memory described by this folio.
2094  * @folio: The folio.
2095  *
2096  * A folio represents a number of bytes which is a power-of-two in size.
2097  * This function tells you which power-of-two the folio is.  See also
2098  * folio_size() and folio_order().
2099  *
2100  * Context: The caller should have a reference on the folio to prevent
2101  * it from being split.  It is not necessary for the folio to be locked.
2102  * Return: The base-2 logarithm of the size of this folio.
2103  */
2104 static inline unsigned int folio_shift(struct folio *folio)
2105 {
2106 	return PAGE_SHIFT + folio_order(folio);
2107 }
2108 
2109 /**
2110  * folio_size - The number of bytes in a folio.
2111  * @folio: The folio.
2112  *
2113  * Context: The caller should have a reference on the folio to prevent
2114  * it from being split.  It is not necessary for the folio to be locked.
2115  * Return: The number of bytes in this folio.
2116  */
2117 static inline size_t folio_size(struct folio *folio)
2118 {
2119 	return PAGE_SIZE << folio_order(folio);
2120 }
2121 
2122 /**
2123  * folio_estimated_sharers - Estimate the number of sharers of a folio.
2124  * @folio: The folio.
2125  *
2126  * folio_estimated_sharers() aims to serve as a function to efficiently
2127  * estimate the number of processes sharing a folio. This is done by
2128  * looking at the precise mapcount of the first subpage in the folio, and
2129  * assuming the other subpages are the same. This may not be true for large
2130  * folios. If you want exact mapcounts for exact calculations, look at
2131  * page_mapcount() or folio_total_mapcount().
2132  *
2133  * Return: The estimated number of processes sharing a folio.
2134  */
2135 static inline int folio_estimated_sharers(struct folio *folio)
2136 {
2137 	return page_mapcount(folio_page(folio, 0));
2138 }
2139 
2140 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2141 static inline int arch_make_page_accessible(struct page *page)
2142 {
2143 	return 0;
2144 }
2145 #endif
2146 
2147 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2148 static inline int arch_make_folio_accessible(struct folio *folio)
2149 {
2150 	int ret;
2151 	long i, nr = folio_nr_pages(folio);
2152 
2153 	for (i = 0; i < nr; i++) {
2154 		ret = arch_make_page_accessible(folio_page(folio, i));
2155 		if (ret)
2156 			break;
2157 	}
2158 
2159 	return ret;
2160 }
2161 #endif
2162 
2163 /*
2164  * Some inline functions in vmstat.h depend on page_zone()
2165  */
2166 #include <linux/vmstat.h>
2167 
2168 static __always_inline void *lowmem_page_address(const struct page *page)
2169 {
2170 	return page_to_virt(page);
2171 }
2172 
2173 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2174 #define HASHED_PAGE_VIRTUAL
2175 #endif
2176 
2177 #if defined(WANT_PAGE_VIRTUAL)
2178 static inline void *page_address(const struct page *page)
2179 {
2180 	return page->virtual;
2181 }
2182 static inline void set_page_address(struct page *page, void *address)
2183 {
2184 	page->virtual = address;
2185 }
2186 #define page_address_init()  do { } while(0)
2187 #endif
2188 
2189 #if defined(HASHED_PAGE_VIRTUAL)
2190 void *page_address(const struct page *page);
2191 void set_page_address(struct page *page, void *virtual);
2192 void page_address_init(void);
2193 #endif
2194 
2195 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2196 #define page_address(page) lowmem_page_address(page)
2197 #define set_page_address(page, address)  do { } while(0)
2198 #define page_address_init()  do { } while(0)
2199 #endif
2200 
2201 static inline void *folio_address(const struct folio *folio)
2202 {
2203 	return page_address(&folio->page);
2204 }
2205 
2206 extern pgoff_t __page_file_index(struct page *page);
2207 
2208 /*
2209  * Return the pagecache index of the passed page.  Regular pagecache pages
2210  * use ->index whereas swapcache pages use swp_offset(->private)
2211  */
2212 static inline pgoff_t page_index(struct page *page)
2213 {
2214 	if (unlikely(PageSwapCache(page)))
2215 		return __page_file_index(page);
2216 	return page->index;
2217 }
2218 
2219 /*
2220  * Return true only if the page has been allocated with
2221  * ALLOC_NO_WATERMARKS and the low watermark was not
2222  * met implying that the system is under some pressure.
2223  */
2224 static inline bool page_is_pfmemalloc(const struct page *page)
2225 {
2226 	/*
2227 	 * lru.next has bit 1 set if the page is allocated from the
2228 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2229 	 * they do not need to preserve that information.
2230 	 */
2231 	return (uintptr_t)page->lru.next & BIT(1);
2232 }
2233 
2234 /*
2235  * Return true only if the folio has been allocated with
2236  * ALLOC_NO_WATERMARKS and the low watermark was not
2237  * met implying that the system is under some pressure.
2238  */
2239 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2240 {
2241 	/*
2242 	 * lru.next has bit 1 set if the page is allocated from the
2243 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2244 	 * they do not need to preserve that information.
2245 	 */
2246 	return (uintptr_t)folio->lru.next & BIT(1);
2247 }
2248 
2249 /*
2250  * Only to be called by the page allocator on a freshly allocated
2251  * page.
2252  */
2253 static inline void set_page_pfmemalloc(struct page *page)
2254 {
2255 	page->lru.next = (void *)BIT(1);
2256 }
2257 
2258 static inline void clear_page_pfmemalloc(struct page *page)
2259 {
2260 	page->lru.next = NULL;
2261 }
2262 
2263 /*
2264  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2265  */
2266 extern void pagefault_out_of_memory(void);
2267 
2268 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2269 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2270 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2271 
2272 /*
2273  * Parameter block passed down to zap_pte_range in exceptional cases.
2274  */
2275 struct zap_details {
2276 	struct folio *single_folio;	/* Locked folio to be unmapped */
2277 	bool even_cows;			/* Zap COWed private pages too? */
2278 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2279 };
2280 
2281 /*
2282  * Whether to drop the pte markers, for example, the uffd-wp information for
2283  * file-backed memory.  This should only be specified when we will completely
2284  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2285  * default, the flag is not set.
2286  */
2287 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2288 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2289 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2290 
2291 #ifdef CONFIG_SCHED_MM_CID
2292 void sched_mm_cid_before_execve(struct task_struct *t);
2293 void sched_mm_cid_after_execve(struct task_struct *t);
2294 void sched_mm_cid_fork(struct task_struct *t);
2295 void sched_mm_cid_exit_signals(struct task_struct *t);
2296 static inline int task_mm_cid(struct task_struct *t)
2297 {
2298 	return t->mm_cid;
2299 }
2300 #else
2301 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2302 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2303 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2304 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2305 static inline int task_mm_cid(struct task_struct *t)
2306 {
2307 	/*
2308 	 * Use the processor id as a fall-back when the mm cid feature is
2309 	 * disabled. This provides functional per-cpu data structure accesses
2310 	 * in user-space, althrough it won't provide the memory usage benefits.
2311 	 */
2312 	return raw_smp_processor_id();
2313 }
2314 #endif
2315 
2316 #ifdef CONFIG_MMU
2317 extern bool can_do_mlock(void);
2318 #else
2319 static inline bool can_do_mlock(void) { return false; }
2320 #endif
2321 extern int user_shm_lock(size_t, struct ucounts *);
2322 extern void user_shm_unlock(size_t, struct ucounts *);
2323 
2324 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2325 			     pte_t pte);
2326 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2327 			     pte_t pte);
2328 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2329 				pmd_t pmd);
2330 
2331 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2332 		  unsigned long size);
2333 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2334 			   unsigned long size, struct zap_details *details);
2335 static inline void zap_vma_pages(struct vm_area_struct *vma)
2336 {
2337 	zap_page_range_single(vma, vma->vm_start,
2338 			      vma->vm_end - vma->vm_start, NULL);
2339 }
2340 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2341 		struct vm_area_struct *start_vma, unsigned long start,
2342 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2343 
2344 struct mmu_notifier_range;
2345 
2346 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2347 		unsigned long end, unsigned long floor, unsigned long ceiling);
2348 int
2349 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2350 int follow_pte(struct mm_struct *mm, unsigned long address,
2351 	       pte_t **ptepp, spinlock_t **ptlp);
2352 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2353 	unsigned long *pfn);
2354 int follow_phys(struct vm_area_struct *vma, unsigned long address,
2355 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
2356 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2357 			void *buf, int len, int write);
2358 
2359 extern void truncate_pagecache(struct inode *inode, loff_t new);
2360 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2361 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2362 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2363 int generic_error_remove_page(struct address_space *mapping, struct page *page);
2364 
2365 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2366 		unsigned long address, struct pt_regs *regs);
2367 
2368 #ifdef CONFIG_MMU
2369 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2370 				  unsigned long address, unsigned int flags,
2371 				  struct pt_regs *regs);
2372 extern int fixup_user_fault(struct mm_struct *mm,
2373 			    unsigned long address, unsigned int fault_flags,
2374 			    bool *unlocked);
2375 void unmap_mapping_pages(struct address_space *mapping,
2376 		pgoff_t start, pgoff_t nr, bool even_cows);
2377 void unmap_mapping_range(struct address_space *mapping,
2378 		loff_t const holebegin, loff_t const holelen, int even_cows);
2379 #else
2380 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2381 					 unsigned long address, unsigned int flags,
2382 					 struct pt_regs *regs)
2383 {
2384 	/* should never happen if there's no MMU */
2385 	BUG();
2386 	return VM_FAULT_SIGBUS;
2387 }
2388 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2389 		unsigned int fault_flags, bool *unlocked)
2390 {
2391 	/* should never happen if there's no MMU */
2392 	BUG();
2393 	return -EFAULT;
2394 }
2395 static inline void unmap_mapping_pages(struct address_space *mapping,
2396 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2397 static inline void unmap_mapping_range(struct address_space *mapping,
2398 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2399 #endif
2400 
2401 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2402 		loff_t const holebegin, loff_t const holelen)
2403 {
2404 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2405 }
2406 
2407 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2408 						unsigned long addr);
2409 
2410 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2411 		void *buf, int len, unsigned int gup_flags);
2412 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2413 		void *buf, int len, unsigned int gup_flags);
2414 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2415 			      void *buf, int len, unsigned int gup_flags);
2416 
2417 long get_user_pages_remote(struct mm_struct *mm,
2418 			   unsigned long start, unsigned long nr_pages,
2419 			   unsigned int gup_flags, struct page **pages,
2420 			   int *locked);
2421 long pin_user_pages_remote(struct mm_struct *mm,
2422 			   unsigned long start, unsigned long nr_pages,
2423 			   unsigned int gup_flags, struct page **pages,
2424 			   int *locked);
2425 
2426 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2427 						    unsigned long addr,
2428 						    int gup_flags,
2429 						    struct vm_area_struct **vmap)
2430 {
2431 	struct page *page;
2432 	struct vm_area_struct *vma;
2433 	int got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2434 
2435 	if (got < 0)
2436 		return ERR_PTR(got);
2437 	if (got == 0)
2438 		return NULL;
2439 
2440 	vma = vma_lookup(mm, addr);
2441 	if (WARN_ON_ONCE(!vma)) {
2442 		put_page(page);
2443 		return ERR_PTR(-EINVAL);
2444 	}
2445 
2446 	*vmap = vma;
2447 	return page;
2448 }
2449 
2450 long get_user_pages(unsigned long start, unsigned long nr_pages,
2451 		    unsigned int gup_flags, struct page **pages);
2452 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2453 		    unsigned int gup_flags, struct page **pages);
2454 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2455 		    struct page **pages, unsigned int gup_flags);
2456 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2457 		    struct page **pages, unsigned int gup_flags);
2458 
2459 int get_user_pages_fast(unsigned long start, int nr_pages,
2460 			unsigned int gup_flags, struct page **pages);
2461 int pin_user_pages_fast(unsigned long start, int nr_pages,
2462 			unsigned int gup_flags, struct page **pages);
2463 void folio_add_pin(struct folio *folio);
2464 
2465 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2466 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2467 			struct task_struct *task, bool bypass_rlim);
2468 
2469 struct kvec;
2470 struct page *get_dump_page(unsigned long addr);
2471 
2472 bool folio_mark_dirty(struct folio *folio);
2473 bool set_page_dirty(struct page *page);
2474 int set_page_dirty_lock(struct page *page);
2475 
2476 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2477 
2478 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2479 		unsigned long old_addr, struct vm_area_struct *new_vma,
2480 		unsigned long new_addr, unsigned long len,
2481 		bool need_rmap_locks);
2482 
2483 /*
2484  * Flags used by change_protection().  For now we make it a bitmap so
2485  * that we can pass in multiple flags just like parameters.  However
2486  * for now all the callers are only use one of the flags at the same
2487  * time.
2488  */
2489 /*
2490  * Whether we should manually check if we can map individual PTEs writable,
2491  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2492  * PTEs automatically in a writable mapping.
2493  */
2494 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2495 /* Whether this protection change is for NUMA hints */
2496 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2497 /* Whether this change is for write protecting */
2498 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2499 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2500 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2501 					    MM_CP_UFFD_WP_RESOLVE)
2502 
2503 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2504 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2505 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2506 {
2507 	/*
2508 	 * We want to check manually if we can change individual PTEs writable
2509 	 * if we can't do that automatically for all PTEs in a mapping. For
2510 	 * private mappings, that's always the case when we have write
2511 	 * permissions as we properly have to handle COW.
2512 	 */
2513 	if (vma->vm_flags & VM_SHARED)
2514 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2515 	return !!(vma->vm_flags & VM_WRITE);
2516 
2517 }
2518 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2519 			     pte_t pte);
2520 extern long change_protection(struct mmu_gather *tlb,
2521 			      struct vm_area_struct *vma, unsigned long start,
2522 			      unsigned long end, unsigned long cp_flags);
2523 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2524 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2525 	  unsigned long start, unsigned long end, unsigned long newflags);
2526 
2527 /*
2528  * doesn't attempt to fault and will return short.
2529  */
2530 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2531 			     unsigned int gup_flags, struct page **pages);
2532 
2533 static inline bool get_user_page_fast_only(unsigned long addr,
2534 			unsigned int gup_flags, struct page **pagep)
2535 {
2536 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2537 }
2538 /*
2539  * per-process(per-mm_struct) statistics.
2540  */
2541 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2542 {
2543 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2544 }
2545 
2546 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2547 
2548 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2549 {
2550 	percpu_counter_add(&mm->rss_stat[member], value);
2551 
2552 	mm_trace_rss_stat(mm, member);
2553 }
2554 
2555 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2556 {
2557 	percpu_counter_inc(&mm->rss_stat[member]);
2558 
2559 	mm_trace_rss_stat(mm, member);
2560 }
2561 
2562 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2563 {
2564 	percpu_counter_dec(&mm->rss_stat[member]);
2565 
2566 	mm_trace_rss_stat(mm, member);
2567 }
2568 
2569 /* Optimized variant when page is already known not to be PageAnon */
2570 static inline int mm_counter_file(struct page *page)
2571 {
2572 	if (PageSwapBacked(page))
2573 		return MM_SHMEMPAGES;
2574 	return MM_FILEPAGES;
2575 }
2576 
2577 static inline int mm_counter(struct page *page)
2578 {
2579 	if (PageAnon(page))
2580 		return MM_ANONPAGES;
2581 	return mm_counter_file(page);
2582 }
2583 
2584 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2585 {
2586 	return get_mm_counter(mm, MM_FILEPAGES) +
2587 		get_mm_counter(mm, MM_ANONPAGES) +
2588 		get_mm_counter(mm, MM_SHMEMPAGES);
2589 }
2590 
2591 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2592 {
2593 	return max(mm->hiwater_rss, get_mm_rss(mm));
2594 }
2595 
2596 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2597 {
2598 	return max(mm->hiwater_vm, mm->total_vm);
2599 }
2600 
2601 static inline void update_hiwater_rss(struct mm_struct *mm)
2602 {
2603 	unsigned long _rss = get_mm_rss(mm);
2604 
2605 	if ((mm)->hiwater_rss < _rss)
2606 		(mm)->hiwater_rss = _rss;
2607 }
2608 
2609 static inline void update_hiwater_vm(struct mm_struct *mm)
2610 {
2611 	if (mm->hiwater_vm < mm->total_vm)
2612 		mm->hiwater_vm = mm->total_vm;
2613 }
2614 
2615 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2616 {
2617 	mm->hiwater_rss = get_mm_rss(mm);
2618 }
2619 
2620 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2621 					 struct mm_struct *mm)
2622 {
2623 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2624 
2625 	if (*maxrss < hiwater_rss)
2626 		*maxrss = hiwater_rss;
2627 }
2628 
2629 #if defined(SPLIT_RSS_COUNTING)
2630 void sync_mm_rss(struct mm_struct *mm);
2631 #else
2632 static inline void sync_mm_rss(struct mm_struct *mm)
2633 {
2634 }
2635 #endif
2636 
2637 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2638 static inline int pte_special(pte_t pte)
2639 {
2640 	return 0;
2641 }
2642 
2643 static inline pte_t pte_mkspecial(pte_t pte)
2644 {
2645 	return pte;
2646 }
2647 #endif
2648 
2649 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2650 static inline int pte_devmap(pte_t pte)
2651 {
2652 	return 0;
2653 }
2654 #endif
2655 
2656 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2657 			       spinlock_t **ptl);
2658 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2659 				    spinlock_t **ptl)
2660 {
2661 	pte_t *ptep;
2662 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2663 	return ptep;
2664 }
2665 
2666 #ifdef __PAGETABLE_P4D_FOLDED
2667 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2668 						unsigned long address)
2669 {
2670 	return 0;
2671 }
2672 #else
2673 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2674 #endif
2675 
2676 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2677 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2678 						unsigned long address)
2679 {
2680 	return 0;
2681 }
2682 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2683 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2684 
2685 #else
2686 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2687 
2688 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2689 {
2690 	if (mm_pud_folded(mm))
2691 		return;
2692 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2693 }
2694 
2695 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2696 {
2697 	if (mm_pud_folded(mm))
2698 		return;
2699 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2700 }
2701 #endif
2702 
2703 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2704 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2705 						unsigned long address)
2706 {
2707 	return 0;
2708 }
2709 
2710 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2711 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2712 
2713 #else
2714 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2715 
2716 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2717 {
2718 	if (mm_pmd_folded(mm))
2719 		return;
2720 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2721 }
2722 
2723 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2724 {
2725 	if (mm_pmd_folded(mm))
2726 		return;
2727 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2728 }
2729 #endif
2730 
2731 #ifdef CONFIG_MMU
2732 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2733 {
2734 	atomic_long_set(&mm->pgtables_bytes, 0);
2735 }
2736 
2737 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2738 {
2739 	return atomic_long_read(&mm->pgtables_bytes);
2740 }
2741 
2742 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2743 {
2744 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2745 }
2746 
2747 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2748 {
2749 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2750 }
2751 #else
2752 
2753 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2754 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2755 {
2756 	return 0;
2757 }
2758 
2759 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2760 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2761 #endif
2762 
2763 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2764 int __pte_alloc_kernel(pmd_t *pmd);
2765 
2766 #if defined(CONFIG_MMU)
2767 
2768 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2769 		unsigned long address)
2770 {
2771 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2772 		NULL : p4d_offset(pgd, address);
2773 }
2774 
2775 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2776 		unsigned long address)
2777 {
2778 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2779 		NULL : pud_offset(p4d, address);
2780 }
2781 
2782 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2783 {
2784 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2785 		NULL: pmd_offset(pud, address);
2786 }
2787 #endif /* CONFIG_MMU */
2788 
2789 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2790 {
2791 	return page_ptdesc(virt_to_page(x));
2792 }
2793 
2794 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2795 {
2796 	return page_to_virt(ptdesc_page(pt));
2797 }
2798 
2799 static inline void *ptdesc_address(const struct ptdesc *pt)
2800 {
2801 	return folio_address(ptdesc_folio(pt));
2802 }
2803 
2804 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2805 {
2806 	return folio_test_reserved(ptdesc_folio(pt));
2807 }
2808 
2809 /**
2810  * pagetable_alloc - Allocate pagetables
2811  * @gfp:    GFP flags
2812  * @order:  desired pagetable order
2813  *
2814  * pagetable_alloc allocates memory for page tables as well as a page table
2815  * descriptor to describe that memory.
2816  *
2817  * Return: The ptdesc describing the allocated page tables.
2818  */
2819 static inline struct ptdesc *pagetable_alloc(gfp_t gfp, unsigned int order)
2820 {
2821 	struct page *page = alloc_pages(gfp | __GFP_COMP, order);
2822 
2823 	return page_ptdesc(page);
2824 }
2825 
2826 /**
2827  * pagetable_free - Free pagetables
2828  * @pt:	The page table descriptor
2829  *
2830  * pagetable_free frees the memory of all page tables described by a page
2831  * table descriptor and the memory for the descriptor itself.
2832  */
2833 static inline void pagetable_free(struct ptdesc *pt)
2834 {
2835 	struct page *page = ptdesc_page(pt);
2836 
2837 	__free_pages(page, compound_order(page));
2838 }
2839 
2840 #if USE_SPLIT_PTE_PTLOCKS
2841 #if ALLOC_SPLIT_PTLOCKS
2842 void __init ptlock_cache_init(void);
2843 bool ptlock_alloc(struct ptdesc *ptdesc);
2844 void ptlock_free(struct ptdesc *ptdesc);
2845 
2846 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2847 {
2848 	return ptdesc->ptl;
2849 }
2850 #else /* ALLOC_SPLIT_PTLOCKS */
2851 static inline void ptlock_cache_init(void)
2852 {
2853 }
2854 
2855 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2856 {
2857 	return true;
2858 }
2859 
2860 static inline void ptlock_free(struct ptdesc *ptdesc)
2861 {
2862 }
2863 
2864 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2865 {
2866 	return &ptdesc->ptl;
2867 }
2868 #endif /* ALLOC_SPLIT_PTLOCKS */
2869 
2870 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2871 {
2872 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2873 }
2874 
2875 static inline bool ptlock_init(struct ptdesc *ptdesc)
2876 {
2877 	/*
2878 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2879 	 * with 0. Make sure nobody took it in use in between.
2880 	 *
2881 	 * It can happen if arch try to use slab for page table allocation:
2882 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2883 	 */
2884 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2885 	if (!ptlock_alloc(ptdesc))
2886 		return false;
2887 	spin_lock_init(ptlock_ptr(ptdesc));
2888 	return true;
2889 }
2890 
2891 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2892 /*
2893  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2894  */
2895 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2896 {
2897 	return &mm->page_table_lock;
2898 }
2899 static inline void ptlock_cache_init(void) {}
2900 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2901 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2902 #endif /* USE_SPLIT_PTE_PTLOCKS */
2903 
2904 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2905 {
2906 	struct folio *folio = ptdesc_folio(ptdesc);
2907 
2908 	if (!ptlock_init(ptdesc))
2909 		return false;
2910 	__folio_set_pgtable(folio);
2911 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2912 	return true;
2913 }
2914 
2915 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2916 {
2917 	struct folio *folio = ptdesc_folio(ptdesc);
2918 
2919 	ptlock_free(ptdesc);
2920 	__folio_clear_pgtable(folio);
2921 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2922 }
2923 
2924 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2925 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2926 {
2927 	return __pte_offset_map(pmd, addr, NULL);
2928 }
2929 
2930 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2931 			unsigned long addr, spinlock_t **ptlp);
2932 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2933 			unsigned long addr, spinlock_t **ptlp)
2934 {
2935 	pte_t *pte;
2936 
2937 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2938 	return pte;
2939 }
2940 
2941 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2942 			unsigned long addr, spinlock_t **ptlp);
2943 
2944 #define pte_unmap_unlock(pte, ptl)	do {		\
2945 	spin_unlock(ptl);				\
2946 	pte_unmap(pte);					\
2947 } while (0)
2948 
2949 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2950 
2951 #define pte_alloc_map(mm, pmd, address)			\
2952 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2953 
2954 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2955 	(pte_alloc(mm, pmd) ?			\
2956 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2957 
2958 #define pte_alloc_kernel(pmd, address)			\
2959 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2960 		NULL: pte_offset_kernel(pmd, address))
2961 
2962 #if USE_SPLIT_PMD_PTLOCKS
2963 
2964 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2965 {
2966 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2967 	return virt_to_page((void *)((unsigned long) pmd & mask));
2968 }
2969 
2970 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
2971 {
2972 	return page_ptdesc(pmd_pgtable_page(pmd));
2973 }
2974 
2975 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2976 {
2977 	return ptlock_ptr(pmd_ptdesc(pmd));
2978 }
2979 
2980 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
2981 {
2982 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2983 	ptdesc->pmd_huge_pte = NULL;
2984 #endif
2985 	return ptlock_init(ptdesc);
2986 }
2987 
2988 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
2989 {
2990 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2991 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
2992 #endif
2993 	ptlock_free(ptdesc);
2994 }
2995 
2996 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
2997 
2998 #else
2999 
3000 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3001 {
3002 	return &mm->page_table_lock;
3003 }
3004 
3005 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3006 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3007 
3008 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3009 
3010 #endif
3011 
3012 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3013 {
3014 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3015 	spin_lock(ptl);
3016 	return ptl;
3017 }
3018 
3019 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3020 {
3021 	struct folio *folio = ptdesc_folio(ptdesc);
3022 
3023 	if (!pmd_ptlock_init(ptdesc))
3024 		return false;
3025 	__folio_set_pgtable(folio);
3026 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3027 	return true;
3028 }
3029 
3030 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3031 {
3032 	struct folio *folio = ptdesc_folio(ptdesc);
3033 
3034 	pmd_ptlock_free(ptdesc);
3035 	__folio_clear_pgtable(folio);
3036 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3037 }
3038 
3039 /*
3040  * No scalability reason to split PUD locks yet, but follow the same pattern
3041  * as the PMD locks to make it easier if we decide to.  The VM should not be
3042  * considered ready to switch to split PUD locks yet; there may be places
3043  * which need to be converted from page_table_lock.
3044  */
3045 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3046 {
3047 	return &mm->page_table_lock;
3048 }
3049 
3050 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3051 {
3052 	spinlock_t *ptl = pud_lockptr(mm, pud);
3053 
3054 	spin_lock(ptl);
3055 	return ptl;
3056 }
3057 
3058 extern void __init pagecache_init(void);
3059 extern void free_initmem(void);
3060 
3061 /*
3062  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3063  * into the buddy system. The freed pages will be poisoned with pattern
3064  * "poison" if it's within range [0, UCHAR_MAX].
3065  * Return pages freed into the buddy system.
3066  */
3067 extern unsigned long free_reserved_area(void *start, void *end,
3068 					int poison, const char *s);
3069 
3070 extern void adjust_managed_page_count(struct page *page, long count);
3071 
3072 extern void reserve_bootmem_region(phys_addr_t start,
3073 				   phys_addr_t end, int nid);
3074 
3075 /* Free the reserved page into the buddy system, so it gets managed. */
3076 static inline void free_reserved_page(struct page *page)
3077 {
3078 	ClearPageReserved(page);
3079 	init_page_count(page);
3080 	__free_page(page);
3081 	adjust_managed_page_count(page, 1);
3082 }
3083 #define free_highmem_page(page) free_reserved_page(page)
3084 
3085 static inline void mark_page_reserved(struct page *page)
3086 {
3087 	SetPageReserved(page);
3088 	adjust_managed_page_count(page, -1);
3089 }
3090 
3091 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3092 {
3093 	free_reserved_page(ptdesc_page(pt));
3094 }
3095 
3096 /*
3097  * Default method to free all the __init memory into the buddy system.
3098  * The freed pages will be poisoned with pattern "poison" if it's within
3099  * range [0, UCHAR_MAX].
3100  * Return pages freed into the buddy system.
3101  */
3102 static inline unsigned long free_initmem_default(int poison)
3103 {
3104 	extern char __init_begin[], __init_end[];
3105 
3106 	return free_reserved_area(&__init_begin, &__init_end,
3107 				  poison, "unused kernel image (initmem)");
3108 }
3109 
3110 static inline unsigned long get_num_physpages(void)
3111 {
3112 	int nid;
3113 	unsigned long phys_pages = 0;
3114 
3115 	for_each_online_node(nid)
3116 		phys_pages += node_present_pages(nid);
3117 
3118 	return phys_pages;
3119 }
3120 
3121 /*
3122  * Using memblock node mappings, an architecture may initialise its
3123  * zones, allocate the backing mem_map and account for memory holes in an
3124  * architecture independent manner.
3125  *
3126  * An architecture is expected to register range of page frames backed by
3127  * physical memory with memblock_add[_node]() before calling
3128  * free_area_init() passing in the PFN each zone ends at. At a basic
3129  * usage, an architecture is expected to do something like
3130  *
3131  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3132  * 							 max_highmem_pfn};
3133  * for_each_valid_physical_page_range()
3134  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3135  * free_area_init(max_zone_pfns);
3136  */
3137 void free_area_init(unsigned long *max_zone_pfn);
3138 unsigned long node_map_pfn_alignment(void);
3139 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
3140 						unsigned long end_pfn);
3141 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3142 						unsigned long end_pfn);
3143 extern void get_pfn_range_for_nid(unsigned int nid,
3144 			unsigned long *start_pfn, unsigned long *end_pfn);
3145 
3146 #ifndef CONFIG_NUMA
3147 static inline int early_pfn_to_nid(unsigned long pfn)
3148 {
3149 	return 0;
3150 }
3151 #else
3152 /* please see mm/page_alloc.c */
3153 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3154 #endif
3155 
3156 extern void set_dma_reserve(unsigned long new_dma_reserve);
3157 extern void mem_init(void);
3158 extern void __init mmap_init(void);
3159 
3160 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3161 static inline void show_mem(void)
3162 {
3163 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3164 }
3165 extern long si_mem_available(void);
3166 extern void si_meminfo(struct sysinfo * val);
3167 extern void si_meminfo_node(struct sysinfo *val, int nid);
3168 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3169 extern unsigned long arch_reserved_kernel_pages(void);
3170 #endif
3171 
3172 extern __printf(3, 4)
3173 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3174 
3175 extern void setup_per_cpu_pageset(void);
3176 
3177 /* nommu.c */
3178 extern atomic_long_t mmap_pages_allocated;
3179 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3180 
3181 /* interval_tree.c */
3182 void vma_interval_tree_insert(struct vm_area_struct *node,
3183 			      struct rb_root_cached *root);
3184 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3185 				    struct vm_area_struct *prev,
3186 				    struct rb_root_cached *root);
3187 void vma_interval_tree_remove(struct vm_area_struct *node,
3188 			      struct rb_root_cached *root);
3189 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3190 				unsigned long start, unsigned long last);
3191 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3192 				unsigned long start, unsigned long last);
3193 
3194 #define vma_interval_tree_foreach(vma, root, start, last)		\
3195 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3196 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3197 
3198 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3199 				   struct rb_root_cached *root);
3200 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3201 				   struct rb_root_cached *root);
3202 struct anon_vma_chain *
3203 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3204 				  unsigned long start, unsigned long last);
3205 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3206 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3207 #ifdef CONFIG_DEBUG_VM_RB
3208 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3209 #endif
3210 
3211 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3212 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3213 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3214 
3215 /* mmap.c */
3216 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3217 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3218 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3219 		      struct vm_area_struct *next);
3220 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3221 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3222 extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3223 	struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3224 	unsigned long end, unsigned long vm_flags, struct anon_vma *,
3225 	struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3226 	struct anon_vma_name *);
3227 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3228 extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3229 		       unsigned long addr, int new_below);
3230 extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3231 			 unsigned long addr, int new_below);
3232 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3233 extern void unlink_file_vma(struct vm_area_struct *);
3234 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3235 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3236 	bool *need_rmap_locks);
3237 extern void exit_mmap(struct mm_struct *);
3238 
3239 static inline int check_data_rlimit(unsigned long rlim,
3240 				    unsigned long new,
3241 				    unsigned long start,
3242 				    unsigned long end_data,
3243 				    unsigned long start_data)
3244 {
3245 	if (rlim < RLIM_INFINITY) {
3246 		if (((new - start) + (end_data - start_data)) > rlim)
3247 			return -ENOSPC;
3248 	}
3249 
3250 	return 0;
3251 }
3252 
3253 extern int mm_take_all_locks(struct mm_struct *mm);
3254 extern void mm_drop_all_locks(struct mm_struct *mm);
3255 
3256 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3257 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3258 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3259 extern struct file *get_task_exe_file(struct task_struct *task);
3260 
3261 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3262 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3263 
3264 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3265 				   const struct vm_special_mapping *sm);
3266 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3267 				   unsigned long addr, unsigned long len,
3268 				   unsigned long flags,
3269 				   const struct vm_special_mapping *spec);
3270 /* This is an obsolete alternative to _install_special_mapping. */
3271 extern int install_special_mapping(struct mm_struct *mm,
3272 				   unsigned long addr, unsigned long len,
3273 				   unsigned long flags, struct page **pages);
3274 
3275 unsigned long randomize_stack_top(unsigned long stack_top);
3276 unsigned long randomize_page(unsigned long start, unsigned long range);
3277 
3278 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3279 
3280 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3281 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3282 	struct list_head *uf);
3283 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3284 	unsigned long len, unsigned long prot, unsigned long flags,
3285 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3286 	struct list_head *uf);
3287 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3288 			 unsigned long start, size_t len, struct list_head *uf,
3289 			 bool unlock);
3290 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3291 		     struct list_head *uf);
3292 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3293 
3294 #ifdef CONFIG_MMU
3295 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3296 			 unsigned long start, unsigned long end,
3297 			 struct list_head *uf, bool unlock);
3298 extern int __mm_populate(unsigned long addr, unsigned long len,
3299 			 int ignore_errors);
3300 static inline void mm_populate(unsigned long addr, unsigned long len)
3301 {
3302 	/* Ignore errors */
3303 	(void) __mm_populate(addr, len, 1);
3304 }
3305 #else
3306 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3307 #endif
3308 
3309 /* These take the mm semaphore themselves */
3310 extern int __must_check vm_brk(unsigned long, unsigned long);
3311 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3312 extern int vm_munmap(unsigned long, size_t);
3313 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3314         unsigned long, unsigned long,
3315         unsigned long, unsigned long);
3316 
3317 struct vm_unmapped_area_info {
3318 #define VM_UNMAPPED_AREA_TOPDOWN 1
3319 	unsigned long flags;
3320 	unsigned long length;
3321 	unsigned long low_limit;
3322 	unsigned long high_limit;
3323 	unsigned long align_mask;
3324 	unsigned long align_offset;
3325 };
3326 
3327 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3328 
3329 /* truncate.c */
3330 extern void truncate_inode_pages(struct address_space *, loff_t);
3331 extern void truncate_inode_pages_range(struct address_space *,
3332 				       loff_t lstart, loff_t lend);
3333 extern void truncate_inode_pages_final(struct address_space *);
3334 
3335 /* generic vm_area_ops exported for stackable file systems */
3336 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3337 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3338 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3339 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3340 
3341 extern unsigned long stack_guard_gap;
3342 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3343 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3344 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3345 
3346 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3347 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3348 
3349 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3350 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3351 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3352 					     struct vm_area_struct **pprev);
3353 
3354 /*
3355  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3356  * NULL if none.  Assume start_addr < end_addr.
3357  */
3358 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3359 			unsigned long start_addr, unsigned long end_addr);
3360 
3361 /**
3362  * vma_lookup() - Find a VMA at a specific address
3363  * @mm: The process address space.
3364  * @addr: The user address.
3365  *
3366  * Return: The vm_area_struct at the given address, %NULL otherwise.
3367  */
3368 static inline
3369 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3370 {
3371 	return mtree_load(&mm->mm_mt, addr);
3372 }
3373 
3374 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3375 {
3376 	if (vma->vm_flags & VM_GROWSDOWN)
3377 		return stack_guard_gap;
3378 
3379 	/* See reasoning around the VM_SHADOW_STACK definition */
3380 	if (vma->vm_flags & VM_SHADOW_STACK)
3381 		return PAGE_SIZE;
3382 
3383 	return 0;
3384 }
3385 
3386 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3387 {
3388 	unsigned long gap = stack_guard_start_gap(vma);
3389 	unsigned long vm_start = vma->vm_start;
3390 
3391 	vm_start -= gap;
3392 	if (vm_start > vma->vm_start)
3393 		vm_start = 0;
3394 	return vm_start;
3395 }
3396 
3397 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3398 {
3399 	unsigned long vm_end = vma->vm_end;
3400 
3401 	if (vma->vm_flags & VM_GROWSUP) {
3402 		vm_end += stack_guard_gap;
3403 		if (vm_end < vma->vm_end)
3404 			vm_end = -PAGE_SIZE;
3405 	}
3406 	return vm_end;
3407 }
3408 
3409 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3410 {
3411 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3412 }
3413 
3414 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3415 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3416 				unsigned long vm_start, unsigned long vm_end)
3417 {
3418 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3419 
3420 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3421 		vma = NULL;
3422 
3423 	return vma;
3424 }
3425 
3426 static inline bool range_in_vma(struct vm_area_struct *vma,
3427 				unsigned long start, unsigned long end)
3428 {
3429 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3430 }
3431 
3432 #ifdef CONFIG_MMU
3433 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3434 void vma_set_page_prot(struct vm_area_struct *vma);
3435 #else
3436 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3437 {
3438 	return __pgprot(0);
3439 }
3440 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3441 {
3442 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3443 }
3444 #endif
3445 
3446 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3447 
3448 #ifdef CONFIG_NUMA_BALANCING
3449 unsigned long change_prot_numa(struct vm_area_struct *vma,
3450 			unsigned long start, unsigned long end);
3451 #endif
3452 
3453 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3454 		unsigned long addr);
3455 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3456 			unsigned long pfn, unsigned long size, pgprot_t);
3457 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3458 		unsigned long pfn, unsigned long size, pgprot_t prot);
3459 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3460 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3461 			struct page **pages, unsigned long *num);
3462 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3463 				unsigned long num);
3464 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3465 				unsigned long num);
3466 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3467 			unsigned long pfn);
3468 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3469 			unsigned long pfn, pgprot_t pgprot);
3470 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3471 			pfn_t pfn);
3472 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3473 		unsigned long addr, pfn_t pfn);
3474 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3475 
3476 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3477 				unsigned long addr, struct page *page)
3478 {
3479 	int err = vm_insert_page(vma, addr, page);
3480 
3481 	if (err == -ENOMEM)
3482 		return VM_FAULT_OOM;
3483 	if (err < 0 && err != -EBUSY)
3484 		return VM_FAULT_SIGBUS;
3485 
3486 	return VM_FAULT_NOPAGE;
3487 }
3488 
3489 #ifndef io_remap_pfn_range
3490 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3491 				     unsigned long addr, unsigned long pfn,
3492 				     unsigned long size, pgprot_t prot)
3493 {
3494 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3495 }
3496 #endif
3497 
3498 static inline vm_fault_t vmf_error(int err)
3499 {
3500 	if (err == -ENOMEM)
3501 		return VM_FAULT_OOM;
3502 	else if (err == -EHWPOISON)
3503 		return VM_FAULT_HWPOISON;
3504 	return VM_FAULT_SIGBUS;
3505 }
3506 
3507 /*
3508  * Convert errno to return value for ->page_mkwrite() calls.
3509  *
3510  * This should eventually be merged with vmf_error() above, but will need a
3511  * careful audit of all vmf_error() callers.
3512  */
3513 static inline vm_fault_t vmf_fs_error(int err)
3514 {
3515 	if (err == 0)
3516 		return VM_FAULT_LOCKED;
3517 	if (err == -EFAULT || err == -EAGAIN)
3518 		return VM_FAULT_NOPAGE;
3519 	if (err == -ENOMEM)
3520 		return VM_FAULT_OOM;
3521 	/* -ENOSPC, -EDQUOT, -EIO ... */
3522 	return VM_FAULT_SIGBUS;
3523 }
3524 
3525 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3526 			 unsigned int foll_flags);
3527 
3528 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3529 {
3530 	if (vm_fault & VM_FAULT_OOM)
3531 		return -ENOMEM;
3532 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3533 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3534 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3535 		return -EFAULT;
3536 	return 0;
3537 }
3538 
3539 /*
3540  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3541  * a (NUMA hinting) fault is required.
3542  */
3543 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3544 					   unsigned int flags)
3545 {
3546 	/*
3547 	 * If callers don't want to honor NUMA hinting faults, no need to
3548 	 * determine if we would actually have to trigger a NUMA hinting fault.
3549 	 */
3550 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3551 		return true;
3552 
3553 	/*
3554 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3555 	 *
3556 	 * Requiring a fault here even for inaccessible VMAs would mean that
3557 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3558 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3559 	 */
3560 	return !vma_is_accessible(vma);
3561 }
3562 
3563 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3564 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3565 			       unsigned long size, pte_fn_t fn, void *data);
3566 extern int apply_to_existing_page_range(struct mm_struct *mm,
3567 				   unsigned long address, unsigned long size,
3568 				   pte_fn_t fn, void *data);
3569 
3570 #ifdef CONFIG_PAGE_POISONING
3571 extern void __kernel_poison_pages(struct page *page, int numpages);
3572 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3573 extern bool _page_poisoning_enabled_early;
3574 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3575 static inline bool page_poisoning_enabled(void)
3576 {
3577 	return _page_poisoning_enabled_early;
3578 }
3579 /*
3580  * For use in fast paths after init_mem_debugging() has run, or when a
3581  * false negative result is not harmful when called too early.
3582  */
3583 static inline bool page_poisoning_enabled_static(void)
3584 {
3585 	return static_branch_unlikely(&_page_poisoning_enabled);
3586 }
3587 static inline void kernel_poison_pages(struct page *page, int numpages)
3588 {
3589 	if (page_poisoning_enabled_static())
3590 		__kernel_poison_pages(page, numpages);
3591 }
3592 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3593 {
3594 	if (page_poisoning_enabled_static())
3595 		__kernel_unpoison_pages(page, numpages);
3596 }
3597 #else
3598 static inline bool page_poisoning_enabled(void) { return false; }
3599 static inline bool page_poisoning_enabled_static(void) { return false; }
3600 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3601 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3602 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3603 #endif
3604 
3605 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3606 static inline bool want_init_on_alloc(gfp_t flags)
3607 {
3608 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3609 				&init_on_alloc))
3610 		return true;
3611 	return flags & __GFP_ZERO;
3612 }
3613 
3614 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3615 static inline bool want_init_on_free(void)
3616 {
3617 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3618 				   &init_on_free);
3619 }
3620 
3621 extern bool _debug_pagealloc_enabled_early;
3622 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3623 
3624 static inline bool debug_pagealloc_enabled(void)
3625 {
3626 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3627 		_debug_pagealloc_enabled_early;
3628 }
3629 
3630 /*
3631  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3632  * or when a false negative result is not harmful when called too early.
3633  */
3634 static inline bool debug_pagealloc_enabled_static(void)
3635 {
3636 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3637 		return false;
3638 
3639 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3640 }
3641 
3642 /*
3643  * To support DEBUG_PAGEALLOC architecture must ensure that
3644  * __kernel_map_pages() never fails
3645  */
3646 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3647 #ifdef CONFIG_DEBUG_PAGEALLOC
3648 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3649 {
3650 	if (debug_pagealloc_enabled_static())
3651 		__kernel_map_pages(page, numpages, 1);
3652 }
3653 
3654 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3655 {
3656 	if (debug_pagealloc_enabled_static())
3657 		__kernel_map_pages(page, numpages, 0);
3658 }
3659 
3660 extern unsigned int _debug_guardpage_minorder;
3661 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3662 
3663 static inline unsigned int debug_guardpage_minorder(void)
3664 {
3665 	return _debug_guardpage_minorder;
3666 }
3667 
3668 static inline bool debug_guardpage_enabled(void)
3669 {
3670 	return static_branch_unlikely(&_debug_guardpage_enabled);
3671 }
3672 
3673 static inline bool page_is_guard(struct page *page)
3674 {
3675 	if (!debug_guardpage_enabled())
3676 		return false;
3677 
3678 	return PageGuard(page);
3679 }
3680 
3681 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order,
3682 		      int migratetype);
3683 static inline bool set_page_guard(struct zone *zone, struct page *page,
3684 				  unsigned int order, int migratetype)
3685 {
3686 	if (!debug_guardpage_enabled())
3687 		return false;
3688 	return __set_page_guard(zone, page, order, migratetype);
3689 }
3690 
3691 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order,
3692 			int migratetype);
3693 static inline void clear_page_guard(struct zone *zone, struct page *page,
3694 				    unsigned int order, int migratetype)
3695 {
3696 	if (!debug_guardpage_enabled())
3697 		return;
3698 	__clear_page_guard(zone, page, order, migratetype);
3699 }
3700 
3701 #else	/* CONFIG_DEBUG_PAGEALLOC */
3702 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3703 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3704 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3705 static inline bool debug_guardpage_enabled(void) { return false; }
3706 static inline bool page_is_guard(struct page *page) { return false; }
3707 static inline bool set_page_guard(struct zone *zone, struct page *page,
3708 			unsigned int order, int migratetype) { return false; }
3709 static inline void clear_page_guard(struct zone *zone, struct page *page,
3710 				unsigned int order, int migratetype) {}
3711 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3712 
3713 #ifdef __HAVE_ARCH_GATE_AREA
3714 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3715 extern int in_gate_area_no_mm(unsigned long addr);
3716 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3717 #else
3718 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3719 {
3720 	return NULL;
3721 }
3722 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3723 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3724 {
3725 	return 0;
3726 }
3727 #endif	/* __HAVE_ARCH_GATE_AREA */
3728 
3729 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3730 
3731 #ifdef CONFIG_SYSCTL
3732 extern int sysctl_drop_caches;
3733 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3734 		loff_t *);
3735 #endif
3736 
3737 void drop_slab(void);
3738 
3739 #ifndef CONFIG_MMU
3740 #define randomize_va_space 0
3741 #else
3742 extern int randomize_va_space;
3743 #endif
3744 
3745 const char * arch_vma_name(struct vm_area_struct *vma);
3746 #ifdef CONFIG_MMU
3747 void print_vma_addr(char *prefix, unsigned long rip);
3748 #else
3749 static inline void print_vma_addr(char *prefix, unsigned long rip)
3750 {
3751 }
3752 #endif
3753 
3754 void *sparse_buffer_alloc(unsigned long size);
3755 struct page * __populate_section_memmap(unsigned long pfn,
3756 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3757 		struct dev_pagemap *pgmap);
3758 void pmd_init(void *addr);
3759 void pud_init(void *addr);
3760 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3761 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3762 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3763 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3764 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3765 			    struct vmem_altmap *altmap, struct page *reuse);
3766 void *vmemmap_alloc_block(unsigned long size, int node);
3767 struct vmem_altmap;
3768 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3769 			      struct vmem_altmap *altmap);
3770 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3771 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3772 		     unsigned long addr, unsigned long next);
3773 int vmemmap_check_pmd(pmd_t *pmd, int node,
3774 		      unsigned long addr, unsigned long next);
3775 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3776 			       int node, struct vmem_altmap *altmap);
3777 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3778 			       int node, struct vmem_altmap *altmap);
3779 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3780 		struct vmem_altmap *altmap);
3781 void vmemmap_populate_print_last(void);
3782 #ifdef CONFIG_MEMORY_HOTPLUG
3783 void vmemmap_free(unsigned long start, unsigned long end,
3784 		struct vmem_altmap *altmap);
3785 #endif
3786 
3787 #define VMEMMAP_RESERVE_NR	2
3788 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3789 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3790 					  struct dev_pagemap *pgmap)
3791 {
3792 	unsigned long nr_pages;
3793 	unsigned long nr_vmemmap_pages;
3794 
3795 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3796 		return false;
3797 
3798 	nr_pages = pgmap_vmemmap_nr(pgmap);
3799 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3800 	/*
3801 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3802 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3803 	 */
3804 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3805 }
3806 /*
3807  * If we don't have an architecture override, use the generic rule
3808  */
3809 #ifndef vmemmap_can_optimize
3810 #define vmemmap_can_optimize __vmemmap_can_optimize
3811 #endif
3812 
3813 #else
3814 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3815 					   struct dev_pagemap *pgmap)
3816 {
3817 	return false;
3818 }
3819 #endif
3820 
3821 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3822 				  unsigned long nr_pages);
3823 
3824 enum mf_flags {
3825 	MF_COUNT_INCREASED = 1 << 0,
3826 	MF_ACTION_REQUIRED = 1 << 1,
3827 	MF_MUST_KILL = 1 << 2,
3828 	MF_SOFT_OFFLINE = 1 << 3,
3829 	MF_UNPOISON = 1 << 4,
3830 	MF_SW_SIMULATED = 1 << 5,
3831 	MF_NO_RETRY = 1 << 6,
3832 };
3833 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3834 		      unsigned long count, int mf_flags);
3835 extern int memory_failure(unsigned long pfn, int flags);
3836 extern void memory_failure_queue_kick(int cpu);
3837 extern int unpoison_memory(unsigned long pfn);
3838 extern void shake_page(struct page *p);
3839 extern atomic_long_t num_poisoned_pages __read_mostly;
3840 extern int soft_offline_page(unsigned long pfn, int flags);
3841 #ifdef CONFIG_MEMORY_FAILURE
3842 /*
3843  * Sysfs entries for memory failure handling statistics.
3844  */
3845 extern const struct attribute_group memory_failure_attr_group;
3846 extern void memory_failure_queue(unsigned long pfn, int flags);
3847 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3848 					bool *migratable_cleared);
3849 void num_poisoned_pages_inc(unsigned long pfn);
3850 void num_poisoned_pages_sub(unsigned long pfn, long i);
3851 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3852 #else
3853 static inline void memory_failure_queue(unsigned long pfn, int flags)
3854 {
3855 }
3856 
3857 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3858 					bool *migratable_cleared)
3859 {
3860 	return 0;
3861 }
3862 
3863 static inline void num_poisoned_pages_inc(unsigned long pfn)
3864 {
3865 }
3866 
3867 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3868 {
3869 }
3870 #endif
3871 
3872 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3873 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3874 		     struct vm_area_struct *vma, struct list_head *to_kill,
3875 		     unsigned long ksm_addr);
3876 #endif
3877 
3878 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3879 extern void memblk_nr_poison_inc(unsigned long pfn);
3880 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3881 #else
3882 static inline void memblk_nr_poison_inc(unsigned long pfn)
3883 {
3884 }
3885 
3886 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3887 {
3888 }
3889 #endif
3890 
3891 #ifndef arch_memory_failure
3892 static inline int arch_memory_failure(unsigned long pfn, int flags)
3893 {
3894 	return -ENXIO;
3895 }
3896 #endif
3897 
3898 #ifndef arch_is_platform_page
3899 static inline bool arch_is_platform_page(u64 paddr)
3900 {
3901 	return false;
3902 }
3903 #endif
3904 
3905 /*
3906  * Error handlers for various types of pages.
3907  */
3908 enum mf_result {
3909 	MF_IGNORED,	/* Error: cannot be handled */
3910 	MF_FAILED,	/* Error: handling failed */
3911 	MF_DELAYED,	/* Will be handled later */
3912 	MF_RECOVERED,	/* Successfully recovered */
3913 };
3914 
3915 enum mf_action_page_type {
3916 	MF_MSG_KERNEL,
3917 	MF_MSG_KERNEL_HIGH_ORDER,
3918 	MF_MSG_SLAB,
3919 	MF_MSG_DIFFERENT_COMPOUND,
3920 	MF_MSG_HUGE,
3921 	MF_MSG_FREE_HUGE,
3922 	MF_MSG_UNMAP_FAILED,
3923 	MF_MSG_DIRTY_SWAPCACHE,
3924 	MF_MSG_CLEAN_SWAPCACHE,
3925 	MF_MSG_DIRTY_MLOCKED_LRU,
3926 	MF_MSG_CLEAN_MLOCKED_LRU,
3927 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3928 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3929 	MF_MSG_DIRTY_LRU,
3930 	MF_MSG_CLEAN_LRU,
3931 	MF_MSG_TRUNCATED_LRU,
3932 	MF_MSG_BUDDY,
3933 	MF_MSG_DAX,
3934 	MF_MSG_UNSPLIT_THP,
3935 	MF_MSG_UNKNOWN,
3936 };
3937 
3938 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3939 extern void clear_huge_page(struct page *page,
3940 			    unsigned long addr_hint,
3941 			    unsigned int pages_per_huge_page);
3942 int copy_user_large_folio(struct folio *dst, struct folio *src,
3943 			  unsigned long addr_hint,
3944 			  struct vm_area_struct *vma);
3945 long copy_folio_from_user(struct folio *dst_folio,
3946 			   const void __user *usr_src,
3947 			   bool allow_pagefault);
3948 
3949 /**
3950  * vma_is_special_huge - Are transhuge page-table entries considered special?
3951  * @vma: Pointer to the struct vm_area_struct to consider
3952  *
3953  * Whether transhuge page-table entries are considered "special" following
3954  * the definition in vm_normal_page().
3955  *
3956  * Return: true if transhuge page-table entries should be considered special,
3957  * false otherwise.
3958  */
3959 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3960 {
3961 	return vma_is_dax(vma) || (vma->vm_file &&
3962 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3963 }
3964 
3965 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3966 
3967 #if MAX_NUMNODES > 1
3968 void __init setup_nr_node_ids(void);
3969 #else
3970 static inline void setup_nr_node_ids(void) {}
3971 #endif
3972 
3973 extern int memcmp_pages(struct page *page1, struct page *page2);
3974 
3975 static inline int pages_identical(struct page *page1, struct page *page2)
3976 {
3977 	return !memcmp_pages(page1, page2);
3978 }
3979 
3980 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3981 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3982 						pgoff_t first_index, pgoff_t nr,
3983 						pgoff_t bitmap_pgoff,
3984 						unsigned long *bitmap,
3985 						pgoff_t *start,
3986 						pgoff_t *end);
3987 
3988 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3989 				      pgoff_t first_index, pgoff_t nr);
3990 #endif
3991 
3992 extern int sysctl_nr_trim_pages;
3993 
3994 #ifdef CONFIG_PRINTK
3995 void mem_dump_obj(void *object);
3996 #else
3997 static inline void mem_dump_obj(void *object) {}
3998 #endif
3999 
4000 /**
4001  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
4002  * @seals: the seals to check
4003  * @vma: the vma to operate on
4004  *
4005  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
4006  * the vma flags.  Return 0 if check pass, or <0 for errors.
4007  */
4008 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
4009 {
4010 	if (seals & F_SEAL_FUTURE_WRITE) {
4011 		/*
4012 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4013 		 * "future write" seal active.
4014 		 */
4015 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4016 			return -EPERM;
4017 
4018 		/*
4019 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
4020 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4021 		 * revert protections on such mappings. Do this only for shared
4022 		 * mappings. For private mappings, don't need to mask
4023 		 * VM_MAYWRITE as we still want them to be COW-writable.
4024 		 */
4025 		if (vma->vm_flags & VM_SHARED)
4026 			vm_flags_clear(vma, VM_MAYWRITE);
4027 	}
4028 
4029 	return 0;
4030 }
4031 
4032 #ifdef CONFIG_ANON_VMA_NAME
4033 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4034 			  unsigned long len_in,
4035 			  struct anon_vma_name *anon_name);
4036 #else
4037 static inline int
4038 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4039 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4040 	return 0;
4041 }
4042 #endif
4043 
4044 #ifdef CONFIG_UNACCEPTED_MEMORY
4045 
4046 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4047 void accept_memory(phys_addr_t start, phys_addr_t end);
4048 
4049 #else
4050 
4051 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4052 						    phys_addr_t end)
4053 {
4054 	return false;
4055 }
4056 
4057 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4058 {
4059 }
4060 
4061 #endif
4062 
4063 #endif /* _LINUX_MM_H */
4064