1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page_ref.h> 28 #include <linux/memremap.h> 29 #include <linux/overflow.h> 30 #include <linux/sizes.h> 31 #include <linux/sched.h> 32 #include <linux/pgtable.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct file_ra_state; 38 struct user_struct; 39 struct writeback_control; 40 struct bdi_writeback; 41 42 void init_mm_internals(void); 43 44 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 45 extern unsigned long max_mapnr; 46 47 static inline void set_max_mapnr(unsigned long limit) 48 { 49 max_mapnr = limit; 50 } 51 #else 52 static inline void set_max_mapnr(unsigned long limit) { } 53 #endif 54 55 extern atomic_long_t _totalram_pages; 56 static inline unsigned long totalram_pages(void) 57 { 58 return (unsigned long)atomic_long_read(&_totalram_pages); 59 } 60 61 static inline void totalram_pages_inc(void) 62 { 63 atomic_long_inc(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_dec(void) 67 { 68 atomic_long_dec(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_add(long count) 72 { 73 atomic_long_add(count, &_totalram_pages); 74 } 75 76 extern void * high_memory; 77 extern int page_cluster; 78 79 #ifdef CONFIG_SYSCTL 80 extern int sysctl_legacy_va_layout; 81 #else 82 #define sysctl_legacy_va_layout 0 83 #endif 84 85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86 extern const int mmap_rnd_bits_min; 87 extern const int mmap_rnd_bits_max; 88 extern int mmap_rnd_bits __read_mostly; 89 #endif 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91 extern const int mmap_rnd_compat_bits_min; 92 extern const int mmap_rnd_compat_bits_max; 93 extern int mmap_rnd_compat_bits __read_mostly; 94 #endif 95 96 #include <asm/page.h> 97 #include <asm/processor.h> 98 99 /* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for arcitectures that don't support memory tagging. 105 */ 106 #ifndef untagged_addr 107 #define untagged_addr(addr) (addr) 108 #endif 109 110 #ifndef __pa_symbol 111 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112 #endif 113 114 #ifndef page_to_virt 115 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116 #endif 117 118 #ifndef lm_alias 119 #define lm_alias(x) __va(__pa_symbol(x)) 120 #endif 121 122 /* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129 #ifndef mm_forbids_zeropage 130 #define mm_forbids_zeropage(X) (0) 131 #endif 132 133 /* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139 #if BITS_PER_LONG == 64 140 /* This function must be updated when the size of struct page grows above 80 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statments if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147 static inline void __mm_zero_struct_page(struct page *page) 148 { 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 80); 155 156 switch (sizeof(struct page)) { 157 case 80: 158 _pp[9] = 0; /* fallthrough */ 159 case 72: 160 _pp[8] = 0; /* fallthrough */ 161 case 64: 162 _pp[7] = 0; /* fallthrough */ 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 210 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 211 212 /* to align the pointer to the (next) page boundary */ 213 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 214 215 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 216 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 217 218 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 219 220 /* 221 * Linux kernel virtual memory manager primitives. 222 * The idea being to have a "virtual" mm in the same way 223 * we have a virtual fs - giving a cleaner interface to the 224 * mm details, and allowing different kinds of memory mappings 225 * (from shared memory to executable loading to arbitrary 226 * mmap() functions). 227 */ 228 229 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 230 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 231 void vm_area_free(struct vm_area_struct *); 232 233 #ifndef CONFIG_MMU 234 extern struct rb_root nommu_region_tree; 235 extern struct rw_semaphore nommu_region_sem; 236 237 extern unsigned int kobjsize(const void *objp); 238 #endif 239 240 /* 241 * vm_flags in vm_area_struct, see mm_types.h. 242 * When changing, update also include/trace/events/mmflags.h 243 */ 244 #define VM_NONE 0x00000000 245 246 #define VM_READ 0x00000001 /* currently active flags */ 247 #define VM_WRITE 0x00000002 248 #define VM_EXEC 0x00000004 249 #define VM_SHARED 0x00000008 250 251 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 252 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 253 #define VM_MAYWRITE 0x00000020 254 #define VM_MAYEXEC 0x00000040 255 #define VM_MAYSHARE 0x00000080 256 257 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 258 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 259 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 260 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 261 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 262 263 #define VM_LOCKED 0x00002000 264 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 265 266 /* Used by sys_madvise() */ 267 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 268 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 269 270 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 271 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 272 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 273 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 274 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 275 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 276 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 277 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 278 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 279 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 280 281 #ifdef CONFIG_MEM_SOFT_DIRTY 282 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 283 #else 284 # define VM_SOFTDIRTY 0 285 #endif 286 287 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 288 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 289 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 290 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 291 292 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 293 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 294 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 295 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 296 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 299 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 300 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 301 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 302 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 303 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 304 305 #ifdef CONFIG_ARCH_HAS_PKEYS 306 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 307 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 308 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 309 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 310 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 311 #ifdef CONFIG_PPC 312 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 313 #else 314 # define VM_PKEY_BIT4 0 315 #endif 316 #endif /* CONFIG_ARCH_HAS_PKEYS */ 317 318 #if defined(CONFIG_X86) 319 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 320 #elif defined(CONFIG_PPC) 321 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 322 #elif defined(CONFIG_PARISC) 323 # define VM_GROWSUP VM_ARCH_1 324 #elif defined(CONFIG_IA64) 325 # define VM_GROWSUP VM_ARCH_1 326 #elif defined(CONFIG_SPARC64) 327 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 328 # define VM_ARCH_CLEAR VM_SPARC_ADI 329 #elif defined(CONFIG_ARM64) 330 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 331 # define VM_ARCH_CLEAR VM_ARM64_BTI 332 #elif !defined(CONFIG_MMU) 333 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 334 #endif 335 336 #ifndef VM_GROWSUP 337 # define VM_GROWSUP VM_NONE 338 #endif 339 340 /* Bits set in the VMA until the stack is in its final location */ 341 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 342 343 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 344 345 /* Common data flag combinations */ 346 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 347 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 348 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 349 VM_MAYWRITE | VM_MAYEXEC) 350 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 351 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 352 353 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 354 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 355 #endif 356 357 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 358 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 359 #endif 360 361 #ifdef CONFIG_STACK_GROWSUP 362 #define VM_STACK VM_GROWSUP 363 #else 364 #define VM_STACK VM_GROWSDOWN 365 #endif 366 367 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 368 369 /* VMA basic access permission flags */ 370 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 371 372 373 /* 374 * Special vmas that are non-mergable, non-mlock()able. 375 */ 376 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 377 378 /* This mask prevents VMA from being scanned with khugepaged */ 379 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 380 381 /* This mask defines which mm->def_flags a process can inherit its parent */ 382 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 383 384 /* This mask is used to clear all the VMA flags used by mlock */ 385 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 386 387 /* Arch-specific flags to clear when updating VM flags on protection change */ 388 #ifndef VM_ARCH_CLEAR 389 # define VM_ARCH_CLEAR VM_NONE 390 #endif 391 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 392 393 /* 394 * mapping from the currently active vm_flags protection bits (the 395 * low four bits) to a page protection mask.. 396 */ 397 extern pgprot_t protection_map[16]; 398 399 /** 400 * Fault flag definitions. 401 * 402 * @FAULT_FLAG_WRITE: Fault was a write fault. 403 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 404 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 405 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 406 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 407 * @FAULT_FLAG_TRIED: The fault has been tried once. 408 * @FAULT_FLAG_USER: The fault originated in userspace. 409 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 410 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 411 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 412 * 413 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 414 * whether we would allow page faults to retry by specifying these two 415 * fault flags correctly. Currently there can be three legal combinations: 416 * 417 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 418 * this is the first try 419 * 420 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 421 * we've already tried at least once 422 * 423 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 424 * 425 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 426 * be used. Note that page faults can be allowed to retry for multiple times, 427 * in which case we'll have an initial fault with flags (a) then later on 428 * continuous faults with flags (b). We should always try to detect pending 429 * signals before a retry to make sure the continuous page faults can still be 430 * interrupted if necessary. 431 */ 432 #define FAULT_FLAG_WRITE 0x01 433 #define FAULT_FLAG_MKWRITE 0x02 434 #define FAULT_FLAG_ALLOW_RETRY 0x04 435 #define FAULT_FLAG_RETRY_NOWAIT 0x08 436 #define FAULT_FLAG_KILLABLE 0x10 437 #define FAULT_FLAG_TRIED 0x20 438 #define FAULT_FLAG_USER 0x40 439 #define FAULT_FLAG_REMOTE 0x80 440 #define FAULT_FLAG_INSTRUCTION 0x100 441 #define FAULT_FLAG_INTERRUPTIBLE 0x200 442 443 /* 444 * The default fault flags that should be used by most of the 445 * arch-specific page fault handlers. 446 */ 447 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 448 FAULT_FLAG_KILLABLE | \ 449 FAULT_FLAG_INTERRUPTIBLE) 450 451 /** 452 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 453 * 454 * This is mostly used for places where we want to try to avoid taking 455 * the mmap_lock for too long a time when waiting for another condition 456 * to change, in which case we can try to be polite to release the 457 * mmap_lock in the first round to avoid potential starvation of other 458 * processes that would also want the mmap_lock. 459 * 460 * Return: true if the page fault allows retry and this is the first 461 * attempt of the fault handling; false otherwise. 462 */ 463 static inline bool fault_flag_allow_retry_first(unsigned int flags) 464 { 465 return (flags & FAULT_FLAG_ALLOW_RETRY) && 466 (!(flags & FAULT_FLAG_TRIED)); 467 } 468 469 #define FAULT_FLAG_TRACE \ 470 { FAULT_FLAG_WRITE, "WRITE" }, \ 471 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 472 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 473 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 474 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 475 { FAULT_FLAG_TRIED, "TRIED" }, \ 476 { FAULT_FLAG_USER, "USER" }, \ 477 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 478 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 479 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 480 481 /* 482 * vm_fault is filled by the the pagefault handler and passed to the vma's 483 * ->fault function. The vma's ->fault is responsible for returning a bitmask 484 * of VM_FAULT_xxx flags that give details about how the fault was handled. 485 * 486 * MM layer fills up gfp_mask for page allocations but fault handler might 487 * alter it if its implementation requires a different allocation context. 488 * 489 * pgoff should be used in favour of virtual_address, if possible. 490 */ 491 struct vm_fault { 492 struct vm_area_struct *vma; /* Target VMA */ 493 unsigned int flags; /* FAULT_FLAG_xxx flags */ 494 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 495 pgoff_t pgoff; /* Logical page offset based on vma */ 496 unsigned long address; /* Faulting virtual address */ 497 pmd_t *pmd; /* Pointer to pmd entry matching 498 * the 'address' */ 499 pud_t *pud; /* Pointer to pud entry matching 500 * the 'address' 501 */ 502 pte_t orig_pte; /* Value of PTE at the time of fault */ 503 504 struct page *cow_page; /* Page handler may use for COW fault */ 505 struct page *page; /* ->fault handlers should return a 506 * page here, unless VM_FAULT_NOPAGE 507 * is set (which is also implied by 508 * VM_FAULT_ERROR). 509 */ 510 /* These three entries are valid only while holding ptl lock */ 511 pte_t *pte; /* Pointer to pte entry matching 512 * the 'address'. NULL if the page 513 * table hasn't been allocated. 514 */ 515 spinlock_t *ptl; /* Page table lock. 516 * Protects pte page table if 'pte' 517 * is not NULL, otherwise pmd. 518 */ 519 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 520 * vm_ops->map_pages() calls 521 * alloc_set_pte() from atomic context. 522 * do_fault_around() pre-allocates 523 * page table to avoid allocation from 524 * atomic context. 525 */ 526 }; 527 528 /* page entry size for vm->huge_fault() */ 529 enum page_entry_size { 530 PE_SIZE_PTE = 0, 531 PE_SIZE_PMD, 532 PE_SIZE_PUD, 533 }; 534 535 /* 536 * These are the virtual MM functions - opening of an area, closing and 537 * unmapping it (needed to keep files on disk up-to-date etc), pointer 538 * to the functions called when a no-page or a wp-page exception occurs. 539 */ 540 struct vm_operations_struct { 541 void (*open)(struct vm_area_struct * area); 542 void (*close)(struct vm_area_struct * area); 543 int (*split)(struct vm_area_struct * area, unsigned long addr); 544 int (*mremap)(struct vm_area_struct * area); 545 vm_fault_t (*fault)(struct vm_fault *vmf); 546 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 547 enum page_entry_size pe_size); 548 void (*map_pages)(struct vm_fault *vmf, 549 pgoff_t start_pgoff, pgoff_t end_pgoff); 550 unsigned long (*pagesize)(struct vm_area_struct * area); 551 552 /* notification that a previously read-only page is about to become 553 * writable, if an error is returned it will cause a SIGBUS */ 554 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 555 556 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 557 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 558 559 /* called by access_process_vm when get_user_pages() fails, typically 560 * for use by special VMAs that can switch between memory and hardware 561 */ 562 int (*access)(struct vm_area_struct *vma, unsigned long addr, 563 void *buf, int len, int write); 564 565 /* Called by the /proc/PID/maps code to ask the vma whether it 566 * has a special name. Returning non-NULL will also cause this 567 * vma to be dumped unconditionally. */ 568 const char *(*name)(struct vm_area_struct *vma); 569 570 #ifdef CONFIG_NUMA 571 /* 572 * set_policy() op must add a reference to any non-NULL @new mempolicy 573 * to hold the policy upon return. Caller should pass NULL @new to 574 * remove a policy and fall back to surrounding context--i.e. do not 575 * install a MPOL_DEFAULT policy, nor the task or system default 576 * mempolicy. 577 */ 578 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 579 580 /* 581 * get_policy() op must add reference [mpol_get()] to any policy at 582 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 583 * in mm/mempolicy.c will do this automatically. 584 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 585 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 586 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 587 * must return NULL--i.e., do not "fallback" to task or system default 588 * policy. 589 */ 590 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 591 unsigned long addr); 592 #endif 593 /* 594 * Called by vm_normal_page() for special PTEs to find the 595 * page for @addr. This is useful if the default behavior 596 * (using pte_page()) would not find the correct page. 597 */ 598 struct page *(*find_special_page)(struct vm_area_struct *vma, 599 unsigned long addr); 600 }; 601 602 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 603 { 604 static const struct vm_operations_struct dummy_vm_ops = {}; 605 606 memset(vma, 0, sizeof(*vma)); 607 vma->vm_mm = mm; 608 vma->vm_ops = &dummy_vm_ops; 609 INIT_LIST_HEAD(&vma->anon_vma_chain); 610 } 611 612 static inline void vma_set_anonymous(struct vm_area_struct *vma) 613 { 614 vma->vm_ops = NULL; 615 } 616 617 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 618 { 619 return !vma->vm_ops; 620 } 621 622 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 623 { 624 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 625 626 if (!maybe_stack) 627 return false; 628 629 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 630 VM_STACK_INCOMPLETE_SETUP) 631 return true; 632 633 return false; 634 } 635 636 static inline bool vma_is_foreign(struct vm_area_struct *vma) 637 { 638 if (!current->mm) 639 return true; 640 641 if (current->mm != vma->vm_mm) 642 return true; 643 644 return false; 645 } 646 647 static inline bool vma_is_accessible(struct vm_area_struct *vma) 648 { 649 return vma->vm_flags & VM_ACCESS_FLAGS; 650 } 651 652 #ifdef CONFIG_SHMEM 653 /* 654 * The vma_is_shmem is not inline because it is used only by slow 655 * paths in userfault. 656 */ 657 bool vma_is_shmem(struct vm_area_struct *vma); 658 #else 659 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 660 #endif 661 662 int vma_is_stack_for_current(struct vm_area_struct *vma); 663 664 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 665 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 666 667 struct mmu_gather; 668 struct inode; 669 670 /* 671 * FIXME: take this include out, include page-flags.h in 672 * files which need it (119 of them) 673 */ 674 #include <linux/page-flags.h> 675 #include <linux/huge_mm.h> 676 677 /* 678 * Methods to modify the page usage count. 679 * 680 * What counts for a page usage: 681 * - cache mapping (page->mapping) 682 * - private data (page->private) 683 * - page mapped in a task's page tables, each mapping 684 * is counted separately 685 * 686 * Also, many kernel routines increase the page count before a critical 687 * routine so they can be sure the page doesn't go away from under them. 688 */ 689 690 /* 691 * Drop a ref, return true if the refcount fell to zero (the page has no users) 692 */ 693 static inline int put_page_testzero(struct page *page) 694 { 695 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 696 return page_ref_dec_and_test(page); 697 } 698 699 /* 700 * Try to grab a ref unless the page has a refcount of zero, return false if 701 * that is the case. 702 * This can be called when MMU is off so it must not access 703 * any of the virtual mappings. 704 */ 705 static inline int get_page_unless_zero(struct page *page) 706 { 707 return page_ref_add_unless(page, 1, 0); 708 } 709 710 extern int page_is_ram(unsigned long pfn); 711 712 enum { 713 REGION_INTERSECTS, 714 REGION_DISJOINT, 715 REGION_MIXED, 716 }; 717 718 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 719 unsigned long desc); 720 721 /* Support for virtually mapped pages */ 722 struct page *vmalloc_to_page(const void *addr); 723 unsigned long vmalloc_to_pfn(const void *addr); 724 725 /* 726 * Determine if an address is within the vmalloc range 727 * 728 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 729 * is no special casing required. 730 */ 731 732 #ifndef is_ioremap_addr 733 #define is_ioremap_addr(x) is_vmalloc_addr(x) 734 #endif 735 736 #ifdef CONFIG_MMU 737 extern bool is_vmalloc_addr(const void *x); 738 extern int is_vmalloc_or_module_addr(const void *x); 739 #else 740 static inline bool is_vmalloc_addr(const void *x) 741 { 742 return false; 743 } 744 static inline int is_vmalloc_or_module_addr(const void *x) 745 { 746 return 0; 747 } 748 #endif 749 750 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 751 static inline void *kvmalloc(size_t size, gfp_t flags) 752 { 753 return kvmalloc_node(size, flags, NUMA_NO_NODE); 754 } 755 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 756 { 757 return kvmalloc_node(size, flags | __GFP_ZERO, node); 758 } 759 static inline void *kvzalloc(size_t size, gfp_t flags) 760 { 761 return kvmalloc(size, flags | __GFP_ZERO); 762 } 763 764 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 765 { 766 size_t bytes; 767 768 if (unlikely(check_mul_overflow(n, size, &bytes))) 769 return NULL; 770 771 return kvmalloc(bytes, flags); 772 } 773 774 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 775 { 776 return kvmalloc_array(n, size, flags | __GFP_ZERO); 777 } 778 779 extern void kvfree(const void *addr); 780 extern void kvfree_sensitive(const void *addr, size_t len); 781 782 /* 783 * Mapcount of compound page as a whole, does not include mapped sub-pages. 784 * 785 * Must be called only for compound pages or any their tail sub-pages. 786 */ 787 static inline int compound_mapcount(struct page *page) 788 { 789 VM_BUG_ON_PAGE(!PageCompound(page), page); 790 page = compound_head(page); 791 return atomic_read(compound_mapcount_ptr(page)) + 1; 792 } 793 794 /* 795 * The atomic page->_mapcount, starts from -1: so that transitions 796 * both from it and to it can be tracked, using atomic_inc_and_test 797 * and atomic_add_negative(-1). 798 */ 799 static inline void page_mapcount_reset(struct page *page) 800 { 801 atomic_set(&(page)->_mapcount, -1); 802 } 803 804 int __page_mapcount(struct page *page); 805 806 /* 807 * Mapcount of 0-order page; when compound sub-page, includes 808 * compound_mapcount(). 809 * 810 * Result is undefined for pages which cannot be mapped into userspace. 811 * For example SLAB or special types of pages. See function page_has_type(). 812 * They use this place in struct page differently. 813 */ 814 static inline int page_mapcount(struct page *page) 815 { 816 if (unlikely(PageCompound(page))) 817 return __page_mapcount(page); 818 return atomic_read(&page->_mapcount) + 1; 819 } 820 821 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 822 int total_mapcount(struct page *page); 823 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 824 #else 825 static inline int total_mapcount(struct page *page) 826 { 827 return page_mapcount(page); 828 } 829 static inline int page_trans_huge_mapcount(struct page *page, 830 int *total_mapcount) 831 { 832 int mapcount = page_mapcount(page); 833 if (total_mapcount) 834 *total_mapcount = mapcount; 835 return mapcount; 836 } 837 #endif 838 839 static inline struct page *virt_to_head_page(const void *x) 840 { 841 struct page *page = virt_to_page(x); 842 843 return compound_head(page); 844 } 845 846 void __put_page(struct page *page); 847 848 void put_pages_list(struct list_head *pages); 849 850 void split_page(struct page *page, unsigned int order); 851 852 /* 853 * Compound pages have a destructor function. Provide a 854 * prototype for that function and accessor functions. 855 * These are _only_ valid on the head of a compound page. 856 */ 857 typedef void compound_page_dtor(struct page *); 858 859 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 860 enum compound_dtor_id { 861 NULL_COMPOUND_DTOR, 862 COMPOUND_PAGE_DTOR, 863 #ifdef CONFIG_HUGETLB_PAGE 864 HUGETLB_PAGE_DTOR, 865 #endif 866 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 867 TRANSHUGE_PAGE_DTOR, 868 #endif 869 NR_COMPOUND_DTORS, 870 }; 871 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 872 873 static inline void set_compound_page_dtor(struct page *page, 874 enum compound_dtor_id compound_dtor) 875 { 876 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 877 page[1].compound_dtor = compound_dtor; 878 } 879 880 static inline void destroy_compound_page(struct page *page) 881 { 882 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 883 compound_page_dtors[page[1].compound_dtor](page); 884 } 885 886 static inline unsigned int compound_order(struct page *page) 887 { 888 if (!PageHead(page)) 889 return 0; 890 return page[1].compound_order; 891 } 892 893 static inline bool hpage_pincount_available(struct page *page) 894 { 895 /* 896 * Can the page->hpage_pinned_refcount field be used? That field is in 897 * the 3rd page of the compound page, so the smallest (2-page) compound 898 * pages cannot support it. 899 */ 900 page = compound_head(page); 901 return PageCompound(page) && compound_order(page) > 1; 902 } 903 904 static inline int compound_pincount(struct page *page) 905 { 906 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 907 page = compound_head(page); 908 return atomic_read(compound_pincount_ptr(page)); 909 } 910 911 static inline void set_compound_order(struct page *page, unsigned int order) 912 { 913 page[1].compound_order = order; 914 } 915 916 /* Returns the number of pages in this potentially compound page. */ 917 static inline unsigned long compound_nr(struct page *page) 918 { 919 return 1UL << compound_order(page); 920 } 921 922 /* Returns the number of bytes in this potentially compound page. */ 923 static inline unsigned long page_size(struct page *page) 924 { 925 return PAGE_SIZE << compound_order(page); 926 } 927 928 /* Returns the number of bits needed for the number of bytes in a page */ 929 static inline unsigned int page_shift(struct page *page) 930 { 931 return PAGE_SHIFT + compound_order(page); 932 } 933 934 void free_compound_page(struct page *page); 935 936 #ifdef CONFIG_MMU 937 /* 938 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 939 * servicing faults for write access. In the normal case, do always want 940 * pte_mkwrite. But get_user_pages can cause write faults for mappings 941 * that do not have writing enabled, when used by access_process_vm. 942 */ 943 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 944 { 945 if (likely(vma->vm_flags & VM_WRITE)) 946 pte = pte_mkwrite(pte); 947 return pte; 948 } 949 950 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 951 vm_fault_t finish_fault(struct vm_fault *vmf); 952 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 953 #endif 954 955 /* 956 * Multiple processes may "see" the same page. E.g. for untouched 957 * mappings of /dev/null, all processes see the same page full of 958 * zeroes, and text pages of executables and shared libraries have 959 * only one copy in memory, at most, normally. 960 * 961 * For the non-reserved pages, page_count(page) denotes a reference count. 962 * page_count() == 0 means the page is free. page->lru is then used for 963 * freelist management in the buddy allocator. 964 * page_count() > 0 means the page has been allocated. 965 * 966 * Pages are allocated by the slab allocator in order to provide memory 967 * to kmalloc and kmem_cache_alloc. In this case, the management of the 968 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 969 * unless a particular usage is carefully commented. (the responsibility of 970 * freeing the kmalloc memory is the caller's, of course). 971 * 972 * A page may be used by anyone else who does a __get_free_page(). 973 * In this case, page_count still tracks the references, and should only 974 * be used through the normal accessor functions. The top bits of page->flags 975 * and page->virtual store page management information, but all other fields 976 * are unused and could be used privately, carefully. The management of this 977 * page is the responsibility of the one who allocated it, and those who have 978 * subsequently been given references to it. 979 * 980 * The other pages (we may call them "pagecache pages") are completely 981 * managed by the Linux memory manager: I/O, buffers, swapping etc. 982 * The following discussion applies only to them. 983 * 984 * A pagecache page contains an opaque `private' member, which belongs to the 985 * page's address_space. Usually, this is the address of a circular list of 986 * the page's disk buffers. PG_private must be set to tell the VM to call 987 * into the filesystem to release these pages. 988 * 989 * A page may belong to an inode's memory mapping. In this case, page->mapping 990 * is the pointer to the inode, and page->index is the file offset of the page, 991 * in units of PAGE_SIZE. 992 * 993 * If pagecache pages are not associated with an inode, they are said to be 994 * anonymous pages. These may become associated with the swapcache, and in that 995 * case PG_swapcache is set, and page->private is an offset into the swapcache. 996 * 997 * In either case (swapcache or inode backed), the pagecache itself holds one 998 * reference to the page. Setting PG_private should also increment the 999 * refcount. The each user mapping also has a reference to the page. 1000 * 1001 * The pagecache pages are stored in a per-mapping radix tree, which is 1002 * rooted at mapping->i_pages, and indexed by offset. 1003 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1004 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1005 * 1006 * All pagecache pages may be subject to I/O: 1007 * - inode pages may need to be read from disk, 1008 * - inode pages which have been modified and are MAP_SHARED may need 1009 * to be written back to the inode on disk, 1010 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1011 * modified may need to be swapped out to swap space and (later) to be read 1012 * back into memory. 1013 */ 1014 1015 /* 1016 * The zone field is never updated after free_area_init_core() 1017 * sets it, so none of the operations on it need to be atomic. 1018 */ 1019 1020 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1021 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1022 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1023 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1024 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1025 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1026 1027 /* 1028 * Define the bit shifts to access each section. For non-existent 1029 * sections we define the shift as 0; that plus a 0 mask ensures 1030 * the compiler will optimise away reference to them. 1031 */ 1032 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1033 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1034 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1035 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1036 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1037 1038 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1039 #ifdef NODE_NOT_IN_PAGE_FLAGS 1040 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1041 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1042 SECTIONS_PGOFF : ZONES_PGOFF) 1043 #else 1044 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1045 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1046 NODES_PGOFF : ZONES_PGOFF) 1047 #endif 1048 1049 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1050 1051 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1052 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1053 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1054 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1055 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1056 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1057 1058 static inline enum zone_type page_zonenum(const struct page *page) 1059 { 1060 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1061 } 1062 1063 #ifdef CONFIG_ZONE_DEVICE 1064 static inline bool is_zone_device_page(const struct page *page) 1065 { 1066 return page_zonenum(page) == ZONE_DEVICE; 1067 } 1068 extern void memmap_init_zone_device(struct zone *, unsigned long, 1069 unsigned long, struct dev_pagemap *); 1070 #else 1071 static inline bool is_zone_device_page(const struct page *page) 1072 { 1073 return false; 1074 } 1075 #endif 1076 1077 #ifdef CONFIG_DEV_PAGEMAP_OPS 1078 void free_devmap_managed_page(struct page *page); 1079 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1080 1081 static inline bool page_is_devmap_managed(struct page *page) 1082 { 1083 if (!static_branch_unlikely(&devmap_managed_key)) 1084 return false; 1085 if (!is_zone_device_page(page)) 1086 return false; 1087 switch (page->pgmap->type) { 1088 case MEMORY_DEVICE_PRIVATE: 1089 case MEMORY_DEVICE_FS_DAX: 1090 return true; 1091 default: 1092 break; 1093 } 1094 return false; 1095 } 1096 1097 void put_devmap_managed_page(struct page *page); 1098 1099 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1100 static inline bool page_is_devmap_managed(struct page *page) 1101 { 1102 return false; 1103 } 1104 1105 static inline void put_devmap_managed_page(struct page *page) 1106 { 1107 } 1108 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1109 1110 static inline bool is_device_private_page(const struct page *page) 1111 { 1112 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1113 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1114 is_zone_device_page(page) && 1115 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1116 } 1117 1118 static inline bool is_pci_p2pdma_page(const struct page *page) 1119 { 1120 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1121 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1122 is_zone_device_page(page) && 1123 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1124 } 1125 1126 /* 127: arbitrary random number, small enough to assemble well */ 1127 #define page_ref_zero_or_close_to_overflow(page) \ 1128 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1129 1130 static inline void get_page(struct page *page) 1131 { 1132 page = compound_head(page); 1133 /* 1134 * Getting a normal page or the head of a compound page 1135 * requires to already have an elevated page->_refcount. 1136 */ 1137 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1138 page_ref_inc(page); 1139 } 1140 1141 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1142 1143 static inline __must_check bool try_get_page(struct page *page) 1144 { 1145 page = compound_head(page); 1146 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1147 return false; 1148 page_ref_inc(page); 1149 return true; 1150 } 1151 1152 static inline void put_page(struct page *page) 1153 { 1154 page = compound_head(page); 1155 1156 /* 1157 * For devmap managed pages we need to catch refcount transition from 1158 * 2 to 1, when refcount reach one it means the page is free and we 1159 * need to inform the device driver through callback. See 1160 * include/linux/memremap.h and HMM for details. 1161 */ 1162 if (page_is_devmap_managed(page)) { 1163 put_devmap_managed_page(page); 1164 return; 1165 } 1166 1167 if (put_page_testzero(page)) 1168 __put_page(page); 1169 } 1170 1171 /* 1172 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1173 * the page's refcount so that two separate items are tracked: the original page 1174 * reference count, and also a new count of how many pin_user_pages() calls were 1175 * made against the page. ("gup-pinned" is another term for the latter). 1176 * 1177 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1178 * distinct from normal pages. As such, the unpin_user_page() call (and its 1179 * variants) must be used in order to release gup-pinned pages. 1180 * 1181 * Choice of value: 1182 * 1183 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1184 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1185 * simpler, due to the fact that adding an even power of two to the page 1186 * refcount has the effect of using only the upper N bits, for the code that 1187 * counts up using the bias value. This means that the lower bits are left for 1188 * the exclusive use of the original code that increments and decrements by one 1189 * (or at least, by much smaller values than the bias value). 1190 * 1191 * Of course, once the lower bits overflow into the upper bits (and this is 1192 * OK, because subtraction recovers the original values), then visual inspection 1193 * no longer suffices to directly view the separate counts. However, for normal 1194 * applications that don't have huge page reference counts, this won't be an 1195 * issue. 1196 * 1197 * Locking: the lockless algorithm described in page_cache_get_speculative() 1198 * and page_cache_gup_pin_speculative() provides safe operation for 1199 * get_user_pages and page_mkclean and other calls that race to set up page 1200 * table entries. 1201 */ 1202 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1203 1204 void unpin_user_page(struct page *page); 1205 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1206 bool make_dirty); 1207 void unpin_user_pages(struct page **pages, unsigned long npages); 1208 1209 /** 1210 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1211 * 1212 * This function checks if a page has been pinned via a call to 1213 * pin_user_pages*(). 1214 * 1215 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1216 * because it means "definitely not pinned for DMA", but true means "probably 1217 * pinned for DMA, but possibly a false positive due to having at least 1218 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1219 * 1220 * False positives are OK, because: a) it's unlikely for a page to get that many 1221 * refcounts, and b) all the callers of this routine are expected to be able to 1222 * deal gracefully with a false positive. 1223 * 1224 * For huge pages, the result will be exactly correct. That's because we have 1225 * more tracking data available: the 3rd struct page in the compound page is 1226 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1227 * scheme). 1228 * 1229 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1230 * 1231 * @page: pointer to page to be queried. 1232 * @Return: True, if it is likely that the page has been "dma-pinned". 1233 * False, if the page is definitely not dma-pinned. 1234 */ 1235 static inline bool page_maybe_dma_pinned(struct page *page) 1236 { 1237 if (hpage_pincount_available(page)) 1238 return compound_pincount(page) > 0; 1239 1240 /* 1241 * page_ref_count() is signed. If that refcount overflows, then 1242 * page_ref_count() returns a negative value, and callers will avoid 1243 * further incrementing the refcount. 1244 * 1245 * Here, for that overflow case, use the signed bit to count a little 1246 * bit higher via unsigned math, and thus still get an accurate result. 1247 */ 1248 return ((unsigned int)page_ref_count(compound_head(page))) >= 1249 GUP_PIN_COUNTING_BIAS; 1250 } 1251 1252 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1253 #define SECTION_IN_PAGE_FLAGS 1254 #endif 1255 1256 /* 1257 * The identification function is mainly used by the buddy allocator for 1258 * determining if two pages could be buddies. We are not really identifying 1259 * the zone since we could be using the section number id if we do not have 1260 * node id available in page flags. 1261 * We only guarantee that it will return the same value for two combinable 1262 * pages in a zone. 1263 */ 1264 static inline int page_zone_id(struct page *page) 1265 { 1266 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1267 } 1268 1269 #ifdef NODE_NOT_IN_PAGE_FLAGS 1270 extern int page_to_nid(const struct page *page); 1271 #else 1272 static inline int page_to_nid(const struct page *page) 1273 { 1274 struct page *p = (struct page *)page; 1275 1276 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1277 } 1278 #endif 1279 1280 #ifdef CONFIG_NUMA_BALANCING 1281 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1282 { 1283 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1284 } 1285 1286 static inline int cpupid_to_pid(int cpupid) 1287 { 1288 return cpupid & LAST__PID_MASK; 1289 } 1290 1291 static inline int cpupid_to_cpu(int cpupid) 1292 { 1293 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1294 } 1295 1296 static inline int cpupid_to_nid(int cpupid) 1297 { 1298 return cpu_to_node(cpupid_to_cpu(cpupid)); 1299 } 1300 1301 static inline bool cpupid_pid_unset(int cpupid) 1302 { 1303 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1304 } 1305 1306 static inline bool cpupid_cpu_unset(int cpupid) 1307 { 1308 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1309 } 1310 1311 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1312 { 1313 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1314 } 1315 1316 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1317 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1318 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1319 { 1320 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1321 } 1322 1323 static inline int page_cpupid_last(struct page *page) 1324 { 1325 return page->_last_cpupid; 1326 } 1327 static inline void page_cpupid_reset_last(struct page *page) 1328 { 1329 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1330 } 1331 #else 1332 static inline int page_cpupid_last(struct page *page) 1333 { 1334 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1335 } 1336 1337 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1338 1339 static inline void page_cpupid_reset_last(struct page *page) 1340 { 1341 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1342 } 1343 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1344 #else /* !CONFIG_NUMA_BALANCING */ 1345 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1346 { 1347 return page_to_nid(page); /* XXX */ 1348 } 1349 1350 static inline int page_cpupid_last(struct page *page) 1351 { 1352 return page_to_nid(page); /* XXX */ 1353 } 1354 1355 static inline int cpupid_to_nid(int cpupid) 1356 { 1357 return -1; 1358 } 1359 1360 static inline int cpupid_to_pid(int cpupid) 1361 { 1362 return -1; 1363 } 1364 1365 static inline int cpupid_to_cpu(int cpupid) 1366 { 1367 return -1; 1368 } 1369 1370 static inline int cpu_pid_to_cpupid(int nid, int pid) 1371 { 1372 return -1; 1373 } 1374 1375 static inline bool cpupid_pid_unset(int cpupid) 1376 { 1377 return true; 1378 } 1379 1380 static inline void page_cpupid_reset_last(struct page *page) 1381 { 1382 } 1383 1384 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1385 { 1386 return false; 1387 } 1388 #endif /* CONFIG_NUMA_BALANCING */ 1389 1390 #ifdef CONFIG_KASAN_SW_TAGS 1391 static inline u8 page_kasan_tag(const struct page *page) 1392 { 1393 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1394 } 1395 1396 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1397 { 1398 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1399 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1400 } 1401 1402 static inline void page_kasan_tag_reset(struct page *page) 1403 { 1404 page_kasan_tag_set(page, 0xff); 1405 } 1406 #else 1407 static inline u8 page_kasan_tag(const struct page *page) 1408 { 1409 return 0xff; 1410 } 1411 1412 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1413 static inline void page_kasan_tag_reset(struct page *page) { } 1414 #endif 1415 1416 static inline struct zone *page_zone(const struct page *page) 1417 { 1418 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1419 } 1420 1421 static inline pg_data_t *page_pgdat(const struct page *page) 1422 { 1423 return NODE_DATA(page_to_nid(page)); 1424 } 1425 1426 #ifdef SECTION_IN_PAGE_FLAGS 1427 static inline void set_page_section(struct page *page, unsigned long section) 1428 { 1429 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1430 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1431 } 1432 1433 static inline unsigned long page_to_section(const struct page *page) 1434 { 1435 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1436 } 1437 #endif 1438 1439 static inline void set_page_zone(struct page *page, enum zone_type zone) 1440 { 1441 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1442 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1443 } 1444 1445 static inline void set_page_node(struct page *page, unsigned long node) 1446 { 1447 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1448 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1449 } 1450 1451 static inline void set_page_links(struct page *page, enum zone_type zone, 1452 unsigned long node, unsigned long pfn) 1453 { 1454 set_page_zone(page, zone); 1455 set_page_node(page, node); 1456 #ifdef SECTION_IN_PAGE_FLAGS 1457 set_page_section(page, pfn_to_section_nr(pfn)); 1458 #endif 1459 } 1460 1461 #ifdef CONFIG_MEMCG 1462 static inline struct mem_cgroup *page_memcg(struct page *page) 1463 { 1464 return page->mem_cgroup; 1465 } 1466 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1467 { 1468 WARN_ON_ONCE(!rcu_read_lock_held()); 1469 return READ_ONCE(page->mem_cgroup); 1470 } 1471 #else 1472 static inline struct mem_cgroup *page_memcg(struct page *page) 1473 { 1474 return NULL; 1475 } 1476 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1477 { 1478 WARN_ON_ONCE(!rcu_read_lock_held()); 1479 return NULL; 1480 } 1481 #endif 1482 1483 /* 1484 * Some inline functions in vmstat.h depend on page_zone() 1485 */ 1486 #include <linux/vmstat.h> 1487 1488 static __always_inline void *lowmem_page_address(const struct page *page) 1489 { 1490 return page_to_virt(page); 1491 } 1492 1493 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1494 #define HASHED_PAGE_VIRTUAL 1495 #endif 1496 1497 #if defined(WANT_PAGE_VIRTUAL) 1498 static inline void *page_address(const struct page *page) 1499 { 1500 return page->virtual; 1501 } 1502 static inline void set_page_address(struct page *page, void *address) 1503 { 1504 page->virtual = address; 1505 } 1506 #define page_address_init() do { } while(0) 1507 #endif 1508 1509 #if defined(HASHED_PAGE_VIRTUAL) 1510 void *page_address(const struct page *page); 1511 void set_page_address(struct page *page, void *virtual); 1512 void page_address_init(void); 1513 #endif 1514 1515 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1516 #define page_address(page) lowmem_page_address(page) 1517 #define set_page_address(page, address) do { } while(0) 1518 #define page_address_init() do { } while(0) 1519 #endif 1520 1521 extern void *page_rmapping(struct page *page); 1522 extern struct anon_vma *page_anon_vma(struct page *page); 1523 extern struct address_space *page_mapping(struct page *page); 1524 1525 extern struct address_space *__page_file_mapping(struct page *); 1526 1527 static inline 1528 struct address_space *page_file_mapping(struct page *page) 1529 { 1530 if (unlikely(PageSwapCache(page))) 1531 return __page_file_mapping(page); 1532 1533 return page->mapping; 1534 } 1535 1536 extern pgoff_t __page_file_index(struct page *page); 1537 1538 /* 1539 * Return the pagecache index of the passed page. Regular pagecache pages 1540 * use ->index whereas swapcache pages use swp_offset(->private) 1541 */ 1542 static inline pgoff_t page_index(struct page *page) 1543 { 1544 if (unlikely(PageSwapCache(page))) 1545 return __page_file_index(page); 1546 return page->index; 1547 } 1548 1549 bool page_mapped(struct page *page); 1550 struct address_space *page_mapping(struct page *page); 1551 struct address_space *page_mapping_file(struct page *page); 1552 1553 /* 1554 * Return true only if the page has been allocated with 1555 * ALLOC_NO_WATERMARKS and the low watermark was not 1556 * met implying that the system is under some pressure. 1557 */ 1558 static inline bool page_is_pfmemalloc(struct page *page) 1559 { 1560 /* 1561 * Page index cannot be this large so this must be 1562 * a pfmemalloc page. 1563 */ 1564 return page->index == -1UL; 1565 } 1566 1567 /* 1568 * Only to be called by the page allocator on a freshly allocated 1569 * page. 1570 */ 1571 static inline void set_page_pfmemalloc(struct page *page) 1572 { 1573 page->index = -1UL; 1574 } 1575 1576 static inline void clear_page_pfmemalloc(struct page *page) 1577 { 1578 page->index = 0; 1579 } 1580 1581 /* 1582 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1583 */ 1584 extern void pagefault_out_of_memory(void); 1585 1586 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1587 1588 /* 1589 * Flags passed to show_mem() and show_free_areas() to suppress output in 1590 * various contexts. 1591 */ 1592 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1593 1594 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1595 1596 #ifdef CONFIG_MMU 1597 extern bool can_do_mlock(void); 1598 #else 1599 static inline bool can_do_mlock(void) { return false; } 1600 #endif 1601 extern int user_shm_lock(size_t, struct user_struct *); 1602 extern void user_shm_unlock(size_t, struct user_struct *); 1603 1604 /* 1605 * Parameter block passed down to zap_pte_range in exceptional cases. 1606 */ 1607 struct zap_details { 1608 struct address_space *check_mapping; /* Check page->mapping if set */ 1609 pgoff_t first_index; /* Lowest page->index to unmap */ 1610 pgoff_t last_index; /* Highest page->index to unmap */ 1611 }; 1612 1613 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1614 pte_t pte); 1615 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1616 pmd_t pmd); 1617 1618 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1619 unsigned long size); 1620 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1621 unsigned long size); 1622 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1623 unsigned long start, unsigned long end); 1624 1625 struct mmu_notifier_range; 1626 1627 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1628 unsigned long end, unsigned long floor, unsigned long ceiling); 1629 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1630 struct vm_area_struct *vma); 1631 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1632 struct mmu_notifier_range *range, 1633 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1634 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1635 unsigned long *pfn); 1636 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1637 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1638 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1639 void *buf, int len, int write); 1640 1641 extern void truncate_pagecache(struct inode *inode, loff_t new); 1642 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1643 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1644 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1645 int truncate_inode_page(struct address_space *mapping, struct page *page); 1646 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1647 int invalidate_inode_page(struct page *page); 1648 1649 #ifdef CONFIG_MMU 1650 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1651 unsigned long address, unsigned int flags); 1652 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1653 unsigned long address, unsigned int fault_flags, 1654 bool *unlocked); 1655 void unmap_mapping_pages(struct address_space *mapping, 1656 pgoff_t start, pgoff_t nr, bool even_cows); 1657 void unmap_mapping_range(struct address_space *mapping, 1658 loff_t const holebegin, loff_t const holelen, int even_cows); 1659 #else 1660 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1661 unsigned long address, unsigned int flags) 1662 { 1663 /* should never happen if there's no MMU */ 1664 BUG(); 1665 return VM_FAULT_SIGBUS; 1666 } 1667 static inline int fixup_user_fault(struct task_struct *tsk, 1668 struct mm_struct *mm, unsigned long address, 1669 unsigned int fault_flags, bool *unlocked) 1670 { 1671 /* should never happen if there's no MMU */ 1672 BUG(); 1673 return -EFAULT; 1674 } 1675 static inline void unmap_mapping_pages(struct address_space *mapping, 1676 pgoff_t start, pgoff_t nr, bool even_cows) { } 1677 static inline void unmap_mapping_range(struct address_space *mapping, 1678 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1679 #endif 1680 1681 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1682 loff_t const holebegin, loff_t const holelen) 1683 { 1684 unmap_mapping_range(mapping, holebegin, holelen, 0); 1685 } 1686 1687 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1688 void *buf, int len, unsigned int gup_flags); 1689 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1690 void *buf, int len, unsigned int gup_flags); 1691 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1692 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1693 1694 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1695 unsigned long start, unsigned long nr_pages, 1696 unsigned int gup_flags, struct page **pages, 1697 struct vm_area_struct **vmas, int *locked); 1698 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1699 unsigned long start, unsigned long nr_pages, 1700 unsigned int gup_flags, struct page **pages, 1701 struct vm_area_struct **vmas, int *locked); 1702 long get_user_pages(unsigned long start, unsigned long nr_pages, 1703 unsigned int gup_flags, struct page **pages, 1704 struct vm_area_struct **vmas); 1705 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1706 unsigned int gup_flags, struct page **pages, 1707 struct vm_area_struct **vmas); 1708 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1709 unsigned int gup_flags, struct page **pages, int *locked); 1710 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1711 unsigned int gup_flags, struct page **pages, int *locked); 1712 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1713 struct page **pages, unsigned int gup_flags); 1714 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1715 struct page **pages, unsigned int gup_flags); 1716 1717 int get_user_pages_fast(unsigned long start, int nr_pages, 1718 unsigned int gup_flags, struct page **pages); 1719 int pin_user_pages_fast(unsigned long start, int nr_pages, 1720 unsigned int gup_flags, struct page **pages); 1721 1722 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1723 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1724 struct task_struct *task, bool bypass_rlim); 1725 1726 /* Container for pinned pfns / pages */ 1727 struct frame_vector { 1728 unsigned int nr_allocated; /* Number of frames we have space for */ 1729 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1730 bool got_ref; /* Did we pin pages by getting page ref? */ 1731 bool is_pfns; /* Does array contain pages or pfns? */ 1732 void *ptrs[]; /* Array of pinned pfns / pages. Use 1733 * pfns_vector_pages() or pfns_vector_pfns() 1734 * for access */ 1735 }; 1736 1737 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1738 void frame_vector_destroy(struct frame_vector *vec); 1739 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1740 unsigned int gup_flags, struct frame_vector *vec); 1741 void put_vaddr_frames(struct frame_vector *vec); 1742 int frame_vector_to_pages(struct frame_vector *vec); 1743 void frame_vector_to_pfns(struct frame_vector *vec); 1744 1745 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1746 { 1747 return vec->nr_frames; 1748 } 1749 1750 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1751 { 1752 if (vec->is_pfns) { 1753 int err = frame_vector_to_pages(vec); 1754 1755 if (err) 1756 return ERR_PTR(err); 1757 } 1758 return (struct page **)(vec->ptrs); 1759 } 1760 1761 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1762 { 1763 if (!vec->is_pfns) 1764 frame_vector_to_pfns(vec); 1765 return (unsigned long *)(vec->ptrs); 1766 } 1767 1768 struct kvec; 1769 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1770 struct page **pages); 1771 int get_kernel_page(unsigned long start, int write, struct page **pages); 1772 struct page *get_dump_page(unsigned long addr); 1773 1774 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1775 extern void do_invalidatepage(struct page *page, unsigned int offset, 1776 unsigned int length); 1777 1778 void __set_page_dirty(struct page *, struct address_space *, int warn); 1779 int __set_page_dirty_nobuffers(struct page *page); 1780 int __set_page_dirty_no_writeback(struct page *page); 1781 int redirty_page_for_writepage(struct writeback_control *wbc, 1782 struct page *page); 1783 void account_page_dirtied(struct page *page, struct address_space *mapping); 1784 void account_page_cleaned(struct page *page, struct address_space *mapping, 1785 struct bdi_writeback *wb); 1786 int set_page_dirty(struct page *page); 1787 int set_page_dirty_lock(struct page *page); 1788 void __cancel_dirty_page(struct page *page); 1789 static inline void cancel_dirty_page(struct page *page) 1790 { 1791 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1792 if (PageDirty(page)) 1793 __cancel_dirty_page(page); 1794 } 1795 int clear_page_dirty_for_io(struct page *page); 1796 1797 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1798 1799 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1800 unsigned long old_addr, struct vm_area_struct *new_vma, 1801 unsigned long new_addr, unsigned long len, 1802 bool need_rmap_locks); 1803 1804 /* 1805 * Flags used by change_protection(). For now we make it a bitmap so 1806 * that we can pass in multiple flags just like parameters. However 1807 * for now all the callers are only use one of the flags at the same 1808 * time. 1809 */ 1810 /* Whether we should allow dirty bit accounting */ 1811 #define MM_CP_DIRTY_ACCT (1UL << 0) 1812 /* Whether this protection change is for NUMA hints */ 1813 #define MM_CP_PROT_NUMA (1UL << 1) 1814 /* Whether this change is for write protecting */ 1815 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1816 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1817 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1818 MM_CP_UFFD_WP_RESOLVE) 1819 1820 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1821 unsigned long end, pgprot_t newprot, 1822 unsigned long cp_flags); 1823 extern int mprotect_fixup(struct vm_area_struct *vma, 1824 struct vm_area_struct **pprev, unsigned long start, 1825 unsigned long end, unsigned long newflags); 1826 1827 /* 1828 * doesn't attempt to fault and will return short. 1829 */ 1830 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1831 unsigned int gup_flags, struct page **pages); 1832 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1833 unsigned int gup_flags, struct page **pages); 1834 1835 static inline bool get_user_page_fast_only(unsigned long addr, 1836 unsigned int gup_flags, struct page **pagep) 1837 { 1838 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1839 } 1840 /* 1841 * per-process(per-mm_struct) statistics. 1842 */ 1843 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1844 { 1845 long val = atomic_long_read(&mm->rss_stat.count[member]); 1846 1847 #ifdef SPLIT_RSS_COUNTING 1848 /* 1849 * counter is updated in asynchronous manner and may go to minus. 1850 * But it's never be expected number for users. 1851 */ 1852 if (val < 0) 1853 val = 0; 1854 #endif 1855 return (unsigned long)val; 1856 } 1857 1858 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1859 1860 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1861 { 1862 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1863 1864 mm_trace_rss_stat(mm, member, count); 1865 } 1866 1867 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1868 { 1869 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1870 1871 mm_trace_rss_stat(mm, member, count); 1872 } 1873 1874 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1875 { 1876 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1877 1878 mm_trace_rss_stat(mm, member, count); 1879 } 1880 1881 /* Optimized variant when page is already known not to be PageAnon */ 1882 static inline int mm_counter_file(struct page *page) 1883 { 1884 if (PageSwapBacked(page)) 1885 return MM_SHMEMPAGES; 1886 return MM_FILEPAGES; 1887 } 1888 1889 static inline int mm_counter(struct page *page) 1890 { 1891 if (PageAnon(page)) 1892 return MM_ANONPAGES; 1893 return mm_counter_file(page); 1894 } 1895 1896 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1897 { 1898 return get_mm_counter(mm, MM_FILEPAGES) + 1899 get_mm_counter(mm, MM_ANONPAGES) + 1900 get_mm_counter(mm, MM_SHMEMPAGES); 1901 } 1902 1903 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1904 { 1905 return max(mm->hiwater_rss, get_mm_rss(mm)); 1906 } 1907 1908 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1909 { 1910 return max(mm->hiwater_vm, mm->total_vm); 1911 } 1912 1913 static inline void update_hiwater_rss(struct mm_struct *mm) 1914 { 1915 unsigned long _rss = get_mm_rss(mm); 1916 1917 if ((mm)->hiwater_rss < _rss) 1918 (mm)->hiwater_rss = _rss; 1919 } 1920 1921 static inline void update_hiwater_vm(struct mm_struct *mm) 1922 { 1923 if (mm->hiwater_vm < mm->total_vm) 1924 mm->hiwater_vm = mm->total_vm; 1925 } 1926 1927 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1928 { 1929 mm->hiwater_rss = get_mm_rss(mm); 1930 } 1931 1932 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1933 struct mm_struct *mm) 1934 { 1935 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1936 1937 if (*maxrss < hiwater_rss) 1938 *maxrss = hiwater_rss; 1939 } 1940 1941 #if defined(SPLIT_RSS_COUNTING) 1942 void sync_mm_rss(struct mm_struct *mm); 1943 #else 1944 static inline void sync_mm_rss(struct mm_struct *mm) 1945 { 1946 } 1947 #endif 1948 1949 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1950 static inline int pte_special(pte_t pte) 1951 { 1952 return 0; 1953 } 1954 1955 static inline pte_t pte_mkspecial(pte_t pte) 1956 { 1957 return pte; 1958 } 1959 #endif 1960 1961 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1962 static inline int pte_devmap(pte_t pte) 1963 { 1964 return 0; 1965 } 1966 #endif 1967 1968 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1969 1970 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1971 spinlock_t **ptl); 1972 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1973 spinlock_t **ptl) 1974 { 1975 pte_t *ptep; 1976 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1977 return ptep; 1978 } 1979 1980 #ifdef __PAGETABLE_P4D_FOLDED 1981 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1982 unsigned long address) 1983 { 1984 return 0; 1985 } 1986 #else 1987 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1988 #endif 1989 1990 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1991 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1992 unsigned long address) 1993 { 1994 return 0; 1995 } 1996 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1997 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1998 1999 #else 2000 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2001 2002 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2003 { 2004 if (mm_pud_folded(mm)) 2005 return; 2006 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2007 } 2008 2009 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2010 { 2011 if (mm_pud_folded(mm)) 2012 return; 2013 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2014 } 2015 #endif 2016 2017 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2018 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2019 unsigned long address) 2020 { 2021 return 0; 2022 } 2023 2024 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2025 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2026 2027 #else 2028 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2029 2030 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2031 { 2032 if (mm_pmd_folded(mm)) 2033 return; 2034 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2035 } 2036 2037 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2038 { 2039 if (mm_pmd_folded(mm)) 2040 return; 2041 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2042 } 2043 #endif 2044 2045 #ifdef CONFIG_MMU 2046 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2047 { 2048 atomic_long_set(&mm->pgtables_bytes, 0); 2049 } 2050 2051 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2052 { 2053 return atomic_long_read(&mm->pgtables_bytes); 2054 } 2055 2056 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2057 { 2058 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2059 } 2060 2061 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2062 { 2063 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2064 } 2065 #else 2066 2067 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2068 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2069 { 2070 return 0; 2071 } 2072 2073 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2074 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2075 #endif 2076 2077 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2078 int __pte_alloc_kernel(pmd_t *pmd); 2079 2080 #if defined(CONFIG_MMU) 2081 2082 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2083 unsigned long address) 2084 { 2085 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2086 NULL : p4d_offset(pgd, address); 2087 } 2088 2089 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2090 unsigned long address) 2091 { 2092 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2093 NULL : pud_offset(p4d, address); 2094 } 2095 2096 static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, 2097 unsigned long address, 2098 pgtbl_mod_mask *mod_mask) 2099 2100 { 2101 if (unlikely(pgd_none(*pgd))) { 2102 if (__p4d_alloc(mm, pgd, address)) 2103 return NULL; 2104 *mod_mask |= PGTBL_PGD_MODIFIED; 2105 } 2106 2107 return p4d_offset(pgd, address); 2108 } 2109 2110 static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, 2111 unsigned long address, 2112 pgtbl_mod_mask *mod_mask) 2113 { 2114 if (unlikely(p4d_none(*p4d))) { 2115 if (__pud_alloc(mm, p4d, address)) 2116 return NULL; 2117 *mod_mask |= PGTBL_P4D_MODIFIED; 2118 } 2119 2120 return pud_offset(p4d, address); 2121 } 2122 2123 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2124 { 2125 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2126 NULL: pmd_offset(pud, address); 2127 } 2128 2129 static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, 2130 unsigned long address, 2131 pgtbl_mod_mask *mod_mask) 2132 { 2133 if (unlikely(pud_none(*pud))) { 2134 if (__pmd_alloc(mm, pud, address)) 2135 return NULL; 2136 *mod_mask |= PGTBL_PUD_MODIFIED; 2137 } 2138 2139 return pmd_offset(pud, address); 2140 } 2141 #endif /* CONFIG_MMU */ 2142 2143 #if USE_SPLIT_PTE_PTLOCKS 2144 #if ALLOC_SPLIT_PTLOCKS 2145 void __init ptlock_cache_init(void); 2146 extern bool ptlock_alloc(struct page *page); 2147 extern void ptlock_free(struct page *page); 2148 2149 static inline spinlock_t *ptlock_ptr(struct page *page) 2150 { 2151 return page->ptl; 2152 } 2153 #else /* ALLOC_SPLIT_PTLOCKS */ 2154 static inline void ptlock_cache_init(void) 2155 { 2156 } 2157 2158 static inline bool ptlock_alloc(struct page *page) 2159 { 2160 return true; 2161 } 2162 2163 static inline void ptlock_free(struct page *page) 2164 { 2165 } 2166 2167 static inline spinlock_t *ptlock_ptr(struct page *page) 2168 { 2169 return &page->ptl; 2170 } 2171 #endif /* ALLOC_SPLIT_PTLOCKS */ 2172 2173 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2174 { 2175 return ptlock_ptr(pmd_page(*pmd)); 2176 } 2177 2178 static inline bool ptlock_init(struct page *page) 2179 { 2180 /* 2181 * prep_new_page() initialize page->private (and therefore page->ptl) 2182 * with 0. Make sure nobody took it in use in between. 2183 * 2184 * It can happen if arch try to use slab for page table allocation: 2185 * slab code uses page->slab_cache, which share storage with page->ptl. 2186 */ 2187 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2188 if (!ptlock_alloc(page)) 2189 return false; 2190 spin_lock_init(ptlock_ptr(page)); 2191 return true; 2192 } 2193 2194 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2195 /* 2196 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2197 */ 2198 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2199 { 2200 return &mm->page_table_lock; 2201 } 2202 static inline void ptlock_cache_init(void) {} 2203 static inline bool ptlock_init(struct page *page) { return true; } 2204 static inline void ptlock_free(struct page *page) {} 2205 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2206 2207 static inline void pgtable_init(void) 2208 { 2209 ptlock_cache_init(); 2210 pgtable_cache_init(); 2211 } 2212 2213 static inline bool pgtable_pte_page_ctor(struct page *page) 2214 { 2215 if (!ptlock_init(page)) 2216 return false; 2217 __SetPageTable(page); 2218 inc_zone_page_state(page, NR_PAGETABLE); 2219 return true; 2220 } 2221 2222 static inline void pgtable_pte_page_dtor(struct page *page) 2223 { 2224 ptlock_free(page); 2225 __ClearPageTable(page); 2226 dec_zone_page_state(page, NR_PAGETABLE); 2227 } 2228 2229 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2230 ({ \ 2231 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2232 pte_t *__pte = pte_offset_map(pmd, address); \ 2233 *(ptlp) = __ptl; \ 2234 spin_lock(__ptl); \ 2235 __pte; \ 2236 }) 2237 2238 #define pte_unmap_unlock(pte, ptl) do { \ 2239 spin_unlock(ptl); \ 2240 pte_unmap(pte); \ 2241 } while (0) 2242 2243 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2244 2245 #define pte_alloc_map(mm, pmd, address) \ 2246 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2247 2248 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2249 (pte_alloc(mm, pmd) ? \ 2250 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2251 2252 #define pte_alloc_kernel(pmd, address) \ 2253 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2254 NULL: pte_offset_kernel(pmd, address)) 2255 2256 #define pte_alloc_kernel_track(pmd, address, mask) \ 2257 ((unlikely(pmd_none(*(pmd))) && \ 2258 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ 2259 NULL: pte_offset_kernel(pmd, address)) 2260 2261 #if USE_SPLIT_PMD_PTLOCKS 2262 2263 static struct page *pmd_to_page(pmd_t *pmd) 2264 { 2265 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2266 return virt_to_page((void *)((unsigned long) pmd & mask)); 2267 } 2268 2269 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2270 { 2271 return ptlock_ptr(pmd_to_page(pmd)); 2272 } 2273 2274 static inline bool pgtable_pmd_page_ctor(struct page *page) 2275 { 2276 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2277 page->pmd_huge_pte = NULL; 2278 #endif 2279 return ptlock_init(page); 2280 } 2281 2282 static inline void pgtable_pmd_page_dtor(struct page *page) 2283 { 2284 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2285 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2286 #endif 2287 ptlock_free(page); 2288 } 2289 2290 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2291 2292 #else 2293 2294 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2295 { 2296 return &mm->page_table_lock; 2297 } 2298 2299 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2300 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2301 2302 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2303 2304 #endif 2305 2306 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2307 { 2308 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2309 spin_lock(ptl); 2310 return ptl; 2311 } 2312 2313 /* 2314 * No scalability reason to split PUD locks yet, but follow the same pattern 2315 * as the PMD locks to make it easier if we decide to. The VM should not be 2316 * considered ready to switch to split PUD locks yet; there may be places 2317 * which need to be converted from page_table_lock. 2318 */ 2319 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2320 { 2321 return &mm->page_table_lock; 2322 } 2323 2324 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2325 { 2326 spinlock_t *ptl = pud_lockptr(mm, pud); 2327 2328 spin_lock(ptl); 2329 return ptl; 2330 } 2331 2332 extern void __init pagecache_init(void); 2333 extern void __init free_area_init_memoryless_node(int nid); 2334 extern void free_initmem(void); 2335 2336 /* 2337 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2338 * into the buddy system. The freed pages will be poisoned with pattern 2339 * "poison" if it's within range [0, UCHAR_MAX]. 2340 * Return pages freed into the buddy system. 2341 */ 2342 extern unsigned long free_reserved_area(void *start, void *end, 2343 int poison, const char *s); 2344 2345 #ifdef CONFIG_HIGHMEM 2346 /* 2347 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2348 * and totalram_pages. 2349 */ 2350 extern void free_highmem_page(struct page *page); 2351 #endif 2352 2353 extern void adjust_managed_page_count(struct page *page, long count); 2354 extern void mem_init_print_info(const char *str); 2355 2356 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2357 2358 /* Free the reserved page into the buddy system, so it gets managed. */ 2359 static inline void __free_reserved_page(struct page *page) 2360 { 2361 ClearPageReserved(page); 2362 init_page_count(page); 2363 __free_page(page); 2364 } 2365 2366 static inline void free_reserved_page(struct page *page) 2367 { 2368 __free_reserved_page(page); 2369 adjust_managed_page_count(page, 1); 2370 } 2371 2372 static inline void mark_page_reserved(struct page *page) 2373 { 2374 SetPageReserved(page); 2375 adjust_managed_page_count(page, -1); 2376 } 2377 2378 /* 2379 * Default method to free all the __init memory into the buddy system. 2380 * The freed pages will be poisoned with pattern "poison" if it's within 2381 * range [0, UCHAR_MAX]. 2382 * Return pages freed into the buddy system. 2383 */ 2384 static inline unsigned long free_initmem_default(int poison) 2385 { 2386 extern char __init_begin[], __init_end[]; 2387 2388 return free_reserved_area(&__init_begin, &__init_end, 2389 poison, "unused kernel"); 2390 } 2391 2392 static inline unsigned long get_num_physpages(void) 2393 { 2394 int nid; 2395 unsigned long phys_pages = 0; 2396 2397 for_each_online_node(nid) 2398 phys_pages += node_present_pages(nid); 2399 2400 return phys_pages; 2401 } 2402 2403 /* 2404 * Using memblock node mappings, an architecture may initialise its 2405 * zones, allocate the backing mem_map and account for memory holes in an 2406 * architecture independent manner. 2407 * 2408 * An architecture is expected to register range of page frames backed by 2409 * physical memory with memblock_add[_node]() before calling 2410 * free_area_init() passing in the PFN each zone ends at. At a basic 2411 * usage, an architecture is expected to do something like 2412 * 2413 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2414 * max_highmem_pfn}; 2415 * for_each_valid_physical_page_range() 2416 * memblock_add_node(base, size, nid) 2417 * free_area_init(max_zone_pfns); 2418 * 2419 * sparse_memory_present_with_active_regions() calls memory_present() for 2420 * each range when SPARSEMEM is enabled. 2421 */ 2422 void free_area_init(unsigned long *max_zone_pfn); 2423 unsigned long node_map_pfn_alignment(void); 2424 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2425 unsigned long end_pfn); 2426 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2427 unsigned long end_pfn); 2428 extern void get_pfn_range_for_nid(unsigned int nid, 2429 unsigned long *start_pfn, unsigned long *end_pfn); 2430 extern unsigned long find_min_pfn_with_active_regions(void); 2431 extern void sparse_memory_present_with_active_regions(int nid); 2432 2433 #ifndef CONFIG_NEED_MULTIPLE_NODES 2434 static inline int early_pfn_to_nid(unsigned long pfn) 2435 { 2436 return 0; 2437 } 2438 #else 2439 /* please see mm/page_alloc.c */ 2440 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2441 /* there is a per-arch backend function. */ 2442 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2443 struct mminit_pfnnid_cache *state); 2444 #endif 2445 2446 extern void set_dma_reserve(unsigned long new_dma_reserve); 2447 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2448 enum memmap_context, struct vmem_altmap *); 2449 extern void setup_per_zone_wmarks(void); 2450 extern int __meminit init_per_zone_wmark_min(void); 2451 extern void mem_init(void); 2452 extern void __init mmap_init(void); 2453 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2454 extern long si_mem_available(void); 2455 extern void si_meminfo(struct sysinfo * val); 2456 extern void si_meminfo_node(struct sysinfo *val, int nid); 2457 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2458 extern unsigned long arch_reserved_kernel_pages(void); 2459 #endif 2460 2461 extern __printf(3, 4) 2462 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2463 2464 extern void setup_per_cpu_pageset(void); 2465 2466 /* page_alloc.c */ 2467 extern int min_free_kbytes; 2468 extern int watermark_boost_factor; 2469 extern int watermark_scale_factor; 2470 extern bool arch_has_descending_max_zone_pfns(void); 2471 2472 /* nommu.c */ 2473 extern atomic_long_t mmap_pages_allocated; 2474 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2475 2476 /* interval_tree.c */ 2477 void vma_interval_tree_insert(struct vm_area_struct *node, 2478 struct rb_root_cached *root); 2479 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2480 struct vm_area_struct *prev, 2481 struct rb_root_cached *root); 2482 void vma_interval_tree_remove(struct vm_area_struct *node, 2483 struct rb_root_cached *root); 2484 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2485 unsigned long start, unsigned long last); 2486 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2487 unsigned long start, unsigned long last); 2488 2489 #define vma_interval_tree_foreach(vma, root, start, last) \ 2490 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2491 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2492 2493 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2494 struct rb_root_cached *root); 2495 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2496 struct rb_root_cached *root); 2497 struct anon_vma_chain * 2498 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2499 unsigned long start, unsigned long last); 2500 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2501 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2502 #ifdef CONFIG_DEBUG_VM_RB 2503 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2504 #endif 2505 2506 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2507 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2508 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2509 2510 /* mmap.c */ 2511 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2512 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2513 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2514 struct vm_area_struct *expand); 2515 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2516 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2517 { 2518 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2519 } 2520 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2521 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2522 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2523 struct mempolicy *, struct vm_userfaultfd_ctx); 2524 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2525 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2526 unsigned long addr, int new_below); 2527 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2528 unsigned long addr, int new_below); 2529 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2530 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2531 struct rb_node **, struct rb_node *); 2532 extern void unlink_file_vma(struct vm_area_struct *); 2533 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2534 unsigned long addr, unsigned long len, pgoff_t pgoff, 2535 bool *need_rmap_locks); 2536 extern void exit_mmap(struct mm_struct *); 2537 2538 static inline int check_data_rlimit(unsigned long rlim, 2539 unsigned long new, 2540 unsigned long start, 2541 unsigned long end_data, 2542 unsigned long start_data) 2543 { 2544 if (rlim < RLIM_INFINITY) { 2545 if (((new - start) + (end_data - start_data)) > rlim) 2546 return -ENOSPC; 2547 } 2548 2549 return 0; 2550 } 2551 2552 extern int mm_take_all_locks(struct mm_struct *mm); 2553 extern void mm_drop_all_locks(struct mm_struct *mm); 2554 2555 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2556 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2557 extern struct file *get_task_exe_file(struct task_struct *task); 2558 2559 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2560 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2561 2562 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2563 const struct vm_special_mapping *sm); 2564 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2565 unsigned long addr, unsigned long len, 2566 unsigned long flags, 2567 const struct vm_special_mapping *spec); 2568 /* This is an obsolete alternative to _install_special_mapping. */ 2569 extern int install_special_mapping(struct mm_struct *mm, 2570 unsigned long addr, unsigned long len, 2571 unsigned long flags, struct page **pages); 2572 2573 unsigned long randomize_stack_top(unsigned long stack_top); 2574 2575 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2576 2577 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2578 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2579 struct list_head *uf); 2580 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2581 unsigned long len, unsigned long prot, unsigned long flags, 2582 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2583 struct list_head *uf); 2584 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2585 struct list_head *uf, bool downgrade); 2586 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2587 struct list_head *uf); 2588 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2589 2590 static inline unsigned long 2591 do_mmap_pgoff(struct file *file, unsigned long addr, 2592 unsigned long len, unsigned long prot, unsigned long flags, 2593 unsigned long pgoff, unsigned long *populate, 2594 struct list_head *uf) 2595 { 2596 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2597 } 2598 2599 #ifdef CONFIG_MMU 2600 extern int __mm_populate(unsigned long addr, unsigned long len, 2601 int ignore_errors); 2602 static inline void mm_populate(unsigned long addr, unsigned long len) 2603 { 2604 /* Ignore errors */ 2605 (void) __mm_populate(addr, len, 1); 2606 } 2607 #else 2608 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2609 #endif 2610 2611 /* These take the mm semaphore themselves */ 2612 extern int __must_check vm_brk(unsigned long, unsigned long); 2613 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2614 extern int vm_munmap(unsigned long, size_t); 2615 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2616 unsigned long, unsigned long, 2617 unsigned long, unsigned long); 2618 2619 struct vm_unmapped_area_info { 2620 #define VM_UNMAPPED_AREA_TOPDOWN 1 2621 unsigned long flags; 2622 unsigned long length; 2623 unsigned long low_limit; 2624 unsigned long high_limit; 2625 unsigned long align_mask; 2626 unsigned long align_offset; 2627 }; 2628 2629 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2630 2631 /* truncate.c */ 2632 extern void truncate_inode_pages(struct address_space *, loff_t); 2633 extern void truncate_inode_pages_range(struct address_space *, 2634 loff_t lstart, loff_t lend); 2635 extern void truncate_inode_pages_final(struct address_space *); 2636 2637 /* generic vm_area_ops exported for stackable file systems */ 2638 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2639 extern void filemap_map_pages(struct vm_fault *vmf, 2640 pgoff_t start_pgoff, pgoff_t end_pgoff); 2641 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2642 2643 /* mm/page-writeback.c */ 2644 int __must_check write_one_page(struct page *page); 2645 void task_dirty_inc(struct task_struct *tsk); 2646 2647 extern unsigned long stack_guard_gap; 2648 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2649 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2650 2651 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2652 extern int expand_downwards(struct vm_area_struct *vma, 2653 unsigned long address); 2654 #if VM_GROWSUP 2655 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2656 #else 2657 #define expand_upwards(vma, address) (0) 2658 #endif 2659 2660 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2661 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2662 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2663 struct vm_area_struct **pprev); 2664 2665 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2666 NULL if none. Assume start_addr < end_addr. */ 2667 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2668 { 2669 struct vm_area_struct * vma = find_vma(mm,start_addr); 2670 2671 if (vma && end_addr <= vma->vm_start) 2672 vma = NULL; 2673 return vma; 2674 } 2675 2676 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2677 { 2678 unsigned long vm_start = vma->vm_start; 2679 2680 if (vma->vm_flags & VM_GROWSDOWN) { 2681 vm_start -= stack_guard_gap; 2682 if (vm_start > vma->vm_start) 2683 vm_start = 0; 2684 } 2685 return vm_start; 2686 } 2687 2688 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2689 { 2690 unsigned long vm_end = vma->vm_end; 2691 2692 if (vma->vm_flags & VM_GROWSUP) { 2693 vm_end += stack_guard_gap; 2694 if (vm_end < vma->vm_end) 2695 vm_end = -PAGE_SIZE; 2696 } 2697 return vm_end; 2698 } 2699 2700 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2701 { 2702 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2703 } 2704 2705 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2706 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2707 unsigned long vm_start, unsigned long vm_end) 2708 { 2709 struct vm_area_struct *vma = find_vma(mm, vm_start); 2710 2711 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2712 vma = NULL; 2713 2714 return vma; 2715 } 2716 2717 static inline bool range_in_vma(struct vm_area_struct *vma, 2718 unsigned long start, unsigned long end) 2719 { 2720 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2721 } 2722 2723 #ifdef CONFIG_MMU 2724 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2725 void vma_set_page_prot(struct vm_area_struct *vma); 2726 #else 2727 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2728 { 2729 return __pgprot(0); 2730 } 2731 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2732 { 2733 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2734 } 2735 #endif 2736 2737 #ifdef CONFIG_NUMA_BALANCING 2738 unsigned long change_prot_numa(struct vm_area_struct *vma, 2739 unsigned long start, unsigned long end); 2740 #endif 2741 2742 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2743 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2744 unsigned long pfn, unsigned long size, pgprot_t); 2745 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2746 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2747 struct page **pages, unsigned long *num); 2748 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2749 unsigned long num); 2750 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2751 unsigned long num); 2752 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2753 unsigned long pfn); 2754 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2755 unsigned long pfn, pgprot_t pgprot); 2756 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2757 pfn_t pfn); 2758 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2759 pfn_t pfn, pgprot_t pgprot); 2760 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2761 unsigned long addr, pfn_t pfn); 2762 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2763 2764 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2765 unsigned long addr, struct page *page) 2766 { 2767 int err = vm_insert_page(vma, addr, page); 2768 2769 if (err == -ENOMEM) 2770 return VM_FAULT_OOM; 2771 if (err < 0 && err != -EBUSY) 2772 return VM_FAULT_SIGBUS; 2773 2774 return VM_FAULT_NOPAGE; 2775 } 2776 2777 static inline vm_fault_t vmf_error(int err) 2778 { 2779 if (err == -ENOMEM) 2780 return VM_FAULT_OOM; 2781 return VM_FAULT_SIGBUS; 2782 } 2783 2784 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2785 unsigned int foll_flags); 2786 2787 #define FOLL_WRITE 0x01 /* check pte is writable */ 2788 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2789 #define FOLL_GET 0x04 /* do get_page on page */ 2790 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2791 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2792 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2793 * and return without waiting upon it */ 2794 #define FOLL_POPULATE 0x40 /* fault in page */ 2795 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2796 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2797 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2798 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2799 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2800 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2801 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2802 #define FOLL_COW 0x4000 /* internal GUP flag */ 2803 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2804 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2805 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2806 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2807 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2808 2809 /* 2810 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2811 * other. Here is what they mean, and how to use them: 2812 * 2813 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2814 * period _often_ under userspace control. This is in contrast to 2815 * iov_iter_get_pages(), whose usages are transient. 2816 * 2817 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2818 * lifetime enforced by the filesystem and we need guarantees that longterm 2819 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2820 * the filesystem. Ideas for this coordination include revoking the longterm 2821 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2822 * added after the problem with filesystems was found FS DAX VMAs are 2823 * specifically failed. Filesystem pages are still subject to bugs and use of 2824 * FOLL_LONGTERM should be avoided on those pages. 2825 * 2826 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2827 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2828 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2829 * is due to an incompatibility with the FS DAX check and 2830 * FAULT_FLAG_ALLOW_RETRY. 2831 * 2832 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2833 * that region. And so, CMA attempts to migrate the page before pinning, when 2834 * FOLL_LONGTERM is specified. 2835 * 2836 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2837 * but an additional pin counting system) will be invoked. This is intended for 2838 * anything that gets a page reference and then touches page data (for example, 2839 * Direct IO). This lets the filesystem know that some non-file-system entity is 2840 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2841 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2842 * a call to unpin_user_page(). 2843 * 2844 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2845 * and separate refcounting mechanisms, however, and that means that each has 2846 * its own acquire and release mechanisms: 2847 * 2848 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2849 * 2850 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2851 * 2852 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2853 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2854 * calls applied to them, and that's perfectly OK. This is a constraint on the 2855 * callers, not on the pages.) 2856 * 2857 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2858 * directly by the caller. That's in order to help avoid mismatches when 2859 * releasing pages: get_user_pages*() pages must be released via put_page(), 2860 * while pin_user_pages*() pages must be released via unpin_user_page(). 2861 * 2862 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2863 */ 2864 2865 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2866 { 2867 if (vm_fault & VM_FAULT_OOM) 2868 return -ENOMEM; 2869 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2870 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2871 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2872 return -EFAULT; 2873 return 0; 2874 } 2875 2876 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2877 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2878 unsigned long size, pte_fn_t fn, void *data); 2879 extern int apply_to_existing_page_range(struct mm_struct *mm, 2880 unsigned long address, unsigned long size, 2881 pte_fn_t fn, void *data); 2882 2883 #ifdef CONFIG_PAGE_POISONING 2884 extern bool page_poisoning_enabled(void); 2885 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2886 #else 2887 static inline bool page_poisoning_enabled(void) { return false; } 2888 static inline void kernel_poison_pages(struct page *page, int numpages, 2889 int enable) { } 2890 #endif 2891 2892 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2893 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2894 #else 2895 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2896 #endif 2897 static inline bool want_init_on_alloc(gfp_t flags) 2898 { 2899 if (static_branch_unlikely(&init_on_alloc) && 2900 !page_poisoning_enabled()) 2901 return true; 2902 return flags & __GFP_ZERO; 2903 } 2904 2905 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2906 DECLARE_STATIC_KEY_TRUE(init_on_free); 2907 #else 2908 DECLARE_STATIC_KEY_FALSE(init_on_free); 2909 #endif 2910 static inline bool want_init_on_free(void) 2911 { 2912 return static_branch_unlikely(&init_on_free) && 2913 !page_poisoning_enabled(); 2914 } 2915 2916 #ifdef CONFIG_DEBUG_PAGEALLOC 2917 extern void init_debug_pagealloc(void); 2918 #else 2919 static inline void init_debug_pagealloc(void) {} 2920 #endif 2921 extern bool _debug_pagealloc_enabled_early; 2922 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2923 2924 static inline bool debug_pagealloc_enabled(void) 2925 { 2926 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2927 _debug_pagealloc_enabled_early; 2928 } 2929 2930 /* 2931 * For use in fast paths after init_debug_pagealloc() has run, or when a 2932 * false negative result is not harmful when called too early. 2933 */ 2934 static inline bool debug_pagealloc_enabled_static(void) 2935 { 2936 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2937 return false; 2938 2939 return static_branch_unlikely(&_debug_pagealloc_enabled); 2940 } 2941 2942 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2943 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2944 2945 /* 2946 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2947 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2948 */ 2949 static inline void 2950 kernel_map_pages(struct page *page, int numpages, int enable) 2951 { 2952 __kernel_map_pages(page, numpages, enable); 2953 } 2954 #ifdef CONFIG_HIBERNATION 2955 extern bool kernel_page_present(struct page *page); 2956 #endif /* CONFIG_HIBERNATION */ 2957 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2958 static inline void 2959 kernel_map_pages(struct page *page, int numpages, int enable) {} 2960 #ifdef CONFIG_HIBERNATION 2961 static inline bool kernel_page_present(struct page *page) { return true; } 2962 #endif /* CONFIG_HIBERNATION */ 2963 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2964 2965 #ifdef __HAVE_ARCH_GATE_AREA 2966 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2967 extern int in_gate_area_no_mm(unsigned long addr); 2968 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2969 #else 2970 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2971 { 2972 return NULL; 2973 } 2974 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2975 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2976 { 2977 return 0; 2978 } 2979 #endif /* __HAVE_ARCH_GATE_AREA */ 2980 2981 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2982 2983 #ifdef CONFIG_SYSCTL 2984 extern int sysctl_drop_caches; 2985 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2986 loff_t *); 2987 #endif 2988 2989 void drop_slab(void); 2990 void drop_slab_node(int nid); 2991 2992 #ifndef CONFIG_MMU 2993 #define randomize_va_space 0 2994 #else 2995 extern int randomize_va_space; 2996 #endif 2997 2998 const char * arch_vma_name(struct vm_area_struct *vma); 2999 #ifdef CONFIG_MMU 3000 void print_vma_addr(char *prefix, unsigned long rip); 3001 #else 3002 static inline void print_vma_addr(char *prefix, unsigned long rip) 3003 { 3004 } 3005 #endif 3006 3007 void *sparse_buffer_alloc(unsigned long size); 3008 struct page * __populate_section_memmap(unsigned long pfn, 3009 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3010 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3011 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3012 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3013 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3014 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 3015 void *vmemmap_alloc_block(unsigned long size, int node); 3016 struct vmem_altmap; 3017 void *vmemmap_alloc_block_buf(unsigned long size, int node); 3018 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 3019 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3020 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3021 int node); 3022 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3023 struct vmem_altmap *altmap); 3024 void vmemmap_populate_print_last(void); 3025 #ifdef CONFIG_MEMORY_HOTPLUG 3026 void vmemmap_free(unsigned long start, unsigned long end, 3027 struct vmem_altmap *altmap); 3028 #endif 3029 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3030 unsigned long nr_pages); 3031 3032 enum mf_flags { 3033 MF_COUNT_INCREASED = 1 << 0, 3034 MF_ACTION_REQUIRED = 1 << 1, 3035 MF_MUST_KILL = 1 << 2, 3036 MF_SOFT_OFFLINE = 1 << 3, 3037 }; 3038 extern int memory_failure(unsigned long pfn, int flags); 3039 extern void memory_failure_queue(unsigned long pfn, int flags); 3040 extern void memory_failure_queue_kick(int cpu); 3041 extern int unpoison_memory(unsigned long pfn); 3042 extern int get_hwpoison_page(struct page *page); 3043 #define put_hwpoison_page(page) put_page(page) 3044 extern int sysctl_memory_failure_early_kill; 3045 extern int sysctl_memory_failure_recovery; 3046 extern void shake_page(struct page *p, int access); 3047 extern atomic_long_t num_poisoned_pages __read_mostly; 3048 extern int soft_offline_page(unsigned long pfn, int flags); 3049 3050 3051 /* 3052 * Error handlers for various types of pages. 3053 */ 3054 enum mf_result { 3055 MF_IGNORED, /* Error: cannot be handled */ 3056 MF_FAILED, /* Error: handling failed */ 3057 MF_DELAYED, /* Will be handled later */ 3058 MF_RECOVERED, /* Successfully recovered */ 3059 }; 3060 3061 enum mf_action_page_type { 3062 MF_MSG_KERNEL, 3063 MF_MSG_KERNEL_HIGH_ORDER, 3064 MF_MSG_SLAB, 3065 MF_MSG_DIFFERENT_COMPOUND, 3066 MF_MSG_POISONED_HUGE, 3067 MF_MSG_HUGE, 3068 MF_MSG_FREE_HUGE, 3069 MF_MSG_NON_PMD_HUGE, 3070 MF_MSG_UNMAP_FAILED, 3071 MF_MSG_DIRTY_SWAPCACHE, 3072 MF_MSG_CLEAN_SWAPCACHE, 3073 MF_MSG_DIRTY_MLOCKED_LRU, 3074 MF_MSG_CLEAN_MLOCKED_LRU, 3075 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3076 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3077 MF_MSG_DIRTY_LRU, 3078 MF_MSG_CLEAN_LRU, 3079 MF_MSG_TRUNCATED_LRU, 3080 MF_MSG_BUDDY, 3081 MF_MSG_BUDDY_2ND, 3082 MF_MSG_DAX, 3083 MF_MSG_UNKNOWN, 3084 }; 3085 3086 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3087 extern void clear_huge_page(struct page *page, 3088 unsigned long addr_hint, 3089 unsigned int pages_per_huge_page); 3090 extern void copy_user_huge_page(struct page *dst, struct page *src, 3091 unsigned long addr_hint, 3092 struct vm_area_struct *vma, 3093 unsigned int pages_per_huge_page); 3094 extern long copy_huge_page_from_user(struct page *dst_page, 3095 const void __user *usr_src, 3096 unsigned int pages_per_huge_page, 3097 bool allow_pagefault); 3098 3099 /** 3100 * vma_is_special_huge - Are transhuge page-table entries considered special? 3101 * @vma: Pointer to the struct vm_area_struct to consider 3102 * 3103 * Whether transhuge page-table entries are considered "special" following 3104 * the definition in vm_normal_page(). 3105 * 3106 * Return: true if transhuge page-table entries should be considered special, 3107 * false otherwise. 3108 */ 3109 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3110 { 3111 return vma_is_dax(vma) || (vma->vm_file && 3112 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3113 } 3114 3115 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3116 3117 #ifdef CONFIG_DEBUG_PAGEALLOC 3118 extern unsigned int _debug_guardpage_minorder; 3119 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3120 3121 static inline unsigned int debug_guardpage_minorder(void) 3122 { 3123 return _debug_guardpage_minorder; 3124 } 3125 3126 static inline bool debug_guardpage_enabled(void) 3127 { 3128 return static_branch_unlikely(&_debug_guardpage_enabled); 3129 } 3130 3131 static inline bool page_is_guard(struct page *page) 3132 { 3133 if (!debug_guardpage_enabled()) 3134 return false; 3135 3136 return PageGuard(page); 3137 } 3138 #else 3139 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3140 static inline bool debug_guardpage_enabled(void) { return false; } 3141 static inline bool page_is_guard(struct page *page) { return false; } 3142 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3143 3144 #if MAX_NUMNODES > 1 3145 void __init setup_nr_node_ids(void); 3146 #else 3147 static inline void setup_nr_node_ids(void) {} 3148 #endif 3149 3150 extern int memcmp_pages(struct page *page1, struct page *page2); 3151 3152 static inline int pages_identical(struct page *page1, struct page *page2) 3153 { 3154 return !memcmp_pages(page1, page2); 3155 } 3156 3157 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3158 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3159 pgoff_t first_index, pgoff_t nr, 3160 pgoff_t bitmap_pgoff, 3161 unsigned long *bitmap, 3162 pgoff_t *start, 3163 pgoff_t *end); 3164 3165 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3166 pgoff_t first_index, pgoff_t nr); 3167 #endif 3168 3169 extern int sysctl_nr_trim_pages; 3170 3171 #endif /* __KERNEL__ */ 3172 #endif /* _LINUX_MM_H */ 3173