1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 #include <linux/mmdebug.h> 7 #include <linux/gfp.h> 8 #include <linux/bug.h> 9 #include <linux/list.h> 10 #include <linux/mmzone.h> 11 #include <linux/rbtree.h> 12 #include <linux/atomic.h> 13 #include <linux/debug_locks.h> 14 #include <linux/mm_types.h> 15 #include <linux/mmap_lock.h> 16 #include <linux/range.h> 17 #include <linux/pfn.h> 18 #include <linux/percpu-refcount.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 #include <linux/err.h> 24 #include <linux/page-flags.h> 25 #include <linux/page_ref.h> 26 #include <linux/overflow.h> 27 #include <linux/sizes.h> 28 #include <linux/sched.h> 29 #include <linux/pgtable.h> 30 #include <linux/kasan.h> 31 #include <linux/memremap.h> 32 33 struct mempolicy; 34 struct anon_vma; 35 struct anon_vma_chain; 36 struct user_struct; 37 struct pt_regs; 38 39 extern int sysctl_page_lock_unfairness; 40 41 void init_mm_internals(void); 42 43 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */ 44 extern unsigned long max_mapnr; 45 46 static inline void set_max_mapnr(unsigned long limit) 47 { 48 max_mapnr = limit; 49 } 50 #else 51 static inline void set_max_mapnr(unsigned long limit) { } 52 #endif 53 54 extern atomic_long_t _totalram_pages; 55 static inline unsigned long totalram_pages(void) 56 { 57 return (unsigned long)atomic_long_read(&_totalram_pages); 58 } 59 60 static inline void totalram_pages_inc(void) 61 { 62 atomic_long_inc(&_totalram_pages); 63 } 64 65 static inline void totalram_pages_dec(void) 66 { 67 atomic_long_dec(&_totalram_pages); 68 } 69 70 static inline void totalram_pages_add(long count) 71 { 72 atomic_long_add(count, &_totalram_pages); 73 } 74 75 extern void * high_memory; 76 extern int page_cluster; 77 78 #ifdef CONFIG_SYSCTL 79 extern int sysctl_legacy_va_layout; 80 #else 81 #define sysctl_legacy_va_layout 0 82 #endif 83 84 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 85 extern const int mmap_rnd_bits_min; 86 extern const int mmap_rnd_bits_max; 87 extern int mmap_rnd_bits __read_mostly; 88 #endif 89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 90 extern const int mmap_rnd_compat_bits_min; 91 extern const int mmap_rnd_compat_bits_max; 92 extern int mmap_rnd_compat_bits __read_mostly; 93 #endif 94 95 #include <asm/page.h> 96 #include <asm/processor.h> 97 98 /* 99 * Architectures that support memory tagging (assigning tags to memory regions, 100 * embedding these tags into addresses that point to these memory regions, and 101 * checking that the memory and the pointer tags match on memory accesses) 102 * redefine this macro to strip tags from pointers. 103 * It's defined as noop for architectures that don't support memory tagging. 104 */ 105 #ifndef untagged_addr 106 #define untagged_addr(addr) (addr) 107 #endif 108 109 #ifndef __pa_symbol 110 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 111 #endif 112 113 #ifndef page_to_virt 114 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 115 #endif 116 117 #ifndef lm_alias 118 #define lm_alias(x) __va(__pa_symbol(x)) 119 #endif 120 121 /* 122 * To prevent common memory management code establishing 123 * a zero page mapping on a read fault. 124 * This macro should be defined within <asm/pgtable.h>. 125 * s390 does this to prevent multiplexing of hardware bits 126 * related to the physical page in case of virtualization. 127 */ 128 #ifndef mm_forbids_zeropage 129 #define mm_forbids_zeropage(X) (0) 130 #endif 131 132 /* 133 * On some architectures it is expensive to call memset() for small sizes. 134 * If an architecture decides to implement their own version of 135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 136 * define their own version of this macro in <asm/pgtable.h> 137 */ 138 #if BITS_PER_LONG == 64 139 /* This function must be updated when the size of struct page grows above 80 140 * or reduces below 56. The idea that compiler optimizes out switch() 141 * statement, and only leaves move/store instructions. Also the compiler can 142 * combine write statements if they are both assignments and can be reordered, 143 * this can result in several of the writes here being dropped. 144 */ 145 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 146 static inline void __mm_zero_struct_page(struct page *page) 147 { 148 unsigned long *_pp = (void *)page; 149 150 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 151 BUILD_BUG_ON(sizeof(struct page) & 7); 152 BUILD_BUG_ON(sizeof(struct page) < 56); 153 BUILD_BUG_ON(sizeof(struct page) > 80); 154 155 switch (sizeof(struct page)) { 156 case 80: 157 _pp[9] = 0; 158 fallthrough; 159 case 72: 160 _pp[8] = 0; 161 fallthrough; 162 case 64: 163 _pp[7] = 0; 164 fallthrough; 165 case 56: 166 _pp[6] = 0; 167 _pp[5] = 0; 168 _pp[4] = 0; 169 _pp[3] = 0; 170 _pp[2] = 0; 171 _pp[1] = 0; 172 _pp[0] = 0; 173 } 174 } 175 #else 176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 177 #endif 178 179 /* 180 * Default maximum number of active map areas, this limits the number of vmas 181 * per mm struct. Users can overwrite this number by sysctl but there is a 182 * problem. 183 * 184 * When a program's coredump is generated as ELF format, a section is created 185 * per a vma. In ELF, the number of sections is represented in unsigned short. 186 * This means the number of sections should be smaller than 65535 at coredump. 187 * Because the kernel adds some informative sections to a image of program at 188 * generating coredump, we need some margin. The number of extra sections is 189 * 1-3 now and depends on arch. We use "5" as safe margin, here. 190 * 191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 192 * not a hard limit any more. Although some userspace tools can be surprised by 193 * that. 194 */ 195 #define MAPCOUNT_ELF_CORE_MARGIN (5) 196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 197 198 extern int sysctl_max_map_count; 199 200 extern unsigned long sysctl_user_reserve_kbytes; 201 extern unsigned long sysctl_admin_reserve_kbytes; 202 203 extern int sysctl_overcommit_memory; 204 extern int sysctl_overcommit_ratio; 205 extern unsigned long sysctl_overcommit_kbytes; 206 207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 210 loff_t *); 211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 212 loff_t *); 213 214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio)) 217 #else 218 #define nth_page(page,n) ((page) + (n)) 219 #define folio_page_idx(folio, p) ((p) - &(folio)->page) 220 #endif 221 222 /* to align the pointer to the (next) page boundary */ 223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 224 225 /* to align the pointer to the (prev) page boundary */ 226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE) 227 228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 230 231 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 232 static inline struct folio *lru_to_folio(struct list_head *head) 233 { 234 return list_entry((head)->prev, struct folio, lru); 235 } 236 237 void setup_initial_init_mm(void *start_code, void *end_code, 238 void *end_data, void *brk); 239 240 /* 241 * Linux kernel virtual memory manager primitives. 242 * The idea being to have a "virtual" mm in the same way 243 * we have a virtual fs - giving a cleaner interface to the 244 * mm details, and allowing different kinds of memory mappings 245 * (from shared memory to executable loading to arbitrary 246 * mmap() functions). 247 */ 248 249 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 250 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 251 void vm_area_free(struct vm_area_struct *); 252 253 #ifndef CONFIG_MMU 254 extern struct rb_root nommu_region_tree; 255 extern struct rw_semaphore nommu_region_sem; 256 257 extern unsigned int kobjsize(const void *objp); 258 #endif 259 260 /* 261 * vm_flags in vm_area_struct, see mm_types.h. 262 * When changing, update also include/trace/events/mmflags.h 263 */ 264 #define VM_NONE 0x00000000 265 266 #define VM_READ 0x00000001 /* currently active flags */ 267 #define VM_WRITE 0x00000002 268 #define VM_EXEC 0x00000004 269 #define VM_SHARED 0x00000008 270 271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 273 #define VM_MAYWRITE 0x00000020 274 #define VM_MAYEXEC 0x00000040 275 #define VM_MAYSHARE 0x00000080 276 277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 278 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 279 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 280 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 281 282 #define VM_LOCKED 0x00002000 283 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 284 285 /* Used by sys_madvise() */ 286 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 287 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 288 289 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 290 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 291 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 292 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 293 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 294 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 295 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 296 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 297 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 298 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 299 300 #ifdef CONFIG_MEM_SOFT_DIRTY 301 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 302 #else 303 # define VM_SOFTDIRTY 0 304 #endif 305 306 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 307 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 308 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 309 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 310 311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 312 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 313 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 314 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 315 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 316 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 317 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 318 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 319 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 320 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 321 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 322 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 323 324 #ifdef CONFIG_ARCH_HAS_PKEYS 325 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 326 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 327 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 328 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 329 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 330 #ifdef CONFIG_PPC 331 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 332 #else 333 # define VM_PKEY_BIT4 0 334 #endif 335 #endif /* CONFIG_ARCH_HAS_PKEYS */ 336 337 #if defined(CONFIG_X86) 338 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 339 #elif defined(CONFIG_PPC) 340 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 341 #elif defined(CONFIG_PARISC) 342 # define VM_GROWSUP VM_ARCH_1 343 #elif defined(CONFIG_IA64) 344 # define VM_GROWSUP VM_ARCH_1 345 #elif defined(CONFIG_SPARC64) 346 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 347 # define VM_ARCH_CLEAR VM_SPARC_ADI 348 #elif defined(CONFIG_ARM64) 349 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 350 # define VM_ARCH_CLEAR VM_ARM64_BTI 351 #elif !defined(CONFIG_MMU) 352 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 353 #endif 354 355 #if defined(CONFIG_ARM64_MTE) 356 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */ 357 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */ 358 #else 359 # define VM_MTE VM_NONE 360 # define VM_MTE_ALLOWED VM_NONE 361 #endif 362 363 #ifndef VM_GROWSUP 364 # define VM_GROWSUP VM_NONE 365 #endif 366 367 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 368 # define VM_UFFD_MINOR_BIT 37 369 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */ 370 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 371 # define VM_UFFD_MINOR VM_NONE 372 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */ 373 374 /* Bits set in the VMA until the stack is in its final location */ 375 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 376 377 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 378 379 /* Common data flag combinations */ 380 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 382 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 383 VM_MAYWRITE | VM_MAYEXEC) 384 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 386 387 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 388 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 389 #endif 390 391 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 392 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 393 #endif 394 395 #ifdef CONFIG_STACK_GROWSUP 396 #define VM_STACK VM_GROWSUP 397 #else 398 #define VM_STACK VM_GROWSDOWN 399 #endif 400 401 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 402 403 /* VMA basic access permission flags */ 404 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 405 406 407 /* 408 * Special vmas that are non-mergable, non-mlock()able. 409 */ 410 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 411 412 /* This mask prevents VMA from being scanned with khugepaged */ 413 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 414 415 /* This mask defines which mm->def_flags a process can inherit its parent */ 416 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 417 418 /* This mask is used to clear all the VMA flags used by mlock */ 419 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 420 421 /* Arch-specific flags to clear when updating VM flags on protection change */ 422 #ifndef VM_ARCH_CLEAR 423 # define VM_ARCH_CLEAR VM_NONE 424 #endif 425 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 426 427 /* 428 * mapping from the currently active vm_flags protection bits (the 429 * low four bits) to a page protection mask.. 430 */ 431 432 /* 433 * The default fault flags that should be used by most of the 434 * arch-specific page fault handlers. 435 */ 436 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 437 FAULT_FLAG_KILLABLE | \ 438 FAULT_FLAG_INTERRUPTIBLE) 439 440 /** 441 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 442 * @flags: Fault flags. 443 * 444 * This is mostly used for places where we want to try to avoid taking 445 * the mmap_lock for too long a time when waiting for another condition 446 * to change, in which case we can try to be polite to release the 447 * mmap_lock in the first round to avoid potential starvation of other 448 * processes that would also want the mmap_lock. 449 * 450 * Return: true if the page fault allows retry and this is the first 451 * attempt of the fault handling; false otherwise. 452 */ 453 static inline bool fault_flag_allow_retry_first(enum fault_flag flags) 454 { 455 return (flags & FAULT_FLAG_ALLOW_RETRY) && 456 (!(flags & FAULT_FLAG_TRIED)); 457 } 458 459 #define FAULT_FLAG_TRACE \ 460 { FAULT_FLAG_WRITE, "WRITE" }, \ 461 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 462 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 463 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 464 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 465 { FAULT_FLAG_TRIED, "TRIED" }, \ 466 { FAULT_FLAG_USER, "USER" }, \ 467 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 468 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 469 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 470 471 /* 472 * vm_fault is filled by the pagefault handler and passed to the vma's 473 * ->fault function. The vma's ->fault is responsible for returning a bitmask 474 * of VM_FAULT_xxx flags that give details about how the fault was handled. 475 * 476 * MM layer fills up gfp_mask for page allocations but fault handler might 477 * alter it if its implementation requires a different allocation context. 478 * 479 * pgoff should be used in favour of virtual_address, if possible. 480 */ 481 struct vm_fault { 482 const struct { 483 struct vm_area_struct *vma; /* Target VMA */ 484 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 485 pgoff_t pgoff; /* Logical page offset based on vma */ 486 unsigned long address; /* Faulting virtual address - masked */ 487 unsigned long real_address; /* Faulting virtual address - unmasked */ 488 }; 489 enum fault_flag flags; /* FAULT_FLAG_xxx flags 490 * XXX: should really be 'const' */ 491 pmd_t *pmd; /* Pointer to pmd entry matching 492 * the 'address' */ 493 pud_t *pud; /* Pointer to pud entry matching 494 * the 'address' 495 */ 496 union { 497 pte_t orig_pte; /* Value of PTE at the time of fault */ 498 pmd_t orig_pmd; /* Value of PMD at the time of fault, 499 * used by PMD fault only. 500 */ 501 }; 502 503 struct page *cow_page; /* Page handler may use for COW fault */ 504 struct page *page; /* ->fault handlers should return a 505 * page here, unless VM_FAULT_NOPAGE 506 * is set (which is also implied by 507 * VM_FAULT_ERROR). 508 */ 509 /* These three entries are valid only while holding ptl lock */ 510 pte_t *pte; /* Pointer to pte entry matching 511 * the 'address'. NULL if the page 512 * table hasn't been allocated. 513 */ 514 spinlock_t *ptl; /* Page table lock. 515 * Protects pte page table if 'pte' 516 * is not NULL, otherwise pmd. 517 */ 518 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 519 * vm_ops->map_pages() sets up a page 520 * table from atomic context. 521 * do_fault_around() pre-allocates 522 * page table to avoid allocation from 523 * atomic context. 524 */ 525 }; 526 527 /* page entry size for vm->huge_fault() */ 528 enum page_entry_size { 529 PE_SIZE_PTE = 0, 530 PE_SIZE_PMD, 531 PE_SIZE_PUD, 532 }; 533 534 /* 535 * These are the virtual MM functions - opening of an area, closing and 536 * unmapping it (needed to keep files on disk up-to-date etc), pointer 537 * to the functions called when a no-page or a wp-page exception occurs. 538 */ 539 struct vm_operations_struct { 540 void (*open)(struct vm_area_struct * area); 541 /** 542 * @close: Called when the VMA is being removed from the MM. 543 * Context: User context. May sleep. Caller holds mmap_lock. 544 */ 545 void (*close)(struct vm_area_struct * area); 546 /* Called any time before splitting to check if it's allowed */ 547 int (*may_split)(struct vm_area_struct *area, unsigned long addr); 548 int (*mremap)(struct vm_area_struct *area); 549 /* 550 * Called by mprotect() to make driver-specific permission 551 * checks before mprotect() is finalised. The VMA must not 552 * be modified. Returns 0 if eprotect() can proceed. 553 */ 554 int (*mprotect)(struct vm_area_struct *vma, unsigned long start, 555 unsigned long end, unsigned long newflags); 556 vm_fault_t (*fault)(struct vm_fault *vmf); 557 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 558 enum page_entry_size pe_size); 559 vm_fault_t (*map_pages)(struct vm_fault *vmf, 560 pgoff_t start_pgoff, pgoff_t end_pgoff); 561 unsigned long (*pagesize)(struct vm_area_struct * area); 562 563 /* notification that a previously read-only page is about to become 564 * writable, if an error is returned it will cause a SIGBUS */ 565 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 566 567 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 568 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 569 570 /* called by access_process_vm when get_user_pages() fails, typically 571 * for use by special VMAs. See also generic_access_phys() for a generic 572 * implementation useful for any iomem mapping. 573 */ 574 int (*access)(struct vm_area_struct *vma, unsigned long addr, 575 void *buf, int len, int write); 576 577 /* Called by the /proc/PID/maps code to ask the vma whether it 578 * has a special name. Returning non-NULL will also cause this 579 * vma to be dumped unconditionally. */ 580 const char *(*name)(struct vm_area_struct *vma); 581 582 #ifdef CONFIG_NUMA 583 /* 584 * set_policy() op must add a reference to any non-NULL @new mempolicy 585 * to hold the policy upon return. Caller should pass NULL @new to 586 * remove a policy and fall back to surrounding context--i.e. do not 587 * install a MPOL_DEFAULT policy, nor the task or system default 588 * mempolicy. 589 */ 590 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 591 592 /* 593 * get_policy() op must add reference [mpol_get()] to any policy at 594 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 595 * in mm/mempolicy.c will do this automatically. 596 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 597 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 598 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 599 * must return NULL--i.e., do not "fallback" to task or system default 600 * policy. 601 */ 602 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 603 unsigned long addr); 604 #endif 605 /* 606 * Called by vm_normal_page() for special PTEs to find the 607 * page for @addr. This is useful if the default behavior 608 * (using pte_page()) would not find the correct page. 609 */ 610 struct page *(*find_special_page)(struct vm_area_struct *vma, 611 unsigned long addr); 612 }; 613 614 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 615 { 616 static const struct vm_operations_struct dummy_vm_ops = {}; 617 618 memset(vma, 0, sizeof(*vma)); 619 vma->vm_mm = mm; 620 vma->vm_ops = &dummy_vm_ops; 621 INIT_LIST_HEAD(&vma->anon_vma_chain); 622 } 623 624 static inline void vma_set_anonymous(struct vm_area_struct *vma) 625 { 626 vma->vm_ops = NULL; 627 } 628 629 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 630 { 631 return !vma->vm_ops; 632 } 633 634 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 635 { 636 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 637 638 if (!maybe_stack) 639 return false; 640 641 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 642 VM_STACK_INCOMPLETE_SETUP) 643 return true; 644 645 return false; 646 } 647 648 static inline bool vma_is_foreign(struct vm_area_struct *vma) 649 { 650 if (!current->mm) 651 return true; 652 653 if (current->mm != vma->vm_mm) 654 return true; 655 656 return false; 657 } 658 659 static inline bool vma_is_accessible(struct vm_area_struct *vma) 660 { 661 return vma->vm_flags & VM_ACCESS_FLAGS; 662 } 663 664 #ifdef CONFIG_SHMEM 665 /* 666 * The vma_is_shmem is not inline because it is used only by slow 667 * paths in userfault. 668 */ 669 bool vma_is_shmem(struct vm_area_struct *vma); 670 #else 671 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 672 #endif 673 674 int vma_is_stack_for_current(struct vm_area_struct *vma); 675 676 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 677 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 678 679 struct mmu_gather; 680 struct inode; 681 682 static inline unsigned int compound_order(struct page *page) 683 { 684 if (!PageHead(page)) 685 return 0; 686 return page[1].compound_order; 687 } 688 689 /** 690 * folio_order - The allocation order of a folio. 691 * @folio: The folio. 692 * 693 * A folio is composed of 2^order pages. See get_order() for the definition 694 * of order. 695 * 696 * Return: The order of the folio. 697 */ 698 static inline unsigned int folio_order(struct folio *folio) 699 { 700 return compound_order(&folio->page); 701 } 702 703 #include <linux/huge_mm.h> 704 705 /* 706 * Methods to modify the page usage count. 707 * 708 * What counts for a page usage: 709 * - cache mapping (page->mapping) 710 * - private data (page->private) 711 * - page mapped in a task's page tables, each mapping 712 * is counted separately 713 * 714 * Also, many kernel routines increase the page count before a critical 715 * routine so they can be sure the page doesn't go away from under them. 716 */ 717 718 /* 719 * Drop a ref, return true if the refcount fell to zero (the page has no users) 720 */ 721 static inline int put_page_testzero(struct page *page) 722 { 723 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 724 return page_ref_dec_and_test(page); 725 } 726 727 static inline int folio_put_testzero(struct folio *folio) 728 { 729 return put_page_testzero(&folio->page); 730 } 731 732 /* 733 * Try to grab a ref unless the page has a refcount of zero, return false if 734 * that is the case. 735 * This can be called when MMU is off so it must not access 736 * any of the virtual mappings. 737 */ 738 static inline bool get_page_unless_zero(struct page *page) 739 { 740 return page_ref_add_unless(page, 1, 0); 741 } 742 743 extern int page_is_ram(unsigned long pfn); 744 745 enum { 746 REGION_INTERSECTS, 747 REGION_DISJOINT, 748 REGION_MIXED, 749 }; 750 751 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 752 unsigned long desc); 753 754 /* Support for virtually mapped pages */ 755 struct page *vmalloc_to_page(const void *addr); 756 unsigned long vmalloc_to_pfn(const void *addr); 757 758 /* 759 * Determine if an address is within the vmalloc range 760 * 761 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 762 * is no special casing required. 763 */ 764 765 #ifndef is_ioremap_addr 766 #define is_ioremap_addr(x) is_vmalloc_addr(x) 767 #endif 768 769 #ifdef CONFIG_MMU 770 extern bool is_vmalloc_addr(const void *x); 771 extern int is_vmalloc_or_module_addr(const void *x); 772 #else 773 static inline bool is_vmalloc_addr(const void *x) 774 { 775 return false; 776 } 777 static inline int is_vmalloc_or_module_addr(const void *x) 778 { 779 return 0; 780 } 781 #endif 782 783 /* 784 * How many times the entire folio is mapped as a single unit (eg by a 785 * PMD or PUD entry). This is probably not what you want, except for 786 * debugging purposes; look at folio_mapcount() or page_mapcount() 787 * instead. 788 */ 789 static inline int folio_entire_mapcount(struct folio *folio) 790 { 791 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio); 792 return atomic_read(folio_mapcount_ptr(folio)) + 1; 793 } 794 795 /* 796 * Mapcount of compound page as a whole, does not include mapped sub-pages. 797 * 798 * Must be called only for compound pages. 799 */ 800 static inline int compound_mapcount(struct page *page) 801 { 802 return folio_entire_mapcount(page_folio(page)); 803 } 804 805 /* 806 * The atomic page->_mapcount, starts from -1: so that transitions 807 * both from it and to it can be tracked, using atomic_inc_and_test 808 * and atomic_add_negative(-1). 809 */ 810 static inline void page_mapcount_reset(struct page *page) 811 { 812 atomic_set(&(page)->_mapcount, -1); 813 } 814 815 int __page_mapcount(struct page *page); 816 817 /* 818 * Mapcount of 0-order page; when compound sub-page, includes 819 * compound_mapcount(). 820 * 821 * Result is undefined for pages which cannot be mapped into userspace. 822 * For example SLAB or special types of pages. See function page_has_type(). 823 * They use this place in struct page differently. 824 */ 825 static inline int page_mapcount(struct page *page) 826 { 827 if (unlikely(PageCompound(page))) 828 return __page_mapcount(page); 829 return atomic_read(&page->_mapcount) + 1; 830 } 831 832 int folio_mapcount(struct folio *folio); 833 834 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 835 static inline int total_mapcount(struct page *page) 836 { 837 return folio_mapcount(page_folio(page)); 838 } 839 840 #else 841 static inline int total_mapcount(struct page *page) 842 { 843 return page_mapcount(page); 844 } 845 #endif 846 847 static inline struct page *virt_to_head_page(const void *x) 848 { 849 struct page *page = virt_to_page(x); 850 851 return compound_head(page); 852 } 853 854 static inline struct folio *virt_to_folio(const void *x) 855 { 856 struct page *page = virt_to_page(x); 857 858 return page_folio(page); 859 } 860 861 void __folio_put(struct folio *folio); 862 863 void put_pages_list(struct list_head *pages); 864 865 void split_page(struct page *page, unsigned int order); 866 void folio_copy(struct folio *dst, struct folio *src); 867 868 unsigned long nr_free_buffer_pages(void); 869 870 /* 871 * Compound pages have a destructor function. Provide a 872 * prototype for that function and accessor functions. 873 * These are _only_ valid on the head of a compound page. 874 */ 875 typedef void compound_page_dtor(struct page *); 876 877 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 878 enum compound_dtor_id { 879 NULL_COMPOUND_DTOR, 880 COMPOUND_PAGE_DTOR, 881 #ifdef CONFIG_HUGETLB_PAGE 882 HUGETLB_PAGE_DTOR, 883 #endif 884 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 885 TRANSHUGE_PAGE_DTOR, 886 #endif 887 NR_COMPOUND_DTORS, 888 }; 889 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 890 891 static inline void set_compound_page_dtor(struct page *page, 892 enum compound_dtor_id compound_dtor) 893 { 894 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 895 page[1].compound_dtor = compound_dtor; 896 } 897 898 void destroy_large_folio(struct folio *folio); 899 900 static inline int head_compound_pincount(struct page *head) 901 { 902 return atomic_read(compound_pincount_ptr(head)); 903 } 904 905 static inline void set_compound_order(struct page *page, unsigned int order) 906 { 907 page[1].compound_order = order; 908 #ifdef CONFIG_64BIT 909 page[1].compound_nr = 1U << order; 910 #endif 911 } 912 913 /* Returns the number of pages in this potentially compound page. */ 914 static inline unsigned long compound_nr(struct page *page) 915 { 916 if (!PageHead(page)) 917 return 1; 918 #ifdef CONFIG_64BIT 919 return page[1].compound_nr; 920 #else 921 return 1UL << compound_order(page); 922 #endif 923 } 924 925 /* Returns the number of bytes in this potentially compound page. */ 926 static inline unsigned long page_size(struct page *page) 927 { 928 return PAGE_SIZE << compound_order(page); 929 } 930 931 /* Returns the number of bits needed for the number of bytes in a page */ 932 static inline unsigned int page_shift(struct page *page) 933 { 934 return PAGE_SHIFT + compound_order(page); 935 } 936 937 /** 938 * thp_order - Order of a transparent huge page. 939 * @page: Head page of a transparent huge page. 940 */ 941 static inline unsigned int thp_order(struct page *page) 942 { 943 VM_BUG_ON_PGFLAGS(PageTail(page), page); 944 return compound_order(page); 945 } 946 947 /** 948 * thp_nr_pages - The number of regular pages in this huge page. 949 * @page: The head page of a huge page. 950 */ 951 static inline int thp_nr_pages(struct page *page) 952 { 953 VM_BUG_ON_PGFLAGS(PageTail(page), page); 954 return compound_nr(page); 955 } 956 957 /** 958 * thp_size - Size of a transparent huge page. 959 * @page: Head page of a transparent huge page. 960 * 961 * Return: Number of bytes in this page. 962 */ 963 static inline unsigned long thp_size(struct page *page) 964 { 965 return PAGE_SIZE << thp_order(page); 966 } 967 968 void free_compound_page(struct page *page); 969 970 #ifdef CONFIG_MMU 971 /* 972 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 973 * servicing faults for write access. In the normal case, do always want 974 * pte_mkwrite. But get_user_pages can cause write faults for mappings 975 * that do not have writing enabled, when used by access_process_vm. 976 */ 977 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 978 { 979 if (likely(vma->vm_flags & VM_WRITE)) 980 pte = pte_mkwrite(pte); 981 return pte; 982 } 983 984 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page); 985 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr); 986 987 vm_fault_t finish_fault(struct vm_fault *vmf); 988 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 989 #endif 990 991 /* 992 * Multiple processes may "see" the same page. E.g. for untouched 993 * mappings of /dev/null, all processes see the same page full of 994 * zeroes, and text pages of executables and shared libraries have 995 * only one copy in memory, at most, normally. 996 * 997 * For the non-reserved pages, page_count(page) denotes a reference count. 998 * page_count() == 0 means the page is free. page->lru is then used for 999 * freelist management in the buddy allocator. 1000 * page_count() > 0 means the page has been allocated. 1001 * 1002 * Pages are allocated by the slab allocator in order to provide memory 1003 * to kmalloc and kmem_cache_alloc. In this case, the management of the 1004 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 1005 * unless a particular usage is carefully commented. (the responsibility of 1006 * freeing the kmalloc memory is the caller's, of course). 1007 * 1008 * A page may be used by anyone else who does a __get_free_page(). 1009 * In this case, page_count still tracks the references, and should only 1010 * be used through the normal accessor functions. The top bits of page->flags 1011 * and page->virtual store page management information, but all other fields 1012 * are unused and could be used privately, carefully. The management of this 1013 * page is the responsibility of the one who allocated it, and those who have 1014 * subsequently been given references to it. 1015 * 1016 * The other pages (we may call them "pagecache pages") are completely 1017 * managed by the Linux memory manager: I/O, buffers, swapping etc. 1018 * The following discussion applies only to them. 1019 * 1020 * A pagecache page contains an opaque `private' member, which belongs to the 1021 * page's address_space. Usually, this is the address of a circular list of 1022 * the page's disk buffers. PG_private must be set to tell the VM to call 1023 * into the filesystem to release these pages. 1024 * 1025 * A page may belong to an inode's memory mapping. In this case, page->mapping 1026 * is the pointer to the inode, and page->index is the file offset of the page, 1027 * in units of PAGE_SIZE. 1028 * 1029 * If pagecache pages are not associated with an inode, they are said to be 1030 * anonymous pages. These may become associated with the swapcache, and in that 1031 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1032 * 1033 * In either case (swapcache or inode backed), the pagecache itself holds one 1034 * reference to the page. Setting PG_private should also increment the 1035 * refcount. The each user mapping also has a reference to the page. 1036 * 1037 * The pagecache pages are stored in a per-mapping radix tree, which is 1038 * rooted at mapping->i_pages, and indexed by offset. 1039 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1040 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1041 * 1042 * All pagecache pages may be subject to I/O: 1043 * - inode pages may need to be read from disk, 1044 * - inode pages which have been modified and are MAP_SHARED may need 1045 * to be written back to the inode on disk, 1046 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1047 * modified may need to be swapped out to swap space and (later) to be read 1048 * back into memory. 1049 */ 1050 1051 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX) 1052 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1053 1054 bool __put_devmap_managed_page_refs(struct page *page, int refs); 1055 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1056 { 1057 if (!static_branch_unlikely(&devmap_managed_key)) 1058 return false; 1059 if (!is_zone_device_page(page)) 1060 return false; 1061 return __put_devmap_managed_page_refs(page, refs); 1062 } 1063 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1064 static inline bool put_devmap_managed_page_refs(struct page *page, int refs) 1065 { 1066 return false; 1067 } 1068 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */ 1069 1070 static inline bool put_devmap_managed_page(struct page *page) 1071 { 1072 return put_devmap_managed_page_refs(page, 1); 1073 } 1074 1075 /* 127: arbitrary random number, small enough to assemble well */ 1076 #define folio_ref_zero_or_close_to_overflow(folio) \ 1077 ((unsigned int) folio_ref_count(folio) + 127u <= 127u) 1078 1079 /** 1080 * folio_get - Increment the reference count on a folio. 1081 * @folio: The folio. 1082 * 1083 * Context: May be called in any context, as long as you know that 1084 * you have a refcount on the folio. If you do not already have one, 1085 * folio_try_get() may be the right interface for you to use. 1086 */ 1087 static inline void folio_get(struct folio *folio) 1088 { 1089 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio); 1090 folio_ref_inc(folio); 1091 } 1092 1093 static inline void get_page(struct page *page) 1094 { 1095 folio_get(page_folio(page)); 1096 } 1097 1098 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1099 1100 static inline __must_check bool try_get_page(struct page *page) 1101 { 1102 page = compound_head(page); 1103 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1104 return false; 1105 page_ref_inc(page); 1106 return true; 1107 } 1108 1109 /** 1110 * folio_put - Decrement the reference count on a folio. 1111 * @folio: The folio. 1112 * 1113 * If the folio's reference count reaches zero, the memory will be 1114 * released back to the page allocator and may be used by another 1115 * allocation immediately. Do not access the memory or the struct folio 1116 * after calling folio_put() unless you can be sure that it wasn't the 1117 * last reference. 1118 * 1119 * Context: May be called in process or interrupt context, but not in NMI 1120 * context. May be called while holding a spinlock. 1121 */ 1122 static inline void folio_put(struct folio *folio) 1123 { 1124 if (folio_put_testzero(folio)) 1125 __folio_put(folio); 1126 } 1127 1128 /** 1129 * folio_put_refs - Reduce the reference count on a folio. 1130 * @folio: The folio. 1131 * @refs: The amount to subtract from the folio's reference count. 1132 * 1133 * If the folio's reference count reaches zero, the memory will be 1134 * released back to the page allocator and may be used by another 1135 * allocation immediately. Do not access the memory or the struct folio 1136 * after calling folio_put_refs() unless you can be sure that these weren't 1137 * the last references. 1138 * 1139 * Context: May be called in process or interrupt context, but not in NMI 1140 * context. May be called while holding a spinlock. 1141 */ 1142 static inline void folio_put_refs(struct folio *folio, int refs) 1143 { 1144 if (folio_ref_sub_and_test(folio, refs)) 1145 __folio_put(folio); 1146 } 1147 1148 void release_pages(struct page **pages, int nr); 1149 1150 /** 1151 * folios_put - Decrement the reference count on an array of folios. 1152 * @folios: The folios. 1153 * @nr: How many folios there are. 1154 * 1155 * Like folio_put(), but for an array of folios. This is more efficient 1156 * than writing the loop yourself as it will optimise the locks which 1157 * need to be taken if the folios are freed. 1158 * 1159 * Context: May be called in process or interrupt context, but not in NMI 1160 * context. May be called while holding a spinlock. 1161 */ 1162 static inline void folios_put(struct folio **folios, unsigned int nr) 1163 { 1164 release_pages((struct page **)folios, nr); 1165 } 1166 1167 static inline void put_page(struct page *page) 1168 { 1169 struct folio *folio = page_folio(page); 1170 1171 /* 1172 * For some devmap managed pages we need to catch refcount transition 1173 * from 2 to 1: 1174 */ 1175 if (put_devmap_managed_page(&folio->page)) 1176 return; 1177 folio_put(folio); 1178 } 1179 1180 /* 1181 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1182 * the page's refcount so that two separate items are tracked: the original page 1183 * reference count, and also a new count of how many pin_user_pages() calls were 1184 * made against the page. ("gup-pinned" is another term for the latter). 1185 * 1186 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1187 * distinct from normal pages. As such, the unpin_user_page() call (and its 1188 * variants) must be used in order to release gup-pinned pages. 1189 * 1190 * Choice of value: 1191 * 1192 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1193 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1194 * simpler, due to the fact that adding an even power of two to the page 1195 * refcount has the effect of using only the upper N bits, for the code that 1196 * counts up using the bias value. This means that the lower bits are left for 1197 * the exclusive use of the original code that increments and decrements by one 1198 * (or at least, by much smaller values than the bias value). 1199 * 1200 * Of course, once the lower bits overflow into the upper bits (and this is 1201 * OK, because subtraction recovers the original values), then visual inspection 1202 * no longer suffices to directly view the separate counts. However, for normal 1203 * applications that don't have huge page reference counts, this won't be an 1204 * issue. 1205 * 1206 * Locking: the lockless algorithm described in folio_try_get_rcu() 1207 * provides safe operation for get_user_pages(), page_mkclean() and 1208 * other calls that race to set up page table entries. 1209 */ 1210 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1211 1212 void unpin_user_page(struct page *page); 1213 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1214 bool make_dirty); 1215 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages, 1216 bool make_dirty); 1217 void unpin_user_pages(struct page **pages, unsigned long npages); 1218 1219 static inline bool is_cow_mapping(vm_flags_t flags) 1220 { 1221 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE; 1222 } 1223 1224 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1225 #define SECTION_IN_PAGE_FLAGS 1226 #endif 1227 1228 /* 1229 * The identification function is mainly used by the buddy allocator for 1230 * determining if two pages could be buddies. We are not really identifying 1231 * the zone since we could be using the section number id if we do not have 1232 * node id available in page flags. 1233 * We only guarantee that it will return the same value for two combinable 1234 * pages in a zone. 1235 */ 1236 static inline int page_zone_id(struct page *page) 1237 { 1238 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1239 } 1240 1241 #ifdef NODE_NOT_IN_PAGE_FLAGS 1242 extern int page_to_nid(const struct page *page); 1243 #else 1244 static inline int page_to_nid(const struct page *page) 1245 { 1246 struct page *p = (struct page *)page; 1247 1248 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1249 } 1250 #endif 1251 1252 static inline int folio_nid(const struct folio *folio) 1253 { 1254 return page_to_nid(&folio->page); 1255 } 1256 1257 #ifdef CONFIG_NUMA_BALANCING 1258 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1259 { 1260 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1261 } 1262 1263 static inline int cpupid_to_pid(int cpupid) 1264 { 1265 return cpupid & LAST__PID_MASK; 1266 } 1267 1268 static inline int cpupid_to_cpu(int cpupid) 1269 { 1270 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1271 } 1272 1273 static inline int cpupid_to_nid(int cpupid) 1274 { 1275 return cpu_to_node(cpupid_to_cpu(cpupid)); 1276 } 1277 1278 static inline bool cpupid_pid_unset(int cpupid) 1279 { 1280 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1281 } 1282 1283 static inline bool cpupid_cpu_unset(int cpupid) 1284 { 1285 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1286 } 1287 1288 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1289 { 1290 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1291 } 1292 1293 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1294 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1295 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1296 { 1297 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1298 } 1299 1300 static inline int page_cpupid_last(struct page *page) 1301 { 1302 return page->_last_cpupid; 1303 } 1304 static inline void page_cpupid_reset_last(struct page *page) 1305 { 1306 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1307 } 1308 #else 1309 static inline int page_cpupid_last(struct page *page) 1310 { 1311 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1312 } 1313 1314 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1315 1316 static inline void page_cpupid_reset_last(struct page *page) 1317 { 1318 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1319 } 1320 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1321 #else /* !CONFIG_NUMA_BALANCING */ 1322 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1323 { 1324 return page_to_nid(page); /* XXX */ 1325 } 1326 1327 static inline int page_cpupid_last(struct page *page) 1328 { 1329 return page_to_nid(page); /* XXX */ 1330 } 1331 1332 static inline int cpupid_to_nid(int cpupid) 1333 { 1334 return -1; 1335 } 1336 1337 static inline int cpupid_to_pid(int cpupid) 1338 { 1339 return -1; 1340 } 1341 1342 static inline int cpupid_to_cpu(int cpupid) 1343 { 1344 return -1; 1345 } 1346 1347 static inline int cpu_pid_to_cpupid(int nid, int pid) 1348 { 1349 return -1; 1350 } 1351 1352 static inline bool cpupid_pid_unset(int cpupid) 1353 { 1354 return true; 1355 } 1356 1357 static inline void page_cpupid_reset_last(struct page *page) 1358 { 1359 } 1360 1361 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1362 { 1363 return false; 1364 } 1365 #endif /* CONFIG_NUMA_BALANCING */ 1366 1367 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS) 1368 1369 /* 1370 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid 1371 * setting tags for all pages to native kernel tag value 0xff, as the default 1372 * value 0x00 maps to 0xff. 1373 */ 1374 1375 static inline u8 page_kasan_tag(const struct page *page) 1376 { 1377 u8 tag = 0xff; 1378 1379 if (kasan_enabled()) { 1380 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1381 tag ^= 0xff; 1382 } 1383 1384 return tag; 1385 } 1386 1387 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1388 { 1389 unsigned long old_flags, flags; 1390 1391 if (!kasan_enabled()) 1392 return; 1393 1394 tag ^= 0xff; 1395 old_flags = READ_ONCE(page->flags); 1396 do { 1397 flags = old_flags; 1398 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1399 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1400 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags))); 1401 } 1402 1403 static inline void page_kasan_tag_reset(struct page *page) 1404 { 1405 if (kasan_enabled()) 1406 page_kasan_tag_set(page, 0xff); 1407 } 1408 1409 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1410 1411 static inline u8 page_kasan_tag(const struct page *page) 1412 { 1413 return 0xff; 1414 } 1415 1416 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1417 static inline void page_kasan_tag_reset(struct page *page) { } 1418 1419 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */ 1420 1421 static inline struct zone *page_zone(const struct page *page) 1422 { 1423 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1424 } 1425 1426 static inline pg_data_t *page_pgdat(const struct page *page) 1427 { 1428 return NODE_DATA(page_to_nid(page)); 1429 } 1430 1431 static inline struct zone *folio_zone(const struct folio *folio) 1432 { 1433 return page_zone(&folio->page); 1434 } 1435 1436 static inline pg_data_t *folio_pgdat(const struct folio *folio) 1437 { 1438 return page_pgdat(&folio->page); 1439 } 1440 1441 #ifdef SECTION_IN_PAGE_FLAGS 1442 static inline void set_page_section(struct page *page, unsigned long section) 1443 { 1444 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1445 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1446 } 1447 1448 static inline unsigned long page_to_section(const struct page *page) 1449 { 1450 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1451 } 1452 #endif 1453 1454 /** 1455 * folio_pfn - Return the Page Frame Number of a folio. 1456 * @folio: The folio. 1457 * 1458 * A folio may contain multiple pages. The pages have consecutive 1459 * Page Frame Numbers. 1460 * 1461 * Return: The Page Frame Number of the first page in the folio. 1462 */ 1463 static inline unsigned long folio_pfn(struct folio *folio) 1464 { 1465 return page_to_pfn(&folio->page); 1466 } 1467 1468 static inline atomic_t *folio_pincount_ptr(struct folio *folio) 1469 { 1470 return &folio_page(folio, 1)->compound_pincount; 1471 } 1472 1473 /** 1474 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA. 1475 * @folio: The folio. 1476 * 1477 * This function checks if a folio has been pinned via a call to 1478 * a function in the pin_user_pages() family. 1479 * 1480 * For small folios, the return value is partially fuzzy: false is not fuzzy, 1481 * because it means "definitely not pinned for DMA", but true means "probably 1482 * pinned for DMA, but possibly a false positive due to having at least 1483 * GUP_PIN_COUNTING_BIAS worth of normal folio references". 1484 * 1485 * False positives are OK, because: a) it's unlikely for a folio to 1486 * get that many refcounts, and b) all the callers of this routine are 1487 * expected to be able to deal gracefully with a false positive. 1488 * 1489 * For large folios, the result will be exactly correct. That's because 1490 * we have more tracking data available: the compound_pincount is used 1491 * instead of the GUP_PIN_COUNTING_BIAS scheme. 1492 * 1493 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1494 * 1495 * Return: True, if it is likely that the page has been "dma-pinned". 1496 * False, if the page is definitely not dma-pinned. 1497 */ 1498 static inline bool folio_maybe_dma_pinned(struct folio *folio) 1499 { 1500 if (folio_test_large(folio)) 1501 return atomic_read(folio_pincount_ptr(folio)) > 0; 1502 1503 /* 1504 * folio_ref_count() is signed. If that refcount overflows, then 1505 * folio_ref_count() returns a negative value, and callers will avoid 1506 * further incrementing the refcount. 1507 * 1508 * Here, for that overflow case, use the sign bit to count a little 1509 * bit higher via unsigned math, and thus still get an accurate result. 1510 */ 1511 return ((unsigned int)folio_ref_count(folio)) >= 1512 GUP_PIN_COUNTING_BIAS; 1513 } 1514 1515 static inline bool page_maybe_dma_pinned(struct page *page) 1516 { 1517 return folio_maybe_dma_pinned(page_folio(page)); 1518 } 1519 1520 /* 1521 * This should most likely only be called during fork() to see whether we 1522 * should break the cow immediately for an anon page on the src mm. 1523 * 1524 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq. 1525 */ 1526 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma, 1527 struct page *page) 1528 { 1529 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1)); 1530 1531 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags)) 1532 return false; 1533 1534 return page_maybe_dma_pinned(page); 1535 } 1536 1537 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */ 1538 #ifdef CONFIG_MIGRATION 1539 static inline bool is_longterm_pinnable_page(struct page *page) 1540 { 1541 #ifdef CONFIG_CMA 1542 int mt = get_pageblock_migratetype(page); 1543 1544 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE) 1545 return false; 1546 #endif 1547 /* The zero page may always be pinned */ 1548 if (is_zero_pfn(page_to_pfn(page))) 1549 return true; 1550 1551 /* Coherent device memory must always allow eviction. */ 1552 if (is_device_coherent_page(page)) 1553 return false; 1554 1555 /* Otherwise, non-movable zone pages can be pinned. */ 1556 return !is_zone_movable_page(page); 1557 } 1558 #else 1559 static inline bool is_longterm_pinnable_page(struct page *page) 1560 { 1561 return true; 1562 } 1563 #endif 1564 1565 static inline bool folio_is_longterm_pinnable(struct folio *folio) 1566 { 1567 return is_longterm_pinnable_page(&folio->page); 1568 } 1569 1570 static inline void set_page_zone(struct page *page, enum zone_type zone) 1571 { 1572 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1573 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1574 } 1575 1576 static inline void set_page_node(struct page *page, unsigned long node) 1577 { 1578 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1579 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1580 } 1581 1582 static inline void set_page_links(struct page *page, enum zone_type zone, 1583 unsigned long node, unsigned long pfn) 1584 { 1585 set_page_zone(page, zone); 1586 set_page_node(page, node); 1587 #ifdef SECTION_IN_PAGE_FLAGS 1588 set_page_section(page, pfn_to_section_nr(pfn)); 1589 #endif 1590 } 1591 1592 /** 1593 * folio_nr_pages - The number of pages in the folio. 1594 * @folio: The folio. 1595 * 1596 * Return: A positive power of two. 1597 */ 1598 static inline long folio_nr_pages(struct folio *folio) 1599 { 1600 return compound_nr(&folio->page); 1601 } 1602 1603 /** 1604 * folio_next - Move to the next physical folio. 1605 * @folio: The folio we're currently operating on. 1606 * 1607 * If you have physically contiguous memory which may span more than 1608 * one folio (eg a &struct bio_vec), use this function to move from one 1609 * folio to the next. Do not use it if the memory is only virtually 1610 * contiguous as the folios are almost certainly not adjacent to each 1611 * other. This is the folio equivalent to writing ``page++``. 1612 * 1613 * Context: We assume that the folios are refcounted and/or locked at a 1614 * higher level and do not adjust the reference counts. 1615 * Return: The next struct folio. 1616 */ 1617 static inline struct folio *folio_next(struct folio *folio) 1618 { 1619 return (struct folio *)folio_page(folio, folio_nr_pages(folio)); 1620 } 1621 1622 /** 1623 * folio_shift - The size of the memory described by this folio. 1624 * @folio: The folio. 1625 * 1626 * A folio represents a number of bytes which is a power-of-two in size. 1627 * This function tells you which power-of-two the folio is. See also 1628 * folio_size() and folio_order(). 1629 * 1630 * Context: The caller should have a reference on the folio to prevent 1631 * it from being split. It is not necessary for the folio to be locked. 1632 * Return: The base-2 logarithm of the size of this folio. 1633 */ 1634 static inline unsigned int folio_shift(struct folio *folio) 1635 { 1636 return PAGE_SHIFT + folio_order(folio); 1637 } 1638 1639 /** 1640 * folio_size - The number of bytes in a folio. 1641 * @folio: The folio. 1642 * 1643 * Context: The caller should have a reference on the folio to prevent 1644 * it from being split. It is not necessary for the folio to be locked. 1645 * Return: The number of bytes in this folio. 1646 */ 1647 static inline size_t folio_size(struct folio *folio) 1648 { 1649 return PAGE_SIZE << folio_order(folio); 1650 } 1651 1652 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE 1653 static inline int arch_make_page_accessible(struct page *page) 1654 { 1655 return 0; 1656 } 1657 #endif 1658 1659 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE 1660 static inline int arch_make_folio_accessible(struct folio *folio) 1661 { 1662 int ret; 1663 long i, nr = folio_nr_pages(folio); 1664 1665 for (i = 0; i < nr; i++) { 1666 ret = arch_make_page_accessible(folio_page(folio, i)); 1667 if (ret) 1668 break; 1669 } 1670 1671 return ret; 1672 } 1673 #endif 1674 1675 /* 1676 * Some inline functions in vmstat.h depend on page_zone() 1677 */ 1678 #include <linux/vmstat.h> 1679 1680 static __always_inline void *lowmem_page_address(const struct page *page) 1681 { 1682 return page_to_virt(page); 1683 } 1684 1685 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1686 #define HASHED_PAGE_VIRTUAL 1687 #endif 1688 1689 #if defined(WANT_PAGE_VIRTUAL) 1690 static inline void *page_address(const struct page *page) 1691 { 1692 return page->virtual; 1693 } 1694 static inline void set_page_address(struct page *page, void *address) 1695 { 1696 page->virtual = address; 1697 } 1698 #define page_address_init() do { } while(0) 1699 #endif 1700 1701 #if defined(HASHED_PAGE_VIRTUAL) 1702 void *page_address(const struct page *page); 1703 void set_page_address(struct page *page, void *virtual); 1704 void page_address_init(void); 1705 #endif 1706 1707 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1708 #define page_address(page) lowmem_page_address(page) 1709 #define set_page_address(page, address) do { } while(0) 1710 #define page_address_init() do { } while(0) 1711 #endif 1712 1713 static inline void *folio_address(const struct folio *folio) 1714 { 1715 return page_address(&folio->page); 1716 } 1717 1718 extern void *page_rmapping(struct page *page); 1719 extern pgoff_t __page_file_index(struct page *page); 1720 1721 /* 1722 * Return the pagecache index of the passed page. Regular pagecache pages 1723 * use ->index whereas swapcache pages use swp_offset(->private) 1724 */ 1725 static inline pgoff_t page_index(struct page *page) 1726 { 1727 if (unlikely(PageSwapCache(page))) 1728 return __page_file_index(page); 1729 return page->index; 1730 } 1731 1732 bool page_mapped(struct page *page); 1733 bool folio_mapped(struct folio *folio); 1734 1735 /* 1736 * Return true only if the page has been allocated with 1737 * ALLOC_NO_WATERMARKS and the low watermark was not 1738 * met implying that the system is under some pressure. 1739 */ 1740 static inline bool page_is_pfmemalloc(const struct page *page) 1741 { 1742 /* 1743 * lru.next has bit 1 set if the page is allocated from the 1744 * pfmemalloc reserves. Callers may simply overwrite it if 1745 * they do not need to preserve that information. 1746 */ 1747 return (uintptr_t)page->lru.next & BIT(1); 1748 } 1749 1750 /* 1751 * Only to be called by the page allocator on a freshly allocated 1752 * page. 1753 */ 1754 static inline void set_page_pfmemalloc(struct page *page) 1755 { 1756 page->lru.next = (void *)BIT(1); 1757 } 1758 1759 static inline void clear_page_pfmemalloc(struct page *page) 1760 { 1761 page->lru.next = NULL; 1762 } 1763 1764 /* 1765 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1766 */ 1767 extern void pagefault_out_of_memory(void); 1768 1769 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1770 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1771 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1)) 1772 1773 /* 1774 * Flags passed to show_mem() and show_free_areas() to suppress output in 1775 * various contexts. 1776 */ 1777 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1778 1779 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1780 1781 #ifdef CONFIG_MMU 1782 extern bool can_do_mlock(void); 1783 #else 1784 static inline bool can_do_mlock(void) { return false; } 1785 #endif 1786 extern int user_shm_lock(size_t, struct ucounts *); 1787 extern void user_shm_unlock(size_t, struct ucounts *); 1788 1789 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1790 pte_t pte); 1791 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1792 pmd_t pmd); 1793 1794 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1795 unsigned long size); 1796 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1797 unsigned long size); 1798 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1799 unsigned long start, unsigned long end); 1800 1801 struct mmu_notifier_range; 1802 1803 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1804 unsigned long end, unsigned long floor, unsigned long ceiling); 1805 int 1806 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma); 1807 int follow_pte(struct mm_struct *mm, unsigned long address, 1808 pte_t **ptepp, spinlock_t **ptlp); 1809 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1810 unsigned long *pfn); 1811 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1812 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1813 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1814 void *buf, int len, int write); 1815 1816 extern void truncate_pagecache(struct inode *inode, loff_t new); 1817 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1818 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1819 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1820 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1821 1822 #ifdef CONFIG_MMU 1823 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1824 unsigned long address, unsigned int flags, 1825 struct pt_regs *regs); 1826 extern int fixup_user_fault(struct mm_struct *mm, 1827 unsigned long address, unsigned int fault_flags, 1828 bool *unlocked); 1829 void unmap_mapping_pages(struct address_space *mapping, 1830 pgoff_t start, pgoff_t nr, bool even_cows); 1831 void unmap_mapping_range(struct address_space *mapping, 1832 loff_t const holebegin, loff_t const holelen, int even_cows); 1833 #else 1834 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1835 unsigned long address, unsigned int flags, 1836 struct pt_regs *regs) 1837 { 1838 /* should never happen if there's no MMU */ 1839 BUG(); 1840 return VM_FAULT_SIGBUS; 1841 } 1842 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1843 unsigned int fault_flags, bool *unlocked) 1844 { 1845 /* should never happen if there's no MMU */ 1846 BUG(); 1847 return -EFAULT; 1848 } 1849 static inline void unmap_mapping_pages(struct address_space *mapping, 1850 pgoff_t start, pgoff_t nr, bool even_cows) { } 1851 static inline void unmap_mapping_range(struct address_space *mapping, 1852 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1853 #endif 1854 1855 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1856 loff_t const holebegin, loff_t const holelen) 1857 { 1858 unmap_mapping_range(mapping, holebegin, holelen, 0); 1859 } 1860 1861 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1862 void *buf, int len, unsigned int gup_flags); 1863 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1864 void *buf, int len, unsigned int gup_flags); 1865 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr, 1866 void *buf, int len, unsigned int gup_flags); 1867 1868 long get_user_pages_remote(struct mm_struct *mm, 1869 unsigned long start, unsigned long nr_pages, 1870 unsigned int gup_flags, struct page **pages, 1871 struct vm_area_struct **vmas, int *locked); 1872 long pin_user_pages_remote(struct mm_struct *mm, 1873 unsigned long start, unsigned long nr_pages, 1874 unsigned int gup_flags, struct page **pages, 1875 struct vm_area_struct **vmas, int *locked); 1876 long get_user_pages(unsigned long start, unsigned long nr_pages, 1877 unsigned int gup_flags, struct page **pages, 1878 struct vm_area_struct **vmas); 1879 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1880 unsigned int gup_flags, struct page **pages, 1881 struct vm_area_struct **vmas); 1882 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1883 struct page **pages, unsigned int gup_flags); 1884 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1885 struct page **pages, unsigned int gup_flags); 1886 1887 int get_user_pages_fast(unsigned long start, int nr_pages, 1888 unsigned int gup_flags, struct page **pages); 1889 int pin_user_pages_fast(unsigned long start, int nr_pages, 1890 unsigned int gup_flags, struct page **pages); 1891 1892 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1893 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1894 struct task_struct *task, bool bypass_rlim); 1895 1896 struct kvec; 1897 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1898 struct page **pages); 1899 struct page *get_dump_page(unsigned long addr); 1900 1901 bool folio_mark_dirty(struct folio *folio); 1902 bool set_page_dirty(struct page *page); 1903 int set_page_dirty_lock(struct page *page); 1904 1905 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1906 1907 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1908 unsigned long old_addr, struct vm_area_struct *new_vma, 1909 unsigned long new_addr, unsigned long len, 1910 bool need_rmap_locks); 1911 1912 /* 1913 * Flags used by change_protection(). For now we make it a bitmap so 1914 * that we can pass in multiple flags just like parameters. However 1915 * for now all the callers are only use one of the flags at the same 1916 * time. 1917 */ 1918 /* 1919 * Whether we should manually check if we can map individual PTEs writable, 1920 * because something (e.g., COW, uffd-wp) blocks that from happening for all 1921 * PTEs automatically in a writable mapping. 1922 */ 1923 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0) 1924 /* Whether this protection change is for NUMA hints */ 1925 #define MM_CP_PROT_NUMA (1UL << 1) 1926 /* Whether this change is for write protecting */ 1927 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1928 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1929 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1930 MM_CP_UFFD_WP_RESOLVE) 1931 1932 extern unsigned long change_protection(struct mmu_gather *tlb, 1933 struct vm_area_struct *vma, unsigned long start, 1934 unsigned long end, pgprot_t newprot, 1935 unsigned long cp_flags); 1936 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma, 1937 struct vm_area_struct **pprev, unsigned long start, 1938 unsigned long end, unsigned long newflags); 1939 1940 /* 1941 * doesn't attempt to fault and will return short. 1942 */ 1943 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1944 unsigned int gup_flags, struct page **pages); 1945 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1946 unsigned int gup_flags, struct page **pages); 1947 1948 static inline bool get_user_page_fast_only(unsigned long addr, 1949 unsigned int gup_flags, struct page **pagep) 1950 { 1951 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1952 } 1953 /* 1954 * per-process(per-mm_struct) statistics. 1955 */ 1956 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1957 { 1958 long val = atomic_long_read(&mm->rss_stat.count[member]); 1959 1960 #ifdef SPLIT_RSS_COUNTING 1961 /* 1962 * counter is updated in asynchronous manner and may go to minus. 1963 * But it's never be expected number for users. 1964 */ 1965 if (val < 0) 1966 val = 0; 1967 #endif 1968 return (unsigned long)val; 1969 } 1970 1971 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1972 1973 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1974 { 1975 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1976 1977 mm_trace_rss_stat(mm, member, count); 1978 } 1979 1980 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1981 { 1982 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1983 1984 mm_trace_rss_stat(mm, member, count); 1985 } 1986 1987 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1988 { 1989 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1990 1991 mm_trace_rss_stat(mm, member, count); 1992 } 1993 1994 /* Optimized variant when page is already known not to be PageAnon */ 1995 static inline int mm_counter_file(struct page *page) 1996 { 1997 if (PageSwapBacked(page)) 1998 return MM_SHMEMPAGES; 1999 return MM_FILEPAGES; 2000 } 2001 2002 static inline int mm_counter(struct page *page) 2003 { 2004 if (PageAnon(page)) 2005 return MM_ANONPAGES; 2006 return mm_counter_file(page); 2007 } 2008 2009 static inline unsigned long get_mm_rss(struct mm_struct *mm) 2010 { 2011 return get_mm_counter(mm, MM_FILEPAGES) + 2012 get_mm_counter(mm, MM_ANONPAGES) + 2013 get_mm_counter(mm, MM_SHMEMPAGES); 2014 } 2015 2016 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 2017 { 2018 return max(mm->hiwater_rss, get_mm_rss(mm)); 2019 } 2020 2021 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 2022 { 2023 return max(mm->hiwater_vm, mm->total_vm); 2024 } 2025 2026 static inline void update_hiwater_rss(struct mm_struct *mm) 2027 { 2028 unsigned long _rss = get_mm_rss(mm); 2029 2030 if ((mm)->hiwater_rss < _rss) 2031 (mm)->hiwater_rss = _rss; 2032 } 2033 2034 static inline void update_hiwater_vm(struct mm_struct *mm) 2035 { 2036 if (mm->hiwater_vm < mm->total_vm) 2037 mm->hiwater_vm = mm->total_vm; 2038 } 2039 2040 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 2041 { 2042 mm->hiwater_rss = get_mm_rss(mm); 2043 } 2044 2045 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 2046 struct mm_struct *mm) 2047 { 2048 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 2049 2050 if (*maxrss < hiwater_rss) 2051 *maxrss = hiwater_rss; 2052 } 2053 2054 #if defined(SPLIT_RSS_COUNTING) 2055 void sync_mm_rss(struct mm_struct *mm); 2056 #else 2057 static inline void sync_mm_rss(struct mm_struct *mm) 2058 { 2059 } 2060 #endif 2061 2062 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 2063 static inline int pte_special(pte_t pte) 2064 { 2065 return 0; 2066 } 2067 2068 static inline pte_t pte_mkspecial(pte_t pte) 2069 { 2070 return pte; 2071 } 2072 #endif 2073 2074 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 2075 static inline int pte_devmap(pte_t pte) 2076 { 2077 return 0; 2078 } 2079 #endif 2080 2081 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 2082 2083 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 2084 spinlock_t **ptl); 2085 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 2086 spinlock_t **ptl) 2087 { 2088 pte_t *ptep; 2089 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 2090 return ptep; 2091 } 2092 2093 #ifdef __PAGETABLE_P4D_FOLDED 2094 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2095 unsigned long address) 2096 { 2097 return 0; 2098 } 2099 #else 2100 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2101 #endif 2102 2103 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2104 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2105 unsigned long address) 2106 { 2107 return 0; 2108 } 2109 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2110 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2111 2112 #else 2113 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2114 2115 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2116 { 2117 if (mm_pud_folded(mm)) 2118 return; 2119 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2120 } 2121 2122 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2123 { 2124 if (mm_pud_folded(mm)) 2125 return; 2126 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2127 } 2128 #endif 2129 2130 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2131 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2132 unsigned long address) 2133 { 2134 return 0; 2135 } 2136 2137 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2138 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2139 2140 #else 2141 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2142 2143 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2144 { 2145 if (mm_pmd_folded(mm)) 2146 return; 2147 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2148 } 2149 2150 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2151 { 2152 if (mm_pmd_folded(mm)) 2153 return; 2154 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2155 } 2156 #endif 2157 2158 #ifdef CONFIG_MMU 2159 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2160 { 2161 atomic_long_set(&mm->pgtables_bytes, 0); 2162 } 2163 2164 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2165 { 2166 return atomic_long_read(&mm->pgtables_bytes); 2167 } 2168 2169 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2170 { 2171 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2172 } 2173 2174 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2175 { 2176 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2177 } 2178 #else 2179 2180 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2181 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2182 { 2183 return 0; 2184 } 2185 2186 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2187 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2188 #endif 2189 2190 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2191 int __pte_alloc_kernel(pmd_t *pmd); 2192 2193 #if defined(CONFIG_MMU) 2194 2195 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2196 unsigned long address) 2197 { 2198 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2199 NULL : p4d_offset(pgd, address); 2200 } 2201 2202 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2203 unsigned long address) 2204 { 2205 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2206 NULL : pud_offset(p4d, address); 2207 } 2208 2209 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2210 { 2211 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2212 NULL: pmd_offset(pud, address); 2213 } 2214 #endif /* CONFIG_MMU */ 2215 2216 #if USE_SPLIT_PTE_PTLOCKS 2217 #if ALLOC_SPLIT_PTLOCKS 2218 void __init ptlock_cache_init(void); 2219 extern bool ptlock_alloc(struct page *page); 2220 extern void ptlock_free(struct page *page); 2221 2222 static inline spinlock_t *ptlock_ptr(struct page *page) 2223 { 2224 return page->ptl; 2225 } 2226 #else /* ALLOC_SPLIT_PTLOCKS */ 2227 static inline void ptlock_cache_init(void) 2228 { 2229 } 2230 2231 static inline bool ptlock_alloc(struct page *page) 2232 { 2233 return true; 2234 } 2235 2236 static inline void ptlock_free(struct page *page) 2237 { 2238 } 2239 2240 static inline spinlock_t *ptlock_ptr(struct page *page) 2241 { 2242 return &page->ptl; 2243 } 2244 #endif /* ALLOC_SPLIT_PTLOCKS */ 2245 2246 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2247 { 2248 return ptlock_ptr(pmd_page(*pmd)); 2249 } 2250 2251 static inline bool ptlock_init(struct page *page) 2252 { 2253 /* 2254 * prep_new_page() initialize page->private (and therefore page->ptl) 2255 * with 0. Make sure nobody took it in use in between. 2256 * 2257 * It can happen if arch try to use slab for page table allocation: 2258 * slab code uses page->slab_cache, which share storage with page->ptl. 2259 */ 2260 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2261 if (!ptlock_alloc(page)) 2262 return false; 2263 spin_lock_init(ptlock_ptr(page)); 2264 return true; 2265 } 2266 2267 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2268 /* 2269 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2270 */ 2271 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2272 { 2273 return &mm->page_table_lock; 2274 } 2275 static inline void ptlock_cache_init(void) {} 2276 static inline bool ptlock_init(struct page *page) { return true; } 2277 static inline void ptlock_free(struct page *page) {} 2278 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2279 2280 static inline void pgtable_init(void) 2281 { 2282 ptlock_cache_init(); 2283 pgtable_cache_init(); 2284 } 2285 2286 static inline bool pgtable_pte_page_ctor(struct page *page) 2287 { 2288 if (!ptlock_init(page)) 2289 return false; 2290 __SetPageTable(page); 2291 inc_lruvec_page_state(page, NR_PAGETABLE); 2292 return true; 2293 } 2294 2295 static inline void pgtable_pte_page_dtor(struct page *page) 2296 { 2297 ptlock_free(page); 2298 __ClearPageTable(page); 2299 dec_lruvec_page_state(page, NR_PAGETABLE); 2300 } 2301 2302 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2303 ({ \ 2304 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2305 pte_t *__pte = pte_offset_map(pmd, address); \ 2306 *(ptlp) = __ptl; \ 2307 spin_lock(__ptl); \ 2308 __pte; \ 2309 }) 2310 2311 #define pte_unmap_unlock(pte, ptl) do { \ 2312 spin_unlock(ptl); \ 2313 pte_unmap(pte); \ 2314 } while (0) 2315 2316 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2317 2318 #define pte_alloc_map(mm, pmd, address) \ 2319 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2320 2321 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2322 (pte_alloc(mm, pmd) ? \ 2323 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2324 2325 #define pte_alloc_kernel(pmd, address) \ 2326 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2327 NULL: pte_offset_kernel(pmd, address)) 2328 2329 #if USE_SPLIT_PMD_PTLOCKS 2330 2331 static struct page *pmd_to_page(pmd_t *pmd) 2332 { 2333 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2334 return virt_to_page((void *)((unsigned long) pmd & mask)); 2335 } 2336 2337 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2338 { 2339 return ptlock_ptr(pmd_to_page(pmd)); 2340 } 2341 2342 static inline bool pmd_ptlock_init(struct page *page) 2343 { 2344 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2345 page->pmd_huge_pte = NULL; 2346 #endif 2347 return ptlock_init(page); 2348 } 2349 2350 static inline void pmd_ptlock_free(struct page *page) 2351 { 2352 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2353 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2354 #endif 2355 ptlock_free(page); 2356 } 2357 2358 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2359 2360 #else 2361 2362 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2363 { 2364 return &mm->page_table_lock; 2365 } 2366 2367 static inline bool pmd_ptlock_init(struct page *page) { return true; } 2368 static inline void pmd_ptlock_free(struct page *page) {} 2369 2370 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2371 2372 #endif 2373 2374 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2375 { 2376 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2377 spin_lock(ptl); 2378 return ptl; 2379 } 2380 2381 static inline bool pgtable_pmd_page_ctor(struct page *page) 2382 { 2383 if (!pmd_ptlock_init(page)) 2384 return false; 2385 __SetPageTable(page); 2386 inc_lruvec_page_state(page, NR_PAGETABLE); 2387 return true; 2388 } 2389 2390 static inline void pgtable_pmd_page_dtor(struct page *page) 2391 { 2392 pmd_ptlock_free(page); 2393 __ClearPageTable(page); 2394 dec_lruvec_page_state(page, NR_PAGETABLE); 2395 } 2396 2397 /* 2398 * No scalability reason to split PUD locks yet, but follow the same pattern 2399 * as the PMD locks to make it easier if we decide to. The VM should not be 2400 * considered ready to switch to split PUD locks yet; there may be places 2401 * which need to be converted from page_table_lock. 2402 */ 2403 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2404 { 2405 return &mm->page_table_lock; 2406 } 2407 2408 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2409 { 2410 spinlock_t *ptl = pud_lockptr(mm, pud); 2411 2412 spin_lock(ptl); 2413 return ptl; 2414 } 2415 2416 extern void __init pagecache_init(void); 2417 extern void free_initmem(void); 2418 2419 /* 2420 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2421 * into the buddy system. The freed pages will be poisoned with pattern 2422 * "poison" if it's within range [0, UCHAR_MAX]. 2423 * Return pages freed into the buddy system. 2424 */ 2425 extern unsigned long free_reserved_area(void *start, void *end, 2426 int poison, const char *s); 2427 2428 extern void adjust_managed_page_count(struct page *page, long count); 2429 extern void mem_init_print_info(void); 2430 2431 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2432 2433 /* Free the reserved page into the buddy system, so it gets managed. */ 2434 static inline void free_reserved_page(struct page *page) 2435 { 2436 ClearPageReserved(page); 2437 init_page_count(page); 2438 __free_page(page); 2439 adjust_managed_page_count(page, 1); 2440 } 2441 #define free_highmem_page(page) free_reserved_page(page) 2442 2443 static inline void mark_page_reserved(struct page *page) 2444 { 2445 SetPageReserved(page); 2446 adjust_managed_page_count(page, -1); 2447 } 2448 2449 /* 2450 * Default method to free all the __init memory into the buddy system. 2451 * The freed pages will be poisoned with pattern "poison" if it's within 2452 * range [0, UCHAR_MAX]. 2453 * Return pages freed into the buddy system. 2454 */ 2455 static inline unsigned long free_initmem_default(int poison) 2456 { 2457 extern char __init_begin[], __init_end[]; 2458 2459 return free_reserved_area(&__init_begin, &__init_end, 2460 poison, "unused kernel image (initmem)"); 2461 } 2462 2463 static inline unsigned long get_num_physpages(void) 2464 { 2465 int nid; 2466 unsigned long phys_pages = 0; 2467 2468 for_each_online_node(nid) 2469 phys_pages += node_present_pages(nid); 2470 2471 return phys_pages; 2472 } 2473 2474 /* 2475 * Using memblock node mappings, an architecture may initialise its 2476 * zones, allocate the backing mem_map and account for memory holes in an 2477 * architecture independent manner. 2478 * 2479 * An architecture is expected to register range of page frames backed by 2480 * physical memory with memblock_add[_node]() before calling 2481 * free_area_init() passing in the PFN each zone ends at. At a basic 2482 * usage, an architecture is expected to do something like 2483 * 2484 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2485 * max_highmem_pfn}; 2486 * for_each_valid_physical_page_range() 2487 * memblock_add_node(base, size, nid, MEMBLOCK_NONE) 2488 * free_area_init(max_zone_pfns); 2489 */ 2490 void free_area_init(unsigned long *max_zone_pfn); 2491 unsigned long node_map_pfn_alignment(void); 2492 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2493 unsigned long end_pfn); 2494 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2495 unsigned long end_pfn); 2496 extern void get_pfn_range_for_nid(unsigned int nid, 2497 unsigned long *start_pfn, unsigned long *end_pfn); 2498 extern unsigned long find_min_pfn_with_active_regions(void); 2499 2500 #ifndef CONFIG_NUMA 2501 static inline int early_pfn_to_nid(unsigned long pfn) 2502 { 2503 return 0; 2504 } 2505 #else 2506 /* please see mm/page_alloc.c */ 2507 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2508 #endif 2509 2510 extern void set_dma_reserve(unsigned long new_dma_reserve); 2511 extern void memmap_init_range(unsigned long, int, unsigned long, 2512 unsigned long, unsigned long, enum meminit_context, 2513 struct vmem_altmap *, int migratetype); 2514 extern void setup_per_zone_wmarks(void); 2515 extern void calculate_min_free_kbytes(void); 2516 extern int __meminit init_per_zone_wmark_min(void); 2517 extern void mem_init(void); 2518 extern void __init mmap_init(void); 2519 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2520 extern long si_mem_available(void); 2521 extern void si_meminfo(struct sysinfo * val); 2522 extern void si_meminfo_node(struct sysinfo *val, int nid); 2523 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2524 extern unsigned long arch_reserved_kernel_pages(void); 2525 #endif 2526 2527 extern __printf(3, 4) 2528 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2529 2530 extern void setup_per_cpu_pageset(void); 2531 2532 /* page_alloc.c */ 2533 extern int min_free_kbytes; 2534 extern int watermark_boost_factor; 2535 extern int watermark_scale_factor; 2536 extern bool arch_has_descending_max_zone_pfns(void); 2537 2538 /* nommu.c */ 2539 extern atomic_long_t mmap_pages_allocated; 2540 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2541 2542 /* interval_tree.c */ 2543 void vma_interval_tree_insert(struct vm_area_struct *node, 2544 struct rb_root_cached *root); 2545 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2546 struct vm_area_struct *prev, 2547 struct rb_root_cached *root); 2548 void vma_interval_tree_remove(struct vm_area_struct *node, 2549 struct rb_root_cached *root); 2550 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2551 unsigned long start, unsigned long last); 2552 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2553 unsigned long start, unsigned long last); 2554 2555 #define vma_interval_tree_foreach(vma, root, start, last) \ 2556 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2557 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2558 2559 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2560 struct rb_root_cached *root); 2561 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2562 struct rb_root_cached *root); 2563 struct anon_vma_chain * 2564 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2565 unsigned long start, unsigned long last); 2566 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2567 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2568 #ifdef CONFIG_DEBUG_VM_RB 2569 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2570 #endif 2571 2572 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2573 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2574 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2575 2576 /* mmap.c */ 2577 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2578 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2579 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2580 struct vm_area_struct *expand); 2581 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2582 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2583 { 2584 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2585 } 2586 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2587 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2588 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2589 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *); 2590 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2591 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2592 unsigned long addr, int new_below); 2593 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2594 unsigned long addr, int new_below); 2595 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2596 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2597 struct rb_node **, struct rb_node *); 2598 extern void unlink_file_vma(struct vm_area_struct *); 2599 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2600 unsigned long addr, unsigned long len, pgoff_t pgoff, 2601 bool *need_rmap_locks); 2602 extern void exit_mmap(struct mm_struct *); 2603 2604 static inline int check_data_rlimit(unsigned long rlim, 2605 unsigned long new, 2606 unsigned long start, 2607 unsigned long end_data, 2608 unsigned long start_data) 2609 { 2610 if (rlim < RLIM_INFINITY) { 2611 if (((new - start) + (end_data - start_data)) > rlim) 2612 return -ENOSPC; 2613 } 2614 2615 return 0; 2616 } 2617 2618 extern int mm_take_all_locks(struct mm_struct *mm); 2619 extern void mm_drop_all_locks(struct mm_struct *mm); 2620 2621 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2622 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2623 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2624 extern struct file *get_task_exe_file(struct task_struct *task); 2625 2626 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2627 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2628 2629 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2630 const struct vm_special_mapping *sm); 2631 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2632 unsigned long addr, unsigned long len, 2633 unsigned long flags, 2634 const struct vm_special_mapping *spec); 2635 /* This is an obsolete alternative to _install_special_mapping. */ 2636 extern int install_special_mapping(struct mm_struct *mm, 2637 unsigned long addr, unsigned long len, 2638 unsigned long flags, struct page **pages); 2639 2640 unsigned long randomize_stack_top(unsigned long stack_top); 2641 unsigned long randomize_page(unsigned long start, unsigned long range); 2642 2643 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2644 2645 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2646 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2647 struct list_head *uf); 2648 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2649 unsigned long len, unsigned long prot, unsigned long flags, 2650 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2651 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2652 struct list_head *uf, bool downgrade); 2653 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2654 struct list_head *uf); 2655 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior); 2656 2657 #ifdef CONFIG_MMU 2658 extern int __mm_populate(unsigned long addr, unsigned long len, 2659 int ignore_errors); 2660 static inline void mm_populate(unsigned long addr, unsigned long len) 2661 { 2662 /* Ignore errors */ 2663 (void) __mm_populate(addr, len, 1); 2664 } 2665 #else 2666 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2667 #endif 2668 2669 /* These take the mm semaphore themselves */ 2670 extern int __must_check vm_brk(unsigned long, unsigned long); 2671 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2672 extern int vm_munmap(unsigned long, size_t); 2673 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2674 unsigned long, unsigned long, 2675 unsigned long, unsigned long); 2676 2677 struct vm_unmapped_area_info { 2678 #define VM_UNMAPPED_AREA_TOPDOWN 1 2679 unsigned long flags; 2680 unsigned long length; 2681 unsigned long low_limit; 2682 unsigned long high_limit; 2683 unsigned long align_mask; 2684 unsigned long align_offset; 2685 }; 2686 2687 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2688 2689 /* truncate.c */ 2690 extern void truncate_inode_pages(struct address_space *, loff_t); 2691 extern void truncate_inode_pages_range(struct address_space *, 2692 loff_t lstart, loff_t lend); 2693 extern void truncate_inode_pages_final(struct address_space *); 2694 2695 /* generic vm_area_ops exported for stackable file systems */ 2696 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2697 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf, 2698 pgoff_t start_pgoff, pgoff_t end_pgoff); 2699 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2700 2701 extern unsigned long stack_guard_gap; 2702 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2703 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2704 2705 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2706 extern int expand_downwards(struct vm_area_struct *vma, 2707 unsigned long address); 2708 #if VM_GROWSUP 2709 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2710 #else 2711 #define expand_upwards(vma, address) (0) 2712 #endif 2713 2714 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2715 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2716 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2717 struct vm_area_struct **pprev); 2718 2719 /** 2720 * find_vma_intersection() - Look up the first VMA which intersects the interval 2721 * @mm: The process address space. 2722 * @start_addr: The inclusive start user address. 2723 * @end_addr: The exclusive end user address. 2724 * 2725 * Returns: The first VMA within the provided range, %NULL otherwise. Assumes 2726 * start_addr < end_addr. 2727 */ 2728 static inline 2729 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm, 2730 unsigned long start_addr, 2731 unsigned long end_addr) 2732 { 2733 struct vm_area_struct *vma = find_vma(mm, start_addr); 2734 2735 if (vma && end_addr <= vma->vm_start) 2736 vma = NULL; 2737 return vma; 2738 } 2739 2740 /** 2741 * vma_lookup() - Find a VMA at a specific address 2742 * @mm: The process address space. 2743 * @addr: The user address. 2744 * 2745 * Return: The vm_area_struct at the given address, %NULL otherwise. 2746 */ 2747 static inline 2748 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr) 2749 { 2750 struct vm_area_struct *vma = find_vma(mm, addr); 2751 2752 if (vma && addr < vma->vm_start) 2753 vma = NULL; 2754 2755 return vma; 2756 } 2757 2758 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2759 { 2760 unsigned long vm_start = vma->vm_start; 2761 2762 if (vma->vm_flags & VM_GROWSDOWN) { 2763 vm_start -= stack_guard_gap; 2764 if (vm_start > vma->vm_start) 2765 vm_start = 0; 2766 } 2767 return vm_start; 2768 } 2769 2770 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2771 { 2772 unsigned long vm_end = vma->vm_end; 2773 2774 if (vma->vm_flags & VM_GROWSUP) { 2775 vm_end += stack_guard_gap; 2776 if (vm_end < vma->vm_end) 2777 vm_end = -PAGE_SIZE; 2778 } 2779 return vm_end; 2780 } 2781 2782 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2783 { 2784 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2785 } 2786 2787 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2788 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2789 unsigned long vm_start, unsigned long vm_end) 2790 { 2791 struct vm_area_struct *vma = find_vma(mm, vm_start); 2792 2793 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2794 vma = NULL; 2795 2796 return vma; 2797 } 2798 2799 static inline bool range_in_vma(struct vm_area_struct *vma, 2800 unsigned long start, unsigned long end) 2801 { 2802 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2803 } 2804 2805 #ifdef CONFIG_MMU 2806 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2807 void vma_set_page_prot(struct vm_area_struct *vma); 2808 #else 2809 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2810 { 2811 return __pgprot(0); 2812 } 2813 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2814 { 2815 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2816 } 2817 #endif 2818 2819 void vma_set_file(struct vm_area_struct *vma, struct file *file); 2820 2821 #ifdef CONFIG_NUMA_BALANCING 2822 unsigned long change_prot_numa(struct vm_area_struct *vma, 2823 unsigned long start, unsigned long end); 2824 #endif 2825 2826 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2827 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2828 unsigned long pfn, unsigned long size, pgprot_t); 2829 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr, 2830 unsigned long pfn, unsigned long size, pgprot_t prot); 2831 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2832 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2833 struct page **pages, unsigned long *num); 2834 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2835 unsigned long num); 2836 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2837 unsigned long num); 2838 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2839 unsigned long pfn); 2840 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2841 unsigned long pfn, pgprot_t pgprot); 2842 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2843 pfn_t pfn); 2844 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2845 pfn_t pfn, pgprot_t pgprot); 2846 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2847 unsigned long addr, pfn_t pfn); 2848 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2849 2850 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2851 unsigned long addr, struct page *page) 2852 { 2853 int err = vm_insert_page(vma, addr, page); 2854 2855 if (err == -ENOMEM) 2856 return VM_FAULT_OOM; 2857 if (err < 0 && err != -EBUSY) 2858 return VM_FAULT_SIGBUS; 2859 2860 return VM_FAULT_NOPAGE; 2861 } 2862 2863 #ifndef io_remap_pfn_range 2864 static inline int io_remap_pfn_range(struct vm_area_struct *vma, 2865 unsigned long addr, unsigned long pfn, 2866 unsigned long size, pgprot_t prot) 2867 { 2868 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot)); 2869 } 2870 #endif 2871 2872 static inline vm_fault_t vmf_error(int err) 2873 { 2874 if (err == -ENOMEM) 2875 return VM_FAULT_OOM; 2876 return VM_FAULT_SIGBUS; 2877 } 2878 2879 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2880 unsigned int foll_flags); 2881 2882 #define FOLL_WRITE 0x01 /* check pte is writable */ 2883 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2884 #define FOLL_GET 0x04 /* do get_page on page */ 2885 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2886 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2887 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2888 * and return without waiting upon it */ 2889 #define FOLL_NOFAULT 0x80 /* do not fault in pages */ 2890 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2891 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2892 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2893 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2894 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2895 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2896 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2897 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2898 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2899 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2900 2901 /* 2902 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2903 * other. Here is what they mean, and how to use them: 2904 * 2905 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2906 * period _often_ under userspace control. This is in contrast to 2907 * iov_iter_get_pages(), whose usages are transient. 2908 * 2909 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2910 * lifetime enforced by the filesystem and we need guarantees that longterm 2911 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2912 * the filesystem. Ideas for this coordination include revoking the longterm 2913 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2914 * added after the problem with filesystems was found FS DAX VMAs are 2915 * specifically failed. Filesystem pages are still subject to bugs and use of 2916 * FOLL_LONGTERM should be avoided on those pages. 2917 * 2918 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2919 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2920 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2921 * is due to an incompatibility with the FS DAX check and 2922 * FAULT_FLAG_ALLOW_RETRY. 2923 * 2924 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2925 * that region. And so, CMA attempts to migrate the page before pinning, when 2926 * FOLL_LONGTERM is specified. 2927 * 2928 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2929 * but an additional pin counting system) will be invoked. This is intended for 2930 * anything that gets a page reference and then touches page data (for example, 2931 * Direct IO). This lets the filesystem know that some non-file-system entity is 2932 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2933 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2934 * a call to unpin_user_page(). 2935 * 2936 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2937 * and separate refcounting mechanisms, however, and that means that each has 2938 * its own acquire and release mechanisms: 2939 * 2940 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2941 * 2942 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2943 * 2944 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2945 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2946 * calls applied to them, and that's perfectly OK. This is a constraint on the 2947 * callers, not on the pages.) 2948 * 2949 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2950 * directly by the caller. That's in order to help avoid mismatches when 2951 * releasing pages: get_user_pages*() pages must be released via put_page(), 2952 * while pin_user_pages*() pages must be released via unpin_user_page(). 2953 * 2954 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2955 */ 2956 2957 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2958 { 2959 if (vm_fault & VM_FAULT_OOM) 2960 return -ENOMEM; 2961 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2962 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2963 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2964 return -EFAULT; 2965 return 0; 2966 } 2967 2968 /* 2969 * Indicates for which pages that are write-protected in the page table, 2970 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the 2971 * GUP pin will remain consistent with the pages mapped into the page tables 2972 * of the MM. 2973 * 2974 * Temporary unmapping of PageAnonExclusive() pages or clearing of 2975 * PageAnonExclusive() has to protect against concurrent GUP: 2976 * * Ordinary GUP: Using the PT lock 2977 * * GUP-fast and fork(): mm->write_protect_seq 2978 * * GUP-fast and KSM or temporary unmapping (swap, migration): 2979 * clear/invalidate+flush of the page table entry 2980 * 2981 * Must be called with the (sub)page that's actually referenced via the 2982 * page table entry, which might not necessarily be the head page for a 2983 * PTE-mapped THP. 2984 */ 2985 static inline bool gup_must_unshare(unsigned int flags, struct page *page) 2986 { 2987 /* 2988 * FOLL_WRITE is implicitly handled correctly as the page table entry 2989 * has to be writable -- and if it references (part of) an anonymous 2990 * folio, that part is required to be marked exclusive. 2991 */ 2992 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN) 2993 return false; 2994 /* 2995 * Note: PageAnon(page) is stable until the page is actually getting 2996 * freed. 2997 */ 2998 if (!PageAnon(page)) 2999 return false; 3000 /* 3001 * Note that PageKsm() pages cannot be exclusive, and consequently, 3002 * cannot get pinned. 3003 */ 3004 return !PageAnonExclusive(page); 3005 } 3006 3007 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 3008 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 3009 unsigned long size, pte_fn_t fn, void *data); 3010 extern int apply_to_existing_page_range(struct mm_struct *mm, 3011 unsigned long address, unsigned long size, 3012 pte_fn_t fn, void *data); 3013 3014 extern void init_mem_debugging_and_hardening(void); 3015 #ifdef CONFIG_PAGE_POISONING 3016 extern void __kernel_poison_pages(struct page *page, int numpages); 3017 extern void __kernel_unpoison_pages(struct page *page, int numpages); 3018 extern bool _page_poisoning_enabled_early; 3019 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled); 3020 static inline bool page_poisoning_enabled(void) 3021 { 3022 return _page_poisoning_enabled_early; 3023 } 3024 /* 3025 * For use in fast paths after init_mem_debugging() has run, or when a 3026 * false negative result is not harmful when called too early. 3027 */ 3028 static inline bool page_poisoning_enabled_static(void) 3029 { 3030 return static_branch_unlikely(&_page_poisoning_enabled); 3031 } 3032 static inline void kernel_poison_pages(struct page *page, int numpages) 3033 { 3034 if (page_poisoning_enabled_static()) 3035 __kernel_poison_pages(page, numpages); 3036 } 3037 static inline void kernel_unpoison_pages(struct page *page, int numpages) 3038 { 3039 if (page_poisoning_enabled_static()) 3040 __kernel_unpoison_pages(page, numpages); 3041 } 3042 #else 3043 static inline bool page_poisoning_enabled(void) { return false; } 3044 static inline bool page_poisoning_enabled_static(void) { return false; } 3045 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { } 3046 static inline void kernel_poison_pages(struct page *page, int numpages) { } 3047 static inline void kernel_unpoison_pages(struct page *page, int numpages) { } 3048 #endif 3049 3050 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 3051 static inline bool want_init_on_alloc(gfp_t flags) 3052 { 3053 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, 3054 &init_on_alloc)) 3055 return true; 3056 return flags & __GFP_ZERO; 3057 } 3058 3059 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 3060 static inline bool want_init_on_free(void) 3061 { 3062 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON, 3063 &init_on_free); 3064 } 3065 3066 extern bool _debug_pagealloc_enabled_early; 3067 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 3068 3069 static inline bool debug_pagealloc_enabled(void) 3070 { 3071 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 3072 _debug_pagealloc_enabled_early; 3073 } 3074 3075 /* 3076 * For use in fast paths after init_debug_pagealloc() has run, or when a 3077 * false negative result is not harmful when called too early. 3078 */ 3079 static inline bool debug_pagealloc_enabled_static(void) 3080 { 3081 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 3082 return false; 3083 3084 return static_branch_unlikely(&_debug_pagealloc_enabled); 3085 } 3086 3087 #ifdef CONFIG_DEBUG_PAGEALLOC 3088 /* 3089 * To support DEBUG_PAGEALLOC architecture must ensure that 3090 * __kernel_map_pages() never fails 3091 */ 3092 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 3093 3094 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) 3095 { 3096 if (debug_pagealloc_enabled_static()) 3097 __kernel_map_pages(page, numpages, 1); 3098 } 3099 3100 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) 3101 { 3102 if (debug_pagealloc_enabled_static()) 3103 __kernel_map_pages(page, numpages, 0); 3104 } 3105 #else /* CONFIG_DEBUG_PAGEALLOC */ 3106 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {} 3107 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {} 3108 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3109 3110 #ifdef __HAVE_ARCH_GATE_AREA 3111 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 3112 extern int in_gate_area_no_mm(unsigned long addr); 3113 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 3114 #else 3115 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 3116 { 3117 return NULL; 3118 } 3119 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 3120 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 3121 { 3122 return 0; 3123 } 3124 #endif /* __HAVE_ARCH_GATE_AREA */ 3125 3126 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 3127 3128 #ifdef CONFIG_SYSCTL 3129 extern int sysctl_drop_caches; 3130 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 3131 loff_t *); 3132 #endif 3133 3134 void drop_slab(void); 3135 3136 #ifndef CONFIG_MMU 3137 #define randomize_va_space 0 3138 #else 3139 extern int randomize_va_space; 3140 #endif 3141 3142 const char * arch_vma_name(struct vm_area_struct *vma); 3143 #ifdef CONFIG_MMU 3144 void print_vma_addr(char *prefix, unsigned long rip); 3145 #else 3146 static inline void print_vma_addr(char *prefix, unsigned long rip) 3147 { 3148 } 3149 #endif 3150 3151 void *sparse_buffer_alloc(unsigned long size); 3152 struct page * __populate_section_memmap(unsigned long pfn, 3153 unsigned long nr_pages, int nid, struct vmem_altmap *altmap, 3154 struct dev_pagemap *pgmap); 3155 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3156 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3157 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3158 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3159 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 3160 struct vmem_altmap *altmap, struct page *reuse); 3161 void *vmemmap_alloc_block(unsigned long size, int node); 3162 struct vmem_altmap; 3163 void *vmemmap_alloc_block_buf(unsigned long size, int node, 3164 struct vmem_altmap *altmap); 3165 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3166 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3167 int node, struct vmem_altmap *altmap); 3168 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3169 struct vmem_altmap *altmap); 3170 void vmemmap_populate_print_last(void); 3171 #ifdef CONFIG_MEMORY_HOTPLUG 3172 void vmemmap_free(unsigned long start, unsigned long end, 3173 struct vmem_altmap *altmap); 3174 #endif 3175 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3176 unsigned long nr_pages); 3177 3178 enum mf_flags { 3179 MF_COUNT_INCREASED = 1 << 0, 3180 MF_ACTION_REQUIRED = 1 << 1, 3181 MF_MUST_KILL = 1 << 2, 3182 MF_SOFT_OFFLINE = 1 << 3, 3183 MF_UNPOISON = 1 << 4, 3184 MF_SW_SIMULATED = 1 << 5, 3185 MF_NO_RETRY = 1 << 6, 3186 }; 3187 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index, 3188 unsigned long count, int mf_flags); 3189 extern int memory_failure(unsigned long pfn, int flags); 3190 extern void memory_failure_queue(unsigned long pfn, int flags); 3191 extern void memory_failure_queue_kick(int cpu); 3192 extern int unpoison_memory(unsigned long pfn); 3193 extern int sysctl_memory_failure_early_kill; 3194 extern int sysctl_memory_failure_recovery; 3195 extern void shake_page(struct page *p); 3196 extern atomic_long_t num_poisoned_pages __read_mostly; 3197 extern int soft_offline_page(unsigned long pfn, int flags); 3198 #ifdef CONFIG_MEMORY_FAILURE 3199 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags); 3200 #else 3201 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags) 3202 { 3203 return 0; 3204 } 3205 #endif 3206 3207 #ifndef arch_memory_failure 3208 static inline int arch_memory_failure(unsigned long pfn, int flags) 3209 { 3210 return -ENXIO; 3211 } 3212 #endif 3213 3214 #ifndef arch_is_platform_page 3215 static inline bool arch_is_platform_page(u64 paddr) 3216 { 3217 return false; 3218 } 3219 #endif 3220 3221 /* 3222 * Error handlers for various types of pages. 3223 */ 3224 enum mf_result { 3225 MF_IGNORED, /* Error: cannot be handled */ 3226 MF_FAILED, /* Error: handling failed */ 3227 MF_DELAYED, /* Will be handled later */ 3228 MF_RECOVERED, /* Successfully recovered */ 3229 }; 3230 3231 enum mf_action_page_type { 3232 MF_MSG_KERNEL, 3233 MF_MSG_KERNEL_HIGH_ORDER, 3234 MF_MSG_SLAB, 3235 MF_MSG_DIFFERENT_COMPOUND, 3236 MF_MSG_HUGE, 3237 MF_MSG_FREE_HUGE, 3238 MF_MSG_UNMAP_FAILED, 3239 MF_MSG_DIRTY_SWAPCACHE, 3240 MF_MSG_CLEAN_SWAPCACHE, 3241 MF_MSG_DIRTY_MLOCKED_LRU, 3242 MF_MSG_CLEAN_MLOCKED_LRU, 3243 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3244 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3245 MF_MSG_DIRTY_LRU, 3246 MF_MSG_CLEAN_LRU, 3247 MF_MSG_TRUNCATED_LRU, 3248 MF_MSG_BUDDY, 3249 MF_MSG_DAX, 3250 MF_MSG_UNSPLIT_THP, 3251 MF_MSG_UNKNOWN, 3252 }; 3253 3254 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3255 extern void clear_huge_page(struct page *page, 3256 unsigned long addr_hint, 3257 unsigned int pages_per_huge_page); 3258 extern void copy_user_huge_page(struct page *dst, struct page *src, 3259 unsigned long addr_hint, 3260 struct vm_area_struct *vma, 3261 unsigned int pages_per_huge_page); 3262 extern long copy_huge_page_from_user(struct page *dst_page, 3263 const void __user *usr_src, 3264 unsigned int pages_per_huge_page, 3265 bool allow_pagefault); 3266 3267 /** 3268 * vma_is_special_huge - Are transhuge page-table entries considered special? 3269 * @vma: Pointer to the struct vm_area_struct to consider 3270 * 3271 * Whether transhuge page-table entries are considered "special" following 3272 * the definition in vm_normal_page(). 3273 * 3274 * Return: true if transhuge page-table entries should be considered special, 3275 * false otherwise. 3276 */ 3277 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3278 { 3279 return vma_is_dax(vma) || (vma->vm_file && 3280 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3281 } 3282 3283 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3284 3285 #ifdef CONFIG_DEBUG_PAGEALLOC 3286 extern unsigned int _debug_guardpage_minorder; 3287 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3288 3289 static inline unsigned int debug_guardpage_minorder(void) 3290 { 3291 return _debug_guardpage_minorder; 3292 } 3293 3294 static inline bool debug_guardpage_enabled(void) 3295 { 3296 return static_branch_unlikely(&_debug_guardpage_enabled); 3297 } 3298 3299 static inline bool page_is_guard(struct page *page) 3300 { 3301 if (!debug_guardpage_enabled()) 3302 return false; 3303 3304 return PageGuard(page); 3305 } 3306 #else 3307 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3308 static inline bool debug_guardpage_enabled(void) { return false; } 3309 static inline bool page_is_guard(struct page *page) { return false; } 3310 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3311 3312 #if MAX_NUMNODES > 1 3313 void __init setup_nr_node_ids(void); 3314 #else 3315 static inline void setup_nr_node_ids(void) {} 3316 #endif 3317 3318 extern int memcmp_pages(struct page *page1, struct page *page2); 3319 3320 static inline int pages_identical(struct page *page1, struct page *page2) 3321 { 3322 return !memcmp_pages(page1, page2); 3323 } 3324 3325 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3326 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3327 pgoff_t first_index, pgoff_t nr, 3328 pgoff_t bitmap_pgoff, 3329 unsigned long *bitmap, 3330 pgoff_t *start, 3331 pgoff_t *end); 3332 3333 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3334 pgoff_t first_index, pgoff_t nr); 3335 #endif 3336 3337 extern int sysctl_nr_trim_pages; 3338 3339 #ifdef CONFIG_PRINTK 3340 void mem_dump_obj(void *object); 3341 #else 3342 static inline void mem_dump_obj(void *object) {} 3343 #endif 3344 3345 /** 3346 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it 3347 * @seals: the seals to check 3348 * @vma: the vma to operate on 3349 * 3350 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on 3351 * the vma flags. Return 0 if check pass, or <0 for errors. 3352 */ 3353 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma) 3354 { 3355 if (seals & F_SEAL_FUTURE_WRITE) { 3356 /* 3357 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when 3358 * "future write" seal active. 3359 */ 3360 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE)) 3361 return -EPERM; 3362 3363 /* 3364 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as 3365 * MAP_SHARED and read-only, take care to not allow mprotect to 3366 * revert protections on such mappings. Do this only for shared 3367 * mappings. For private mappings, don't need to mask 3368 * VM_MAYWRITE as we still want them to be COW-writable. 3369 */ 3370 if (vma->vm_flags & VM_SHARED) 3371 vma->vm_flags &= ~(VM_MAYWRITE); 3372 } 3373 3374 return 0; 3375 } 3376 3377 #ifdef CONFIG_ANON_VMA_NAME 3378 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3379 unsigned long len_in, 3380 struct anon_vma_name *anon_name); 3381 #else 3382 static inline int 3383 madvise_set_anon_name(struct mm_struct *mm, unsigned long start, 3384 unsigned long len_in, struct anon_vma_name *anon_name) { 3385 return 0; 3386 } 3387 #endif 3388 3389 /* 3390 * Whether to drop the pte markers, for example, the uffd-wp information for 3391 * file-backed memory. This should only be specified when we will completely 3392 * drop the page in the mm, either by truncation or unmapping of the vma. By 3393 * default, the flag is not set. 3394 */ 3395 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0)) 3396 3397 #endif /* _LINUX_MM_H */ 3398