1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page-flags.h> 28 #include <linux/page_ref.h> 29 #include <linux/memremap.h> 30 #include <linux/overflow.h> 31 #include <linux/sizes.h> 32 #include <linux/sched.h> 33 #include <linux/pgtable.h> 34 35 struct mempolicy; 36 struct anon_vma; 37 struct anon_vma_chain; 38 struct file_ra_state; 39 struct user_struct; 40 struct writeback_control; 41 struct bdi_writeback; 42 struct pt_regs; 43 44 void init_mm_internals(void); 45 46 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 47 extern unsigned long max_mapnr; 48 49 static inline void set_max_mapnr(unsigned long limit) 50 { 51 max_mapnr = limit; 52 } 53 #else 54 static inline void set_max_mapnr(unsigned long limit) { } 55 #endif 56 57 extern atomic_long_t _totalram_pages; 58 static inline unsigned long totalram_pages(void) 59 { 60 return (unsigned long)atomic_long_read(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_inc(void) 64 { 65 atomic_long_inc(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_dec(void) 69 { 70 atomic_long_dec(&_totalram_pages); 71 } 72 73 static inline void totalram_pages_add(long count) 74 { 75 atomic_long_add(count, &_totalram_pages); 76 } 77 78 extern void * high_memory; 79 extern int page_cluster; 80 81 #ifdef CONFIG_SYSCTL 82 extern int sysctl_legacy_va_layout; 83 #else 84 #define sysctl_legacy_va_layout 0 85 #endif 86 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 88 extern const int mmap_rnd_bits_min; 89 extern const int mmap_rnd_bits_max; 90 extern int mmap_rnd_bits __read_mostly; 91 #endif 92 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 93 extern const int mmap_rnd_compat_bits_min; 94 extern const int mmap_rnd_compat_bits_max; 95 extern int mmap_rnd_compat_bits __read_mostly; 96 #endif 97 98 #include <asm/page.h> 99 #include <asm/processor.h> 100 101 /* 102 * Architectures that support memory tagging (assigning tags to memory regions, 103 * embedding these tags into addresses that point to these memory regions, and 104 * checking that the memory and the pointer tags match on memory accesses) 105 * redefine this macro to strip tags from pointers. 106 * It's defined as noop for arcitectures that don't support memory tagging. 107 */ 108 #ifndef untagged_addr 109 #define untagged_addr(addr) (addr) 110 #endif 111 112 #ifndef __pa_symbol 113 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 114 #endif 115 116 #ifndef page_to_virt 117 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 118 #endif 119 120 #ifndef lm_alias 121 #define lm_alias(x) __va(__pa_symbol(x)) 122 #endif 123 124 /* 125 * To prevent common memory management code establishing 126 * a zero page mapping on a read fault. 127 * This macro should be defined within <asm/pgtable.h>. 128 * s390 does this to prevent multiplexing of hardware bits 129 * related to the physical page in case of virtualization. 130 */ 131 #ifndef mm_forbids_zeropage 132 #define mm_forbids_zeropage(X) (0) 133 #endif 134 135 /* 136 * On some architectures it is expensive to call memset() for small sizes. 137 * If an architecture decides to implement their own version of 138 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 139 * define their own version of this macro in <asm/pgtable.h> 140 */ 141 #if BITS_PER_LONG == 64 142 /* This function must be updated when the size of struct page grows above 80 143 * or reduces below 56. The idea that compiler optimizes out switch() 144 * statement, and only leaves move/store instructions. Also the compiler can 145 * combine write statments if they are both assignments and can be reordered, 146 * this can result in several of the writes here being dropped. 147 */ 148 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 149 static inline void __mm_zero_struct_page(struct page *page) 150 { 151 unsigned long *_pp = (void *)page; 152 153 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 154 BUILD_BUG_ON(sizeof(struct page) & 7); 155 BUILD_BUG_ON(sizeof(struct page) < 56); 156 BUILD_BUG_ON(sizeof(struct page) > 80); 157 158 switch (sizeof(struct page)) { 159 case 80: 160 _pp[9] = 0; 161 fallthrough; 162 case 72: 163 _pp[8] = 0; 164 fallthrough; 165 case 64: 166 _pp[7] = 0; 167 fallthrough; 168 case 56: 169 _pp[6] = 0; 170 _pp[5] = 0; 171 _pp[4] = 0; 172 _pp[3] = 0; 173 _pp[2] = 0; 174 _pp[1] = 0; 175 _pp[0] = 0; 176 } 177 } 178 #else 179 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 180 #endif 181 182 /* 183 * Default maximum number of active map areas, this limits the number of vmas 184 * per mm struct. Users can overwrite this number by sysctl but there is a 185 * problem. 186 * 187 * When a program's coredump is generated as ELF format, a section is created 188 * per a vma. In ELF, the number of sections is represented in unsigned short. 189 * This means the number of sections should be smaller than 65535 at coredump. 190 * Because the kernel adds some informative sections to a image of program at 191 * generating coredump, we need some margin. The number of extra sections is 192 * 1-3 now and depends on arch. We use "5" as safe margin, here. 193 * 194 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 195 * not a hard limit any more. Although some userspace tools can be surprised by 196 * that. 197 */ 198 #define MAPCOUNT_ELF_CORE_MARGIN (5) 199 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 200 201 extern int sysctl_max_map_count; 202 203 extern unsigned long sysctl_user_reserve_kbytes; 204 extern unsigned long sysctl_admin_reserve_kbytes; 205 206 extern int sysctl_overcommit_memory; 207 extern int sysctl_overcommit_ratio; 208 extern unsigned long sysctl_overcommit_kbytes; 209 210 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 213 loff_t *); 214 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 215 loff_t *); 216 217 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 218 219 /* to align the pointer to the (next) page boundary */ 220 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 221 222 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 223 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 224 225 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 226 227 /* 228 * Linux kernel virtual memory manager primitives. 229 * The idea being to have a "virtual" mm in the same way 230 * we have a virtual fs - giving a cleaner interface to the 231 * mm details, and allowing different kinds of memory mappings 232 * (from shared memory to executable loading to arbitrary 233 * mmap() functions). 234 */ 235 236 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 237 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 238 void vm_area_free(struct vm_area_struct *); 239 240 #ifndef CONFIG_MMU 241 extern struct rb_root nommu_region_tree; 242 extern struct rw_semaphore nommu_region_sem; 243 244 extern unsigned int kobjsize(const void *objp); 245 #endif 246 247 /* 248 * vm_flags in vm_area_struct, see mm_types.h. 249 * When changing, update also include/trace/events/mmflags.h 250 */ 251 #define VM_NONE 0x00000000 252 253 #define VM_READ 0x00000001 /* currently active flags */ 254 #define VM_WRITE 0x00000002 255 #define VM_EXEC 0x00000004 256 #define VM_SHARED 0x00000008 257 258 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 259 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 260 #define VM_MAYWRITE 0x00000020 261 #define VM_MAYEXEC 0x00000040 262 #define VM_MAYSHARE 0x00000080 263 264 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 265 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 266 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 267 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 268 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 269 270 #define VM_LOCKED 0x00002000 271 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 272 273 /* Used by sys_madvise() */ 274 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 275 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 276 277 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 278 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 279 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 280 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 281 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 282 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 283 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 284 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 285 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 286 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 287 288 #ifdef CONFIG_MEM_SOFT_DIRTY 289 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 290 #else 291 # define VM_SOFTDIRTY 0 292 #endif 293 294 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 295 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 296 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 297 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 298 299 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 300 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 302 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 303 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 304 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 305 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 306 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 307 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 308 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 309 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 310 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 311 312 #ifdef CONFIG_ARCH_HAS_PKEYS 313 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 314 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 315 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 316 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 317 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 318 #ifdef CONFIG_PPC 319 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 320 #else 321 # define VM_PKEY_BIT4 0 322 #endif 323 #endif /* CONFIG_ARCH_HAS_PKEYS */ 324 325 #if defined(CONFIG_X86) 326 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 327 #elif defined(CONFIG_PPC) 328 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 329 #elif defined(CONFIG_PARISC) 330 # define VM_GROWSUP VM_ARCH_1 331 #elif defined(CONFIG_IA64) 332 # define VM_GROWSUP VM_ARCH_1 333 #elif defined(CONFIG_SPARC64) 334 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 335 # define VM_ARCH_CLEAR VM_SPARC_ADI 336 #elif defined(CONFIG_ARM64) 337 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 338 # define VM_ARCH_CLEAR VM_ARM64_BTI 339 #elif !defined(CONFIG_MMU) 340 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 341 #endif 342 343 #ifndef VM_GROWSUP 344 # define VM_GROWSUP VM_NONE 345 #endif 346 347 /* Bits set in the VMA until the stack is in its final location */ 348 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 349 350 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 351 352 /* Common data flag combinations */ 353 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 354 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 355 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 356 VM_MAYWRITE | VM_MAYEXEC) 357 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 358 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 359 360 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 361 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 362 #endif 363 364 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 365 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 366 #endif 367 368 #ifdef CONFIG_STACK_GROWSUP 369 #define VM_STACK VM_GROWSUP 370 #else 371 #define VM_STACK VM_GROWSDOWN 372 #endif 373 374 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 375 376 /* VMA basic access permission flags */ 377 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 378 379 380 /* 381 * Special vmas that are non-mergable, non-mlock()able. 382 */ 383 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 384 385 /* This mask prevents VMA from being scanned with khugepaged */ 386 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 387 388 /* This mask defines which mm->def_flags a process can inherit its parent */ 389 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 390 391 /* This mask is used to clear all the VMA flags used by mlock */ 392 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 393 394 /* Arch-specific flags to clear when updating VM flags on protection change */ 395 #ifndef VM_ARCH_CLEAR 396 # define VM_ARCH_CLEAR VM_NONE 397 #endif 398 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 399 400 /* 401 * mapping from the currently active vm_flags protection bits (the 402 * low four bits) to a page protection mask.. 403 */ 404 extern pgprot_t protection_map[16]; 405 406 /** 407 * Fault flag definitions. 408 * 409 * @FAULT_FLAG_WRITE: Fault was a write fault. 410 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 411 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 412 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 413 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 414 * @FAULT_FLAG_TRIED: The fault has been tried once. 415 * @FAULT_FLAG_USER: The fault originated in userspace. 416 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 417 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 418 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 419 * 420 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 421 * whether we would allow page faults to retry by specifying these two 422 * fault flags correctly. Currently there can be three legal combinations: 423 * 424 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 425 * this is the first try 426 * 427 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 428 * we've already tried at least once 429 * 430 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 431 * 432 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 433 * be used. Note that page faults can be allowed to retry for multiple times, 434 * in which case we'll have an initial fault with flags (a) then later on 435 * continuous faults with flags (b). We should always try to detect pending 436 * signals before a retry to make sure the continuous page faults can still be 437 * interrupted if necessary. 438 */ 439 #define FAULT_FLAG_WRITE 0x01 440 #define FAULT_FLAG_MKWRITE 0x02 441 #define FAULT_FLAG_ALLOW_RETRY 0x04 442 #define FAULT_FLAG_RETRY_NOWAIT 0x08 443 #define FAULT_FLAG_KILLABLE 0x10 444 #define FAULT_FLAG_TRIED 0x20 445 #define FAULT_FLAG_USER 0x40 446 #define FAULT_FLAG_REMOTE 0x80 447 #define FAULT_FLAG_INSTRUCTION 0x100 448 #define FAULT_FLAG_INTERRUPTIBLE 0x200 449 450 /* 451 * The default fault flags that should be used by most of the 452 * arch-specific page fault handlers. 453 */ 454 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 455 FAULT_FLAG_KILLABLE | \ 456 FAULT_FLAG_INTERRUPTIBLE) 457 458 /** 459 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 460 * 461 * This is mostly used for places where we want to try to avoid taking 462 * the mmap_lock for too long a time when waiting for another condition 463 * to change, in which case we can try to be polite to release the 464 * mmap_lock in the first round to avoid potential starvation of other 465 * processes that would also want the mmap_lock. 466 * 467 * Return: true if the page fault allows retry and this is the first 468 * attempt of the fault handling; false otherwise. 469 */ 470 static inline bool fault_flag_allow_retry_first(unsigned int flags) 471 { 472 return (flags & FAULT_FLAG_ALLOW_RETRY) && 473 (!(flags & FAULT_FLAG_TRIED)); 474 } 475 476 #define FAULT_FLAG_TRACE \ 477 { FAULT_FLAG_WRITE, "WRITE" }, \ 478 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 479 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 480 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 481 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 482 { FAULT_FLAG_TRIED, "TRIED" }, \ 483 { FAULT_FLAG_USER, "USER" }, \ 484 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 485 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 486 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 487 488 /* 489 * vm_fault is filled by the pagefault handler and passed to the vma's 490 * ->fault function. The vma's ->fault is responsible for returning a bitmask 491 * of VM_FAULT_xxx flags that give details about how the fault was handled. 492 * 493 * MM layer fills up gfp_mask for page allocations but fault handler might 494 * alter it if its implementation requires a different allocation context. 495 * 496 * pgoff should be used in favour of virtual_address, if possible. 497 */ 498 struct vm_fault { 499 struct vm_area_struct *vma; /* Target VMA */ 500 unsigned int flags; /* FAULT_FLAG_xxx flags */ 501 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 502 pgoff_t pgoff; /* Logical page offset based on vma */ 503 unsigned long address; /* Faulting virtual address */ 504 pmd_t *pmd; /* Pointer to pmd entry matching 505 * the 'address' */ 506 pud_t *pud; /* Pointer to pud entry matching 507 * the 'address' 508 */ 509 pte_t orig_pte; /* Value of PTE at the time of fault */ 510 511 struct page *cow_page; /* Page handler may use for COW fault */ 512 struct page *page; /* ->fault handlers should return a 513 * page here, unless VM_FAULT_NOPAGE 514 * is set (which is also implied by 515 * VM_FAULT_ERROR). 516 */ 517 /* These three entries are valid only while holding ptl lock */ 518 pte_t *pte; /* Pointer to pte entry matching 519 * the 'address'. NULL if the page 520 * table hasn't been allocated. 521 */ 522 spinlock_t *ptl; /* Page table lock. 523 * Protects pte page table if 'pte' 524 * is not NULL, otherwise pmd. 525 */ 526 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 527 * vm_ops->map_pages() calls 528 * alloc_set_pte() from atomic context. 529 * do_fault_around() pre-allocates 530 * page table to avoid allocation from 531 * atomic context. 532 */ 533 }; 534 535 /* page entry size for vm->huge_fault() */ 536 enum page_entry_size { 537 PE_SIZE_PTE = 0, 538 PE_SIZE_PMD, 539 PE_SIZE_PUD, 540 }; 541 542 /* 543 * These are the virtual MM functions - opening of an area, closing and 544 * unmapping it (needed to keep files on disk up-to-date etc), pointer 545 * to the functions called when a no-page or a wp-page exception occurs. 546 */ 547 struct vm_operations_struct { 548 void (*open)(struct vm_area_struct * area); 549 void (*close)(struct vm_area_struct * area); 550 int (*split)(struct vm_area_struct * area, unsigned long addr); 551 int (*mremap)(struct vm_area_struct * area); 552 vm_fault_t (*fault)(struct vm_fault *vmf); 553 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 554 enum page_entry_size pe_size); 555 void (*map_pages)(struct vm_fault *vmf, 556 pgoff_t start_pgoff, pgoff_t end_pgoff); 557 unsigned long (*pagesize)(struct vm_area_struct * area); 558 559 /* notification that a previously read-only page is about to become 560 * writable, if an error is returned it will cause a SIGBUS */ 561 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 562 563 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 564 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 565 566 /* called by access_process_vm when get_user_pages() fails, typically 567 * for use by special VMAs that can switch between memory and hardware 568 */ 569 int (*access)(struct vm_area_struct *vma, unsigned long addr, 570 void *buf, int len, int write); 571 572 /* Called by the /proc/PID/maps code to ask the vma whether it 573 * has a special name. Returning non-NULL will also cause this 574 * vma to be dumped unconditionally. */ 575 const char *(*name)(struct vm_area_struct *vma); 576 577 #ifdef CONFIG_NUMA 578 /* 579 * set_policy() op must add a reference to any non-NULL @new mempolicy 580 * to hold the policy upon return. Caller should pass NULL @new to 581 * remove a policy and fall back to surrounding context--i.e. do not 582 * install a MPOL_DEFAULT policy, nor the task or system default 583 * mempolicy. 584 */ 585 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 586 587 /* 588 * get_policy() op must add reference [mpol_get()] to any policy at 589 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 590 * in mm/mempolicy.c will do this automatically. 591 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 592 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 593 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 594 * must return NULL--i.e., do not "fallback" to task or system default 595 * policy. 596 */ 597 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 598 unsigned long addr); 599 #endif 600 /* 601 * Called by vm_normal_page() for special PTEs to find the 602 * page for @addr. This is useful if the default behavior 603 * (using pte_page()) would not find the correct page. 604 */ 605 struct page *(*find_special_page)(struct vm_area_struct *vma, 606 unsigned long addr); 607 }; 608 609 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 610 { 611 static const struct vm_operations_struct dummy_vm_ops = {}; 612 613 memset(vma, 0, sizeof(*vma)); 614 vma->vm_mm = mm; 615 vma->vm_ops = &dummy_vm_ops; 616 INIT_LIST_HEAD(&vma->anon_vma_chain); 617 } 618 619 static inline void vma_set_anonymous(struct vm_area_struct *vma) 620 { 621 vma->vm_ops = NULL; 622 } 623 624 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 625 { 626 return !vma->vm_ops; 627 } 628 629 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 630 { 631 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 632 633 if (!maybe_stack) 634 return false; 635 636 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 637 VM_STACK_INCOMPLETE_SETUP) 638 return true; 639 640 return false; 641 } 642 643 static inline bool vma_is_foreign(struct vm_area_struct *vma) 644 { 645 if (!current->mm) 646 return true; 647 648 if (current->mm != vma->vm_mm) 649 return true; 650 651 return false; 652 } 653 654 static inline bool vma_is_accessible(struct vm_area_struct *vma) 655 { 656 return vma->vm_flags & VM_ACCESS_FLAGS; 657 } 658 659 #ifdef CONFIG_SHMEM 660 /* 661 * The vma_is_shmem is not inline because it is used only by slow 662 * paths in userfault. 663 */ 664 bool vma_is_shmem(struct vm_area_struct *vma); 665 #else 666 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 667 #endif 668 669 int vma_is_stack_for_current(struct vm_area_struct *vma); 670 671 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 672 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 673 674 struct mmu_gather; 675 struct inode; 676 677 #include <linux/huge_mm.h> 678 679 /* 680 * Methods to modify the page usage count. 681 * 682 * What counts for a page usage: 683 * - cache mapping (page->mapping) 684 * - private data (page->private) 685 * - page mapped in a task's page tables, each mapping 686 * is counted separately 687 * 688 * Also, many kernel routines increase the page count before a critical 689 * routine so they can be sure the page doesn't go away from under them. 690 */ 691 692 /* 693 * Drop a ref, return true if the refcount fell to zero (the page has no users) 694 */ 695 static inline int put_page_testzero(struct page *page) 696 { 697 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 698 return page_ref_dec_and_test(page); 699 } 700 701 /* 702 * Try to grab a ref unless the page has a refcount of zero, return false if 703 * that is the case. 704 * This can be called when MMU is off so it must not access 705 * any of the virtual mappings. 706 */ 707 static inline int get_page_unless_zero(struct page *page) 708 { 709 return page_ref_add_unless(page, 1, 0); 710 } 711 712 extern int page_is_ram(unsigned long pfn); 713 714 enum { 715 REGION_INTERSECTS, 716 REGION_DISJOINT, 717 REGION_MIXED, 718 }; 719 720 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 721 unsigned long desc); 722 723 /* Support for virtually mapped pages */ 724 struct page *vmalloc_to_page(const void *addr); 725 unsigned long vmalloc_to_pfn(const void *addr); 726 727 /* 728 * Determine if an address is within the vmalloc range 729 * 730 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 731 * is no special casing required. 732 */ 733 734 #ifndef is_ioremap_addr 735 #define is_ioremap_addr(x) is_vmalloc_addr(x) 736 #endif 737 738 #ifdef CONFIG_MMU 739 extern bool is_vmalloc_addr(const void *x); 740 extern int is_vmalloc_or_module_addr(const void *x); 741 #else 742 static inline bool is_vmalloc_addr(const void *x) 743 { 744 return false; 745 } 746 static inline int is_vmalloc_or_module_addr(const void *x) 747 { 748 return 0; 749 } 750 #endif 751 752 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 753 static inline void *kvmalloc(size_t size, gfp_t flags) 754 { 755 return kvmalloc_node(size, flags, NUMA_NO_NODE); 756 } 757 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 758 { 759 return kvmalloc_node(size, flags | __GFP_ZERO, node); 760 } 761 static inline void *kvzalloc(size_t size, gfp_t flags) 762 { 763 return kvmalloc(size, flags | __GFP_ZERO); 764 } 765 766 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 767 { 768 size_t bytes; 769 770 if (unlikely(check_mul_overflow(n, size, &bytes))) 771 return NULL; 772 773 return kvmalloc(bytes, flags); 774 } 775 776 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 777 { 778 return kvmalloc_array(n, size, flags | __GFP_ZERO); 779 } 780 781 extern void kvfree(const void *addr); 782 extern void kvfree_sensitive(const void *addr, size_t len); 783 784 static inline int head_mapcount(struct page *head) 785 { 786 return atomic_read(compound_mapcount_ptr(head)) + 1; 787 } 788 789 /* 790 * Mapcount of compound page as a whole, does not include mapped sub-pages. 791 * 792 * Must be called only for compound pages or any their tail sub-pages. 793 */ 794 static inline int compound_mapcount(struct page *page) 795 { 796 VM_BUG_ON_PAGE(!PageCompound(page), page); 797 page = compound_head(page); 798 return head_mapcount(page); 799 } 800 801 /* 802 * The atomic page->_mapcount, starts from -1: so that transitions 803 * both from it and to it can be tracked, using atomic_inc_and_test 804 * and atomic_add_negative(-1). 805 */ 806 static inline void page_mapcount_reset(struct page *page) 807 { 808 atomic_set(&(page)->_mapcount, -1); 809 } 810 811 int __page_mapcount(struct page *page); 812 813 /* 814 * Mapcount of 0-order page; when compound sub-page, includes 815 * compound_mapcount(). 816 * 817 * Result is undefined for pages which cannot be mapped into userspace. 818 * For example SLAB or special types of pages. See function page_has_type(). 819 * They use this place in struct page differently. 820 */ 821 static inline int page_mapcount(struct page *page) 822 { 823 if (unlikely(PageCompound(page))) 824 return __page_mapcount(page); 825 return atomic_read(&page->_mapcount) + 1; 826 } 827 828 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 829 int total_mapcount(struct page *page); 830 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 831 #else 832 static inline int total_mapcount(struct page *page) 833 { 834 return page_mapcount(page); 835 } 836 static inline int page_trans_huge_mapcount(struct page *page, 837 int *total_mapcount) 838 { 839 int mapcount = page_mapcount(page); 840 if (total_mapcount) 841 *total_mapcount = mapcount; 842 return mapcount; 843 } 844 #endif 845 846 static inline struct page *virt_to_head_page(const void *x) 847 { 848 struct page *page = virt_to_page(x); 849 850 return compound_head(page); 851 } 852 853 void __put_page(struct page *page); 854 855 void put_pages_list(struct list_head *pages); 856 857 void split_page(struct page *page, unsigned int order); 858 859 /* 860 * Compound pages have a destructor function. Provide a 861 * prototype for that function and accessor functions. 862 * These are _only_ valid on the head of a compound page. 863 */ 864 typedef void compound_page_dtor(struct page *); 865 866 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 867 enum compound_dtor_id { 868 NULL_COMPOUND_DTOR, 869 COMPOUND_PAGE_DTOR, 870 #ifdef CONFIG_HUGETLB_PAGE 871 HUGETLB_PAGE_DTOR, 872 #endif 873 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 874 TRANSHUGE_PAGE_DTOR, 875 #endif 876 NR_COMPOUND_DTORS, 877 }; 878 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 879 880 static inline void set_compound_page_dtor(struct page *page, 881 enum compound_dtor_id compound_dtor) 882 { 883 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 884 page[1].compound_dtor = compound_dtor; 885 } 886 887 static inline void destroy_compound_page(struct page *page) 888 { 889 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 890 compound_page_dtors[page[1].compound_dtor](page); 891 } 892 893 static inline unsigned int compound_order(struct page *page) 894 { 895 if (!PageHead(page)) 896 return 0; 897 return page[1].compound_order; 898 } 899 900 static inline bool hpage_pincount_available(struct page *page) 901 { 902 /* 903 * Can the page->hpage_pinned_refcount field be used? That field is in 904 * the 3rd page of the compound page, so the smallest (2-page) compound 905 * pages cannot support it. 906 */ 907 page = compound_head(page); 908 return PageCompound(page) && compound_order(page) > 1; 909 } 910 911 static inline int head_pincount(struct page *head) 912 { 913 return atomic_read(compound_pincount_ptr(head)); 914 } 915 916 static inline int compound_pincount(struct page *page) 917 { 918 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 919 page = compound_head(page); 920 return head_pincount(page); 921 } 922 923 static inline void set_compound_order(struct page *page, unsigned int order) 924 { 925 page[1].compound_order = order; 926 page[1].compound_nr = 1U << order; 927 } 928 929 /* Returns the number of pages in this potentially compound page. */ 930 static inline unsigned long compound_nr(struct page *page) 931 { 932 if (!PageHead(page)) 933 return 1; 934 return page[1].compound_nr; 935 } 936 937 /* Returns the number of bytes in this potentially compound page. */ 938 static inline unsigned long page_size(struct page *page) 939 { 940 return PAGE_SIZE << compound_order(page); 941 } 942 943 /* Returns the number of bits needed for the number of bytes in a page */ 944 static inline unsigned int page_shift(struct page *page) 945 { 946 return PAGE_SHIFT + compound_order(page); 947 } 948 949 void free_compound_page(struct page *page); 950 951 #ifdef CONFIG_MMU 952 /* 953 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 954 * servicing faults for write access. In the normal case, do always want 955 * pte_mkwrite. But get_user_pages can cause write faults for mappings 956 * that do not have writing enabled, when used by access_process_vm. 957 */ 958 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 959 { 960 if (likely(vma->vm_flags & VM_WRITE)) 961 pte = pte_mkwrite(pte); 962 return pte; 963 } 964 965 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 966 vm_fault_t finish_fault(struct vm_fault *vmf); 967 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 968 #endif 969 970 /* 971 * Multiple processes may "see" the same page. E.g. for untouched 972 * mappings of /dev/null, all processes see the same page full of 973 * zeroes, and text pages of executables and shared libraries have 974 * only one copy in memory, at most, normally. 975 * 976 * For the non-reserved pages, page_count(page) denotes a reference count. 977 * page_count() == 0 means the page is free. page->lru is then used for 978 * freelist management in the buddy allocator. 979 * page_count() > 0 means the page has been allocated. 980 * 981 * Pages are allocated by the slab allocator in order to provide memory 982 * to kmalloc and kmem_cache_alloc. In this case, the management of the 983 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 984 * unless a particular usage is carefully commented. (the responsibility of 985 * freeing the kmalloc memory is the caller's, of course). 986 * 987 * A page may be used by anyone else who does a __get_free_page(). 988 * In this case, page_count still tracks the references, and should only 989 * be used through the normal accessor functions. The top bits of page->flags 990 * and page->virtual store page management information, but all other fields 991 * are unused and could be used privately, carefully. The management of this 992 * page is the responsibility of the one who allocated it, and those who have 993 * subsequently been given references to it. 994 * 995 * The other pages (we may call them "pagecache pages") are completely 996 * managed by the Linux memory manager: I/O, buffers, swapping etc. 997 * The following discussion applies only to them. 998 * 999 * A pagecache page contains an opaque `private' member, which belongs to the 1000 * page's address_space. Usually, this is the address of a circular list of 1001 * the page's disk buffers. PG_private must be set to tell the VM to call 1002 * into the filesystem to release these pages. 1003 * 1004 * A page may belong to an inode's memory mapping. In this case, page->mapping 1005 * is the pointer to the inode, and page->index is the file offset of the page, 1006 * in units of PAGE_SIZE. 1007 * 1008 * If pagecache pages are not associated with an inode, they are said to be 1009 * anonymous pages. These may become associated with the swapcache, and in that 1010 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1011 * 1012 * In either case (swapcache or inode backed), the pagecache itself holds one 1013 * reference to the page. Setting PG_private should also increment the 1014 * refcount. The each user mapping also has a reference to the page. 1015 * 1016 * The pagecache pages are stored in a per-mapping radix tree, which is 1017 * rooted at mapping->i_pages, and indexed by offset. 1018 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1019 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1020 * 1021 * All pagecache pages may be subject to I/O: 1022 * - inode pages may need to be read from disk, 1023 * - inode pages which have been modified and are MAP_SHARED may need 1024 * to be written back to the inode on disk, 1025 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1026 * modified may need to be swapped out to swap space and (later) to be read 1027 * back into memory. 1028 */ 1029 1030 /* 1031 * The zone field is never updated after free_area_init_core() 1032 * sets it, so none of the operations on it need to be atomic. 1033 */ 1034 1035 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1036 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1037 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1038 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1039 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1040 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1041 1042 /* 1043 * Define the bit shifts to access each section. For non-existent 1044 * sections we define the shift as 0; that plus a 0 mask ensures 1045 * the compiler will optimise away reference to them. 1046 */ 1047 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1048 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1049 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1050 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1051 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1052 1053 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1054 #ifdef NODE_NOT_IN_PAGE_FLAGS 1055 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1056 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1057 SECTIONS_PGOFF : ZONES_PGOFF) 1058 #else 1059 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1060 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1061 NODES_PGOFF : ZONES_PGOFF) 1062 #endif 1063 1064 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1065 1066 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1067 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1068 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1069 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1070 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1071 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1072 1073 static inline enum zone_type page_zonenum(const struct page *page) 1074 { 1075 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1076 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1077 } 1078 1079 #ifdef CONFIG_ZONE_DEVICE 1080 static inline bool is_zone_device_page(const struct page *page) 1081 { 1082 return page_zonenum(page) == ZONE_DEVICE; 1083 } 1084 extern void memmap_init_zone_device(struct zone *, unsigned long, 1085 unsigned long, struct dev_pagemap *); 1086 #else 1087 static inline bool is_zone_device_page(const struct page *page) 1088 { 1089 return false; 1090 } 1091 #endif 1092 1093 #ifdef CONFIG_DEV_PAGEMAP_OPS 1094 void free_devmap_managed_page(struct page *page); 1095 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1096 1097 static inline bool page_is_devmap_managed(struct page *page) 1098 { 1099 if (!static_branch_unlikely(&devmap_managed_key)) 1100 return false; 1101 if (!is_zone_device_page(page)) 1102 return false; 1103 switch (page->pgmap->type) { 1104 case MEMORY_DEVICE_PRIVATE: 1105 case MEMORY_DEVICE_FS_DAX: 1106 return true; 1107 default: 1108 break; 1109 } 1110 return false; 1111 } 1112 1113 void put_devmap_managed_page(struct page *page); 1114 1115 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1116 static inline bool page_is_devmap_managed(struct page *page) 1117 { 1118 return false; 1119 } 1120 1121 static inline void put_devmap_managed_page(struct page *page) 1122 { 1123 } 1124 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1125 1126 static inline bool is_device_private_page(const struct page *page) 1127 { 1128 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1129 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1130 is_zone_device_page(page) && 1131 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1132 } 1133 1134 static inline bool is_pci_p2pdma_page(const struct page *page) 1135 { 1136 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1137 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1138 is_zone_device_page(page) && 1139 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1140 } 1141 1142 /* 127: arbitrary random number, small enough to assemble well */ 1143 #define page_ref_zero_or_close_to_overflow(page) \ 1144 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1145 1146 static inline void get_page(struct page *page) 1147 { 1148 page = compound_head(page); 1149 /* 1150 * Getting a normal page or the head of a compound page 1151 * requires to already have an elevated page->_refcount. 1152 */ 1153 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1154 page_ref_inc(page); 1155 } 1156 1157 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1158 1159 static inline __must_check bool try_get_page(struct page *page) 1160 { 1161 page = compound_head(page); 1162 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1163 return false; 1164 page_ref_inc(page); 1165 return true; 1166 } 1167 1168 static inline void put_page(struct page *page) 1169 { 1170 page = compound_head(page); 1171 1172 /* 1173 * For devmap managed pages we need to catch refcount transition from 1174 * 2 to 1, when refcount reach one it means the page is free and we 1175 * need to inform the device driver through callback. See 1176 * include/linux/memremap.h and HMM for details. 1177 */ 1178 if (page_is_devmap_managed(page)) { 1179 put_devmap_managed_page(page); 1180 return; 1181 } 1182 1183 if (put_page_testzero(page)) 1184 __put_page(page); 1185 } 1186 1187 /* 1188 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1189 * the page's refcount so that two separate items are tracked: the original page 1190 * reference count, and also a new count of how many pin_user_pages() calls were 1191 * made against the page. ("gup-pinned" is another term for the latter). 1192 * 1193 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1194 * distinct from normal pages. As such, the unpin_user_page() call (and its 1195 * variants) must be used in order to release gup-pinned pages. 1196 * 1197 * Choice of value: 1198 * 1199 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1200 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1201 * simpler, due to the fact that adding an even power of two to the page 1202 * refcount has the effect of using only the upper N bits, for the code that 1203 * counts up using the bias value. This means that the lower bits are left for 1204 * the exclusive use of the original code that increments and decrements by one 1205 * (or at least, by much smaller values than the bias value). 1206 * 1207 * Of course, once the lower bits overflow into the upper bits (and this is 1208 * OK, because subtraction recovers the original values), then visual inspection 1209 * no longer suffices to directly view the separate counts. However, for normal 1210 * applications that don't have huge page reference counts, this won't be an 1211 * issue. 1212 * 1213 * Locking: the lockless algorithm described in page_cache_get_speculative() 1214 * and page_cache_gup_pin_speculative() provides safe operation for 1215 * get_user_pages and page_mkclean and other calls that race to set up page 1216 * table entries. 1217 */ 1218 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1219 1220 void unpin_user_page(struct page *page); 1221 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1222 bool make_dirty); 1223 void unpin_user_pages(struct page **pages, unsigned long npages); 1224 1225 /** 1226 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1227 * 1228 * This function checks if a page has been pinned via a call to 1229 * pin_user_pages*(). 1230 * 1231 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1232 * because it means "definitely not pinned for DMA", but true means "probably 1233 * pinned for DMA, but possibly a false positive due to having at least 1234 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1235 * 1236 * False positives are OK, because: a) it's unlikely for a page to get that many 1237 * refcounts, and b) all the callers of this routine are expected to be able to 1238 * deal gracefully with a false positive. 1239 * 1240 * For huge pages, the result will be exactly correct. That's because we have 1241 * more tracking data available: the 3rd struct page in the compound page is 1242 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1243 * scheme). 1244 * 1245 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1246 * 1247 * @page: pointer to page to be queried. 1248 * @Return: True, if it is likely that the page has been "dma-pinned". 1249 * False, if the page is definitely not dma-pinned. 1250 */ 1251 static inline bool page_maybe_dma_pinned(struct page *page) 1252 { 1253 if (hpage_pincount_available(page)) 1254 return compound_pincount(page) > 0; 1255 1256 /* 1257 * page_ref_count() is signed. If that refcount overflows, then 1258 * page_ref_count() returns a negative value, and callers will avoid 1259 * further incrementing the refcount. 1260 * 1261 * Here, for that overflow case, use the signed bit to count a little 1262 * bit higher via unsigned math, and thus still get an accurate result. 1263 */ 1264 return ((unsigned int)page_ref_count(compound_head(page))) >= 1265 GUP_PIN_COUNTING_BIAS; 1266 } 1267 1268 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1269 #define SECTION_IN_PAGE_FLAGS 1270 #endif 1271 1272 /* 1273 * The identification function is mainly used by the buddy allocator for 1274 * determining if two pages could be buddies. We are not really identifying 1275 * the zone since we could be using the section number id if we do not have 1276 * node id available in page flags. 1277 * We only guarantee that it will return the same value for two combinable 1278 * pages in a zone. 1279 */ 1280 static inline int page_zone_id(struct page *page) 1281 { 1282 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1283 } 1284 1285 #ifdef NODE_NOT_IN_PAGE_FLAGS 1286 extern int page_to_nid(const struct page *page); 1287 #else 1288 static inline int page_to_nid(const struct page *page) 1289 { 1290 struct page *p = (struct page *)page; 1291 1292 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1293 } 1294 #endif 1295 1296 #ifdef CONFIG_NUMA_BALANCING 1297 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1298 { 1299 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1300 } 1301 1302 static inline int cpupid_to_pid(int cpupid) 1303 { 1304 return cpupid & LAST__PID_MASK; 1305 } 1306 1307 static inline int cpupid_to_cpu(int cpupid) 1308 { 1309 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1310 } 1311 1312 static inline int cpupid_to_nid(int cpupid) 1313 { 1314 return cpu_to_node(cpupid_to_cpu(cpupid)); 1315 } 1316 1317 static inline bool cpupid_pid_unset(int cpupid) 1318 { 1319 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1320 } 1321 1322 static inline bool cpupid_cpu_unset(int cpupid) 1323 { 1324 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1325 } 1326 1327 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1328 { 1329 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1330 } 1331 1332 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1333 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1334 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1335 { 1336 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1337 } 1338 1339 static inline int page_cpupid_last(struct page *page) 1340 { 1341 return page->_last_cpupid; 1342 } 1343 static inline void page_cpupid_reset_last(struct page *page) 1344 { 1345 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1346 } 1347 #else 1348 static inline int page_cpupid_last(struct page *page) 1349 { 1350 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1351 } 1352 1353 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1354 1355 static inline void page_cpupid_reset_last(struct page *page) 1356 { 1357 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1358 } 1359 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1360 #else /* !CONFIG_NUMA_BALANCING */ 1361 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1362 { 1363 return page_to_nid(page); /* XXX */ 1364 } 1365 1366 static inline int page_cpupid_last(struct page *page) 1367 { 1368 return page_to_nid(page); /* XXX */ 1369 } 1370 1371 static inline int cpupid_to_nid(int cpupid) 1372 { 1373 return -1; 1374 } 1375 1376 static inline int cpupid_to_pid(int cpupid) 1377 { 1378 return -1; 1379 } 1380 1381 static inline int cpupid_to_cpu(int cpupid) 1382 { 1383 return -1; 1384 } 1385 1386 static inline int cpu_pid_to_cpupid(int nid, int pid) 1387 { 1388 return -1; 1389 } 1390 1391 static inline bool cpupid_pid_unset(int cpupid) 1392 { 1393 return true; 1394 } 1395 1396 static inline void page_cpupid_reset_last(struct page *page) 1397 { 1398 } 1399 1400 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1401 { 1402 return false; 1403 } 1404 #endif /* CONFIG_NUMA_BALANCING */ 1405 1406 #ifdef CONFIG_KASAN_SW_TAGS 1407 static inline u8 page_kasan_tag(const struct page *page) 1408 { 1409 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1410 } 1411 1412 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1413 { 1414 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1415 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1416 } 1417 1418 static inline void page_kasan_tag_reset(struct page *page) 1419 { 1420 page_kasan_tag_set(page, 0xff); 1421 } 1422 #else 1423 static inline u8 page_kasan_tag(const struct page *page) 1424 { 1425 return 0xff; 1426 } 1427 1428 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1429 static inline void page_kasan_tag_reset(struct page *page) { } 1430 #endif 1431 1432 static inline struct zone *page_zone(const struct page *page) 1433 { 1434 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1435 } 1436 1437 static inline pg_data_t *page_pgdat(const struct page *page) 1438 { 1439 return NODE_DATA(page_to_nid(page)); 1440 } 1441 1442 #ifdef SECTION_IN_PAGE_FLAGS 1443 static inline void set_page_section(struct page *page, unsigned long section) 1444 { 1445 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1446 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1447 } 1448 1449 static inline unsigned long page_to_section(const struct page *page) 1450 { 1451 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1452 } 1453 #endif 1454 1455 static inline void set_page_zone(struct page *page, enum zone_type zone) 1456 { 1457 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1458 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1459 } 1460 1461 static inline void set_page_node(struct page *page, unsigned long node) 1462 { 1463 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1464 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1465 } 1466 1467 static inline void set_page_links(struct page *page, enum zone_type zone, 1468 unsigned long node, unsigned long pfn) 1469 { 1470 set_page_zone(page, zone); 1471 set_page_node(page, node); 1472 #ifdef SECTION_IN_PAGE_FLAGS 1473 set_page_section(page, pfn_to_section_nr(pfn)); 1474 #endif 1475 } 1476 1477 #ifdef CONFIG_MEMCG 1478 static inline struct mem_cgroup *page_memcg(struct page *page) 1479 { 1480 return page->mem_cgroup; 1481 } 1482 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1483 { 1484 WARN_ON_ONCE(!rcu_read_lock_held()); 1485 return READ_ONCE(page->mem_cgroup); 1486 } 1487 #else 1488 static inline struct mem_cgroup *page_memcg(struct page *page) 1489 { 1490 return NULL; 1491 } 1492 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1493 { 1494 WARN_ON_ONCE(!rcu_read_lock_held()); 1495 return NULL; 1496 } 1497 #endif 1498 1499 /* 1500 * Some inline functions in vmstat.h depend on page_zone() 1501 */ 1502 #include <linux/vmstat.h> 1503 1504 static __always_inline void *lowmem_page_address(const struct page *page) 1505 { 1506 return page_to_virt(page); 1507 } 1508 1509 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1510 #define HASHED_PAGE_VIRTUAL 1511 #endif 1512 1513 #if defined(WANT_PAGE_VIRTUAL) 1514 static inline void *page_address(const struct page *page) 1515 { 1516 return page->virtual; 1517 } 1518 static inline void set_page_address(struct page *page, void *address) 1519 { 1520 page->virtual = address; 1521 } 1522 #define page_address_init() do { } while(0) 1523 #endif 1524 1525 #if defined(HASHED_PAGE_VIRTUAL) 1526 void *page_address(const struct page *page); 1527 void set_page_address(struct page *page, void *virtual); 1528 void page_address_init(void); 1529 #endif 1530 1531 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1532 #define page_address(page) lowmem_page_address(page) 1533 #define set_page_address(page, address) do { } while(0) 1534 #define page_address_init() do { } while(0) 1535 #endif 1536 1537 extern void *page_rmapping(struct page *page); 1538 extern struct anon_vma *page_anon_vma(struct page *page); 1539 extern struct address_space *page_mapping(struct page *page); 1540 1541 extern struct address_space *__page_file_mapping(struct page *); 1542 1543 static inline 1544 struct address_space *page_file_mapping(struct page *page) 1545 { 1546 if (unlikely(PageSwapCache(page))) 1547 return __page_file_mapping(page); 1548 1549 return page->mapping; 1550 } 1551 1552 extern pgoff_t __page_file_index(struct page *page); 1553 1554 /* 1555 * Return the pagecache index of the passed page. Regular pagecache pages 1556 * use ->index whereas swapcache pages use swp_offset(->private) 1557 */ 1558 static inline pgoff_t page_index(struct page *page) 1559 { 1560 if (unlikely(PageSwapCache(page))) 1561 return __page_file_index(page); 1562 return page->index; 1563 } 1564 1565 bool page_mapped(struct page *page); 1566 struct address_space *page_mapping(struct page *page); 1567 struct address_space *page_mapping_file(struct page *page); 1568 1569 /* 1570 * Return true only if the page has been allocated with 1571 * ALLOC_NO_WATERMARKS and the low watermark was not 1572 * met implying that the system is under some pressure. 1573 */ 1574 static inline bool page_is_pfmemalloc(struct page *page) 1575 { 1576 /* 1577 * Page index cannot be this large so this must be 1578 * a pfmemalloc page. 1579 */ 1580 return page->index == -1UL; 1581 } 1582 1583 /* 1584 * Only to be called by the page allocator on a freshly allocated 1585 * page. 1586 */ 1587 static inline void set_page_pfmemalloc(struct page *page) 1588 { 1589 page->index = -1UL; 1590 } 1591 1592 static inline void clear_page_pfmemalloc(struct page *page) 1593 { 1594 page->index = 0; 1595 } 1596 1597 /* 1598 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1599 */ 1600 extern void pagefault_out_of_memory(void); 1601 1602 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1603 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1)) 1604 1605 /* 1606 * Flags passed to show_mem() and show_free_areas() to suppress output in 1607 * various contexts. 1608 */ 1609 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1610 1611 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1612 1613 #ifdef CONFIG_MMU 1614 extern bool can_do_mlock(void); 1615 #else 1616 static inline bool can_do_mlock(void) { return false; } 1617 #endif 1618 extern int user_shm_lock(size_t, struct user_struct *); 1619 extern void user_shm_unlock(size_t, struct user_struct *); 1620 1621 /* 1622 * Parameter block passed down to zap_pte_range in exceptional cases. 1623 */ 1624 struct zap_details { 1625 struct address_space *check_mapping; /* Check page->mapping if set */ 1626 pgoff_t first_index; /* Lowest page->index to unmap */ 1627 pgoff_t last_index; /* Highest page->index to unmap */ 1628 }; 1629 1630 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1631 pte_t pte); 1632 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1633 pmd_t pmd); 1634 1635 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1636 unsigned long size); 1637 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1638 unsigned long size); 1639 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1640 unsigned long start, unsigned long end); 1641 1642 struct mmu_notifier_range; 1643 1644 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1645 unsigned long end, unsigned long floor, unsigned long ceiling); 1646 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1647 struct vm_area_struct *vma); 1648 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1649 struct mmu_notifier_range *range, 1650 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1651 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1652 unsigned long *pfn); 1653 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1654 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1655 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1656 void *buf, int len, int write); 1657 1658 extern void truncate_pagecache(struct inode *inode, loff_t new); 1659 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1660 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1661 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1662 int truncate_inode_page(struct address_space *mapping, struct page *page); 1663 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1664 int invalidate_inode_page(struct page *page); 1665 1666 #ifdef CONFIG_MMU 1667 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1668 unsigned long address, unsigned int flags, 1669 struct pt_regs *regs); 1670 extern int fixup_user_fault(struct mm_struct *mm, 1671 unsigned long address, unsigned int fault_flags, 1672 bool *unlocked); 1673 void unmap_mapping_pages(struct address_space *mapping, 1674 pgoff_t start, pgoff_t nr, bool even_cows); 1675 void unmap_mapping_range(struct address_space *mapping, 1676 loff_t const holebegin, loff_t const holelen, int even_cows); 1677 #else 1678 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1679 unsigned long address, unsigned int flags, 1680 struct pt_regs *regs) 1681 { 1682 /* should never happen if there's no MMU */ 1683 BUG(); 1684 return VM_FAULT_SIGBUS; 1685 } 1686 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1687 unsigned int fault_flags, bool *unlocked) 1688 { 1689 /* should never happen if there's no MMU */ 1690 BUG(); 1691 return -EFAULT; 1692 } 1693 static inline void unmap_mapping_pages(struct address_space *mapping, 1694 pgoff_t start, pgoff_t nr, bool even_cows) { } 1695 static inline void unmap_mapping_range(struct address_space *mapping, 1696 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1697 #endif 1698 1699 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1700 loff_t const holebegin, loff_t const holelen) 1701 { 1702 unmap_mapping_range(mapping, holebegin, holelen, 0); 1703 } 1704 1705 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1706 void *buf, int len, unsigned int gup_flags); 1707 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1708 void *buf, int len, unsigned int gup_flags); 1709 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1710 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1711 1712 long get_user_pages_remote(struct mm_struct *mm, 1713 unsigned long start, unsigned long nr_pages, 1714 unsigned int gup_flags, struct page **pages, 1715 struct vm_area_struct **vmas, int *locked); 1716 long pin_user_pages_remote(struct mm_struct *mm, 1717 unsigned long start, unsigned long nr_pages, 1718 unsigned int gup_flags, struct page **pages, 1719 struct vm_area_struct **vmas, int *locked); 1720 long get_user_pages(unsigned long start, unsigned long nr_pages, 1721 unsigned int gup_flags, struct page **pages, 1722 struct vm_area_struct **vmas); 1723 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1724 unsigned int gup_flags, struct page **pages, 1725 struct vm_area_struct **vmas); 1726 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1727 unsigned int gup_flags, struct page **pages, int *locked); 1728 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1729 unsigned int gup_flags, struct page **pages, int *locked); 1730 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1731 struct page **pages, unsigned int gup_flags); 1732 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1733 struct page **pages, unsigned int gup_flags); 1734 1735 int get_user_pages_fast(unsigned long start, int nr_pages, 1736 unsigned int gup_flags, struct page **pages); 1737 int pin_user_pages_fast(unsigned long start, int nr_pages, 1738 unsigned int gup_flags, struct page **pages); 1739 1740 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1741 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1742 struct task_struct *task, bool bypass_rlim); 1743 1744 /* Container for pinned pfns / pages */ 1745 struct frame_vector { 1746 unsigned int nr_allocated; /* Number of frames we have space for */ 1747 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1748 bool got_ref; /* Did we pin pages by getting page ref? */ 1749 bool is_pfns; /* Does array contain pages or pfns? */ 1750 void *ptrs[]; /* Array of pinned pfns / pages. Use 1751 * pfns_vector_pages() or pfns_vector_pfns() 1752 * for access */ 1753 }; 1754 1755 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1756 void frame_vector_destroy(struct frame_vector *vec); 1757 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1758 unsigned int gup_flags, struct frame_vector *vec); 1759 void put_vaddr_frames(struct frame_vector *vec); 1760 int frame_vector_to_pages(struct frame_vector *vec); 1761 void frame_vector_to_pfns(struct frame_vector *vec); 1762 1763 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1764 { 1765 return vec->nr_frames; 1766 } 1767 1768 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1769 { 1770 if (vec->is_pfns) { 1771 int err = frame_vector_to_pages(vec); 1772 1773 if (err) 1774 return ERR_PTR(err); 1775 } 1776 return (struct page **)(vec->ptrs); 1777 } 1778 1779 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1780 { 1781 if (!vec->is_pfns) 1782 frame_vector_to_pfns(vec); 1783 return (unsigned long *)(vec->ptrs); 1784 } 1785 1786 struct kvec; 1787 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1788 struct page **pages); 1789 int get_kernel_page(unsigned long start, int write, struct page **pages); 1790 struct page *get_dump_page(unsigned long addr); 1791 1792 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1793 extern void do_invalidatepage(struct page *page, unsigned int offset, 1794 unsigned int length); 1795 1796 void __set_page_dirty(struct page *, struct address_space *, int warn); 1797 int __set_page_dirty_nobuffers(struct page *page); 1798 int __set_page_dirty_no_writeback(struct page *page); 1799 int redirty_page_for_writepage(struct writeback_control *wbc, 1800 struct page *page); 1801 void account_page_dirtied(struct page *page, struct address_space *mapping); 1802 void account_page_cleaned(struct page *page, struct address_space *mapping, 1803 struct bdi_writeback *wb); 1804 int set_page_dirty(struct page *page); 1805 int set_page_dirty_lock(struct page *page); 1806 void __cancel_dirty_page(struct page *page); 1807 static inline void cancel_dirty_page(struct page *page) 1808 { 1809 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1810 if (PageDirty(page)) 1811 __cancel_dirty_page(page); 1812 } 1813 int clear_page_dirty_for_io(struct page *page); 1814 1815 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1816 1817 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1818 unsigned long old_addr, struct vm_area_struct *new_vma, 1819 unsigned long new_addr, unsigned long len, 1820 bool need_rmap_locks); 1821 1822 /* 1823 * Flags used by change_protection(). For now we make it a bitmap so 1824 * that we can pass in multiple flags just like parameters. However 1825 * for now all the callers are only use one of the flags at the same 1826 * time. 1827 */ 1828 /* Whether we should allow dirty bit accounting */ 1829 #define MM_CP_DIRTY_ACCT (1UL << 0) 1830 /* Whether this protection change is for NUMA hints */ 1831 #define MM_CP_PROT_NUMA (1UL << 1) 1832 /* Whether this change is for write protecting */ 1833 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1834 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1835 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1836 MM_CP_UFFD_WP_RESOLVE) 1837 1838 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1839 unsigned long end, pgprot_t newprot, 1840 unsigned long cp_flags); 1841 extern int mprotect_fixup(struct vm_area_struct *vma, 1842 struct vm_area_struct **pprev, unsigned long start, 1843 unsigned long end, unsigned long newflags); 1844 1845 /* 1846 * doesn't attempt to fault and will return short. 1847 */ 1848 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1849 unsigned int gup_flags, struct page **pages); 1850 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1851 unsigned int gup_flags, struct page **pages); 1852 1853 static inline bool get_user_page_fast_only(unsigned long addr, 1854 unsigned int gup_flags, struct page **pagep) 1855 { 1856 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1857 } 1858 /* 1859 * per-process(per-mm_struct) statistics. 1860 */ 1861 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1862 { 1863 long val = atomic_long_read(&mm->rss_stat.count[member]); 1864 1865 #ifdef SPLIT_RSS_COUNTING 1866 /* 1867 * counter is updated in asynchronous manner and may go to minus. 1868 * But it's never be expected number for users. 1869 */ 1870 if (val < 0) 1871 val = 0; 1872 #endif 1873 return (unsigned long)val; 1874 } 1875 1876 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1877 1878 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1879 { 1880 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1881 1882 mm_trace_rss_stat(mm, member, count); 1883 } 1884 1885 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1886 { 1887 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1888 1889 mm_trace_rss_stat(mm, member, count); 1890 } 1891 1892 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1893 { 1894 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1895 1896 mm_trace_rss_stat(mm, member, count); 1897 } 1898 1899 /* Optimized variant when page is already known not to be PageAnon */ 1900 static inline int mm_counter_file(struct page *page) 1901 { 1902 if (PageSwapBacked(page)) 1903 return MM_SHMEMPAGES; 1904 return MM_FILEPAGES; 1905 } 1906 1907 static inline int mm_counter(struct page *page) 1908 { 1909 if (PageAnon(page)) 1910 return MM_ANONPAGES; 1911 return mm_counter_file(page); 1912 } 1913 1914 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1915 { 1916 return get_mm_counter(mm, MM_FILEPAGES) + 1917 get_mm_counter(mm, MM_ANONPAGES) + 1918 get_mm_counter(mm, MM_SHMEMPAGES); 1919 } 1920 1921 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1922 { 1923 return max(mm->hiwater_rss, get_mm_rss(mm)); 1924 } 1925 1926 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1927 { 1928 return max(mm->hiwater_vm, mm->total_vm); 1929 } 1930 1931 static inline void update_hiwater_rss(struct mm_struct *mm) 1932 { 1933 unsigned long _rss = get_mm_rss(mm); 1934 1935 if ((mm)->hiwater_rss < _rss) 1936 (mm)->hiwater_rss = _rss; 1937 } 1938 1939 static inline void update_hiwater_vm(struct mm_struct *mm) 1940 { 1941 if (mm->hiwater_vm < mm->total_vm) 1942 mm->hiwater_vm = mm->total_vm; 1943 } 1944 1945 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1946 { 1947 mm->hiwater_rss = get_mm_rss(mm); 1948 } 1949 1950 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1951 struct mm_struct *mm) 1952 { 1953 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1954 1955 if (*maxrss < hiwater_rss) 1956 *maxrss = hiwater_rss; 1957 } 1958 1959 #if defined(SPLIT_RSS_COUNTING) 1960 void sync_mm_rss(struct mm_struct *mm); 1961 #else 1962 static inline void sync_mm_rss(struct mm_struct *mm) 1963 { 1964 } 1965 #endif 1966 1967 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1968 static inline int pte_special(pte_t pte) 1969 { 1970 return 0; 1971 } 1972 1973 static inline pte_t pte_mkspecial(pte_t pte) 1974 { 1975 return pte; 1976 } 1977 #endif 1978 1979 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1980 static inline int pte_devmap(pte_t pte) 1981 { 1982 return 0; 1983 } 1984 #endif 1985 1986 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1987 1988 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1989 spinlock_t **ptl); 1990 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1991 spinlock_t **ptl) 1992 { 1993 pte_t *ptep; 1994 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1995 return ptep; 1996 } 1997 1998 #ifdef __PAGETABLE_P4D_FOLDED 1999 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2000 unsigned long address) 2001 { 2002 return 0; 2003 } 2004 #else 2005 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2006 #endif 2007 2008 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2009 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2010 unsigned long address) 2011 { 2012 return 0; 2013 } 2014 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2015 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2016 2017 #else 2018 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2019 2020 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2021 { 2022 if (mm_pud_folded(mm)) 2023 return; 2024 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2025 } 2026 2027 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2028 { 2029 if (mm_pud_folded(mm)) 2030 return; 2031 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2032 } 2033 #endif 2034 2035 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2036 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2037 unsigned long address) 2038 { 2039 return 0; 2040 } 2041 2042 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2043 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2044 2045 #else 2046 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2047 2048 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2049 { 2050 if (mm_pmd_folded(mm)) 2051 return; 2052 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2053 } 2054 2055 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2056 { 2057 if (mm_pmd_folded(mm)) 2058 return; 2059 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2060 } 2061 #endif 2062 2063 #ifdef CONFIG_MMU 2064 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2065 { 2066 atomic_long_set(&mm->pgtables_bytes, 0); 2067 } 2068 2069 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2070 { 2071 return atomic_long_read(&mm->pgtables_bytes); 2072 } 2073 2074 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2075 { 2076 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2077 } 2078 2079 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2080 { 2081 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2082 } 2083 #else 2084 2085 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2086 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2087 { 2088 return 0; 2089 } 2090 2091 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2092 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2093 #endif 2094 2095 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2096 int __pte_alloc_kernel(pmd_t *pmd); 2097 2098 #if defined(CONFIG_MMU) 2099 2100 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2101 unsigned long address) 2102 { 2103 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2104 NULL : p4d_offset(pgd, address); 2105 } 2106 2107 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2108 unsigned long address) 2109 { 2110 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2111 NULL : pud_offset(p4d, address); 2112 } 2113 2114 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2115 { 2116 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2117 NULL: pmd_offset(pud, address); 2118 } 2119 #endif /* CONFIG_MMU */ 2120 2121 #if USE_SPLIT_PTE_PTLOCKS 2122 #if ALLOC_SPLIT_PTLOCKS 2123 void __init ptlock_cache_init(void); 2124 extern bool ptlock_alloc(struct page *page); 2125 extern void ptlock_free(struct page *page); 2126 2127 static inline spinlock_t *ptlock_ptr(struct page *page) 2128 { 2129 return page->ptl; 2130 } 2131 #else /* ALLOC_SPLIT_PTLOCKS */ 2132 static inline void ptlock_cache_init(void) 2133 { 2134 } 2135 2136 static inline bool ptlock_alloc(struct page *page) 2137 { 2138 return true; 2139 } 2140 2141 static inline void ptlock_free(struct page *page) 2142 { 2143 } 2144 2145 static inline spinlock_t *ptlock_ptr(struct page *page) 2146 { 2147 return &page->ptl; 2148 } 2149 #endif /* ALLOC_SPLIT_PTLOCKS */ 2150 2151 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2152 { 2153 return ptlock_ptr(pmd_page(*pmd)); 2154 } 2155 2156 static inline bool ptlock_init(struct page *page) 2157 { 2158 /* 2159 * prep_new_page() initialize page->private (and therefore page->ptl) 2160 * with 0. Make sure nobody took it in use in between. 2161 * 2162 * It can happen if arch try to use slab for page table allocation: 2163 * slab code uses page->slab_cache, which share storage with page->ptl. 2164 */ 2165 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2166 if (!ptlock_alloc(page)) 2167 return false; 2168 spin_lock_init(ptlock_ptr(page)); 2169 return true; 2170 } 2171 2172 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2173 /* 2174 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2175 */ 2176 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2177 { 2178 return &mm->page_table_lock; 2179 } 2180 static inline void ptlock_cache_init(void) {} 2181 static inline bool ptlock_init(struct page *page) { return true; } 2182 static inline void ptlock_free(struct page *page) {} 2183 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2184 2185 static inline void pgtable_init(void) 2186 { 2187 ptlock_cache_init(); 2188 pgtable_cache_init(); 2189 } 2190 2191 static inline bool pgtable_pte_page_ctor(struct page *page) 2192 { 2193 if (!ptlock_init(page)) 2194 return false; 2195 __SetPageTable(page); 2196 inc_zone_page_state(page, NR_PAGETABLE); 2197 return true; 2198 } 2199 2200 static inline void pgtable_pte_page_dtor(struct page *page) 2201 { 2202 ptlock_free(page); 2203 __ClearPageTable(page); 2204 dec_zone_page_state(page, NR_PAGETABLE); 2205 } 2206 2207 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2208 ({ \ 2209 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2210 pte_t *__pte = pte_offset_map(pmd, address); \ 2211 *(ptlp) = __ptl; \ 2212 spin_lock(__ptl); \ 2213 __pte; \ 2214 }) 2215 2216 #define pte_unmap_unlock(pte, ptl) do { \ 2217 spin_unlock(ptl); \ 2218 pte_unmap(pte); \ 2219 } while (0) 2220 2221 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2222 2223 #define pte_alloc_map(mm, pmd, address) \ 2224 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2225 2226 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2227 (pte_alloc(mm, pmd) ? \ 2228 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2229 2230 #define pte_alloc_kernel(pmd, address) \ 2231 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2232 NULL: pte_offset_kernel(pmd, address)) 2233 2234 #if USE_SPLIT_PMD_PTLOCKS 2235 2236 static struct page *pmd_to_page(pmd_t *pmd) 2237 { 2238 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2239 return virt_to_page((void *)((unsigned long) pmd & mask)); 2240 } 2241 2242 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2243 { 2244 return ptlock_ptr(pmd_to_page(pmd)); 2245 } 2246 2247 static inline bool pgtable_pmd_page_ctor(struct page *page) 2248 { 2249 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2250 page->pmd_huge_pte = NULL; 2251 #endif 2252 return ptlock_init(page); 2253 } 2254 2255 static inline void pgtable_pmd_page_dtor(struct page *page) 2256 { 2257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2258 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2259 #endif 2260 ptlock_free(page); 2261 } 2262 2263 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2264 2265 #else 2266 2267 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2268 { 2269 return &mm->page_table_lock; 2270 } 2271 2272 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2273 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2274 2275 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2276 2277 #endif 2278 2279 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2280 { 2281 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2282 spin_lock(ptl); 2283 return ptl; 2284 } 2285 2286 /* 2287 * No scalability reason to split PUD locks yet, but follow the same pattern 2288 * as the PMD locks to make it easier if we decide to. The VM should not be 2289 * considered ready to switch to split PUD locks yet; there may be places 2290 * which need to be converted from page_table_lock. 2291 */ 2292 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2293 { 2294 return &mm->page_table_lock; 2295 } 2296 2297 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2298 { 2299 spinlock_t *ptl = pud_lockptr(mm, pud); 2300 2301 spin_lock(ptl); 2302 return ptl; 2303 } 2304 2305 extern void __init pagecache_init(void); 2306 extern void __init free_area_init_memoryless_node(int nid); 2307 extern void free_initmem(void); 2308 2309 /* 2310 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2311 * into the buddy system. The freed pages will be poisoned with pattern 2312 * "poison" if it's within range [0, UCHAR_MAX]. 2313 * Return pages freed into the buddy system. 2314 */ 2315 extern unsigned long free_reserved_area(void *start, void *end, 2316 int poison, const char *s); 2317 2318 #ifdef CONFIG_HIGHMEM 2319 /* 2320 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2321 * and totalram_pages. 2322 */ 2323 extern void free_highmem_page(struct page *page); 2324 #endif 2325 2326 extern void adjust_managed_page_count(struct page *page, long count); 2327 extern void mem_init_print_info(const char *str); 2328 2329 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2330 2331 /* Free the reserved page into the buddy system, so it gets managed. */ 2332 static inline void __free_reserved_page(struct page *page) 2333 { 2334 ClearPageReserved(page); 2335 init_page_count(page); 2336 __free_page(page); 2337 } 2338 2339 static inline void free_reserved_page(struct page *page) 2340 { 2341 __free_reserved_page(page); 2342 adjust_managed_page_count(page, 1); 2343 } 2344 2345 static inline void mark_page_reserved(struct page *page) 2346 { 2347 SetPageReserved(page); 2348 adjust_managed_page_count(page, -1); 2349 } 2350 2351 /* 2352 * Default method to free all the __init memory into the buddy system. 2353 * The freed pages will be poisoned with pattern "poison" if it's within 2354 * range [0, UCHAR_MAX]. 2355 * Return pages freed into the buddy system. 2356 */ 2357 static inline unsigned long free_initmem_default(int poison) 2358 { 2359 extern char __init_begin[], __init_end[]; 2360 2361 return free_reserved_area(&__init_begin, &__init_end, 2362 poison, "unused kernel"); 2363 } 2364 2365 static inline unsigned long get_num_physpages(void) 2366 { 2367 int nid; 2368 unsigned long phys_pages = 0; 2369 2370 for_each_online_node(nid) 2371 phys_pages += node_present_pages(nid); 2372 2373 return phys_pages; 2374 } 2375 2376 /* 2377 * Using memblock node mappings, an architecture may initialise its 2378 * zones, allocate the backing mem_map and account for memory holes in an 2379 * architecture independent manner. 2380 * 2381 * An architecture is expected to register range of page frames backed by 2382 * physical memory with memblock_add[_node]() before calling 2383 * free_area_init() passing in the PFN each zone ends at. At a basic 2384 * usage, an architecture is expected to do something like 2385 * 2386 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2387 * max_highmem_pfn}; 2388 * for_each_valid_physical_page_range() 2389 * memblock_add_node(base, size, nid) 2390 * free_area_init(max_zone_pfns); 2391 */ 2392 void free_area_init(unsigned long *max_zone_pfn); 2393 unsigned long node_map_pfn_alignment(void); 2394 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2395 unsigned long end_pfn); 2396 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2397 unsigned long end_pfn); 2398 extern void get_pfn_range_for_nid(unsigned int nid, 2399 unsigned long *start_pfn, unsigned long *end_pfn); 2400 extern unsigned long find_min_pfn_with_active_regions(void); 2401 2402 #ifndef CONFIG_NEED_MULTIPLE_NODES 2403 static inline int early_pfn_to_nid(unsigned long pfn) 2404 { 2405 return 0; 2406 } 2407 #else 2408 /* please see mm/page_alloc.c */ 2409 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2410 /* there is a per-arch backend function. */ 2411 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2412 struct mminit_pfnnid_cache *state); 2413 #endif 2414 2415 extern void set_dma_reserve(unsigned long new_dma_reserve); 2416 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2417 enum memmap_context, struct vmem_altmap *); 2418 extern void setup_per_zone_wmarks(void); 2419 extern int __meminit init_per_zone_wmark_min(void); 2420 extern void mem_init(void); 2421 extern void __init mmap_init(void); 2422 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2423 extern long si_mem_available(void); 2424 extern void si_meminfo(struct sysinfo * val); 2425 extern void si_meminfo_node(struct sysinfo *val, int nid); 2426 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2427 extern unsigned long arch_reserved_kernel_pages(void); 2428 #endif 2429 2430 extern __printf(3, 4) 2431 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2432 2433 extern void setup_per_cpu_pageset(void); 2434 2435 /* page_alloc.c */ 2436 extern int min_free_kbytes; 2437 extern int watermark_boost_factor; 2438 extern int watermark_scale_factor; 2439 extern bool arch_has_descending_max_zone_pfns(void); 2440 2441 /* nommu.c */ 2442 extern atomic_long_t mmap_pages_allocated; 2443 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2444 2445 /* interval_tree.c */ 2446 void vma_interval_tree_insert(struct vm_area_struct *node, 2447 struct rb_root_cached *root); 2448 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2449 struct vm_area_struct *prev, 2450 struct rb_root_cached *root); 2451 void vma_interval_tree_remove(struct vm_area_struct *node, 2452 struct rb_root_cached *root); 2453 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2454 unsigned long start, unsigned long last); 2455 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2456 unsigned long start, unsigned long last); 2457 2458 #define vma_interval_tree_foreach(vma, root, start, last) \ 2459 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2460 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2461 2462 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2463 struct rb_root_cached *root); 2464 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2465 struct rb_root_cached *root); 2466 struct anon_vma_chain * 2467 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2468 unsigned long start, unsigned long last); 2469 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2470 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2471 #ifdef CONFIG_DEBUG_VM_RB 2472 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2473 #endif 2474 2475 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2476 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2477 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2478 2479 /* mmap.c */ 2480 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2481 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2482 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2483 struct vm_area_struct *expand); 2484 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2485 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2486 { 2487 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2488 } 2489 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2490 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2491 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2492 struct mempolicy *, struct vm_userfaultfd_ctx); 2493 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2494 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2495 unsigned long addr, int new_below); 2496 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2497 unsigned long addr, int new_below); 2498 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2499 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2500 struct rb_node **, struct rb_node *); 2501 extern void unlink_file_vma(struct vm_area_struct *); 2502 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2503 unsigned long addr, unsigned long len, pgoff_t pgoff, 2504 bool *need_rmap_locks); 2505 extern void exit_mmap(struct mm_struct *); 2506 2507 static inline int check_data_rlimit(unsigned long rlim, 2508 unsigned long new, 2509 unsigned long start, 2510 unsigned long end_data, 2511 unsigned long start_data) 2512 { 2513 if (rlim < RLIM_INFINITY) { 2514 if (((new - start) + (end_data - start_data)) > rlim) 2515 return -ENOSPC; 2516 } 2517 2518 return 0; 2519 } 2520 2521 extern int mm_take_all_locks(struct mm_struct *mm); 2522 extern void mm_drop_all_locks(struct mm_struct *mm); 2523 2524 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2525 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2526 extern struct file *get_task_exe_file(struct task_struct *task); 2527 2528 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2529 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2530 2531 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2532 const struct vm_special_mapping *sm); 2533 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2534 unsigned long addr, unsigned long len, 2535 unsigned long flags, 2536 const struct vm_special_mapping *spec); 2537 /* This is an obsolete alternative to _install_special_mapping. */ 2538 extern int install_special_mapping(struct mm_struct *mm, 2539 unsigned long addr, unsigned long len, 2540 unsigned long flags, struct page **pages); 2541 2542 unsigned long randomize_stack_top(unsigned long stack_top); 2543 2544 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2545 2546 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2547 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2548 struct list_head *uf); 2549 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2550 unsigned long len, unsigned long prot, unsigned long flags, 2551 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2552 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2553 struct list_head *uf, bool downgrade); 2554 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2555 struct list_head *uf); 2556 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2557 2558 #ifdef CONFIG_MMU 2559 extern int __mm_populate(unsigned long addr, unsigned long len, 2560 int ignore_errors); 2561 static inline void mm_populate(unsigned long addr, unsigned long len) 2562 { 2563 /* Ignore errors */ 2564 (void) __mm_populate(addr, len, 1); 2565 } 2566 #else 2567 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2568 #endif 2569 2570 /* These take the mm semaphore themselves */ 2571 extern int __must_check vm_brk(unsigned long, unsigned long); 2572 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2573 extern int vm_munmap(unsigned long, size_t); 2574 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2575 unsigned long, unsigned long, 2576 unsigned long, unsigned long); 2577 2578 struct vm_unmapped_area_info { 2579 #define VM_UNMAPPED_AREA_TOPDOWN 1 2580 unsigned long flags; 2581 unsigned long length; 2582 unsigned long low_limit; 2583 unsigned long high_limit; 2584 unsigned long align_mask; 2585 unsigned long align_offset; 2586 }; 2587 2588 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2589 2590 /* truncate.c */ 2591 extern void truncate_inode_pages(struct address_space *, loff_t); 2592 extern void truncate_inode_pages_range(struct address_space *, 2593 loff_t lstart, loff_t lend); 2594 extern void truncate_inode_pages_final(struct address_space *); 2595 2596 /* generic vm_area_ops exported for stackable file systems */ 2597 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2598 extern void filemap_map_pages(struct vm_fault *vmf, 2599 pgoff_t start_pgoff, pgoff_t end_pgoff); 2600 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2601 2602 /* mm/page-writeback.c */ 2603 int __must_check write_one_page(struct page *page); 2604 void task_dirty_inc(struct task_struct *tsk); 2605 2606 extern unsigned long stack_guard_gap; 2607 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2608 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2609 2610 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2611 extern int expand_downwards(struct vm_area_struct *vma, 2612 unsigned long address); 2613 #if VM_GROWSUP 2614 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2615 #else 2616 #define expand_upwards(vma, address) (0) 2617 #endif 2618 2619 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2620 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2621 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2622 struct vm_area_struct **pprev); 2623 2624 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2625 NULL if none. Assume start_addr < end_addr. */ 2626 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2627 { 2628 struct vm_area_struct * vma = find_vma(mm,start_addr); 2629 2630 if (vma && end_addr <= vma->vm_start) 2631 vma = NULL; 2632 return vma; 2633 } 2634 2635 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2636 { 2637 unsigned long vm_start = vma->vm_start; 2638 2639 if (vma->vm_flags & VM_GROWSDOWN) { 2640 vm_start -= stack_guard_gap; 2641 if (vm_start > vma->vm_start) 2642 vm_start = 0; 2643 } 2644 return vm_start; 2645 } 2646 2647 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2648 { 2649 unsigned long vm_end = vma->vm_end; 2650 2651 if (vma->vm_flags & VM_GROWSUP) { 2652 vm_end += stack_guard_gap; 2653 if (vm_end < vma->vm_end) 2654 vm_end = -PAGE_SIZE; 2655 } 2656 return vm_end; 2657 } 2658 2659 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2660 { 2661 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2662 } 2663 2664 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2665 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2666 unsigned long vm_start, unsigned long vm_end) 2667 { 2668 struct vm_area_struct *vma = find_vma(mm, vm_start); 2669 2670 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2671 vma = NULL; 2672 2673 return vma; 2674 } 2675 2676 static inline bool range_in_vma(struct vm_area_struct *vma, 2677 unsigned long start, unsigned long end) 2678 { 2679 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2680 } 2681 2682 #ifdef CONFIG_MMU 2683 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2684 void vma_set_page_prot(struct vm_area_struct *vma); 2685 #else 2686 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2687 { 2688 return __pgprot(0); 2689 } 2690 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2691 { 2692 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2693 } 2694 #endif 2695 2696 #ifdef CONFIG_NUMA_BALANCING 2697 unsigned long change_prot_numa(struct vm_area_struct *vma, 2698 unsigned long start, unsigned long end); 2699 #endif 2700 2701 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2702 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2703 unsigned long pfn, unsigned long size, pgprot_t); 2704 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2705 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2706 struct page **pages, unsigned long *num); 2707 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2708 unsigned long num); 2709 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2710 unsigned long num); 2711 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2712 unsigned long pfn); 2713 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2714 unsigned long pfn, pgprot_t pgprot); 2715 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2716 pfn_t pfn); 2717 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2718 pfn_t pfn, pgprot_t pgprot); 2719 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2720 unsigned long addr, pfn_t pfn); 2721 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2722 2723 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2724 unsigned long addr, struct page *page) 2725 { 2726 int err = vm_insert_page(vma, addr, page); 2727 2728 if (err == -ENOMEM) 2729 return VM_FAULT_OOM; 2730 if (err < 0 && err != -EBUSY) 2731 return VM_FAULT_SIGBUS; 2732 2733 return VM_FAULT_NOPAGE; 2734 } 2735 2736 static inline vm_fault_t vmf_error(int err) 2737 { 2738 if (err == -ENOMEM) 2739 return VM_FAULT_OOM; 2740 return VM_FAULT_SIGBUS; 2741 } 2742 2743 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2744 unsigned int foll_flags); 2745 2746 #define FOLL_WRITE 0x01 /* check pte is writable */ 2747 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2748 #define FOLL_GET 0x04 /* do get_page on page */ 2749 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2750 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2751 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2752 * and return without waiting upon it */ 2753 #define FOLL_POPULATE 0x40 /* fault in page */ 2754 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2755 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2756 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2757 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2758 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2759 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2760 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2761 #define FOLL_COW 0x4000 /* internal GUP flag */ 2762 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2763 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2764 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2765 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2766 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2767 2768 /* 2769 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2770 * other. Here is what they mean, and how to use them: 2771 * 2772 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2773 * period _often_ under userspace control. This is in contrast to 2774 * iov_iter_get_pages(), whose usages are transient. 2775 * 2776 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2777 * lifetime enforced by the filesystem and we need guarantees that longterm 2778 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2779 * the filesystem. Ideas for this coordination include revoking the longterm 2780 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2781 * added after the problem with filesystems was found FS DAX VMAs are 2782 * specifically failed. Filesystem pages are still subject to bugs and use of 2783 * FOLL_LONGTERM should be avoided on those pages. 2784 * 2785 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2786 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2787 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2788 * is due to an incompatibility with the FS DAX check and 2789 * FAULT_FLAG_ALLOW_RETRY. 2790 * 2791 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2792 * that region. And so, CMA attempts to migrate the page before pinning, when 2793 * FOLL_LONGTERM is specified. 2794 * 2795 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2796 * but an additional pin counting system) will be invoked. This is intended for 2797 * anything that gets a page reference and then touches page data (for example, 2798 * Direct IO). This lets the filesystem know that some non-file-system entity is 2799 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2800 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2801 * a call to unpin_user_page(). 2802 * 2803 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2804 * and separate refcounting mechanisms, however, and that means that each has 2805 * its own acquire and release mechanisms: 2806 * 2807 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2808 * 2809 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2810 * 2811 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2812 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2813 * calls applied to them, and that's perfectly OK. This is a constraint on the 2814 * callers, not on the pages.) 2815 * 2816 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2817 * directly by the caller. That's in order to help avoid mismatches when 2818 * releasing pages: get_user_pages*() pages must be released via put_page(), 2819 * while pin_user_pages*() pages must be released via unpin_user_page(). 2820 * 2821 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2822 */ 2823 2824 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2825 { 2826 if (vm_fault & VM_FAULT_OOM) 2827 return -ENOMEM; 2828 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2829 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2830 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2831 return -EFAULT; 2832 return 0; 2833 } 2834 2835 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2836 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2837 unsigned long size, pte_fn_t fn, void *data); 2838 extern int apply_to_existing_page_range(struct mm_struct *mm, 2839 unsigned long address, unsigned long size, 2840 pte_fn_t fn, void *data); 2841 2842 #ifdef CONFIG_PAGE_POISONING 2843 extern bool page_poisoning_enabled(void); 2844 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2845 #else 2846 static inline bool page_poisoning_enabled(void) { return false; } 2847 static inline void kernel_poison_pages(struct page *page, int numpages, 2848 int enable) { } 2849 #endif 2850 2851 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2852 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2853 #else 2854 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2855 #endif 2856 static inline bool want_init_on_alloc(gfp_t flags) 2857 { 2858 if (static_branch_unlikely(&init_on_alloc) && 2859 !page_poisoning_enabled()) 2860 return true; 2861 return flags & __GFP_ZERO; 2862 } 2863 2864 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2865 DECLARE_STATIC_KEY_TRUE(init_on_free); 2866 #else 2867 DECLARE_STATIC_KEY_FALSE(init_on_free); 2868 #endif 2869 static inline bool want_init_on_free(void) 2870 { 2871 return static_branch_unlikely(&init_on_free) && 2872 !page_poisoning_enabled(); 2873 } 2874 2875 #ifdef CONFIG_DEBUG_PAGEALLOC 2876 extern void init_debug_pagealloc(void); 2877 #else 2878 static inline void init_debug_pagealloc(void) {} 2879 #endif 2880 extern bool _debug_pagealloc_enabled_early; 2881 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2882 2883 static inline bool debug_pagealloc_enabled(void) 2884 { 2885 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2886 _debug_pagealloc_enabled_early; 2887 } 2888 2889 /* 2890 * For use in fast paths after init_debug_pagealloc() has run, or when a 2891 * false negative result is not harmful when called too early. 2892 */ 2893 static inline bool debug_pagealloc_enabled_static(void) 2894 { 2895 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2896 return false; 2897 2898 return static_branch_unlikely(&_debug_pagealloc_enabled); 2899 } 2900 2901 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2902 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2903 2904 /* 2905 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2906 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2907 */ 2908 static inline void 2909 kernel_map_pages(struct page *page, int numpages, int enable) 2910 { 2911 __kernel_map_pages(page, numpages, enable); 2912 } 2913 #ifdef CONFIG_HIBERNATION 2914 extern bool kernel_page_present(struct page *page); 2915 #endif /* CONFIG_HIBERNATION */ 2916 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2917 static inline void 2918 kernel_map_pages(struct page *page, int numpages, int enable) {} 2919 #ifdef CONFIG_HIBERNATION 2920 static inline bool kernel_page_present(struct page *page) { return true; } 2921 #endif /* CONFIG_HIBERNATION */ 2922 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2923 2924 #ifdef __HAVE_ARCH_GATE_AREA 2925 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2926 extern int in_gate_area_no_mm(unsigned long addr); 2927 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2928 #else 2929 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2930 { 2931 return NULL; 2932 } 2933 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2934 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2935 { 2936 return 0; 2937 } 2938 #endif /* __HAVE_ARCH_GATE_AREA */ 2939 2940 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2941 2942 #ifdef CONFIG_SYSCTL 2943 extern int sysctl_drop_caches; 2944 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2945 loff_t *); 2946 #endif 2947 2948 void drop_slab(void); 2949 void drop_slab_node(int nid); 2950 2951 #ifndef CONFIG_MMU 2952 #define randomize_va_space 0 2953 #else 2954 extern int randomize_va_space; 2955 #endif 2956 2957 const char * arch_vma_name(struct vm_area_struct *vma); 2958 #ifdef CONFIG_MMU 2959 void print_vma_addr(char *prefix, unsigned long rip); 2960 #else 2961 static inline void print_vma_addr(char *prefix, unsigned long rip) 2962 { 2963 } 2964 #endif 2965 2966 void *sparse_buffer_alloc(unsigned long size); 2967 struct page * __populate_section_memmap(unsigned long pfn, 2968 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2969 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2970 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2971 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2972 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2973 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 2974 struct vmem_altmap *altmap); 2975 void *vmemmap_alloc_block(unsigned long size, int node); 2976 struct vmem_altmap; 2977 void *vmemmap_alloc_block_buf(unsigned long size, int node, 2978 struct vmem_altmap *altmap); 2979 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2980 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2981 int node, struct vmem_altmap *altmap); 2982 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2983 struct vmem_altmap *altmap); 2984 void vmemmap_populate_print_last(void); 2985 #ifdef CONFIG_MEMORY_HOTPLUG 2986 void vmemmap_free(unsigned long start, unsigned long end, 2987 struct vmem_altmap *altmap); 2988 #endif 2989 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2990 unsigned long nr_pages); 2991 2992 enum mf_flags { 2993 MF_COUNT_INCREASED = 1 << 0, 2994 MF_ACTION_REQUIRED = 1 << 1, 2995 MF_MUST_KILL = 1 << 2, 2996 MF_SOFT_OFFLINE = 1 << 3, 2997 }; 2998 extern int memory_failure(unsigned long pfn, int flags); 2999 extern void memory_failure_queue(unsigned long pfn, int flags); 3000 extern void memory_failure_queue_kick(int cpu); 3001 extern int unpoison_memory(unsigned long pfn); 3002 extern int get_hwpoison_page(struct page *page); 3003 #define put_hwpoison_page(page) put_page(page) 3004 extern int sysctl_memory_failure_early_kill; 3005 extern int sysctl_memory_failure_recovery; 3006 extern void shake_page(struct page *p, int access); 3007 extern atomic_long_t num_poisoned_pages __read_mostly; 3008 extern int soft_offline_page(unsigned long pfn, int flags); 3009 3010 3011 /* 3012 * Error handlers for various types of pages. 3013 */ 3014 enum mf_result { 3015 MF_IGNORED, /* Error: cannot be handled */ 3016 MF_FAILED, /* Error: handling failed */ 3017 MF_DELAYED, /* Will be handled later */ 3018 MF_RECOVERED, /* Successfully recovered */ 3019 }; 3020 3021 enum mf_action_page_type { 3022 MF_MSG_KERNEL, 3023 MF_MSG_KERNEL_HIGH_ORDER, 3024 MF_MSG_SLAB, 3025 MF_MSG_DIFFERENT_COMPOUND, 3026 MF_MSG_POISONED_HUGE, 3027 MF_MSG_HUGE, 3028 MF_MSG_FREE_HUGE, 3029 MF_MSG_NON_PMD_HUGE, 3030 MF_MSG_UNMAP_FAILED, 3031 MF_MSG_DIRTY_SWAPCACHE, 3032 MF_MSG_CLEAN_SWAPCACHE, 3033 MF_MSG_DIRTY_MLOCKED_LRU, 3034 MF_MSG_CLEAN_MLOCKED_LRU, 3035 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3036 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3037 MF_MSG_DIRTY_LRU, 3038 MF_MSG_CLEAN_LRU, 3039 MF_MSG_TRUNCATED_LRU, 3040 MF_MSG_BUDDY, 3041 MF_MSG_BUDDY_2ND, 3042 MF_MSG_DAX, 3043 MF_MSG_UNKNOWN, 3044 }; 3045 3046 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3047 extern void clear_huge_page(struct page *page, 3048 unsigned long addr_hint, 3049 unsigned int pages_per_huge_page); 3050 extern void copy_user_huge_page(struct page *dst, struct page *src, 3051 unsigned long addr_hint, 3052 struct vm_area_struct *vma, 3053 unsigned int pages_per_huge_page); 3054 extern long copy_huge_page_from_user(struct page *dst_page, 3055 const void __user *usr_src, 3056 unsigned int pages_per_huge_page, 3057 bool allow_pagefault); 3058 3059 /** 3060 * vma_is_special_huge - Are transhuge page-table entries considered special? 3061 * @vma: Pointer to the struct vm_area_struct to consider 3062 * 3063 * Whether transhuge page-table entries are considered "special" following 3064 * the definition in vm_normal_page(). 3065 * 3066 * Return: true if transhuge page-table entries should be considered special, 3067 * false otherwise. 3068 */ 3069 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3070 { 3071 return vma_is_dax(vma) || (vma->vm_file && 3072 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3073 } 3074 3075 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3076 3077 #ifdef CONFIG_DEBUG_PAGEALLOC 3078 extern unsigned int _debug_guardpage_minorder; 3079 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3080 3081 static inline unsigned int debug_guardpage_minorder(void) 3082 { 3083 return _debug_guardpage_minorder; 3084 } 3085 3086 static inline bool debug_guardpage_enabled(void) 3087 { 3088 return static_branch_unlikely(&_debug_guardpage_enabled); 3089 } 3090 3091 static inline bool page_is_guard(struct page *page) 3092 { 3093 if (!debug_guardpage_enabled()) 3094 return false; 3095 3096 return PageGuard(page); 3097 } 3098 #else 3099 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3100 static inline bool debug_guardpage_enabled(void) { return false; } 3101 static inline bool page_is_guard(struct page *page) { return false; } 3102 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3103 3104 #if MAX_NUMNODES > 1 3105 void __init setup_nr_node_ids(void); 3106 #else 3107 static inline void setup_nr_node_ids(void) {} 3108 #endif 3109 3110 extern int memcmp_pages(struct page *page1, struct page *page2); 3111 3112 static inline int pages_identical(struct page *page1, struct page *page2) 3113 { 3114 return !memcmp_pages(page1, page2); 3115 } 3116 3117 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3118 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3119 pgoff_t first_index, pgoff_t nr, 3120 pgoff_t bitmap_pgoff, 3121 unsigned long *bitmap, 3122 pgoff_t *start, 3123 pgoff_t *end); 3124 3125 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3126 pgoff_t first_index, pgoff_t nr); 3127 #endif 3128 3129 extern int sysctl_nr_trim_pages; 3130 3131 #endif /* __KERNEL__ */ 3132 #endif /* _LINUX_MM_H */ 3133