1 #ifndef _LINUX_MM_H 2 #define _LINUX_MM_H 3 4 #include <linux/errno.h> 5 6 #ifdef __KERNEL__ 7 8 #include <linux/mmdebug.h> 9 #include <linux/gfp.h> 10 #include <linux/bug.h> 11 #include <linux/list.h> 12 #include <linux/mmzone.h> 13 #include <linux/rbtree.h> 14 #include <linux/atomic.h> 15 #include <linux/debug_locks.h> 16 #include <linux/mm_types.h> 17 #include <linux/range.h> 18 #include <linux/pfn.h> 19 #include <linux/bit_spinlock.h> 20 #include <linux/shrinker.h> 21 #include <linux/resource.h> 22 #include <linux/page_ext.h> 23 24 struct mempolicy; 25 struct anon_vma; 26 struct anon_vma_chain; 27 struct file_ra_state; 28 struct user_struct; 29 struct writeback_control; 30 struct bdi_writeback; 31 32 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 33 extern unsigned long max_mapnr; 34 35 static inline void set_max_mapnr(unsigned long limit) 36 { 37 max_mapnr = limit; 38 } 39 #else 40 static inline void set_max_mapnr(unsigned long limit) { } 41 #endif 42 43 extern unsigned long totalram_pages; 44 extern void * high_memory; 45 extern int page_cluster; 46 47 #ifdef CONFIG_SYSCTL 48 extern int sysctl_legacy_va_layout; 49 #else 50 #define sysctl_legacy_va_layout 0 51 #endif 52 53 #include <asm/page.h> 54 #include <asm/pgtable.h> 55 #include <asm/processor.h> 56 57 #ifndef __pa_symbol 58 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 59 #endif 60 61 /* 62 * To prevent common memory management code establishing 63 * a zero page mapping on a read fault. 64 * This macro should be defined within <asm/pgtable.h>. 65 * s390 does this to prevent multiplexing of hardware bits 66 * related to the physical page in case of virtualization. 67 */ 68 #ifndef mm_forbids_zeropage 69 #define mm_forbids_zeropage(X) (0) 70 #endif 71 72 extern unsigned long sysctl_user_reserve_kbytes; 73 extern unsigned long sysctl_admin_reserve_kbytes; 74 75 extern int sysctl_overcommit_memory; 76 extern int sysctl_overcommit_ratio; 77 extern unsigned long sysctl_overcommit_kbytes; 78 79 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 80 size_t *, loff_t *); 81 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 82 size_t *, loff_t *); 83 84 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 85 86 /* to align the pointer to the (next) page boundary */ 87 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 88 89 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 90 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE) 91 92 /* 93 * Linux kernel virtual memory manager primitives. 94 * The idea being to have a "virtual" mm in the same way 95 * we have a virtual fs - giving a cleaner interface to the 96 * mm details, and allowing different kinds of memory mappings 97 * (from shared memory to executable loading to arbitrary 98 * mmap() functions). 99 */ 100 101 extern struct kmem_cache *vm_area_cachep; 102 103 #ifndef CONFIG_MMU 104 extern struct rb_root nommu_region_tree; 105 extern struct rw_semaphore nommu_region_sem; 106 107 extern unsigned int kobjsize(const void *objp); 108 #endif 109 110 /* 111 * vm_flags in vm_area_struct, see mm_types.h. 112 */ 113 #define VM_NONE 0x00000000 114 115 #define VM_READ 0x00000001 /* currently active flags */ 116 #define VM_WRITE 0x00000002 117 #define VM_EXEC 0x00000004 118 #define VM_SHARED 0x00000008 119 120 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 121 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 122 #define VM_MAYWRITE 0x00000020 123 #define VM_MAYEXEC 0x00000040 124 #define VM_MAYSHARE 0x00000080 125 126 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 127 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 128 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 129 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 130 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 131 132 #define VM_LOCKED 0x00002000 133 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 134 135 /* Used by sys_madvise() */ 136 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 137 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 138 139 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 140 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 141 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 142 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 143 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 144 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 145 #define VM_ARCH_2 0x02000000 146 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 147 148 #ifdef CONFIG_MEM_SOFT_DIRTY 149 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 150 #else 151 # define VM_SOFTDIRTY 0 152 #endif 153 154 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 155 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 156 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 157 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 158 159 #if defined(CONFIG_X86) 160 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 161 #elif defined(CONFIG_PPC) 162 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 163 #elif defined(CONFIG_PARISC) 164 # define VM_GROWSUP VM_ARCH_1 165 #elif defined(CONFIG_METAG) 166 # define VM_GROWSUP VM_ARCH_1 167 #elif defined(CONFIG_IA64) 168 # define VM_GROWSUP VM_ARCH_1 169 #elif !defined(CONFIG_MMU) 170 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 171 #endif 172 173 #if defined(CONFIG_X86) 174 /* MPX specific bounds table or bounds directory */ 175 # define VM_MPX VM_ARCH_2 176 #endif 177 178 #ifndef VM_GROWSUP 179 # define VM_GROWSUP VM_NONE 180 #endif 181 182 /* Bits set in the VMA until the stack is in its final location */ 183 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 184 185 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 186 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 187 #endif 188 189 #ifdef CONFIG_STACK_GROWSUP 190 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 191 #else 192 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 193 #endif 194 195 /* 196 * Special vmas that are non-mergable, non-mlock()able. 197 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 198 */ 199 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 200 201 /* This mask defines which mm->def_flags a process can inherit its parent */ 202 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 203 204 /* 205 * mapping from the currently active vm_flags protection bits (the 206 * low four bits) to a page protection mask.. 207 */ 208 extern pgprot_t protection_map[16]; 209 210 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 211 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 212 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 213 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 214 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 215 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 216 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 217 218 /* 219 * vm_fault is filled by the the pagefault handler and passed to the vma's 220 * ->fault function. The vma's ->fault is responsible for returning a bitmask 221 * of VM_FAULT_xxx flags that give details about how the fault was handled. 222 * 223 * pgoff should be used in favour of virtual_address, if possible. 224 */ 225 struct vm_fault { 226 unsigned int flags; /* FAULT_FLAG_xxx flags */ 227 pgoff_t pgoff; /* Logical page offset based on vma */ 228 void __user *virtual_address; /* Faulting virtual address */ 229 230 struct page *cow_page; /* Handler may choose to COW */ 231 struct page *page; /* ->fault handlers should return a 232 * page here, unless VM_FAULT_NOPAGE 233 * is set (which is also implied by 234 * VM_FAULT_ERROR). 235 */ 236 /* for ->map_pages() only */ 237 pgoff_t max_pgoff; /* map pages for offset from pgoff till 238 * max_pgoff inclusive */ 239 pte_t *pte; /* pte entry associated with ->pgoff */ 240 }; 241 242 /* 243 * These are the virtual MM functions - opening of an area, closing and 244 * unmapping it (needed to keep files on disk up-to-date etc), pointer 245 * to the functions called when a no-page or a wp-page exception occurs. 246 */ 247 struct vm_operations_struct { 248 void (*open)(struct vm_area_struct * area); 249 void (*close)(struct vm_area_struct * area); 250 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); 251 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf); 252 253 /* notification that a previously read-only page is about to become 254 * writable, if an error is returned it will cause a SIGBUS */ 255 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 256 257 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 258 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf); 259 260 /* called by access_process_vm when get_user_pages() fails, typically 261 * for use by special VMAs that can switch between memory and hardware 262 */ 263 int (*access)(struct vm_area_struct *vma, unsigned long addr, 264 void *buf, int len, int write); 265 266 /* Called by the /proc/PID/maps code to ask the vma whether it 267 * has a special name. Returning non-NULL will also cause this 268 * vma to be dumped unconditionally. */ 269 const char *(*name)(struct vm_area_struct *vma); 270 271 #ifdef CONFIG_NUMA 272 /* 273 * set_policy() op must add a reference to any non-NULL @new mempolicy 274 * to hold the policy upon return. Caller should pass NULL @new to 275 * remove a policy and fall back to surrounding context--i.e. do not 276 * install a MPOL_DEFAULT policy, nor the task or system default 277 * mempolicy. 278 */ 279 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 280 281 /* 282 * get_policy() op must add reference [mpol_get()] to any policy at 283 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 284 * in mm/mempolicy.c will do this automatically. 285 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 286 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 287 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 288 * must return NULL--i.e., do not "fallback" to task or system default 289 * policy. 290 */ 291 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 292 unsigned long addr); 293 #endif 294 /* 295 * Called by vm_normal_page() for special PTEs to find the 296 * page for @addr. This is useful if the default behavior 297 * (using pte_page()) would not find the correct page. 298 */ 299 struct page *(*find_special_page)(struct vm_area_struct *vma, 300 unsigned long addr); 301 }; 302 303 struct mmu_gather; 304 struct inode; 305 306 #define page_private(page) ((page)->private) 307 #define set_page_private(page, v) ((page)->private = (v)) 308 309 /* It's valid only if the page is free path or free_list */ 310 static inline void set_freepage_migratetype(struct page *page, int migratetype) 311 { 312 page->index = migratetype; 313 } 314 315 /* It's valid only if the page is free path or free_list */ 316 static inline int get_freepage_migratetype(struct page *page) 317 { 318 return page->index; 319 } 320 321 /* 322 * FIXME: take this include out, include page-flags.h in 323 * files which need it (119 of them) 324 */ 325 #include <linux/page-flags.h> 326 #include <linux/huge_mm.h> 327 328 /* 329 * Methods to modify the page usage count. 330 * 331 * What counts for a page usage: 332 * - cache mapping (page->mapping) 333 * - private data (page->private) 334 * - page mapped in a task's page tables, each mapping 335 * is counted separately 336 * 337 * Also, many kernel routines increase the page count before a critical 338 * routine so they can be sure the page doesn't go away from under them. 339 */ 340 341 /* 342 * Drop a ref, return true if the refcount fell to zero (the page has no users) 343 */ 344 static inline int put_page_testzero(struct page *page) 345 { 346 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page); 347 return atomic_dec_and_test(&page->_count); 348 } 349 350 /* 351 * Try to grab a ref unless the page has a refcount of zero, return false if 352 * that is the case. 353 * This can be called when MMU is off so it must not access 354 * any of the virtual mappings. 355 */ 356 static inline int get_page_unless_zero(struct page *page) 357 { 358 return atomic_inc_not_zero(&page->_count); 359 } 360 361 /* 362 * Try to drop a ref unless the page has a refcount of one, return false if 363 * that is the case. 364 * This is to make sure that the refcount won't become zero after this drop. 365 * This can be called when MMU is off so it must not access 366 * any of the virtual mappings. 367 */ 368 static inline int put_page_unless_one(struct page *page) 369 { 370 return atomic_add_unless(&page->_count, -1, 1); 371 } 372 373 extern int page_is_ram(unsigned long pfn); 374 extern int region_is_ram(resource_size_t phys_addr, unsigned long size); 375 376 /* Support for virtually mapped pages */ 377 struct page *vmalloc_to_page(const void *addr); 378 unsigned long vmalloc_to_pfn(const void *addr); 379 380 /* 381 * Determine if an address is within the vmalloc range 382 * 383 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 384 * is no special casing required. 385 */ 386 static inline int is_vmalloc_addr(const void *x) 387 { 388 #ifdef CONFIG_MMU 389 unsigned long addr = (unsigned long)x; 390 391 return addr >= VMALLOC_START && addr < VMALLOC_END; 392 #else 393 return 0; 394 #endif 395 } 396 #ifdef CONFIG_MMU 397 extern int is_vmalloc_or_module_addr(const void *x); 398 #else 399 static inline int is_vmalloc_or_module_addr(const void *x) 400 { 401 return 0; 402 } 403 #endif 404 405 extern void kvfree(const void *addr); 406 407 static inline void compound_lock(struct page *page) 408 { 409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 410 VM_BUG_ON_PAGE(PageSlab(page), page); 411 bit_spin_lock(PG_compound_lock, &page->flags); 412 #endif 413 } 414 415 static inline void compound_unlock(struct page *page) 416 { 417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 418 VM_BUG_ON_PAGE(PageSlab(page), page); 419 bit_spin_unlock(PG_compound_lock, &page->flags); 420 #endif 421 } 422 423 static inline unsigned long compound_lock_irqsave(struct page *page) 424 { 425 unsigned long uninitialized_var(flags); 426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 427 local_irq_save(flags); 428 compound_lock(page); 429 #endif 430 return flags; 431 } 432 433 static inline void compound_unlock_irqrestore(struct page *page, 434 unsigned long flags) 435 { 436 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 437 compound_unlock(page); 438 local_irq_restore(flags); 439 #endif 440 } 441 442 static inline struct page *compound_head_by_tail(struct page *tail) 443 { 444 struct page *head = tail->first_page; 445 446 /* 447 * page->first_page may be a dangling pointer to an old 448 * compound page, so recheck that it is still a tail 449 * page before returning. 450 */ 451 smp_rmb(); 452 if (likely(PageTail(tail))) 453 return head; 454 return tail; 455 } 456 457 /* 458 * Since either compound page could be dismantled asynchronously in THP 459 * or we access asynchronously arbitrary positioned struct page, there 460 * would be tail flag race. To handle this race, we should call 461 * smp_rmb() before checking tail flag. compound_head_by_tail() did it. 462 */ 463 static inline struct page *compound_head(struct page *page) 464 { 465 if (unlikely(PageTail(page))) 466 return compound_head_by_tail(page); 467 return page; 468 } 469 470 /* 471 * If we access compound page synchronously such as access to 472 * allocated page, there is no need to handle tail flag race, so we can 473 * check tail flag directly without any synchronization primitive. 474 */ 475 static inline struct page *compound_head_fast(struct page *page) 476 { 477 if (unlikely(PageTail(page))) 478 return page->first_page; 479 return page; 480 } 481 482 /* 483 * The atomic page->_mapcount, starts from -1: so that transitions 484 * both from it and to it can be tracked, using atomic_inc_and_test 485 * and atomic_add_negative(-1). 486 */ 487 static inline void page_mapcount_reset(struct page *page) 488 { 489 atomic_set(&(page)->_mapcount, -1); 490 } 491 492 static inline int page_mapcount(struct page *page) 493 { 494 VM_BUG_ON_PAGE(PageSlab(page), page); 495 return atomic_read(&page->_mapcount) + 1; 496 } 497 498 static inline int page_count(struct page *page) 499 { 500 return atomic_read(&compound_head(page)->_count); 501 } 502 503 static inline bool __compound_tail_refcounted(struct page *page) 504 { 505 return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page); 506 } 507 508 /* 509 * This takes a head page as parameter and tells if the 510 * tail page reference counting can be skipped. 511 * 512 * For this to be safe, PageSlab and PageHeadHuge must remain true on 513 * any given page where they return true here, until all tail pins 514 * have been released. 515 */ 516 static inline bool compound_tail_refcounted(struct page *page) 517 { 518 VM_BUG_ON_PAGE(!PageHead(page), page); 519 return __compound_tail_refcounted(page); 520 } 521 522 static inline void get_huge_page_tail(struct page *page) 523 { 524 /* 525 * __split_huge_page_refcount() cannot run from under us. 526 */ 527 VM_BUG_ON_PAGE(!PageTail(page), page); 528 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page); 529 VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page); 530 if (compound_tail_refcounted(page->first_page)) 531 atomic_inc(&page->_mapcount); 532 } 533 534 extern bool __get_page_tail(struct page *page); 535 536 static inline void get_page(struct page *page) 537 { 538 if (unlikely(PageTail(page))) 539 if (likely(__get_page_tail(page))) 540 return; 541 /* 542 * Getting a normal page or the head of a compound page 543 * requires to already have an elevated page->_count. 544 */ 545 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page); 546 atomic_inc(&page->_count); 547 } 548 549 static inline struct page *virt_to_head_page(const void *x) 550 { 551 struct page *page = virt_to_page(x); 552 553 /* 554 * We don't need to worry about synchronization of tail flag 555 * when we call virt_to_head_page() since it is only called for 556 * already allocated page and this page won't be freed until 557 * this virt_to_head_page() is finished. So use _fast variant. 558 */ 559 return compound_head_fast(page); 560 } 561 562 /* 563 * Setup the page count before being freed into the page allocator for 564 * the first time (boot or memory hotplug) 565 */ 566 static inline void init_page_count(struct page *page) 567 { 568 atomic_set(&page->_count, 1); 569 } 570 571 void put_page(struct page *page); 572 void put_pages_list(struct list_head *pages); 573 574 void split_page(struct page *page, unsigned int order); 575 int split_free_page(struct page *page); 576 577 /* 578 * Compound pages have a destructor function. Provide a 579 * prototype for that function and accessor functions. 580 * These are _only_ valid on the head of a PG_compound page. 581 */ 582 583 static inline void set_compound_page_dtor(struct page *page, 584 compound_page_dtor *dtor) 585 { 586 page[1].compound_dtor = dtor; 587 } 588 589 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 590 { 591 return page[1].compound_dtor; 592 } 593 594 static inline int compound_order(struct page *page) 595 { 596 if (!PageHead(page)) 597 return 0; 598 return page[1].compound_order; 599 } 600 601 static inline void set_compound_order(struct page *page, unsigned long order) 602 { 603 page[1].compound_order = order; 604 } 605 606 #ifdef CONFIG_MMU 607 /* 608 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 609 * servicing faults for write access. In the normal case, do always want 610 * pte_mkwrite. But get_user_pages can cause write faults for mappings 611 * that do not have writing enabled, when used by access_process_vm. 612 */ 613 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 614 { 615 if (likely(vma->vm_flags & VM_WRITE)) 616 pte = pte_mkwrite(pte); 617 return pte; 618 } 619 620 void do_set_pte(struct vm_area_struct *vma, unsigned long address, 621 struct page *page, pte_t *pte, bool write, bool anon); 622 #endif 623 624 /* 625 * Multiple processes may "see" the same page. E.g. for untouched 626 * mappings of /dev/null, all processes see the same page full of 627 * zeroes, and text pages of executables and shared libraries have 628 * only one copy in memory, at most, normally. 629 * 630 * For the non-reserved pages, page_count(page) denotes a reference count. 631 * page_count() == 0 means the page is free. page->lru is then used for 632 * freelist management in the buddy allocator. 633 * page_count() > 0 means the page has been allocated. 634 * 635 * Pages are allocated by the slab allocator in order to provide memory 636 * to kmalloc and kmem_cache_alloc. In this case, the management of the 637 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 638 * unless a particular usage is carefully commented. (the responsibility of 639 * freeing the kmalloc memory is the caller's, of course). 640 * 641 * A page may be used by anyone else who does a __get_free_page(). 642 * In this case, page_count still tracks the references, and should only 643 * be used through the normal accessor functions. The top bits of page->flags 644 * and page->virtual store page management information, but all other fields 645 * are unused and could be used privately, carefully. The management of this 646 * page is the responsibility of the one who allocated it, and those who have 647 * subsequently been given references to it. 648 * 649 * The other pages (we may call them "pagecache pages") are completely 650 * managed by the Linux memory manager: I/O, buffers, swapping etc. 651 * The following discussion applies only to them. 652 * 653 * A pagecache page contains an opaque `private' member, which belongs to the 654 * page's address_space. Usually, this is the address of a circular list of 655 * the page's disk buffers. PG_private must be set to tell the VM to call 656 * into the filesystem to release these pages. 657 * 658 * A page may belong to an inode's memory mapping. In this case, page->mapping 659 * is the pointer to the inode, and page->index is the file offset of the page, 660 * in units of PAGE_CACHE_SIZE. 661 * 662 * If pagecache pages are not associated with an inode, they are said to be 663 * anonymous pages. These may become associated with the swapcache, and in that 664 * case PG_swapcache is set, and page->private is an offset into the swapcache. 665 * 666 * In either case (swapcache or inode backed), the pagecache itself holds one 667 * reference to the page. Setting PG_private should also increment the 668 * refcount. The each user mapping also has a reference to the page. 669 * 670 * The pagecache pages are stored in a per-mapping radix tree, which is 671 * rooted at mapping->page_tree, and indexed by offset. 672 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 673 * lists, we instead now tag pages as dirty/writeback in the radix tree. 674 * 675 * All pagecache pages may be subject to I/O: 676 * - inode pages may need to be read from disk, 677 * - inode pages which have been modified and are MAP_SHARED may need 678 * to be written back to the inode on disk, 679 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 680 * modified may need to be swapped out to swap space and (later) to be read 681 * back into memory. 682 */ 683 684 /* 685 * The zone field is never updated after free_area_init_core() 686 * sets it, so none of the operations on it need to be atomic. 687 */ 688 689 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 690 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 691 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 692 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 693 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 694 695 /* 696 * Define the bit shifts to access each section. For non-existent 697 * sections we define the shift as 0; that plus a 0 mask ensures 698 * the compiler will optimise away reference to them. 699 */ 700 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 701 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 702 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 703 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 704 705 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 706 #ifdef NODE_NOT_IN_PAGE_FLAGS 707 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 708 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 709 SECTIONS_PGOFF : ZONES_PGOFF) 710 #else 711 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 712 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 713 NODES_PGOFF : ZONES_PGOFF) 714 #endif 715 716 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 717 718 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 719 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS 720 #endif 721 722 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 723 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 724 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 725 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 726 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 727 728 static inline enum zone_type page_zonenum(const struct page *page) 729 { 730 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 731 } 732 733 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 734 #define SECTION_IN_PAGE_FLAGS 735 #endif 736 737 /* 738 * The identification function is mainly used by the buddy allocator for 739 * determining if two pages could be buddies. We are not really identifying 740 * the zone since we could be using the section number id if we do not have 741 * node id available in page flags. 742 * We only guarantee that it will return the same value for two combinable 743 * pages in a zone. 744 */ 745 static inline int page_zone_id(struct page *page) 746 { 747 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 748 } 749 750 static inline int zone_to_nid(struct zone *zone) 751 { 752 #ifdef CONFIG_NUMA 753 return zone->node; 754 #else 755 return 0; 756 #endif 757 } 758 759 #ifdef NODE_NOT_IN_PAGE_FLAGS 760 extern int page_to_nid(const struct page *page); 761 #else 762 static inline int page_to_nid(const struct page *page) 763 { 764 return (page->flags >> NODES_PGSHIFT) & NODES_MASK; 765 } 766 #endif 767 768 #ifdef CONFIG_NUMA_BALANCING 769 static inline int cpu_pid_to_cpupid(int cpu, int pid) 770 { 771 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 772 } 773 774 static inline int cpupid_to_pid(int cpupid) 775 { 776 return cpupid & LAST__PID_MASK; 777 } 778 779 static inline int cpupid_to_cpu(int cpupid) 780 { 781 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 782 } 783 784 static inline int cpupid_to_nid(int cpupid) 785 { 786 return cpu_to_node(cpupid_to_cpu(cpupid)); 787 } 788 789 static inline bool cpupid_pid_unset(int cpupid) 790 { 791 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 792 } 793 794 static inline bool cpupid_cpu_unset(int cpupid) 795 { 796 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 797 } 798 799 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 800 { 801 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 802 } 803 804 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 805 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 806 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 807 { 808 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 809 } 810 811 static inline int page_cpupid_last(struct page *page) 812 { 813 return page->_last_cpupid; 814 } 815 static inline void page_cpupid_reset_last(struct page *page) 816 { 817 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 818 } 819 #else 820 static inline int page_cpupid_last(struct page *page) 821 { 822 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 823 } 824 825 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 826 827 static inline void page_cpupid_reset_last(struct page *page) 828 { 829 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1; 830 831 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT); 832 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT; 833 } 834 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 835 #else /* !CONFIG_NUMA_BALANCING */ 836 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 837 { 838 return page_to_nid(page); /* XXX */ 839 } 840 841 static inline int page_cpupid_last(struct page *page) 842 { 843 return page_to_nid(page); /* XXX */ 844 } 845 846 static inline int cpupid_to_nid(int cpupid) 847 { 848 return -1; 849 } 850 851 static inline int cpupid_to_pid(int cpupid) 852 { 853 return -1; 854 } 855 856 static inline int cpupid_to_cpu(int cpupid) 857 { 858 return -1; 859 } 860 861 static inline int cpu_pid_to_cpupid(int nid, int pid) 862 { 863 return -1; 864 } 865 866 static inline bool cpupid_pid_unset(int cpupid) 867 { 868 return 1; 869 } 870 871 static inline void page_cpupid_reset_last(struct page *page) 872 { 873 } 874 875 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 876 { 877 return false; 878 } 879 #endif /* CONFIG_NUMA_BALANCING */ 880 881 static inline struct zone *page_zone(const struct page *page) 882 { 883 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 884 } 885 886 #ifdef SECTION_IN_PAGE_FLAGS 887 static inline void set_page_section(struct page *page, unsigned long section) 888 { 889 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 890 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 891 } 892 893 static inline unsigned long page_to_section(const struct page *page) 894 { 895 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 896 } 897 #endif 898 899 static inline void set_page_zone(struct page *page, enum zone_type zone) 900 { 901 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 902 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 903 } 904 905 static inline void set_page_node(struct page *page, unsigned long node) 906 { 907 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 908 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 909 } 910 911 static inline void set_page_links(struct page *page, enum zone_type zone, 912 unsigned long node, unsigned long pfn) 913 { 914 set_page_zone(page, zone); 915 set_page_node(page, node); 916 #ifdef SECTION_IN_PAGE_FLAGS 917 set_page_section(page, pfn_to_section_nr(pfn)); 918 #endif 919 } 920 921 /* 922 * Some inline functions in vmstat.h depend on page_zone() 923 */ 924 #include <linux/vmstat.h> 925 926 static __always_inline void *lowmem_page_address(const struct page *page) 927 { 928 return __va(PFN_PHYS(page_to_pfn(page))); 929 } 930 931 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 932 #define HASHED_PAGE_VIRTUAL 933 #endif 934 935 #if defined(WANT_PAGE_VIRTUAL) 936 static inline void *page_address(const struct page *page) 937 { 938 return page->virtual; 939 } 940 static inline void set_page_address(struct page *page, void *address) 941 { 942 page->virtual = address; 943 } 944 #define page_address_init() do { } while(0) 945 #endif 946 947 #if defined(HASHED_PAGE_VIRTUAL) 948 void *page_address(const struct page *page); 949 void set_page_address(struct page *page, void *virtual); 950 void page_address_init(void); 951 #endif 952 953 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 954 #define page_address(page) lowmem_page_address(page) 955 #define set_page_address(page, address) do { } while(0) 956 #define page_address_init() do { } while(0) 957 #endif 958 959 extern void *page_rmapping(struct page *page); 960 extern struct anon_vma *page_anon_vma(struct page *page); 961 extern struct address_space *page_mapping(struct page *page); 962 963 extern struct address_space *__page_file_mapping(struct page *); 964 965 static inline 966 struct address_space *page_file_mapping(struct page *page) 967 { 968 if (unlikely(PageSwapCache(page))) 969 return __page_file_mapping(page); 970 971 return page->mapping; 972 } 973 974 /* 975 * Return the pagecache index of the passed page. Regular pagecache pages 976 * use ->index whereas swapcache pages use ->private 977 */ 978 static inline pgoff_t page_index(struct page *page) 979 { 980 if (unlikely(PageSwapCache(page))) 981 return page_private(page); 982 return page->index; 983 } 984 985 extern pgoff_t __page_file_index(struct page *page); 986 987 /* 988 * Return the file index of the page. Regular pagecache pages use ->index 989 * whereas swapcache pages use swp_offset(->private) 990 */ 991 static inline pgoff_t page_file_index(struct page *page) 992 { 993 if (unlikely(PageSwapCache(page))) 994 return __page_file_index(page); 995 996 return page->index; 997 } 998 999 /* 1000 * Return true if this page is mapped into pagetables. 1001 */ 1002 static inline int page_mapped(struct page *page) 1003 { 1004 return atomic_read(&(page)->_mapcount) >= 0; 1005 } 1006 1007 /* 1008 * Return true only if the page has been allocated with 1009 * ALLOC_NO_WATERMARKS and the low watermark was not 1010 * met implying that the system is under some pressure. 1011 */ 1012 static inline bool page_is_pfmemalloc(struct page *page) 1013 { 1014 /* 1015 * Page index cannot be this large so this must be 1016 * a pfmemalloc page. 1017 */ 1018 return page->index == -1UL; 1019 } 1020 1021 /* 1022 * Only to be called by the page allocator on a freshly allocated 1023 * page. 1024 */ 1025 static inline void set_page_pfmemalloc(struct page *page) 1026 { 1027 page->index = -1UL; 1028 } 1029 1030 static inline void clear_page_pfmemalloc(struct page *page) 1031 { 1032 page->index = 0; 1033 } 1034 1035 /* 1036 * Different kinds of faults, as returned by handle_mm_fault(). 1037 * Used to decide whether a process gets delivered SIGBUS or 1038 * just gets major/minor fault counters bumped up. 1039 */ 1040 1041 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */ 1042 1043 #define VM_FAULT_OOM 0x0001 1044 #define VM_FAULT_SIGBUS 0x0002 1045 #define VM_FAULT_MAJOR 0x0004 1046 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */ 1047 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */ 1048 #define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */ 1049 #define VM_FAULT_SIGSEGV 0x0040 1050 1051 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */ 1052 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */ 1053 #define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */ 1054 #define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */ 1055 1056 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */ 1057 1058 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \ 1059 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \ 1060 VM_FAULT_FALLBACK) 1061 1062 /* Encode hstate index for a hwpoisoned large page */ 1063 #define VM_FAULT_SET_HINDEX(x) ((x) << 12) 1064 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf) 1065 1066 /* 1067 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1068 */ 1069 extern void pagefault_out_of_memory(void); 1070 1071 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1072 1073 /* 1074 * Flags passed to show_mem() and show_free_areas() to suppress output in 1075 * various contexts. 1076 */ 1077 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1078 1079 extern void show_free_areas(unsigned int flags); 1080 extern bool skip_free_areas_node(unsigned int flags, int nid); 1081 1082 int shmem_zero_setup(struct vm_area_struct *); 1083 #ifdef CONFIG_SHMEM 1084 bool shmem_mapping(struct address_space *mapping); 1085 #else 1086 static inline bool shmem_mapping(struct address_space *mapping) 1087 { 1088 return false; 1089 } 1090 #endif 1091 1092 extern int can_do_mlock(void); 1093 extern int user_shm_lock(size_t, struct user_struct *); 1094 extern void user_shm_unlock(size_t, struct user_struct *); 1095 1096 /* 1097 * Parameter block passed down to zap_pte_range in exceptional cases. 1098 */ 1099 struct zap_details { 1100 struct address_space *check_mapping; /* Check page->mapping if set */ 1101 pgoff_t first_index; /* Lowest page->index to unmap */ 1102 pgoff_t last_index; /* Highest page->index to unmap */ 1103 }; 1104 1105 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1106 pte_t pte); 1107 1108 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1109 unsigned long size); 1110 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1111 unsigned long size, struct zap_details *); 1112 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1113 unsigned long start, unsigned long end); 1114 1115 /** 1116 * mm_walk - callbacks for walk_page_range 1117 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry 1118 * this handler is required to be able to handle 1119 * pmd_trans_huge() pmds. They may simply choose to 1120 * split_huge_page() instead of handling it explicitly. 1121 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry 1122 * @pte_hole: if set, called for each hole at all levels 1123 * @hugetlb_entry: if set, called for each hugetlb entry 1124 * @test_walk: caller specific callback function to determine whether 1125 * we walk over the current vma or not. A positive returned 1126 * value means "do page table walk over the current vma," 1127 * and a negative one means "abort current page table walk 1128 * right now." 0 means "skip the current vma." 1129 * @mm: mm_struct representing the target process of page table walk 1130 * @vma: vma currently walked (NULL if walking outside vmas) 1131 * @private: private data for callbacks' usage 1132 * 1133 * (see the comment on walk_page_range() for more details) 1134 */ 1135 struct mm_walk { 1136 int (*pmd_entry)(pmd_t *pmd, unsigned long addr, 1137 unsigned long next, struct mm_walk *walk); 1138 int (*pte_entry)(pte_t *pte, unsigned long addr, 1139 unsigned long next, struct mm_walk *walk); 1140 int (*pte_hole)(unsigned long addr, unsigned long next, 1141 struct mm_walk *walk); 1142 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask, 1143 unsigned long addr, unsigned long next, 1144 struct mm_walk *walk); 1145 int (*test_walk)(unsigned long addr, unsigned long next, 1146 struct mm_walk *walk); 1147 struct mm_struct *mm; 1148 struct vm_area_struct *vma; 1149 void *private; 1150 }; 1151 1152 int walk_page_range(unsigned long addr, unsigned long end, 1153 struct mm_walk *walk); 1154 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk); 1155 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1156 unsigned long end, unsigned long floor, unsigned long ceiling); 1157 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1158 struct vm_area_struct *vma); 1159 void unmap_mapping_range(struct address_space *mapping, 1160 loff_t const holebegin, loff_t const holelen, int even_cows); 1161 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1162 unsigned long *pfn); 1163 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1164 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1165 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1166 void *buf, int len, int write); 1167 1168 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1169 loff_t const holebegin, loff_t const holelen) 1170 { 1171 unmap_mapping_range(mapping, holebegin, holelen, 0); 1172 } 1173 1174 extern void truncate_pagecache(struct inode *inode, loff_t new); 1175 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1176 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1177 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1178 int truncate_inode_page(struct address_space *mapping, struct page *page); 1179 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1180 int invalidate_inode_page(struct page *page); 1181 1182 #ifdef CONFIG_MMU 1183 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, 1184 unsigned long address, unsigned int flags); 1185 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1186 unsigned long address, unsigned int fault_flags); 1187 #else 1188 static inline int handle_mm_fault(struct mm_struct *mm, 1189 struct vm_area_struct *vma, unsigned long address, 1190 unsigned int flags) 1191 { 1192 /* should never happen if there's no MMU */ 1193 BUG(); 1194 return VM_FAULT_SIGBUS; 1195 } 1196 static inline int fixup_user_fault(struct task_struct *tsk, 1197 struct mm_struct *mm, unsigned long address, 1198 unsigned int fault_flags) 1199 { 1200 /* should never happen if there's no MMU */ 1201 BUG(); 1202 return -EFAULT; 1203 } 1204 #endif 1205 1206 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); 1207 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1208 void *buf, int len, int write); 1209 1210 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1211 unsigned long start, unsigned long nr_pages, 1212 unsigned int foll_flags, struct page **pages, 1213 struct vm_area_struct **vmas, int *nonblocking); 1214 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm, 1215 unsigned long start, unsigned long nr_pages, 1216 int write, int force, struct page **pages, 1217 struct vm_area_struct **vmas); 1218 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm, 1219 unsigned long start, unsigned long nr_pages, 1220 int write, int force, struct page **pages, 1221 int *locked); 1222 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1223 unsigned long start, unsigned long nr_pages, 1224 int write, int force, struct page **pages, 1225 unsigned int gup_flags); 1226 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm, 1227 unsigned long start, unsigned long nr_pages, 1228 int write, int force, struct page **pages); 1229 int get_user_pages_fast(unsigned long start, int nr_pages, int write, 1230 struct page **pages); 1231 struct kvec; 1232 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1233 struct page **pages); 1234 int get_kernel_page(unsigned long start, int write, struct page **pages); 1235 struct page *get_dump_page(unsigned long addr); 1236 1237 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1238 extern void do_invalidatepage(struct page *page, unsigned int offset, 1239 unsigned int length); 1240 1241 int __set_page_dirty_nobuffers(struct page *page); 1242 int __set_page_dirty_no_writeback(struct page *page); 1243 int redirty_page_for_writepage(struct writeback_control *wbc, 1244 struct page *page); 1245 void account_page_dirtied(struct page *page, struct address_space *mapping, 1246 struct mem_cgroup *memcg); 1247 void account_page_cleaned(struct page *page, struct address_space *mapping, 1248 struct mem_cgroup *memcg, struct bdi_writeback *wb); 1249 int set_page_dirty(struct page *page); 1250 int set_page_dirty_lock(struct page *page); 1251 void cancel_dirty_page(struct page *page); 1252 int clear_page_dirty_for_io(struct page *page); 1253 1254 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1255 1256 /* Is the vma a continuation of the stack vma above it? */ 1257 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr) 1258 { 1259 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN); 1260 } 1261 1262 static inline int stack_guard_page_start(struct vm_area_struct *vma, 1263 unsigned long addr) 1264 { 1265 return (vma->vm_flags & VM_GROWSDOWN) && 1266 (vma->vm_start == addr) && 1267 !vma_growsdown(vma->vm_prev, addr); 1268 } 1269 1270 /* Is the vma a continuation of the stack vma below it? */ 1271 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr) 1272 { 1273 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP); 1274 } 1275 1276 static inline int stack_guard_page_end(struct vm_area_struct *vma, 1277 unsigned long addr) 1278 { 1279 return (vma->vm_flags & VM_GROWSUP) && 1280 (vma->vm_end == addr) && 1281 !vma_growsup(vma->vm_next, addr); 1282 } 1283 1284 extern struct task_struct *task_of_stack(struct task_struct *task, 1285 struct vm_area_struct *vma, bool in_group); 1286 1287 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1288 unsigned long old_addr, struct vm_area_struct *new_vma, 1289 unsigned long new_addr, unsigned long len, 1290 bool need_rmap_locks); 1291 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1292 unsigned long end, pgprot_t newprot, 1293 int dirty_accountable, int prot_numa); 1294 extern int mprotect_fixup(struct vm_area_struct *vma, 1295 struct vm_area_struct **pprev, unsigned long start, 1296 unsigned long end, unsigned long newflags); 1297 1298 /* 1299 * doesn't attempt to fault and will return short. 1300 */ 1301 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1302 struct page **pages); 1303 /* 1304 * per-process(per-mm_struct) statistics. 1305 */ 1306 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1307 { 1308 long val = atomic_long_read(&mm->rss_stat.count[member]); 1309 1310 #ifdef SPLIT_RSS_COUNTING 1311 /* 1312 * counter is updated in asynchronous manner and may go to minus. 1313 * But it's never be expected number for users. 1314 */ 1315 if (val < 0) 1316 val = 0; 1317 #endif 1318 return (unsigned long)val; 1319 } 1320 1321 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1322 { 1323 atomic_long_add(value, &mm->rss_stat.count[member]); 1324 } 1325 1326 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1327 { 1328 atomic_long_inc(&mm->rss_stat.count[member]); 1329 } 1330 1331 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1332 { 1333 atomic_long_dec(&mm->rss_stat.count[member]); 1334 } 1335 1336 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1337 { 1338 return get_mm_counter(mm, MM_FILEPAGES) + 1339 get_mm_counter(mm, MM_ANONPAGES); 1340 } 1341 1342 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1343 { 1344 return max(mm->hiwater_rss, get_mm_rss(mm)); 1345 } 1346 1347 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1348 { 1349 return max(mm->hiwater_vm, mm->total_vm); 1350 } 1351 1352 static inline void update_hiwater_rss(struct mm_struct *mm) 1353 { 1354 unsigned long _rss = get_mm_rss(mm); 1355 1356 if ((mm)->hiwater_rss < _rss) 1357 (mm)->hiwater_rss = _rss; 1358 } 1359 1360 static inline void update_hiwater_vm(struct mm_struct *mm) 1361 { 1362 if (mm->hiwater_vm < mm->total_vm) 1363 mm->hiwater_vm = mm->total_vm; 1364 } 1365 1366 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1367 { 1368 mm->hiwater_rss = get_mm_rss(mm); 1369 } 1370 1371 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1372 struct mm_struct *mm) 1373 { 1374 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1375 1376 if (*maxrss < hiwater_rss) 1377 *maxrss = hiwater_rss; 1378 } 1379 1380 #if defined(SPLIT_RSS_COUNTING) 1381 void sync_mm_rss(struct mm_struct *mm); 1382 #else 1383 static inline void sync_mm_rss(struct mm_struct *mm) 1384 { 1385 } 1386 #endif 1387 1388 int vma_wants_writenotify(struct vm_area_struct *vma); 1389 1390 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1391 spinlock_t **ptl); 1392 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1393 spinlock_t **ptl) 1394 { 1395 pte_t *ptep; 1396 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1397 return ptep; 1398 } 1399 1400 #ifdef __PAGETABLE_PUD_FOLDED 1401 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, 1402 unsigned long address) 1403 { 1404 return 0; 1405 } 1406 #else 1407 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1408 #endif 1409 1410 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1411 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1412 unsigned long address) 1413 { 1414 return 0; 1415 } 1416 1417 static inline void mm_nr_pmds_init(struct mm_struct *mm) {} 1418 1419 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1420 { 1421 return 0; 1422 } 1423 1424 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1425 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1426 1427 #else 1428 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1429 1430 static inline void mm_nr_pmds_init(struct mm_struct *mm) 1431 { 1432 atomic_long_set(&mm->nr_pmds, 0); 1433 } 1434 1435 static inline unsigned long mm_nr_pmds(struct mm_struct *mm) 1436 { 1437 return atomic_long_read(&mm->nr_pmds); 1438 } 1439 1440 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1441 { 1442 atomic_long_inc(&mm->nr_pmds); 1443 } 1444 1445 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1446 { 1447 atomic_long_dec(&mm->nr_pmds); 1448 } 1449 #endif 1450 1451 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma, 1452 pmd_t *pmd, unsigned long address); 1453 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); 1454 1455 /* 1456 * The following ifdef needed to get the 4level-fixup.h header to work. 1457 * Remove it when 4level-fixup.h has been removed. 1458 */ 1459 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) 1460 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) 1461 { 1462 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? 1463 NULL: pud_offset(pgd, address); 1464 } 1465 1466 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1467 { 1468 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1469 NULL: pmd_offset(pud, address); 1470 } 1471 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ 1472 1473 #if USE_SPLIT_PTE_PTLOCKS 1474 #if ALLOC_SPLIT_PTLOCKS 1475 void __init ptlock_cache_init(void); 1476 extern bool ptlock_alloc(struct page *page); 1477 extern void ptlock_free(struct page *page); 1478 1479 static inline spinlock_t *ptlock_ptr(struct page *page) 1480 { 1481 return page->ptl; 1482 } 1483 #else /* ALLOC_SPLIT_PTLOCKS */ 1484 static inline void ptlock_cache_init(void) 1485 { 1486 } 1487 1488 static inline bool ptlock_alloc(struct page *page) 1489 { 1490 return true; 1491 } 1492 1493 static inline void ptlock_free(struct page *page) 1494 { 1495 } 1496 1497 static inline spinlock_t *ptlock_ptr(struct page *page) 1498 { 1499 return &page->ptl; 1500 } 1501 #endif /* ALLOC_SPLIT_PTLOCKS */ 1502 1503 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1504 { 1505 return ptlock_ptr(pmd_page(*pmd)); 1506 } 1507 1508 static inline bool ptlock_init(struct page *page) 1509 { 1510 /* 1511 * prep_new_page() initialize page->private (and therefore page->ptl) 1512 * with 0. Make sure nobody took it in use in between. 1513 * 1514 * It can happen if arch try to use slab for page table allocation: 1515 * slab code uses page->slab_cache and page->first_page (for tail 1516 * pages), which share storage with page->ptl. 1517 */ 1518 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1519 if (!ptlock_alloc(page)) 1520 return false; 1521 spin_lock_init(ptlock_ptr(page)); 1522 return true; 1523 } 1524 1525 /* Reset page->mapping so free_pages_check won't complain. */ 1526 static inline void pte_lock_deinit(struct page *page) 1527 { 1528 page->mapping = NULL; 1529 ptlock_free(page); 1530 } 1531 1532 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1533 /* 1534 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1535 */ 1536 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1537 { 1538 return &mm->page_table_lock; 1539 } 1540 static inline void ptlock_cache_init(void) {} 1541 static inline bool ptlock_init(struct page *page) { return true; } 1542 static inline void pte_lock_deinit(struct page *page) {} 1543 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1544 1545 static inline void pgtable_init(void) 1546 { 1547 ptlock_cache_init(); 1548 pgtable_cache_init(); 1549 } 1550 1551 static inline bool pgtable_page_ctor(struct page *page) 1552 { 1553 inc_zone_page_state(page, NR_PAGETABLE); 1554 return ptlock_init(page); 1555 } 1556 1557 static inline void pgtable_page_dtor(struct page *page) 1558 { 1559 pte_lock_deinit(page); 1560 dec_zone_page_state(page, NR_PAGETABLE); 1561 } 1562 1563 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1564 ({ \ 1565 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1566 pte_t *__pte = pte_offset_map(pmd, address); \ 1567 *(ptlp) = __ptl; \ 1568 spin_lock(__ptl); \ 1569 __pte; \ 1570 }) 1571 1572 #define pte_unmap_unlock(pte, ptl) do { \ 1573 spin_unlock(ptl); \ 1574 pte_unmap(pte); \ 1575 } while (0) 1576 1577 #define pte_alloc_map(mm, vma, pmd, address) \ 1578 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \ 1579 pmd, address))? \ 1580 NULL: pte_offset_map(pmd, address)) 1581 1582 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1583 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \ 1584 pmd, address))? \ 1585 NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) 1586 1587 #define pte_alloc_kernel(pmd, address) \ 1588 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ 1589 NULL: pte_offset_kernel(pmd, address)) 1590 1591 #if USE_SPLIT_PMD_PTLOCKS 1592 1593 static struct page *pmd_to_page(pmd_t *pmd) 1594 { 1595 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1596 return virt_to_page((void *)((unsigned long) pmd & mask)); 1597 } 1598 1599 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1600 { 1601 return ptlock_ptr(pmd_to_page(pmd)); 1602 } 1603 1604 static inline bool pgtable_pmd_page_ctor(struct page *page) 1605 { 1606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1607 page->pmd_huge_pte = NULL; 1608 #endif 1609 return ptlock_init(page); 1610 } 1611 1612 static inline void pgtable_pmd_page_dtor(struct page *page) 1613 { 1614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 1615 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 1616 #endif 1617 ptlock_free(page); 1618 } 1619 1620 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 1621 1622 #else 1623 1624 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1625 { 1626 return &mm->page_table_lock; 1627 } 1628 1629 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 1630 static inline void pgtable_pmd_page_dtor(struct page *page) {} 1631 1632 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 1633 1634 #endif 1635 1636 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 1637 { 1638 spinlock_t *ptl = pmd_lockptr(mm, pmd); 1639 spin_lock(ptl); 1640 return ptl; 1641 } 1642 1643 extern void free_area_init(unsigned long * zones_size); 1644 extern void free_area_init_node(int nid, unsigned long * zones_size, 1645 unsigned long zone_start_pfn, unsigned long *zholes_size); 1646 extern void free_initmem(void); 1647 1648 /* 1649 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 1650 * into the buddy system. The freed pages will be poisoned with pattern 1651 * "poison" if it's within range [0, UCHAR_MAX]. 1652 * Return pages freed into the buddy system. 1653 */ 1654 extern unsigned long free_reserved_area(void *start, void *end, 1655 int poison, char *s); 1656 1657 #ifdef CONFIG_HIGHMEM 1658 /* 1659 * Free a highmem page into the buddy system, adjusting totalhigh_pages 1660 * and totalram_pages. 1661 */ 1662 extern void free_highmem_page(struct page *page); 1663 #endif 1664 1665 extern void adjust_managed_page_count(struct page *page, long count); 1666 extern void mem_init_print_info(const char *str); 1667 1668 extern void reserve_bootmem_region(unsigned long start, unsigned long end); 1669 1670 /* Free the reserved page into the buddy system, so it gets managed. */ 1671 static inline void __free_reserved_page(struct page *page) 1672 { 1673 ClearPageReserved(page); 1674 init_page_count(page); 1675 __free_page(page); 1676 } 1677 1678 static inline void free_reserved_page(struct page *page) 1679 { 1680 __free_reserved_page(page); 1681 adjust_managed_page_count(page, 1); 1682 } 1683 1684 static inline void mark_page_reserved(struct page *page) 1685 { 1686 SetPageReserved(page); 1687 adjust_managed_page_count(page, -1); 1688 } 1689 1690 /* 1691 * Default method to free all the __init memory into the buddy system. 1692 * The freed pages will be poisoned with pattern "poison" if it's within 1693 * range [0, UCHAR_MAX]. 1694 * Return pages freed into the buddy system. 1695 */ 1696 static inline unsigned long free_initmem_default(int poison) 1697 { 1698 extern char __init_begin[], __init_end[]; 1699 1700 return free_reserved_area(&__init_begin, &__init_end, 1701 poison, "unused kernel"); 1702 } 1703 1704 static inline unsigned long get_num_physpages(void) 1705 { 1706 int nid; 1707 unsigned long phys_pages = 0; 1708 1709 for_each_online_node(nid) 1710 phys_pages += node_present_pages(nid); 1711 1712 return phys_pages; 1713 } 1714 1715 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 1716 /* 1717 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 1718 * zones, allocate the backing mem_map and account for memory holes in a more 1719 * architecture independent manner. This is a substitute for creating the 1720 * zone_sizes[] and zholes_size[] arrays and passing them to 1721 * free_area_init_node() 1722 * 1723 * An architecture is expected to register range of page frames backed by 1724 * physical memory with memblock_add[_node]() before calling 1725 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 1726 * usage, an architecture is expected to do something like 1727 * 1728 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 1729 * max_highmem_pfn}; 1730 * for_each_valid_physical_page_range() 1731 * memblock_add_node(base, size, nid) 1732 * free_area_init_nodes(max_zone_pfns); 1733 * 1734 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 1735 * registered physical page range. Similarly 1736 * sparse_memory_present_with_active_regions() calls memory_present() for 1737 * each range when SPARSEMEM is enabled. 1738 * 1739 * See mm/page_alloc.c for more information on each function exposed by 1740 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 1741 */ 1742 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 1743 unsigned long node_map_pfn_alignment(void); 1744 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 1745 unsigned long end_pfn); 1746 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 1747 unsigned long end_pfn); 1748 extern void get_pfn_range_for_nid(unsigned int nid, 1749 unsigned long *start_pfn, unsigned long *end_pfn); 1750 extern unsigned long find_min_pfn_with_active_regions(void); 1751 extern void free_bootmem_with_active_regions(int nid, 1752 unsigned long max_low_pfn); 1753 extern void sparse_memory_present_with_active_regions(int nid); 1754 1755 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 1756 1757 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 1758 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 1759 static inline int __early_pfn_to_nid(unsigned long pfn, 1760 struct mminit_pfnnid_cache *state) 1761 { 1762 return 0; 1763 } 1764 #else 1765 /* please see mm/page_alloc.c */ 1766 extern int __meminit early_pfn_to_nid(unsigned long pfn); 1767 /* there is a per-arch backend function. */ 1768 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 1769 struct mminit_pfnnid_cache *state); 1770 #endif 1771 1772 extern void set_dma_reserve(unsigned long new_dma_reserve); 1773 extern void memmap_init_zone(unsigned long, int, unsigned long, 1774 unsigned long, enum memmap_context); 1775 extern void setup_per_zone_wmarks(void); 1776 extern int __meminit init_per_zone_wmark_min(void); 1777 extern void mem_init(void); 1778 extern void __init mmap_init(void); 1779 extern void show_mem(unsigned int flags); 1780 extern void si_meminfo(struct sysinfo * val); 1781 extern void si_meminfo_node(struct sysinfo *val, int nid); 1782 1783 extern __printf(3, 4) 1784 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...); 1785 1786 extern void setup_per_cpu_pageset(void); 1787 1788 extern void zone_pcp_update(struct zone *zone); 1789 extern void zone_pcp_reset(struct zone *zone); 1790 1791 /* page_alloc.c */ 1792 extern int min_free_kbytes; 1793 1794 /* nommu.c */ 1795 extern atomic_long_t mmap_pages_allocated; 1796 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 1797 1798 /* interval_tree.c */ 1799 void vma_interval_tree_insert(struct vm_area_struct *node, 1800 struct rb_root *root); 1801 void vma_interval_tree_insert_after(struct vm_area_struct *node, 1802 struct vm_area_struct *prev, 1803 struct rb_root *root); 1804 void vma_interval_tree_remove(struct vm_area_struct *node, 1805 struct rb_root *root); 1806 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root, 1807 unsigned long start, unsigned long last); 1808 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 1809 unsigned long start, unsigned long last); 1810 1811 #define vma_interval_tree_foreach(vma, root, start, last) \ 1812 for (vma = vma_interval_tree_iter_first(root, start, last); \ 1813 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 1814 1815 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 1816 struct rb_root *root); 1817 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 1818 struct rb_root *root); 1819 struct anon_vma_chain *anon_vma_interval_tree_iter_first( 1820 struct rb_root *root, unsigned long start, unsigned long last); 1821 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 1822 struct anon_vma_chain *node, unsigned long start, unsigned long last); 1823 #ifdef CONFIG_DEBUG_VM_RB 1824 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 1825 #endif 1826 1827 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 1828 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 1829 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 1830 1831 /* mmap.c */ 1832 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 1833 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start, 1834 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); 1835 extern struct vm_area_struct *vma_merge(struct mm_struct *, 1836 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 1837 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 1838 struct mempolicy *, struct vm_userfaultfd_ctx); 1839 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 1840 extern int split_vma(struct mm_struct *, 1841 struct vm_area_struct *, unsigned long addr, int new_below); 1842 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 1843 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 1844 struct rb_node **, struct rb_node *); 1845 extern void unlink_file_vma(struct vm_area_struct *); 1846 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 1847 unsigned long addr, unsigned long len, pgoff_t pgoff, 1848 bool *need_rmap_locks); 1849 extern void exit_mmap(struct mm_struct *); 1850 1851 static inline int check_data_rlimit(unsigned long rlim, 1852 unsigned long new, 1853 unsigned long start, 1854 unsigned long end_data, 1855 unsigned long start_data) 1856 { 1857 if (rlim < RLIM_INFINITY) { 1858 if (((new - start) + (end_data - start_data)) > rlim) 1859 return -ENOSPC; 1860 } 1861 1862 return 0; 1863 } 1864 1865 extern int mm_take_all_locks(struct mm_struct *mm); 1866 extern void mm_drop_all_locks(struct mm_struct *mm); 1867 1868 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 1869 extern struct file *get_mm_exe_file(struct mm_struct *mm); 1870 1871 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); 1872 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 1873 unsigned long addr, unsigned long len, 1874 unsigned long flags, 1875 const struct vm_special_mapping *spec); 1876 /* This is an obsolete alternative to _install_special_mapping. */ 1877 extern int install_special_mapping(struct mm_struct *mm, 1878 unsigned long addr, unsigned long len, 1879 unsigned long flags, struct page **pages); 1880 1881 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 1882 1883 extern unsigned long mmap_region(struct file *file, unsigned long addr, 1884 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff); 1885 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, 1886 unsigned long len, unsigned long prot, unsigned long flags, 1887 unsigned long pgoff, unsigned long *populate); 1888 extern int do_munmap(struct mm_struct *, unsigned long, size_t); 1889 1890 #ifdef CONFIG_MMU 1891 extern int __mm_populate(unsigned long addr, unsigned long len, 1892 int ignore_errors); 1893 static inline void mm_populate(unsigned long addr, unsigned long len) 1894 { 1895 /* Ignore errors */ 1896 (void) __mm_populate(addr, len, 1); 1897 } 1898 #else 1899 static inline void mm_populate(unsigned long addr, unsigned long len) {} 1900 #endif 1901 1902 /* These take the mm semaphore themselves */ 1903 extern unsigned long vm_brk(unsigned long, unsigned long); 1904 extern int vm_munmap(unsigned long, size_t); 1905 extern unsigned long vm_mmap(struct file *, unsigned long, 1906 unsigned long, unsigned long, 1907 unsigned long, unsigned long); 1908 1909 struct vm_unmapped_area_info { 1910 #define VM_UNMAPPED_AREA_TOPDOWN 1 1911 unsigned long flags; 1912 unsigned long length; 1913 unsigned long low_limit; 1914 unsigned long high_limit; 1915 unsigned long align_mask; 1916 unsigned long align_offset; 1917 }; 1918 1919 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 1920 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 1921 1922 /* 1923 * Search for an unmapped address range. 1924 * 1925 * We are looking for a range that: 1926 * - does not intersect with any VMA; 1927 * - is contained within the [low_limit, high_limit) interval; 1928 * - is at least the desired size. 1929 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 1930 */ 1931 static inline unsigned long 1932 vm_unmapped_area(struct vm_unmapped_area_info *info) 1933 { 1934 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 1935 return unmapped_area_topdown(info); 1936 else 1937 return unmapped_area(info); 1938 } 1939 1940 /* truncate.c */ 1941 extern void truncate_inode_pages(struct address_space *, loff_t); 1942 extern void truncate_inode_pages_range(struct address_space *, 1943 loff_t lstart, loff_t lend); 1944 extern void truncate_inode_pages_final(struct address_space *); 1945 1946 /* generic vm_area_ops exported for stackable file systems */ 1947 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); 1948 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf); 1949 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf); 1950 1951 /* mm/page-writeback.c */ 1952 int write_one_page(struct page *page, int wait); 1953 void task_dirty_inc(struct task_struct *tsk); 1954 1955 /* readahead.c */ 1956 #define VM_MAX_READAHEAD 128 /* kbytes */ 1957 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */ 1958 1959 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 1960 pgoff_t offset, unsigned long nr_to_read); 1961 1962 void page_cache_sync_readahead(struct address_space *mapping, 1963 struct file_ra_state *ra, 1964 struct file *filp, 1965 pgoff_t offset, 1966 unsigned long size); 1967 1968 void page_cache_async_readahead(struct address_space *mapping, 1969 struct file_ra_state *ra, 1970 struct file *filp, 1971 struct page *pg, 1972 pgoff_t offset, 1973 unsigned long size); 1974 1975 unsigned long max_sane_readahead(unsigned long nr); 1976 1977 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 1978 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 1979 1980 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 1981 extern int expand_downwards(struct vm_area_struct *vma, 1982 unsigned long address); 1983 #if VM_GROWSUP 1984 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 1985 #else 1986 #define expand_upwards(vma, address) (0) 1987 #endif 1988 1989 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 1990 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 1991 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 1992 struct vm_area_struct **pprev); 1993 1994 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 1995 NULL if none. Assume start_addr < end_addr. */ 1996 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 1997 { 1998 struct vm_area_struct * vma = find_vma(mm,start_addr); 1999 2000 if (vma && end_addr <= vma->vm_start) 2001 vma = NULL; 2002 return vma; 2003 } 2004 2005 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2006 { 2007 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2008 } 2009 2010 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2011 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2012 unsigned long vm_start, unsigned long vm_end) 2013 { 2014 struct vm_area_struct *vma = find_vma(mm, vm_start); 2015 2016 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2017 vma = NULL; 2018 2019 return vma; 2020 } 2021 2022 #ifdef CONFIG_MMU 2023 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2024 void vma_set_page_prot(struct vm_area_struct *vma); 2025 #else 2026 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2027 { 2028 return __pgprot(0); 2029 } 2030 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2031 { 2032 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2033 } 2034 #endif 2035 2036 #ifdef CONFIG_NUMA_BALANCING 2037 unsigned long change_prot_numa(struct vm_area_struct *vma, 2038 unsigned long start, unsigned long end); 2039 #endif 2040 2041 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2042 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2043 unsigned long pfn, unsigned long size, pgprot_t); 2044 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2045 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2046 unsigned long pfn); 2047 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2048 unsigned long pfn); 2049 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2050 2051 2052 struct page *follow_page_mask(struct vm_area_struct *vma, 2053 unsigned long address, unsigned int foll_flags, 2054 unsigned int *page_mask); 2055 2056 static inline struct page *follow_page(struct vm_area_struct *vma, 2057 unsigned long address, unsigned int foll_flags) 2058 { 2059 unsigned int unused_page_mask; 2060 return follow_page_mask(vma, address, foll_flags, &unused_page_mask); 2061 } 2062 2063 #define FOLL_WRITE 0x01 /* check pte is writable */ 2064 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2065 #define FOLL_GET 0x04 /* do get_page on page */ 2066 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2067 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2068 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2069 * and return without waiting upon it */ 2070 #define FOLL_POPULATE 0x40 /* fault in page */ 2071 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2072 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2073 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2074 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2075 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2076 2077 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr, 2078 void *data); 2079 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2080 unsigned long size, pte_fn_t fn, void *data); 2081 2082 #ifdef CONFIG_PROC_FS 2083 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); 2084 #else 2085 static inline void vm_stat_account(struct mm_struct *mm, 2086 unsigned long flags, struct file *file, long pages) 2087 { 2088 mm->total_vm += pages; 2089 } 2090 #endif /* CONFIG_PROC_FS */ 2091 2092 #ifdef CONFIG_DEBUG_PAGEALLOC 2093 extern bool _debug_pagealloc_enabled; 2094 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2095 2096 static inline bool debug_pagealloc_enabled(void) 2097 { 2098 return _debug_pagealloc_enabled; 2099 } 2100 2101 static inline void 2102 kernel_map_pages(struct page *page, int numpages, int enable) 2103 { 2104 if (!debug_pagealloc_enabled()) 2105 return; 2106 2107 __kernel_map_pages(page, numpages, enable); 2108 } 2109 #ifdef CONFIG_HIBERNATION 2110 extern bool kernel_page_present(struct page *page); 2111 #endif /* CONFIG_HIBERNATION */ 2112 #else 2113 static inline void 2114 kernel_map_pages(struct page *page, int numpages, int enable) {} 2115 #ifdef CONFIG_HIBERNATION 2116 static inline bool kernel_page_present(struct page *page) { return true; } 2117 #endif /* CONFIG_HIBERNATION */ 2118 #endif 2119 2120 #ifdef __HAVE_ARCH_GATE_AREA 2121 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2122 extern int in_gate_area_no_mm(unsigned long addr); 2123 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2124 #else 2125 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2126 { 2127 return NULL; 2128 } 2129 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2130 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2131 { 2132 return 0; 2133 } 2134 #endif /* __HAVE_ARCH_GATE_AREA */ 2135 2136 #ifdef CONFIG_SYSCTL 2137 extern int sysctl_drop_caches; 2138 int drop_caches_sysctl_handler(struct ctl_table *, int, 2139 void __user *, size_t *, loff_t *); 2140 #endif 2141 2142 void drop_slab(void); 2143 void drop_slab_node(int nid); 2144 2145 #ifndef CONFIG_MMU 2146 #define randomize_va_space 0 2147 #else 2148 extern int randomize_va_space; 2149 #endif 2150 2151 const char * arch_vma_name(struct vm_area_struct *vma); 2152 void print_vma_addr(char *prefix, unsigned long rip); 2153 2154 void sparse_mem_maps_populate_node(struct page **map_map, 2155 unsigned long pnum_begin, 2156 unsigned long pnum_end, 2157 unsigned long map_count, 2158 int nodeid); 2159 2160 struct page *sparse_mem_map_populate(unsigned long pnum, int nid); 2161 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2162 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); 2163 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2164 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2165 void *vmemmap_alloc_block(unsigned long size, int node); 2166 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2167 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2168 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2169 int node); 2170 int vmemmap_populate(unsigned long start, unsigned long end, int node); 2171 void vmemmap_populate_print_last(void); 2172 #ifdef CONFIG_MEMORY_HOTPLUG 2173 void vmemmap_free(unsigned long start, unsigned long end); 2174 #endif 2175 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2176 unsigned long size); 2177 2178 enum mf_flags { 2179 MF_COUNT_INCREASED = 1 << 0, 2180 MF_ACTION_REQUIRED = 1 << 1, 2181 MF_MUST_KILL = 1 << 2, 2182 MF_SOFT_OFFLINE = 1 << 3, 2183 }; 2184 extern int memory_failure(unsigned long pfn, int trapno, int flags); 2185 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags); 2186 extern int unpoison_memory(unsigned long pfn); 2187 extern int get_hwpoison_page(struct page *page); 2188 extern int sysctl_memory_failure_early_kill; 2189 extern int sysctl_memory_failure_recovery; 2190 extern void shake_page(struct page *p, int access); 2191 extern atomic_long_t num_poisoned_pages; 2192 extern int soft_offline_page(struct page *page, int flags); 2193 2194 2195 /* 2196 * Error handlers for various types of pages. 2197 */ 2198 enum mf_result { 2199 MF_IGNORED, /* Error: cannot be handled */ 2200 MF_FAILED, /* Error: handling failed */ 2201 MF_DELAYED, /* Will be handled later */ 2202 MF_RECOVERED, /* Successfully recovered */ 2203 }; 2204 2205 enum mf_action_page_type { 2206 MF_MSG_KERNEL, 2207 MF_MSG_KERNEL_HIGH_ORDER, 2208 MF_MSG_SLAB, 2209 MF_MSG_DIFFERENT_COMPOUND, 2210 MF_MSG_POISONED_HUGE, 2211 MF_MSG_HUGE, 2212 MF_MSG_FREE_HUGE, 2213 MF_MSG_UNMAP_FAILED, 2214 MF_MSG_DIRTY_SWAPCACHE, 2215 MF_MSG_CLEAN_SWAPCACHE, 2216 MF_MSG_DIRTY_MLOCKED_LRU, 2217 MF_MSG_CLEAN_MLOCKED_LRU, 2218 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2219 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2220 MF_MSG_DIRTY_LRU, 2221 MF_MSG_CLEAN_LRU, 2222 MF_MSG_TRUNCATED_LRU, 2223 MF_MSG_BUDDY, 2224 MF_MSG_BUDDY_2ND, 2225 MF_MSG_UNKNOWN, 2226 }; 2227 2228 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2229 extern void clear_huge_page(struct page *page, 2230 unsigned long addr, 2231 unsigned int pages_per_huge_page); 2232 extern void copy_user_huge_page(struct page *dst, struct page *src, 2233 unsigned long addr, struct vm_area_struct *vma, 2234 unsigned int pages_per_huge_page); 2235 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2236 2237 extern struct page_ext_operations debug_guardpage_ops; 2238 extern struct page_ext_operations page_poisoning_ops; 2239 2240 #ifdef CONFIG_DEBUG_PAGEALLOC 2241 extern unsigned int _debug_guardpage_minorder; 2242 extern bool _debug_guardpage_enabled; 2243 2244 static inline unsigned int debug_guardpage_minorder(void) 2245 { 2246 return _debug_guardpage_minorder; 2247 } 2248 2249 static inline bool debug_guardpage_enabled(void) 2250 { 2251 return _debug_guardpage_enabled; 2252 } 2253 2254 static inline bool page_is_guard(struct page *page) 2255 { 2256 struct page_ext *page_ext; 2257 2258 if (!debug_guardpage_enabled()) 2259 return false; 2260 2261 page_ext = lookup_page_ext(page); 2262 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 2263 } 2264 #else 2265 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2266 static inline bool debug_guardpage_enabled(void) { return false; } 2267 static inline bool page_is_guard(struct page *page) { return false; } 2268 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2269 2270 #if MAX_NUMNODES > 1 2271 void __init setup_nr_node_ids(void); 2272 #else 2273 static inline void setup_nr_node_ids(void) {} 2274 #endif 2275 2276 #endif /* __KERNEL__ */ 2277 #endif /* _LINUX_MM_H */ 2278