xref: /linux-6.15/include/linux/mm.h (revision c7e1e3cc)
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
3 
4 #include <linux/errno.h>
5 
6 #ifdef __KERNEL__
7 
8 #include <linux/mmdebug.h>
9 #include <linux/gfp.h>
10 #include <linux/bug.h>
11 #include <linux/list.h>
12 #include <linux/mmzone.h>
13 #include <linux/rbtree.h>
14 #include <linux/atomic.h>
15 #include <linux/debug_locks.h>
16 #include <linux/mm_types.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 
24 struct mempolicy;
25 struct anon_vma;
26 struct anon_vma_chain;
27 struct file_ra_state;
28 struct user_struct;
29 struct writeback_control;
30 struct bdi_writeback;
31 
32 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
33 extern unsigned long max_mapnr;
34 
35 static inline void set_max_mapnr(unsigned long limit)
36 {
37 	max_mapnr = limit;
38 }
39 #else
40 static inline void set_max_mapnr(unsigned long limit) { }
41 #endif
42 
43 extern unsigned long totalram_pages;
44 extern void * high_memory;
45 extern int page_cluster;
46 
47 #ifdef CONFIG_SYSCTL
48 extern int sysctl_legacy_va_layout;
49 #else
50 #define sysctl_legacy_va_layout 0
51 #endif
52 
53 #include <asm/page.h>
54 #include <asm/pgtable.h>
55 #include <asm/processor.h>
56 
57 #ifndef __pa_symbol
58 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
59 #endif
60 
61 /*
62  * To prevent common memory management code establishing
63  * a zero page mapping on a read fault.
64  * This macro should be defined within <asm/pgtable.h>.
65  * s390 does this to prevent multiplexing of hardware bits
66  * related to the physical page in case of virtualization.
67  */
68 #ifndef mm_forbids_zeropage
69 #define mm_forbids_zeropage(X)	(0)
70 #endif
71 
72 extern unsigned long sysctl_user_reserve_kbytes;
73 extern unsigned long sysctl_admin_reserve_kbytes;
74 
75 extern int sysctl_overcommit_memory;
76 extern int sysctl_overcommit_ratio;
77 extern unsigned long sysctl_overcommit_kbytes;
78 
79 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
80 				    size_t *, loff_t *);
81 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
82 				    size_t *, loff_t *);
83 
84 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
85 
86 /* to align the pointer to the (next) page boundary */
87 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
88 
89 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
90 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
91 
92 /*
93  * Linux kernel virtual memory manager primitives.
94  * The idea being to have a "virtual" mm in the same way
95  * we have a virtual fs - giving a cleaner interface to the
96  * mm details, and allowing different kinds of memory mappings
97  * (from shared memory to executable loading to arbitrary
98  * mmap() functions).
99  */
100 
101 extern struct kmem_cache *vm_area_cachep;
102 
103 #ifndef CONFIG_MMU
104 extern struct rb_root nommu_region_tree;
105 extern struct rw_semaphore nommu_region_sem;
106 
107 extern unsigned int kobjsize(const void *objp);
108 #endif
109 
110 /*
111  * vm_flags in vm_area_struct, see mm_types.h.
112  */
113 #define VM_NONE		0x00000000
114 
115 #define VM_READ		0x00000001	/* currently active flags */
116 #define VM_WRITE	0x00000002
117 #define VM_EXEC		0x00000004
118 #define VM_SHARED	0x00000008
119 
120 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
121 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
122 #define VM_MAYWRITE	0x00000020
123 #define VM_MAYEXEC	0x00000040
124 #define VM_MAYSHARE	0x00000080
125 
126 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
127 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
128 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
129 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
130 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
131 
132 #define VM_LOCKED	0x00002000
133 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
134 
135 					/* Used by sys_madvise() */
136 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
137 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
138 
139 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
140 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
141 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
142 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
143 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
144 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
145 #define VM_ARCH_2	0x02000000
146 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
147 
148 #ifdef CONFIG_MEM_SOFT_DIRTY
149 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
150 #else
151 # define VM_SOFTDIRTY	0
152 #endif
153 
154 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
155 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
156 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
157 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
158 
159 #if defined(CONFIG_X86)
160 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
161 #elif defined(CONFIG_PPC)
162 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
163 #elif defined(CONFIG_PARISC)
164 # define VM_GROWSUP	VM_ARCH_1
165 #elif defined(CONFIG_METAG)
166 # define VM_GROWSUP	VM_ARCH_1
167 #elif defined(CONFIG_IA64)
168 # define VM_GROWSUP	VM_ARCH_1
169 #elif !defined(CONFIG_MMU)
170 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
171 #endif
172 
173 #if defined(CONFIG_X86)
174 /* MPX specific bounds table or bounds directory */
175 # define VM_MPX		VM_ARCH_2
176 #endif
177 
178 #ifndef VM_GROWSUP
179 # define VM_GROWSUP	VM_NONE
180 #endif
181 
182 /* Bits set in the VMA until the stack is in its final location */
183 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
184 
185 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
186 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
187 #endif
188 
189 #ifdef CONFIG_STACK_GROWSUP
190 #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
191 #else
192 #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
193 #endif
194 
195 /*
196  * Special vmas that are non-mergable, non-mlock()able.
197  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
198  */
199 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
200 
201 /* This mask defines which mm->def_flags a process can inherit its parent */
202 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
203 
204 /*
205  * mapping from the currently active vm_flags protection bits (the
206  * low four bits) to a page protection mask..
207  */
208 extern pgprot_t protection_map[16];
209 
210 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
211 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
212 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
213 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
214 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
215 #define FAULT_FLAG_TRIED	0x20	/* Second try */
216 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
217 
218 /*
219  * vm_fault is filled by the the pagefault handler and passed to the vma's
220  * ->fault function. The vma's ->fault is responsible for returning a bitmask
221  * of VM_FAULT_xxx flags that give details about how the fault was handled.
222  *
223  * pgoff should be used in favour of virtual_address, if possible.
224  */
225 struct vm_fault {
226 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
227 	pgoff_t pgoff;			/* Logical page offset based on vma */
228 	void __user *virtual_address;	/* Faulting virtual address */
229 
230 	struct page *cow_page;		/* Handler may choose to COW */
231 	struct page *page;		/* ->fault handlers should return a
232 					 * page here, unless VM_FAULT_NOPAGE
233 					 * is set (which is also implied by
234 					 * VM_FAULT_ERROR).
235 					 */
236 	/* for ->map_pages() only */
237 	pgoff_t max_pgoff;		/* map pages for offset from pgoff till
238 					 * max_pgoff inclusive */
239 	pte_t *pte;			/* pte entry associated with ->pgoff */
240 };
241 
242 /*
243  * These are the virtual MM functions - opening of an area, closing and
244  * unmapping it (needed to keep files on disk up-to-date etc), pointer
245  * to the functions called when a no-page or a wp-page exception occurs.
246  */
247 struct vm_operations_struct {
248 	void (*open)(struct vm_area_struct * area);
249 	void (*close)(struct vm_area_struct * area);
250 	int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
251 	void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
252 
253 	/* notification that a previously read-only page is about to become
254 	 * writable, if an error is returned it will cause a SIGBUS */
255 	int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
256 
257 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
258 	int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
259 
260 	/* called by access_process_vm when get_user_pages() fails, typically
261 	 * for use by special VMAs that can switch between memory and hardware
262 	 */
263 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
264 		      void *buf, int len, int write);
265 
266 	/* Called by the /proc/PID/maps code to ask the vma whether it
267 	 * has a special name.  Returning non-NULL will also cause this
268 	 * vma to be dumped unconditionally. */
269 	const char *(*name)(struct vm_area_struct *vma);
270 
271 #ifdef CONFIG_NUMA
272 	/*
273 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
274 	 * to hold the policy upon return.  Caller should pass NULL @new to
275 	 * remove a policy and fall back to surrounding context--i.e. do not
276 	 * install a MPOL_DEFAULT policy, nor the task or system default
277 	 * mempolicy.
278 	 */
279 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
280 
281 	/*
282 	 * get_policy() op must add reference [mpol_get()] to any policy at
283 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
284 	 * in mm/mempolicy.c will do this automatically.
285 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
286 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
287 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
288 	 * must return NULL--i.e., do not "fallback" to task or system default
289 	 * policy.
290 	 */
291 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
292 					unsigned long addr);
293 #endif
294 	/*
295 	 * Called by vm_normal_page() for special PTEs to find the
296 	 * page for @addr.  This is useful if the default behavior
297 	 * (using pte_page()) would not find the correct page.
298 	 */
299 	struct page *(*find_special_page)(struct vm_area_struct *vma,
300 					  unsigned long addr);
301 };
302 
303 struct mmu_gather;
304 struct inode;
305 
306 #define page_private(page)		((page)->private)
307 #define set_page_private(page, v)	((page)->private = (v))
308 
309 /* It's valid only if the page is free path or free_list */
310 static inline void set_freepage_migratetype(struct page *page, int migratetype)
311 {
312 	page->index = migratetype;
313 }
314 
315 /* It's valid only if the page is free path or free_list */
316 static inline int get_freepage_migratetype(struct page *page)
317 {
318 	return page->index;
319 }
320 
321 /*
322  * FIXME: take this include out, include page-flags.h in
323  * files which need it (119 of them)
324  */
325 #include <linux/page-flags.h>
326 #include <linux/huge_mm.h>
327 
328 /*
329  * Methods to modify the page usage count.
330  *
331  * What counts for a page usage:
332  * - cache mapping   (page->mapping)
333  * - private data    (page->private)
334  * - page mapped in a task's page tables, each mapping
335  *   is counted separately
336  *
337  * Also, many kernel routines increase the page count before a critical
338  * routine so they can be sure the page doesn't go away from under them.
339  */
340 
341 /*
342  * Drop a ref, return true if the refcount fell to zero (the page has no users)
343  */
344 static inline int put_page_testzero(struct page *page)
345 {
346 	VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
347 	return atomic_dec_and_test(&page->_count);
348 }
349 
350 /*
351  * Try to grab a ref unless the page has a refcount of zero, return false if
352  * that is the case.
353  * This can be called when MMU is off so it must not access
354  * any of the virtual mappings.
355  */
356 static inline int get_page_unless_zero(struct page *page)
357 {
358 	return atomic_inc_not_zero(&page->_count);
359 }
360 
361 /*
362  * Try to drop a ref unless the page has a refcount of one, return false if
363  * that is the case.
364  * This is to make sure that the refcount won't become zero after this drop.
365  * This can be called when MMU is off so it must not access
366  * any of the virtual mappings.
367  */
368 static inline int put_page_unless_one(struct page *page)
369 {
370 	return atomic_add_unless(&page->_count, -1, 1);
371 }
372 
373 extern int page_is_ram(unsigned long pfn);
374 extern int region_is_ram(resource_size_t phys_addr, unsigned long size);
375 
376 /* Support for virtually mapped pages */
377 struct page *vmalloc_to_page(const void *addr);
378 unsigned long vmalloc_to_pfn(const void *addr);
379 
380 /*
381  * Determine if an address is within the vmalloc range
382  *
383  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
384  * is no special casing required.
385  */
386 static inline int is_vmalloc_addr(const void *x)
387 {
388 #ifdef CONFIG_MMU
389 	unsigned long addr = (unsigned long)x;
390 
391 	return addr >= VMALLOC_START && addr < VMALLOC_END;
392 #else
393 	return 0;
394 #endif
395 }
396 #ifdef CONFIG_MMU
397 extern int is_vmalloc_or_module_addr(const void *x);
398 #else
399 static inline int is_vmalloc_or_module_addr(const void *x)
400 {
401 	return 0;
402 }
403 #endif
404 
405 extern void kvfree(const void *addr);
406 
407 static inline void compound_lock(struct page *page)
408 {
409 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
410 	VM_BUG_ON_PAGE(PageSlab(page), page);
411 	bit_spin_lock(PG_compound_lock, &page->flags);
412 #endif
413 }
414 
415 static inline void compound_unlock(struct page *page)
416 {
417 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
418 	VM_BUG_ON_PAGE(PageSlab(page), page);
419 	bit_spin_unlock(PG_compound_lock, &page->flags);
420 #endif
421 }
422 
423 static inline unsigned long compound_lock_irqsave(struct page *page)
424 {
425 	unsigned long uninitialized_var(flags);
426 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
427 	local_irq_save(flags);
428 	compound_lock(page);
429 #endif
430 	return flags;
431 }
432 
433 static inline void compound_unlock_irqrestore(struct page *page,
434 					      unsigned long flags)
435 {
436 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
437 	compound_unlock(page);
438 	local_irq_restore(flags);
439 #endif
440 }
441 
442 static inline struct page *compound_head_by_tail(struct page *tail)
443 {
444 	struct page *head = tail->first_page;
445 
446 	/*
447 	 * page->first_page may be a dangling pointer to an old
448 	 * compound page, so recheck that it is still a tail
449 	 * page before returning.
450 	 */
451 	smp_rmb();
452 	if (likely(PageTail(tail)))
453 		return head;
454 	return tail;
455 }
456 
457 /*
458  * Since either compound page could be dismantled asynchronously in THP
459  * or we access asynchronously arbitrary positioned struct page, there
460  * would be tail flag race. To handle this race, we should call
461  * smp_rmb() before checking tail flag. compound_head_by_tail() did it.
462  */
463 static inline struct page *compound_head(struct page *page)
464 {
465 	if (unlikely(PageTail(page)))
466 		return compound_head_by_tail(page);
467 	return page;
468 }
469 
470 /*
471  * If we access compound page synchronously such as access to
472  * allocated page, there is no need to handle tail flag race, so we can
473  * check tail flag directly without any synchronization primitive.
474  */
475 static inline struct page *compound_head_fast(struct page *page)
476 {
477 	if (unlikely(PageTail(page)))
478 		return page->first_page;
479 	return page;
480 }
481 
482 /*
483  * The atomic page->_mapcount, starts from -1: so that transitions
484  * both from it and to it can be tracked, using atomic_inc_and_test
485  * and atomic_add_negative(-1).
486  */
487 static inline void page_mapcount_reset(struct page *page)
488 {
489 	atomic_set(&(page)->_mapcount, -1);
490 }
491 
492 static inline int page_mapcount(struct page *page)
493 {
494 	VM_BUG_ON_PAGE(PageSlab(page), page);
495 	return atomic_read(&page->_mapcount) + 1;
496 }
497 
498 static inline int page_count(struct page *page)
499 {
500 	return atomic_read(&compound_head(page)->_count);
501 }
502 
503 static inline bool __compound_tail_refcounted(struct page *page)
504 {
505 	return PageAnon(page) && !PageSlab(page) && !PageHeadHuge(page);
506 }
507 
508 /*
509  * This takes a head page as parameter and tells if the
510  * tail page reference counting can be skipped.
511  *
512  * For this to be safe, PageSlab and PageHeadHuge must remain true on
513  * any given page where they return true here, until all tail pins
514  * have been released.
515  */
516 static inline bool compound_tail_refcounted(struct page *page)
517 {
518 	VM_BUG_ON_PAGE(!PageHead(page), page);
519 	return __compound_tail_refcounted(page);
520 }
521 
522 static inline void get_huge_page_tail(struct page *page)
523 {
524 	/*
525 	 * __split_huge_page_refcount() cannot run from under us.
526 	 */
527 	VM_BUG_ON_PAGE(!PageTail(page), page);
528 	VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
529 	VM_BUG_ON_PAGE(atomic_read(&page->_count) != 0, page);
530 	if (compound_tail_refcounted(page->first_page))
531 		atomic_inc(&page->_mapcount);
532 }
533 
534 extern bool __get_page_tail(struct page *page);
535 
536 static inline void get_page(struct page *page)
537 {
538 	if (unlikely(PageTail(page)))
539 		if (likely(__get_page_tail(page)))
540 			return;
541 	/*
542 	 * Getting a normal page or the head of a compound page
543 	 * requires to already have an elevated page->_count.
544 	 */
545 	VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
546 	atomic_inc(&page->_count);
547 }
548 
549 static inline struct page *virt_to_head_page(const void *x)
550 {
551 	struct page *page = virt_to_page(x);
552 
553 	/*
554 	 * We don't need to worry about synchronization of tail flag
555 	 * when we call virt_to_head_page() since it is only called for
556 	 * already allocated page and this page won't be freed until
557 	 * this virt_to_head_page() is finished. So use _fast variant.
558 	 */
559 	return compound_head_fast(page);
560 }
561 
562 /*
563  * Setup the page count before being freed into the page allocator for
564  * the first time (boot or memory hotplug)
565  */
566 static inline void init_page_count(struct page *page)
567 {
568 	atomic_set(&page->_count, 1);
569 }
570 
571 void put_page(struct page *page);
572 void put_pages_list(struct list_head *pages);
573 
574 void split_page(struct page *page, unsigned int order);
575 int split_free_page(struct page *page);
576 
577 /*
578  * Compound pages have a destructor function.  Provide a
579  * prototype for that function and accessor functions.
580  * These are _only_ valid on the head of a PG_compound page.
581  */
582 
583 static inline void set_compound_page_dtor(struct page *page,
584 						compound_page_dtor *dtor)
585 {
586 	page[1].compound_dtor = dtor;
587 }
588 
589 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
590 {
591 	return page[1].compound_dtor;
592 }
593 
594 static inline int compound_order(struct page *page)
595 {
596 	if (!PageHead(page))
597 		return 0;
598 	return page[1].compound_order;
599 }
600 
601 static inline void set_compound_order(struct page *page, unsigned long order)
602 {
603 	page[1].compound_order = order;
604 }
605 
606 #ifdef CONFIG_MMU
607 /*
608  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
609  * servicing faults for write access.  In the normal case, do always want
610  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
611  * that do not have writing enabled, when used by access_process_vm.
612  */
613 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
614 {
615 	if (likely(vma->vm_flags & VM_WRITE))
616 		pte = pte_mkwrite(pte);
617 	return pte;
618 }
619 
620 void do_set_pte(struct vm_area_struct *vma, unsigned long address,
621 		struct page *page, pte_t *pte, bool write, bool anon);
622 #endif
623 
624 /*
625  * Multiple processes may "see" the same page. E.g. for untouched
626  * mappings of /dev/null, all processes see the same page full of
627  * zeroes, and text pages of executables and shared libraries have
628  * only one copy in memory, at most, normally.
629  *
630  * For the non-reserved pages, page_count(page) denotes a reference count.
631  *   page_count() == 0 means the page is free. page->lru is then used for
632  *   freelist management in the buddy allocator.
633  *   page_count() > 0  means the page has been allocated.
634  *
635  * Pages are allocated by the slab allocator in order to provide memory
636  * to kmalloc and kmem_cache_alloc. In this case, the management of the
637  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
638  * unless a particular usage is carefully commented. (the responsibility of
639  * freeing the kmalloc memory is the caller's, of course).
640  *
641  * A page may be used by anyone else who does a __get_free_page().
642  * In this case, page_count still tracks the references, and should only
643  * be used through the normal accessor functions. The top bits of page->flags
644  * and page->virtual store page management information, but all other fields
645  * are unused and could be used privately, carefully. The management of this
646  * page is the responsibility of the one who allocated it, and those who have
647  * subsequently been given references to it.
648  *
649  * The other pages (we may call them "pagecache pages") are completely
650  * managed by the Linux memory manager: I/O, buffers, swapping etc.
651  * The following discussion applies only to them.
652  *
653  * A pagecache page contains an opaque `private' member, which belongs to the
654  * page's address_space. Usually, this is the address of a circular list of
655  * the page's disk buffers. PG_private must be set to tell the VM to call
656  * into the filesystem to release these pages.
657  *
658  * A page may belong to an inode's memory mapping. In this case, page->mapping
659  * is the pointer to the inode, and page->index is the file offset of the page,
660  * in units of PAGE_CACHE_SIZE.
661  *
662  * If pagecache pages are not associated with an inode, they are said to be
663  * anonymous pages. These may become associated with the swapcache, and in that
664  * case PG_swapcache is set, and page->private is an offset into the swapcache.
665  *
666  * In either case (swapcache or inode backed), the pagecache itself holds one
667  * reference to the page. Setting PG_private should also increment the
668  * refcount. The each user mapping also has a reference to the page.
669  *
670  * The pagecache pages are stored in a per-mapping radix tree, which is
671  * rooted at mapping->page_tree, and indexed by offset.
672  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
673  * lists, we instead now tag pages as dirty/writeback in the radix tree.
674  *
675  * All pagecache pages may be subject to I/O:
676  * - inode pages may need to be read from disk,
677  * - inode pages which have been modified and are MAP_SHARED may need
678  *   to be written back to the inode on disk,
679  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
680  *   modified may need to be swapped out to swap space and (later) to be read
681  *   back into memory.
682  */
683 
684 /*
685  * The zone field is never updated after free_area_init_core()
686  * sets it, so none of the operations on it need to be atomic.
687  */
688 
689 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
690 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
691 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
692 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
693 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
694 
695 /*
696  * Define the bit shifts to access each section.  For non-existent
697  * sections we define the shift as 0; that plus a 0 mask ensures
698  * the compiler will optimise away reference to them.
699  */
700 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
701 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
702 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
703 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
704 
705 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
706 #ifdef NODE_NOT_IN_PAGE_FLAGS
707 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
708 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
709 						SECTIONS_PGOFF : ZONES_PGOFF)
710 #else
711 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
712 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
713 						NODES_PGOFF : ZONES_PGOFF)
714 #endif
715 
716 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
717 
718 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
719 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
720 #endif
721 
722 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
723 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
724 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
725 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
726 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
727 
728 static inline enum zone_type page_zonenum(const struct page *page)
729 {
730 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
731 }
732 
733 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
734 #define SECTION_IN_PAGE_FLAGS
735 #endif
736 
737 /*
738  * The identification function is mainly used by the buddy allocator for
739  * determining if two pages could be buddies. We are not really identifying
740  * the zone since we could be using the section number id if we do not have
741  * node id available in page flags.
742  * We only guarantee that it will return the same value for two combinable
743  * pages in a zone.
744  */
745 static inline int page_zone_id(struct page *page)
746 {
747 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
748 }
749 
750 static inline int zone_to_nid(struct zone *zone)
751 {
752 #ifdef CONFIG_NUMA
753 	return zone->node;
754 #else
755 	return 0;
756 #endif
757 }
758 
759 #ifdef NODE_NOT_IN_PAGE_FLAGS
760 extern int page_to_nid(const struct page *page);
761 #else
762 static inline int page_to_nid(const struct page *page)
763 {
764 	return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
765 }
766 #endif
767 
768 #ifdef CONFIG_NUMA_BALANCING
769 static inline int cpu_pid_to_cpupid(int cpu, int pid)
770 {
771 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
772 }
773 
774 static inline int cpupid_to_pid(int cpupid)
775 {
776 	return cpupid & LAST__PID_MASK;
777 }
778 
779 static inline int cpupid_to_cpu(int cpupid)
780 {
781 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
782 }
783 
784 static inline int cpupid_to_nid(int cpupid)
785 {
786 	return cpu_to_node(cpupid_to_cpu(cpupid));
787 }
788 
789 static inline bool cpupid_pid_unset(int cpupid)
790 {
791 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
792 }
793 
794 static inline bool cpupid_cpu_unset(int cpupid)
795 {
796 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
797 }
798 
799 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
800 {
801 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
802 }
803 
804 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
805 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
806 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
807 {
808 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
809 }
810 
811 static inline int page_cpupid_last(struct page *page)
812 {
813 	return page->_last_cpupid;
814 }
815 static inline void page_cpupid_reset_last(struct page *page)
816 {
817 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
818 }
819 #else
820 static inline int page_cpupid_last(struct page *page)
821 {
822 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
823 }
824 
825 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
826 
827 static inline void page_cpupid_reset_last(struct page *page)
828 {
829 	int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
830 
831 	page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
832 	page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
833 }
834 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
835 #else /* !CONFIG_NUMA_BALANCING */
836 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
837 {
838 	return page_to_nid(page); /* XXX */
839 }
840 
841 static inline int page_cpupid_last(struct page *page)
842 {
843 	return page_to_nid(page); /* XXX */
844 }
845 
846 static inline int cpupid_to_nid(int cpupid)
847 {
848 	return -1;
849 }
850 
851 static inline int cpupid_to_pid(int cpupid)
852 {
853 	return -1;
854 }
855 
856 static inline int cpupid_to_cpu(int cpupid)
857 {
858 	return -1;
859 }
860 
861 static inline int cpu_pid_to_cpupid(int nid, int pid)
862 {
863 	return -1;
864 }
865 
866 static inline bool cpupid_pid_unset(int cpupid)
867 {
868 	return 1;
869 }
870 
871 static inline void page_cpupid_reset_last(struct page *page)
872 {
873 }
874 
875 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
876 {
877 	return false;
878 }
879 #endif /* CONFIG_NUMA_BALANCING */
880 
881 static inline struct zone *page_zone(const struct page *page)
882 {
883 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
884 }
885 
886 #ifdef SECTION_IN_PAGE_FLAGS
887 static inline void set_page_section(struct page *page, unsigned long section)
888 {
889 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
890 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
891 }
892 
893 static inline unsigned long page_to_section(const struct page *page)
894 {
895 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
896 }
897 #endif
898 
899 static inline void set_page_zone(struct page *page, enum zone_type zone)
900 {
901 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
902 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
903 }
904 
905 static inline void set_page_node(struct page *page, unsigned long node)
906 {
907 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
908 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
909 }
910 
911 static inline void set_page_links(struct page *page, enum zone_type zone,
912 	unsigned long node, unsigned long pfn)
913 {
914 	set_page_zone(page, zone);
915 	set_page_node(page, node);
916 #ifdef SECTION_IN_PAGE_FLAGS
917 	set_page_section(page, pfn_to_section_nr(pfn));
918 #endif
919 }
920 
921 /*
922  * Some inline functions in vmstat.h depend on page_zone()
923  */
924 #include <linux/vmstat.h>
925 
926 static __always_inline void *lowmem_page_address(const struct page *page)
927 {
928 	return __va(PFN_PHYS(page_to_pfn(page)));
929 }
930 
931 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
932 #define HASHED_PAGE_VIRTUAL
933 #endif
934 
935 #if defined(WANT_PAGE_VIRTUAL)
936 static inline void *page_address(const struct page *page)
937 {
938 	return page->virtual;
939 }
940 static inline void set_page_address(struct page *page, void *address)
941 {
942 	page->virtual = address;
943 }
944 #define page_address_init()  do { } while(0)
945 #endif
946 
947 #if defined(HASHED_PAGE_VIRTUAL)
948 void *page_address(const struct page *page);
949 void set_page_address(struct page *page, void *virtual);
950 void page_address_init(void);
951 #endif
952 
953 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
954 #define page_address(page) lowmem_page_address(page)
955 #define set_page_address(page, address)  do { } while(0)
956 #define page_address_init()  do { } while(0)
957 #endif
958 
959 extern void *page_rmapping(struct page *page);
960 extern struct anon_vma *page_anon_vma(struct page *page);
961 extern struct address_space *page_mapping(struct page *page);
962 
963 extern struct address_space *__page_file_mapping(struct page *);
964 
965 static inline
966 struct address_space *page_file_mapping(struct page *page)
967 {
968 	if (unlikely(PageSwapCache(page)))
969 		return __page_file_mapping(page);
970 
971 	return page->mapping;
972 }
973 
974 /*
975  * Return the pagecache index of the passed page.  Regular pagecache pages
976  * use ->index whereas swapcache pages use ->private
977  */
978 static inline pgoff_t page_index(struct page *page)
979 {
980 	if (unlikely(PageSwapCache(page)))
981 		return page_private(page);
982 	return page->index;
983 }
984 
985 extern pgoff_t __page_file_index(struct page *page);
986 
987 /*
988  * Return the file index of the page. Regular pagecache pages use ->index
989  * whereas swapcache pages use swp_offset(->private)
990  */
991 static inline pgoff_t page_file_index(struct page *page)
992 {
993 	if (unlikely(PageSwapCache(page)))
994 		return __page_file_index(page);
995 
996 	return page->index;
997 }
998 
999 /*
1000  * Return true if this page is mapped into pagetables.
1001  */
1002 static inline int page_mapped(struct page *page)
1003 {
1004 	return atomic_read(&(page)->_mapcount) >= 0;
1005 }
1006 
1007 /*
1008  * Return true only if the page has been allocated with
1009  * ALLOC_NO_WATERMARKS and the low watermark was not
1010  * met implying that the system is under some pressure.
1011  */
1012 static inline bool page_is_pfmemalloc(struct page *page)
1013 {
1014 	/*
1015 	 * Page index cannot be this large so this must be
1016 	 * a pfmemalloc page.
1017 	 */
1018 	return page->index == -1UL;
1019 }
1020 
1021 /*
1022  * Only to be called by the page allocator on a freshly allocated
1023  * page.
1024  */
1025 static inline void set_page_pfmemalloc(struct page *page)
1026 {
1027 	page->index = -1UL;
1028 }
1029 
1030 static inline void clear_page_pfmemalloc(struct page *page)
1031 {
1032 	page->index = 0;
1033 }
1034 
1035 /*
1036  * Different kinds of faults, as returned by handle_mm_fault().
1037  * Used to decide whether a process gets delivered SIGBUS or
1038  * just gets major/minor fault counters bumped up.
1039  */
1040 
1041 #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */
1042 
1043 #define VM_FAULT_OOM	0x0001
1044 #define VM_FAULT_SIGBUS	0x0002
1045 #define VM_FAULT_MAJOR	0x0004
1046 #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */
1047 #define VM_FAULT_HWPOISON 0x0010	/* Hit poisoned small page */
1048 #define VM_FAULT_HWPOISON_LARGE 0x0020  /* Hit poisoned large page. Index encoded in upper bits */
1049 #define VM_FAULT_SIGSEGV 0x0040
1050 
1051 #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */
1052 #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */
1053 #define VM_FAULT_RETRY	0x0400	/* ->fault blocked, must retry */
1054 #define VM_FAULT_FALLBACK 0x0800	/* huge page fault failed, fall back to small */
1055 
1056 #define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1057 
1058 #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1059 			 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1060 			 VM_FAULT_FALLBACK)
1061 
1062 /* Encode hstate index for a hwpoisoned large page */
1063 #define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1064 #define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
1065 
1066 /*
1067  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1068  */
1069 extern void pagefault_out_of_memory(void);
1070 
1071 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1072 
1073 /*
1074  * Flags passed to show_mem() and show_free_areas() to suppress output in
1075  * various contexts.
1076  */
1077 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1078 
1079 extern void show_free_areas(unsigned int flags);
1080 extern bool skip_free_areas_node(unsigned int flags, int nid);
1081 
1082 int shmem_zero_setup(struct vm_area_struct *);
1083 #ifdef CONFIG_SHMEM
1084 bool shmem_mapping(struct address_space *mapping);
1085 #else
1086 static inline bool shmem_mapping(struct address_space *mapping)
1087 {
1088 	return false;
1089 }
1090 #endif
1091 
1092 extern int can_do_mlock(void);
1093 extern int user_shm_lock(size_t, struct user_struct *);
1094 extern void user_shm_unlock(size_t, struct user_struct *);
1095 
1096 /*
1097  * Parameter block passed down to zap_pte_range in exceptional cases.
1098  */
1099 struct zap_details {
1100 	struct address_space *check_mapping;	/* Check page->mapping if set */
1101 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1102 	pgoff_t last_index;			/* Highest page->index to unmap */
1103 };
1104 
1105 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1106 		pte_t pte);
1107 
1108 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1109 		unsigned long size);
1110 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1111 		unsigned long size, struct zap_details *);
1112 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1113 		unsigned long start, unsigned long end);
1114 
1115 /**
1116  * mm_walk - callbacks for walk_page_range
1117  * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
1118  *	       this handler is required to be able to handle
1119  *	       pmd_trans_huge() pmds.  They may simply choose to
1120  *	       split_huge_page() instead of handling it explicitly.
1121  * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1122  * @pte_hole: if set, called for each hole at all levels
1123  * @hugetlb_entry: if set, called for each hugetlb entry
1124  * @test_walk: caller specific callback function to determine whether
1125  *             we walk over the current vma or not. A positive returned
1126  *             value means "do page table walk over the current vma,"
1127  *             and a negative one means "abort current page table walk
1128  *             right now." 0 means "skip the current vma."
1129  * @mm:        mm_struct representing the target process of page table walk
1130  * @vma:       vma currently walked (NULL if walking outside vmas)
1131  * @private:   private data for callbacks' usage
1132  *
1133  * (see the comment on walk_page_range() for more details)
1134  */
1135 struct mm_walk {
1136 	int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1137 			 unsigned long next, struct mm_walk *walk);
1138 	int (*pte_entry)(pte_t *pte, unsigned long addr,
1139 			 unsigned long next, struct mm_walk *walk);
1140 	int (*pte_hole)(unsigned long addr, unsigned long next,
1141 			struct mm_walk *walk);
1142 	int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1143 			     unsigned long addr, unsigned long next,
1144 			     struct mm_walk *walk);
1145 	int (*test_walk)(unsigned long addr, unsigned long next,
1146 			struct mm_walk *walk);
1147 	struct mm_struct *mm;
1148 	struct vm_area_struct *vma;
1149 	void *private;
1150 };
1151 
1152 int walk_page_range(unsigned long addr, unsigned long end,
1153 		struct mm_walk *walk);
1154 int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
1155 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1156 		unsigned long end, unsigned long floor, unsigned long ceiling);
1157 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1158 			struct vm_area_struct *vma);
1159 void unmap_mapping_range(struct address_space *mapping,
1160 		loff_t const holebegin, loff_t const holelen, int even_cows);
1161 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1162 	unsigned long *pfn);
1163 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1164 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1165 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1166 			void *buf, int len, int write);
1167 
1168 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1169 		loff_t const holebegin, loff_t const holelen)
1170 {
1171 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1172 }
1173 
1174 extern void truncate_pagecache(struct inode *inode, loff_t new);
1175 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1176 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1177 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1178 int truncate_inode_page(struct address_space *mapping, struct page *page);
1179 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1180 int invalidate_inode_page(struct page *page);
1181 
1182 #ifdef CONFIG_MMU
1183 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1184 			unsigned long address, unsigned int flags);
1185 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1186 			    unsigned long address, unsigned int fault_flags);
1187 #else
1188 static inline int handle_mm_fault(struct mm_struct *mm,
1189 			struct vm_area_struct *vma, unsigned long address,
1190 			unsigned int flags)
1191 {
1192 	/* should never happen if there's no MMU */
1193 	BUG();
1194 	return VM_FAULT_SIGBUS;
1195 }
1196 static inline int fixup_user_fault(struct task_struct *tsk,
1197 		struct mm_struct *mm, unsigned long address,
1198 		unsigned int fault_flags)
1199 {
1200 	/* should never happen if there's no MMU */
1201 	BUG();
1202 	return -EFAULT;
1203 }
1204 #endif
1205 
1206 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
1207 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1208 		void *buf, int len, int write);
1209 
1210 long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1211 		      unsigned long start, unsigned long nr_pages,
1212 		      unsigned int foll_flags, struct page **pages,
1213 		      struct vm_area_struct **vmas, int *nonblocking);
1214 long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1215 		    unsigned long start, unsigned long nr_pages,
1216 		    int write, int force, struct page **pages,
1217 		    struct vm_area_struct **vmas);
1218 long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1219 		    unsigned long start, unsigned long nr_pages,
1220 		    int write, int force, struct page **pages,
1221 		    int *locked);
1222 long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1223 			       unsigned long start, unsigned long nr_pages,
1224 			       int write, int force, struct page **pages,
1225 			       unsigned int gup_flags);
1226 long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1227 		    unsigned long start, unsigned long nr_pages,
1228 		    int write, int force, struct page **pages);
1229 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1230 			struct page **pages);
1231 struct kvec;
1232 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1233 			struct page **pages);
1234 int get_kernel_page(unsigned long start, int write, struct page **pages);
1235 struct page *get_dump_page(unsigned long addr);
1236 
1237 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1238 extern void do_invalidatepage(struct page *page, unsigned int offset,
1239 			      unsigned int length);
1240 
1241 int __set_page_dirty_nobuffers(struct page *page);
1242 int __set_page_dirty_no_writeback(struct page *page);
1243 int redirty_page_for_writepage(struct writeback_control *wbc,
1244 				struct page *page);
1245 void account_page_dirtied(struct page *page, struct address_space *mapping,
1246 			  struct mem_cgroup *memcg);
1247 void account_page_cleaned(struct page *page, struct address_space *mapping,
1248 			  struct mem_cgroup *memcg, struct bdi_writeback *wb);
1249 int set_page_dirty(struct page *page);
1250 int set_page_dirty_lock(struct page *page);
1251 void cancel_dirty_page(struct page *page);
1252 int clear_page_dirty_for_io(struct page *page);
1253 
1254 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1255 
1256 /* Is the vma a continuation of the stack vma above it? */
1257 static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
1258 {
1259 	return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1260 }
1261 
1262 static inline int stack_guard_page_start(struct vm_area_struct *vma,
1263 					     unsigned long addr)
1264 {
1265 	return (vma->vm_flags & VM_GROWSDOWN) &&
1266 		(vma->vm_start == addr) &&
1267 		!vma_growsdown(vma->vm_prev, addr);
1268 }
1269 
1270 /* Is the vma a continuation of the stack vma below it? */
1271 static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1272 {
1273 	return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1274 }
1275 
1276 static inline int stack_guard_page_end(struct vm_area_struct *vma,
1277 					   unsigned long addr)
1278 {
1279 	return (vma->vm_flags & VM_GROWSUP) &&
1280 		(vma->vm_end == addr) &&
1281 		!vma_growsup(vma->vm_next, addr);
1282 }
1283 
1284 extern struct task_struct *task_of_stack(struct task_struct *task,
1285 				struct vm_area_struct *vma, bool in_group);
1286 
1287 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1288 		unsigned long old_addr, struct vm_area_struct *new_vma,
1289 		unsigned long new_addr, unsigned long len,
1290 		bool need_rmap_locks);
1291 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1292 			      unsigned long end, pgprot_t newprot,
1293 			      int dirty_accountable, int prot_numa);
1294 extern int mprotect_fixup(struct vm_area_struct *vma,
1295 			  struct vm_area_struct **pprev, unsigned long start,
1296 			  unsigned long end, unsigned long newflags);
1297 
1298 /*
1299  * doesn't attempt to fault and will return short.
1300  */
1301 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1302 			  struct page **pages);
1303 /*
1304  * per-process(per-mm_struct) statistics.
1305  */
1306 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1307 {
1308 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1309 
1310 #ifdef SPLIT_RSS_COUNTING
1311 	/*
1312 	 * counter is updated in asynchronous manner and may go to minus.
1313 	 * But it's never be expected number for users.
1314 	 */
1315 	if (val < 0)
1316 		val = 0;
1317 #endif
1318 	return (unsigned long)val;
1319 }
1320 
1321 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1322 {
1323 	atomic_long_add(value, &mm->rss_stat.count[member]);
1324 }
1325 
1326 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1327 {
1328 	atomic_long_inc(&mm->rss_stat.count[member]);
1329 }
1330 
1331 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1332 {
1333 	atomic_long_dec(&mm->rss_stat.count[member]);
1334 }
1335 
1336 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1337 {
1338 	return get_mm_counter(mm, MM_FILEPAGES) +
1339 		get_mm_counter(mm, MM_ANONPAGES);
1340 }
1341 
1342 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1343 {
1344 	return max(mm->hiwater_rss, get_mm_rss(mm));
1345 }
1346 
1347 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1348 {
1349 	return max(mm->hiwater_vm, mm->total_vm);
1350 }
1351 
1352 static inline void update_hiwater_rss(struct mm_struct *mm)
1353 {
1354 	unsigned long _rss = get_mm_rss(mm);
1355 
1356 	if ((mm)->hiwater_rss < _rss)
1357 		(mm)->hiwater_rss = _rss;
1358 }
1359 
1360 static inline void update_hiwater_vm(struct mm_struct *mm)
1361 {
1362 	if (mm->hiwater_vm < mm->total_vm)
1363 		mm->hiwater_vm = mm->total_vm;
1364 }
1365 
1366 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1367 {
1368 	mm->hiwater_rss = get_mm_rss(mm);
1369 }
1370 
1371 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1372 					 struct mm_struct *mm)
1373 {
1374 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1375 
1376 	if (*maxrss < hiwater_rss)
1377 		*maxrss = hiwater_rss;
1378 }
1379 
1380 #if defined(SPLIT_RSS_COUNTING)
1381 void sync_mm_rss(struct mm_struct *mm);
1382 #else
1383 static inline void sync_mm_rss(struct mm_struct *mm)
1384 {
1385 }
1386 #endif
1387 
1388 int vma_wants_writenotify(struct vm_area_struct *vma);
1389 
1390 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1391 			       spinlock_t **ptl);
1392 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1393 				    spinlock_t **ptl)
1394 {
1395 	pte_t *ptep;
1396 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1397 	return ptep;
1398 }
1399 
1400 #ifdef __PAGETABLE_PUD_FOLDED
1401 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1402 						unsigned long address)
1403 {
1404 	return 0;
1405 }
1406 #else
1407 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1408 #endif
1409 
1410 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1411 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1412 						unsigned long address)
1413 {
1414 	return 0;
1415 }
1416 
1417 static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1418 
1419 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1420 {
1421 	return 0;
1422 }
1423 
1424 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1425 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1426 
1427 #else
1428 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1429 
1430 static inline void mm_nr_pmds_init(struct mm_struct *mm)
1431 {
1432 	atomic_long_set(&mm->nr_pmds, 0);
1433 }
1434 
1435 static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1436 {
1437 	return atomic_long_read(&mm->nr_pmds);
1438 }
1439 
1440 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1441 {
1442 	atomic_long_inc(&mm->nr_pmds);
1443 }
1444 
1445 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1446 {
1447 	atomic_long_dec(&mm->nr_pmds);
1448 }
1449 #endif
1450 
1451 int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1452 		pmd_t *pmd, unsigned long address);
1453 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1454 
1455 /*
1456  * The following ifdef needed to get the 4level-fixup.h header to work.
1457  * Remove it when 4level-fixup.h has been removed.
1458  */
1459 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1460 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1461 {
1462 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1463 		NULL: pud_offset(pgd, address);
1464 }
1465 
1466 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1467 {
1468 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1469 		NULL: pmd_offset(pud, address);
1470 }
1471 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1472 
1473 #if USE_SPLIT_PTE_PTLOCKS
1474 #if ALLOC_SPLIT_PTLOCKS
1475 void __init ptlock_cache_init(void);
1476 extern bool ptlock_alloc(struct page *page);
1477 extern void ptlock_free(struct page *page);
1478 
1479 static inline spinlock_t *ptlock_ptr(struct page *page)
1480 {
1481 	return page->ptl;
1482 }
1483 #else /* ALLOC_SPLIT_PTLOCKS */
1484 static inline void ptlock_cache_init(void)
1485 {
1486 }
1487 
1488 static inline bool ptlock_alloc(struct page *page)
1489 {
1490 	return true;
1491 }
1492 
1493 static inline void ptlock_free(struct page *page)
1494 {
1495 }
1496 
1497 static inline spinlock_t *ptlock_ptr(struct page *page)
1498 {
1499 	return &page->ptl;
1500 }
1501 #endif /* ALLOC_SPLIT_PTLOCKS */
1502 
1503 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1504 {
1505 	return ptlock_ptr(pmd_page(*pmd));
1506 }
1507 
1508 static inline bool ptlock_init(struct page *page)
1509 {
1510 	/*
1511 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1512 	 * with 0. Make sure nobody took it in use in between.
1513 	 *
1514 	 * It can happen if arch try to use slab for page table allocation:
1515 	 * slab code uses page->slab_cache and page->first_page (for tail
1516 	 * pages), which share storage with page->ptl.
1517 	 */
1518 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1519 	if (!ptlock_alloc(page))
1520 		return false;
1521 	spin_lock_init(ptlock_ptr(page));
1522 	return true;
1523 }
1524 
1525 /* Reset page->mapping so free_pages_check won't complain. */
1526 static inline void pte_lock_deinit(struct page *page)
1527 {
1528 	page->mapping = NULL;
1529 	ptlock_free(page);
1530 }
1531 
1532 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1533 /*
1534  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1535  */
1536 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1537 {
1538 	return &mm->page_table_lock;
1539 }
1540 static inline void ptlock_cache_init(void) {}
1541 static inline bool ptlock_init(struct page *page) { return true; }
1542 static inline void pte_lock_deinit(struct page *page) {}
1543 #endif /* USE_SPLIT_PTE_PTLOCKS */
1544 
1545 static inline void pgtable_init(void)
1546 {
1547 	ptlock_cache_init();
1548 	pgtable_cache_init();
1549 }
1550 
1551 static inline bool pgtable_page_ctor(struct page *page)
1552 {
1553 	inc_zone_page_state(page, NR_PAGETABLE);
1554 	return ptlock_init(page);
1555 }
1556 
1557 static inline void pgtable_page_dtor(struct page *page)
1558 {
1559 	pte_lock_deinit(page);
1560 	dec_zone_page_state(page, NR_PAGETABLE);
1561 }
1562 
1563 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1564 ({							\
1565 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1566 	pte_t *__pte = pte_offset_map(pmd, address);	\
1567 	*(ptlp) = __ptl;				\
1568 	spin_lock(__ptl);				\
1569 	__pte;						\
1570 })
1571 
1572 #define pte_unmap_unlock(pte, ptl)	do {		\
1573 	spin_unlock(ptl);				\
1574 	pte_unmap(pte);					\
1575 } while (0)
1576 
1577 #define pte_alloc_map(mm, vma, pmd, address)				\
1578 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma,	\
1579 							pmd, address))?	\
1580 	 NULL: pte_offset_map(pmd, address))
1581 
1582 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1583 	((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL,	\
1584 							pmd, address))?	\
1585 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1586 
1587 #define pte_alloc_kernel(pmd, address)			\
1588 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1589 		NULL: pte_offset_kernel(pmd, address))
1590 
1591 #if USE_SPLIT_PMD_PTLOCKS
1592 
1593 static struct page *pmd_to_page(pmd_t *pmd)
1594 {
1595 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1596 	return virt_to_page((void *)((unsigned long) pmd & mask));
1597 }
1598 
1599 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1600 {
1601 	return ptlock_ptr(pmd_to_page(pmd));
1602 }
1603 
1604 static inline bool pgtable_pmd_page_ctor(struct page *page)
1605 {
1606 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1607 	page->pmd_huge_pte = NULL;
1608 #endif
1609 	return ptlock_init(page);
1610 }
1611 
1612 static inline void pgtable_pmd_page_dtor(struct page *page)
1613 {
1614 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1615 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
1616 #endif
1617 	ptlock_free(page);
1618 }
1619 
1620 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
1621 
1622 #else
1623 
1624 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1625 {
1626 	return &mm->page_table_lock;
1627 }
1628 
1629 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1630 static inline void pgtable_pmd_page_dtor(struct page *page) {}
1631 
1632 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
1633 
1634 #endif
1635 
1636 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1637 {
1638 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
1639 	spin_lock(ptl);
1640 	return ptl;
1641 }
1642 
1643 extern void free_area_init(unsigned long * zones_size);
1644 extern void free_area_init_node(int nid, unsigned long * zones_size,
1645 		unsigned long zone_start_pfn, unsigned long *zholes_size);
1646 extern void free_initmem(void);
1647 
1648 /*
1649  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1650  * into the buddy system. The freed pages will be poisoned with pattern
1651  * "poison" if it's within range [0, UCHAR_MAX].
1652  * Return pages freed into the buddy system.
1653  */
1654 extern unsigned long free_reserved_area(void *start, void *end,
1655 					int poison, char *s);
1656 
1657 #ifdef	CONFIG_HIGHMEM
1658 /*
1659  * Free a highmem page into the buddy system, adjusting totalhigh_pages
1660  * and totalram_pages.
1661  */
1662 extern void free_highmem_page(struct page *page);
1663 #endif
1664 
1665 extern void adjust_managed_page_count(struct page *page, long count);
1666 extern void mem_init_print_info(const char *str);
1667 
1668 extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1669 
1670 /* Free the reserved page into the buddy system, so it gets managed. */
1671 static inline void __free_reserved_page(struct page *page)
1672 {
1673 	ClearPageReserved(page);
1674 	init_page_count(page);
1675 	__free_page(page);
1676 }
1677 
1678 static inline void free_reserved_page(struct page *page)
1679 {
1680 	__free_reserved_page(page);
1681 	adjust_managed_page_count(page, 1);
1682 }
1683 
1684 static inline void mark_page_reserved(struct page *page)
1685 {
1686 	SetPageReserved(page);
1687 	adjust_managed_page_count(page, -1);
1688 }
1689 
1690 /*
1691  * Default method to free all the __init memory into the buddy system.
1692  * The freed pages will be poisoned with pattern "poison" if it's within
1693  * range [0, UCHAR_MAX].
1694  * Return pages freed into the buddy system.
1695  */
1696 static inline unsigned long free_initmem_default(int poison)
1697 {
1698 	extern char __init_begin[], __init_end[];
1699 
1700 	return free_reserved_area(&__init_begin, &__init_end,
1701 				  poison, "unused kernel");
1702 }
1703 
1704 static inline unsigned long get_num_physpages(void)
1705 {
1706 	int nid;
1707 	unsigned long phys_pages = 0;
1708 
1709 	for_each_online_node(nid)
1710 		phys_pages += node_present_pages(nid);
1711 
1712 	return phys_pages;
1713 }
1714 
1715 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1716 /*
1717  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
1718  * zones, allocate the backing mem_map and account for memory holes in a more
1719  * architecture independent manner. This is a substitute for creating the
1720  * zone_sizes[] and zholes_size[] arrays and passing them to
1721  * free_area_init_node()
1722  *
1723  * An architecture is expected to register range of page frames backed by
1724  * physical memory with memblock_add[_node]() before calling
1725  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1726  * usage, an architecture is expected to do something like
1727  *
1728  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1729  * 							 max_highmem_pfn};
1730  * for_each_valid_physical_page_range()
1731  * 	memblock_add_node(base, size, nid)
1732  * free_area_init_nodes(max_zone_pfns);
1733  *
1734  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1735  * registered physical page range.  Similarly
1736  * sparse_memory_present_with_active_regions() calls memory_present() for
1737  * each range when SPARSEMEM is enabled.
1738  *
1739  * See mm/page_alloc.c for more information on each function exposed by
1740  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
1741  */
1742 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1743 unsigned long node_map_pfn_alignment(void);
1744 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1745 						unsigned long end_pfn);
1746 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1747 						unsigned long end_pfn);
1748 extern void get_pfn_range_for_nid(unsigned int nid,
1749 			unsigned long *start_pfn, unsigned long *end_pfn);
1750 extern unsigned long find_min_pfn_with_active_regions(void);
1751 extern void free_bootmem_with_active_regions(int nid,
1752 						unsigned long max_low_pfn);
1753 extern void sparse_memory_present_with_active_regions(int nid);
1754 
1755 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1756 
1757 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
1758     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1759 static inline int __early_pfn_to_nid(unsigned long pfn,
1760 					struct mminit_pfnnid_cache *state)
1761 {
1762 	return 0;
1763 }
1764 #else
1765 /* please see mm/page_alloc.c */
1766 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1767 /* there is a per-arch backend function. */
1768 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1769 					struct mminit_pfnnid_cache *state);
1770 #endif
1771 
1772 extern void set_dma_reserve(unsigned long new_dma_reserve);
1773 extern void memmap_init_zone(unsigned long, int, unsigned long,
1774 				unsigned long, enum memmap_context);
1775 extern void setup_per_zone_wmarks(void);
1776 extern int __meminit init_per_zone_wmark_min(void);
1777 extern void mem_init(void);
1778 extern void __init mmap_init(void);
1779 extern void show_mem(unsigned int flags);
1780 extern void si_meminfo(struct sysinfo * val);
1781 extern void si_meminfo_node(struct sysinfo *val, int nid);
1782 
1783 extern __printf(3, 4)
1784 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...);
1785 
1786 extern void setup_per_cpu_pageset(void);
1787 
1788 extern void zone_pcp_update(struct zone *zone);
1789 extern void zone_pcp_reset(struct zone *zone);
1790 
1791 /* page_alloc.c */
1792 extern int min_free_kbytes;
1793 
1794 /* nommu.c */
1795 extern atomic_long_t mmap_pages_allocated;
1796 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
1797 
1798 /* interval_tree.c */
1799 void vma_interval_tree_insert(struct vm_area_struct *node,
1800 			      struct rb_root *root);
1801 void vma_interval_tree_insert_after(struct vm_area_struct *node,
1802 				    struct vm_area_struct *prev,
1803 				    struct rb_root *root);
1804 void vma_interval_tree_remove(struct vm_area_struct *node,
1805 			      struct rb_root *root);
1806 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1807 				unsigned long start, unsigned long last);
1808 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1809 				unsigned long start, unsigned long last);
1810 
1811 #define vma_interval_tree_foreach(vma, root, start, last)		\
1812 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
1813 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
1814 
1815 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1816 				   struct rb_root *root);
1817 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1818 				   struct rb_root *root);
1819 struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1820 	struct rb_root *root, unsigned long start, unsigned long last);
1821 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1822 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
1823 #ifdef CONFIG_DEBUG_VM_RB
1824 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1825 #endif
1826 
1827 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
1828 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1829 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1830 
1831 /* mmap.c */
1832 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1833 extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1834 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1835 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1836 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1837 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1838 	struct mempolicy *, struct vm_userfaultfd_ctx);
1839 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1840 extern int split_vma(struct mm_struct *,
1841 	struct vm_area_struct *, unsigned long addr, int new_below);
1842 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1843 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1844 	struct rb_node **, struct rb_node *);
1845 extern void unlink_file_vma(struct vm_area_struct *);
1846 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1847 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1848 	bool *need_rmap_locks);
1849 extern void exit_mmap(struct mm_struct *);
1850 
1851 static inline int check_data_rlimit(unsigned long rlim,
1852 				    unsigned long new,
1853 				    unsigned long start,
1854 				    unsigned long end_data,
1855 				    unsigned long start_data)
1856 {
1857 	if (rlim < RLIM_INFINITY) {
1858 		if (((new - start) + (end_data - start_data)) > rlim)
1859 			return -ENOSPC;
1860 	}
1861 
1862 	return 0;
1863 }
1864 
1865 extern int mm_take_all_locks(struct mm_struct *mm);
1866 extern void mm_drop_all_locks(struct mm_struct *mm);
1867 
1868 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1869 extern struct file *get_mm_exe_file(struct mm_struct *mm);
1870 
1871 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1872 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1873 				   unsigned long addr, unsigned long len,
1874 				   unsigned long flags,
1875 				   const struct vm_special_mapping *spec);
1876 /* This is an obsolete alternative to _install_special_mapping. */
1877 extern int install_special_mapping(struct mm_struct *mm,
1878 				   unsigned long addr, unsigned long len,
1879 				   unsigned long flags, struct page **pages);
1880 
1881 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1882 
1883 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1884 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1885 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1886 	unsigned long len, unsigned long prot, unsigned long flags,
1887 	unsigned long pgoff, unsigned long *populate);
1888 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1889 
1890 #ifdef CONFIG_MMU
1891 extern int __mm_populate(unsigned long addr, unsigned long len,
1892 			 int ignore_errors);
1893 static inline void mm_populate(unsigned long addr, unsigned long len)
1894 {
1895 	/* Ignore errors */
1896 	(void) __mm_populate(addr, len, 1);
1897 }
1898 #else
1899 static inline void mm_populate(unsigned long addr, unsigned long len) {}
1900 #endif
1901 
1902 /* These take the mm semaphore themselves */
1903 extern unsigned long vm_brk(unsigned long, unsigned long);
1904 extern int vm_munmap(unsigned long, size_t);
1905 extern unsigned long vm_mmap(struct file *, unsigned long,
1906         unsigned long, unsigned long,
1907         unsigned long, unsigned long);
1908 
1909 struct vm_unmapped_area_info {
1910 #define VM_UNMAPPED_AREA_TOPDOWN 1
1911 	unsigned long flags;
1912 	unsigned long length;
1913 	unsigned long low_limit;
1914 	unsigned long high_limit;
1915 	unsigned long align_mask;
1916 	unsigned long align_offset;
1917 };
1918 
1919 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
1920 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
1921 
1922 /*
1923  * Search for an unmapped address range.
1924  *
1925  * We are looking for a range that:
1926  * - does not intersect with any VMA;
1927  * - is contained within the [low_limit, high_limit) interval;
1928  * - is at least the desired size.
1929  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
1930  */
1931 static inline unsigned long
1932 vm_unmapped_area(struct vm_unmapped_area_info *info)
1933 {
1934 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
1935 		return unmapped_area_topdown(info);
1936 	else
1937 		return unmapped_area(info);
1938 }
1939 
1940 /* truncate.c */
1941 extern void truncate_inode_pages(struct address_space *, loff_t);
1942 extern void truncate_inode_pages_range(struct address_space *,
1943 				       loff_t lstart, loff_t lend);
1944 extern void truncate_inode_pages_final(struct address_space *);
1945 
1946 /* generic vm_area_ops exported for stackable file systems */
1947 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1948 extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
1949 extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1950 
1951 /* mm/page-writeback.c */
1952 int write_one_page(struct page *page, int wait);
1953 void task_dirty_inc(struct task_struct *tsk);
1954 
1955 /* readahead.c */
1956 #define VM_MAX_READAHEAD	128	/* kbytes */
1957 #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */
1958 
1959 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1960 			pgoff_t offset, unsigned long nr_to_read);
1961 
1962 void page_cache_sync_readahead(struct address_space *mapping,
1963 			       struct file_ra_state *ra,
1964 			       struct file *filp,
1965 			       pgoff_t offset,
1966 			       unsigned long size);
1967 
1968 void page_cache_async_readahead(struct address_space *mapping,
1969 				struct file_ra_state *ra,
1970 				struct file *filp,
1971 				struct page *pg,
1972 				pgoff_t offset,
1973 				unsigned long size);
1974 
1975 unsigned long max_sane_readahead(unsigned long nr);
1976 
1977 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
1978 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1979 
1980 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
1981 extern int expand_downwards(struct vm_area_struct *vma,
1982 		unsigned long address);
1983 #if VM_GROWSUP
1984 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1985 #else
1986   #define expand_upwards(vma, address) (0)
1987 #endif
1988 
1989 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
1990 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1991 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1992 					     struct vm_area_struct **pprev);
1993 
1994 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1995    NULL if none.  Assume start_addr < end_addr. */
1996 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1997 {
1998 	struct vm_area_struct * vma = find_vma(mm,start_addr);
1999 
2000 	if (vma && end_addr <= vma->vm_start)
2001 		vma = NULL;
2002 	return vma;
2003 }
2004 
2005 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2006 {
2007 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2008 }
2009 
2010 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2011 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2012 				unsigned long vm_start, unsigned long vm_end)
2013 {
2014 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2015 
2016 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2017 		vma = NULL;
2018 
2019 	return vma;
2020 }
2021 
2022 #ifdef CONFIG_MMU
2023 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2024 void vma_set_page_prot(struct vm_area_struct *vma);
2025 #else
2026 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2027 {
2028 	return __pgprot(0);
2029 }
2030 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2031 {
2032 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2033 }
2034 #endif
2035 
2036 #ifdef CONFIG_NUMA_BALANCING
2037 unsigned long change_prot_numa(struct vm_area_struct *vma,
2038 			unsigned long start, unsigned long end);
2039 #endif
2040 
2041 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2042 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2043 			unsigned long pfn, unsigned long size, pgprot_t);
2044 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2045 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2046 			unsigned long pfn);
2047 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2048 			unsigned long pfn);
2049 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2050 
2051 
2052 struct page *follow_page_mask(struct vm_area_struct *vma,
2053 			      unsigned long address, unsigned int foll_flags,
2054 			      unsigned int *page_mask);
2055 
2056 static inline struct page *follow_page(struct vm_area_struct *vma,
2057 		unsigned long address, unsigned int foll_flags)
2058 {
2059 	unsigned int unused_page_mask;
2060 	return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2061 }
2062 
2063 #define FOLL_WRITE	0x01	/* check pte is writable */
2064 #define FOLL_TOUCH	0x02	/* mark page accessed */
2065 #define FOLL_GET	0x04	/* do get_page on page */
2066 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2067 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2068 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2069 				 * and return without waiting upon it */
2070 #define FOLL_POPULATE	0x40	/* fault in page */
2071 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2072 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2073 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2074 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2075 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2076 
2077 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
2078 			void *data);
2079 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2080 			       unsigned long size, pte_fn_t fn, void *data);
2081 
2082 #ifdef CONFIG_PROC_FS
2083 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
2084 #else
2085 static inline void vm_stat_account(struct mm_struct *mm,
2086 			unsigned long flags, struct file *file, long pages)
2087 {
2088 	mm->total_vm += pages;
2089 }
2090 #endif /* CONFIG_PROC_FS */
2091 
2092 #ifdef CONFIG_DEBUG_PAGEALLOC
2093 extern bool _debug_pagealloc_enabled;
2094 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2095 
2096 static inline bool debug_pagealloc_enabled(void)
2097 {
2098 	return _debug_pagealloc_enabled;
2099 }
2100 
2101 static inline void
2102 kernel_map_pages(struct page *page, int numpages, int enable)
2103 {
2104 	if (!debug_pagealloc_enabled())
2105 		return;
2106 
2107 	__kernel_map_pages(page, numpages, enable);
2108 }
2109 #ifdef CONFIG_HIBERNATION
2110 extern bool kernel_page_present(struct page *page);
2111 #endif /* CONFIG_HIBERNATION */
2112 #else
2113 static inline void
2114 kernel_map_pages(struct page *page, int numpages, int enable) {}
2115 #ifdef CONFIG_HIBERNATION
2116 static inline bool kernel_page_present(struct page *page) { return true; }
2117 #endif /* CONFIG_HIBERNATION */
2118 #endif
2119 
2120 #ifdef __HAVE_ARCH_GATE_AREA
2121 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2122 extern int in_gate_area_no_mm(unsigned long addr);
2123 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2124 #else
2125 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2126 {
2127 	return NULL;
2128 }
2129 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2130 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2131 {
2132 	return 0;
2133 }
2134 #endif	/* __HAVE_ARCH_GATE_AREA */
2135 
2136 #ifdef CONFIG_SYSCTL
2137 extern int sysctl_drop_caches;
2138 int drop_caches_sysctl_handler(struct ctl_table *, int,
2139 					void __user *, size_t *, loff_t *);
2140 #endif
2141 
2142 void drop_slab(void);
2143 void drop_slab_node(int nid);
2144 
2145 #ifndef CONFIG_MMU
2146 #define randomize_va_space 0
2147 #else
2148 extern int randomize_va_space;
2149 #endif
2150 
2151 const char * arch_vma_name(struct vm_area_struct *vma);
2152 void print_vma_addr(char *prefix, unsigned long rip);
2153 
2154 void sparse_mem_maps_populate_node(struct page **map_map,
2155 				   unsigned long pnum_begin,
2156 				   unsigned long pnum_end,
2157 				   unsigned long map_count,
2158 				   int nodeid);
2159 
2160 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
2161 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2162 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2163 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2164 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2165 void *vmemmap_alloc_block(unsigned long size, int node);
2166 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2167 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2168 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2169 			       int node);
2170 int vmemmap_populate(unsigned long start, unsigned long end, int node);
2171 void vmemmap_populate_print_last(void);
2172 #ifdef CONFIG_MEMORY_HOTPLUG
2173 void vmemmap_free(unsigned long start, unsigned long end);
2174 #endif
2175 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2176 				  unsigned long size);
2177 
2178 enum mf_flags {
2179 	MF_COUNT_INCREASED = 1 << 0,
2180 	MF_ACTION_REQUIRED = 1 << 1,
2181 	MF_MUST_KILL = 1 << 2,
2182 	MF_SOFT_OFFLINE = 1 << 3,
2183 };
2184 extern int memory_failure(unsigned long pfn, int trapno, int flags);
2185 extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
2186 extern int unpoison_memory(unsigned long pfn);
2187 extern int get_hwpoison_page(struct page *page);
2188 extern int sysctl_memory_failure_early_kill;
2189 extern int sysctl_memory_failure_recovery;
2190 extern void shake_page(struct page *p, int access);
2191 extern atomic_long_t num_poisoned_pages;
2192 extern int soft_offline_page(struct page *page, int flags);
2193 
2194 
2195 /*
2196  * Error handlers for various types of pages.
2197  */
2198 enum mf_result {
2199 	MF_IGNORED,	/* Error: cannot be handled */
2200 	MF_FAILED,	/* Error: handling failed */
2201 	MF_DELAYED,	/* Will be handled later */
2202 	MF_RECOVERED,	/* Successfully recovered */
2203 };
2204 
2205 enum mf_action_page_type {
2206 	MF_MSG_KERNEL,
2207 	MF_MSG_KERNEL_HIGH_ORDER,
2208 	MF_MSG_SLAB,
2209 	MF_MSG_DIFFERENT_COMPOUND,
2210 	MF_MSG_POISONED_HUGE,
2211 	MF_MSG_HUGE,
2212 	MF_MSG_FREE_HUGE,
2213 	MF_MSG_UNMAP_FAILED,
2214 	MF_MSG_DIRTY_SWAPCACHE,
2215 	MF_MSG_CLEAN_SWAPCACHE,
2216 	MF_MSG_DIRTY_MLOCKED_LRU,
2217 	MF_MSG_CLEAN_MLOCKED_LRU,
2218 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2219 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2220 	MF_MSG_DIRTY_LRU,
2221 	MF_MSG_CLEAN_LRU,
2222 	MF_MSG_TRUNCATED_LRU,
2223 	MF_MSG_BUDDY,
2224 	MF_MSG_BUDDY_2ND,
2225 	MF_MSG_UNKNOWN,
2226 };
2227 
2228 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2229 extern void clear_huge_page(struct page *page,
2230 			    unsigned long addr,
2231 			    unsigned int pages_per_huge_page);
2232 extern void copy_user_huge_page(struct page *dst, struct page *src,
2233 				unsigned long addr, struct vm_area_struct *vma,
2234 				unsigned int pages_per_huge_page);
2235 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2236 
2237 extern struct page_ext_operations debug_guardpage_ops;
2238 extern struct page_ext_operations page_poisoning_ops;
2239 
2240 #ifdef CONFIG_DEBUG_PAGEALLOC
2241 extern unsigned int _debug_guardpage_minorder;
2242 extern bool _debug_guardpage_enabled;
2243 
2244 static inline unsigned int debug_guardpage_minorder(void)
2245 {
2246 	return _debug_guardpage_minorder;
2247 }
2248 
2249 static inline bool debug_guardpage_enabled(void)
2250 {
2251 	return _debug_guardpage_enabled;
2252 }
2253 
2254 static inline bool page_is_guard(struct page *page)
2255 {
2256 	struct page_ext *page_ext;
2257 
2258 	if (!debug_guardpage_enabled())
2259 		return false;
2260 
2261 	page_ext = lookup_page_ext(page);
2262 	return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
2263 }
2264 #else
2265 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2266 static inline bool debug_guardpage_enabled(void) { return false; }
2267 static inline bool page_is_guard(struct page *page) { return false; }
2268 #endif /* CONFIG_DEBUG_PAGEALLOC */
2269 
2270 #if MAX_NUMNODES > 1
2271 void __init setup_nr_node_ids(void);
2272 #else
2273 static inline void setup_nr_node_ids(void) {}
2274 #endif
2275 
2276 #endif /* __KERNEL__ */
2277 #endif /* _LINUX_MM_H */
2278