xref: /linux-6.15/include/linux/mm.h (revision ca97d939)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page_ref.h>
26 
27 struct mempolicy;
28 struct anon_vma;
29 struct anon_vma_chain;
30 struct file_ra_state;
31 struct user_struct;
32 struct writeback_control;
33 struct bdi_writeback;
34 
35 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
36 extern unsigned long max_mapnr;
37 
38 static inline void set_max_mapnr(unsigned long limit)
39 {
40 	max_mapnr = limit;
41 }
42 #else
43 static inline void set_max_mapnr(unsigned long limit) { }
44 #endif
45 
46 extern unsigned long totalram_pages;
47 extern void * high_memory;
48 extern int page_cluster;
49 
50 #ifdef CONFIG_SYSCTL
51 extern int sysctl_legacy_va_layout;
52 #else
53 #define sysctl_legacy_va_layout 0
54 #endif
55 
56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57 extern const int mmap_rnd_bits_min;
58 extern const int mmap_rnd_bits_max;
59 extern int mmap_rnd_bits __read_mostly;
60 #endif
61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62 extern const int mmap_rnd_compat_bits_min;
63 extern const int mmap_rnd_compat_bits_max;
64 extern int mmap_rnd_compat_bits __read_mostly;
65 #endif
66 
67 #include <asm/page.h>
68 #include <asm/pgtable.h>
69 #include <asm/processor.h>
70 
71 #ifndef __pa_symbol
72 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
73 #endif
74 
75 #ifndef page_to_virt
76 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
77 #endif
78 
79 #ifndef lm_alias
80 #define lm_alias(x)	__va(__pa_symbol(x))
81 #endif
82 
83 /*
84  * To prevent common memory management code establishing
85  * a zero page mapping on a read fault.
86  * This macro should be defined within <asm/pgtable.h>.
87  * s390 does this to prevent multiplexing of hardware bits
88  * related to the physical page in case of virtualization.
89  */
90 #ifndef mm_forbids_zeropage
91 #define mm_forbids_zeropage(X)	(0)
92 #endif
93 
94 /*
95  * Default maximum number of active map areas, this limits the number of vmas
96  * per mm struct. Users can overwrite this number by sysctl but there is a
97  * problem.
98  *
99  * When a program's coredump is generated as ELF format, a section is created
100  * per a vma. In ELF, the number of sections is represented in unsigned short.
101  * This means the number of sections should be smaller than 65535 at coredump.
102  * Because the kernel adds some informative sections to a image of program at
103  * generating coredump, we need some margin. The number of extra sections is
104  * 1-3 now and depends on arch. We use "5" as safe margin, here.
105  *
106  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
107  * not a hard limit any more. Although some userspace tools can be surprised by
108  * that.
109  */
110 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
111 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
112 
113 extern int sysctl_max_map_count;
114 
115 extern unsigned long sysctl_user_reserve_kbytes;
116 extern unsigned long sysctl_admin_reserve_kbytes;
117 
118 extern int sysctl_overcommit_memory;
119 extern int sysctl_overcommit_ratio;
120 extern unsigned long sysctl_overcommit_kbytes;
121 
122 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
123 				    size_t *, loff_t *);
124 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
125 				    size_t *, loff_t *);
126 
127 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
128 
129 /* to align the pointer to the (next) page boundary */
130 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
131 
132 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
133 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
134 
135 /*
136  * Linux kernel virtual memory manager primitives.
137  * The idea being to have a "virtual" mm in the same way
138  * we have a virtual fs - giving a cleaner interface to the
139  * mm details, and allowing different kinds of memory mappings
140  * (from shared memory to executable loading to arbitrary
141  * mmap() functions).
142  */
143 
144 extern struct kmem_cache *vm_area_cachep;
145 
146 #ifndef CONFIG_MMU
147 extern struct rb_root nommu_region_tree;
148 extern struct rw_semaphore nommu_region_sem;
149 
150 extern unsigned int kobjsize(const void *objp);
151 #endif
152 
153 /*
154  * vm_flags in vm_area_struct, see mm_types.h.
155  * When changing, update also include/trace/events/mmflags.h
156  */
157 #define VM_NONE		0x00000000
158 
159 #define VM_READ		0x00000001	/* currently active flags */
160 #define VM_WRITE	0x00000002
161 #define VM_EXEC		0x00000004
162 #define VM_SHARED	0x00000008
163 
164 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
165 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
166 #define VM_MAYWRITE	0x00000020
167 #define VM_MAYEXEC	0x00000040
168 #define VM_MAYSHARE	0x00000080
169 
170 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
171 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
172 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
173 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
174 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
175 
176 #define VM_LOCKED	0x00002000
177 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
178 
179 					/* Used by sys_madvise() */
180 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
181 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
182 
183 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
184 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
185 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
186 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
187 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
188 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
189 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
190 #define VM_ARCH_2	0x02000000
191 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
192 
193 #ifdef CONFIG_MEM_SOFT_DIRTY
194 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
195 #else
196 # define VM_SOFTDIRTY	0
197 #endif
198 
199 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
200 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
201 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
202 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
203 
204 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
205 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
206 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
207 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
208 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
209 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
210 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
211 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
212 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
213 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
214 
215 #if defined(CONFIG_X86)
216 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
217 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
218 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
219 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
220 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1
221 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
222 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
223 #endif
224 #elif defined(CONFIG_PPC)
225 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
226 #elif defined(CONFIG_PARISC)
227 # define VM_GROWSUP	VM_ARCH_1
228 #elif defined(CONFIG_METAG)
229 # define VM_GROWSUP	VM_ARCH_1
230 #elif defined(CONFIG_IA64)
231 # define VM_GROWSUP	VM_ARCH_1
232 #elif !defined(CONFIG_MMU)
233 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
234 #endif
235 
236 #if defined(CONFIG_X86)
237 /* MPX specific bounds table or bounds directory */
238 # define VM_MPX		VM_ARCH_2
239 #endif
240 
241 #ifndef VM_GROWSUP
242 # define VM_GROWSUP	VM_NONE
243 #endif
244 
245 /* Bits set in the VMA until the stack is in its final location */
246 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
247 
248 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
249 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
250 #endif
251 
252 #ifdef CONFIG_STACK_GROWSUP
253 #define VM_STACK	VM_GROWSUP
254 #else
255 #define VM_STACK	VM_GROWSDOWN
256 #endif
257 
258 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
259 
260 /*
261  * Special vmas that are non-mergable, non-mlock()able.
262  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
263  */
264 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
265 
266 /* This mask defines which mm->def_flags a process can inherit its parent */
267 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
268 
269 /* This mask is used to clear all the VMA flags used by mlock */
270 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
271 
272 /*
273  * mapping from the currently active vm_flags protection bits (the
274  * low four bits) to a page protection mask..
275  */
276 extern pgprot_t protection_map[16];
277 
278 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
279 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
280 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
281 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
282 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
283 #define FAULT_FLAG_TRIED	0x20	/* Second try */
284 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
285 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
286 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
287 
288 #define FAULT_FLAG_TRACE \
289 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
290 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
291 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
292 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
293 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
294 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
295 	{ FAULT_FLAG_USER,		"USER" }, \
296 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
297 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
298 
299 /*
300  * vm_fault is filled by the the pagefault handler and passed to the vma's
301  * ->fault function. The vma's ->fault is responsible for returning a bitmask
302  * of VM_FAULT_xxx flags that give details about how the fault was handled.
303  *
304  * MM layer fills up gfp_mask for page allocations but fault handler might
305  * alter it if its implementation requires a different allocation context.
306  *
307  * pgoff should be used in favour of virtual_address, if possible.
308  */
309 struct vm_fault {
310 	struct vm_area_struct *vma;	/* Target VMA */
311 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
312 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
313 	pgoff_t pgoff;			/* Logical page offset based on vma */
314 	unsigned long address;		/* Faulting virtual address */
315 	pmd_t *pmd;			/* Pointer to pmd entry matching
316 					 * the 'address' */
317 	pud_t *pud;			/* Pointer to pud entry matching
318 					 * the 'address'
319 					 */
320 	pte_t orig_pte;			/* Value of PTE at the time of fault */
321 
322 	struct page *cow_page;		/* Page handler may use for COW fault */
323 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
324 	struct page *page;		/* ->fault handlers should return a
325 					 * page here, unless VM_FAULT_NOPAGE
326 					 * is set (which is also implied by
327 					 * VM_FAULT_ERROR).
328 					 */
329 	/* These three entries are valid only while holding ptl lock */
330 	pte_t *pte;			/* Pointer to pte entry matching
331 					 * the 'address'. NULL if the page
332 					 * table hasn't been allocated.
333 					 */
334 	spinlock_t *ptl;		/* Page table lock.
335 					 * Protects pte page table if 'pte'
336 					 * is not NULL, otherwise pmd.
337 					 */
338 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
339 					 * vm_ops->map_pages() calls
340 					 * alloc_set_pte() from atomic context.
341 					 * do_fault_around() pre-allocates
342 					 * page table to avoid allocation from
343 					 * atomic context.
344 					 */
345 };
346 
347 /* page entry size for vm->huge_fault() */
348 enum page_entry_size {
349 	PE_SIZE_PTE = 0,
350 	PE_SIZE_PMD,
351 	PE_SIZE_PUD,
352 };
353 
354 /*
355  * These are the virtual MM functions - opening of an area, closing and
356  * unmapping it (needed to keep files on disk up-to-date etc), pointer
357  * to the functions called when a no-page or a wp-page exception occurs.
358  */
359 struct vm_operations_struct {
360 	void (*open)(struct vm_area_struct * area);
361 	void (*close)(struct vm_area_struct * area);
362 	int (*mremap)(struct vm_area_struct * area);
363 	int (*fault)(struct vm_fault *vmf);
364 	int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size);
365 	void (*map_pages)(struct vm_fault *vmf,
366 			pgoff_t start_pgoff, pgoff_t end_pgoff);
367 
368 	/* notification that a previously read-only page is about to become
369 	 * writable, if an error is returned it will cause a SIGBUS */
370 	int (*page_mkwrite)(struct vm_fault *vmf);
371 
372 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
373 	int (*pfn_mkwrite)(struct vm_fault *vmf);
374 
375 	/* called by access_process_vm when get_user_pages() fails, typically
376 	 * for use by special VMAs that can switch between memory and hardware
377 	 */
378 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
379 		      void *buf, int len, int write);
380 
381 	/* Called by the /proc/PID/maps code to ask the vma whether it
382 	 * has a special name.  Returning non-NULL will also cause this
383 	 * vma to be dumped unconditionally. */
384 	const char *(*name)(struct vm_area_struct *vma);
385 
386 #ifdef CONFIG_NUMA
387 	/*
388 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
389 	 * to hold the policy upon return.  Caller should pass NULL @new to
390 	 * remove a policy and fall back to surrounding context--i.e. do not
391 	 * install a MPOL_DEFAULT policy, nor the task or system default
392 	 * mempolicy.
393 	 */
394 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
395 
396 	/*
397 	 * get_policy() op must add reference [mpol_get()] to any policy at
398 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
399 	 * in mm/mempolicy.c will do this automatically.
400 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
401 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
402 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
403 	 * must return NULL--i.e., do not "fallback" to task or system default
404 	 * policy.
405 	 */
406 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
407 					unsigned long addr);
408 #endif
409 	/*
410 	 * Called by vm_normal_page() for special PTEs to find the
411 	 * page for @addr.  This is useful if the default behavior
412 	 * (using pte_page()) would not find the correct page.
413 	 */
414 	struct page *(*find_special_page)(struct vm_area_struct *vma,
415 					  unsigned long addr);
416 };
417 
418 struct mmu_gather;
419 struct inode;
420 
421 #define page_private(page)		((page)->private)
422 #define set_page_private(page, v)	((page)->private = (v))
423 
424 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
425 static inline int pmd_devmap(pmd_t pmd)
426 {
427 	return 0;
428 }
429 static inline int pud_devmap(pud_t pud)
430 {
431 	return 0;
432 }
433 #endif
434 
435 /*
436  * FIXME: take this include out, include page-flags.h in
437  * files which need it (119 of them)
438  */
439 #include <linux/page-flags.h>
440 #include <linux/huge_mm.h>
441 
442 /*
443  * Methods to modify the page usage count.
444  *
445  * What counts for a page usage:
446  * - cache mapping   (page->mapping)
447  * - private data    (page->private)
448  * - page mapped in a task's page tables, each mapping
449  *   is counted separately
450  *
451  * Also, many kernel routines increase the page count before a critical
452  * routine so they can be sure the page doesn't go away from under them.
453  */
454 
455 /*
456  * Drop a ref, return true if the refcount fell to zero (the page has no users)
457  */
458 static inline int put_page_testzero(struct page *page)
459 {
460 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
461 	return page_ref_dec_and_test(page);
462 }
463 
464 /*
465  * Try to grab a ref unless the page has a refcount of zero, return false if
466  * that is the case.
467  * This can be called when MMU is off so it must not access
468  * any of the virtual mappings.
469  */
470 static inline int get_page_unless_zero(struct page *page)
471 {
472 	return page_ref_add_unless(page, 1, 0);
473 }
474 
475 extern int page_is_ram(unsigned long pfn);
476 
477 enum {
478 	REGION_INTERSECTS,
479 	REGION_DISJOINT,
480 	REGION_MIXED,
481 };
482 
483 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
484 		      unsigned long desc);
485 
486 /* Support for virtually mapped pages */
487 struct page *vmalloc_to_page(const void *addr);
488 unsigned long vmalloc_to_pfn(const void *addr);
489 
490 /*
491  * Determine if an address is within the vmalloc range
492  *
493  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
494  * is no special casing required.
495  */
496 static inline bool is_vmalloc_addr(const void *x)
497 {
498 #ifdef CONFIG_MMU
499 	unsigned long addr = (unsigned long)x;
500 
501 	return addr >= VMALLOC_START && addr < VMALLOC_END;
502 #else
503 	return false;
504 #endif
505 }
506 #ifdef CONFIG_MMU
507 extern int is_vmalloc_or_module_addr(const void *x);
508 #else
509 static inline int is_vmalloc_or_module_addr(const void *x)
510 {
511 	return 0;
512 }
513 #endif
514 
515 extern void kvfree(const void *addr);
516 
517 static inline atomic_t *compound_mapcount_ptr(struct page *page)
518 {
519 	return &page[1].compound_mapcount;
520 }
521 
522 static inline int compound_mapcount(struct page *page)
523 {
524 	VM_BUG_ON_PAGE(!PageCompound(page), page);
525 	page = compound_head(page);
526 	return atomic_read(compound_mapcount_ptr(page)) + 1;
527 }
528 
529 /*
530  * The atomic page->_mapcount, starts from -1: so that transitions
531  * both from it and to it can be tracked, using atomic_inc_and_test
532  * and atomic_add_negative(-1).
533  */
534 static inline void page_mapcount_reset(struct page *page)
535 {
536 	atomic_set(&(page)->_mapcount, -1);
537 }
538 
539 int __page_mapcount(struct page *page);
540 
541 static inline int page_mapcount(struct page *page)
542 {
543 	VM_BUG_ON_PAGE(PageSlab(page), page);
544 
545 	if (unlikely(PageCompound(page)))
546 		return __page_mapcount(page);
547 	return atomic_read(&page->_mapcount) + 1;
548 }
549 
550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
551 int total_mapcount(struct page *page);
552 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
553 #else
554 static inline int total_mapcount(struct page *page)
555 {
556 	return page_mapcount(page);
557 }
558 static inline int page_trans_huge_mapcount(struct page *page,
559 					   int *total_mapcount)
560 {
561 	int mapcount = page_mapcount(page);
562 	if (total_mapcount)
563 		*total_mapcount = mapcount;
564 	return mapcount;
565 }
566 #endif
567 
568 static inline struct page *virt_to_head_page(const void *x)
569 {
570 	struct page *page = virt_to_page(x);
571 
572 	return compound_head(page);
573 }
574 
575 void __put_page(struct page *page);
576 
577 void put_pages_list(struct list_head *pages);
578 
579 void split_page(struct page *page, unsigned int order);
580 
581 /*
582  * Compound pages have a destructor function.  Provide a
583  * prototype for that function and accessor functions.
584  * These are _only_ valid on the head of a compound page.
585  */
586 typedef void compound_page_dtor(struct page *);
587 
588 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
589 enum compound_dtor_id {
590 	NULL_COMPOUND_DTOR,
591 	COMPOUND_PAGE_DTOR,
592 #ifdef CONFIG_HUGETLB_PAGE
593 	HUGETLB_PAGE_DTOR,
594 #endif
595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
596 	TRANSHUGE_PAGE_DTOR,
597 #endif
598 	NR_COMPOUND_DTORS,
599 };
600 extern compound_page_dtor * const compound_page_dtors[];
601 
602 static inline void set_compound_page_dtor(struct page *page,
603 		enum compound_dtor_id compound_dtor)
604 {
605 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
606 	page[1].compound_dtor = compound_dtor;
607 }
608 
609 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
610 {
611 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
612 	return compound_page_dtors[page[1].compound_dtor];
613 }
614 
615 static inline unsigned int compound_order(struct page *page)
616 {
617 	if (!PageHead(page))
618 		return 0;
619 	return page[1].compound_order;
620 }
621 
622 static inline void set_compound_order(struct page *page, unsigned int order)
623 {
624 	page[1].compound_order = order;
625 }
626 
627 void free_compound_page(struct page *page);
628 
629 #ifdef CONFIG_MMU
630 /*
631  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
632  * servicing faults for write access.  In the normal case, do always want
633  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
634  * that do not have writing enabled, when used by access_process_vm.
635  */
636 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
637 {
638 	if (likely(vma->vm_flags & VM_WRITE))
639 		pte = pte_mkwrite(pte);
640 	return pte;
641 }
642 
643 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
644 		struct page *page);
645 int finish_fault(struct vm_fault *vmf);
646 int finish_mkwrite_fault(struct vm_fault *vmf);
647 #endif
648 
649 /*
650  * Multiple processes may "see" the same page. E.g. for untouched
651  * mappings of /dev/null, all processes see the same page full of
652  * zeroes, and text pages of executables and shared libraries have
653  * only one copy in memory, at most, normally.
654  *
655  * For the non-reserved pages, page_count(page) denotes a reference count.
656  *   page_count() == 0 means the page is free. page->lru is then used for
657  *   freelist management in the buddy allocator.
658  *   page_count() > 0  means the page has been allocated.
659  *
660  * Pages are allocated by the slab allocator in order to provide memory
661  * to kmalloc and kmem_cache_alloc. In this case, the management of the
662  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
663  * unless a particular usage is carefully commented. (the responsibility of
664  * freeing the kmalloc memory is the caller's, of course).
665  *
666  * A page may be used by anyone else who does a __get_free_page().
667  * In this case, page_count still tracks the references, and should only
668  * be used through the normal accessor functions. The top bits of page->flags
669  * and page->virtual store page management information, but all other fields
670  * are unused and could be used privately, carefully. The management of this
671  * page is the responsibility of the one who allocated it, and those who have
672  * subsequently been given references to it.
673  *
674  * The other pages (we may call them "pagecache pages") are completely
675  * managed by the Linux memory manager: I/O, buffers, swapping etc.
676  * The following discussion applies only to them.
677  *
678  * A pagecache page contains an opaque `private' member, which belongs to the
679  * page's address_space. Usually, this is the address of a circular list of
680  * the page's disk buffers. PG_private must be set to tell the VM to call
681  * into the filesystem to release these pages.
682  *
683  * A page may belong to an inode's memory mapping. In this case, page->mapping
684  * is the pointer to the inode, and page->index is the file offset of the page,
685  * in units of PAGE_SIZE.
686  *
687  * If pagecache pages are not associated with an inode, they are said to be
688  * anonymous pages. These may become associated with the swapcache, and in that
689  * case PG_swapcache is set, and page->private is an offset into the swapcache.
690  *
691  * In either case (swapcache or inode backed), the pagecache itself holds one
692  * reference to the page. Setting PG_private should also increment the
693  * refcount. The each user mapping also has a reference to the page.
694  *
695  * The pagecache pages are stored in a per-mapping radix tree, which is
696  * rooted at mapping->page_tree, and indexed by offset.
697  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
698  * lists, we instead now tag pages as dirty/writeback in the radix tree.
699  *
700  * All pagecache pages may be subject to I/O:
701  * - inode pages may need to be read from disk,
702  * - inode pages which have been modified and are MAP_SHARED may need
703  *   to be written back to the inode on disk,
704  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
705  *   modified may need to be swapped out to swap space and (later) to be read
706  *   back into memory.
707  */
708 
709 /*
710  * The zone field is never updated after free_area_init_core()
711  * sets it, so none of the operations on it need to be atomic.
712  */
713 
714 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
715 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
716 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
717 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
718 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
719 
720 /*
721  * Define the bit shifts to access each section.  For non-existent
722  * sections we define the shift as 0; that plus a 0 mask ensures
723  * the compiler will optimise away reference to them.
724  */
725 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
726 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
727 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
728 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
729 
730 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
731 #ifdef NODE_NOT_IN_PAGE_FLAGS
732 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
733 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
734 						SECTIONS_PGOFF : ZONES_PGOFF)
735 #else
736 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
737 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
738 						NODES_PGOFF : ZONES_PGOFF)
739 #endif
740 
741 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
742 
743 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
744 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
745 #endif
746 
747 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
748 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
749 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
750 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
751 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
752 
753 static inline enum zone_type page_zonenum(const struct page *page)
754 {
755 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
756 }
757 
758 #ifdef CONFIG_ZONE_DEVICE
759 void get_zone_device_page(struct page *page);
760 void put_zone_device_page(struct page *page);
761 static inline bool is_zone_device_page(const struct page *page)
762 {
763 	return page_zonenum(page) == ZONE_DEVICE;
764 }
765 #else
766 static inline void get_zone_device_page(struct page *page)
767 {
768 }
769 static inline void put_zone_device_page(struct page *page)
770 {
771 }
772 static inline bool is_zone_device_page(const struct page *page)
773 {
774 	return false;
775 }
776 #endif
777 
778 static inline void get_page(struct page *page)
779 {
780 	page = compound_head(page);
781 	/*
782 	 * Getting a normal page or the head of a compound page
783 	 * requires to already have an elevated page->_refcount.
784 	 */
785 	VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
786 	page_ref_inc(page);
787 
788 	if (unlikely(is_zone_device_page(page)))
789 		get_zone_device_page(page);
790 }
791 
792 static inline void put_page(struct page *page)
793 {
794 	page = compound_head(page);
795 
796 	if (put_page_testzero(page))
797 		__put_page(page);
798 
799 	if (unlikely(is_zone_device_page(page)))
800 		put_zone_device_page(page);
801 }
802 
803 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
804 #define SECTION_IN_PAGE_FLAGS
805 #endif
806 
807 /*
808  * The identification function is mainly used by the buddy allocator for
809  * determining if two pages could be buddies. We are not really identifying
810  * the zone since we could be using the section number id if we do not have
811  * node id available in page flags.
812  * We only guarantee that it will return the same value for two combinable
813  * pages in a zone.
814  */
815 static inline int page_zone_id(struct page *page)
816 {
817 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
818 }
819 
820 static inline int zone_to_nid(struct zone *zone)
821 {
822 #ifdef CONFIG_NUMA
823 	return zone->node;
824 #else
825 	return 0;
826 #endif
827 }
828 
829 #ifdef NODE_NOT_IN_PAGE_FLAGS
830 extern int page_to_nid(const struct page *page);
831 #else
832 static inline int page_to_nid(const struct page *page)
833 {
834 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
835 }
836 #endif
837 
838 #ifdef CONFIG_NUMA_BALANCING
839 static inline int cpu_pid_to_cpupid(int cpu, int pid)
840 {
841 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
842 }
843 
844 static inline int cpupid_to_pid(int cpupid)
845 {
846 	return cpupid & LAST__PID_MASK;
847 }
848 
849 static inline int cpupid_to_cpu(int cpupid)
850 {
851 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
852 }
853 
854 static inline int cpupid_to_nid(int cpupid)
855 {
856 	return cpu_to_node(cpupid_to_cpu(cpupid));
857 }
858 
859 static inline bool cpupid_pid_unset(int cpupid)
860 {
861 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
862 }
863 
864 static inline bool cpupid_cpu_unset(int cpupid)
865 {
866 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
867 }
868 
869 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
870 {
871 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
872 }
873 
874 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
875 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
876 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
877 {
878 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
879 }
880 
881 static inline int page_cpupid_last(struct page *page)
882 {
883 	return page->_last_cpupid;
884 }
885 static inline void page_cpupid_reset_last(struct page *page)
886 {
887 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
888 }
889 #else
890 static inline int page_cpupid_last(struct page *page)
891 {
892 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
893 }
894 
895 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
896 
897 static inline void page_cpupid_reset_last(struct page *page)
898 {
899 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
900 }
901 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
902 #else /* !CONFIG_NUMA_BALANCING */
903 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
904 {
905 	return page_to_nid(page); /* XXX */
906 }
907 
908 static inline int page_cpupid_last(struct page *page)
909 {
910 	return page_to_nid(page); /* XXX */
911 }
912 
913 static inline int cpupid_to_nid(int cpupid)
914 {
915 	return -1;
916 }
917 
918 static inline int cpupid_to_pid(int cpupid)
919 {
920 	return -1;
921 }
922 
923 static inline int cpupid_to_cpu(int cpupid)
924 {
925 	return -1;
926 }
927 
928 static inline int cpu_pid_to_cpupid(int nid, int pid)
929 {
930 	return -1;
931 }
932 
933 static inline bool cpupid_pid_unset(int cpupid)
934 {
935 	return 1;
936 }
937 
938 static inline void page_cpupid_reset_last(struct page *page)
939 {
940 }
941 
942 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
943 {
944 	return false;
945 }
946 #endif /* CONFIG_NUMA_BALANCING */
947 
948 static inline struct zone *page_zone(const struct page *page)
949 {
950 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
951 }
952 
953 static inline pg_data_t *page_pgdat(const struct page *page)
954 {
955 	return NODE_DATA(page_to_nid(page));
956 }
957 
958 #ifdef SECTION_IN_PAGE_FLAGS
959 static inline void set_page_section(struct page *page, unsigned long section)
960 {
961 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
962 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
963 }
964 
965 static inline unsigned long page_to_section(const struct page *page)
966 {
967 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
968 }
969 #endif
970 
971 static inline void set_page_zone(struct page *page, enum zone_type zone)
972 {
973 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
974 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
975 }
976 
977 static inline void set_page_node(struct page *page, unsigned long node)
978 {
979 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
980 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
981 }
982 
983 static inline void set_page_links(struct page *page, enum zone_type zone,
984 	unsigned long node, unsigned long pfn)
985 {
986 	set_page_zone(page, zone);
987 	set_page_node(page, node);
988 #ifdef SECTION_IN_PAGE_FLAGS
989 	set_page_section(page, pfn_to_section_nr(pfn));
990 #endif
991 }
992 
993 #ifdef CONFIG_MEMCG
994 static inline struct mem_cgroup *page_memcg(struct page *page)
995 {
996 	return page->mem_cgroup;
997 }
998 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
999 {
1000 	WARN_ON_ONCE(!rcu_read_lock_held());
1001 	return READ_ONCE(page->mem_cgroup);
1002 }
1003 #else
1004 static inline struct mem_cgroup *page_memcg(struct page *page)
1005 {
1006 	return NULL;
1007 }
1008 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1009 {
1010 	WARN_ON_ONCE(!rcu_read_lock_held());
1011 	return NULL;
1012 }
1013 #endif
1014 
1015 /*
1016  * Some inline functions in vmstat.h depend on page_zone()
1017  */
1018 #include <linux/vmstat.h>
1019 
1020 static __always_inline void *lowmem_page_address(const struct page *page)
1021 {
1022 	return page_to_virt(page);
1023 }
1024 
1025 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1026 #define HASHED_PAGE_VIRTUAL
1027 #endif
1028 
1029 #if defined(WANT_PAGE_VIRTUAL)
1030 static inline void *page_address(const struct page *page)
1031 {
1032 	return page->virtual;
1033 }
1034 static inline void set_page_address(struct page *page, void *address)
1035 {
1036 	page->virtual = address;
1037 }
1038 #define page_address_init()  do { } while(0)
1039 #endif
1040 
1041 #if defined(HASHED_PAGE_VIRTUAL)
1042 void *page_address(const struct page *page);
1043 void set_page_address(struct page *page, void *virtual);
1044 void page_address_init(void);
1045 #endif
1046 
1047 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1048 #define page_address(page) lowmem_page_address(page)
1049 #define set_page_address(page, address)  do { } while(0)
1050 #define page_address_init()  do { } while(0)
1051 #endif
1052 
1053 extern void *page_rmapping(struct page *page);
1054 extern struct anon_vma *page_anon_vma(struct page *page);
1055 extern struct address_space *page_mapping(struct page *page);
1056 
1057 extern struct address_space *__page_file_mapping(struct page *);
1058 
1059 static inline
1060 struct address_space *page_file_mapping(struct page *page)
1061 {
1062 	if (unlikely(PageSwapCache(page)))
1063 		return __page_file_mapping(page);
1064 
1065 	return page->mapping;
1066 }
1067 
1068 extern pgoff_t __page_file_index(struct page *page);
1069 
1070 /*
1071  * Return the pagecache index of the passed page.  Regular pagecache pages
1072  * use ->index whereas swapcache pages use swp_offset(->private)
1073  */
1074 static inline pgoff_t page_index(struct page *page)
1075 {
1076 	if (unlikely(PageSwapCache(page)))
1077 		return __page_file_index(page);
1078 	return page->index;
1079 }
1080 
1081 bool page_mapped(struct page *page);
1082 struct address_space *page_mapping(struct page *page);
1083 
1084 /*
1085  * Return true only if the page has been allocated with
1086  * ALLOC_NO_WATERMARKS and the low watermark was not
1087  * met implying that the system is under some pressure.
1088  */
1089 static inline bool page_is_pfmemalloc(struct page *page)
1090 {
1091 	/*
1092 	 * Page index cannot be this large so this must be
1093 	 * a pfmemalloc page.
1094 	 */
1095 	return page->index == -1UL;
1096 }
1097 
1098 /*
1099  * Only to be called by the page allocator on a freshly allocated
1100  * page.
1101  */
1102 static inline void set_page_pfmemalloc(struct page *page)
1103 {
1104 	page->index = -1UL;
1105 }
1106 
1107 static inline void clear_page_pfmemalloc(struct page *page)
1108 {
1109 	page->index = 0;
1110 }
1111 
1112 /*
1113  * Different kinds of faults, as returned by handle_mm_fault().
1114  * Used to decide whether a process gets delivered SIGBUS or
1115  * just gets major/minor fault counters bumped up.
1116  */
1117 
1118 #define VM_FAULT_OOM	0x0001
1119 #define VM_FAULT_SIGBUS	0x0002
1120 #define VM_FAULT_MAJOR	0x0004
1121 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1122 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1123 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1124 #define VM_FAULT_SIGSEGV 0x0040
1125 
1126 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1127 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1128 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1129 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1130 #define VM_FAULT_DONE_COW   0x1000	/* ->fault has fully handled COW */
1131 
1132 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1133 
1134 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1135 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1136 			 VM_FAULT_FALLBACK)
1137 
1138 #define VM_FAULT_RESULT_TRACE \
1139 	{ VM_FAULT_OOM,			"OOM" }, \
1140 	{ VM_FAULT_SIGBUS,		"SIGBUS" }, \
1141 	{ VM_FAULT_MAJOR,		"MAJOR" }, \
1142 	{ VM_FAULT_WRITE,		"WRITE" }, \
1143 	{ VM_FAULT_HWPOISON,		"HWPOISON" }, \
1144 	{ VM_FAULT_HWPOISON_LARGE,	"HWPOISON_LARGE" }, \
1145 	{ VM_FAULT_SIGSEGV,		"SIGSEGV" }, \
1146 	{ VM_FAULT_NOPAGE,		"NOPAGE" }, \
1147 	{ VM_FAULT_LOCKED,		"LOCKED" }, \
1148 	{ VM_FAULT_RETRY,		"RETRY" }, \
1149 	{ VM_FAULT_FALLBACK,		"FALLBACK" }, \
1150 	{ VM_FAULT_DONE_COW,		"DONE_COW" }
1151 
1152 /* Encode hstate index for a hwpoisoned large page */
1153 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1154 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1155 
1156 /*
1157  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1158  */
1159 extern void pagefault_out_of_memory(void);
1160 
1161 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1162 
1163 /*
1164  * Flags passed to show_mem() and show_free_areas() to suppress output in
1165  * various contexts.
1166  */
1167 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1168 
1169 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1170 
1171 extern bool can_do_mlock(void);
1172 extern int user_shm_lock(size_t, struct user_struct *);
1173 extern void user_shm_unlock(size_t, struct user_struct *);
1174 
1175 /*
1176  * Parameter block passed down to zap_pte_range in exceptional cases.
1177  */
1178 struct zap_details {
1179 	struct address_space *check_mapping;	/* Check page->mapping if set */
1180 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1181 	pgoff_t last_index;			/* Highest page->index to unmap */
1182 };
1183 
1184 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1185 		pte_t pte);
1186 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1187 				pmd_t pmd);
1188 
1189 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1190 		unsigned long size);
1191 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1192 		unsigned long size);
1193 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1194 		unsigned long start, unsigned long end);
1195 
1196 /**
1197  * mm_walk - callbacks for walk_page_range
1198  * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
1199  *	       this handler should only handle pud_trans_huge() puds.
1200  *	       the pmd_entry or pte_entry callbacks will be used for
1201  *	       regular PUDs.
1202  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1203  *	       this handler is required to be able to handle
1204  *	       pmd_trans_huge() pmds.  They may simply choose to
1205  *	       split_huge_page() instead of handling it explicitly.
1206  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1207  * @pte_hole: if set, called for each hole at all levels
1208  * @hugetlb_entry: if set, called for each hugetlb entry
1209  * @test_walk: caller specific callback function to determine whether
1210  *             we walk over the current vma or not. Returning 0
1211  *             value means "do page table walk over the current vma,"
1212  *             and a negative one means "abort current page table walk
1213  *             right now." 1 means "skip the current vma."
1214  * @mm:        mm_struct representing the target process of page table walk
1215  * @vma:       vma currently walked (NULL if walking outside vmas)
1216  * @private:   private data for callbacks' usage
1217  *
1218  * (see the comment on walk_page_range() for more details)
1219  */
1220 struct mm_walk {
1221 	int (*pud_entry)(pud_t *pud, unsigned long addr,
1222 			 unsigned long next, struct mm_walk *walk);
1223 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1224 			 unsigned long next, struct mm_walk *walk);
1225 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1226 			 unsigned long next, struct mm_walk *walk);
1227 	int (*pte_hole)(unsigned long addr, unsigned long next,
1228 			struct mm_walk *walk);
1229 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1230 			     unsigned long addr, unsigned long next,
1231 			     struct mm_walk *walk);
1232 	int (*test_walk)(unsigned long addr, unsigned long next,
1233 			struct mm_walk *walk);
1234 	struct mm_struct *mm;
1235 	struct vm_area_struct *vma;
1236 	void *private;
1237 };
1238 
1239 int walk_page_range(unsigned long addr, unsigned long end,
1240 		struct mm_walk *walk);
1241 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1242 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1243 		unsigned long end, unsigned long floor, unsigned long ceiling);
1244 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1245 			struct vm_area_struct *vma);
1246 void unmap_mapping_range(struct address_space *mapping,
1247 		loff_t const holebegin, loff_t const holelen, int even_cows);
1248 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1249 			     pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1250 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1251 	unsigned long *pfn);
1252 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1253 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1254 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1255 			void *buf, int len, int write);
1256 
1257 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1258 		loff_t const holebegin, loff_t const holelen)
1259 {
1260 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1261 }
1262 
1263 extern void truncate_pagecache(struct inode *inode, loff_t new);
1264 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1265 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1266 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1267 int truncate_inode_page(struct address_space *mapping, struct page *page);
1268 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1269 int invalidate_inode_page(struct page *page);
1270 
1271 #ifdef CONFIG_MMU
1272 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1273 		unsigned int flags);
1274 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1275 			    unsigned long address, unsigned int fault_flags,
1276 			    bool *unlocked);
1277 #else
1278 static inline int handle_mm_fault(struct vm_area_struct *vma,
1279 		unsigned long address, unsigned int flags)
1280 {
1281 	/* should never happen if there's no MMU */
1282 	BUG();
1283 	return VM_FAULT_SIGBUS;
1284 }
1285 static inline int fixup_user_fault(struct task_struct *tsk,
1286 		struct mm_struct *mm, unsigned long address,
1287 		unsigned int fault_flags, bool *unlocked)
1288 {
1289 	/* should never happen if there's no MMU */
1290 	BUG();
1291 	return -EFAULT;
1292 }
1293 #endif
1294 
1295 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len,
1296 		unsigned int gup_flags);
1297 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1298 		void *buf, int len, unsigned int gup_flags);
1299 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1300 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1301 
1302 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1303 			    unsigned long start, unsigned long nr_pages,
1304 			    unsigned int gup_flags, struct page **pages,
1305 			    struct vm_area_struct **vmas, int *locked);
1306 long get_user_pages(unsigned long start, unsigned long nr_pages,
1307 			    unsigned int gup_flags, struct page **pages,
1308 			    struct vm_area_struct **vmas);
1309 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1310 		    unsigned int gup_flags, struct page **pages, int *locked);
1311 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1312 		    struct page **pages, unsigned int gup_flags);
1313 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1314 			struct page **pages);
1315 
1316 /* Container for pinned pfns / pages */
1317 struct frame_vector {
1318 	unsigned int nr_allocated;	/* Number of frames we have space for */
1319 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1320 	bool got_ref;		/* Did we pin pages by getting page ref? */
1321 	bool is_pfns;		/* Does array contain pages or pfns? */
1322 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1323 				 * pfns_vector_pages() or pfns_vector_pfns()
1324 				 * for access */
1325 };
1326 
1327 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1328 void frame_vector_destroy(struct frame_vector *vec);
1329 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1330 		     unsigned int gup_flags, struct frame_vector *vec);
1331 void put_vaddr_frames(struct frame_vector *vec);
1332 int frame_vector_to_pages(struct frame_vector *vec);
1333 void frame_vector_to_pfns(struct frame_vector *vec);
1334 
1335 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1336 {
1337 	return vec->nr_frames;
1338 }
1339 
1340 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1341 {
1342 	if (vec->is_pfns) {
1343 		int err = frame_vector_to_pages(vec);
1344 
1345 		if (err)
1346 			return ERR_PTR(err);
1347 	}
1348 	return (struct page **)(vec->ptrs);
1349 }
1350 
1351 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1352 {
1353 	if (!vec->is_pfns)
1354 		frame_vector_to_pfns(vec);
1355 	return (unsigned long *)(vec->ptrs);
1356 }
1357 
1358 struct kvec;
1359 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1360 			struct page **pages);
1361 int get_kernel_page(unsigned long start, int write, struct page **pages);
1362 struct page *get_dump_page(unsigned long addr);
1363 
1364 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1365 extern void do_invalidatepage(struct page *page, unsigned int offset,
1366 			      unsigned int length);
1367 
1368 int __set_page_dirty_nobuffers(struct page *page);
1369 int __set_page_dirty_no_writeback(struct page *page);
1370 int redirty_page_for_writepage(struct writeback_control *wbc,
1371 				struct page *page);
1372 void account_page_dirtied(struct page *page, struct address_space *mapping);
1373 void account_page_cleaned(struct page *page, struct address_space *mapping,
1374 			  struct bdi_writeback *wb);
1375 int set_page_dirty(struct page *page);
1376 int set_page_dirty_lock(struct page *page);
1377 void cancel_dirty_page(struct page *page);
1378 int clear_page_dirty_for_io(struct page *page);
1379 
1380 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1381 
1382 /* Is the vma a continuation of the stack vma above it? */
1383 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1384 {
1385 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1386 }
1387 
1388 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1389 {
1390 	return !vma->vm_ops;
1391 }
1392 
1393 #ifdef CONFIG_SHMEM
1394 /*
1395  * The vma_is_shmem is not inline because it is used only by slow
1396  * paths in userfault.
1397  */
1398 bool vma_is_shmem(struct vm_area_struct *vma);
1399 #else
1400 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1401 #endif
1402 
1403 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1404 					     unsigned long addr)
1405 {
1406 	return (vma->vm_flags & VM_GROWSDOWN) &&
1407 		(vma->vm_start == addr) &&
1408 		!vma_growsdown(vma->vm_prev, addr);
1409 }
1410 
1411 /* Is the vma a continuation of the stack vma below it? */
1412 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1413 {
1414 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1415 }
1416 
1417 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1418 					   unsigned long addr)
1419 {
1420 	return (vma->vm_flags & VM_GROWSUP) &&
1421 		(vma->vm_end == addr) &&
1422 		!vma_growsup(vma->vm_next, addr);
1423 }
1424 
1425 int vma_is_stack_for_current(struct vm_area_struct *vma);
1426 
1427 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1428 		unsigned long old_addr, struct vm_area_struct *new_vma,
1429 		unsigned long new_addr, unsigned long len,
1430 		bool need_rmap_locks);
1431 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1432 			      unsigned long end, pgprot_t newprot,
1433 			      int dirty_accountable, int prot_numa);
1434 extern int mprotect_fixup(struct vm_area_struct *vma,
1435 			  struct vm_area_struct **pprev, unsigned long start,
1436 			  unsigned long end, unsigned long newflags);
1437 
1438 /*
1439  * doesn't attempt to fault and will return short.
1440  */
1441 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1442 			  struct page **pages);
1443 /*
1444  * per-process(per-mm_struct) statistics.
1445  */
1446 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1447 {
1448 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1449 
1450 #ifdef SPLIT_RSS_COUNTING
1451 	/*
1452 	 * counter is updated in asynchronous manner and may go to minus.
1453 	 * But it's never be expected number for users.
1454 	 */
1455 	if (val < 0)
1456 		val = 0;
1457 #endif
1458 	return (unsigned long)val;
1459 }
1460 
1461 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1462 {
1463 	atomic_long_add(value, &mm->rss_stat.count[member]);
1464 }
1465 
1466 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1467 {
1468 	atomic_long_inc(&mm->rss_stat.count[member]);
1469 }
1470 
1471 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1472 {
1473 	atomic_long_dec(&mm->rss_stat.count[member]);
1474 }
1475 
1476 /* Optimized variant when page is already known not to be PageAnon */
1477 static inline int mm_counter_file(struct page *page)
1478 {
1479 	if (PageSwapBacked(page))
1480 		return MM_SHMEMPAGES;
1481 	return MM_FILEPAGES;
1482 }
1483 
1484 static inline int mm_counter(struct page *page)
1485 {
1486 	if (PageAnon(page))
1487 		return MM_ANONPAGES;
1488 	return mm_counter_file(page);
1489 }
1490 
1491 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1492 {
1493 	return get_mm_counter(mm, MM_FILEPAGES) +
1494 		get_mm_counter(mm, MM_ANONPAGES) +
1495 		get_mm_counter(mm, MM_SHMEMPAGES);
1496 }
1497 
1498 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1499 {
1500 	return max(mm->hiwater_rss, get_mm_rss(mm));
1501 }
1502 
1503 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1504 {
1505 	return max(mm->hiwater_vm, mm->total_vm);
1506 }
1507 
1508 static inline void update_hiwater_rss(struct mm_struct *mm)
1509 {
1510 	unsigned long _rss = get_mm_rss(mm);
1511 
1512 	if ((mm)->hiwater_rss < _rss)
1513 		(mm)->hiwater_rss = _rss;
1514 }
1515 
1516 static inline void update_hiwater_vm(struct mm_struct *mm)
1517 {
1518 	if (mm->hiwater_vm < mm->total_vm)
1519 		mm->hiwater_vm = mm->total_vm;
1520 }
1521 
1522 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1523 {
1524 	mm->hiwater_rss = get_mm_rss(mm);
1525 }
1526 
1527 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1528 					 struct mm_struct *mm)
1529 {
1530 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1531 
1532 	if (*maxrss < hiwater_rss)
1533 		*maxrss = hiwater_rss;
1534 }
1535 
1536 #if defined(SPLIT_RSS_COUNTING)
1537 void sync_mm_rss(struct mm_struct *mm);
1538 #else
1539 static inline void sync_mm_rss(struct mm_struct *mm)
1540 {
1541 }
1542 #endif
1543 
1544 #ifndef __HAVE_ARCH_PTE_DEVMAP
1545 static inline int pte_devmap(pte_t pte)
1546 {
1547 	return 0;
1548 }
1549 #endif
1550 
1551 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1552 
1553 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1554 			       spinlock_t **ptl);
1555 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1556 				    spinlock_t **ptl)
1557 {
1558 	pte_t *ptep;
1559 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1560 	return ptep;
1561 }
1562 
1563 #ifdef __PAGETABLE_PUD_FOLDED
1564 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1565 						unsigned long address)
1566 {
1567 	return 0;
1568 }
1569 #else
1570 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1571 #endif
1572 
1573 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1574 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1575 						unsigned long address)
1576 {
1577 	return 0;
1578 }
1579 
1580 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1581 
1582 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1583 {
1584 	return 0;
1585 }
1586 
1587 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1588 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1589 
1590 #else
1591 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1592 
1593 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1594 {
1595 	atomic_long_set(&mm->nr_pmds, 0);
1596 }
1597 
1598 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1599 {
1600 	return atomic_long_read(&mm->nr_pmds);
1601 }
1602 
1603 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1604 {
1605 	atomic_long_inc(&mm->nr_pmds);
1606 }
1607 
1608 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1609 {
1610 	atomic_long_dec(&mm->nr_pmds);
1611 }
1612 #endif
1613 
1614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1616 
1617 /*
1618  * The following ifdef needed to get the 4level-fixup.h header to work.
1619  * Remove it when 4level-fixup.h has been removed.
1620  */
1621 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1622 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1623 {
1624 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1625 		NULL: pud_offset(pgd, address);
1626 }
1627 
1628 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1629 {
1630 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1631 		NULL: pmd_offset(pud, address);
1632 }
1633 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1634 
1635 #if USE_SPLIT_PTE_PTLOCKS
1636 #if ALLOC_SPLIT_PTLOCKS
1637 void __init ptlock_cache_init(void);
1638 extern bool ptlock_alloc(struct page *page);
1639 extern void ptlock_free(struct page *page);
1640 
1641 static inline spinlock_t *ptlock_ptr(struct page *page)
1642 {
1643 	return page->ptl;
1644 }
1645 #else /* ALLOC_SPLIT_PTLOCKS */
1646 static inline void ptlock_cache_init(void)
1647 {
1648 }
1649 
1650 static inline bool ptlock_alloc(struct page *page)
1651 {
1652 	return true;
1653 }
1654 
1655 static inline void ptlock_free(struct page *page)
1656 {
1657 }
1658 
1659 static inline spinlock_t *ptlock_ptr(struct page *page)
1660 {
1661 	return &page->ptl;
1662 }
1663 #endif /* ALLOC_SPLIT_PTLOCKS */
1664 
1665 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1666 {
1667 	return ptlock_ptr(pmd_page(*pmd));
1668 }
1669 
1670 static inline bool ptlock_init(struct page *page)
1671 {
1672 	/*
1673 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1674 	 * with 0. Make sure nobody took it in use in between.
1675 	 *
1676 	 * It can happen if arch try to use slab for page table allocation:
1677 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1678 	 */
1679 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1680 	if (!ptlock_alloc(page))
1681 		return false;
1682 	spin_lock_init(ptlock_ptr(page));
1683 	return true;
1684 }
1685 
1686 /* Reset page->mapping so free_pages_check won't complain. */
1687 static inline void pte_lock_deinit(struct page *page)
1688 {
1689 	page->mapping = NULL;
1690 	ptlock_free(page);
1691 }
1692 
1693 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1694 /*
1695  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1696  */
1697 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1698 {
1699 	return &mm->page_table_lock;
1700 }
1701 static inline void ptlock_cache_init(void) {}
1702 static inline bool ptlock_init(struct page *page) { return true; }
1703 static inline void pte_lock_deinit(struct page *page) {}
1704 #endif /* USE_SPLIT_PTE_PTLOCKS */
1705 
1706 static inline void pgtable_init(void)
1707 {
1708 	ptlock_cache_init();
1709 	pgtable_cache_init();
1710 }
1711 
1712 static inline bool pgtable_page_ctor(struct page *page)
1713 {
1714 	if (!ptlock_init(page))
1715 		return false;
1716 	inc_zone_page_state(page, NR_PAGETABLE);
1717 	return true;
1718 }
1719 
1720 static inline void pgtable_page_dtor(struct page *page)
1721 {
1722 	pte_lock_deinit(page);
1723 	dec_zone_page_state(page, NR_PAGETABLE);
1724 }
1725 
1726 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1727 ({							\
1728 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1729 	pte_t *__pte = pte_offset_map(pmd, address);	\
1730 	*(ptlp) = __ptl;				\
1731 	spin_lock(__ptl);				\
1732 	__pte;						\
1733 })
1734 
1735 #define pte_unmap_unlock(pte, ptl)	do {		\
1736 	spin_unlock(ptl);				\
1737 	pte_unmap(pte);					\
1738 } while (0)
1739 
1740 #define pte_alloc(mm, pmd, address)			\
1741 	(unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1742 
1743 #define pte_alloc_map(mm, pmd, address)			\
1744 	(pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1745 
1746 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1747 	(pte_alloc(mm, pmd, address) ?			\
1748 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1749 
1750 #define pte_alloc_kernel(pmd, address)			\
1751 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1752 		NULL: pte_offset_kernel(pmd, address))
1753 
1754 #if USE_SPLIT_PMD_PTLOCKS
1755 
1756 static struct page *pmd_to_page(pmd_t *pmd)
1757 {
1758 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1759 	return virt_to_page((void *)((unsigned long) pmd & mask));
1760 }
1761 
1762 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1763 {
1764 	return ptlock_ptr(pmd_to_page(pmd));
1765 }
1766 
1767 static inline bool pgtable_pmd_page_ctor(struct page *page)
1768 {
1769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1770 	page->pmd_huge_pte = NULL;
1771 #endif
1772 	return ptlock_init(page);
1773 }
1774 
1775 static inline void pgtable_pmd_page_dtor(struct page *page)
1776 {
1777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1778 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1779 #endif
1780 	ptlock_free(page);
1781 }
1782 
1783 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1784 
1785 #else
1786 
1787 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1788 {
1789 	return &mm->page_table_lock;
1790 }
1791 
1792 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1793 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1794 
1795 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1796 
1797 #endif
1798 
1799 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1800 {
1801 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1802 	spin_lock(ptl);
1803 	return ptl;
1804 }
1805 
1806 /*
1807  * No scalability reason to split PUD locks yet, but follow the same pattern
1808  * as the PMD locks to make it easier if we decide to.  The VM should not be
1809  * considered ready to switch to split PUD locks yet; there may be places
1810  * which need to be converted from page_table_lock.
1811  */
1812 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
1813 {
1814 	return &mm->page_table_lock;
1815 }
1816 
1817 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
1818 {
1819 	spinlock_t *ptl = pud_lockptr(mm, pud);
1820 
1821 	spin_lock(ptl);
1822 	return ptl;
1823 }
1824 
1825 extern void __init pagecache_init(void);
1826 extern void free_area_init(unsigned long * zones_size);
1827 extern void free_area_init_node(int nid, unsigned long * zones_size,
1828 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1829 extern void free_initmem(void);
1830 
1831 /*
1832  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1833  * into the buddy system. The freed pages will be poisoned with pattern
1834  * "poison" if it's within range [0, UCHAR_MAX].
1835  * Return pages freed into the buddy system.
1836  */
1837 extern unsigned long free_reserved_area(void *start, void *end,
1838 					int poison, char *s);
1839 
1840 #ifdef	CONFIG_HIGHMEM
1841 /*
1842  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1843  * and totalram_pages.
1844  */
1845 extern void free_highmem_page(struct page *page);
1846 #endif
1847 
1848 extern void adjust_managed_page_count(struct page *page, long count);
1849 extern void mem_init_print_info(const char *str);
1850 
1851 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
1852 
1853 /* Free the reserved page into the buddy system, so it gets managed. */
1854 static inline void __free_reserved_page(struct page *page)
1855 {
1856 	ClearPageReserved(page);
1857 	init_page_count(page);
1858 	__free_page(page);
1859 }
1860 
1861 static inline void free_reserved_page(struct page *page)
1862 {
1863 	__free_reserved_page(page);
1864 	adjust_managed_page_count(page, 1);
1865 }
1866 
1867 static inline void mark_page_reserved(struct page *page)
1868 {
1869 	SetPageReserved(page);
1870 	adjust_managed_page_count(page, -1);
1871 }
1872 
1873 /*
1874  * Default method to free all the __init memory into the buddy system.
1875  * The freed pages will be poisoned with pattern "poison" if it's within
1876  * range [0, UCHAR_MAX].
1877  * Return pages freed into the buddy system.
1878  */
1879 static inline unsigned long free_initmem_default(int poison)
1880 {
1881 	extern char __init_begin[], __init_end[];
1882 
1883 	return free_reserved_area(&__init_begin, &__init_end,
1884 				  poison, "unused kernel");
1885 }
1886 
1887 static inline unsigned long get_num_physpages(void)
1888 {
1889 	int nid;
1890 	unsigned long phys_pages = 0;
1891 
1892 	for_each_online_node(nid)
1893 		phys_pages += node_present_pages(nid);
1894 
1895 	return phys_pages;
1896 }
1897 
1898 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1899 /*
1900  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1901  * zones, allocate the backing mem_map and account for memory holes in a more
1902  * architecture independent manner. This is a substitute for creating the
1903  * zone_sizes[] and zholes_size[] arrays and passing them to
1904  * free_area_init_node()
1905  *
1906  * An architecture is expected to register range of page frames backed by
1907  * physical memory with memblock_add[_node]() before calling
1908  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1909  * usage, an architecture is expected to do something like
1910  *
1911  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1912  * 							 max_highmem_pfn};
1913  * for_each_valid_physical_page_range()
1914  * 	memblock_add_node(base, size, nid)
1915  * free_area_init_nodes(max_zone_pfns);
1916  *
1917  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1918  * registered physical page range.  Similarly
1919  * sparse_memory_present_with_active_regions() calls memory_present() for
1920  * each range when SPARSEMEM is enabled.
1921  *
1922  * See mm/page_alloc.c for more information on each function exposed by
1923  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1924  */
1925 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1926 unsigned long node_map_pfn_alignment(void);
1927 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1928 						unsigned long end_pfn);
1929 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1930 						unsigned long end_pfn);
1931 extern void get_pfn_range_for_nid(unsigned int nid,
1932 			unsigned long *start_pfn, unsigned long *end_pfn);
1933 extern unsigned long find_min_pfn_with_active_regions(void);
1934 extern void free_bootmem_with_active_regions(int nid,
1935 						unsigned long max_low_pfn);
1936 extern void sparse_memory_present_with_active_regions(int nid);
1937 
1938 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1939 
1940 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1941     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1942 static inline int __early_pfn_to_nid(unsigned long pfn,
1943 					struct mminit_pfnnid_cache *state)
1944 {
1945 	return 0;
1946 }
1947 #else
1948 /* please see mm/page_alloc.c */
1949 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1950 /* there is a per-arch backend function. */
1951 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1952 					struct mminit_pfnnid_cache *state);
1953 #endif
1954 
1955 extern void set_dma_reserve(unsigned long new_dma_reserve);
1956 extern void memmap_init_zone(unsigned long, int, unsigned long,
1957 				unsigned long, enum memmap_context);
1958 extern void setup_per_zone_wmarks(void);
1959 extern int __meminit init_per_zone_wmark_min(void);
1960 extern void mem_init(void);
1961 extern void __init mmap_init(void);
1962 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
1963 extern long si_mem_available(void);
1964 extern void si_meminfo(struct sysinfo * val);
1965 extern void si_meminfo_node(struct sysinfo *val, int nid);
1966 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
1967 extern unsigned long arch_reserved_kernel_pages(void);
1968 #endif
1969 
1970 extern __printf(3, 4)
1971 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
1972 
1973 extern void setup_per_cpu_pageset(void);
1974 
1975 extern void zone_pcp_update(struct zone *zone);
1976 extern void zone_pcp_reset(struct zone *zone);
1977 
1978 /* page_alloc.c */
1979 extern int min_free_kbytes;
1980 extern int watermark_scale_factor;
1981 
1982 /* nommu.c */
1983 extern atomic_long_t mmap_pages_allocated;
1984 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1985 
1986 /* interval_tree.c */
1987 void vma_interval_tree_insert(struct vm_area_struct *node,
1988 			      struct rb_root *root);
1989 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1990 				    struct vm_area_struct *prev,
1991 				    struct rb_root *root);
1992 void vma_interval_tree_remove(struct vm_area_struct *node,
1993 			      struct rb_root *root);
1994 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1995 				unsigned long start, unsigned long last);
1996 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1997 				unsigned long start, unsigned long last);
1998 
1999 #define vma_interval_tree_foreach(vma, root, start, last)		\
2000 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2001 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2002 
2003 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2004 				   struct rb_root *root);
2005 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2006 				   struct rb_root *root);
2007 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
2008 	struct rb_root *root, unsigned long start, unsigned long last);
2009 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2010 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2011 #ifdef CONFIG_DEBUG_VM_RB
2012 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2013 #endif
2014 
2015 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2016 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2017 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2018 
2019 /* mmap.c */
2020 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2021 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2022 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2023 	struct vm_area_struct *expand);
2024 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2025 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2026 {
2027 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2028 }
2029 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2030 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2031 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2032 	struct mempolicy *, struct vm_userfaultfd_ctx);
2033 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2034 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2035 	unsigned long addr, int new_below);
2036 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2037 	unsigned long addr, int new_below);
2038 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2039 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2040 	struct rb_node **, struct rb_node *);
2041 extern void unlink_file_vma(struct vm_area_struct *);
2042 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2043 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2044 	bool *need_rmap_locks);
2045 extern void exit_mmap(struct mm_struct *);
2046 
2047 static inline int check_data_rlimit(unsigned long rlim,
2048 				    unsigned long new,
2049 				    unsigned long start,
2050 				    unsigned long end_data,
2051 				    unsigned long start_data)
2052 {
2053 	if (rlim < RLIM_INFINITY) {
2054 		if (((new - start) + (end_data - start_data)) > rlim)
2055 			return -ENOSPC;
2056 	}
2057 
2058 	return 0;
2059 }
2060 
2061 extern int mm_take_all_locks(struct mm_struct *mm);
2062 extern void mm_drop_all_locks(struct mm_struct *mm);
2063 
2064 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2065 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2066 extern struct file *get_task_exe_file(struct task_struct *task);
2067 
2068 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2069 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2070 
2071 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2072 				   const struct vm_special_mapping *sm);
2073 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2074 				   unsigned long addr, unsigned long len,
2075 				   unsigned long flags,
2076 				   const struct vm_special_mapping *spec);
2077 /* This is an obsolete alternative to _install_special_mapping. */
2078 extern int install_special_mapping(struct mm_struct *mm,
2079 				   unsigned long addr, unsigned long len,
2080 				   unsigned long flags, struct page **pages);
2081 
2082 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2083 
2084 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2085 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2086 	struct list_head *uf);
2087 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2088 	unsigned long len, unsigned long prot, unsigned long flags,
2089 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2090 	struct list_head *uf);
2091 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2092 		     struct list_head *uf);
2093 
2094 static inline unsigned long
2095 do_mmap_pgoff(struct file *file, unsigned long addr,
2096 	unsigned long len, unsigned long prot, unsigned long flags,
2097 	unsigned long pgoff, unsigned long *populate,
2098 	struct list_head *uf)
2099 {
2100 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2101 }
2102 
2103 #ifdef CONFIG_MMU
2104 extern int __mm_populate(unsigned long addr, unsigned long len,
2105 			 int ignore_errors);
2106 static inline void mm_populate(unsigned long addr, unsigned long len)
2107 {
2108 	/* Ignore errors */
2109 	(void) __mm_populate(addr, len, 1);
2110 }
2111 #else
2112 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2113 #endif
2114 
2115 /* These take the mm semaphore themselves */
2116 extern int __must_check vm_brk(unsigned long, unsigned long);
2117 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2118 extern int vm_munmap(unsigned long, size_t);
2119 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2120         unsigned long, unsigned long,
2121         unsigned long, unsigned long);
2122 
2123 struct vm_unmapped_area_info {
2124 #define VM_UNMAPPED_AREA_TOPDOWN 1
2125 	unsigned long flags;
2126 	unsigned long length;
2127 	unsigned long low_limit;
2128 	unsigned long high_limit;
2129 	unsigned long align_mask;
2130 	unsigned long align_offset;
2131 };
2132 
2133 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2134 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2135 
2136 /*
2137  * Search for an unmapped address range.
2138  *
2139  * We are looking for a range that:
2140  * - does not intersect with any VMA;
2141  * - is contained within the [low_limit, high_limit) interval;
2142  * - is at least the desired size.
2143  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2144  */
2145 static inline unsigned long
2146 vm_unmapped_area(struct vm_unmapped_area_info *info)
2147 {
2148 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2149 		return unmapped_area_topdown(info);
2150 	else
2151 		return unmapped_area(info);
2152 }
2153 
2154 /* truncate.c */
2155 extern void truncate_inode_pages(struct address_space *, loff_t);
2156 extern void truncate_inode_pages_range(struct address_space *,
2157 				       loff_t lstart, loff_t lend);
2158 extern void truncate_inode_pages_final(struct address_space *);
2159 
2160 /* generic vm_area_ops exported for stackable file systems */
2161 extern int filemap_fault(struct vm_fault *vmf);
2162 extern void filemap_map_pages(struct vm_fault *vmf,
2163 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2164 extern int filemap_page_mkwrite(struct vm_fault *vmf);
2165 
2166 /* mm/page-writeback.c */
2167 int write_one_page(struct page *page, int wait);
2168 void task_dirty_inc(struct task_struct *tsk);
2169 
2170 /* readahead.c */
2171 #define VM_MAX_READAHEAD	128	/* kbytes */
2172 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
2173 
2174 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2175 			pgoff_t offset, unsigned long nr_to_read);
2176 
2177 void page_cache_sync_readahead(struct address_space *mapping,
2178 			       struct file_ra_state *ra,
2179 			       struct file *filp,
2180 			       pgoff_t offset,
2181 			       unsigned long size);
2182 
2183 void page_cache_async_readahead(struct address_space *mapping,
2184 				struct file_ra_state *ra,
2185 				struct file *filp,
2186 				struct page *pg,
2187 				pgoff_t offset,
2188 				unsigned long size);
2189 
2190 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2191 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2192 
2193 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2194 extern int expand_downwards(struct vm_area_struct *vma,
2195 		unsigned long address);
2196 #if VM_GROWSUP
2197 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2198 #else
2199   #define expand_upwards(vma, address) (0)
2200 #endif
2201 
2202 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2203 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2204 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2205 					     struct vm_area_struct **pprev);
2206 
2207 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2208    NULL if none.  Assume start_addr < end_addr. */
2209 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2210 {
2211 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2212 
2213 	if (vma && end_addr <= vma->vm_start)
2214 		vma = NULL;
2215 	return vma;
2216 }
2217 
2218 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2219 {
2220 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2221 }
2222 
2223 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2224 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2225 				unsigned long vm_start, unsigned long vm_end)
2226 {
2227 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2228 
2229 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2230 		vma = NULL;
2231 
2232 	return vma;
2233 }
2234 
2235 #ifdef CONFIG_MMU
2236 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2237 void vma_set_page_prot(struct vm_area_struct *vma);
2238 #else
2239 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2240 {
2241 	return __pgprot(0);
2242 }
2243 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2244 {
2245 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2246 }
2247 #endif
2248 
2249 #ifdef CONFIG_NUMA_BALANCING
2250 unsigned long change_prot_numa(struct vm_area_struct *vma,
2251 			unsigned long start, unsigned long end);
2252 #endif
2253 
2254 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2255 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2256 			unsigned long pfn, unsigned long size, pgprot_t);
2257 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2258 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2259 			unsigned long pfn);
2260 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2261 			unsigned long pfn, pgprot_t pgprot);
2262 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2263 			pfn_t pfn);
2264 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2265 
2266 
2267 struct page *follow_page_mask(struct vm_area_struct *vma,
2268 			      unsigned long address, unsigned int foll_flags,
2269 			      unsigned int *page_mask);
2270 
2271 static inline struct page *follow_page(struct vm_area_struct *vma,
2272 		unsigned long address, unsigned int foll_flags)
2273 {
2274 	unsigned int unused_page_mask;
2275 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2276 }
2277 
2278 #define FOLL_WRITE	0x01	/* check pte is writable */
2279 #define FOLL_TOUCH	0x02	/* mark page accessed */
2280 #define FOLL_GET	0x04	/* do get_page on page */
2281 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2282 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2283 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2284 				 * and return without waiting upon it */
2285 #define FOLL_POPULATE	0x40	/* fault in page */
2286 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2287 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2288 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2289 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2290 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2291 #define FOLL_MLOCK	0x1000	/* lock present pages */
2292 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2293 #define FOLL_COW	0x4000	/* internal GUP flag */
2294 
2295 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2296 			void *data);
2297 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2298 			       unsigned long size, pte_fn_t fn, void *data);
2299 
2300 
2301 #ifdef CONFIG_PAGE_POISONING
2302 extern bool page_poisoning_enabled(void);
2303 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2304 extern bool page_is_poisoned(struct page *page);
2305 #else
2306 static inline bool page_poisoning_enabled(void) { return false; }
2307 static inline void kernel_poison_pages(struct page *page, int numpages,
2308 					int enable) { }
2309 static inline bool page_is_poisoned(struct page *page) { return false; }
2310 #endif
2311 
2312 #ifdef CONFIG_DEBUG_PAGEALLOC
2313 extern bool _debug_pagealloc_enabled;
2314 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2315 
2316 static inline bool debug_pagealloc_enabled(void)
2317 {
2318 	return _debug_pagealloc_enabled;
2319 }
2320 
2321 static inline void
2322 kernel_map_pages(struct page *page, int numpages, int enable)
2323 {
2324 	if (!debug_pagealloc_enabled())
2325 		return;
2326 
2327 	__kernel_map_pages(page, numpages, enable);
2328 }
2329 #ifdef CONFIG_HIBERNATION
2330 extern bool kernel_page_present(struct page *page);
2331 #endif	/* CONFIG_HIBERNATION */
2332 #else	/* CONFIG_DEBUG_PAGEALLOC */
2333 static inline void
2334 kernel_map_pages(struct page *page, int numpages, int enable) {}
2335 #ifdef CONFIG_HIBERNATION
2336 static inline bool kernel_page_present(struct page *page) { return true; }
2337 #endif	/* CONFIG_HIBERNATION */
2338 static inline bool debug_pagealloc_enabled(void)
2339 {
2340 	return false;
2341 }
2342 #endif	/* CONFIG_DEBUG_PAGEALLOC */
2343 
2344 #ifdef __HAVE_ARCH_GATE_AREA
2345 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2346 extern int in_gate_area_no_mm(unsigned long addr);
2347 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2348 #else
2349 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2350 {
2351 	return NULL;
2352 }
2353 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2354 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2355 {
2356 	return 0;
2357 }
2358 #endif	/* __HAVE_ARCH_GATE_AREA */
2359 
2360 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2361 
2362 #ifdef CONFIG_SYSCTL
2363 extern int sysctl_drop_caches;
2364 int drop_caches_sysctl_handler(struct ctl_table *, int,
2365 					void __user *, size_t *, loff_t *);
2366 #endif
2367 
2368 void drop_slab(void);
2369 void drop_slab_node(int nid);
2370 
2371 #ifndef CONFIG_MMU
2372 #define randomize_va_space 0
2373 #else
2374 extern int randomize_va_space;
2375 #endif
2376 
2377 const char * arch_vma_name(struct vm_area_struct *vma);
2378 void print_vma_addr(char *prefix, unsigned long rip);
2379 
2380 void sparse_mem_maps_populate_node(struct page **map_map,
2381 				   unsigned long pnum_begin,
2382 				   unsigned long pnum_end,
2383 				   unsigned long map_count,
2384 				   int nodeid);
2385 
2386 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2387 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2388 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2389 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2390 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2391 void *vmemmap_alloc_block(unsigned long size, int node);
2392 struct vmem_altmap;
2393 void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2394 		struct vmem_altmap *altmap);
2395 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2396 {
2397 	return __vmemmap_alloc_block_buf(size, node, NULL);
2398 }
2399 
2400 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2401 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2402 			       int node);
2403 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2404 void vmemmap_populate_print_last(void);
2405 #ifdef CONFIG_MEMORY_HOTPLUG
2406 void vmemmap_free(unsigned long start, unsigned long end);
2407 #endif
2408 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2409 				  unsigned long size);
2410 
2411 enum mf_flags {
2412 	MF_COUNT_INCREASED = 1 << 0,
2413 	MF_ACTION_REQUIRED = 1 << 1,
2414 	MF_MUST_KILL = 1 << 2,
2415 	MF_SOFT_OFFLINE = 1 << 3,
2416 };
2417 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2418 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2419 extern int unpoison_memory(unsigned long pfn);
2420 extern int get_hwpoison_page(struct page *page);
2421 #define put_hwpoison_page(page)	put_page(page)
2422 extern int sysctl_memory_failure_early_kill;
2423 extern int sysctl_memory_failure_recovery;
2424 extern void shake_page(struct page *p, int access);
2425 extern atomic_long_t num_poisoned_pages;
2426 extern int soft_offline_page(struct page *page, int flags);
2427 
2428 
2429 /*
2430  * Error handlers for various types of pages.
2431  */
2432 enum mf_result {
2433 	MF_IGNORED,	/* Error: cannot be handled */
2434 	MF_FAILED,	/* Error: handling failed */
2435 	MF_DELAYED,	/* Will be handled later */
2436 	MF_RECOVERED,	/* Successfully recovered */
2437 };
2438 
2439 enum mf_action_page_type {
2440 	MF_MSG_KERNEL,
2441 	MF_MSG_KERNEL_HIGH_ORDER,
2442 	MF_MSG_SLAB,
2443 	MF_MSG_DIFFERENT_COMPOUND,
2444 	MF_MSG_POISONED_HUGE,
2445 	MF_MSG_HUGE,
2446 	MF_MSG_FREE_HUGE,
2447 	MF_MSG_UNMAP_FAILED,
2448 	MF_MSG_DIRTY_SWAPCACHE,
2449 	MF_MSG_CLEAN_SWAPCACHE,
2450 	MF_MSG_DIRTY_MLOCKED_LRU,
2451 	MF_MSG_CLEAN_MLOCKED_LRU,
2452 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2453 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2454 	MF_MSG_DIRTY_LRU,
2455 	MF_MSG_CLEAN_LRU,
2456 	MF_MSG_TRUNCATED_LRU,
2457 	MF_MSG_BUDDY,
2458 	MF_MSG_BUDDY_2ND,
2459 	MF_MSG_UNKNOWN,
2460 };
2461 
2462 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2463 extern void clear_huge_page(struct page *page,
2464 			    unsigned long addr,
2465 			    unsigned int pages_per_huge_page);
2466 extern void copy_user_huge_page(struct page *dst, struct page *src,
2467 				unsigned long addr, struct vm_area_struct *vma,
2468 				unsigned int pages_per_huge_page);
2469 extern long copy_huge_page_from_user(struct page *dst_page,
2470 				const void __user *usr_src,
2471 				unsigned int pages_per_huge_page,
2472 				bool allow_pagefault);
2473 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2474 
2475 extern struct page_ext_operations debug_guardpage_ops;
2476 extern struct page_ext_operations page_poisoning_ops;
2477 
2478 #ifdef CONFIG_DEBUG_PAGEALLOC
2479 extern unsigned int _debug_guardpage_minorder;
2480 extern bool _debug_guardpage_enabled;
2481 
2482 static inline unsigned int debug_guardpage_minorder(void)
2483 {
2484 	return _debug_guardpage_minorder;
2485 }
2486 
2487 static inline bool debug_guardpage_enabled(void)
2488 {
2489 	return _debug_guardpage_enabled;
2490 }
2491 
2492 static inline bool page_is_guard(struct page *page)
2493 {
2494 	struct page_ext *page_ext;
2495 
2496 	if (!debug_guardpage_enabled())
2497 		return false;
2498 
2499 	page_ext = lookup_page_ext(page);
2500 	if (unlikely(!page_ext))
2501 		return false;
2502 
2503 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2504 }
2505 #else
2506 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2507 static inline bool debug_guardpage_enabled(void) { return false; }
2508 static inline bool page_is_guard(struct page *page) { return false; }
2509 #endif /* CONFIG_DEBUG_PAGEALLOC */
2510 
2511 #if MAX_NUMNODES > 1
2512 void __init setup_nr_node_ids(void);
2513 #else
2514 static inline void setup_nr_node_ids(void) {}
2515 #endif
2516 
2517 #endif /* __KERNEL__ */
2518 #endif /* _LINUX_MM_H */
2519