1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/percpu-refcount.h> 20 #include <linux/bit_spinlock.h> 21 #include <linux/shrinker.h> 22 #include <linux/resource.h> 23 #include <linux/page_ext.h> 24 #include <linux/err.h> 25 #include <linux/page_ref.h> 26 27 struct mempolicy; 28 struct anon_vma; 29 struct anon_vma_chain; 30 struct file_ra_state; 31 struct user_struct; 32 struct writeback_control; 33 struct bdi_writeback; 34 35 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 36 extern unsigned long max_mapnr; 37 38 static inline void set_max_mapnr(unsigned long limit) 39 { 40 max_mapnr = limit; 41 } 42 #else 43 static inline void set_max_mapnr(unsigned long limit) { } 44 #endif 45 46 extern unsigned long totalram_pages; 47 extern void * high_memory; 48 extern int page_cluster; 49 50 #ifdef CONFIG_SYSCTL 51 extern int sysctl_legacy_va_layout; 52 #else 53 #define sysctl_legacy_va_layout 0 54 #endif 55 56 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 57 extern const int mmap_rnd_bits_min; 58 extern const int mmap_rnd_bits_max; 59 extern int mmap_rnd_bits __read_mostly; 60 #endif 61 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 62 extern const int mmap_rnd_compat_bits_min; 63 extern const int mmap_rnd_compat_bits_max; 64 extern int mmap_rnd_compat_bits __read_mostly; 65 #endif 66 67 #include <asm/page.h> 68 #include <asm/pgtable.h> 69 #include <asm/processor.h> 70 71 #ifndef __pa_symbol 72 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 73 #endif 74 75 #ifndef page_to_virt 76 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 77 #endif 78 79 #ifndef lm_alias 80 #define lm_alias(x) __va(__pa_symbol(x)) 81 #endif 82 83 /* 84 * To prevent common memory management code establishing 85 * a zero page mapping on a read fault. 86 * This macro should be defined within <asm/pgtable.h>. 87 * s390 does this to prevent multiplexing of hardware bits 88 * related to the physical page in case of virtualization. 89 */ 90 #ifndef mm_forbids_zeropage 91 #define mm_forbids_zeropage(X) (0) 92 #endif 93 94 /* 95 * Default maximum number of active map areas, this limits the number of vmas 96 * per mm struct. Users can overwrite this number by sysctl but there is a 97 * problem. 98 * 99 * When a program's coredump is generated as ELF format, a section is created 100 * per a vma. In ELF, the number of sections is represented in unsigned short. 101 * This means the number of sections should be smaller than 65535 at coredump. 102 * Because the kernel adds some informative sections to a image of program at 103 * generating coredump, we need some margin. The number of extra sections is 104 * 1-3 now and depends on arch. We use "5" as safe margin, here. 105 * 106 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 107 * not a hard limit any more. Although some userspace tools can be surprised by 108 * that. 109 */ 110 #define MAPCOUNT_ELF_CORE_MARGIN (5) 111 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 112 113 extern int sysctl_max_map_count; 114 115 extern unsigned long sysctl_user_reserve_kbytes; 116 extern unsigned long sysctl_admin_reserve_kbytes; 117 118 extern int sysctl_overcommit_memory; 119 extern int sysctl_overcommit_ratio; 120 extern unsigned long sysctl_overcommit_kbytes; 121 122 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 123 size_t *, loff_t *); 124 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 125 size_t *, loff_t *); 126 127 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 128 129 /* to align the pointer to the (next) page boundary */ 130 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 131 132 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 133 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 134 135 /* 136 * Linux kernel virtual memory manager primitives. 137 * The idea being to have a "virtual" mm in the same way 138 * we have a virtual fs - giving a cleaner interface to the 139 * mm details, and allowing different kinds of memory mappings 140 * (from shared memory to executable loading to arbitrary 141 * mmap() functions). 142 */ 143 144 extern struct kmem_cache *vm_area_cachep; 145 146 #ifndef CONFIG_MMU 147 extern struct rb_root nommu_region_tree; 148 extern struct rw_semaphore nommu_region_sem; 149 150 extern unsigned int kobjsize(const void *objp); 151 #endif 152 153 /* 154 * vm_flags in vm_area_struct, see mm_types.h. 155 * When changing, update also include/trace/events/mmflags.h 156 */ 157 #define VM_NONE 0x00000000 158 159 #define VM_READ 0x00000001 /* currently active flags */ 160 #define VM_WRITE 0x00000002 161 #define VM_EXEC 0x00000004 162 #define VM_SHARED 0x00000008 163 164 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 165 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 166 #define VM_MAYWRITE 0x00000020 167 #define VM_MAYEXEC 0x00000040 168 #define VM_MAYSHARE 0x00000080 169 170 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 171 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 172 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 173 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 174 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 175 176 #define VM_LOCKED 0x00002000 177 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 178 179 /* Used by sys_madvise() */ 180 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 181 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 182 183 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 184 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 185 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 186 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 187 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 188 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 189 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 190 #define VM_ARCH_2 0x02000000 191 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 192 193 #ifdef CONFIG_MEM_SOFT_DIRTY 194 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 195 #else 196 # define VM_SOFTDIRTY 0 197 #endif 198 199 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 200 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 201 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 202 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 203 204 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 205 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 206 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 207 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 208 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 209 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 210 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 211 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 212 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 213 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 214 215 #if defined(CONFIG_X86) 216 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 217 #if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS) 218 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 219 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 220 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 221 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 222 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 223 #endif 224 #elif defined(CONFIG_PPC) 225 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 226 #elif defined(CONFIG_PARISC) 227 # define VM_GROWSUP VM_ARCH_1 228 #elif defined(CONFIG_METAG) 229 # define VM_GROWSUP VM_ARCH_1 230 #elif defined(CONFIG_IA64) 231 # define VM_GROWSUP VM_ARCH_1 232 #elif !defined(CONFIG_MMU) 233 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 234 #endif 235 236 #if defined(CONFIG_X86) 237 /* MPX specific bounds table or bounds directory */ 238 # define VM_MPX VM_ARCH_2 239 #endif 240 241 #ifndef VM_GROWSUP 242 # define VM_GROWSUP VM_NONE 243 #endif 244 245 /* Bits set in the VMA until the stack is in its final location */ 246 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 247 248 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 249 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 250 #endif 251 252 #ifdef CONFIG_STACK_GROWSUP 253 #define VM_STACK VM_GROWSUP 254 #else 255 #define VM_STACK VM_GROWSDOWN 256 #endif 257 258 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 259 260 /* 261 * Special vmas that are non-mergable, non-mlock()able. 262 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 263 */ 264 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 265 266 /* This mask defines which mm->def_flags a process can inherit its parent */ 267 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 268 269 /* This mask is used to clear all the VMA flags used by mlock */ 270 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 271 272 /* 273 * mapping from the currently active vm_flags protection bits (the 274 * low four bits) to a page protection mask.. 275 */ 276 extern pgprot_t protection_map[16]; 277 278 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 279 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 280 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 281 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 282 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 283 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 284 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 285 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 286 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 287 288 #define FAULT_FLAG_TRACE \ 289 { FAULT_FLAG_WRITE, "WRITE" }, \ 290 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 291 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 292 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 293 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 294 { FAULT_FLAG_TRIED, "TRIED" }, \ 295 { FAULT_FLAG_USER, "USER" }, \ 296 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 297 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 298 299 /* 300 * vm_fault is filled by the the pagefault handler and passed to the vma's 301 * ->fault function. The vma's ->fault is responsible for returning a bitmask 302 * of VM_FAULT_xxx flags that give details about how the fault was handled. 303 * 304 * MM layer fills up gfp_mask for page allocations but fault handler might 305 * alter it if its implementation requires a different allocation context. 306 * 307 * pgoff should be used in favour of virtual_address, if possible. 308 */ 309 struct vm_fault { 310 struct vm_area_struct *vma; /* Target VMA */ 311 unsigned int flags; /* FAULT_FLAG_xxx flags */ 312 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 313 pgoff_t pgoff; /* Logical page offset based on vma */ 314 unsigned long address; /* Faulting virtual address */ 315 pmd_t *pmd; /* Pointer to pmd entry matching 316 * the 'address' */ 317 pud_t *pud; /* Pointer to pud entry matching 318 * the 'address' 319 */ 320 pte_t orig_pte; /* Value of PTE at the time of fault */ 321 322 struct page *cow_page; /* Page handler may use for COW fault */ 323 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 324 struct page *page; /* ->fault handlers should return a 325 * page here, unless VM_FAULT_NOPAGE 326 * is set (which is also implied by 327 * VM_FAULT_ERROR). 328 */ 329 /* These three entries are valid only while holding ptl lock */ 330 pte_t *pte; /* Pointer to pte entry matching 331 * the 'address'. NULL if the page 332 * table hasn't been allocated. 333 */ 334 spinlock_t *ptl; /* Page table lock. 335 * Protects pte page table if 'pte' 336 * is not NULL, otherwise pmd. 337 */ 338 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 339 * vm_ops->map_pages() calls 340 * alloc_set_pte() from atomic context. 341 * do_fault_around() pre-allocates 342 * page table to avoid allocation from 343 * atomic context. 344 */ 345 }; 346 347 /* page entry size for vm->huge_fault() */ 348 enum page_entry_size { 349 PE_SIZE_PTE = 0, 350 PE_SIZE_PMD, 351 PE_SIZE_PUD, 352 }; 353 354 /* 355 * These are the virtual MM functions - opening of an area, closing and 356 * unmapping it (needed to keep files on disk up-to-date etc), pointer 357 * to the functions called when a no-page or a wp-page exception occurs. 358 */ 359 struct vm_operations_struct { 360 void (*open)(struct vm_area_struct * area); 361 void (*close)(struct vm_area_struct * area); 362 int (*mremap)(struct vm_area_struct * area); 363 int (*fault)(struct vm_fault *vmf); 364 int (*huge_fault)(struct vm_fault *vmf, enum page_entry_size pe_size); 365 void (*map_pages)(struct vm_fault *vmf, 366 pgoff_t start_pgoff, pgoff_t end_pgoff); 367 368 /* notification that a previously read-only page is about to become 369 * writable, if an error is returned it will cause a SIGBUS */ 370 int (*page_mkwrite)(struct vm_fault *vmf); 371 372 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 373 int (*pfn_mkwrite)(struct vm_fault *vmf); 374 375 /* called by access_process_vm when get_user_pages() fails, typically 376 * for use by special VMAs that can switch between memory and hardware 377 */ 378 int (*access)(struct vm_area_struct *vma, unsigned long addr, 379 void *buf, int len, int write); 380 381 /* Called by the /proc/PID/maps code to ask the vma whether it 382 * has a special name. Returning non-NULL will also cause this 383 * vma to be dumped unconditionally. */ 384 const char *(*name)(struct vm_area_struct *vma); 385 386 #ifdef CONFIG_NUMA 387 /* 388 * set_policy() op must add a reference to any non-NULL @new mempolicy 389 * to hold the policy upon return. Caller should pass NULL @new to 390 * remove a policy and fall back to surrounding context--i.e. do not 391 * install a MPOL_DEFAULT policy, nor the task or system default 392 * mempolicy. 393 */ 394 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 395 396 /* 397 * get_policy() op must add reference [mpol_get()] to any policy at 398 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 399 * in mm/mempolicy.c will do this automatically. 400 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 401 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 402 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 403 * must return NULL--i.e., do not "fallback" to task or system default 404 * policy. 405 */ 406 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 407 unsigned long addr); 408 #endif 409 /* 410 * Called by vm_normal_page() for special PTEs to find the 411 * page for @addr. This is useful if the default behavior 412 * (using pte_page()) would not find the correct page. 413 */ 414 struct page *(*find_special_page)(struct vm_area_struct *vma, 415 unsigned long addr); 416 }; 417 418 struct mmu_gather; 419 struct inode; 420 421 #define page_private(page) ((page)->private) 422 #define set_page_private(page, v) ((page)->private = (v)) 423 424 #if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE) 425 static inline int pmd_devmap(pmd_t pmd) 426 { 427 return 0; 428 } 429 static inline int pud_devmap(pud_t pud) 430 { 431 return 0; 432 } 433 #endif 434 435 /* 436 * FIXME: take this include out, include page-flags.h in 437 * files which need it (119 of them) 438 */ 439 #include <linux/page-flags.h> 440 #include <linux/huge_mm.h> 441 442 /* 443 * Methods to modify the page usage count. 444 * 445 * What counts for a page usage: 446 * - cache mapping (page->mapping) 447 * - private data (page->private) 448 * - page mapped in a task's page tables, each mapping 449 * is counted separately 450 * 451 * Also, many kernel routines increase the page count before a critical 452 * routine so they can be sure the page doesn't go away from under them. 453 */ 454 455 /* 456 * Drop a ref, return true if the refcount fell to zero (the page has no users) 457 */ 458 static inline int put_page_testzero(struct page *page) 459 { 460 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 461 return page_ref_dec_and_test(page); 462 } 463 464 /* 465 * Try to grab a ref unless the page has a refcount of zero, return false if 466 * that is the case. 467 * This can be called when MMU is off so it must not access 468 * any of the virtual mappings. 469 */ 470 static inline int get_page_unless_zero(struct page *page) 471 { 472 return page_ref_add_unless(page, 1, 0); 473 } 474 475 extern int page_is_ram(unsigned long pfn); 476 477 enum { 478 REGION_INTERSECTS, 479 REGION_DISJOINT, 480 REGION_MIXED, 481 }; 482 483 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 484 unsigned long desc); 485 486 /* Support for virtually mapped pages */ 487 struct page *vmalloc_to_page(const void *addr); 488 unsigned long vmalloc_to_pfn(const void *addr); 489 490 /* 491 * Determine if an address is within the vmalloc range 492 * 493 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 494 * is no special casing required. 495 */ 496 static inline bool is_vmalloc_addr(const void *x) 497 { 498 #ifdef CONFIG_MMU 499 unsigned long addr = (unsigned long)x; 500 501 return addr >= VMALLOC_START && addr < VMALLOC_END; 502 #else 503 return false; 504 #endif 505 } 506 #ifdef CONFIG_MMU 507 extern int is_vmalloc_or_module_addr(const void *x); 508 #else 509 static inline int is_vmalloc_or_module_addr(const void *x) 510 { 511 return 0; 512 } 513 #endif 514 515 extern void kvfree(const void *addr); 516 517 static inline atomic_t *compound_mapcount_ptr(struct page *page) 518 { 519 return &page[1].compound_mapcount; 520 } 521 522 static inline int compound_mapcount(struct page *page) 523 { 524 VM_BUG_ON_PAGE(!PageCompound(page), page); 525 page = compound_head(page); 526 return atomic_read(compound_mapcount_ptr(page)) + 1; 527 } 528 529 /* 530 * The atomic page->_mapcount, starts from -1: so that transitions 531 * both from it and to it can be tracked, using atomic_inc_and_test 532 * and atomic_add_negative(-1). 533 */ 534 static inline void page_mapcount_reset(struct page *page) 535 { 536 atomic_set(&(page)->_mapcount, -1); 537 } 538 539 int __page_mapcount(struct page *page); 540 541 static inline int page_mapcount(struct page *page) 542 { 543 VM_BUG_ON_PAGE(PageSlab(page), page); 544 545 if (unlikely(PageCompound(page))) 546 return __page_mapcount(page); 547 return atomic_read(&page->_mapcount) + 1; 548 } 549 550 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 551 int total_mapcount(struct page *page); 552 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 553 #else 554 static inline int total_mapcount(struct page *page) 555 { 556 return page_mapcount(page); 557 } 558 static inline int page_trans_huge_mapcount(struct page *page, 559 int *total_mapcount) 560 { 561 int mapcount = page_mapcount(page); 562 if (total_mapcount) 563 *total_mapcount = mapcount; 564 return mapcount; 565 } 566 #endif 567 568 static inline struct page *virt_to_head_page(const void *x) 569 { 570 struct page *page = virt_to_page(x); 571 572 return compound_head(page); 573 } 574 575 void __put_page(struct page *page); 576 577 void put_pages_list(struct list_head *pages); 578 579 void split_page(struct page *page, unsigned int order); 580 581 /* 582 * Compound pages have a destructor function. Provide a 583 * prototype for that function and accessor functions. 584 * These are _only_ valid on the head of a compound page. 585 */ 586 typedef void compound_page_dtor(struct page *); 587 588 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 589 enum compound_dtor_id { 590 NULL_COMPOUND_DTOR, 591 COMPOUND_PAGE_DTOR, 592 #ifdef CONFIG_HUGETLB_PAGE 593 HUGETLB_PAGE_DTOR, 594 #endif 595 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 596 TRANSHUGE_PAGE_DTOR, 597 #endif 598 NR_COMPOUND_DTORS, 599 }; 600 extern compound_page_dtor * const compound_page_dtors[]; 601 602 static inline void set_compound_page_dtor(struct page *page, 603 enum compound_dtor_id compound_dtor) 604 { 605 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 606 page[1].compound_dtor = compound_dtor; 607 } 608 609 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 610 { 611 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 612 return compound_page_dtors[page[1].compound_dtor]; 613 } 614 615 static inline unsigned int compound_order(struct page *page) 616 { 617 if (!PageHead(page)) 618 return 0; 619 return page[1].compound_order; 620 } 621 622 static inline void set_compound_order(struct page *page, unsigned int order) 623 { 624 page[1].compound_order = order; 625 } 626 627 void free_compound_page(struct page *page); 628 629 #ifdef CONFIG_MMU 630 /* 631 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 632 * servicing faults for write access. In the normal case, do always want 633 * pte_mkwrite. But get_user_pages can cause write faults for mappings 634 * that do not have writing enabled, when used by access_process_vm. 635 */ 636 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 637 { 638 if (likely(vma->vm_flags & VM_WRITE)) 639 pte = pte_mkwrite(pte); 640 return pte; 641 } 642 643 int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 644 struct page *page); 645 int finish_fault(struct vm_fault *vmf); 646 int finish_mkwrite_fault(struct vm_fault *vmf); 647 #endif 648 649 /* 650 * Multiple processes may "see" the same page. E.g. for untouched 651 * mappings of /dev/null, all processes see the same page full of 652 * zeroes, and text pages of executables and shared libraries have 653 * only one copy in memory, at most, normally. 654 * 655 * For the non-reserved pages, page_count(page) denotes a reference count. 656 * page_count() == 0 means the page is free. page->lru is then used for 657 * freelist management in the buddy allocator. 658 * page_count() > 0 means the page has been allocated. 659 * 660 * Pages are allocated by the slab allocator in order to provide memory 661 * to kmalloc and kmem_cache_alloc. In this case, the management of the 662 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 663 * unless a particular usage is carefully commented. (the responsibility of 664 * freeing the kmalloc memory is the caller's, of course). 665 * 666 * A page may be used by anyone else who does a __get_free_page(). 667 * In this case, page_count still tracks the references, and should only 668 * be used through the normal accessor functions. The top bits of page->flags 669 * and page->virtual store page management information, but all other fields 670 * are unused and could be used privately, carefully. The management of this 671 * page is the responsibility of the one who allocated it, and those who have 672 * subsequently been given references to it. 673 * 674 * The other pages (we may call them "pagecache pages") are completely 675 * managed by the Linux memory manager: I/O, buffers, swapping etc. 676 * The following discussion applies only to them. 677 * 678 * A pagecache page contains an opaque `private' member, which belongs to the 679 * page's address_space. Usually, this is the address of a circular list of 680 * the page's disk buffers. PG_private must be set to tell the VM to call 681 * into the filesystem to release these pages. 682 * 683 * A page may belong to an inode's memory mapping. In this case, page->mapping 684 * is the pointer to the inode, and page->index is the file offset of the page, 685 * in units of PAGE_SIZE. 686 * 687 * If pagecache pages are not associated with an inode, they are said to be 688 * anonymous pages. These may become associated with the swapcache, and in that 689 * case PG_swapcache is set, and page->private is an offset into the swapcache. 690 * 691 * In either case (swapcache or inode backed), the pagecache itself holds one 692 * reference to the page. Setting PG_private should also increment the 693 * refcount. The each user mapping also has a reference to the page. 694 * 695 * The pagecache pages are stored in a per-mapping radix tree, which is 696 * rooted at mapping->page_tree, and indexed by offset. 697 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 698 * lists, we instead now tag pages as dirty/writeback in the radix tree. 699 * 700 * All pagecache pages may be subject to I/O: 701 * - inode pages may need to be read from disk, 702 * - inode pages which have been modified and are MAP_SHARED may need 703 * to be written back to the inode on disk, 704 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 705 * modified may need to be swapped out to swap space and (later) to be read 706 * back into memory. 707 */ 708 709 /* 710 * The zone field is never updated after free_area_init_core() 711 * sets it, so none of the operations on it need to be atomic. 712 */ 713 714 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 715 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 716 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 717 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 718 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 719 720 /* 721 * Define the bit shifts to access each section. For non-existent 722 * sections we define the shift as 0; that plus a 0 mask ensures 723 * the compiler will optimise away reference to them. 724 */ 725 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 726 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 727 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 728 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 729 730 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 731 #ifdef NODE_NOT_IN_PAGE_FLAGS 732 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 733 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 734 SECTIONS_PGOFF : ZONES_PGOFF) 735 #else 736 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 737 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 738 NODES_PGOFF : ZONES_PGOFF) 739 #endif 740 741 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 742 743 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 744 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 745 #endif 746 747 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 748 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 749 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 750 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 751 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 752 753 static inline enum zone_type page_zonenum(const struct page *page) 754 { 755 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 756 } 757 758 #ifdef CONFIG_ZONE_DEVICE 759 void get_zone_device_page(struct page *page); 760 void put_zone_device_page(struct page *page); 761 static inline bool is_zone_device_page(const struct page *page) 762 { 763 return page_zonenum(page) == ZONE_DEVICE; 764 } 765 #else 766 static inline void get_zone_device_page(struct page *page) 767 { 768 } 769 static inline void put_zone_device_page(struct page *page) 770 { 771 } 772 static inline bool is_zone_device_page(const struct page *page) 773 { 774 return false; 775 } 776 #endif 777 778 static inline void get_page(struct page *page) 779 { 780 page = compound_head(page); 781 /* 782 * Getting a normal page or the head of a compound page 783 * requires to already have an elevated page->_refcount. 784 */ 785 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page); 786 page_ref_inc(page); 787 788 if (unlikely(is_zone_device_page(page))) 789 get_zone_device_page(page); 790 } 791 792 static inline void put_page(struct page *page) 793 { 794 page = compound_head(page); 795 796 if (put_page_testzero(page)) 797 __put_page(page); 798 799 if (unlikely(is_zone_device_page(page))) 800 put_zone_device_page(page); 801 } 802 803 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 804 #define SECTION_IN_PAGE_FLAGS 805 #endif 806 807 /* 808 * The identification function is mainly used by the buddy allocator for 809 * determining if two pages could be buddies. We are not really identifying 810 * the zone since we could be using the section number id if we do not have 811 * node id available in page flags. 812 * We only guarantee that it will return the same value for two combinable 813 * pages in a zone. 814 */ 815 static inline int page_zone_id(struct page *page) 816 { 817 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 818 } 819 820 static inline int zone_to_nid(struct zone *zone) 821 { 822 #ifdef CONFIG_NUMA 823 return zone->node; 824 #else 825 return 0; 826 #endif 827 } 828 829 #ifdef NODE_NOT_IN_PAGE_FLAGS 830 extern int page_to_nid(const struct page *page); 831 #else 832 static inline int page_to_nid(const struct page *page) 833 { 834 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 835 } 836 #endif 837 838 #ifdef CONFIG_NUMA_BALANCING 839 static inline int cpu_pid_to_cpupid(int cpu, int pid) 840 { 841 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 842 } 843 844 static inline int cpupid_to_pid(int cpupid) 845 { 846 return cpupid & LAST__PID_MASK; 847 } 848 849 static inline int cpupid_to_cpu(int cpupid) 850 { 851 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 852 } 853 854 static inline int cpupid_to_nid(int cpupid) 855 { 856 return cpu_to_node(cpupid_to_cpu(cpupid)); 857 } 858 859 static inline bool cpupid_pid_unset(int cpupid) 860 { 861 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 862 } 863 864 static inline bool cpupid_cpu_unset(int cpupid) 865 { 866 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 867 } 868 869 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 870 { 871 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 872 } 873 874 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 875 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 876 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 877 { 878 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 879 } 880 881 static inline int page_cpupid_last(struct page *page) 882 { 883 return page->_last_cpupid; 884 } 885 static inline void page_cpupid_reset_last(struct page *page) 886 { 887 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 888 } 889 #else 890 static inline int page_cpupid_last(struct page *page) 891 { 892 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 893 } 894 895 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 896 897 static inline void page_cpupid_reset_last(struct page *page) 898 { 899 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 900 } 901 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 902 #else /* !CONFIG_NUMA_BALANCING */ 903 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 904 { 905 return page_to_nid(page); /* XXX */ 906 } 907 908 static inline int page_cpupid_last(struct page *page) 909 { 910 return page_to_nid(page); /* XXX */ 911 } 912 913 static inline int cpupid_to_nid(int cpupid) 914 { 915 return -1; 916 } 917 918 static inline int cpupid_to_pid(int cpupid) 919 { 920 return -1; 921 } 922 923 static inline int cpupid_to_cpu(int cpupid) 924 { 925 return -1; 926 } 927 928 static inline int cpu_pid_to_cpupid(int nid, int pid) 929 { 930 return -1; 931 } 932 933 static inline bool cpupid_pid_unset(int cpupid) 934 { 935 return 1; 936 } 937 938 static inline void page_cpupid_reset_last(struct page *page) 939 { 940 } 941 942 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 943 { 944 return false; 945 } 946 #endif /* CONFIG_NUMA_BALANCING */ 947 948 static inline struct zone *page_zone(const struct page *page) 949 { 950 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 951 } 952 953 static inline pg_data_t *page_pgdat(const struct page *page) 954 { 955 return NODE_DATA(page_to_nid(page)); 956 } 957 958 #ifdef SECTION_IN_PAGE_FLAGS 959 static inline void set_page_section(struct page *page, unsigned long section) 960 { 961 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 962 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 963 } 964 965 static inline unsigned long page_to_section(const struct page *page) 966 { 967 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 968 } 969 #endif 970 971 static inline void set_page_zone(struct page *page, enum zone_type zone) 972 { 973 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 974 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 975 } 976 977 static inline void set_page_node(struct page *page, unsigned long node) 978 { 979 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 980 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 981 } 982 983 static inline void set_page_links(struct page *page, enum zone_type zone, 984 unsigned long node, unsigned long pfn) 985 { 986 set_page_zone(page, zone); 987 set_page_node(page, node); 988 #ifdef SECTION_IN_PAGE_FLAGS 989 set_page_section(page, pfn_to_section_nr(pfn)); 990 #endif 991 } 992 993 #ifdef CONFIG_MEMCG 994 static inline struct mem_cgroup *page_memcg(struct page *page) 995 { 996 return page->mem_cgroup; 997 } 998 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 999 { 1000 WARN_ON_ONCE(!rcu_read_lock_held()); 1001 return READ_ONCE(page->mem_cgroup); 1002 } 1003 #else 1004 static inline struct mem_cgroup *page_memcg(struct page *page) 1005 { 1006 return NULL; 1007 } 1008 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1009 { 1010 WARN_ON_ONCE(!rcu_read_lock_held()); 1011 return NULL; 1012 } 1013 #endif 1014 1015 /* 1016 * Some inline functions in vmstat.h depend on page_zone() 1017 */ 1018 #include <linux/vmstat.h> 1019 1020 static __always_inline void *lowmem_page_address(const struct page *page) 1021 { 1022 return page_to_virt(page); 1023 } 1024 1025 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1026 #define HASHED_PAGE_VIRTUAL 1027 #endif 1028 1029 #if defined(WANT_PAGE_VIRTUAL) 1030 static inline void *page_address(const struct page *page) 1031 { 1032 return page->virtual; 1033 } 1034 static inline void set_page_address(struct page *page, void *address) 1035 { 1036 page->virtual = address; 1037 } 1038 #define page_address_init() do { } while(0) 1039 #endif 1040 1041 #if defined(HASHED_PAGE_VIRTUAL) 1042 void *page_address(const struct page *page); 1043 void set_page_address(struct page *page, void *virtual); 1044 void page_address_init(void); 1045 #endif 1046 1047 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1048 #define page_address(page) lowmem_page_address(page) 1049 #define set_page_address(page, address) do { } while(0) 1050 #define page_address_init() do { } while(0) 1051 #endif 1052 1053 extern void *page_rmapping(struct page *page); 1054 extern struct anon_vma *page_anon_vma(struct page *page); 1055 extern struct address_space *page_mapping(struct page *page); 1056 1057 extern struct address_space *__page_file_mapping(struct page *); 1058 1059 static inline 1060 struct address_space *page_file_mapping(struct page *page) 1061 { 1062 if (unlikely(PageSwapCache(page))) 1063 return __page_file_mapping(page); 1064 1065 return page->mapping; 1066 } 1067 1068 extern pgoff_t __page_file_index(struct page *page); 1069 1070 /* 1071 * Return the pagecache index of the passed page. Regular pagecache pages 1072 * use ->index whereas swapcache pages use swp_offset(->private) 1073 */ 1074 static inline pgoff_t page_index(struct page *page) 1075 { 1076 if (unlikely(PageSwapCache(page))) 1077 return __page_file_index(page); 1078 return page->index; 1079 } 1080 1081 bool page_mapped(struct page *page); 1082 struct address_space *page_mapping(struct page *page); 1083 1084 /* 1085 * Return true only if the page has been allocated with 1086 * ALLOC_NO_WATERMARKS and the low watermark was not 1087 * met implying that the system is under some pressure. 1088 */ 1089 static inline bool page_is_pfmemalloc(struct page *page) 1090 { 1091 /* 1092 * Page index cannot be this large so this must be 1093 * a pfmemalloc page. 1094 */ 1095 return page->index == -1UL; 1096 } 1097 1098 /* 1099 * Only to be called by the page allocator on a freshly allocated 1100 * page. 1101 */ 1102 static inline void set_page_pfmemalloc(struct page *page) 1103 { 1104 page->index = -1UL; 1105 } 1106 1107 static inline void clear_page_pfmemalloc(struct page *page) 1108 { 1109 page->index = 0; 1110 } 1111 1112 /* 1113 * Different kinds of faults, as returned by handle_mm_fault(). 1114 * Used to decide whether a process gets delivered SIGBUS or 1115 * just gets major/minor fault counters bumped up. 1116 */ 1117 1118 #define VM_FAULT_OOM 0x0001 1119 #define VM_FAULT_SIGBUS 0x0002 1120 #define VM_FAULT_MAJOR 0x0004 1121 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1122 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1123 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1124 #define VM_FAULT_SIGSEGV 0x0040 1125 1126 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1127 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1128 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1129 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1130 #define VM_FAULT_DONE_COW 0x1000 /* ->fault has fully handled COW */ 1131 1132 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1133 1134 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1135 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1136 VM_FAULT_FALLBACK) 1137 1138 #define VM_FAULT_RESULT_TRACE \ 1139 { VM_FAULT_OOM, "OOM" }, \ 1140 { VM_FAULT_SIGBUS, "SIGBUS" }, \ 1141 { VM_FAULT_MAJOR, "MAJOR" }, \ 1142 { VM_FAULT_WRITE, "WRITE" }, \ 1143 { VM_FAULT_HWPOISON, "HWPOISON" }, \ 1144 { VM_FAULT_HWPOISON_LARGE, "HWPOISON_LARGE" }, \ 1145 { VM_FAULT_SIGSEGV, "SIGSEGV" }, \ 1146 { VM_FAULT_NOPAGE, "NOPAGE" }, \ 1147 { VM_FAULT_LOCKED, "LOCKED" }, \ 1148 { VM_FAULT_RETRY, "RETRY" }, \ 1149 { VM_FAULT_FALLBACK, "FALLBACK" }, \ 1150 { VM_FAULT_DONE_COW, "DONE_COW" } 1151 1152 /* Encode hstate index for a hwpoisoned large page */ 1153 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1154 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1155 1156 /* 1157 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1158 */ 1159 extern void pagefault_out_of_memory(void); 1160 1161 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1162 1163 /* 1164 * Flags passed to show_mem() and show_free_areas() to suppress output in 1165 * various contexts. 1166 */ 1167 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1168 1169 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1170 1171 extern bool can_do_mlock(void); 1172 extern int user_shm_lock(size_t, struct user_struct *); 1173 extern void user_shm_unlock(size_t, struct user_struct *); 1174 1175 /* 1176 * Parameter block passed down to zap_pte_range in exceptional cases. 1177 */ 1178 struct zap_details { 1179 struct address_space *check_mapping; /* Check page->mapping if set */ 1180 pgoff_t first_index; /* Lowest page->index to unmap */ 1181 pgoff_t last_index; /* Highest page->index to unmap */ 1182 }; 1183 1184 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1185 pte_t pte); 1186 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1187 pmd_t pmd); 1188 1189 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1190 unsigned long size); 1191 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1192 unsigned long size); 1193 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1194 unsigned long start, unsigned long end); 1195 1196 /** 1197 * mm_walk - callbacks for walk_page_range 1198 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry 1199 * this handler should only handle pud_trans_huge() puds. 1200 * the pmd_entry or pte_entry callbacks will be used for 1201 * regular PUDs. 1202 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1203 * this handler is required to be able to handle 1204 * pmd_trans_huge() pmds. They may simply choose to 1205 * split_huge_page() instead of handling it explicitly. 1206 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1207 * @pte_hole: if set, called for each hole at all levels 1208 * @hugetlb_entry: if set, called for each hugetlb entry 1209 * @test_walk: caller specific callback function to determine whether 1210 * we walk over the current vma or not. Returning 0 1211 * value means "do page table walk over the current vma," 1212 * and a negative one means "abort current page table walk 1213 * right now." 1 means "skip the current vma." 1214 * @mm: mm_struct representing the target process of page table walk 1215 * @vma: vma currently walked (NULL if walking outside vmas) 1216 * @private: private data for callbacks' usage 1217 * 1218 * (see the comment on walk_page_range() for more details) 1219 */ 1220 struct mm_walk { 1221 int (*pud_entry)(pud_t *pud, unsigned long addr, 1222 unsigned long next, struct mm_walk *walk); 1223 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1224 unsigned long next, struct mm_walk *walk); 1225 int (*pte_entry)(pte_t *pte, unsigned long addr, 1226 unsigned long next, struct mm_walk *walk); 1227 int (*pte_hole)(unsigned long addr, unsigned long next, 1228 struct mm_walk *walk); 1229 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1230 unsigned long addr, unsigned long next, 1231 struct mm_walk *walk); 1232 int (*test_walk)(unsigned long addr, unsigned long next, 1233 struct mm_walk *walk); 1234 struct mm_struct *mm; 1235 struct vm_area_struct *vma; 1236 void *private; 1237 }; 1238 1239 int walk_page_range(unsigned long addr, unsigned long end, 1240 struct mm_walk *walk); 1241 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1242 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1243 unsigned long end, unsigned long floor, unsigned long ceiling); 1244 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1245 struct vm_area_struct *vma); 1246 void unmap_mapping_range(struct address_space *mapping, 1247 loff_t const holebegin, loff_t const holelen, int even_cows); 1248 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1249 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1250 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1251 unsigned long *pfn); 1252 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1253 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1254 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1255 void *buf, int len, int write); 1256 1257 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1258 loff_t const holebegin, loff_t const holelen) 1259 { 1260 unmap_mapping_range(mapping, holebegin, holelen, 0); 1261 } 1262 1263 extern void truncate_pagecache(struct inode *inode, loff_t new); 1264 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1265 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1266 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1267 int truncate_inode_page(struct address_space *mapping, struct page *page); 1268 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1269 int invalidate_inode_page(struct page *page); 1270 1271 #ifdef CONFIG_MMU 1272 extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address, 1273 unsigned int flags); 1274 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1275 unsigned long address, unsigned int fault_flags, 1276 bool *unlocked); 1277 #else 1278 static inline int handle_mm_fault(struct vm_area_struct *vma, 1279 unsigned long address, unsigned int flags) 1280 { 1281 /* should never happen if there's no MMU */ 1282 BUG(); 1283 return VM_FAULT_SIGBUS; 1284 } 1285 static inline int fixup_user_fault(struct task_struct *tsk, 1286 struct mm_struct *mm, unsigned long address, 1287 unsigned int fault_flags, bool *unlocked) 1288 { 1289 /* should never happen if there's no MMU */ 1290 BUG(); 1291 return -EFAULT; 1292 } 1293 #endif 1294 1295 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, 1296 unsigned int gup_flags); 1297 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1298 void *buf, int len, unsigned int gup_flags); 1299 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1300 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1301 1302 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1303 unsigned long start, unsigned long nr_pages, 1304 unsigned int gup_flags, struct page **pages, 1305 struct vm_area_struct **vmas, int *locked); 1306 long get_user_pages(unsigned long start, unsigned long nr_pages, 1307 unsigned int gup_flags, struct page **pages, 1308 struct vm_area_struct **vmas); 1309 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1310 unsigned int gup_flags, struct page **pages, int *locked); 1311 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1312 struct page **pages, unsigned int gup_flags); 1313 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1314 struct page **pages); 1315 1316 /* Container for pinned pfns / pages */ 1317 struct frame_vector { 1318 unsigned int nr_allocated; /* Number of frames we have space for */ 1319 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1320 bool got_ref; /* Did we pin pages by getting page ref? */ 1321 bool is_pfns; /* Does array contain pages or pfns? */ 1322 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1323 * pfns_vector_pages() or pfns_vector_pfns() 1324 * for access */ 1325 }; 1326 1327 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1328 void frame_vector_destroy(struct frame_vector *vec); 1329 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1330 unsigned int gup_flags, struct frame_vector *vec); 1331 void put_vaddr_frames(struct frame_vector *vec); 1332 int frame_vector_to_pages(struct frame_vector *vec); 1333 void frame_vector_to_pfns(struct frame_vector *vec); 1334 1335 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1336 { 1337 return vec->nr_frames; 1338 } 1339 1340 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1341 { 1342 if (vec->is_pfns) { 1343 int err = frame_vector_to_pages(vec); 1344 1345 if (err) 1346 return ERR_PTR(err); 1347 } 1348 return (struct page **)(vec->ptrs); 1349 } 1350 1351 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1352 { 1353 if (!vec->is_pfns) 1354 frame_vector_to_pfns(vec); 1355 return (unsigned long *)(vec->ptrs); 1356 } 1357 1358 struct kvec; 1359 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1360 struct page **pages); 1361 int get_kernel_page(unsigned long start, int write, struct page **pages); 1362 struct page *get_dump_page(unsigned long addr); 1363 1364 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1365 extern void do_invalidatepage(struct page *page, unsigned int offset, 1366 unsigned int length); 1367 1368 int __set_page_dirty_nobuffers(struct page *page); 1369 int __set_page_dirty_no_writeback(struct page *page); 1370 int redirty_page_for_writepage(struct writeback_control *wbc, 1371 struct page *page); 1372 void account_page_dirtied(struct page *page, struct address_space *mapping); 1373 void account_page_cleaned(struct page *page, struct address_space *mapping, 1374 struct bdi_writeback *wb); 1375 int set_page_dirty(struct page *page); 1376 int set_page_dirty_lock(struct page *page); 1377 void cancel_dirty_page(struct page *page); 1378 int clear_page_dirty_for_io(struct page *page); 1379 1380 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1381 1382 /* Is the vma a continuation of the stack vma above it? */ 1383 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1384 { 1385 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1386 } 1387 1388 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 1389 { 1390 return !vma->vm_ops; 1391 } 1392 1393 #ifdef CONFIG_SHMEM 1394 /* 1395 * The vma_is_shmem is not inline because it is used only by slow 1396 * paths in userfault. 1397 */ 1398 bool vma_is_shmem(struct vm_area_struct *vma); 1399 #else 1400 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 1401 #endif 1402 1403 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1404 unsigned long addr) 1405 { 1406 return (vma->vm_flags & VM_GROWSDOWN) && 1407 (vma->vm_start == addr) && 1408 !vma_growsdown(vma->vm_prev, addr); 1409 } 1410 1411 /* Is the vma a continuation of the stack vma below it? */ 1412 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1413 { 1414 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1415 } 1416 1417 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1418 unsigned long addr) 1419 { 1420 return (vma->vm_flags & VM_GROWSUP) && 1421 (vma->vm_end == addr) && 1422 !vma_growsup(vma->vm_next, addr); 1423 } 1424 1425 int vma_is_stack_for_current(struct vm_area_struct *vma); 1426 1427 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1428 unsigned long old_addr, struct vm_area_struct *new_vma, 1429 unsigned long new_addr, unsigned long len, 1430 bool need_rmap_locks); 1431 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1432 unsigned long end, pgprot_t newprot, 1433 int dirty_accountable, int prot_numa); 1434 extern int mprotect_fixup(struct vm_area_struct *vma, 1435 struct vm_area_struct **pprev, unsigned long start, 1436 unsigned long end, unsigned long newflags); 1437 1438 /* 1439 * doesn't attempt to fault and will return short. 1440 */ 1441 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1442 struct page **pages); 1443 /* 1444 * per-process(per-mm_struct) statistics. 1445 */ 1446 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1447 { 1448 long val = atomic_long_read(&mm->rss_stat.count[member]); 1449 1450 #ifdef SPLIT_RSS_COUNTING 1451 /* 1452 * counter is updated in asynchronous manner and may go to minus. 1453 * But it's never be expected number for users. 1454 */ 1455 if (val < 0) 1456 val = 0; 1457 #endif 1458 return (unsigned long)val; 1459 } 1460 1461 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1462 { 1463 atomic_long_add(value, &mm->rss_stat.count[member]); 1464 } 1465 1466 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1467 { 1468 atomic_long_inc(&mm->rss_stat.count[member]); 1469 } 1470 1471 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1472 { 1473 atomic_long_dec(&mm->rss_stat.count[member]); 1474 } 1475 1476 /* Optimized variant when page is already known not to be PageAnon */ 1477 static inline int mm_counter_file(struct page *page) 1478 { 1479 if (PageSwapBacked(page)) 1480 return MM_SHMEMPAGES; 1481 return MM_FILEPAGES; 1482 } 1483 1484 static inline int mm_counter(struct page *page) 1485 { 1486 if (PageAnon(page)) 1487 return MM_ANONPAGES; 1488 return mm_counter_file(page); 1489 } 1490 1491 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1492 { 1493 return get_mm_counter(mm, MM_FILEPAGES) + 1494 get_mm_counter(mm, MM_ANONPAGES) + 1495 get_mm_counter(mm, MM_SHMEMPAGES); 1496 } 1497 1498 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1499 { 1500 return max(mm->hiwater_rss, get_mm_rss(mm)); 1501 } 1502 1503 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1504 { 1505 return max(mm->hiwater_vm, mm->total_vm); 1506 } 1507 1508 static inline void update_hiwater_rss(struct mm_struct *mm) 1509 { 1510 unsigned long _rss = get_mm_rss(mm); 1511 1512 if ((mm)->hiwater_rss < _rss) 1513 (mm)->hiwater_rss = _rss; 1514 } 1515 1516 static inline void update_hiwater_vm(struct mm_struct *mm) 1517 { 1518 if (mm->hiwater_vm < mm->total_vm) 1519 mm->hiwater_vm = mm->total_vm; 1520 } 1521 1522 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1523 { 1524 mm->hiwater_rss = get_mm_rss(mm); 1525 } 1526 1527 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1528 struct mm_struct *mm) 1529 { 1530 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1531 1532 if (*maxrss < hiwater_rss) 1533 *maxrss = hiwater_rss; 1534 } 1535 1536 #if defined(SPLIT_RSS_COUNTING) 1537 void sync_mm_rss(struct mm_struct *mm); 1538 #else 1539 static inline void sync_mm_rss(struct mm_struct *mm) 1540 { 1541 } 1542 #endif 1543 1544 #ifndef __HAVE_ARCH_PTE_DEVMAP 1545 static inline int pte_devmap(pte_t pte) 1546 { 1547 return 0; 1548 } 1549 #endif 1550 1551 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1552 1553 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1554 spinlock_t **ptl); 1555 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1556 spinlock_t **ptl) 1557 { 1558 pte_t *ptep; 1559 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1560 return ptep; 1561 } 1562 1563 #ifdef __PAGETABLE_PUD_FOLDED 1564 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1565 unsigned long address) 1566 { 1567 return 0; 1568 } 1569 #else 1570 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1571 #endif 1572 1573 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1574 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1575 unsigned long address) 1576 { 1577 return 0; 1578 } 1579 1580 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1581 1582 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1583 { 1584 return 0; 1585 } 1586 1587 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1588 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1589 1590 #else 1591 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1592 1593 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1594 { 1595 atomic_long_set(&mm->nr_pmds, 0); 1596 } 1597 1598 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1599 { 1600 return atomic_long_read(&mm->nr_pmds); 1601 } 1602 1603 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1604 { 1605 atomic_long_inc(&mm->nr_pmds); 1606 } 1607 1608 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1609 { 1610 atomic_long_dec(&mm->nr_pmds); 1611 } 1612 #endif 1613 1614 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); 1615 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1616 1617 /* 1618 * The following ifdef needed to get the 4level-fixup.h header to work. 1619 * Remove it when 4level-fixup.h has been removed. 1620 */ 1621 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1622 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1623 { 1624 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1625 NULL: pud_offset(pgd, address); 1626 } 1627 1628 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1629 { 1630 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1631 NULL: pmd_offset(pud, address); 1632 } 1633 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1634 1635 #if USE_SPLIT_PTE_PTLOCKS 1636 #if ALLOC_SPLIT_PTLOCKS 1637 void __init ptlock_cache_init(void); 1638 extern bool ptlock_alloc(struct page *page); 1639 extern void ptlock_free(struct page *page); 1640 1641 static inline spinlock_t *ptlock_ptr(struct page *page) 1642 { 1643 return page->ptl; 1644 } 1645 #else /* ALLOC_SPLIT_PTLOCKS */ 1646 static inline void ptlock_cache_init(void) 1647 { 1648 } 1649 1650 static inline bool ptlock_alloc(struct page *page) 1651 { 1652 return true; 1653 } 1654 1655 static inline void ptlock_free(struct page *page) 1656 { 1657 } 1658 1659 static inline spinlock_t *ptlock_ptr(struct page *page) 1660 { 1661 return &page->ptl; 1662 } 1663 #endif /* ALLOC_SPLIT_PTLOCKS */ 1664 1665 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1666 { 1667 return ptlock_ptr(pmd_page(*pmd)); 1668 } 1669 1670 static inline bool ptlock_init(struct page *page) 1671 { 1672 /* 1673 * prep_new_page() initialize page->private (and therefore page->ptl) 1674 * with 0. Make sure nobody took it in use in between. 1675 * 1676 * It can happen if arch try to use slab for page table allocation: 1677 * slab code uses page->slab_cache, which share storage with page->ptl. 1678 */ 1679 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1680 if (!ptlock_alloc(page)) 1681 return false; 1682 spin_lock_init(ptlock_ptr(page)); 1683 return true; 1684 } 1685 1686 /* Reset page->mapping so free_pages_check won't complain. */ 1687 static inline void pte_lock_deinit(struct page *page) 1688 { 1689 page->mapping = NULL; 1690 ptlock_free(page); 1691 } 1692 1693 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1694 /* 1695 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1696 */ 1697 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1698 { 1699 return &mm->page_table_lock; 1700 } 1701 static inline void ptlock_cache_init(void) {} 1702 static inline bool ptlock_init(struct page *page) { return true; } 1703 static inline void pte_lock_deinit(struct page *page) {} 1704 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1705 1706 static inline void pgtable_init(void) 1707 { 1708 ptlock_cache_init(); 1709 pgtable_cache_init(); 1710 } 1711 1712 static inline bool pgtable_page_ctor(struct page *page) 1713 { 1714 if (!ptlock_init(page)) 1715 return false; 1716 inc_zone_page_state(page, NR_PAGETABLE); 1717 return true; 1718 } 1719 1720 static inline void pgtable_page_dtor(struct page *page) 1721 { 1722 pte_lock_deinit(page); 1723 dec_zone_page_state(page, NR_PAGETABLE); 1724 } 1725 1726 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1727 ({ \ 1728 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1729 pte_t *__pte = pte_offset_map(pmd, address); \ 1730 *(ptlp) = __ptl; \ 1731 spin_lock(__ptl); \ 1732 __pte; \ 1733 }) 1734 1735 #define pte_unmap_unlock(pte, ptl) do { \ 1736 spin_unlock(ptl); \ 1737 pte_unmap(pte); \ 1738 } while (0) 1739 1740 #define pte_alloc(mm, pmd, address) \ 1741 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address)) 1742 1743 #define pte_alloc_map(mm, pmd, address) \ 1744 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address)) 1745 1746 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1747 (pte_alloc(mm, pmd, address) ? \ 1748 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1749 1750 #define pte_alloc_kernel(pmd, address) \ 1751 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1752 NULL: pte_offset_kernel(pmd, address)) 1753 1754 #if USE_SPLIT_PMD_PTLOCKS 1755 1756 static struct page *pmd_to_page(pmd_t *pmd) 1757 { 1758 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1759 return virt_to_page((void *)((unsigned long) pmd & mask)); 1760 } 1761 1762 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1763 { 1764 return ptlock_ptr(pmd_to_page(pmd)); 1765 } 1766 1767 static inline bool pgtable_pmd_page_ctor(struct page *page) 1768 { 1769 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1770 page->pmd_huge_pte = NULL; 1771 #endif 1772 return ptlock_init(page); 1773 } 1774 1775 static inline void pgtable_pmd_page_dtor(struct page *page) 1776 { 1777 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1778 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1779 #endif 1780 ptlock_free(page); 1781 } 1782 1783 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1784 1785 #else 1786 1787 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1788 { 1789 return &mm->page_table_lock; 1790 } 1791 1792 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1793 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1794 1795 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1796 1797 #endif 1798 1799 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1800 { 1801 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1802 spin_lock(ptl); 1803 return ptl; 1804 } 1805 1806 /* 1807 * No scalability reason to split PUD locks yet, but follow the same pattern 1808 * as the PMD locks to make it easier if we decide to. The VM should not be 1809 * considered ready to switch to split PUD locks yet; there may be places 1810 * which need to be converted from page_table_lock. 1811 */ 1812 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 1813 { 1814 return &mm->page_table_lock; 1815 } 1816 1817 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 1818 { 1819 spinlock_t *ptl = pud_lockptr(mm, pud); 1820 1821 spin_lock(ptl); 1822 return ptl; 1823 } 1824 1825 extern void __init pagecache_init(void); 1826 extern void free_area_init(unsigned long * zones_size); 1827 extern void free_area_init_node(int nid, unsigned long * zones_size, 1828 unsigned long zone_start_pfn, unsigned long *zholes_size); 1829 extern void free_initmem(void); 1830 1831 /* 1832 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1833 * into the buddy system. The freed pages will be poisoned with pattern 1834 * "poison" if it's within range [0, UCHAR_MAX]. 1835 * Return pages freed into the buddy system. 1836 */ 1837 extern unsigned long free_reserved_area(void *start, void *end, 1838 int poison, char *s); 1839 1840 #ifdef CONFIG_HIGHMEM 1841 /* 1842 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1843 * and totalram_pages. 1844 */ 1845 extern void free_highmem_page(struct page *page); 1846 #endif 1847 1848 extern void adjust_managed_page_count(struct page *page, long count); 1849 extern void mem_init_print_info(const char *str); 1850 1851 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 1852 1853 /* Free the reserved page into the buddy system, so it gets managed. */ 1854 static inline void __free_reserved_page(struct page *page) 1855 { 1856 ClearPageReserved(page); 1857 init_page_count(page); 1858 __free_page(page); 1859 } 1860 1861 static inline void free_reserved_page(struct page *page) 1862 { 1863 __free_reserved_page(page); 1864 adjust_managed_page_count(page, 1); 1865 } 1866 1867 static inline void mark_page_reserved(struct page *page) 1868 { 1869 SetPageReserved(page); 1870 adjust_managed_page_count(page, -1); 1871 } 1872 1873 /* 1874 * Default method to free all the __init memory into the buddy system. 1875 * The freed pages will be poisoned with pattern "poison" if it's within 1876 * range [0, UCHAR_MAX]. 1877 * Return pages freed into the buddy system. 1878 */ 1879 static inline unsigned long free_initmem_default(int poison) 1880 { 1881 extern char __init_begin[], __init_end[]; 1882 1883 return free_reserved_area(&__init_begin, &__init_end, 1884 poison, "unused kernel"); 1885 } 1886 1887 static inline unsigned long get_num_physpages(void) 1888 { 1889 int nid; 1890 unsigned long phys_pages = 0; 1891 1892 for_each_online_node(nid) 1893 phys_pages += node_present_pages(nid); 1894 1895 return phys_pages; 1896 } 1897 1898 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1899 /* 1900 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1901 * zones, allocate the backing mem_map and account for memory holes in a more 1902 * architecture independent manner. This is a substitute for creating the 1903 * zone_sizes[] and zholes_size[] arrays and passing them to 1904 * free_area_init_node() 1905 * 1906 * An architecture is expected to register range of page frames backed by 1907 * physical memory with memblock_add[_node]() before calling 1908 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1909 * usage, an architecture is expected to do something like 1910 * 1911 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1912 * max_highmem_pfn}; 1913 * for_each_valid_physical_page_range() 1914 * memblock_add_node(base, size, nid) 1915 * free_area_init_nodes(max_zone_pfns); 1916 * 1917 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1918 * registered physical page range. Similarly 1919 * sparse_memory_present_with_active_regions() calls memory_present() for 1920 * each range when SPARSEMEM is enabled. 1921 * 1922 * See mm/page_alloc.c for more information on each function exposed by 1923 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1924 */ 1925 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1926 unsigned long node_map_pfn_alignment(void); 1927 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1928 unsigned long end_pfn); 1929 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1930 unsigned long end_pfn); 1931 extern void get_pfn_range_for_nid(unsigned int nid, 1932 unsigned long *start_pfn, unsigned long *end_pfn); 1933 extern unsigned long find_min_pfn_with_active_regions(void); 1934 extern void free_bootmem_with_active_regions(int nid, 1935 unsigned long max_low_pfn); 1936 extern void sparse_memory_present_with_active_regions(int nid); 1937 1938 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1939 1940 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1941 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1942 static inline int __early_pfn_to_nid(unsigned long pfn, 1943 struct mminit_pfnnid_cache *state) 1944 { 1945 return 0; 1946 } 1947 #else 1948 /* please see mm/page_alloc.c */ 1949 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1950 /* there is a per-arch backend function. */ 1951 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1952 struct mminit_pfnnid_cache *state); 1953 #endif 1954 1955 extern void set_dma_reserve(unsigned long new_dma_reserve); 1956 extern void memmap_init_zone(unsigned long, int, unsigned long, 1957 unsigned long, enum memmap_context); 1958 extern void setup_per_zone_wmarks(void); 1959 extern int __meminit init_per_zone_wmark_min(void); 1960 extern void mem_init(void); 1961 extern void __init mmap_init(void); 1962 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 1963 extern long si_mem_available(void); 1964 extern void si_meminfo(struct sysinfo * val); 1965 extern void si_meminfo_node(struct sysinfo *val, int nid); 1966 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 1967 extern unsigned long arch_reserved_kernel_pages(void); 1968 #endif 1969 1970 extern __printf(3, 4) 1971 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 1972 1973 extern void setup_per_cpu_pageset(void); 1974 1975 extern void zone_pcp_update(struct zone *zone); 1976 extern void zone_pcp_reset(struct zone *zone); 1977 1978 /* page_alloc.c */ 1979 extern int min_free_kbytes; 1980 extern int watermark_scale_factor; 1981 1982 /* nommu.c */ 1983 extern atomic_long_t mmap_pages_allocated; 1984 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1985 1986 /* interval_tree.c */ 1987 void vma_interval_tree_insert(struct vm_area_struct *node, 1988 struct rb_root *root); 1989 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1990 struct vm_area_struct *prev, 1991 struct rb_root *root); 1992 void vma_interval_tree_remove(struct vm_area_struct *node, 1993 struct rb_root *root); 1994 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1995 unsigned long start, unsigned long last); 1996 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1997 unsigned long start, unsigned long last); 1998 1999 #define vma_interval_tree_foreach(vma, root, start, last) \ 2000 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2001 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2002 2003 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2004 struct rb_root *root); 2005 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2006 struct rb_root *root); 2007 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 2008 struct rb_root *root, unsigned long start, unsigned long last); 2009 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2010 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2011 #ifdef CONFIG_DEBUG_VM_RB 2012 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2013 #endif 2014 2015 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2016 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2017 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2018 2019 /* mmap.c */ 2020 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2021 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2022 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2023 struct vm_area_struct *expand); 2024 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2025 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2026 { 2027 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2028 } 2029 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2030 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2031 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2032 struct mempolicy *, struct vm_userfaultfd_ctx); 2033 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2034 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2035 unsigned long addr, int new_below); 2036 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2037 unsigned long addr, int new_below); 2038 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2039 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2040 struct rb_node **, struct rb_node *); 2041 extern void unlink_file_vma(struct vm_area_struct *); 2042 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2043 unsigned long addr, unsigned long len, pgoff_t pgoff, 2044 bool *need_rmap_locks); 2045 extern void exit_mmap(struct mm_struct *); 2046 2047 static inline int check_data_rlimit(unsigned long rlim, 2048 unsigned long new, 2049 unsigned long start, 2050 unsigned long end_data, 2051 unsigned long start_data) 2052 { 2053 if (rlim < RLIM_INFINITY) { 2054 if (((new - start) + (end_data - start_data)) > rlim) 2055 return -ENOSPC; 2056 } 2057 2058 return 0; 2059 } 2060 2061 extern int mm_take_all_locks(struct mm_struct *mm); 2062 extern void mm_drop_all_locks(struct mm_struct *mm); 2063 2064 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2065 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2066 extern struct file *get_task_exe_file(struct task_struct *task); 2067 2068 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2069 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2070 2071 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2072 const struct vm_special_mapping *sm); 2073 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2074 unsigned long addr, unsigned long len, 2075 unsigned long flags, 2076 const struct vm_special_mapping *spec); 2077 /* This is an obsolete alternative to _install_special_mapping. */ 2078 extern int install_special_mapping(struct mm_struct *mm, 2079 unsigned long addr, unsigned long len, 2080 unsigned long flags, struct page **pages); 2081 2082 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2083 2084 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2085 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2086 struct list_head *uf); 2087 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2088 unsigned long len, unsigned long prot, unsigned long flags, 2089 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2090 struct list_head *uf); 2091 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2092 struct list_head *uf); 2093 2094 static inline unsigned long 2095 do_mmap_pgoff(struct file *file, unsigned long addr, 2096 unsigned long len, unsigned long prot, unsigned long flags, 2097 unsigned long pgoff, unsigned long *populate, 2098 struct list_head *uf) 2099 { 2100 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2101 } 2102 2103 #ifdef CONFIG_MMU 2104 extern int __mm_populate(unsigned long addr, unsigned long len, 2105 int ignore_errors); 2106 static inline void mm_populate(unsigned long addr, unsigned long len) 2107 { 2108 /* Ignore errors */ 2109 (void) __mm_populate(addr, len, 1); 2110 } 2111 #else 2112 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2113 #endif 2114 2115 /* These take the mm semaphore themselves */ 2116 extern int __must_check vm_brk(unsigned long, unsigned long); 2117 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2118 extern int vm_munmap(unsigned long, size_t); 2119 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2120 unsigned long, unsigned long, 2121 unsigned long, unsigned long); 2122 2123 struct vm_unmapped_area_info { 2124 #define VM_UNMAPPED_AREA_TOPDOWN 1 2125 unsigned long flags; 2126 unsigned long length; 2127 unsigned long low_limit; 2128 unsigned long high_limit; 2129 unsigned long align_mask; 2130 unsigned long align_offset; 2131 }; 2132 2133 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2134 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2135 2136 /* 2137 * Search for an unmapped address range. 2138 * 2139 * We are looking for a range that: 2140 * - does not intersect with any VMA; 2141 * - is contained within the [low_limit, high_limit) interval; 2142 * - is at least the desired size. 2143 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2144 */ 2145 static inline unsigned long 2146 vm_unmapped_area(struct vm_unmapped_area_info *info) 2147 { 2148 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2149 return unmapped_area_topdown(info); 2150 else 2151 return unmapped_area(info); 2152 } 2153 2154 /* truncate.c */ 2155 extern void truncate_inode_pages(struct address_space *, loff_t); 2156 extern void truncate_inode_pages_range(struct address_space *, 2157 loff_t lstart, loff_t lend); 2158 extern void truncate_inode_pages_final(struct address_space *); 2159 2160 /* generic vm_area_ops exported for stackable file systems */ 2161 extern int filemap_fault(struct vm_fault *vmf); 2162 extern void filemap_map_pages(struct vm_fault *vmf, 2163 pgoff_t start_pgoff, pgoff_t end_pgoff); 2164 extern int filemap_page_mkwrite(struct vm_fault *vmf); 2165 2166 /* mm/page-writeback.c */ 2167 int write_one_page(struct page *page, int wait); 2168 void task_dirty_inc(struct task_struct *tsk); 2169 2170 /* readahead.c */ 2171 #define VM_MAX_READAHEAD 128 /* kbytes */ 2172 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 2173 2174 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2175 pgoff_t offset, unsigned long nr_to_read); 2176 2177 void page_cache_sync_readahead(struct address_space *mapping, 2178 struct file_ra_state *ra, 2179 struct file *filp, 2180 pgoff_t offset, 2181 unsigned long size); 2182 2183 void page_cache_async_readahead(struct address_space *mapping, 2184 struct file_ra_state *ra, 2185 struct file *filp, 2186 struct page *pg, 2187 pgoff_t offset, 2188 unsigned long size); 2189 2190 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2191 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2192 2193 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2194 extern int expand_downwards(struct vm_area_struct *vma, 2195 unsigned long address); 2196 #if VM_GROWSUP 2197 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2198 #else 2199 #define expand_upwards(vma, address) (0) 2200 #endif 2201 2202 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2203 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2204 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2205 struct vm_area_struct **pprev); 2206 2207 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2208 NULL if none. Assume start_addr < end_addr. */ 2209 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2210 { 2211 struct vm_area_struct * vma = find_vma(mm,start_addr); 2212 2213 if (vma && end_addr <= vma->vm_start) 2214 vma = NULL; 2215 return vma; 2216 } 2217 2218 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2219 { 2220 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2221 } 2222 2223 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2224 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2225 unsigned long vm_start, unsigned long vm_end) 2226 { 2227 struct vm_area_struct *vma = find_vma(mm, vm_start); 2228 2229 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2230 vma = NULL; 2231 2232 return vma; 2233 } 2234 2235 #ifdef CONFIG_MMU 2236 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2237 void vma_set_page_prot(struct vm_area_struct *vma); 2238 #else 2239 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2240 { 2241 return __pgprot(0); 2242 } 2243 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2244 { 2245 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2246 } 2247 #endif 2248 2249 #ifdef CONFIG_NUMA_BALANCING 2250 unsigned long change_prot_numa(struct vm_area_struct *vma, 2251 unsigned long start, unsigned long end); 2252 #endif 2253 2254 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2255 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2256 unsigned long pfn, unsigned long size, pgprot_t); 2257 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2258 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2259 unsigned long pfn); 2260 int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2261 unsigned long pfn, pgprot_t pgprot); 2262 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2263 pfn_t pfn); 2264 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2265 2266 2267 struct page *follow_page_mask(struct vm_area_struct *vma, 2268 unsigned long address, unsigned int foll_flags, 2269 unsigned int *page_mask); 2270 2271 static inline struct page *follow_page(struct vm_area_struct *vma, 2272 unsigned long address, unsigned int foll_flags) 2273 { 2274 unsigned int unused_page_mask; 2275 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2276 } 2277 2278 #define FOLL_WRITE 0x01 /* check pte is writable */ 2279 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2280 #define FOLL_GET 0x04 /* do get_page on page */ 2281 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2282 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2283 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2284 * and return without waiting upon it */ 2285 #define FOLL_POPULATE 0x40 /* fault in page */ 2286 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2287 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2288 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2289 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2290 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2291 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2292 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2293 #define FOLL_COW 0x4000 /* internal GUP flag */ 2294 2295 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2296 void *data); 2297 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2298 unsigned long size, pte_fn_t fn, void *data); 2299 2300 2301 #ifdef CONFIG_PAGE_POISONING 2302 extern bool page_poisoning_enabled(void); 2303 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2304 extern bool page_is_poisoned(struct page *page); 2305 #else 2306 static inline bool page_poisoning_enabled(void) { return false; } 2307 static inline void kernel_poison_pages(struct page *page, int numpages, 2308 int enable) { } 2309 static inline bool page_is_poisoned(struct page *page) { return false; } 2310 #endif 2311 2312 #ifdef CONFIG_DEBUG_PAGEALLOC 2313 extern bool _debug_pagealloc_enabled; 2314 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2315 2316 static inline bool debug_pagealloc_enabled(void) 2317 { 2318 return _debug_pagealloc_enabled; 2319 } 2320 2321 static inline void 2322 kernel_map_pages(struct page *page, int numpages, int enable) 2323 { 2324 if (!debug_pagealloc_enabled()) 2325 return; 2326 2327 __kernel_map_pages(page, numpages, enable); 2328 } 2329 #ifdef CONFIG_HIBERNATION 2330 extern bool kernel_page_present(struct page *page); 2331 #endif /* CONFIG_HIBERNATION */ 2332 #else /* CONFIG_DEBUG_PAGEALLOC */ 2333 static inline void 2334 kernel_map_pages(struct page *page, int numpages, int enable) {} 2335 #ifdef CONFIG_HIBERNATION 2336 static inline bool kernel_page_present(struct page *page) { return true; } 2337 #endif /* CONFIG_HIBERNATION */ 2338 static inline bool debug_pagealloc_enabled(void) 2339 { 2340 return false; 2341 } 2342 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2343 2344 #ifdef __HAVE_ARCH_GATE_AREA 2345 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2346 extern int in_gate_area_no_mm(unsigned long addr); 2347 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2348 #else 2349 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2350 { 2351 return NULL; 2352 } 2353 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2354 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2355 { 2356 return 0; 2357 } 2358 #endif /* __HAVE_ARCH_GATE_AREA */ 2359 2360 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2361 2362 #ifdef CONFIG_SYSCTL 2363 extern int sysctl_drop_caches; 2364 int drop_caches_sysctl_handler(struct ctl_table *, int, 2365 void __user *, size_t *, loff_t *); 2366 #endif 2367 2368 void drop_slab(void); 2369 void drop_slab_node(int nid); 2370 2371 #ifndef CONFIG_MMU 2372 #define randomize_va_space 0 2373 #else 2374 extern int randomize_va_space; 2375 #endif 2376 2377 const char * arch_vma_name(struct vm_area_struct *vma); 2378 void print_vma_addr(char *prefix, unsigned long rip); 2379 2380 void sparse_mem_maps_populate_node(struct page **map_map, 2381 unsigned long pnum_begin, 2382 unsigned long pnum_end, 2383 unsigned long map_count, 2384 int nodeid); 2385 2386 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2387 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2388 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2389 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2390 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2391 void *vmemmap_alloc_block(unsigned long size, int node); 2392 struct vmem_altmap; 2393 void *__vmemmap_alloc_block_buf(unsigned long size, int node, 2394 struct vmem_altmap *altmap); 2395 static inline void *vmemmap_alloc_block_buf(unsigned long size, int node) 2396 { 2397 return __vmemmap_alloc_block_buf(size, node, NULL); 2398 } 2399 2400 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2401 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2402 int node); 2403 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2404 void vmemmap_populate_print_last(void); 2405 #ifdef CONFIG_MEMORY_HOTPLUG 2406 void vmemmap_free(unsigned long start, unsigned long end); 2407 #endif 2408 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2409 unsigned long size); 2410 2411 enum mf_flags { 2412 MF_COUNT_INCREASED = 1 << 0, 2413 MF_ACTION_REQUIRED = 1 << 1, 2414 MF_MUST_KILL = 1 << 2, 2415 MF_SOFT_OFFLINE = 1 << 3, 2416 }; 2417 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2418 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2419 extern int unpoison_memory(unsigned long pfn); 2420 extern int get_hwpoison_page(struct page *page); 2421 #define put_hwpoison_page(page) put_page(page) 2422 extern int sysctl_memory_failure_early_kill; 2423 extern int sysctl_memory_failure_recovery; 2424 extern void shake_page(struct page *p, int access); 2425 extern atomic_long_t num_poisoned_pages; 2426 extern int soft_offline_page(struct page *page, int flags); 2427 2428 2429 /* 2430 * Error handlers for various types of pages. 2431 */ 2432 enum mf_result { 2433 MF_IGNORED, /* Error: cannot be handled */ 2434 MF_FAILED, /* Error: handling failed */ 2435 MF_DELAYED, /* Will be handled later */ 2436 MF_RECOVERED, /* Successfully recovered */ 2437 }; 2438 2439 enum mf_action_page_type { 2440 MF_MSG_KERNEL, 2441 MF_MSG_KERNEL_HIGH_ORDER, 2442 MF_MSG_SLAB, 2443 MF_MSG_DIFFERENT_COMPOUND, 2444 MF_MSG_POISONED_HUGE, 2445 MF_MSG_HUGE, 2446 MF_MSG_FREE_HUGE, 2447 MF_MSG_UNMAP_FAILED, 2448 MF_MSG_DIRTY_SWAPCACHE, 2449 MF_MSG_CLEAN_SWAPCACHE, 2450 MF_MSG_DIRTY_MLOCKED_LRU, 2451 MF_MSG_CLEAN_MLOCKED_LRU, 2452 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2453 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2454 MF_MSG_DIRTY_LRU, 2455 MF_MSG_CLEAN_LRU, 2456 MF_MSG_TRUNCATED_LRU, 2457 MF_MSG_BUDDY, 2458 MF_MSG_BUDDY_2ND, 2459 MF_MSG_UNKNOWN, 2460 }; 2461 2462 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2463 extern void clear_huge_page(struct page *page, 2464 unsigned long addr, 2465 unsigned int pages_per_huge_page); 2466 extern void copy_user_huge_page(struct page *dst, struct page *src, 2467 unsigned long addr, struct vm_area_struct *vma, 2468 unsigned int pages_per_huge_page); 2469 extern long copy_huge_page_from_user(struct page *dst_page, 2470 const void __user *usr_src, 2471 unsigned int pages_per_huge_page, 2472 bool allow_pagefault); 2473 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2474 2475 extern struct page_ext_operations debug_guardpage_ops; 2476 extern struct page_ext_operations page_poisoning_ops; 2477 2478 #ifdef CONFIG_DEBUG_PAGEALLOC 2479 extern unsigned int _debug_guardpage_minorder; 2480 extern bool _debug_guardpage_enabled; 2481 2482 static inline unsigned int debug_guardpage_minorder(void) 2483 { 2484 return _debug_guardpage_minorder; 2485 } 2486 2487 static inline bool debug_guardpage_enabled(void) 2488 { 2489 return _debug_guardpage_enabled; 2490 } 2491 2492 static inline bool page_is_guard(struct page *page) 2493 { 2494 struct page_ext *page_ext; 2495 2496 if (!debug_guardpage_enabled()) 2497 return false; 2498 2499 page_ext = lookup_page_ext(page); 2500 if (unlikely(!page_ext)) 2501 return false; 2502 2503 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2504 } 2505 #else 2506 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2507 static inline bool debug_guardpage_enabled(void) { return false; } 2508 static inline bool page_is_guard(struct page *page) { return false; } 2509 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2510 2511 #if MAX_NUMNODES > 1 2512 void __init setup_nr_node_ids(void); 2513 #else 2514 static inline void setup_nr_node_ids(void) {} 2515 #endif 2516 2517 #endif /* __KERNEL__ */ 2518 #endif /* _LINUX_MM_H */ 2519