xref: /linux-6.15/include/linux/mm.h (revision cb8a7d53)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32 
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct user_struct;
37 struct pt_regs;
38 
39 extern int sysctl_page_lock_unfairness;
40 
41 void init_mm_internals(void);
42 
43 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45 
46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 	max_mapnr = limit;
49 }
50 #else
51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53 
54 extern atomic_long_t _totalram_pages;
55 static inline unsigned long totalram_pages(void)
56 {
57 	return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59 
60 static inline void totalram_pages_inc(void)
61 {
62 	atomic_long_inc(&_totalram_pages);
63 }
64 
65 static inline void totalram_pages_dec(void)
66 {
67 	atomic_long_dec(&_totalram_pages);
68 }
69 
70 static inline void totalram_pages_add(long count)
71 {
72 	atomic_long_add(count, &_totalram_pages);
73 }
74 
75 extern void * high_memory;
76 extern int page_cluster;
77 
78 #ifdef CONFIG_SYSCTL
79 extern int sysctl_legacy_va_layout;
80 #else
81 #define sysctl_legacy_va_layout 0
82 #endif
83 
84 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85 extern const int mmap_rnd_bits_min;
86 extern const int mmap_rnd_bits_max;
87 extern int mmap_rnd_bits __read_mostly;
88 #endif
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90 extern const int mmap_rnd_compat_bits_min;
91 extern const int mmap_rnd_compat_bits_max;
92 extern int mmap_rnd_compat_bits __read_mostly;
93 #endif
94 
95 #include <asm/page.h>
96 #include <asm/processor.h>
97 
98 /*
99  * Architectures that support memory tagging (assigning tags to memory regions,
100  * embedding these tags into addresses that point to these memory regions, and
101  * checking that the memory and the pointer tags match on memory accesses)
102  * redefine this macro to strip tags from pointers.
103  * It's defined as noop for architectures that don't support memory tagging.
104  */
105 #ifndef untagged_addr
106 #define untagged_addr(addr) (addr)
107 #endif
108 
109 #ifndef __pa_symbol
110 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
111 #endif
112 
113 #ifndef page_to_virt
114 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
115 #endif
116 
117 #ifndef lm_alias
118 #define lm_alias(x)	__va(__pa_symbol(x))
119 #endif
120 
121 /*
122  * To prevent common memory management code establishing
123  * a zero page mapping on a read fault.
124  * This macro should be defined within <asm/pgtable.h>.
125  * s390 does this to prevent multiplexing of hardware bits
126  * related to the physical page in case of virtualization.
127  */
128 #ifndef mm_forbids_zeropage
129 #define mm_forbids_zeropage(X)	(0)
130 #endif
131 
132 /*
133  * On some architectures it is expensive to call memset() for small sizes.
134  * If an architecture decides to implement their own version of
135  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136  * define their own version of this macro in <asm/pgtable.h>
137  */
138 #if BITS_PER_LONG == 64
139 /* This function must be updated when the size of struct page grows above 80
140  * or reduces below 56. The idea that compiler optimizes out switch()
141  * statement, and only leaves move/store instructions. Also the compiler can
142  * combine write statements if they are both assignments and can be reordered,
143  * this can result in several of the writes here being dropped.
144  */
145 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
146 static inline void __mm_zero_struct_page(struct page *page)
147 {
148 	unsigned long *_pp = (void *)page;
149 
150 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 	BUILD_BUG_ON(sizeof(struct page) & 7);
152 	BUILD_BUG_ON(sizeof(struct page) < 56);
153 	BUILD_BUG_ON(sizeof(struct page) > 80);
154 
155 	switch (sizeof(struct page)) {
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
232 static inline struct folio *lru_to_folio(struct list_head *head)
233 {
234 	return list_entry((head)->prev, struct folio, lru);
235 }
236 
237 void setup_initial_init_mm(void *start_code, void *end_code,
238 			   void *end_data, void *brk);
239 
240 /*
241  * Linux kernel virtual memory manager primitives.
242  * The idea being to have a "virtual" mm in the same way
243  * we have a virtual fs - giving a cleaner interface to the
244  * mm details, and allowing different kinds of memory mappings
245  * (from shared memory to executable loading to arbitrary
246  * mmap() functions).
247  */
248 
249 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
250 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251 void vm_area_free(struct vm_area_struct *);
252 
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256 
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259 
260 /*
261  * vm_flags in vm_area_struct, see mm_types.h.
262  * When changing, update also include/trace/events/mmflags.h
263  */
264 #define VM_NONE		0x00000000
265 
266 #define VM_READ		0x00000001	/* currently active flags */
267 #define VM_WRITE	0x00000002
268 #define VM_EXEC		0x00000004
269 #define VM_SHARED	0x00000008
270 
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
273 #define VM_MAYWRITE	0x00000020
274 #define VM_MAYEXEC	0x00000040
275 #define VM_MAYSHARE	0x00000080
276 
277 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
278 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
279 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
280 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
281 
282 #define VM_LOCKED	0x00002000
283 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
284 
285 					/* Used by sys_madvise() */
286 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
287 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
288 
289 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
290 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
291 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
292 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
293 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
294 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
295 #define VM_SYNC		0x00800000	/* Synchronous page faults */
296 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
297 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
298 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
299 
300 #ifdef CONFIG_MEM_SOFT_DIRTY
301 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
302 #else
303 # define VM_SOFTDIRTY	0
304 #endif
305 
306 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
307 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
308 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
309 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
310 
311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
318 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
319 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
320 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
321 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
322 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
323 
324 #ifdef CONFIG_ARCH_HAS_PKEYS
325 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
326 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
327 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
328 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
329 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
330 #ifdef CONFIG_PPC
331 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
332 #else
333 # define VM_PKEY_BIT4  0
334 #endif
335 #endif /* CONFIG_ARCH_HAS_PKEYS */
336 
337 #if defined(CONFIG_X86)
338 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
339 #elif defined(CONFIG_PPC)
340 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
341 #elif defined(CONFIG_PARISC)
342 # define VM_GROWSUP	VM_ARCH_1
343 #elif defined(CONFIG_IA64)
344 # define VM_GROWSUP	VM_ARCH_1
345 #elif defined(CONFIG_SPARC64)
346 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
347 # define VM_ARCH_CLEAR	VM_SPARC_ADI
348 #elif defined(CONFIG_ARM64)
349 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
350 # define VM_ARCH_CLEAR	VM_ARM64_BTI
351 #elif !defined(CONFIG_MMU)
352 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
353 #endif
354 
355 #if defined(CONFIG_ARM64_MTE)
356 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
357 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
358 #else
359 # define VM_MTE		VM_NONE
360 # define VM_MTE_ALLOWED	VM_NONE
361 #endif
362 
363 #ifndef VM_GROWSUP
364 # define VM_GROWSUP	VM_NONE
365 #endif
366 
367 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
368 # define VM_UFFD_MINOR_BIT	37
369 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
370 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
371 # define VM_UFFD_MINOR		VM_NONE
372 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
373 
374 /* Bits set in the VMA until the stack is in its final location */
375 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
376 
377 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
378 
379 /* Common data flag combinations */
380 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
381 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
383 				 VM_MAYWRITE | VM_MAYEXEC)
384 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
385 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386 
387 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
388 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
389 #endif
390 
391 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
392 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
393 #endif
394 
395 #ifdef CONFIG_STACK_GROWSUP
396 #define VM_STACK	VM_GROWSUP
397 #else
398 #define VM_STACK	VM_GROWSDOWN
399 #endif
400 
401 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
402 
403 /* VMA basic access permission flags */
404 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
405 
406 
407 /*
408  * Special vmas that are non-mergable, non-mlock()able.
409  */
410 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
411 
412 /* This mask prevents VMA from being scanned with khugepaged */
413 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
414 
415 /* This mask defines which mm->def_flags a process can inherit its parent */
416 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
417 
418 /* This mask is used to clear all the VMA flags used by mlock */
419 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
420 
421 /* Arch-specific flags to clear when updating VM flags on protection change */
422 #ifndef VM_ARCH_CLEAR
423 # define VM_ARCH_CLEAR	VM_NONE
424 #endif
425 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
426 
427 /*
428  * mapping from the currently active vm_flags protection bits (the
429  * low four bits) to a page protection mask..
430  */
431 
432 /*
433  * The default fault flags that should be used by most of the
434  * arch-specific page fault handlers.
435  */
436 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
437 			     FAULT_FLAG_KILLABLE | \
438 			     FAULT_FLAG_INTERRUPTIBLE)
439 
440 /**
441  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
442  * @flags: Fault flags.
443  *
444  * This is mostly used for places where we want to try to avoid taking
445  * the mmap_lock for too long a time when waiting for another condition
446  * to change, in which case we can try to be polite to release the
447  * mmap_lock in the first round to avoid potential starvation of other
448  * processes that would also want the mmap_lock.
449  *
450  * Return: true if the page fault allows retry and this is the first
451  * attempt of the fault handling; false otherwise.
452  */
453 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
454 {
455 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
456 	    (!(flags & FAULT_FLAG_TRIED));
457 }
458 
459 #define FAULT_FLAG_TRACE \
460 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
461 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
462 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
463 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
464 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
465 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
466 	{ FAULT_FLAG_USER,		"USER" }, \
467 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
468 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
469 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
470 
471 /*
472  * vm_fault is filled by the pagefault handler and passed to the vma's
473  * ->fault function. The vma's ->fault is responsible for returning a bitmask
474  * of VM_FAULT_xxx flags that give details about how the fault was handled.
475  *
476  * MM layer fills up gfp_mask for page allocations but fault handler might
477  * alter it if its implementation requires a different allocation context.
478  *
479  * pgoff should be used in favour of virtual_address, if possible.
480  */
481 struct vm_fault {
482 	const struct {
483 		struct vm_area_struct *vma;	/* Target VMA */
484 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
485 		pgoff_t pgoff;			/* Logical page offset based on vma */
486 		unsigned long address;		/* Faulting virtual address - masked */
487 		unsigned long real_address;	/* Faulting virtual address - unmasked */
488 	};
489 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
490 					 * XXX: should really be 'const' */
491 	pmd_t *pmd;			/* Pointer to pmd entry matching
492 					 * the 'address' */
493 	pud_t *pud;			/* Pointer to pud entry matching
494 					 * the 'address'
495 					 */
496 	union {
497 		pte_t orig_pte;		/* Value of PTE at the time of fault */
498 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
499 					 * used by PMD fault only.
500 					 */
501 	};
502 
503 	struct page *cow_page;		/* Page handler may use for COW fault */
504 	struct page *page;		/* ->fault handlers should return a
505 					 * page here, unless VM_FAULT_NOPAGE
506 					 * is set (which is also implied by
507 					 * VM_FAULT_ERROR).
508 					 */
509 	/* These three entries are valid only while holding ptl lock */
510 	pte_t *pte;			/* Pointer to pte entry matching
511 					 * the 'address'. NULL if the page
512 					 * table hasn't been allocated.
513 					 */
514 	spinlock_t *ptl;		/* Page table lock.
515 					 * Protects pte page table if 'pte'
516 					 * is not NULL, otherwise pmd.
517 					 */
518 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
519 					 * vm_ops->map_pages() sets up a page
520 					 * table from atomic context.
521 					 * do_fault_around() pre-allocates
522 					 * page table to avoid allocation from
523 					 * atomic context.
524 					 */
525 };
526 
527 /* page entry size for vm->huge_fault() */
528 enum page_entry_size {
529 	PE_SIZE_PTE = 0,
530 	PE_SIZE_PMD,
531 	PE_SIZE_PUD,
532 };
533 
534 /*
535  * These are the virtual MM functions - opening of an area, closing and
536  * unmapping it (needed to keep files on disk up-to-date etc), pointer
537  * to the functions called when a no-page or a wp-page exception occurs.
538  */
539 struct vm_operations_struct {
540 	void (*open)(struct vm_area_struct * area);
541 	/**
542 	 * @close: Called when the VMA is being removed from the MM.
543 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
544 	 */
545 	void (*close)(struct vm_area_struct * area);
546 	/* Called any time before splitting to check if it's allowed */
547 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
548 	int (*mremap)(struct vm_area_struct *area);
549 	/*
550 	 * Called by mprotect() to make driver-specific permission
551 	 * checks before mprotect() is finalised.   The VMA must not
552 	 * be modified.  Returns 0 if eprotect() can proceed.
553 	 */
554 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
555 			unsigned long end, unsigned long newflags);
556 	vm_fault_t (*fault)(struct vm_fault *vmf);
557 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
558 			enum page_entry_size pe_size);
559 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
560 			pgoff_t start_pgoff, pgoff_t end_pgoff);
561 	unsigned long (*pagesize)(struct vm_area_struct * area);
562 
563 	/* notification that a previously read-only page is about to become
564 	 * writable, if an error is returned it will cause a SIGBUS */
565 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
566 
567 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
568 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
569 
570 	/* called by access_process_vm when get_user_pages() fails, typically
571 	 * for use by special VMAs. See also generic_access_phys() for a generic
572 	 * implementation useful for any iomem mapping.
573 	 */
574 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
575 		      void *buf, int len, int write);
576 
577 	/* Called by the /proc/PID/maps code to ask the vma whether it
578 	 * has a special name.  Returning non-NULL will also cause this
579 	 * vma to be dumped unconditionally. */
580 	const char *(*name)(struct vm_area_struct *vma);
581 
582 #ifdef CONFIG_NUMA
583 	/*
584 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
585 	 * to hold the policy upon return.  Caller should pass NULL @new to
586 	 * remove a policy and fall back to surrounding context--i.e. do not
587 	 * install a MPOL_DEFAULT policy, nor the task or system default
588 	 * mempolicy.
589 	 */
590 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
591 
592 	/*
593 	 * get_policy() op must add reference [mpol_get()] to any policy at
594 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
595 	 * in mm/mempolicy.c will do this automatically.
596 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
597 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
598 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
599 	 * must return NULL--i.e., do not "fallback" to task or system default
600 	 * policy.
601 	 */
602 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 					unsigned long addr);
604 #endif
605 	/*
606 	 * Called by vm_normal_page() for special PTEs to find the
607 	 * page for @addr.  This is useful if the default behavior
608 	 * (using pte_page()) would not find the correct page.
609 	 */
610 	struct page *(*find_special_page)(struct vm_area_struct *vma,
611 					  unsigned long addr);
612 };
613 
614 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
615 {
616 	static const struct vm_operations_struct dummy_vm_ops = {};
617 
618 	memset(vma, 0, sizeof(*vma));
619 	vma->vm_mm = mm;
620 	vma->vm_ops = &dummy_vm_ops;
621 	INIT_LIST_HEAD(&vma->anon_vma_chain);
622 }
623 
624 static inline void vma_set_anonymous(struct vm_area_struct *vma)
625 {
626 	vma->vm_ops = NULL;
627 }
628 
629 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
630 {
631 	return !vma->vm_ops;
632 }
633 
634 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
635 {
636 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
637 
638 	if (!maybe_stack)
639 		return false;
640 
641 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
642 						VM_STACK_INCOMPLETE_SETUP)
643 		return true;
644 
645 	return false;
646 }
647 
648 static inline bool vma_is_foreign(struct vm_area_struct *vma)
649 {
650 	if (!current->mm)
651 		return true;
652 
653 	if (current->mm != vma->vm_mm)
654 		return true;
655 
656 	return false;
657 }
658 
659 static inline bool vma_is_accessible(struct vm_area_struct *vma)
660 {
661 	return vma->vm_flags & VM_ACCESS_FLAGS;
662 }
663 
664 #ifdef CONFIG_SHMEM
665 /*
666  * The vma_is_shmem is not inline because it is used only by slow
667  * paths in userfault.
668  */
669 bool vma_is_shmem(struct vm_area_struct *vma);
670 #else
671 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
672 #endif
673 
674 int vma_is_stack_for_current(struct vm_area_struct *vma);
675 
676 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
677 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
678 
679 struct mmu_gather;
680 struct inode;
681 
682 static inline unsigned int compound_order(struct page *page)
683 {
684 	if (!PageHead(page))
685 		return 0;
686 	return page[1].compound_order;
687 }
688 
689 /**
690  * folio_order - The allocation order of a folio.
691  * @folio: The folio.
692  *
693  * A folio is composed of 2^order pages.  See get_order() for the definition
694  * of order.
695  *
696  * Return: The order of the folio.
697  */
698 static inline unsigned int folio_order(struct folio *folio)
699 {
700 	return compound_order(&folio->page);
701 }
702 
703 #include <linux/huge_mm.h>
704 
705 /*
706  * Methods to modify the page usage count.
707  *
708  * What counts for a page usage:
709  * - cache mapping   (page->mapping)
710  * - private data    (page->private)
711  * - page mapped in a task's page tables, each mapping
712  *   is counted separately
713  *
714  * Also, many kernel routines increase the page count before a critical
715  * routine so they can be sure the page doesn't go away from under them.
716  */
717 
718 /*
719  * Drop a ref, return true if the refcount fell to zero (the page has no users)
720  */
721 static inline int put_page_testzero(struct page *page)
722 {
723 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
724 	return page_ref_dec_and_test(page);
725 }
726 
727 static inline int folio_put_testzero(struct folio *folio)
728 {
729 	return put_page_testzero(&folio->page);
730 }
731 
732 /*
733  * Try to grab a ref unless the page has a refcount of zero, return false if
734  * that is the case.
735  * This can be called when MMU is off so it must not access
736  * any of the virtual mappings.
737  */
738 static inline bool get_page_unless_zero(struct page *page)
739 {
740 	return page_ref_add_unless(page, 1, 0);
741 }
742 
743 extern int page_is_ram(unsigned long pfn);
744 
745 enum {
746 	REGION_INTERSECTS,
747 	REGION_DISJOINT,
748 	REGION_MIXED,
749 };
750 
751 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
752 		      unsigned long desc);
753 
754 /* Support for virtually mapped pages */
755 struct page *vmalloc_to_page(const void *addr);
756 unsigned long vmalloc_to_pfn(const void *addr);
757 
758 /*
759  * Determine if an address is within the vmalloc range
760  *
761  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
762  * is no special casing required.
763  */
764 
765 #ifndef is_ioremap_addr
766 #define is_ioremap_addr(x) is_vmalloc_addr(x)
767 #endif
768 
769 #ifdef CONFIG_MMU
770 extern bool is_vmalloc_addr(const void *x);
771 extern int is_vmalloc_or_module_addr(const void *x);
772 #else
773 static inline bool is_vmalloc_addr(const void *x)
774 {
775 	return false;
776 }
777 static inline int is_vmalloc_or_module_addr(const void *x)
778 {
779 	return 0;
780 }
781 #endif
782 
783 /*
784  * How many times the entire folio is mapped as a single unit (eg by a
785  * PMD or PUD entry).  This is probably not what you want, except for
786  * debugging purposes; look at folio_mapcount() or page_mapcount()
787  * instead.
788  */
789 static inline int folio_entire_mapcount(struct folio *folio)
790 {
791 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
792 	return atomic_read(folio_mapcount_ptr(folio)) + 1;
793 }
794 
795 /*
796  * Mapcount of compound page as a whole, does not include mapped sub-pages.
797  *
798  * Must be called only for compound pages.
799  */
800 static inline int compound_mapcount(struct page *page)
801 {
802 	return folio_entire_mapcount(page_folio(page));
803 }
804 
805 /*
806  * The atomic page->_mapcount, starts from -1: so that transitions
807  * both from it and to it can be tracked, using atomic_inc_and_test
808  * and atomic_add_negative(-1).
809  */
810 static inline void page_mapcount_reset(struct page *page)
811 {
812 	atomic_set(&(page)->_mapcount, -1);
813 }
814 
815 int __page_mapcount(struct page *page);
816 
817 /*
818  * Mapcount of 0-order page; when compound sub-page, includes
819  * compound_mapcount().
820  *
821  * Result is undefined for pages which cannot be mapped into userspace.
822  * For example SLAB or special types of pages. See function page_has_type().
823  * They use this place in struct page differently.
824  */
825 static inline int page_mapcount(struct page *page)
826 {
827 	if (unlikely(PageCompound(page)))
828 		return __page_mapcount(page);
829 	return atomic_read(&page->_mapcount) + 1;
830 }
831 
832 int folio_mapcount(struct folio *folio);
833 
834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
835 static inline int total_mapcount(struct page *page)
836 {
837 	return folio_mapcount(page_folio(page));
838 }
839 
840 #else
841 static inline int total_mapcount(struct page *page)
842 {
843 	return page_mapcount(page);
844 }
845 #endif
846 
847 static inline struct page *virt_to_head_page(const void *x)
848 {
849 	struct page *page = virt_to_page(x);
850 
851 	return compound_head(page);
852 }
853 
854 static inline struct folio *virt_to_folio(const void *x)
855 {
856 	struct page *page = virt_to_page(x);
857 
858 	return page_folio(page);
859 }
860 
861 void __folio_put(struct folio *folio);
862 
863 void put_pages_list(struct list_head *pages);
864 
865 void split_page(struct page *page, unsigned int order);
866 void folio_copy(struct folio *dst, struct folio *src);
867 
868 unsigned long nr_free_buffer_pages(void);
869 
870 /*
871  * Compound pages have a destructor function.  Provide a
872  * prototype for that function and accessor functions.
873  * These are _only_ valid on the head of a compound page.
874  */
875 typedef void compound_page_dtor(struct page *);
876 
877 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
878 enum compound_dtor_id {
879 	NULL_COMPOUND_DTOR,
880 	COMPOUND_PAGE_DTOR,
881 #ifdef CONFIG_HUGETLB_PAGE
882 	HUGETLB_PAGE_DTOR,
883 #endif
884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
885 	TRANSHUGE_PAGE_DTOR,
886 #endif
887 	NR_COMPOUND_DTORS,
888 };
889 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
890 
891 static inline void set_compound_page_dtor(struct page *page,
892 		enum compound_dtor_id compound_dtor)
893 {
894 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
895 	page[1].compound_dtor = compound_dtor;
896 }
897 
898 void destroy_large_folio(struct folio *folio);
899 
900 static inline int head_compound_pincount(struct page *head)
901 {
902 	return atomic_read(compound_pincount_ptr(head));
903 }
904 
905 static inline void set_compound_order(struct page *page, unsigned int order)
906 {
907 	page[1].compound_order = order;
908 #ifdef CONFIG_64BIT
909 	page[1].compound_nr = 1U << order;
910 #endif
911 }
912 
913 /* Returns the number of pages in this potentially compound page. */
914 static inline unsigned long compound_nr(struct page *page)
915 {
916 	if (!PageHead(page))
917 		return 1;
918 #ifdef CONFIG_64BIT
919 	return page[1].compound_nr;
920 #else
921 	return 1UL << compound_order(page);
922 #endif
923 }
924 
925 /* Returns the number of bytes in this potentially compound page. */
926 static inline unsigned long page_size(struct page *page)
927 {
928 	return PAGE_SIZE << compound_order(page);
929 }
930 
931 /* Returns the number of bits needed for the number of bytes in a page */
932 static inline unsigned int page_shift(struct page *page)
933 {
934 	return PAGE_SHIFT + compound_order(page);
935 }
936 
937 /**
938  * thp_order - Order of a transparent huge page.
939  * @page: Head page of a transparent huge page.
940  */
941 static inline unsigned int thp_order(struct page *page)
942 {
943 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
944 	return compound_order(page);
945 }
946 
947 /**
948  * thp_nr_pages - The number of regular pages in this huge page.
949  * @page: The head page of a huge page.
950  */
951 static inline int thp_nr_pages(struct page *page)
952 {
953 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
954 	return compound_nr(page);
955 }
956 
957 /**
958  * thp_size - Size of a transparent huge page.
959  * @page: Head page of a transparent huge page.
960  *
961  * Return: Number of bytes in this page.
962  */
963 static inline unsigned long thp_size(struct page *page)
964 {
965 	return PAGE_SIZE << thp_order(page);
966 }
967 
968 void free_compound_page(struct page *page);
969 
970 #ifdef CONFIG_MMU
971 /*
972  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
973  * servicing faults for write access.  In the normal case, do always want
974  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
975  * that do not have writing enabled, when used by access_process_vm.
976  */
977 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
978 {
979 	if (likely(vma->vm_flags & VM_WRITE))
980 		pte = pte_mkwrite(pte);
981 	return pte;
982 }
983 
984 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
985 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
986 
987 vm_fault_t finish_fault(struct vm_fault *vmf);
988 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
989 #endif
990 
991 /*
992  * Multiple processes may "see" the same page. E.g. for untouched
993  * mappings of /dev/null, all processes see the same page full of
994  * zeroes, and text pages of executables and shared libraries have
995  * only one copy in memory, at most, normally.
996  *
997  * For the non-reserved pages, page_count(page) denotes a reference count.
998  *   page_count() == 0 means the page is free. page->lru is then used for
999  *   freelist management in the buddy allocator.
1000  *   page_count() > 0  means the page has been allocated.
1001  *
1002  * Pages are allocated by the slab allocator in order to provide memory
1003  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1004  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1005  * unless a particular usage is carefully commented. (the responsibility of
1006  * freeing the kmalloc memory is the caller's, of course).
1007  *
1008  * A page may be used by anyone else who does a __get_free_page().
1009  * In this case, page_count still tracks the references, and should only
1010  * be used through the normal accessor functions. The top bits of page->flags
1011  * and page->virtual store page management information, but all other fields
1012  * are unused and could be used privately, carefully. The management of this
1013  * page is the responsibility of the one who allocated it, and those who have
1014  * subsequently been given references to it.
1015  *
1016  * The other pages (we may call them "pagecache pages") are completely
1017  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1018  * The following discussion applies only to them.
1019  *
1020  * A pagecache page contains an opaque `private' member, which belongs to the
1021  * page's address_space. Usually, this is the address of a circular list of
1022  * the page's disk buffers. PG_private must be set to tell the VM to call
1023  * into the filesystem to release these pages.
1024  *
1025  * A page may belong to an inode's memory mapping. In this case, page->mapping
1026  * is the pointer to the inode, and page->index is the file offset of the page,
1027  * in units of PAGE_SIZE.
1028  *
1029  * If pagecache pages are not associated with an inode, they are said to be
1030  * anonymous pages. These may become associated with the swapcache, and in that
1031  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1032  *
1033  * In either case (swapcache or inode backed), the pagecache itself holds one
1034  * reference to the page. Setting PG_private should also increment the
1035  * refcount. The each user mapping also has a reference to the page.
1036  *
1037  * The pagecache pages are stored in a per-mapping radix tree, which is
1038  * rooted at mapping->i_pages, and indexed by offset.
1039  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1040  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1041  *
1042  * All pagecache pages may be subject to I/O:
1043  * - inode pages may need to be read from disk,
1044  * - inode pages which have been modified and are MAP_SHARED may need
1045  *   to be written back to the inode on disk,
1046  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1047  *   modified may need to be swapped out to swap space and (later) to be read
1048  *   back into memory.
1049  */
1050 
1051 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1052 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1053 
1054 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1055 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1056 {
1057 	if (!static_branch_unlikely(&devmap_managed_key))
1058 		return false;
1059 	if (!is_zone_device_page(page))
1060 		return false;
1061 	return __put_devmap_managed_page_refs(page, refs);
1062 }
1063 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1064 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1065 {
1066 	return false;
1067 }
1068 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1069 
1070 static inline bool put_devmap_managed_page(struct page *page)
1071 {
1072 	return put_devmap_managed_page_refs(page, 1);
1073 }
1074 
1075 /* 127: arbitrary random number, small enough to assemble well */
1076 #define folio_ref_zero_or_close_to_overflow(folio) \
1077 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1078 
1079 /**
1080  * folio_get - Increment the reference count on a folio.
1081  * @folio: The folio.
1082  *
1083  * Context: May be called in any context, as long as you know that
1084  * you have a refcount on the folio.  If you do not already have one,
1085  * folio_try_get() may be the right interface for you to use.
1086  */
1087 static inline void folio_get(struct folio *folio)
1088 {
1089 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1090 	folio_ref_inc(folio);
1091 }
1092 
1093 static inline void get_page(struct page *page)
1094 {
1095 	folio_get(page_folio(page));
1096 }
1097 
1098 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1099 
1100 static inline __must_check bool try_get_page(struct page *page)
1101 {
1102 	page = compound_head(page);
1103 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1104 		return false;
1105 	page_ref_inc(page);
1106 	return true;
1107 }
1108 
1109 /**
1110  * folio_put - Decrement the reference count on a folio.
1111  * @folio: The folio.
1112  *
1113  * If the folio's reference count reaches zero, the memory will be
1114  * released back to the page allocator and may be used by another
1115  * allocation immediately.  Do not access the memory or the struct folio
1116  * after calling folio_put() unless you can be sure that it wasn't the
1117  * last reference.
1118  *
1119  * Context: May be called in process or interrupt context, but not in NMI
1120  * context.  May be called while holding a spinlock.
1121  */
1122 static inline void folio_put(struct folio *folio)
1123 {
1124 	if (folio_put_testzero(folio))
1125 		__folio_put(folio);
1126 }
1127 
1128 /**
1129  * folio_put_refs - Reduce the reference count on a folio.
1130  * @folio: The folio.
1131  * @refs: The amount to subtract from the folio's reference count.
1132  *
1133  * If the folio's reference count reaches zero, the memory will be
1134  * released back to the page allocator and may be used by another
1135  * allocation immediately.  Do not access the memory or the struct folio
1136  * after calling folio_put_refs() unless you can be sure that these weren't
1137  * the last references.
1138  *
1139  * Context: May be called in process or interrupt context, but not in NMI
1140  * context.  May be called while holding a spinlock.
1141  */
1142 static inline void folio_put_refs(struct folio *folio, int refs)
1143 {
1144 	if (folio_ref_sub_and_test(folio, refs))
1145 		__folio_put(folio);
1146 }
1147 
1148 void release_pages(struct page **pages, int nr);
1149 
1150 /**
1151  * folios_put - Decrement the reference count on an array of folios.
1152  * @folios: The folios.
1153  * @nr: How many folios there are.
1154  *
1155  * Like folio_put(), but for an array of folios.  This is more efficient
1156  * than writing the loop yourself as it will optimise the locks which
1157  * need to be taken if the folios are freed.
1158  *
1159  * Context: May be called in process or interrupt context, but not in NMI
1160  * context.  May be called while holding a spinlock.
1161  */
1162 static inline void folios_put(struct folio **folios, unsigned int nr)
1163 {
1164 	release_pages((struct page **)folios, nr);
1165 }
1166 
1167 static inline void put_page(struct page *page)
1168 {
1169 	struct folio *folio = page_folio(page);
1170 
1171 	/*
1172 	 * For some devmap managed pages we need to catch refcount transition
1173 	 * from 2 to 1:
1174 	 */
1175 	if (put_devmap_managed_page(&folio->page))
1176 		return;
1177 	folio_put(folio);
1178 }
1179 
1180 /*
1181  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1182  * the page's refcount so that two separate items are tracked: the original page
1183  * reference count, and also a new count of how many pin_user_pages() calls were
1184  * made against the page. ("gup-pinned" is another term for the latter).
1185  *
1186  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1187  * distinct from normal pages. As such, the unpin_user_page() call (and its
1188  * variants) must be used in order to release gup-pinned pages.
1189  *
1190  * Choice of value:
1191  *
1192  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1193  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1194  * simpler, due to the fact that adding an even power of two to the page
1195  * refcount has the effect of using only the upper N bits, for the code that
1196  * counts up using the bias value. This means that the lower bits are left for
1197  * the exclusive use of the original code that increments and decrements by one
1198  * (or at least, by much smaller values than the bias value).
1199  *
1200  * Of course, once the lower bits overflow into the upper bits (and this is
1201  * OK, because subtraction recovers the original values), then visual inspection
1202  * no longer suffices to directly view the separate counts. However, for normal
1203  * applications that don't have huge page reference counts, this won't be an
1204  * issue.
1205  *
1206  * Locking: the lockless algorithm described in folio_try_get_rcu()
1207  * provides safe operation for get_user_pages(), page_mkclean() and
1208  * other calls that race to set up page table entries.
1209  */
1210 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1211 
1212 void unpin_user_page(struct page *page);
1213 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1214 				 bool make_dirty);
1215 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1216 				      bool make_dirty);
1217 void unpin_user_pages(struct page **pages, unsigned long npages);
1218 
1219 static inline bool is_cow_mapping(vm_flags_t flags)
1220 {
1221 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1222 }
1223 
1224 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1225 #define SECTION_IN_PAGE_FLAGS
1226 #endif
1227 
1228 /*
1229  * The identification function is mainly used by the buddy allocator for
1230  * determining if two pages could be buddies. We are not really identifying
1231  * the zone since we could be using the section number id if we do not have
1232  * node id available in page flags.
1233  * We only guarantee that it will return the same value for two combinable
1234  * pages in a zone.
1235  */
1236 static inline int page_zone_id(struct page *page)
1237 {
1238 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1239 }
1240 
1241 #ifdef NODE_NOT_IN_PAGE_FLAGS
1242 extern int page_to_nid(const struct page *page);
1243 #else
1244 static inline int page_to_nid(const struct page *page)
1245 {
1246 	struct page *p = (struct page *)page;
1247 
1248 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1249 }
1250 #endif
1251 
1252 static inline int folio_nid(const struct folio *folio)
1253 {
1254 	return page_to_nid(&folio->page);
1255 }
1256 
1257 #ifdef CONFIG_NUMA_BALANCING
1258 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1259 {
1260 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1261 }
1262 
1263 static inline int cpupid_to_pid(int cpupid)
1264 {
1265 	return cpupid & LAST__PID_MASK;
1266 }
1267 
1268 static inline int cpupid_to_cpu(int cpupid)
1269 {
1270 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1271 }
1272 
1273 static inline int cpupid_to_nid(int cpupid)
1274 {
1275 	return cpu_to_node(cpupid_to_cpu(cpupid));
1276 }
1277 
1278 static inline bool cpupid_pid_unset(int cpupid)
1279 {
1280 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1281 }
1282 
1283 static inline bool cpupid_cpu_unset(int cpupid)
1284 {
1285 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1286 }
1287 
1288 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1289 {
1290 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1291 }
1292 
1293 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1294 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1295 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1296 {
1297 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1298 }
1299 
1300 static inline int page_cpupid_last(struct page *page)
1301 {
1302 	return page->_last_cpupid;
1303 }
1304 static inline void page_cpupid_reset_last(struct page *page)
1305 {
1306 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1307 }
1308 #else
1309 static inline int page_cpupid_last(struct page *page)
1310 {
1311 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1312 }
1313 
1314 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1315 
1316 static inline void page_cpupid_reset_last(struct page *page)
1317 {
1318 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1319 }
1320 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1321 #else /* !CONFIG_NUMA_BALANCING */
1322 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1323 {
1324 	return page_to_nid(page); /* XXX */
1325 }
1326 
1327 static inline int page_cpupid_last(struct page *page)
1328 {
1329 	return page_to_nid(page); /* XXX */
1330 }
1331 
1332 static inline int cpupid_to_nid(int cpupid)
1333 {
1334 	return -1;
1335 }
1336 
1337 static inline int cpupid_to_pid(int cpupid)
1338 {
1339 	return -1;
1340 }
1341 
1342 static inline int cpupid_to_cpu(int cpupid)
1343 {
1344 	return -1;
1345 }
1346 
1347 static inline int cpu_pid_to_cpupid(int nid, int pid)
1348 {
1349 	return -1;
1350 }
1351 
1352 static inline bool cpupid_pid_unset(int cpupid)
1353 {
1354 	return true;
1355 }
1356 
1357 static inline void page_cpupid_reset_last(struct page *page)
1358 {
1359 }
1360 
1361 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1362 {
1363 	return false;
1364 }
1365 #endif /* CONFIG_NUMA_BALANCING */
1366 
1367 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1368 
1369 /*
1370  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1371  * setting tags for all pages to native kernel tag value 0xff, as the default
1372  * value 0x00 maps to 0xff.
1373  */
1374 
1375 static inline u8 page_kasan_tag(const struct page *page)
1376 {
1377 	u8 tag = 0xff;
1378 
1379 	if (kasan_enabled()) {
1380 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1381 		tag ^= 0xff;
1382 	}
1383 
1384 	return tag;
1385 }
1386 
1387 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1388 {
1389 	unsigned long old_flags, flags;
1390 
1391 	if (!kasan_enabled())
1392 		return;
1393 
1394 	tag ^= 0xff;
1395 	old_flags = READ_ONCE(page->flags);
1396 	do {
1397 		flags = old_flags;
1398 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1399 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1400 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1401 }
1402 
1403 static inline void page_kasan_tag_reset(struct page *page)
1404 {
1405 	if (kasan_enabled())
1406 		page_kasan_tag_set(page, 0xff);
1407 }
1408 
1409 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1410 
1411 static inline u8 page_kasan_tag(const struct page *page)
1412 {
1413 	return 0xff;
1414 }
1415 
1416 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1417 static inline void page_kasan_tag_reset(struct page *page) { }
1418 
1419 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1420 
1421 static inline struct zone *page_zone(const struct page *page)
1422 {
1423 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1424 }
1425 
1426 static inline pg_data_t *page_pgdat(const struct page *page)
1427 {
1428 	return NODE_DATA(page_to_nid(page));
1429 }
1430 
1431 static inline struct zone *folio_zone(const struct folio *folio)
1432 {
1433 	return page_zone(&folio->page);
1434 }
1435 
1436 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1437 {
1438 	return page_pgdat(&folio->page);
1439 }
1440 
1441 #ifdef SECTION_IN_PAGE_FLAGS
1442 static inline void set_page_section(struct page *page, unsigned long section)
1443 {
1444 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1445 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1446 }
1447 
1448 static inline unsigned long page_to_section(const struct page *page)
1449 {
1450 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1451 }
1452 #endif
1453 
1454 /**
1455  * folio_pfn - Return the Page Frame Number of a folio.
1456  * @folio: The folio.
1457  *
1458  * A folio may contain multiple pages.  The pages have consecutive
1459  * Page Frame Numbers.
1460  *
1461  * Return: The Page Frame Number of the first page in the folio.
1462  */
1463 static inline unsigned long folio_pfn(struct folio *folio)
1464 {
1465 	return page_to_pfn(&folio->page);
1466 }
1467 
1468 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1469 {
1470 	return &folio_page(folio, 1)->compound_pincount;
1471 }
1472 
1473 /**
1474  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1475  * @folio: The folio.
1476  *
1477  * This function checks if a folio has been pinned via a call to
1478  * a function in the pin_user_pages() family.
1479  *
1480  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1481  * because it means "definitely not pinned for DMA", but true means "probably
1482  * pinned for DMA, but possibly a false positive due to having at least
1483  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1484  *
1485  * False positives are OK, because: a) it's unlikely for a folio to
1486  * get that many refcounts, and b) all the callers of this routine are
1487  * expected to be able to deal gracefully with a false positive.
1488  *
1489  * For large folios, the result will be exactly correct. That's because
1490  * we have more tracking data available: the compound_pincount is used
1491  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1492  *
1493  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1494  *
1495  * Return: True, if it is likely that the page has been "dma-pinned".
1496  * False, if the page is definitely not dma-pinned.
1497  */
1498 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1499 {
1500 	if (folio_test_large(folio))
1501 		return atomic_read(folio_pincount_ptr(folio)) > 0;
1502 
1503 	/*
1504 	 * folio_ref_count() is signed. If that refcount overflows, then
1505 	 * folio_ref_count() returns a negative value, and callers will avoid
1506 	 * further incrementing the refcount.
1507 	 *
1508 	 * Here, for that overflow case, use the sign bit to count a little
1509 	 * bit higher via unsigned math, and thus still get an accurate result.
1510 	 */
1511 	return ((unsigned int)folio_ref_count(folio)) >=
1512 		GUP_PIN_COUNTING_BIAS;
1513 }
1514 
1515 static inline bool page_maybe_dma_pinned(struct page *page)
1516 {
1517 	return folio_maybe_dma_pinned(page_folio(page));
1518 }
1519 
1520 /*
1521  * This should most likely only be called during fork() to see whether we
1522  * should break the cow immediately for an anon page on the src mm.
1523  *
1524  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1525  */
1526 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1527 					  struct page *page)
1528 {
1529 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1530 
1531 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1532 		return false;
1533 
1534 	return page_maybe_dma_pinned(page);
1535 }
1536 
1537 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1538 #ifdef CONFIG_MIGRATION
1539 static inline bool is_longterm_pinnable_page(struct page *page)
1540 {
1541 #ifdef CONFIG_CMA
1542 	int mt = get_pageblock_migratetype(page);
1543 
1544 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1545 		return false;
1546 #endif
1547 	/* The zero page may always be pinned */
1548 	if (is_zero_pfn(page_to_pfn(page)))
1549 		return true;
1550 
1551 	/* Coherent device memory must always allow eviction. */
1552 	if (is_device_coherent_page(page))
1553 		return false;
1554 
1555 	/* Otherwise, non-movable zone pages can be pinned. */
1556 	return !is_zone_movable_page(page);
1557 }
1558 #else
1559 static inline bool is_longterm_pinnable_page(struct page *page)
1560 {
1561 	return true;
1562 }
1563 #endif
1564 
1565 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1566 {
1567 	return is_longterm_pinnable_page(&folio->page);
1568 }
1569 
1570 static inline void set_page_zone(struct page *page, enum zone_type zone)
1571 {
1572 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1573 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1574 }
1575 
1576 static inline void set_page_node(struct page *page, unsigned long node)
1577 {
1578 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1579 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1580 }
1581 
1582 static inline void set_page_links(struct page *page, enum zone_type zone,
1583 	unsigned long node, unsigned long pfn)
1584 {
1585 	set_page_zone(page, zone);
1586 	set_page_node(page, node);
1587 #ifdef SECTION_IN_PAGE_FLAGS
1588 	set_page_section(page, pfn_to_section_nr(pfn));
1589 #endif
1590 }
1591 
1592 /**
1593  * folio_nr_pages - The number of pages in the folio.
1594  * @folio: The folio.
1595  *
1596  * Return: A positive power of two.
1597  */
1598 static inline long folio_nr_pages(struct folio *folio)
1599 {
1600 	return compound_nr(&folio->page);
1601 }
1602 
1603 /**
1604  * folio_next - Move to the next physical folio.
1605  * @folio: The folio we're currently operating on.
1606  *
1607  * If you have physically contiguous memory which may span more than
1608  * one folio (eg a &struct bio_vec), use this function to move from one
1609  * folio to the next.  Do not use it if the memory is only virtually
1610  * contiguous as the folios are almost certainly not adjacent to each
1611  * other.  This is the folio equivalent to writing ``page++``.
1612  *
1613  * Context: We assume that the folios are refcounted and/or locked at a
1614  * higher level and do not adjust the reference counts.
1615  * Return: The next struct folio.
1616  */
1617 static inline struct folio *folio_next(struct folio *folio)
1618 {
1619 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1620 }
1621 
1622 /**
1623  * folio_shift - The size of the memory described by this folio.
1624  * @folio: The folio.
1625  *
1626  * A folio represents a number of bytes which is a power-of-two in size.
1627  * This function tells you which power-of-two the folio is.  See also
1628  * folio_size() and folio_order().
1629  *
1630  * Context: The caller should have a reference on the folio to prevent
1631  * it from being split.  It is not necessary for the folio to be locked.
1632  * Return: The base-2 logarithm of the size of this folio.
1633  */
1634 static inline unsigned int folio_shift(struct folio *folio)
1635 {
1636 	return PAGE_SHIFT + folio_order(folio);
1637 }
1638 
1639 /**
1640  * folio_size - The number of bytes in a folio.
1641  * @folio: The folio.
1642  *
1643  * Context: The caller should have a reference on the folio to prevent
1644  * it from being split.  It is not necessary for the folio to be locked.
1645  * Return: The number of bytes in this folio.
1646  */
1647 static inline size_t folio_size(struct folio *folio)
1648 {
1649 	return PAGE_SIZE << folio_order(folio);
1650 }
1651 
1652 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
1653 static inline int arch_make_page_accessible(struct page *page)
1654 {
1655 	return 0;
1656 }
1657 #endif
1658 
1659 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
1660 static inline int arch_make_folio_accessible(struct folio *folio)
1661 {
1662 	int ret;
1663 	long i, nr = folio_nr_pages(folio);
1664 
1665 	for (i = 0; i < nr; i++) {
1666 		ret = arch_make_page_accessible(folio_page(folio, i));
1667 		if (ret)
1668 			break;
1669 	}
1670 
1671 	return ret;
1672 }
1673 #endif
1674 
1675 /*
1676  * Some inline functions in vmstat.h depend on page_zone()
1677  */
1678 #include <linux/vmstat.h>
1679 
1680 static __always_inline void *lowmem_page_address(const struct page *page)
1681 {
1682 	return page_to_virt(page);
1683 }
1684 
1685 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1686 #define HASHED_PAGE_VIRTUAL
1687 #endif
1688 
1689 #if defined(WANT_PAGE_VIRTUAL)
1690 static inline void *page_address(const struct page *page)
1691 {
1692 	return page->virtual;
1693 }
1694 static inline void set_page_address(struct page *page, void *address)
1695 {
1696 	page->virtual = address;
1697 }
1698 #define page_address_init()  do { } while(0)
1699 #endif
1700 
1701 #if defined(HASHED_PAGE_VIRTUAL)
1702 void *page_address(const struct page *page);
1703 void set_page_address(struct page *page, void *virtual);
1704 void page_address_init(void);
1705 #endif
1706 
1707 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1708 #define page_address(page) lowmem_page_address(page)
1709 #define set_page_address(page, address)  do { } while(0)
1710 #define page_address_init()  do { } while(0)
1711 #endif
1712 
1713 static inline void *folio_address(const struct folio *folio)
1714 {
1715 	return page_address(&folio->page);
1716 }
1717 
1718 extern void *page_rmapping(struct page *page);
1719 extern pgoff_t __page_file_index(struct page *page);
1720 
1721 /*
1722  * Return the pagecache index of the passed page.  Regular pagecache pages
1723  * use ->index whereas swapcache pages use swp_offset(->private)
1724  */
1725 static inline pgoff_t page_index(struct page *page)
1726 {
1727 	if (unlikely(PageSwapCache(page)))
1728 		return __page_file_index(page);
1729 	return page->index;
1730 }
1731 
1732 bool page_mapped(struct page *page);
1733 bool folio_mapped(struct folio *folio);
1734 
1735 /*
1736  * Return true only if the page has been allocated with
1737  * ALLOC_NO_WATERMARKS and the low watermark was not
1738  * met implying that the system is under some pressure.
1739  */
1740 static inline bool page_is_pfmemalloc(const struct page *page)
1741 {
1742 	/*
1743 	 * lru.next has bit 1 set if the page is allocated from the
1744 	 * pfmemalloc reserves.  Callers may simply overwrite it if
1745 	 * they do not need to preserve that information.
1746 	 */
1747 	return (uintptr_t)page->lru.next & BIT(1);
1748 }
1749 
1750 /*
1751  * Only to be called by the page allocator on a freshly allocated
1752  * page.
1753  */
1754 static inline void set_page_pfmemalloc(struct page *page)
1755 {
1756 	page->lru.next = (void *)BIT(1);
1757 }
1758 
1759 static inline void clear_page_pfmemalloc(struct page *page)
1760 {
1761 	page->lru.next = NULL;
1762 }
1763 
1764 /*
1765  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1766  */
1767 extern void pagefault_out_of_memory(void);
1768 
1769 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1770 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
1771 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1772 
1773 /*
1774  * Flags passed to show_mem() and show_free_areas() to suppress output in
1775  * various contexts.
1776  */
1777 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1778 
1779 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1780 
1781 #ifdef CONFIG_MMU
1782 extern bool can_do_mlock(void);
1783 #else
1784 static inline bool can_do_mlock(void) { return false; }
1785 #endif
1786 extern int user_shm_lock(size_t, struct ucounts *);
1787 extern void user_shm_unlock(size_t, struct ucounts *);
1788 
1789 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1790 			     pte_t pte);
1791 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1792 				pmd_t pmd);
1793 
1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1795 		  unsigned long size);
1796 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1797 		    unsigned long size);
1798 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1799 		unsigned long start, unsigned long end);
1800 
1801 struct mmu_notifier_range;
1802 
1803 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1804 		unsigned long end, unsigned long floor, unsigned long ceiling);
1805 int
1806 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1807 int follow_pte(struct mm_struct *mm, unsigned long address,
1808 	       pte_t **ptepp, spinlock_t **ptlp);
1809 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1810 	unsigned long *pfn);
1811 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1812 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1813 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1814 			void *buf, int len, int write);
1815 
1816 extern void truncate_pagecache(struct inode *inode, loff_t new);
1817 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1818 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1819 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1820 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1821 
1822 #ifdef CONFIG_MMU
1823 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1824 				  unsigned long address, unsigned int flags,
1825 				  struct pt_regs *regs);
1826 extern int fixup_user_fault(struct mm_struct *mm,
1827 			    unsigned long address, unsigned int fault_flags,
1828 			    bool *unlocked);
1829 void unmap_mapping_pages(struct address_space *mapping,
1830 		pgoff_t start, pgoff_t nr, bool even_cows);
1831 void unmap_mapping_range(struct address_space *mapping,
1832 		loff_t const holebegin, loff_t const holelen, int even_cows);
1833 #else
1834 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1835 					 unsigned long address, unsigned int flags,
1836 					 struct pt_regs *regs)
1837 {
1838 	/* should never happen if there's no MMU */
1839 	BUG();
1840 	return VM_FAULT_SIGBUS;
1841 }
1842 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1843 		unsigned int fault_flags, bool *unlocked)
1844 {
1845 	/* should never happen if there's no MMU */
1846 	BUG();
1847 	return -EFAULT;
1848 }
1849 static inline void unmap_mapping_pages(struct address_space *mapping,
1850 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1851 static inline void unmap_mapping_range(struct address_space *mapping,
1852 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1853 #endif
1854 
1855 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1856 		loff_t const holebegin, loff_t const holelen)
1857 {
1858 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1859 }
1860 
1861 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1862 		void *buf, int len, unsigned int gup_flags);
1863 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1864 		void *buf, int len, unsigned int gup_flags);
1865 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1866 			      void *buf, int len, unsigned int gup_flags);
1867 
1868 long get_user_pages_remote(struct mm_struct *mm,
1869 			    unsigned long start, unsigned long nr_pages,
1870 			    unsigned int gup_flags, struct page **pages,
1871 			    struct vm_area_struct **vmas, int *locked);
1872 long pin_user_pages_remote(struct mm_struct *mm,
1873 			   unsigned long start, unsigned long nr_pages,
1874 			   unsigned int gup_flags, struct page **pages,
1875 			   struct vm_area_struct **vmas, int *locked);
1876 long get_user_pages(unsigned long start, unsigned long nr_pages,
1877 			    unsigned int gup_flags, struct page **pages,
1878 			    struct vm_area_struct **vmas);
1879 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1880 		    unsigned int gup_flags, struct page **pages,
1881 		    struct vm_area_struct **vmas);
1882 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1883 		    struct page **pages, unsigned int gup_flags);
1884 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1885 		    struct page **pages, unsigned int gup_flags);
1886 
1887 int get_user_pages_fast(unsigned long start, int nr_pages,
1888 			unsigned int gup_flags, struct page **pages);
1889 int pin_user_pages_fast(unsigned long start, int nr_pages,
1890 			unsigned int gup_flags, struct page **pages);
1891 
1892 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1893 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1894 			struct task_struct *task, bool bypass_rlim);
1895 
1896 struct kvec;
1897 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1898 			struct page **pages);
1899 struct page *get_dump_page(unsigned long addr);
1900 
1901 bool folio_mark_dirty(struct folio *folio);
1902 bool set_page_dirty(struct page *page);
1903 int set_page_dirty_lock(struct page *page);
1904 
1905 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1906 
1907 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1908 		unsigned long old_addr, struct vm_area_struct *new_vma,
1909 		unsigned long new_addr, unsigned long len,
1910 		bool need_rmap_locks);
1911 
1912 /*
1913  * Flags used by change_protection().  For now we make it a bitmap so
1914  * that we can pass in multiple flags just like parameters.  However
1915  * for now all the callers are only use one of the flags at the same
1916  * time.
1917  */
1918 /*
1919  * Whether we should manually check if we can map individual PTEs writable,
1920  * because something (e.g., COW, uffd-wp) blocks that from happening for all
1921  * PTEs automatically in a writable mapping.
1922  */
1923 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
1924 /* Whether this protection change is for NUMA hints */
1925 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1926 /* Whether this change is for write protecting */
1927 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1928 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1929 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1930 					    MM_CP_UFFD_WP_RESOLVE)
1931 
1932 extern unsigned long change_protection(struct mmu_gather *tlb,
1933 			      struct vm_area_struct *vma, unsigned long start,
1934 			      unsigned long end, pgprot_t newprot,
1935 			      unsigned long cp_flags);
1936 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
1937 			  struct vm_area_struct **pprev, unsigned long start,
1938 			  unsigned long end, unsigned long newflags);
1939 
1940 /*
1941  * doesn't attempt to fault and will return short.
1942  */
1943 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1944 			     unsigned int gup_flags, struct page **pages);
1945 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1946 			     unsigned int gup_flags, struct page **pages);
1947 
1948 static inline bool get_user_page_fast_only(unsigned long addr,
1949 			unsigned int gup_flags, struct page **pagep)
1950 {
1951 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1952 }
1953 /*
1954  * per-process(per-mm_struct) statistics.
1955  */
1956 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1957 {
1958 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1959 
1960 #ifdef SPLIT_RSS_COUNTING
1961 	/*
1962 	 * counter is updated in asynchronous manner and may go to minus.
1963 	 * But it's never be expected number for users.
1964 	 */
1965 	if (val < 0)
1966 		val = 0;
1967 #endif
1968 	return (unsigned long)val;
1969 }
1970 
1971 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1972 
1973 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1974 {
1975 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1976 
1977 	mm_trace_rss_stat(mm, member, count);
1978 }
1979 
1980 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1981 {
1982 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1983 
1984 	mm_trace_rss_stat(mm, member, count);
1985 }
1986 
1987 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1988 {
1989 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1990 
1991 	mm_trace_rss_stat(mm, member, count);
1992 }
1993 
1994 /* Optimized variant when page is already known not to be PageAnon */
1995 static inline int mm_counter_file(struct page *page)
1996 {
1997 	if (PageSwapBacked(page))
1998 		return MM_SHMEMPAGES;
1999 	return MM_FILEPAGES;
2000 }
2001 
2002 static inline int mm_counter(struct page *page)
2003 {
2004 	if (PageAnon(page))
2005 		return MM_ANONPAGES;
2006 	return mm_counter_file(page);
2007 }
2008 
2009 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2010 {
2011 	return get_mm_counter(mm, MM_FILEPAGES) +
2012 		get_mm_counter(mm, MM_ANONPAGES) +
2013 		get_mm_counter(mm, MM_SHMEMPAGES);
2014 }
2015 
2016 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2017 {
2018 	return max(mm->hiwater_rss, get_mm_rss(mm));
2019 }
2020 
2021 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2022 {
2023 	return max(mm->hiwater_vm, mm->total_vm);
2024 }
2025 
2026 static inline void update_hiwater_rss(struct mm_struct *mm)
2027 {
2028 	unsigned long _rss = get_mm_rss(mm);
2029 
2030 	if ((mm)->hiwater_rss < _rss)
2031 		(mm)->hiwater_rss = _rss;
2032 }
2033 
2034 static inline void update_hiwater_vm(struct mm_struct *mm)
2035 {
2036 	if (mm->hiwater_vm < mm->total_vm)
2037 		mm->hiwater_vm = mm->total_vm;
2038 }
2039 
2040 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2041 {
2042 	mm->hiwater_rss = get_mm_rss(mm);
2043 }
2044 
2045 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2046 					 struct mm_struct *mm)
2047 {
2048 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2049 
2050 	if (*maxrss < hiwater_rss)
2051 		*maxrss = hiwater_rss;
2052 }
2053 
2054 #if defined(SPLIT_RSS_COUNTING)
2055 void sync_mm_rss(struct mm_struct *mm);
2056 #else
2057 static inline void sync_mm_rss(struct mm_struct *mm)
2058 {
2059 }
2060 #endif
2061 
2062 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2063 static inline int pte_special(pte_t pte)
2064 {
2065 	return 0;
2066 }
2067 
2068 static inline pte_t pte_mkspecial(pte_t pte)
2069 {
2070 	return pte;
2071 }
2072 #endif
2073 
2074 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2075 static inline int pte_devmap(pte_t pte)
2076 {
2077 	return 0;
2078 }
2079 #endif
2080 
2081 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2082 
2083 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2084 			       spinlock_t **ptl);
2085 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2086 				    spinlock_t **ptl)
2087 {
2088 	pte_t *ptep;
2089 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2090 	return ptep;
2091 }
2092 
2093 #ifdef __PAGETABLE_P4D_FOLDED
2094 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2095 						unsigned long address)
2096 {
2097 	return 0;
2098 }
2099 #else
2100 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2101 #endif
2102 
2103 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2104 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2105 						unsigned long address)
2106 {
2107 	return 0;
2108 }
2109 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2110 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2111 
2112 #else
2113 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2114 
2115 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2116 {
2117 	if (mm_pud_folded(mm))
2118 		return;
2119 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2120 }
2121 
2122 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2123 {
2124 	if (mm_pud_folded(mm))
2125 		return;
2126 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2127 }
2128 #endif
2129 
2130 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2131 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2132 						unsigned long address)
2133 {
2134 	return 0;
2135 }
2136 
2137 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2138 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2139 
2140 #else
2141 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2142 
2143 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2144 {
2145 	if (mm_pmd_folded(mm))
2146 		return;
2147 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2148 }
2149 
2150 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2151 {
2152 	if (mm_pmd_folded(mm))
2153 		return;
2154 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2155 }
2156 #endif
2157 
2158 #ifdef CONFIG_MMU
2159 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2160 {
2161 	atomic_long_set(&mm->pgtables_bytes, 0);
2162 }
2163 
2164 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2165 {
2166 	return atomic_long_read(&mm->pgtables_bytes);
2167 }
2168 
2169 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2170 {
2171 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2172 }
2173 
2174 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2175 {
2176 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2177 }
2178 #else
2179 
2180 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2181 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2182 {
2183 	return 0;
2184 }
2185 
2186 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2187 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2188 #endif
2189 
2190 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2191 int __pte_alloc_kernel(pmd_t *pmd);
2192 
2193 #if defined(CONFIG_MMU)
2194 
2195 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2196 		unsigned long address)
2197 {
2198 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2199 		NULL : p4d_offset(pgd, address);
2200 }
2201 
2202 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2203 		unsigned long address)
2204 {
2205 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2206 		NULL : pud_offset(p4d, address);
2207 }
2208 
2209 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2210 {
2211 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2212 		NULL: pmd_offset(pud, address);
2213 }
2214 #endif /* CONFIG_MMU */
2215 
2216 #if USE_SPLIT_PTE_PTLOCKS
2217 #if ALLOC_SPLIT_PTLOCKS
2218 void __init ptlock_cache_init(void);
2219 extern bool ptlock_alloc(struct page *page);
2220 extern void ptlock_free(struct page *page);
2221 
2222 static inline spinlock_t *ptlock_ptr(struct page *page)
2223 {
2224 	return page->ptl;
2225 }
2226 #else /* ALLOC_SPLIT_PTLOCKS */
2227 static inline void ptlock_cache_init(void)
2228 {
2229 }
2230 
2231 static inline bool ptlock_alloc(struct page *page)
2232 {
2233 	return true;
2234 }
2235 
2236 static inline void ptlock_free(struct page *page)
2237 {
2238 }
2239 
2240 static inline spinlock_t *ptlock_ptr(struct page *page)
2241 {
2242 	return &page->ptl;
2243 }
2244 #endif /* ALLOC_SPLIT_PTLOCKS */
2245 
2246 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2247 {
2248 	return ptlock_ptr(pmd_page(*pmd));
2249 }
2250 
2251 static inline bool ptlock_init(struct page *page)
2252 {
2253 	/*
2254 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2255 	 * with 0. Make sure nobody took it in use in between.
2256 	 *
2257 	 * It can happen if arch try to use slab for page table allocation:
2258 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2259 	 */
2260 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2261 	if (!ptlock_alloc(page))
2262 		return false;
2263 	spin_lock_init(ptlock_ptr(page));
2264 	return true;
2265 }
2266 
2267 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2268 /*
2269  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2270  */
2271 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2272 {
2273 	return &mm->page_table_lock;
2274 }
2275 static inline void ptlock_cache_init(void) {}
2276 static inline bool ptlock_init(struct page *page) { return true; }
2277 static inline void ptlock_free(struct page *page) {}
2278 #endif /* USE_SPLIT_PTE_PTLOCKS */
2279 
2280 static inline void pgtable_init(void)
2281 {
2282 	ptlock_cache_init();
2283 	pgtable_cache_init();
2284 }
2285 
2286 static inline bool pgtable_pte_page_ctor(struct page *page)
2287 {
2288 	if (!ptlock_init(page))
2289 		return false;
2290 	__SetPageTable(page);
2291 	inc_lruvec_page_state(page, NR_PAGETABLE);
2292 	return true;
2293 }
2294 
2295 static inline void pgtable_pte_page_dtor(struct page *page)
2296 {
2297 	ptlock_free(page);
2298 	__ClearPageTable(page);
2299 	dec_lruvec_page_state(page, NR_PAGETABLE);
2300 }
2301 
2302 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2303 ({							\
2304 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2305 	pte_t *__pte = pte_offset_map(pmd, address);	\
2306 	*(ptlp) = __ptl;				\
2307 	spin_lock(__ptl);				\
2308 	__pte;						\
2309 })
2310 
2311 #define pte_unmap_unlock(pte, ptl)	do {		\
2312 	spin_unlock(ptl);				\
2313 	pte_unmap(pte);					\
2314 } while (0)
2315 
2316 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2317 
2318 #define pte_alloc_map(mm, pmd, address)			\
2319 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2320 
2321 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2322 	(pte_alloc(mm, pmd) ?			\
2323 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2324 
2325 #define pte_alloc_kernel(pmd, address)			\
2326 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2327 		NULL: pte_offset_kernel(pmd, address))
2328 
2329 #if USE_SPLIT_PMD_PTLOCKS
2330 
2331 static struct page *pmd_to_page(pmd_t *pmd)
2332 {
2333 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2334 	return virt_to_page((void *)((unsigned long) pmd & mask));
2335 }
2336 
2337 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2338 {
2339 	return ptlock_ptr(pmd_to_page(pmd));
2340 }
2341 
2342 static inline bool pmd_ptlock_init(struct page *page)
2343 {
2344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2345 	page->pmd_huge_pte = NULL;
2346 #endif
2347 	return ptlock_init(page);
2348 }
2349 
2350 static inline void pmd_ptlock_free(struct page *page)
2351 {
2352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2353 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2354 #endif
2355 	ptlock_free(page);
2356 }
2357 
2358 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2359 
2360 #else
2361 
2362 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2363 {
2364 	return &mm->page_table_lock;
2365 }
2366 
2367 static inline bool pmd_ptlock_init(struct page *page) { return true; }
2368 static inline void pmd_ptlock_free(struct page *page) {}
2369 
2370 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2371 
2372 #endif
2373 
2374 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2375 {
2376 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2377 	spin_lock(ptl);
2378 	return ptl;
2379 }
2380 
2381 static inline bool pgtable_pmd_page_ctor(struct page *page)
2382 {
2383 	if (!pmd_ptlock_init(page))
2384 		return false;
2385 	__SetPageTable(page);
2386 	inc_lruvec_page_state(page, NR_PAGETABLE);
2387 	return true;
2388 }
2389 
2390 static inline void pgtable_pmd_page_dtor(struct page *page)
2391 {
2392 	pmd_ptlock_free(page);
2393 	__ClearPageTable(page);
2394 	dec_lruvec_page_state(page, NR_PAGETABLE);
2395 }
2396 
2397 /*
2398  * No scalability reason to split PUD locks yet, but follow the same pattern
2399  * as the PMD locks to make it easier if we decide to.  The VM should not be
2400  * considered ready to switch to split PUD locks yet; there may be places
2401  * which need to be converted from page_table_lock.
2402  */
2403 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2404 {
2405 	return &mm->page_table_lock;
2406 }
2407 
2408 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2409 {
2410 	spinlock_t *ptl = pud_lockptr(mm, pud);
2411 
2412 	spin_lock(ptl);
2413 	return ptl;
2414 }
2415 
2416 extern void __init pagecache_init(void);
2417 extern void free_initmem(void);
2418 
2419 /*
2420  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2421  * into the buddy system. The freed pages will be poisoned with pattern
2422  * "poison" if it's within range [0, UCHAR_MAX].
2423  * Return pages freed into the buddy system.
2424  */
2425 extern unsigned long free_reserved_area(void *start, void *end,
2426 					int poison, const char *s);
2427 
2428 extern void adjust_managed_page_count(struct page *page, long count);
2429 extern void mem_init_print_info(void);
2430 
2431 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2432 
2433 /* Free the reserved page into the buddy system, so it gets managed. */
2434 static inline void free_reserved_page(struct page *page)
2435 {
2436 	ClearPageReserved(page);
2437 	init_page_count(page);
2438 	__free_page(page);
2439 	adjust_managed_page_count(page, 1);
2440 }
2441 #define free_highmem_page(page) free_reserved_page(page)
2442 
2443 static inline void mark_page_reserved(struct page *page)
2444 {
2445 	SetPageReserved(page);
2446 	adjust_managed_page_count(page, -1);
2447 }
2448 
2449 /*
2450  * Default method to free all the __init memory into the buddy system.
2451  * The freed pages will be poisoned with pattern "poison" if it's within
2452  * range [0, UCHAR_MAX].
2453  * Return pages freed into the buddy system.
2454  */
2455 static inline unsigned long free_initmem_default(int poison)
2456 {
2457 	extern char __init_begin[], __init_end[];
2458 
2459 	return free_reserved_area(&__init_begin, &__init_end,
2460 				  poison, "unused kernel image (initmem)");
2461 }
2462 
2463 static inline unsigned long get_num_physpages(void)
2464 {
2465 	int nid;
2466 	unsigned long phys_pages = 0;
2467 
2468 	for_each_online_node(nid)
2469 		phys_pages += node_present_pages(nid);
2470 
2471 	return phys_pages;
2472 }
2473 
2474 /*
2475  * Using memblock node mappings, an architecture may initialise its
2476  * zones, allocate the backing mem_map and account for memory holes in an
2477  * architecture independent manner.
2478  *
2479  * An architecture is expected to register range of page frames backed by
2480  * physical memory with memblock_add[_node]() before calling
2481  * free_area_init() passing in the PFN each zone ends at. At a basic
2482  * usage, an architecture is expected to do something like
2483  *
2484  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2485  * 							 max_highmem_pfn};
2486  * for_each_valid_physical_page_range()
2487  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2488  * free_area_init(max_zone_pfns);
2489  */
2490 void free_area_init(unsigned long *max_zone_pfn);
2491 unsigned long node_map_pfn_alignment(void);
2492 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2493 						unsigned long end_pfn);
2494 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2495 						unsigned long end_pfn);
2496 extern void get_pfn_range_for_nid(unsigned int nid,
2497 			unsigned long *start_pfn, unsigned long *end_pfn);
2498 extern unsigned long find_min_pfn_with_active_regions(void);
2499 
2500 #ifndef CONFIG_NUMA
2501 static inline int early_pfn_to_nid(unsigned long pfn)
2502 {
2503 	return 0;
2504 }
2505 #else
2506 /* please see mm/page_alloc.c */
2507 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2508 #endif
2509 
2510 extern void set_dma_reserve(unsigned long new_dma_reserve);
2511 extern void memmap_init_range(unsigned long, int, unsigned long,
2512 		unsigned long, unsigned long, enum meminit_context,
2513 		struct vmem_altmap *, int migratetype);
2514 extern void setup_per_zone_wmarks(void);
2515 extern void calculate_min_free_kbytes(void);
2516 extern int __meminit init_per_zone_wmark_min(void);
2517 extern void mem_init(void);
2518 extern void __init mmap_init(void);
2519 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2520 extern long si_mem_available(void);
2521 extern void si_meminfo(struct sysinfo * val);
2522 extern void si_meminfo_node(struct sysinfo *val, int nid);
2523 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2524 extern unsigned long arch_reserved_kernel_pages(void);
2525 #endif
2526 
2527 extern __printf(3, 4)
2528 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2529 
2530 extern void setup_per_cpu_pageset(void);
2531 
2532 /* page_alloc.c */
2533 extern int min_free_kbytes;
2534 extern int watermark_boost_factor;
2535 extern int watermark_scale_factor;
2536 extern bool arch_has_descending_max_zone_pfns(void);
2537 
2538 /* nommu.c */
2539 extern atomic_long_t mmap_pages_allocated;
2540 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2541 
2542 /* interval_tree.c */
2543 void vma_interval_tree_insert(struct vm_area_struct *node,
2544 			      struct rb_root_cached *root);
2545 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2546 				    struct vm_area_struct *prev,
2547 				    struct rb_root_cached *root);
2548 void vma_interval_tree_remove(struct vm_area_struct *node,
2549 			      struct rb_root_cached *root);
2550 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2551 				unsigned long start, unsigned long last);
2552 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2553 				unsigned long start, unsigned long last);
2554 
2555 #define vma_interval_tree_foreach(vma, root, start, last)		\
2556 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2557 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2558 
2559 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2560 				   struct rb_root_cached *root);
2561 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2562 				   struct rb_root_cached *root);
2563 struct anon_vma_chain *
2564 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2565 				  unsigned long start, unsigned long last);
2566 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2567 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2568 #ifdef CONFIG_DEBUG_VM_RB
2569 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2570 #endif
2571 
2572 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2573 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2574 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2575 
2576 /* mmap.c */
2577 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2578 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2579 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2580 	struct vm_area_struct *expand);
2581 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2582 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2583 {
2584 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2585 }
2586 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2587 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2588 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2589 	struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2590 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2591 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2592 	unsigned long addr, int new_below);
2593 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2594 	unsigned long addr, int new_below);
2595 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2596 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2597 	struct rb_node **, struct rb_node *);
2598 extern void unlink_file_vma(struct vm_area_struct *);
2599 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2600 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2601 	bool *need_rmap_locks);
2602 extern void exit_mmap(struct mm_struct *);
2603 
2604 static inline int check_data_rlimit(unsigned long rlim,
2605 				    unsigned long new,
2606 				    unsigned long start,
2607 				    unsigned long end_data,
2608 				    unsigned long start_data)
2609 {
2610 	if (rlim < RLIM_INFINITY) {
2611 		if (((new - start) + (end_data - start_data)) > rlim)
2612 			return -ENOSPC;
2613 	}
2614 
2615 	return 0;
2616 }
2617 
2618 extern int mm_take_all_locks(struct mm_struct *mm);
2619 extern void mm_drop_all_locks(struct mm_struct *mm);
2620 
2621 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2622 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2623 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2624 extern struct file *get_task_exe_file(struct task_struct *task);
2625 
2626 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2627 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2628 
2629 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2630 				   const struct vm_special_mapping *sm);
2631 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2632 				   unsigned long addr, unsigned long len,
2633 				   unsigned long flags,
2634 				   const struct vm_special_mapping *spec);
2635 /* This is an obsolete alternative to _install_special_mapping. */
2636 extern int install_special_mapping(struct mm_struct *mm,
2637 				   unsigned long addr, unsigned long len,
2638 				   unsigned long flags, struct page **pages);
2639 
2640 unsigned long randomize_stack_top(unsigned long stack_top);
2641 unsigned long randomize_page(unsigned long start, unsigned long range);
2642 
2643 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2644 
2645 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2646 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2647 	struct list_head *uf);
2648 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2649 	unsigned long len, unsigned long prot, unsigned long flags,
2650 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2651 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2652 		       struct list_head *uf, bool downgrade);
2653 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2654 		     struct list_head *uf);
2655 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2656 
2657 #ifdef CONFIG_MMU
2658 extern int __mm_populate(unsigned long addr, unsigned long len,
2659 			 int ignore_errors);
2660 static inline void mm_populate(unsigned long addr, unsigned long len)
2661 {
2662 	/* Ignore errors */
2663 	(void) __mm_populate(addr, len, 1);
2664 }
2665 #else
2666 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2667 #endif
2668 
2669 /* These take the mm semaphore themselves */
2670 extern int __must_check vm_brk(unsigned long, unsigned long);
2671 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2672 extern int vm_munmap(unsigned long, size_t);
2673 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2674         unsigned long, unsigned long,
2675         unsigned long, unsigned long);
2676 
2677 struct vm_unmapped_area_info {
2678 #define VM_UNMAPPED_AREA_TOPDOWN 1
2679 	unsigned long flags;
2680 	unsigned long length;
2681 	unsigned long low_limit;
2682 	unsigned long high_limit;
2683 	unsigned long align_mask;
2684 	unsigned long align_offset;
2685 };
2686 
2687 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2688 
2689 /* truncate.c */
2690 extern void truncate_inode_pages(struct address_space *, loff_t);
2691 extern void truncate_inode_pages_range(struct address_space *,
2692 				       loff_t lstart, loff_t lend);
2693 extern void truncate_inode_pages_final(struct address_space *);
2694 
2695 /* generic vm_area_ops exported for stackable file systems */
2696 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2697 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2698 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2699 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2700 
2701 extern unsigned long stack_guard_gap;
2702 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2703 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2704 
2705 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2706 extern int expand_downwards(struct vm_area_struct *vma,
2707 		unsigned long address);
2708 #if VM_GROWSUP
2709 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2710 #else
2711   #define expand_upwards(vma, address) (0)
2712 #endif
2713 
2714 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2715 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2716 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2717 					     struct vm_area_struct **pprev);
2718 
2719 /**
2720  * find_vma_intersection() - Look up the first VMA which intersects the interval
2721  * @mm: The process address space.
2722  * @start_addr: The inclusive start user address.
2723  * @end_addr: The exclusive end user address.
2724  *
2725  * Returns: The first VMA within the provided range, %NULL otherwise.  Assumes
2726  * start_addr < end_addr.
2727  */
2728 static inline
2729 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2730 					     unsigned long start_addr,
2731 					     unsigned long end_addr)
2732 {
2733 	struct vm_area_struct *vma = find_vma(mm, start_addr);
2734 
2735 	if (vma && end_addr <= vma->vm_start)
2736 		vma = NULL;
2737 	return vma;
2738 }
2739 
2740 /**
2741  * vma_lookup() - Find a VMA at a specific address
2742  * @mm: The process address space.
2743  * @addr: The user address.
2744  *
2745  * Return: The vm_area_struct at the given address, %NULL otherwise.
2746  */
2747 static inline
2748 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2749 {
2750 	struct vm_area_struct *vma = find_vma(mm, addr);
2751 
2752 	if (vma && addr < vma->vm_start)
2753 		vma = NULL;
2754 
2755 	return vma;
2756 }
2757 
2758 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2759 {
2760 	unsigned long vm_start = vma->vm_start;
2761 
2762 	if (vma->vm_flags & VM_GROWSDOWN) {
2763 		vm_start -= stack_guard_gap;
2764 		if (vm_start > vma->vm_start)
2765 			vm_start = 0;
2766 	}
2767 	return vm_start;
2768 }
2769 
2770 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2771 {
2772 	unsigned long vm_end = vma->vm_end;
2773 
2774 	if (vma->vm_flags & VM_GROWSUP) {
2775 		vm_end += stack_guard_gap;
2776 		if (vm_end < vma->vm_end)
2777 			vm_end = -PAGE_SIZE;
2778 	}
2779 	return vm_end;
2780 }
2781 
2782 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2783 {
2784 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2785 }
2786 
2787 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2788 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2789 				unsigned long vm_start, unsigned long vm_end)
2790 {
2791 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2792 
2793 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2794 		vma = NULL;
2795 
2796 	return vma;
2797 }
2798 
2799 static inline bool range_in_vma(struct vm_area_struct *vma,
2800 				unsigned long start, unsigned long end)
2801 {
2802 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2803 }
2804 
2805 #ifdef CONFIG_MMU
2806 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2807 void vma_set_page_prot(struct vm_area_struct *vma);
2808 #else
2809 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2810 {
2811 	return __pgprot(0);
2812 }
2813 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2814 {
2815 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2816 }
2817 #endif
2818 
2819 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2820 
2821 #ifdef CONFIG_NUMA_BALANCING
2822 unsigned long change_prot_numa(struct vm_area_struct *vma,
2823 			unsigned long start, unsigned long end);
2824 #endif
2825 
2826 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2827 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2828 			unsigned long pfn, unsigned long size, pgprot_t);
2829 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2830 		unsigned long pfn, unsigned long size, pgprot_t prot);
2831 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2832 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2833 			struct page **pages, unsigned long *num);
2834 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2835 				unsigned long num);
2836 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2837 				unsigned long num);
2838 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2839 			unsigned long pfn);
2840 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2841 			unsigned long pfn, pgprot_t pgprot);
2842 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2843 			pfn_t pfn);
2844 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2845 			pfn_t pfn, pgprot_t pgprot);
2846 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2847 		unsigned long addr, pfn_t pfn);
2848 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2849 
2850 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2851 				unsigned long addr, struct page *page)
2852 {
2853 	int err = vm_insert_page(vma, addr, page);
2854 
2855 	if (err == -ENOMEM)
2856 		return VM_FAULT_OOM;
2857 	if (err < 0 && err != -EBUSY)
2858 		return VM_FAULT_SIGBUS;
2859 
2860 	return VM_FAULT_NOPAGE;
2861 }
2862 
2863 #ifndef io_remap_pfn_range
2864 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2865 				     unsigned long addr, unsigned long pfn,
2866 				     unsigned long size, pgprot_t prot)
2867 {
2868 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2869 }
2870 #endif
2871 
2872 static inline vm_fault_t vmf_error(int err)
2873 {
2874 	if (err == -ENOMEM)
2875 		return VM_FAULT_OOM;
2876 	return VM_FAULT_SIGBUS;
2877 }
2878 
2879 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2880 			 unsigned int foll_flags);
2881 
2882 #define FOLL_WRITE	0x01	/* check pte is writable */
2883 #define FOLL_TOUCH	0x02	/* mark page accessed */
2884 #define FOLL_GET	0x04	/* do get_page on page */
2885 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2886 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2887 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2888 				 * and return without waiting upon it */
2889 #define FOLL_NOFAULT	0x80	/* do not fault in pages */
2890 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2891 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2892 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2893 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2894 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2895 #define FOLL_ANON	0x8000	/* don't do file mappings */
2896 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2897 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2898 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2899 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2900 
2901 /*
2902  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2903  * other. Here is what they mean, and how to use them:
2904  *
2905  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2906  * period _often_ under userspace control.  This is in contrast to
2907  * iov_iter_get_pages(), whose usages are transient.
2908  *
2909  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2910  * lifetime enforced by the filesystem and we need guarantees that longterm
2911  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2912  * the filesystem.  Ideas for this coordination include revoking the longterm
2913  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2914  * added after the problem with filesystems was found FS DAX VMAs are
2915  * specifically failed.  Filesystem pages are still subject to bugs and use of
2916  * FOLL_LONGTERM should be avoided on those pages.
2917  *
2918  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2919  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2920  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2921  * is due to an incompatibility with the FS DAX check and
2922  * FAULT_FLAG_ALLOW_RETRY.
2923  *
2924  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2925  * that region.  And so, CMA attempts to migrate the page before pinning, when
2926  * FOLL_LONGTERM is specified.
2927  *
2928  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2929  * but an additional pin counting system) will be invoked. This is intended for
2930  * anything that gets a page reference and then touches page data (for example,
2931  * Direct IO). This lets the filesystem know that some non-file-system entity is
2932  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2933  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2934  * a call to unpin_user_page().
2935  *
2936  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2937  * and separate refcounting mechanisms, however, and that means that each has
2938  * its own acquire and release mechanisms:
2939  *
2940  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2941  *
2942  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2943  *
2944  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2945  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2946  * calls applied to them, and that's perfectly OK. This is a constraint on the
2947  * callers, not on the pages.)
2948  *
2949  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2950  * directly by the caller. That's in order to help avoid mismatches when
2951  * releasing pages: get_user_pages*() pages must be released via put_page(),
2952  * while pin_user_pages*() pages must be released via unpin_user_page().
2953  *
2954  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2955  */
2956 
2957 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2958 {
2959 	if (vm_fault & VM_FAULT_OOM)
2960 		return -ENOMEM;
2961 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2962 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2963 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2964 		return -EFAULT;
2965 	return 0;
2966 }
2967 
2968 /*
2969  * Indicates for which pages that are write-protected in the page table,
2970  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
2971  * GUP pin will remain consistent with the pages mapped into the page tables
2972  * of the MM.
2973  *
2974  * Temporary unmapping of PageAnonExclusive() pages or clearing of
2975  * PageAnonExclusive() has to protect against concurrent GUP:
2976  * * Ordinary GUP: Using the PT lock
2977  * * GUP-fast and fork(): mm->write_protect_seq
2978  * * GUP-fast and KSM or temporary unmapping (swap, migration):
2979  *   clear/invalidate+flush of the page table entry
2980  *
2981  * Must be called with the (sub)page that's actually referenced via the
2982  * page table entry, which might not necessarily be the head page for a
2983  * PTE-mapped THP.
2984  */
2985 static inline bool gup_must_unshare(unsigned int flags, struct page *page)
2986 {
2987 	/*
2988 	 * FOLL_WRITE is implicitly handled correctly as the page table entry
2989 	 * has to be writable -- and if it references (part of) an anonymous
2990 	 * folio, that part is required to be marked exclusive.
2991 	 */
2992 	if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
2993 		return false;
2994 	/*
2995 	 * Note: PageAnon(page) is stable until the page is actually getting
2996 	 * freed.
2997 	 */
2998 	if (!PageAnon(page))
2999 		return false;
3000 	/*
3001 	 * Note that PageKsm() pages cannot be exclusive, and consequently,
3002 	 * cannot get pinned.
3003 	 */
3004 	return !PageAnonExclusive(page);
3005 }
3006 
3007 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3008 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3009 			       unsigned long size, pte_fn_t fn, void *data);
3010 extern int apply_to_existing_page_range(struct mm_struct *mm,
3011 				   unsigned long address, unsigned long size,
3012 				   pte_fn_t fn, void *data);
3013 
3014 extern void init_mem_debugging_and_hardening(void);
3015 #ifdef CONFIG_PAGE_POISONING
3016 extern void __kernel_poison_pages(struct page *page, int numpages);
3017 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3018 extern bool _page_poisoning_enabled_early;
3019 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3020 static inline bool page_poisoning_enabled(void)
3021 {
3022 	return _page_poisoning_enabled_early;
3023 }
3024 /*
3025  * For use in fast paths after init_mem_debugging() has run, or when a
3026  * false negative result is not harmful when called too early.
3027  */
3028 static inline bool page_poisoning_enabled_static(void)
3029 {
3030 	return static_branch_unlikely(&_page_poisoning_enabled);
3031 }
3032 static inline void kernel_poison_pages(struct page *page, int numpages)
3033 {
3034 	if (page_poisoning_enabled_static())
3035 		__kernel_poison_pages(page, numpages);
3036 }
3037 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3038 {
3039 	if (page_poisoning_enabled_static())
3040 		__kernel_unpoison_pages(page, numpages);
3041 }
3042 #else
3043 static inline bool page_poisoning_enabled(void) { return false; }
3044 static inline bool page_poisoning_enabled_static(void) { return false; }
3045 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3046 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3047 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3048 #endif
3049 
3050 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3051 static inline bool want_init_on_alloc(gfp_t flags)
3052 {
3053 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3054 				&init_on_alloc))
3055 		return true;
3056 	return flags & __GFP_ZERO;
3057 }
3058 
3059 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3060 static inline bool want_init_on_free(void)
3061 {
3062 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3063 				   &init_on_free);
3064 }
3065 
3066 extern bool _debug_pagealloc_enabled_early;
3067 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3068 
3069 static inline bool debug_pagealloc_enabled(void)
3070 {
3071 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3072 		_debug_pagealloc_enabled_early;
3073 }
3074 
3075 /*
3076  * For use in fast paths after init_debug_pagealloc() has run, or when a
3077  * false negative result is not harmful when called too early.
3078  */
3079 static inline bool debug_pagealloc_enabled_static(void)
3080 {
3081 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3082 		return false;
3083 
3084 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3085 }
3086 
3087 #ifdef CONFIG_DEBUG_PAGEALLOC
3088 /*
3089  * To support DEBUG_PAGEALLOC architecture must ensure that
3090  * __kernel_map_pages() never fails
3091  */
3092 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3093 
3094 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3095 {
3096 	if (debug_pagealloc_enabled_static())
3097 		__kernel_map_pages(page, numpages, 1);
3098 }
3099 
3100 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3101 {
3102 	if (debug_pagealloc_enabled_static())
3103 		__kernel_map_pages(page, numpages, 0);
3104 }
3105 #else	/* CONFIG_DEBUG_PAGEALLOC */
3106 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3107 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3108 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3109 
3110 #ifdef __HAVE_ARCH_GATE_AREA
3111 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3112 extern int in_gate_area_no_mm(unsigned long addr);
3113 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3114 #else
3115 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3116 {
3117 	return NULL;
3118 }
3119 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3120 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3121 {
3122 	return 0;
3123 }
3124 #endif	/* __HAVE_ARCH_GATE_AREA */
3125 
3126 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3127 
3128 #ifdef CONFIG_SYSCTL
3129 extern int sysctl_drop_caches;
3130 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3131 		loff_t *);
3132 #endif
3133 
3134 void drop_slab(void);
3135 
3136 #ifndef CONFIG_MMU
3137 #define randomize_va_space 0
3138 #else
3139 extern int randomize_va_space;
3140 #endif
3141 
3142 const char * arch_vma_name(struct vm_area_struct *vma);
3143 #ifdef CONFIG_MMU
3144 void print_vma_addr(char *prefix, unsigned long rip);
3145 #else
3146 static inline void print_vma_addr(char *prefix, unsigned long rip)
3147 {
3148 }
3149 #endif
3150 
3151 void *sparse_buffer_alloc(unsigned long size);
3152 struct page * __populate_section_memmap(unsigned long pfn,
3153 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3154 		struct dev_pagemap *pgmap);
3155 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3156 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3157 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3158 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3159 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3160 			    struct vmem_altmap *altmap, struct page *reuse);
3161 void *vmemmap_alloc_block(unsigned long size, int node);
3162 struct vmem_altmap;
3163 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3164 			      struct vmem_altmap *altmap);
3165 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3166 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3167 			       int node, struct vmem_altmap *altmap);
3168 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3169 		struct vmem_altmap *altmap);
3170 void vmemmap_populate_print_last(void);
3171 #ifdef CONFIG_MEMORY_HOTPLUG
3172 void vmemmap_free(unsigned long start, unsigned long end,
3173 		struct vmem_altmap *altmap);
3174 #endif
3175 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3176 				  unsigned long nr_pages);
3177 
3178 enum mf_flags {
3179 	MF_COUNT_INCREASED = 1 << 0,
3180 	MF_ACTION_REQUIRED = 1 << 1,
3181 	MF_MUST_KILL = 1 << 2,
3182 	MF_SOFT_OFFLINE = 1 << 3,
3183 	MF_UNPOISON = 1 << 4,
3184 	MF_SW_SIMULATED = 1 << 5,
3185 	MF_NO_RETRY = 1 << 6,
3186 };
3187 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3188 		      unsigned long count, int mf_flags);
3189 extern int memory_failure(unsigned long pfn, int flags);
3190 extern void memory_failure_queue(unsigned long pfn, int flags);
3191 extern void memory_failure_queue_kick(int cpu);
3192 extern int unpoison_memory(unsigned long pfn);
3193 extern int sysctl_memory_failure_early_kill;
3194 extern int sysctl_memory_failure_recovery;
3195 extern void shake_page(struct page *p);
3196 extern atomic_long_t num_poisoned_pages __read_mostly;
3197 extern int soft_offline_page(unsigned long pfn, int flags);
3198 #ifdef CONFIG_MEMORY_FAILURE
3199 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3200 #else
3201 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3202 {
3203 	return 0;
3204 }
3205 #endif
3206 
3207 #ifndef arch_memory_failure
3208 static inline int arch_memory_failure(unsigned long pfn, int flags)
3209 {
3210 	return -ENXIO;
3211 }
3212 #endif
3213 
3214 #ifndef arch_is_platform_page
3215 static inline bool arch_is_platform_page(u64 paddr)
3216 {
3217 	return false;
3218 }
3219 #endif
3220 
3221 /*
3222  * Error handlers for various types of pages.
3223  */
3224 enum mf_result {
3225 	MF_IGNORED,	/* Error: cannot be handled */
3226 	MF_FAILED,	/* Error: handling failed */
3227 	MF_DELAYED,	/* Will be handled later */
3228 	MF_RECOVERED,	/* Successfully recovered */
3229 };
3230 
3231 enum mf_action_page_type {
3232 	MF_MSG_KERNEL,
3233 	MF_MSG_KERNEL_HIGH_ORDER,
3234 	MF_MSG_SLAB,
3235 	MF_MSG_DIFFERENT_COMPOUND,
3236 	MF_MSG_HUGE,
3237 	MF_MSG_FREE_HUGE,
3238 	MF_MSG_UNMAP_FAILED,
3239 	MF_MSG_DIRTY_SWAPCACHE,
3240 	MF_MSG_CLEAN_SWAPCACHE,
3241 	MF_MSG_DIRTY_MLOCKED_LRU,
3242 	MF_MSG_CLEAN_MLOCKED_LRU,
3243 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3244 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3245 	MF_MSG_DIRTY_LRU,
3246 	MF_MSG_CLEAN_LRU,
3247 	MF_MSG_TRUNCATED_LRU,
3248 	MF_MSG_BUDDY,
3249 	MF_MSG_DAX,
3250 	MF_MSG_UNSPLIT_THP,
3251 	MF_MSG_UNKNOWN,
3252 };
3253 
3254 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3255 extern void clear_huge_page(struct page *page,
3256 			    unsigned long addr_hint,
3257 			    unsigned int pages_per_huge_page);
3258 extern void copy_user_huge_page(struct page *dst, struct page *src,
3259 				unsigned long addr_hint,
3260 				struct vm_area_struct *vma,
3261 				unsigned int pages_per_huge_page);
3262 extern long copy_huge_page_from_user(struct page *dst_page,
3263 				const void __user *usr_src,
3264 				unsigned int pages_per_huge_page,
3265 				bool allow_pagefault);
3266 
3267 /**
3268  * vma_is_special_huge - Are transhuge page-table entries considered special?
3269  * @vma: Pointer to the struct vm_area_struct to consider
3270  *
3271  * Whether transhuge page-table entries are considered "special" following
3272  * the definition in vm_normal_page().
3273  *
3274  * Return: true if transhuge page-table entries should be considered special,
3275  * false otherwise.
3276  */
3277 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3278 {
3279 	return vma_is_dax(vma) || (vma->vm_file &&
3280 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3281 }
3282 
3283 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3284 
3285 #ifdef CONFIG_DEBUG_PAGEALLOC
3286 extern unsigned int _debug_guardpage_minorder;
3287 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3288 
3289 static inline unsigned int debug_guardpage_minorder(void)
3290 {
3291 	return _debug_guardpage_minorder;
3292 }
3293 
3294 static inline bool debug_guardpage_enabled(void)
3295 {
3296 	return static_branch_unlikely(&_debug_guardpage_enabled);
3297 }
3298 
3299 static inline bool page_is_guard(struct page *page)
3300 {
3301 	if (!debug_guardpage_enabled())
3302 		return false;
3303 
3304 	return PageGuard(page);
3305 }
3306 #else
3307 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3308 static inline bool debug_guardpage_enabled(void) { return false; }
3309 static inline bool page_is_guard(struct page *page) { return false; }
3310 #endif /* CONFIG_DEBUG_PAGEALLOC */
3311 
3312 #if MAX_NUMNODES > 1
3313 void __init setup_nr_node_ids(void);
3314 #else
3315 static inline void setup_nr_node_ids(void) {}
3316 #endif
3317 
3318 extern int memcmp_pages(struct page *page1, struct page *page2);
3319 
3320 static inline int pages_identical(struct page *page1, struct page *page2)
3321 {
3322 	return !memcmp_pages(page1, page2);
3323 }
3324 
3325 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3326 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3327 						pgoff_t first_index, pgoff_t nr,
3328 						pgoff_t bitmap_pgoff,
3329 						unsigned long *bitmap,
3330 						pgoff_t *start,
3331 						pgoff_t *end);
3332 
3333 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3334 				      pgoff_t first_index, pgoff_t nr);
3335 #endif
3336 
3337 extern int sysctl_nr_trim_pages;
3338 
3339 #ifdef CONFIG_PRINTK
3340 void mem_dump_obj(void *object);
3341 #else
3342 static inline void mem_dump_obj(void *object) {}
3343 #endif
3344 
3345 /**
3346  * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3347  * @seals: the seals to check
3348  * @vma: the vma to operate on
3349  *
3350  * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3351  * the vma flags.  Return 0 if check pass, or <0 for errors.
3352  */
3353 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3354 {
3355 	if (seals & F_SEAL_FUTURE_WRITE) {
3356 		/*
3357 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3358 		 * "future write" seal active.
3359 		 */
3360 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3361 			return -EPERM;
3362 
3363 		/*
3364 		 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3365 		 * MAP_SHARED and read-only, take care to not allow mprotect to
3366 		 * revert protections on such mappings. Do this only for shared
3367 		 * mappings. For private mappings, don't need to mask
3368 		 * VM_MAYWRITE as we still want them to be COW-writable.
3369 		 */
3370 		if (vma->vm_flags & VM_SHARED)
3371 			vma->vm_flags &= ~(VM_MAYWRITE);
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 #ifdef CONFIG_ANON_VMA_NAME
3378 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3379 			  unsigned long len_in,
3380 			  struct anon_vma_name *anon_name);
3381 #else
3382 static inline int
3383 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3384 		      unsigned long len_in, struct anon_vma_name *anon_name) {
3385 	return 0;
3386 }
3387 #endif
3388 
3389 /*
3390  * Whether to drop the pte markers, for example, the uffd-wp information for
3391  * file-backed memory.  This should only be specified when we will completely
3392  * drop the page in the mm, either by truncation or unmapping of the vma.  By
3393  * default, the flag is not set.
3394  */
3395 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
3396 
3397 #endif /* _LINUX_MM_H */
3398