xref: /linux-6.15/include/linux/mm.h (revision c75d42e4)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page_ref.h>
28 #include <linux/memremap.h>
29 #include <linux/overflow.h>
30 #include <linux/sizes.h>
31 #include <linux/sched.h>
32 #include <linux/pgtable.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct file_ra_state;
38 struct user_struct;
39 struct writeback_control;
40 struct bdi_writeback;
41 
42 void init_mm_internals(void);
43 
44 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
45 extern unsigned long max_mapnr;
46 
47 static inline void set_max_mapnr(unsigned long limit)
48 {
49 	max_mapnr = limit;
50 }
51 #else
52 static inline void set_max_mapnr(unsigned long limit) { }
53 #endif
54 
55 extern atomic_long_t _totalram_pages;
56 static inline unsigned long totalram_pages(void)
57 {
58 	return (unsigned long)atomic_long_read(&_totalram_pages);
59 }
60 
61 static inline void totalram_pages_inc(void)
62 {
63 	atomic_long_inc(&_totalram_pages);
64 }
65 
66 static inline void totalram_pages_dec(void)
67 {
68 	atomic_long_dec(&_totalram_pages);
69 }
70 
71 static inline void totalram_pages_add(long count)
72 {
73 	atomic_long_add(count, &_totalram_pages);
74 }
75 
76 extern void * high_memory;
77 extern int page_cluster;
78 
79 #ifdef CONFIG_SYSCTL
80 extern int sysctl_legacy_va_layout;
81 #else
82 #define sysctl_legacy_va_layout 0
83 #endif
84 
85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
86 extern const int mmap_rnd_bits_min;
87 extern const int mmap_rnd_bits_max;
88 extern int mmap_rnd_bits __read_mostly;
89 #endif
90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
91 extern const int mmap_rnd_compat_bits_min;
92 extern const int mmap_rnd_compat_bits_max;
93 extern int mmap_rnd_compat_bits __read_mostly;
94 #endif
95 
96 #include <asm/page.h>
97 #include <asm/processor.h>
98 
99 /*
100  * Architectures that support memory tagging (assigning tags to memory regions,
101  * embedding these tags into addresses that point to these memory regions, and
102  * checking that the memory and the pointer tags match on memory accesses)
103  * redefine this macro to strip tags from pointers.
104  * It's defined as noop for arcitectures that don't support memory tagging.
105  */
106 #ifndef untagged_addr
107 #define untagged_addr(addr) (addr)
108 #endif
109 
110 #ifndef __pa_symbol
111 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
112 #endif
113 
114 #ifndef page_to_virt
115 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
116 #endif
117 
118 #ifndef lm_alias
119 #define lm_alias(x)	__va(__pa_symbol(x))
120 #endif
121 
122 /*
123  * To prevent common memory management code establishing
124  * a zero page mapping on a read fault.
125  * This macro should be defined within <asm/pgtable.h>.
126  * s390 does this to prevent multiplexing of hardware bits
127  * related to the physical page in case of virtualization.
128  */
129 #ifndef mm_forbids_zeropage
130 #define mm_forbids_zeropage(X)	(0)
131 #endif
132 
133 /*
134  * On some architectures it is expensive to call memset() for small sizes.
135  * If an architecture decides to implement their own version of
136  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
137  * define their own version of this macro in <asm/pgtable.h>
138  */
139 #if BITS_PER_LONG == 64
140 /* This function must be updated when the size of struct page grows above 80
141  * or reduces below 56. The idea that compiler optimizes out switch()
142  * statement, and only leaves move/store instructions. Also the compiler can
143  * combine write statments if they are both assignments and can be reordered,
144  * this can result in several of the writes here being dropped.
145  */
146 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
147 static inline void __mm_zero_struct_page(struct page *page)
148 {
149 	unsigned long *_pp = (void *)page;
150 
151 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
152 	BUILD_BUG_ON(sizeof(struct page) & 7);
153 	BUILD_BUG_ON(sizeof(struct page) < 56);
154 	BUILD_BUG_ON(sizeof(struct page) > 80);
155 
156 	switch (sizeof(struct page)) {
157 	case 80:
158 		_pp[9] = 0;	/* fallthrough */
159 	case 72:
160 		_pp[8] = 0;	/* fallthrough */
161 	case 64:
162 		_pp[7] = 0;	/* fallthrough */
163 	case 56:
164 		_pp[6] = 0;
165 		_pp[5] = 0;
166 		_pp[4] = 0;
167 		_pp[3] = 0;
168 		_pp[2] = 0;
169 		_pp[1] = 0;
170 		_pp[0] = 0;
171 	}
172 }
173 #else
174 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
175 #endif
176 
177 /*
178  * Default maximum number of active map areas, this limits the number of vmas
179  * per mm struct. Users can overwrite this number by sysctl but there is a
180  * problem.
181  *
182  * When a program's coredump is generated as ELF format, a section is created
183  * per a vma. In ELF, the number of sections is represented in unsigned short.
184  * This means the number of sections should be smaller than 65535 at coredump.
185  * Because the kernel adds some informative sections to a image of program at
186  * generating coredump, we need some margin. The number of extra sections is
187  * 1-3 now and depends on arch. We use "5" as safe margin, here.
188  *
189  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190  * not a hard limit any more. Although some userspace tools can be surprised by
191  * that.
192  */
193 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
194 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195 
196 extern int sysctl_max_map_count;
197 
198 extern unsigned long sysctl_user_reserve_kbytes;
199 extern unsigned long sysctl_admin_reserve_kbytes;
200 
201 extern int sysctl_overcommit_memory;
202 extern int sysctl_overcommit_ratio;
203 extern unsigned long sysctl_overcommit_kbytes;
204 
205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 		loff_t *);
207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 
210 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
211 
212 /* to align the pointer to the (next) page boundary */
213 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
214 
215 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
216 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
217 
218 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
219 
220 /*
221  * Linux kernel virtual memory manager primitives.
222  * The idea being to have a "virtual" mm in the same way
223  * we have a virtual fs - giving a cleaner interface to the
224  * mm details, and allowing different kinds of memory mappings
225  * (from shared memory to executable loading to arbitrary
226  * mmap() functions).
227  */
228 
229 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
230 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
231 void vm_area_free(struct vm_area_struct *);
232 
233 #ifndef CONFIG_MMU
234 extern struct rb_root nommu_region_tree;
235 extern struct rw_semaphore nommu_region_sem;
236 
237 extern unsigned int kobjsize(const void *objp);
238 #endif
239 
240 /*
241  * vm_flags in vm_area_struct, see mm_types.h.
242  * When changing, update also include/trace/events/mmflags.h
243  */
244 #define VM_NONE		0x00000000
245 
246 #define VM_READ		0x00000001	/* currently active flags */
247 #define VM_WRITE	0x00000002
248 #define VM_EXEC		0x00000004
249 #define VM_SHARED	0x00000008
250 
251 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
252 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
253 #define VM_MAYWRITE	0x00000020
254 #define VM_MAYEXEC	0x00000040
255 #define VM_MAYSHARE	0x00000080
256 
257 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
258 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
259 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
260 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
261 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
262 
263 #define VM_LOCKED	0x00002000
264 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
265 
266 					/* Used by sys_madvise() */
267 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
268 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
269 
270 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
271 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
272 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
273 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
274 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
275 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
276 #define VM_SYNC		0x00800000	/* Synchronous page faults */
277 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
278 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
279 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
280 
281 #ifdef CONFIG_MEM_SOFT_DIRTY
282 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
283 #else
284 # define VM_SOFTDIRTY	0
285 #endif
286 
287 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
288 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
289 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
290 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
291 
292 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
293 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
294 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
295 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
296 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
299 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
300 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
301 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
302 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
303 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
304 
305 #ifdef CONFIG_ARCH_HAS_PKEYS
306 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
307 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
308 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
309 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
310 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
311 #ifdef CONFIG_PPC
312 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
313 #else
314 # define VM_PKEY_BIT4  0
315 #endif
316 #endif /* CONFIG_ARCH_HAS_PKEYS */
317 
318 #if defined(CONFIG_X86)
319 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
320 #elif defined(CONFIG_PARISC)
321 # define VM_GROWSUP	VM_ARCH_1
322 #elif defined(CONFIG_IA64)
323 # define VM_GROWSUP	VM_ARCH_1
324 #elif defined(CONFIG_SPARC64)
325 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
326 # define VM_ARCH_CLEAR	VM_SPARC_ADI
327 #elif defined(CONFIG_ARM64)
328 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
329 # define VM_ARCH_CLEAR	VM_ARM64_BTI
330 #elif !defined(CONFIG_MMU)
331 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
332 #endif
333 
334 #ifndef VM_GROWSUP
335 # define VM_GROWSUP	VM_NONE
336 #endif
337 
338 /* Bits set in the VMA until the stack is in its final location */
339 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
340 
341 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
342 
343 /* Common data flag combinations */
344 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
345 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
346 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
347 				 VM_MAYWRITE | VM_MAYEXEC)
348 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
349 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
350 
351 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
352 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
353 #endif
354 
355 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
356 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
357 #endif
358 
359 #ifdef CONFIG_STACK_GROWSUP
360 #define VM_STACK	VM_GROWSUP
361 #else
362 #define VM_STACK	VM_GROWSDOWN
363 #endif
364 
365 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
366 
367 /* VMA basic access permission flags */
368 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
369 
370 
371 /*
372  * Special vmas that are non-mergable, non-mlock()able.
373  */
374 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
375 
376 /* This mask prevents VMA from being scanned with khugepaged */
377 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
378 
379 /* This mask defines which mm->def_flags a process can inherit its parent */
380 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
381 
382 /* This mask is used to clear all the VMA flags used by mlock */
383 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
384 
385 /* Arch-specific flags to clear when updating VM flags on protection change */
386 #ifndef VM_ARCH_CLEAR
387 # define VM_ARCH_CLEAR	VM_NONE
388 #endif
389 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
390 
391 /*
392  * mapping from the currently active vm_flags protection bits (the
393  * low four bits) to a page protection mask..
394  */
395 extern pgprot_t protection_map[16];
396 
397 /**
398  * Fault flag definitions.
399  *
400  * @FAULT_FLAG_WRITE: Fault was a write fault.
401  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
402  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
403  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
404  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
405  * @FAULT_FLAG_TRIED: The fault has been tried once.
406  * @FAULT_FLAG_USER: The fault originated in userspace.
407  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
408  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
409  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
410  *
411  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
412  * whether we would allow page faults to retry by specifying these two
413  * fault flags correctly.  Currently there can be three legal combinations:
414  *
415  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
416  *                              this is the first try
417  *
418  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
419  *                              we've already tried at least once
420  *
421  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
422  *
423  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
424  * be used.  Note that page faults can be allowed to retry for multiple times,
425  * in which case we'll have an initial fault with flags (a) then later on
426  * continuous faults with flags (b).  We should always try to detect pending
427  * signals before a retry to make sure the continuous page faults can still be
428  * interrupted if necessary.
429  */
430 #define FAULT_FLAG_WRITE			0x01
431 #define FAULT_FLAG_MKWRITE			0x02
432 #define FAULT_FLAG_ALLOW_RETRY			0x04
433 #define FAULT_FLAG_RETRY_NOWAIT			0x08
434 #define FAULT_FLAG_KILLABLE			0x10
435 #define FAULT_FLAG_TRIED			0x20
436 #define FAULT_FLAG_USER				0x40
437 #define FAULT_FLAG_REMOTE			0x80
438 #define FAULT_FLAG_INSTRUCTION  		0x100
439 #define FAULT_FLAG_INTERRUPTIBLE		0x200
440 
441 /*
442  * The default fault flags that should be used by most of the
443  * arch-specific page fault handlers.
444  */
445 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
446 			     FAULT_FLAG_KILLABLE | \
447 			     FAULT_FLAG_INTERRUPTIBLE)
448 
449 /**
450  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
451  *
452  * This is mostly used for places where we want to try to avoid taking
453  * the mmap_lock for too long a time when waiting for another condition
454  * to change, in which case we can try to be polite to release the
455  * mmap_lock in the first round to avoid potential starvation of other
456  * processes that would also want the mmap_lock.
457  *
458  * Return: true if the page fault allows retry and this is the first
459  * attempt of the fault handling; false otherwise.
460  */
461 static inline bool fault_flag_allow_retry_first(unsigned int flags)
462 {
463 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
464 	    (!(flags & FAULT_FLAG_TRIED));
465 }
466 
467 #define FAULT_FLAG_TRACE \
468 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
469 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
470 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
471 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
472 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
473 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
474 	{ FAULT_FLAG_USER,		"USER" }, \
475 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
476 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
477 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
478 
479 /*
480  * vm_fault is filled by the the pagefault handler and passed to the vma's
481  * ->fault function. The vma's ->fault is responsible for returning a bitmask
482  * of VM_FAULT_xxx flags that give details about how the fault was handled.
483  *
484  * MM layer fills up gfp_mask for page allocations but fault handler might
485  * alter it if its implementation requires a different allocation context.
486  *
487  * pgoff should be used in favour of virtual_address, if possible.
488  */
489 struct vm_fault {
490 	struct vm_area_struct *vma;	/* Target VMA */
491 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
492 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
493 	pgoff_t pgoff;			/* Logical page offset based on vma */
494 	unsigned long address;		/* Faulting virtual address */
495 	pmd_t *pmd;			/* Pointer to pmd entry matching
496 					 * the 'address' */
497 	pud_t *pud;			/* Pointer to pud entry matching
498 					 * the 'address'
499 					 */
500 	pte_t orig_pte;			/* Value of PTE at the time of fault */
501 
502 	struct page *cow_page;		/* Page handler may use for COW fault */
503 	struct page *page;		/* ->fault handlers should return a
504 					 * page here, unless VM_FAULT_NOPAGE
505 					 * is set (which is also implied by
506 					 * VM_FAULT_ERROR).
507 					 */
508 	/* These three entries are valid only while holding ptl lock */
509 	pte_t *pte;			/* Pointer to pte entry matching
510 					 * the 'address'. NULL if the page
511 					 * table hasn't been allocated.
512 					 */
513 	spinlock_t *ptl;		/* Page table lock.
514 					 * Protects pte page table if 'pte'
515 					 * is not NULL, otherwise pmd.
516 					 */
517 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
518 					 * vm_ops->map_pages() calls
519 					 * alloc_set_pte() from atomic context.
520 					 * do_fault_around() pre-allocates
521 					 * page table to avoid allocation from
522 					 * atomic context.
523 					 */
524 };
525 
526 /* page entry size for vm->huge_fault() */
527 enum page_entry_size {
528 	PE_SIZE_PTE = 0,
529 	PE_SIZE_PMD,
530 	PE_SIZE_PUD,
531 };
532 
533 /*
534  * These are the virtual MM functions - opening of an area, closing and
535  * unmapping it (needed to keep files on disk up-to-date etc), pointer
536  * to the functions called when a no-page or a wp-page exception occurs.
537  */
538 struct vm_operations_struct {
539 	void (*open)(struct vm_area_struct * area);
540 	void (*close)(struct vm_area_struct * area);
541 	int (*split)(struct vm_area_struct * area, unsigned long addr);
542 	int (*mremap)(struct vm_area_struct * area);
543 	vm_fault_t (*fault)(struct vm_fault *vmf);
544 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
545 			enum page_entry_size pe_size);
546 	void (*map_pages)(struct vm_fault *vmf,
547 			pgoff_t start_pgoff, pgoff_t end_pgoff);
548 	unsigned long (*pagesize)(struct vm_area_struct * area);
549 
550 	/* notification that a previously read-only page is about to become
551 	 * writable, if an error is returned it will cause a SIGBUS */
552 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
553 
554 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
555 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
556 
557 	/* called by access_process_vm when get_user_pages() fails, typically
558 	 * for use by special VMAs that can switch between memory and hardware
559 	 */
560 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
561 		      void *buf, int len, int write);
562 
563 	/* Called by the /proc/PID/maps code to ask the vma whether it
564 	 * has a special name.  Returning non-NULL will also cause this
565 	 * vma to be dumped unconditionally. */
566 	const char *(*name)(struct vm_area_struct *vma);
567 
568 #ifdef CONFIG_NUMA
569 	/*
570 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
571 	 * to hold the policy upon return.  Caller should pass NULL @new to
572 	 * remove a policy and fall back to surrounding context--i.e. do not
573 	 * install a MPOL_DEFAULT policy, nor the task or system default
574 	 * mempolicy.
575 	 */
576 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
577 
578 	/*
579 	 * get_policy() op must add reference [mpol_get()] to any policy at
580 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
581 	 * in mm/mempolicy.c will do this automatically.
582 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
583 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
584 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
585 	 * must return NULL--i.e., do not "fallback" to task or system default
586 	 * policy.
587 	 */
588 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
589 					unsigned long addr);
590 #endif
591 	/*
592 	 * Called by vm_normal_page() for special PTEs to find the
593 	 * page for @addr.  This is useful if the default behavior
594 	 * (using pte_page()) would not find the correct page.
595 	 */
596 	struct page *(*find_special_page)(struct vm_area_struct *vma,
597 					  unsigned long addr);
598 };
599 
600 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
601 {
602 	static const struct vm_operations_struct dummy_vm_ops = {};
603 
604 	memset(vma, 0, sizeof(*vma));
605 	vma->vm_mm = mm;
606 	vma->vm_ops = &dummy_vm_ops;
607 	INIT_LIST_HEAD(&vma->anon_vma_chain);
608 }
609 
610 static inline void vma_set_anonymous(struct vm_area_struct *vma)
611 {
612 	vma->vm_ops = NULL;
613 }
614 
615 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
616 {
617 	return !vma->vm_ops;
618 }
619 
620 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
621 {
622 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
623 
624 	if (!maybe_stack)
625 		return false;
626 
627 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
628 						VM_STACK_INCOMPLETE_SETUP)
629 		return true;
630 
631 	return false;
632 }
633 
634 static inline bool vma_is_foreign(struct vm_area_struct *vma)
635 {
636 	if (!current->mm)
637 		return true;
638 
639 	if (current->mm != vma->vm_mm)
640 		return true;
641 
642 	return false;
643 }
644 
645 static inline bool vma_is_accessible(struct vm_area_struct *vma)
646 {
647 	return vma->vm_flags & VM_ACCESS_FLAGS;
648 }
649 
650 #ifdef CONFIG_SHMEM
651 /*
652  * The vma_is_shmem is not inline because it is used only by slow
653  * paths in userfault.
654  */
655 bool vma_is_shmem(struct vm_area_struct *vma);
656 #else
657 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
658 #endif
659 
660 int vma_is_stack_for_current(struct vm_area_struct *vma);
661 
662 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
663 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
664 
665 struct mmu_gather;
666 struct inode;
667 
668 /*
669  * FIXME: take this include out, include page-flags.h in
670  * files which need it (119 of them)
671  */
672 #include <linux/page-flags.h>
673 #include <linux/huge_mm.h>
674 
675 /*
676  * Methods to modify the page usage count.
677  *
678  * What counts for a page usage:
679  * - cache mapping   (page->mapping)
680  * - private data    (page->private)
681  * - page mapped in a task's page tables, each mapping
682  *   is counted separately
683  *
684  * Also, many kernel routines increase the page count before a critical
685  * routine so they can be sure the page doesn't go away from under them.
686  */
687 
688 /*
689  * Drop a ref, return true if the refcount fell to zero (the page has no users)
690  */
691 static inline int put_page_testzero(struct page *page)
692 {
693 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
694 	return page_ref_dec_and_test(page);
695 }
696 
697 /*
698  * Try to grab a ref unless the page has a refcount of zero, return false if
699  * that is the case.
700  * This can be called when MMU is off so it must not access
701  * any of the virtual mappings.
702  */
703 static inline int get_page_unless_zero(struct page *page)
704 {
705 	return page_ref_add_unless(page, 1, 0);
706 }
707 
708 extern int page_is_ram(unsigned long pfn);
709 
710 enum {
711 	REGION_INTERSECTS,
712 	REGION_DISJOINT,
713 	REGION_MIXED,
714 };
715 
716 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
717 		      unsigned long desc);
718 
719 /* Support for virtually mapped pages */
720 struct page *vmalloc_to_page(const void *addr);
721 unsigned long vmalloc_to_pfn(const void *addr);
722 
723 /*
724  * Determine if an address is within the vmalloc range
725  *
726  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
727  * is no special casing required.
728  */
729 
730 #ifndef is_ioremap_addr
731 #define is_ioremap_addr(x) is_vmalloc_addr(x)
732 #endif
733 
734 #ifdef CONFIG_MMU
735 extern bool is_vmalloc_addr(const void *x);
736 extern int is_vmalloc_or_module_addr(const void *x);
737 #else
738 static inline bool is_vmalloc_addr(const void *x)
739 {
740 	return false;
741 }
742 static inline int is_vmalloc_or_module_addr(const void *x)
743 {
744 	return 0;
745 }
746 #endif
747 
748 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
749 static inline void *kvmalloc(size_t size, gfp_t flags)
750 {
751 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
752 }
753 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
754 {
755 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
756 }
757 static inline void *kvzalloc(size_t size, gfp_t flags)
758 {
759 	return kvmalloc(size, flags | __GFP_ZERO);
760 }
761 
762 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
763 {
764 	size_t bytes;
765 
766 	if (unlikely(check_mul_overflow(n, size, &bytes)))
767 		return NULL;
768 
769 	return kvmalloc(bytes, flags);
770 }
771 
772 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
773 {
774 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
775 }
776 
777 extern void kvfree(const void *addr);
778 extern void kvfree_sensitive(const void *addr, size_t len);
779 
780 /*
781  * Mapcount of compound page as a whole, does not include mapped sub-pages.
782  *
783  * Must be called only for compound pages or any their tail sub-pages.
784  */
785 static inline int compound_mapcount(struct page *page)
786 {
787 	VM_BUG_ON_PAGE(!PageCompound(page), page);
788 	page = compound_head(page);
789 	return atomic_read(compound_mapcount_ptr(page)) + 1;
790 }
791 
792 /*
793  * The atomic page->_mapcount, starts from -1: so that transitions
794  * both from it and to it can be tracked, using atomic_inc_and_test
795  * and atomic_add_negative(-1).
796  */
797 static inline void page_mapcount_reset(struct page *page)
798 {
799 	atomic_set(&(page)->_mapcount, -1);
800 }
801 
802 int __page_mapcount(struct page *page);
803 
804 /*
805  * Mapcount of 0-order page; when compound sub-page, includes
806  * compound_mapcount().
807  *
808  * Result is undefined for pages which cannot be mapped into userspace.
809  * For example SLAB or special types of pages. See function page_has_type().
810  * They use this place in struct page differently.
811  */
812 static inline int page_mapcount(struct page *page)
813 {
814 	if (unlikely(PageCompound(page)))
815 		return __page_mapcount(page);
816 	return atomic_read(&page->_mapcount) + 1;
817 }
818 
819 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
820 int total_mapcount(struct page *page);
821 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
822 #else
823 static inline int total_mapcount(struct page *page)
824 {
825 	return page_mapcount(page);
826 }
827 static inline int page_trans_huge_mapcount(struct page *page,
828 					   int *total_mapcount)
829 {
830 	int mapcount = page_mapcount(page);
831 	if (total_mapcount)
832 		*total_mapcount = mapcount;
833 	return mapcount;
834 }
835 #endif
836 
837 static inline struct page *virt_to_head_page(const void *x)
838 {
839 	struct page *page = virt_to_page(x);
840 
841 	return compound_head(page);
842 }
843 
844 void __put_page(struct page *page);
845 
846 void put_pages_list(struct list_head *pages);
847 
848 void split_page(struct page *page, unsigned int order);
849 
850 /*
851  * Compound pages have a destructor function.  Provide a
852  * prototype for that function and accessor functions.
853  * These are _only_ valid on the head of a compound page.
854  */
855 typedef void compound_page_dtor(struct page *);
856 
857 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
858 enum compound_dtor_id {
859 	NULL_COMPOUND_DTOR,
860 	COMPOUND_PAGE_DTOR,
861 #ifdef CONFIG_HUGETLB_PAGE
862 	HUGETLB_PAGE_DTOR,
863 #endif
864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
865 	TRANSHUGE_PAGE_DTOR,
866 #endif
867 	NR_COMPOUND_DTORS,
868 };
869 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
870 
871 static inline void set_compound_page_dtor(struct page *page,
872 		enum compound_dtor_id compound_dtor)
873 {
874 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
875 	page[1].compound_dtor = compound_dtor;
876 }
877 
878 static inline void destroy_compound_page(struct page *page)
879 {
880 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
881 	compound_page_dtors[page[1].compound_dtor](page);
882 }
883 
884 static inline unsigned int compound_order(struct page *page)
885 {
886 	if (!PageHead(page))
887 		return 0;
888 	return page[1].compound_order;
889 }
890 
891 static inline bool hpage_pincount_available(struct page *page)
892 {
893 	/*
894 	 * Can the page->hpage_pinned_refcount field be used? That field is in
895 	 * the 3rd page of the compound page, so the smallest (2-page) compound
896 	 * pages cannot support it.
897 	 */
898 	page = compound_head(page);
899 	return PageCompound(page) && compound_order(page) > 1;
900 }
901 
902 static inline int compound_pincount(struct page *page)
903 {
904 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
905 	page = compound_head(page);
906 	return atomic_read(compound_pincount_ptr(page));
907 }
908 
909 static inline void set_compound_order(struct page *page, unsigned int order)
910 {
911 	page[1].compound_order = order;
912 }
913 
914 /* Returns the number of pages in this potentially compound page. */
915 static inline unsigned long compound_nr(struct page *page)
916 {
917 	return 1UL << compound_order(page);
918 }
919 
920 /* Returns the number of bytes in this potentially compound page. */
921 static inline unsigned long page_size(struct page *page)
922 {
923 	return PAGE_SIZE << compound_order(page);
924 }
925 
926 /* Returns the number of bits needed for the number of bytes in a page */
927 static inline unsigned int page_shift(struct page *page)
928 {
929 	return PAGE_SHIFT + compound_order(page);
930 }
931 
932 void free_compound_page(struct page *page);
933 
934 #ifdef CONFIG_MMU
935 /*
936  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
937  * servicing faults for write access.  In the normal case, do always want
938  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
939  * that do not have writing enabled, when used by access_process_vm.
940  */
941 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
942 {
943 	if (likely(vma->vm_flags & VM_WRITE))
944 		pte = pte_mkwrite(pte);
945 	return pte;
946 }
947 
948 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
949 vm_fault_t finish_fault(struct vm_fault *vmf);
950 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
951 #endif
952 
953 /*
954  * Multiple processes may "see" the same page. E.g. for untouched
955  * mappings of /dev/null, all processes see the same page full of
956  * zeroes, and text pages of executables and shared libraries have
957  * only one copy in memory, at most, normally.
958  *
959  * For the non-reserved pages, page_count(page) denotes a reference count.
960  *   page_count() == 0 means the page is free. page->lru is then used for
961  *   freelist management in the buddy allocator.
962  *   page_count() > 0  means the page has been allocated.
963  *
964  * Pages are allocated by the slab allocator in order to provide memory
965  * to kmalloc and kmem_cache_alloc. In this case, the management of the
966  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
967  * unless a particular usage is carefully commented. (the responsibility of
968  * freeing the kmalloc memory is the caller's, of course).
969  *
970  * A page may be used by anyone else who does a __get_free_page().
971  * In this case, page_count still tracks the references, and should only
972  * be used through the normal accessor functions. The top bits of page->flags
973  * and page->virtual store page management information, but all other fields
974  * are unused and could be used privately, carefully. The management of this
975  * page is the responsibility of the one who allocated it, and those who have
976  * subsequently been given references to it.
977  *
978  * The other pages (we may call them "pagecache pages") are completely
979  * managed by the Linux memory manager: I/O, buffers, swapping etc.
980  * The following discussion applies only to them.
981  *
982  * A pagecache page contains an opaque `private' member, which belongs to the
983  * page's address_space. Usually, this is the address of a circular list of
984  * the page's disk buffers. PG_private must be set to tell the VM to call
985  * into the filesystem to release these pages.
986  *
987  * A page may belong to an inode's memory mapping. In this case, page->mapping
988  * is the pointer to the inode, and page->index is the file offset of the page,
989  * in units of PAGE_SIZE.
990  *
991  * If pagecache pages are not associated with an inode, they are said to be
992  * anonymous pages. These may become associated with the swapcache, and in that
993  * case PG_swapcache is set, and page->private is an offset into the swapcache.
994  *
995  * In either case (swapcache or inode backed), the pagecache itself holds one
996  * reference to the page. Setting PG_private should also increment the
997  * refcount. The each user mapping also has a reference to the page.
998  *
999  * The pagecache pages are stored in a per-mapping radix tree, which is
1000  * rooted at mapping->i_pages, and indexed by offset.
1001  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1002  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1003  *
1004  * All pagecache pages may be subject to I/O:
1005  * - inode pages may need to be read from disk,
1006  * - inode pages which have been modified and are MAP_SHARED may need
1007  *   to be written back to the inode on disk,
1008  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1009  *   modified may need to be swapped out to swap space and (later) to be read
1010  *   back into memory.
1011  */
1012 
1013 /*
1014  * The zone field is never updated after free_area_init_core()
1015  * sets it, so none of the operations on it need to be atomic.
1016  */
1017 
1018 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1019 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1020 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1021 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1022 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1023 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1024 
1025 /*
1026  * Define the bit shifts to access each section.  For non-existent
1027  * sections we define the shift as 0; that plus a 0 mask ensures
1028  * the compiler will optimise away reference to them.
1029  */
1030 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1031 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1032 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1033 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1034 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1035 
1036 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1037 #ifdef NODE_NOT_IN_PAGE_FLAGS
1038 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1039 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1040 						SECTIONS_PGOFF : ZONES_PGOFF)
1041 #else
1042 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1043 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1044 						NODES_PGOFF : ZONES_PGOFF)
1045 #endif
1046 
1047 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1048 
1049 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1050 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1051 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1052 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1053 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1054 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1055 
1056 static inline enum zone_type page_zonenum(const struct page *page)
1057 {
1058 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1059 }
1060 
1061 #ifdef CONFIG_ZONE_DEVICE
1062 static inline bool is_zone_device_page(const struct page *page)
1063 {
1064 	return page_zonenum(page) == ZONE_DEVICE;
1065 }
1066 extern void memmap_init_zone_device(struct zone *, unsigned long,
1067 				    unsigned long, struct dev_pagemap *);
1068 #else
1069 static inline bool is_zone_device_page(const struct page *page)
1070 {
1071 	return false;
1072 }
1073 #endif
1074 
1075 #ifdef CONFIG_DEV_PAGEMAP_OPS
1076 void free_devmap_managed_page(struct page *page);
1077 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1078 
1079 static inline bool page_is_devmap_managed(struct page *page)
1080 {
1081 	if (!static_branch_unlikely(&devmap_managed_key))
1082 		return false;
1083 	if (!is_zone_device_page(page))
1084 		return false;
1085 	switch (page->pgmap->type) {
1086 	case MEMORY_DEVICE_PRIVATE:
1087 	case MEMORY_DEVICE_FS_DAX:
1088 		return true;
1089 	default:
1090 		break;
1091 	}
1092 	return false;
1093 }
1094 
1095 void put_devmap_managed_page(struct page *page);
1096 
1097 #else /* CONFIG_DEV_PAGEMAP_OPS */
1098 static inline bool page_is_devmap_managed(struct page *page)
1099 {
1100 	return false;
1101 }
1102 
1103 static inline void put_devmap_managed_page(struct page *page)
1104 {
1105 }
1106 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1107 
1108 static inline bool is_device_private_page(const struct page *page)
1109 {
1110 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1111 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1112 		is_zone_device_page(page) &&
1113 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1114 }
1115 
1116 static inline bool is_pci_p2pdma_page(const struct page *page)
1117 {
1118 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1119 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1120 		is_zone_device_page(page) &&
1121 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1122 }
1123 
1124 /* 127: arbitrary random number, small enough to assemble well */
1125 #define page_ref_zero_or_close_to_overflow(page) \
1126 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1127 
1128 static inline void get_page(struct page *page)
1129 {
1130 	page = compound_head(page);
1131 	/*
1132 	 * Getting a normal page or the head of a compound page
1133 	 * requires to already have an elevated page->_refcount.
1134 	 */
1135 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1136 	page_ref_inc(page);
1137 }
1138 
1139 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1140 
1141 static inline __must_check bool try_get_page(struct page *page)
1142 {
1143 	page = compound_head(page);
1144 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1145 		return false;
1146 	page_ref_inc(page);
1147 	return true;
1148 }
1149 
1150 static inline void put_page(struct page *page)
1151 {
1152 	page = compound_head(page);
1153 
1154 	/*
1155 	 * For devmap managed pages we need to catch refcount transition from
1156 	 * 2 to 1, when refcount reach one it means the page is free and we
1157 	 * need to inform the device driver through callback. See
1158 	 * include/linux/memremap.h and HMM for details.
1159 	 */
1160 	if (page_is_devmap_managed(page)) {
1161 		put_devmap_managed_page(page);
1162 		return;
1163 	}
1164 
1165 	if (put_page_testzero(page))
1166 		__put_page(page);
1167 }
1168 
1169 /*
1170  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1171  * the page's refcount so that two separate items are tracked: the original page
1172  * reference count, and also a new count of how many pin_user_pages() calls were
1173  * made against the page. ("gup-pinned" is another term for the latter).
1174  *
1175  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1176  * distinct from normal pages. As such, the unpin_user_page() call (and its
1177  * variants) must be used in order to release gup-pinned pages.
1178  *
1179  * Choice of value:
1180  *
1181  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1182  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1183  * simpler, due to the fact that adding an even power of two to the page
1184  * refcount has the effect of using only the upper N bits, for the code that
1185  * counts up using the bias value. This means that the lower bits are left for
1186  * the exclusive use of the original code that increments and decrements by one
1187  * (or at least, by much smaller values than the bias value).
1188  *
1189  * Of course, once the lower bits overflow into the upper bits (and this is
1190  * OK, because subtraction recovers the original values), then visual inspection
1191  * no longer suffices to directly view the separate counts. However, for normal
1192  * applications that don't have huge page reference counts, this won't be an
1193  * issue.
1194  *
1195  * Locking: the lockless algorithm described in page_cache_get_speculative()
1196  * and page_cache_gup_pin_speculative() provides safe operation for
1197  * get_user_pages and page_mkclean and other calls that race to set up page
1198  * table entries.
1199  */
1200 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1201 
1202 void unpin_user_page(struct page *page);
1203 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1204 				 bool make_dirty);
1205 void unpin_user_pages(struct page **pages, unsigned long npages);
1206 
1207 /**
1208  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1209  *
1210  * This function checks if a page has been pinned via a call to
1211  * pin_user_pages*().
1212  *
1213  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1214  * because it means "definitely not pinned for DMA", but true means "probably
1215  * pinned for DMA, but possibly a false positive due to having at least
1216  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1217  *
1218  * False positives are OK, because: a) it's unlikely for a page to get that many
1219  * refcounts, and b) all the callers of this routine are expected to be able to
1220  * deal gracefully with a false positive.
1221  *
1222  * For huge pages, the result will be exactly correct. That's because we have
1223  * more tracking data available: the 3rd struct page in the compound page is
1224  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1225  * scheme).
1226  *
1227  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1228  *
1229  * @page:	pointer to page to be queried.
1230  * @Return:	True, if it is likely that the page has been "dma-pinned".
1231  *		False, if the page is definitely not dma-pinned.
1232  */
1233 static inline bool page_maybe_dma_pinned(struct page *page)
1234 {
1235 	if (hpage_pincount_available(page))
1236 		return compound_pincount(page) > 0;
1237 
1238 	/*
1239 	 * page_ref_count() is signed. If that refcount overflows, then
1240 	 * page_ref_count() returns a negative value, and callers will avoid
1241 	 * further incrementing the refcount.
1242 	 *
1243 	 * Here, for that overflow case, use the signed bit to count a little
1244 	 * bit higher via unsigned math, and thus still get an accurate result.
1245 	 */
1246 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1247 		GUP_PIN_COUNTING_BIAS;
1248 }
1249 
1250 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1251 #define SECTION_IN_PAGE_FLAGS
1252 #endif
1253 
1254 /*
1255  * The identification function is mainly used by the buddy allocator for
1256  * determining if two pages could be buddies. We are not really identifying
1257  * the zone since we could be using the section number id if we do not have
1258  * node id available in page flags.
1259  * We only guarantee that it will return the same value for two combinable
1260  * pages in a zone.
1261  */
1262 static inline int page_zone_id(struct page *page)
1263 {
1264 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1265 }
1266 
1267 #ifdef NODE_NOT_IN_PAGE_FLAGS
1268 extern int page_to_nid(const struct page *page);
1269 #else
1270 static inline int page_to_nid(const struct page *page)
1271 {
1272 	struct page *p = (struct page *)page;
1273 
1274 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1275 }
1276 #endif
1277 
1278 #ifdef CONFIG_NUMA_BALANCING
1279 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1280 {
1281 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1282 }
1283 
1284 static inline int cpupid_to_pid(int cpupid)
1285 {
1286 	return cpupid & LAST__PID_MASK;
1287 }
1288 
1289 static inline int cpupid_to_cpu(int cpupid)
1290 {
1291 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1292 }
1293 
1294 static inline int cpupid_to_nid(int cpupid)
1295 {
1296 	return cpu_to_node(cpupid_to_cpu(cpupid));
1297 }
1298 
1299 static inline bool cpupid_pid_unset(int cpupid)
1300 {
1301 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1302 }
1303 
1304 static inline bool cpupid_cpu_unset(int cpupid)
1305 {
1306 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1307 }
1308 
1309 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1310 {
1311 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1312 }
1313 
1314 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1315 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1316 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1317 {
1318 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1319 }
1320 
1321 static inline int page_cpupid_last(struct page *page)
1322 {
1323 	return page->_last_cpupid;
1324 }
1325 static inline void page_cpupid_reset_last(struct page *page)
1326 {
1327 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1328 }
1329 #else
1330 static inline int page_cpupid_last(struct page *page)
1331 {
1332 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1333 }
1334 
1335 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1336 
1337 static inline void page_cpupid_reset_last(struct page *page)
1338 {
1339 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1340 }
1341 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1342 #else /* !CONFIG_NUMA_BALANCING */
1343 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1344 {
1345 	return page_to_nid(page); /* XXX */
1346 }
1347 
1348 static inline int page_cpupid_last(struct page *page)
1349 {
1350 	return page_to_nid(page); /* XXX */
1351 }
1352 
1353 static inline int cpupid_to_nid(int cpupid)
1354 {
1355 	return -1;
1356 }
1357 
1358 static inline int cpupid_to_pid(int cpupid)
1359 {
1360 	return -1;
1361 }
1362 
1363 static inline int cpupid_to_cpu(int cpupid)
1364 {
1365 	return -1;
1366 }
1367 
1368 static inline int cpu_pid_to_cpupid(int nid, int pid)
1369 {
1370 	return -1;
1371 }
1372 
1373 static inline bool cpupid_pid_unset(int cpupid)
1374 {
1375 	return true;
1376 }
1377 
1378 static inline void page_cpupid_reset_last(struct page *page)
1379 {
1380 }
1381 
1382 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1383 {
1384 	return false;
1385 }
1386 #endif /* CONFIG_NUMA_BALANCING */
1387 
1388 #ifdef CONFIG_KASAN_SW_TAGS
1389 static inline u8 page_kasan_tag(const struct page *page)
1390 {
1391 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1392 }
1393 
1394 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1395 {
1396 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1397 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1398 }
1399 
1400 static inline void page_kasan_tag_reset(struct page *page)
1401 {
1402 	page_kasan_tag_set(page, 0xff);
1403 }
1404 #else
1405 static inline u8 page_kasan_tag(const struct page *page)
1406 {
1407 	return 0xff;
1408 }
1409 
1410 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1411 static inline void page_kasan_tag_reset(struct page *page) { }
1412 #endif
1413 
1414 static inline struct zone *page_zone(const struct page *page)
1415 {
1416 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1417 }
1418 
1419 static inline pg_data_t *page_pgdat(const struct page *page)
1420 {
1421 	return NODE_DATA(page_to_nid(page));
1422 }
1423 
1424 #ifdef SECTION_IN_PAGE_FLAGS
1425 static inline void set_page_section(struct page *page, unsigned long section)
1426 {
1427 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1428 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1429 }
1430 
1431 static inline unsigned long page_to_section(const struct page *page)
1432 {
1433 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1434 }
1435 #endif
1436 
1437 static inline void set_page_zone(struct page *page, enum zone_type zone)
1438 {
1439 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1440 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1441 }
1442 
1443 static inline void set_page_node(struct page *page, unsigned long node)
1444 {
1445 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1446 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1447 }
1448 
1449 static inline void set_page_links(struct page *page, enum zone_type zone,
1450 	unsigned long node, unsigned long pfn)
1451 {
1452 	set_page_zone(page, zone);
1453 	set_page_node(page, node);
1454 #ifdef SECTION_IN_PAGE_FLAGS
1455 	set_page_section(page, pfn_to_section_nr(pfn));
1456 #endif
1457 }
1458 
1459 #ifdef CONFIG_MEMCG
1460 static inline struct mem_cgroup *page_memcg(struct page *page)
1461 {
1462 	return page->mem_cgroup;
1463 }
1464 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1465 {
1466 	WARN_ON_ONCE(!rcu_read_lock_held());
1467 	return READ_ONCE(page->mem_cgroup);
1468 }
1469 #else
1470 static inline struct mem_cgroup *page_memcg(struct page *page)
1471 {
1472 	return NULL;
1473 }
1474 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1475 {
1476 	WARN_ON_ONCE(!rcu_read_lock_held());
1477 	return NULL;
1478 }
1479 #endif
1480 
1481 /*
1482  * Some inline functions in vmstat.h depend on page_zone()
1483  */
1484 #include <linux/vmstat.h>
1485 
1486 static __always_inline void *lowmem_page_address(const struct page *page)
1487 {
1488 	return page_to_virt(page);
1489 }
1490 
1491 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1492 #define HASHED_PAGE_VIRTUAL
1493 #endif
1494 
1495 #if defined(WANT_PAGE_VIRTUAL)
1496 static inline void *page_address(const struct page *page)
1497 {
1498 	return page->virtual;
1499 }
1500 static inline void set_page_address(struct page *page, void *address)
1501 {
1502 	page->virtual = address;
1503 }
1504 #define page_address_init()  do { } while(0)
1505 #endif
1506 
1507 #if defined(HASHED_PAGE_VIRTUAL)
1508 void *page_address(const struct page *page);
1509 void set_page_address(struct page *page, void *virtual);
1510 void page_address_init(void);
1511 #endif
1512 
1513 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1514 #define page_address(page) lowmem_page_address(page)
1515 #define set_page_address(page, address)  do { } while(0)
1516 #define page_address_init()  do { } while(0)
1517 #endif
1518 
1519 extern void *page_rmapping(struct page *page);
1520 extern struct anon_vma *page_anon_vma(struct page *page);
1521 extern struct address_space *page_mapping(struct page *page);
1522 
1523 extern struct address_space *__page_file_mapping(struct page *);
1524 
1525 static inline
1526 struct address_space *page_file_mapping(struct page *page)
1527 {
1528 	if (unlikely(PageSwapCache(page)))
1529 		return __page_file_mapping(page);
1530 
1531 	return page->mapping;
1532 }
1533 
1534 extern pgoff_t __page_file_index(struct page *page);
1535 
1536 /*
1537  * Return the pagecache index of the passed page.  Regular pagecache pages
1538  * use ->index whereas swapcache pages use swp_offset(->private)
1539  */
1540 static inline pgoff_t page_index(struct page *page)
1541 {
1542 	if (unlikely(PageSwapCache(page)))
1543 		return __page_file_index(page);
1544 	return page->index;
1545 }
1546 
1547 bool page_mapped(struct page *page);
1548 struct address_space *page_mapping(struct page *page);
1549 struct address_space *page_mapping_file(struct page *page);
1550 
1551 /*
1552  * Return true only if the page has been allocated with
1553  * ALLOC_NO_WATERMARKS and the low watermark was not
1554  * met implying that the system is under some pressure.
1555  */
1556 static inline bool page_is_pfmemalloc(struct page *page)
1557 {
1558 	/*
1559 	 * Page index cannot be this large so this must be
1560 	 * a pfmemalloc page.
1561 	 */
1562 	return page->index == -1UL;
1563 }
1564 
1565 /*
1566  * Only to be called by the page allocator on a freshly allocated
1567  * page.
1568  */
1569 static inline void set_page_pfmemalloc(struct page *page)
1570 {
1571 	page->index = -1UL;
1572 }
1573 
1574 static inline void clear_page_pfmemalloc(struct page *page)
1575 {
1576 	page->index = 0;
1577 }
1578 
1579 /*
1580  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1581  */
1582 extern void pagefault_out_of_memory(void);
1583 
1584 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1585 
1586 /*
1587  * Flags passed to show_mem() and show_free_areas() to suppress output in
1588  * various contexts.
1589  */
1590 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1591 
1592 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1593 
1594 #ifdef CONFIG_MMU
1595 extern bool can_do_mlock(void);
1596 #else
1597 static inline bool can_do_mlock(void) { return false; }
1598 #endif
1599 extern int user_shm_lock(size_t, struct user_struct *);
1600 extern void user_shm_unlock(size_t, struct user_struct *);
1601 
1602 /*
1603  * Parameter block passed down to zap_pte_range in exceptional cases.
1604  */
1605 struct zap_details {
1606 	struct address_space *check_mapping;	/* Check page->mapping if set */
1607 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1608 	pgoff_t last_index;			/* Highest page->index to unmap */
1609 };
1610 
1611 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1612 			     pte_t pte);
1613 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1614 				pmd_t pmd);
1615 
1616 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1617 		  unsigned long size);
1618 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1619 		    unsigned long size);
1620 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1621 		unsigned long start, unsigned long end);
1622 
1623 struct mmu_notifier_range;
1624 
1625 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1626 		unsigned long end, unsigned long floor, unsigned long ceiling);
1627 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1628 			struct vm_area_struct *vma);
1629 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1630 		   struct mmu_notifier_range *range,
1631 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1632 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1633 	unsigned long *pfn);
1634 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1635 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1636 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1637 			void *buf, int len, int write);
1638 
1639 extern void truncate_pagecache(struct inode *inode, loff_t new);
1640 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1641 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1642 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1643 int truncate_inode_page(struct address_space *mapping, struct page *page);
1644 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1645 int invalidate_inode_page(struct page *page);
1646 
1647 #ifdef CONFIG_MMU
1648 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1649 			unsigned long address, unsigned int flags);
1650 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1651 			    unsigned long address, unsigned int fault_flags,
1652 			    bool *unlocked);
1653 void unmap_mapping_pages(struct address_space *mapping,
1654 		pgoff_t start, pgoff_t nr, bool even_cows);
1655 void unmap_mapping_range(struct address_space *mapping,
1656 		loff_t const holebegin, loff_t const holelen, int even_cows);
1657 #else
1658 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1659 		unsigned long address, unsigned int flags)
1660 {
1661 	/* should never happen if there's no MMU */
1662 	BUG();
1663 	return VM_FAULT_SIGBUS;
1664 }
1665 static inline int fixup_user_fault(struct task_struct *tsk,
1666 		struct mm_struct *mm, unsigned long address,
1667 		unsigned int fault_flags, bool *unlocked)
1668 {
1669 	/* should never happen if there's no MMU */
1670 	BUG();
1671 	return -EFAULT;
1672 }
1673 static inline void unmap_mapping_pages(struct address_space *mapping,
1674 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1675 static inline void unmap_mapping_range(struct address_space *mapping,
1676 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1677 #endif
1678 
1679 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1680 		loff_t const holebegin, loff_t const holelen)
1681 {
1682 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1683 }
1684 
1685 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1686 		void *buf, int len, unsigned int gup_flags);
1687 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1688 		void *buf, int len, unsigned int gup_flags);
1689 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1690 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1691 
1692 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1693 			    unsigned long start, unsigned long nr_pages,
1694 			    unsigned int gup_flags, struct page **pages,
1695 			    struct vm_area_struct **vmas, int *locked);
1696 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1697 			   unsigned long start, unsigned long nr_pages,
1698 			   unsigned int gup_flags, struct page **pages,
1699 			   struct vm_area_struct **vmas, int *locked);
1700 long get_user_pages(unsigned long start, unsigned long nr_pages,
1701 			    unsigned int gup_flags, struct page **pages,
1702 			    struct vm_area_struct **vmas);
1703 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1704 		    unsigned int gup_flags, struct page **pages,
1705 		    struct vm_area_struct **vmas);
1706 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1707 		    unsigned int gup_flags, struct page **pages, int *locked);
1708 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1709 		    unsigned int gup_flags, struct page **pages, int *locked);
1710 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1711 		    struct page **pages, unsigned int gup_flags);
1712 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1713 		    struct page **pages, unsigned int gup_flags);
1714 
1715 int get_user_pages_fast(unsigned long start, int nr_pages,
1716 			unsigned int gup_flags, struct page **pages);
1717 int pin_user_pages_fast(unsigned long start, int nr_pages,
1718 			unsigned int gup_flags, struct page **pages);
1719 
1720 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1721 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1722 			struct task_struct *task, bool bypass_rlim);
1723 
1724 /* Container for pinned pfns / pages */
1725 struct frame_vector {
1726 	unsigned int nr_allocated;	/* Number of frames we have space for */
1727 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1728 	bool got_ref;		/* Did we pin pages by getting page ref? */
1729 	bool is_pfns;		/* Does array contain pages or pfns? */
1730 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1731 				 * pfns_vector_pages() or pfns_vector_pfns()
1732 				 * for access */
1733 };
1734 
1735 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1736 void frame_vector_destroy(struct frame_vector *vec);
1737 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1738 		     unsigned int gup_flags, struct frame_vector *vec);
1739 void put_vaddr_frames(struct frame_vector *vec);
1740 int frame_vector_to_pages(struct frame_vector *vec);
1741 void frame_vector_to_pfns(struct frame_vector *vec);
1742 
1743 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1744 {
1745 	return vec->nr_frames;
1746 }
1747 
1748 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1749 {
1750 	if (vec->is_pfns) {
1751 		int err = frame_vector_to_pages(vec);
1752 
1753 		if (err)
1754 			return ERR_PTR(err);
1755 	}
1756 	return (struct page **)(vec->ptrs);
1757 }
1758 
1759 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1760 {
1761 	if (!vec->is_pfns)
1762 		frame_vector_to_pfns(vec);
1763 	return (unsigned long *)(vec->ptrs);
1764 }
1765 
1766 struct kvec;
1767 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1768 			struct page **pages);
1769 int get_kernel_page(unsigned long start, int write, struct page **pages);
1770 struct page *get_dump_page(unsigned long addr);
1771 
1772 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1773 extern void do_invalidatepage(struct page *page, unsigned int offset,
1774 			      unsigned int length);
1775 
1776 void __set_page_dirty(struct page *, struct address_space *, int warn);
1777 int __set_page_dirty_nobuffers(struct page *page);
1778 int __set_page_dirty_no_writeback(struct page *page);
1779 int redirty_page_for_writepage(struct writeback_control *wbc,
1780 				struct page *page);
1781 void account_page_dirtied(struct page *page, struct address_space *mapping);
1782 void account_page_cleaned(struct page *page, struct address_space *mapping,
1783 			  struct bdi_writeback *wb);
1784 int set_page_dirty(struct page *page);
1785 int set_page_dirty_lock(struct page *page);
1786 void __cancel_dirty_page(struct page *page);
1787 static inline void cancel_dirty_page(struct page *page)
1788 {
1789 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1790 	if (PageDirty(page))
1791 		__cancel_dirty_page(page);
1792 }
1793 int clear_page_dirty_for_io(struct page *page);
1794 
1795 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1796 
1797 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1798 		unsigned long old_addr, struct vm_area_struct *new_vma,
1799 		unsigned long new_addr, unsigned long len,
1800 		bool need_rmap_locks);
1801 
1802 /*
1803  * Flags used by change_protection().  For now we make it a bitmap so
1804  * that we can pass in multiple flags just like parameters.  However
1805  * for now all the callers are only use one of the flags at the same
1806  * time.
1807  */
1808 /* Whether we should allow dirty bit accounting */
1809 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1810 /* Whether this protection change is for NUMA hints */
1811 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1812 /* Whether this change is for write protecting */
1813 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1814 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1815 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1816 					    MM_CP_UFFD_WP_RESOLVE)
1817 
1818 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1819 			      unsigned long end, pgprot_t newprot,
1820 			      unsigned long cp_flags);
1821 extern int mprotect_fixup(struct vm_area_struct *vma,
1822 			  struct vm_area_struct **pprev, unsigned long start,
1823 			  unsigned long end, unsigned long newflags);
1824 
1825 /*
1826  * doesn't attempt to fault and will return short.
1827  */
1828 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1829 			     unsigned int gup_flags, struct page **pages);
1830 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1831 			     unsigned int gup_flags, struct page **pages);
1832 
1833 static inline bool get_user_page_fast_only(unsigned long addr,
1834 			unsigned int gup_flags, struct page **pagep)
1835 {
1836 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1837 }
1838 /*
1839  * per-process(per-mm_struct) statistics.
1840  */
1841 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1842 {
1843 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1844 
1845 #ifdef SPLIT_RSS_COUNTING
1846 	/*
1847 	 * counter is updated in asynchronous manner and may go to minus.
1848 	 * But it's never be expected number for users.
1849 	 */
1850 	if (val < 0)
1851 		val = 0;
1852 #endif
1853 	return (unsigned long)val;
1854 }
1855 
1856 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1857 
1858 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1859 {
1860 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1861 
1862 	mm_trace_rss_stat(mm, member, count);
1863 }
1864 
1865 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1866 {
1867 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1868 
1869 	mm_trace_rss_stat(mm, member, count);
1870 }
1871 
1872 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1873 {
1874 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1875 
1876 	mm_trace_rss_stat(mm, member, count);
1877 }
1878 
1879 /* Optimized variant when page is already known not to be PageAnon */
1880 static inline int mm_counter_file(struct page *page)
1881 {
1882 	if (PageSwapBacked(page))
1883 		return MM_SHMEMPAGES;
1884 	return MM_FILEPAGES;
1885 }
1886 
1887 static inline int mm_counter(struct page *page)
1888 {
1889 	if (PageAnon(page))
1890 		return MM_ANONPAGES;
1891 	return mm_counter_file(page);
1892 }
1893 
1894 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1895 {
1896 	return get_mm_counter(mm, MM_FILEPAGES) +
1897 		get_mm_counter(mm, MM_ANONPAGES) +
1898 		get_mm_counter(mm, MM_SHMEMPAGES);
1899 }
1900 
1901 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1902 {
1903 	return max(mm->hiwater_rss, get_mm_rss(mm));
1904 }
1905 
1906 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1907 {
1908 	return max(mm->hiwater_vm, mm->total_vm);
1909 }
1910 
1911 static inline void update_hiwater_rss(struct mm_struct *mm)
1912 {
1913 	unsigned long _rss = get_mm_rss(mm);
1914 
1915 	if ((mm)->hiwater_rss < _rss)
1916 		(mm)->hiwater_rss = _rss;
1917 }
1918 
1919 static inline void update_hiwater_vm(struct mm_struct *mm)
1920 {
1921 	if (mm->hiwater_vm < mm->total_vm)
1922 		mm->hiwater_vm = mm->total_vm;
1923 }
1924 
1925 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1926 {
1927 	mm->hiwater_rss = get_mm_rss(mm);
1928 }
1929 
1930 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1931 					 struct mm_struct *mm)
1932 {
1933 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1934 
1935 	if (*maxrss < hiwater_rss)
1936 		*maxrss = hiwater_rss;
1937 }
1938 
1939 #if defined(SPLIT_RSS_COUNTING)
1940 void sync_mm_rss(struct mm_struct *mm);
1941 #else
1942 static inline void sync_mm_rss(struct mm_struct *mm)
1943 {
1944 }
1945 #endif
1946 
1947 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1948 static inline int pte_special(pte_t pte)
1949 {
1950 	return 0;
1951 }
1952 
1953 static inline pte_t pte_mkspecial(pte_t pte)
1954 {
1955 	return pte;
1956 }
1957 #endif
1958 
1959 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1960 static inline int pte_devmap(pte_t pte)
1961 {
1962 	return 0;
1963 }
1964 #endif
1965 
1966 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1967 
1968 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1969 			       spinlock_t **ptl);
1970 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1971 				    spinlock_t **ptl)
1972 {
1973 	pte_t *ptep;
1974 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1975 	return ptep;
1976 }
1977 
1978 #ifdef __PAGETABLE_P4D_FOLDED
1979 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1980 						unsigned long address)
1981 {
1982 	return 0;
1983 }
1984 #else
1985 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1986 #endif
1987 
1988 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1989 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1990 						unsigned long address)
1991 {
1992 	return 0;
1993 }
1994 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1995 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1996 
1997 #else
1998 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1999 
2000 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2001 {
2002 	if (mm_pud_folded(mm))
2003 		return;
2004 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2005 }
2006 
2007 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2008 {
2009 	if (mm_pud_folded(mm))
2010 		return;
2011 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2012 }
2013 #endif
2014 
2015 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2016 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2017 						unsigned long address)
2018 {
2019 	return 0;
2020 }
2021 
2022 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2023 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2024 
2025 #else
2026 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2027 
2028 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2029 {
2030 	if (mm_pmd_folded(mm))
2031 		return;
2032 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2033 }
2034 
2035 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2036 {
2037 	if (mm_pmd_folded(mm))
2038 		return;
2039 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2040 }
2041 #endif
2042 
2043 #ifdef CONFIG_MMU
2044 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2045 {
2046 	atomic_long_set(&mm->pgtables_bytes, 0);
2047 }
2048 
2049 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2050 {
2051 	return atomic_long_read(&mm->pgtables_bytes);
2052 }
2053 
2054 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2055 {
2056 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2057 }
2058 
2059 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2060 {
2061 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2062 }
2063 #else
2064 
2065 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2066 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2067 {
2068 	return 0;
2069 }
2070 
2071 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2072 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2073 #endif
2074 
2075 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2076 int __pte_alloc_kernel(pmd_t *pmd);
2077 
2078 #if defined(CONFIG_MMU)
2079 
2080 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2081 		unsigned long address)
2082 {
2083 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2084 		NULL : p4d_offset(pgd, address);
2085 }
2086 
2087 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2088 		unsigned long address)
2089 {
2090 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2091 		NULL : pud_offset(p4d, address);
2092 }
2093 
2094 static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd,
2095 				     unsigned long address,
2096 				     pgtbl_mod_mask *mod_mask)
2097 
2098 {
2099 	if (unlikely(pgd_none(*pgd))) {
2100 		if (__p4d_alloc(mm, pgd, address))
2101 			return NULL;
2102 		*mod_mask |= PGTBL_PGD_MODIFIED;
2103 	}
2104 
2105 	return p4d_offset(pgd, address);
2106 }
2107 
2108 static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d,
2109 				     unsigned long address,
2110 				     pgtbl_mod_mask *mod_mask)
2111 {
2112 	if (unlikely(p4d_none(*p4d))) {
2113 		if (__pud_alloc(mm, p4d, address))
2114 			return NULL;
2115 		*mod_mask |= PGTBL_P4D_MODIFIED;
2116 	}
2117 
2118 	return pud_offset(p4d, address);
2119 }
2120 
2121 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2122 {
2123 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2124 		NULL: pmd_offset(pud, address);
2125 }
2126 
2127 static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud,
2128 				     unsigned long address,
2129 				     pgtbl_mod_mask *mod_mask)
2130 {
2131 	if (unlikely(pud_none(*pud))) {
2132 		if (__pmd_alloc(mm, pud, address))
2133 			return NULL;
2134 		*mod_mask |= PGTBL_PUD_MODIFIED;
2135 	}
2136 
2137 	return pmd_offset(pud, address);
2138 }
2139 #endif /* CONFIG_MMU */
2140 
2141 #if USE_SPLIT_PTE_PTLOCKS
2142 #if ALLOC_SPLIT_PTLOCKS
2143 void __init ptlock_cache_init(void);
2144 extern bool ptlock_alloc(struct page *page);
2145 extern void ptlock_free(struct page *page);
2146 
2147 static inline spinlock_t *ptlock_ptr(struct page *page)
2148 {
2149 	return page->ptl;
2150 }
2151 #else /* ALLOC_SPLIT_PTLOCKS */
2152 static inline void ptlock_cache_init(void)
2153 {
2154 }
2155 
2156 static inline bool ptlock_alloc(struct page *page)
2157 {
2158 	return true;
2159 }
2160 
2161 static inline void ptlock_free(struct page *page)
2162 {
2163 }
2164 
2165 static inline spinlock_t *ptlock_ptr(struct page *page)
2166 {
2167 	return &page->ptl;
2168 }
2169 #endif /* ALLOC_SPLIT_PTLOCKS */
2170 
2171 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2172 {
2173 	return ptlock_ptr(pmd_page(*pmd));
2174 }
2175 
2176 static inline bool ptlock_init(struct page *page)
2177 {
2178 	/*
2179 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2180 	 * with 0. Make sure nobody took it in use in between.
2181 	 *
2182 	 * It can happen if arch try to use slab for page table allocation:
2183 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2184 	 */
2185 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2186 	if (!ptlock_alloc(page))
2187 		return false;
2188 	spin_lock_init(ptlock_ptr(page));
2189 	return true;
2190 }
2191 
2192 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2193 /*
2194  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2195  */
2196 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2197 {
2198 	return &mm->page_table_lock;
2199 }
2200 static inline void ptlock_cache_init(void) {}
2201 static inline bool ptlock_init(struct page *page) { return true; }
2202 static inline void ptlock_free(struct page *page) {}
2203 #endif /* USE_SPLIT_PTE_PTLOCKS */
2204 
2205 static inline void pgtable_init(void)
2206 {
2207 	ptlock_cache_init();
2208 	pgtable_cache_init();
2209 }
2210 
2211 static inline bool pgtable_pte_page_ctor(struct page *page)
2212 {
2213 	if (!ptlock_init(page))
2214 		return false;
2215 	__SetPageTable(page);
2216 	inc_zone_page_state(page, NR_PAGETABLE);
2217 	return true;
2218 }
2219 
2220 static inline void pgtable_pte_page_dtor(struct page *page)
2221 {
2222 	ptlock_free(page);
2223 	__ClearPageTable(page);
2224 	dec_zone_page_state(page, NR_PAGETABLE);
2225 }
2226 
2227 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2228 ({							\
2229 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2230 	pte_t *__pte = pte_offset_map(pmd, address);	\
2231 	*(ptlp) = __ptl;				\
2232 	spin_lock(__ptl);				\
2233 	__pte;						\
2234 })
2235 
2236 #define pte_unmap_unlock(pte, ptl)	do {		\
2237 	spin_unlock(ptl);				\
2238 	pte_unmap(pte);					\
2239 } while (0)
2240 
2241 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2242 
2243 #define pte_alloc_map(mm, pmd, address)			\
2244 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2245 
2246 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2247 	(pte_alloc(mm, pmd) ?			\
2248 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2249 
2250 #define pte_alloc_kernel(pmd, address)			\
2251 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2252 		NULL: pte_offset_kernel(pmd, address))
2253 
2254 #define pte_alloc_kernel_track(pmd, address, mask)			\
2255 	((unlikely(pmd_none(*(pmd))) &&					\
2256 	  (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\
2257 		NULL: pte_offset_kernel(pmd, address))
2258 
2259 #if USE_SPLIT_PMD_PTLOCKS
2260 
2261 static struct page *pmd_to_page(pmd_t *pmd)
2262 {
2263 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2264 	return virt_to_page((void *)((unsigned long) pmd & mask));
2265 }
2266 
2267 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2268 {
2269 	return ptlock_ptr(pmd_to_page(pmd));
2270 }
2271 
2272 static inline bool pgtable_pmd_page_ctor(struct page *page)
2273 {
2274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2275 	page->pmd_huge_pte = NULL;
2276 #endif
2277 	return ptlock_init(page);
2278 }
2279 
2280 static inline void pgtable_pmd_page_dtor(struct page *page)
2281 {
2282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2283 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2284 #endif
2285 	ptlock_free(page);
2286 }
2287 
2288 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2289 
2290 #else
2291 
2292 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2293 {
2294 	return &mm->page_table_lock;
2295 }
2296 
2297 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2298 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2299 
2300 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2301 
2302 #endif
2303 
2304 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2305 {
2306 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2307 	spin_lock(ptl);
2308 	return ptl;
2309 }
2310 
2311 /*
2312  * No scalability reason to split PUD locks yet, but follow the same pattern
2313  * as the PMD locks to make it easier if we decide to.  The VM should not be
2314  * considered ready to switch to split PUD locks yet; there may be places
2315  * which need to be converted from page_table_lock.
2316  */
2317 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2318 {
2319 	return &mm->page_table_lock;
2320 }
2321 
2322 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2323 {
2324 	spinlock_t *ptl = pud_lockptr(mm, pud);
2325 
2326 	spin_lock(ptl);
2327 	return ptl;
2328 }
2329 
2330 extern void __init pagecache_init(void);
2331 extern void __init free_area_init_memoryless_node(int nid);
2332 extern void free_initmem(void);
2333 
2334 /*
2335  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2336  * into the buddy system. The freed pages will be poisoned with pattern
2337  * "poison" if it's within range [0, UCHAR_MAX].
2338  * Return pages freed into the buddy system.
2339  */
2340 extern unsigned long free_reserved_area(void *start, void *end,
2341 					int poison, const char *s);
2342 
2343 #ifdef	CONFIG_HIGHMEM
2344 /*
2345  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2346  * and totalram_pages.
2347  */
2348 extern void free_highmem_page(struct page *page);
2349 #endif
2350 
2351 extern void adjust_managed_page_count(struct page *page, long count);
2352 extern void mem_init_print_info(const char *str);
2353 
2354 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2355 
2356 /* Free the reserved page into the buddy system, so it gets managed. */
2357 static inline void __free_reserved_page(struct page *page)
2358 {
2359 	ClearPageReserved(page);
2360 	init_page_count(page);
2361 	__free_page(page);
2362 }
2363 
2364 static inline void free_reserved_page(struct page *page)
2365 {
2366 	__free_reserved_page(page);
2367 	adjust_managed_page_count(page, 1);
2368 }
2369 
2370 static inline void mark_page_reserved(struct page *page)
2371 {
2372 	SetPageReserved(page);
2373 	adjust_managed_page_count(page, -1);
2374 }
2375 
2376 /*
2377  * Default method to free all the __init memory into the buddy system.
2378  * The freed pages will be poisoned with pattern "poison" if it's within
2379  * range [0, UCHAR_MAX].
2380  * Return pages freed into the buddy system.
2381  */
2382 static inline unsigned long free_initmem_default(int poison)
2383 {
2384 	extern char __init_begin[], __init_end[];
2385 
2386 	return free_reserved_area(&__init_begin, &__init_end,
2387 				  poison, "unused kernel");
2388 }
2389 
2390 static inline unsigned long get_num_physpages(void)
2391 {
2392 	int nid;
2393 	unsigned long phys_pages = 0;
2394 
2395 	for_each_online_node(nid)
2396 		phys_pages += node_present_pages(nid);
2397 
2398 	return phys_pages;
2399 }
2400 
2401 /*
2402  * Using memblock node mappings, an architecture may initialise its
2403  * zones, allocate the backing mem_map and account for memory holes in an
2404  * architecture independent manner.
2405  *
2406  * An architecture is expected to register range of page frames backed by
2407  * physical memory with memblock_add[_node]() before calling
2408  * free_area_init() passing in the PFN each zone ends at. At a basic
2409  * usage, an architecture is expected to do something like
2410  *
2411  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2412  * 							 max_highmem_pfn};
2413  * for_each_valid_physical_page_range()
2414  * 	memblock_add_node(base, size, nid)
2415  * free_area_init(max_zone_pfns);
2416  *
2417  * sparse_memory_present_with_active_regions() calls memory_present() for
2418  * each range when SPARSEMEM is enabled.
2419  */
2420 void free_area_init(unsigned long *max_zone_pfn);
2421 unsigned long node_map_pfn_alignment(void);
2422 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2423 						unsigned long end_pfn);
2424 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2425 						unsigned long end_pfn);
2426 extern void get_pfn_range_for_nid(unsigned int nid,
2427 			unsigned long *start_pfn, unsigned long *end_pfn);
2428 extern unsigned long find_min_pfn_with_active_regions(void);
2429 extern void sparse_memory_present_with_active_regions(int nid);
2430 
2431 #ifndef CONFIG_NEED_MULTIPLE_NODES
2432 static inline int early_pfn_to_nid(unsigned long pfn)
2433 {
2434 	return 0;
2435 }
2436 #else
2437 /* please see mm/page_alloc.c */
2438 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2439 /* there is a per-arch backend function. */
2440 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2441 					struct mminit_pfnnid_cache *state);
2442 #endif
2443 
2444 extern void set_dma_reserve(unsigned long new_dma_reserve);
2445 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2446 		enum memmap_context, struct vmem_altmap *);
2447 extern void setup_per_zone_wmarks(void);
2448 extern int __meminit init_per_zone_wmark_min(void);
2449 extern void mem_init(void);
2450 extern void __init mmap_init(void);
2451 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2452 extern long si_mem_available(void);
2453 extern void si_meminfo(struct sysinfo * val);
2454 extern void si_meminfo_node(struct sysinfo *val, int nid);
2455 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2456 extern unsigned long arch_reserved_kernel_pages(void);
2457 #endif
2458 
2459 extern __printf(3, 4)
2460 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2461 
2462 extern void setup_per_cpu_pageset(void);
2463 
2464 /* page_alloc.c */
2465 extern int min_free_kbytes;
2466 extern int watermark_boost_factor;
2467 extern int watermark_scale_factor;
2468 extern bool arch_has_descending_max_zone_pfns(void);
2469 
2470 /* nommu.c */
2471 extern atomic_long_t mmap_pages_allocated;
2472 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2473 
2474 /* interval_tree.c */
2475 void vma_interval_tree_insert(struct vm_area_struct *node,
2476 			      struct rb_root_cached *root);
2477 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2478 				    struct vm_area_struct *prev,
2479 				    struct rb_root_cached *root);
2480 void vma_interval_tree_remove(struct vm_area_struct *node,
2481 			      struct rb_root_cached *root);
2482 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2483 				unsigned long start, unsigned long last);
2484 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2485 				unsigned long start, unsigned long last);
2486 
2487 #define vma_interval_tree_foreach(vma, root, start, last)		\
2488 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2489 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2490 
2491 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2492 				   struct rb_root_cached *root);
2493 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2494 				   struct rb_root_cached *root);
2495 struct anon_vma_chain *
2496 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2497 				  unsigned long start, unsigned long last);
2498 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2499 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2500 #ifdef CONFIG_DEBUG_VM_RB
2501 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2502 #endif
2503 
2504 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2505 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2506 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2507 
2508 /* mmap.c */
2509 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2510 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2511 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2512 	struct vm_area_struct *expand);
2513 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2514 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2515 {
2516 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2517 }
2518 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2519 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2520 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2521 	struct mempolicy *, struct vm_userfaultfd_ctx);
2522 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2523 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2524 	unsigned long addr, int new_below);
2525 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2526 	unsigned long addr, int new_below);
2527 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2528 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2529 	struct rb_node **, struct rb_node *);
2530 extern void unlink_file_vma(struct vm_area_struct *);
2531 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2532 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2533 	bool *need_rmap_locks);
2534 extern void exit_mmap(struct mm_struct *);
2535 
2536 static inline int check_data_rlimit(unsigned long rlim,
2537 				    unsigned long new,
2538 				    unsigned long start,
2539 				    unsigned long end_data,
2540 				    unsigned long start_data)
2541 {
2542 	if (rlim < RLIM_INFINITY) {
2543 		if (((new - start) + (end_data - start_data)) > rlim)
2544 			return -ENOSPC;
2545 	}
2546 
2547 	return 0;
2548 }
2549 
2550 extern int mm_take_all_locks(struct mm_struct *mm);
2551 extern void mm_drop_all_locks(struct mm_struct *mm);
2552 
2553 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2554 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2555 extern struct file *get_task_exe_file(struct task_struct *task);
2556 
2557 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2558 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2559 
2560 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2561 				   const struct vm_special_mapping *sm);
2562 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2563 				   unsigned long addr, unsigned long len,
2564 				   unsigned long flags,
2565 				   const struct vm_special_mapping *spec);
2566 /* This is an obsolete alternative to _install_special_mapping. */
2567 extern int install_special_mapping(struct mm_struct *mm,
2568 				   unsigned long addr, unsigned long len,
2569 				   unsigned long flags, struct page **pages);
2570 
2571 unsigned long randomize_stack_top(unsigned long stack_top);
2572 
2573 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2574 
2575 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2576 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2577 	struct list_head *uf);
2578 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2579 	unsigned long len, unsigned long prot, unsigned long flags,
2580 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2581 	struct list_head *uf);
2582 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2583 		       struct list_head *uf, bool downgrade);
2584 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2585 		     struct list_head *uf);
2586 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2587 
2588 static inline unsigned long
2589 do_mmap_pgoff(struct file *file, unsigned long addr,
2590 	unsigned long len, unsigned long prot, unsigned long flags,
2591 	unsigned long pgoff, unsigned long *populate,
2592 	struct list_head *uf)
2593 {
2594 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2595 }
2596 
2597 #ifdef CONFIG_MMU
2598 extern int __mm_populate(unsigned long addr, unsigned long len,
2599 			 int ignore_errors);
2600 static inline void mm_populate(unsigned long addr, unsigned long len)
2601 {
2602 	/* Ignore errors */
2603 	(void) __mm_populate(addr, len, 1);
2604 }
2605 #else
2606 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2607 #endif
2608 
2609 /* These take the mm semaphore themselves */
2610 extern int __must_check vm_brk(unsigned long, unsigned long);
2611 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2612 extern int vm_munmap(unsigned long, size_t);
2613 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2614         unsigned long, unsigned long,
2615         unsigned long, unsigned long);
2616 
2617 struct vm_unmapped_area_info {
2618 #define VM_UNMAPPED_AREA_TOPDOWN 1
2619 	unsigned long flags;
2620 	unsigned long length;
2621 	unsigned long low_limit;
2622 	unsigned long high_limit;
2623 	unsigned long align_mask;
2624 	unsigned long align_offset;
2625 };
2626 
2627 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2628 
2629 /* truncate.c */
2630 extern void truncate_inode_pages(struct address_space *, loff_t);
2631 extern void truncate_inode_pages_range(struct address_space *,
2632 				       loff_t lstart, loff_t lend);
2633 extern void truncate_inode_pages_final(struct address_space *);
2634 
2635 /* generic vm_area_ops exported for stackable file systems */
2636 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2637 extern void filemap_map_pages(struct vm_fault *vmf,
2638 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2639 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2640 
2641 /* mm/page-writeback.c */
2642 int __must_check write_one_page(struct page *page);
2643 void task_dirty_inc(struct task_struct *tsk);
2644 
2645 extern unsigned long stack_guard_gap;
2646 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2647 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2648 
2649 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2650 extern int expand_downwards(struct vm_area_struct *vma,
2651 		unsigned long address);
2652 #if VM_GROWSUP
2653 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2654 #else
2655   #define expand_upwards(vma, address) (0)
2656 #endif
2657 
2658 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2659 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2660 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2661 					     struct vm_area_struct **pprev);
2662 
2663 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2664    NULL if none.  Assume start_addr < end_addr. */
2665 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2666 {
2667 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2668 
2669 	if (vma && end_addr <= vma->vm_start)
2670 		vma = NULL;
2671 	return vma;
2672 }
2673 
2674 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2675 {
2676 	unsigned long vm_start = vma->vm_start;
2677 
2678 	if (vma->vm_flags & VM_GROWSDOWN) {
2679 		vm_start -= stack_guard_gap;
2680 		if (vm_start > vma->vm_start)
2681 			vm_start = 0;
2682 	}
2683 	return vm_start;
2684 }
2685 
2686 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2687 {
2688 	unsigned long vm_end = vma->vm_end;
2689 
2690 	if (vma->vm_flags & VM_GROWSUP) {
2691 		vm_end += stack_guard_gap;
2692 		if (vm_end < vma->vm_end)
2693 			vm_end = -PAGE_SIZE;
2694 	}
2695 	return vm_end;
2696 }
2697 
2698 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2699 {
2700 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2701 }
2702 
2703 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2704 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2705 				unsigned long vm_start, unsigned long vm_end)
2706 {
2707 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2708 
2709 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2710 		vma = NULL;
2711 
2712 	return vma;
2713 }
2714 
2715 static inline bool range_in_vma(struct vm_area_struct *vma,
2716 				unsigned long start, unsigned long end)
2717 {
2718 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2719 }
2720 
2721 #ifdef CONFIG_MMU
2722 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2723 void vma_set_page_prot(struct vm_area_struct *vma);
2724 #else
2725 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2726 {
2727 	return __pgprot(0);
2728 }
2729 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2730 {
2731 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2732 }
2733 #endif
2734 
2735 #ifdef CONFIG_NUMA_BALANCING
2736 unsigned long change_prot_numa(struct vm_area_struct *vma,
2737 			unsigned long start, unsigned long end);
2738 #endif
2739 
2740 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2741 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2742 			unsigned long pfn, unsigned long size, pgprot_t);
2743 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2744 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2745 			struct page **pages, unsigned long *num);
2746 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2747 				unsigned long num);
2748 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2749 				unsigned long num);
2750 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2751 			unsigned long pfn);
2752 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2753 			unsigned long pfn, pgprot_t pgprot);
2754 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2755 			pfn_t pfn);
2756 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2757 			pfn_t pfn, pgprot_t pgprot);
2758 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2759 		unsigned long addr, pfn_t pfn);
2760 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2761 
2762 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2763 				unsigned long addr, struct page *page)
2764 {
2765 	int err = vm_insert_page(vma, addr, page);
2766 
2767 	if (err == -ENOMEM)
2768 		return VM_FAULT_OOM;
2769 	if (err < 0 && err != -EBUSY)
2770 		return VM_FAULT_SIGBUS;
2771 
2772 	return VM_FAULT_NOPAGE;
2773 }
2774 
2775 static inline vm_fault_t vmf_error(int err)
2776 {
2777 	if (err == -ENOMEM)
2778 		return VM_FAULT_OOM;
2779 	return VM_FAULT_SIGBUS;
2780 }
2781 
2782 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2783 			 unsigned int foll_flags);
2784 
2785 #define FOLL_WRITE	0x01	/* check pte is writable */
2786 #define FOLL_TOUCH	0x02	/* mark page accessed */
2787 #define FOLL_GET	0x04	/* do get_page on page */
2788 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2789 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2790 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2791 				 * and return without waiting upon it */
2792 #define FOLL_POPULATE	0x40	/* fault in page */
2793 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2794 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2795 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2796 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2797 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2798 #define FOLL_MLOCK	0x1000	/* lock present pages */
2799 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2800 #define FOLL_COW	0x4000	/* internal GUP flag */
2801 #define FOLL_ANON	0x8000	/* don't do file mappings */
2802 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2803 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2804 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2805 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2806 
2807 /*
2808  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2809  * other. Here is what they mean, and how to use them:
2810  *
2811  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2812  * period _often_ under userspace control.  This is in contrast to
2813  * iov_iter_get_pages(), whose usages are transient.
2814  *
2815  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2816  * lifetime enforced by the filesystem and we need guarantees that longterm
2817  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2818  * the filesystem.  Ideas for this coordination include revoking the longterm
2819  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2820  * added after the problem with filesystems was found FS DAX VMAs are
2821  * specifically failed.  Filesystem pages are still subject to bugs and use of
2822  * FOLL_LONGTERM should be avoided on those pages.
2823  *
2824  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2825  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2826  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2827  * is due to an incompatibility with the FS DAX check and
2828  * FAULT_FLAG_ALLOW_RETRY.
2829  *
2830  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2831  * that region.  And so, CMA attempts to migrate the page before pinning, when
2832  * FOLL_LONGTERM is specified.
2833  *
2834  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2835  * but an additional pin counting system) will be invoked. This is intended for
2836  * anything that gets a page reference and then touches page data (for example,
2837  * Direct IO). This lets the filesystem know that some non-file-system entity is
2838  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2839  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2840  * a call to unpin_user_page().
2841  *
2842  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2843  * and separate refcounting mechanisms, however, and that means that each has
2844  * its own acquire and release mechanisms:
2845  *
2846  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2847  *
2848  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2849  *
2850  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2851  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2852  * calls applied to them, and that's perfectly OK. This is a constraint on the
2853  * callers, not on the pages.)
2854  *
2855  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2856  * directly by the caller. That's in order to help avoid mismatches when
2857  * releasing pages: get_user_pages*() pages must be released via put_page(),
2858  * while pin_user_pages*() pages must be released via unpin_user_page().
2859  *
2860  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2861  */
2862 
2863 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2864 {
2865 	if (vm_fault & VM_FAULT_OOM)
2866 		return -ENOMEM;
2867 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2868 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2869 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2870 		return -EFAULT;
2871 	return 0;
2872 }
2873 
2874 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2875 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2876 			       unsigned long size, pte_fn_t fn, void *data);
2877 extern int apply_to_existing_page_range(struct mm_struct *mm,
2878 				   unsigned long address, unsigned long size,
2879 				   pte_fn_t fn, void *data);
2880 
2881 #ifdef CONFIG_PAGE_POISONING
2882 extern bool page_poisoning_enabled(void);
2883 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2884 #else
2885 static inline bool page_poisoning_enabled(void) { return false; }
2886 static inline void kernel_poison_pages(struct page *page, int numpages,
2887 					int enable) { }
2888 #endif
2889 
2890 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2891 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2892 #else
2893 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2894 #endif
2895 static inline bool want_init_on_alloc(gfp_t flags)
2896 {
2897 	if (static_branch_unlikely(&init_on_alloc) &&
2898 	    !page_poisoning_enabled())
2899 		return true;
2900 	return flags & __GFP_ZERO;
2901 }
2902 
2903 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2904 DECLARE_STATIC_KEY_TRUE(init_on_free);
2905 #else
2906 DECLARE_STATIC_KEY_FALSE(init_on_free);
2907 #endif
2908 static inline bool want_init_on_free(void)
2909 {
2910 	return static_branch_unlikely(&init_on_free) &&
2911 	       !page_poisoning_enabled();
2912 }
2913 
2914 #ifdef CONFIG_DEBUG_PAGEALLOC
2915 extern void init_debug_pagealloc(void);
2916 #else
2917 static inline void init_debug_pagealloc(void) {}
2918 #endif
2919 extern bool _debug_pagealloc_enabled_early;
2920 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2921 
2922 static inline bool debug_pagealloc_enabled(void)
2923 {
2924 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2925 		_debug_pagealloc_enabled_early;
2926 }
2927 
2928 /*
2929  * For use in fast paths after init_debug_pagealloc() has run, or when a
2930  * false negative result is not harmful when called too early.
2931  */
2932 static inline bool debug_pagealloc_enabled_static(void)
2933 {
2934 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2935 		return false;
2936 
2937 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2938 }
2939 
2940 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2941 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2942 
2943 /*
2944  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2945  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2946  */
2947 static inline void
2948 kernel_map_pages(struct page *page, int numpages, int enable)
2949 {
2950 	__kernel_map_pages(page, numpages, enable);
2951 }
2952 #ifdef CONFIG_HIBERNATION
2953 extern bool kernel_page_present(struct page *page);
2954 #endif	/* CONFIG_HIBERNATION */
2955 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2956 static inline void
2957 kernel_map_pages(struct page *page, int numpages, int enable) {}
2958 #ifdef CONFIG_HIBERNATION
2959 static inline bool kernel_page_present(struct page *page) { return true; }
2960 #endif	/* CONFIG_HIBERNATION */
2961 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2962 
2963 #ifdef __HAVE_ARCH_GATE_AREA
2964 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2965 extern int in_gate_area_no_mm(unsigned long addr);
2966 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2967 #else
2968 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2969 {
2970 	return NULL;
2971 }
2972 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2973 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2974 {
2975 	return 0;
2976 }
2977 #endif	/* __HAVE_ARCH_GATE_AREA */
2978 
2979 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2980 
2981 #ifdef CONFIG_SYSCTL
2982 extern int sysctl_drop_caches;
2983 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2984 		loff_t *);
2985 #endif
2986 
2987 void drop_slab(void);
2988 void drop_slab_node(int nid);
2989 
2990 #ifndef CONFIG_MMU
2991 #define randomize_va_space 0
2992 #else
2993 extern int randomize_va_space;
2994 #endif
2995 
2996 const char * arch_vma_name(struct vm_area_struct *vma);
2997 #ifdef CONFIG_MMU
2998 void print_vma_addr(char *prefix, unsigned long rip);
2999 #else
3000 static inline void print_vma_addr(char *prefix, unsigned long rip)
3001 {
3002 }
3003 #endif
3004 
3005 void *sparse_buffer_alloc(unsigned long size);
3006 struct page * __populate_section_memmap(unsigned long pfn,
3007 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
3008 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3009 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3010 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3011 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3012 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
3013 void *vmemmap_alloc_block(unsigned long size, int node);
3014 struct vmem_altmap;
3015 void *vmemmap_alloc_block_buf(unsigned long size, int node);
3016 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
3017 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3018 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3019 			       int node);
3020 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3021 		struct vmem_altmap *altmap);
3022 void vmemmap_populate_print_last(void);
3023 #ifdef CONFIG_MEMORY_HOTPLUG
3024 void vmemmap_free(unsigned long start, unsigned long end,
3025 		struct vmem_altmap *altmap);
3026 #endif
3027 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3028 				  unsigned long nr_pages);
3029 
3030 enum mf_flags {
3031 	MF_COUNT_INCREASED = 1 << 0,
3032 	MF_ACTION_REQUIRED = 1 << 1,
3033 	MF_MUST_KILL = 1 << 2,
3034 	MF_SOFT_OFFLINE = 1 << 3,
3035 };
3036 extern int memory_failure(unsigned long pfn, int flags);
3037 extern void memory_failure_queue(unsigned long pfn, int flags);
3038 extern void memory_failure_queue_kick(int cpu);
3039 extern int unpoison_memory(unsigned long pfn);
3040 extern int get_hwpoison_page(struct page *page);
3041 #define put_hwpoison_page(page)	put_page(page)
3042 extern int sysctl_memory_failure_early_kill;
3043 extern int sysctl_memory_failure_recovery;
3044 extern void shake_page(struct page *p, int access);
3045 extern atomic_long_t num_poisoned_pages __read_mostly;
3046 extern int soft_offline_page(unsigned long pfn, int flags);
3047 
3048 
3049 /*
3050  * Error handlers for various types of pages.
3051  */
3052 enum mf_result {
3053 	MF_IGNORED,	/* Error: cannot be handled */
3054 	MF_FAILED,	/* Error: handling failed */
3055 	MF_DELAYED,	/* Will be handled later */
3056 	MF_RECOVERED,	/* Successfully recovered */
3057 };
3058 
3059 enum mf_action_page_type {
3060 	MF_MSG_KERNEL,
3061 	MF_MSG_KERNEL_HIGH_ORDER,
3062 	MF_MSG_SLAB,
3063 	MF_MSG_DIFFERENT_COMPOUND,
3064 	MF_MSG_POISONED_HUGE,
3065 	MF_MSG_HUGE,
3066 	MF_MSG_FREE_HUGE,
3067 	MF_MSG_NON_PMD_HUGE,
3068 	MF_MSG_UNMAP_FAILED,
3069 	MF_MSG_DIRTY_SWAPCACHE,
3070 	MF_MSG_CLEAN_SWAPCACHE,
3071 	MF_MSG_DIRTY_MLOCKED_LRU,
3072 	MF_MSG_CLEAN_MLOCKED_LRU,
3073 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3074 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3075 	MF_MSG_DIRTY_LRU,
3076 	MF_MSG_CLEAN_LRU,
3077 	MF_MSG_TRUNCATED_LRU,
3078 	MF_MSG_BUDDY,
3079 	MF_MSG_BUDDY_2ND,
3080 	MF_MSG_DAX,
3081 	MF_MSG_UNKNOWN,
3082 };
3083 
3084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3085 extern void clear_huge_page(struct page *page,
3086 			    unsigned long addr_hint,
3087 			    unsigned int pages_per_huge_page);
3088 extern void copy_user_huge_page(struct page *dst, struct page *src,
3089 				unsigned long addr_hint,
3090 				struct vm_area_struct *vma,
3091 				unsigned int pages_per_huge_page);
3092 extern long copy_huge_page_from_user(struct page *dst_page,
3093 				const void __user *usr_src,
3094 				unsigned int pages_per_huge_page,
3095 				bool allow_pagefault);
3096 
3097 /**
3098  * vma_is_special_huge - Are transhuge page-table entries considered special?
3099  * @vma: Pointer to the struct vm_area_struct to consider
3100  *
3101  * Whether transhuge page-table entries are considered "special" following
3102  * the definition in vm_normal_page().
3103  *
3104  * Return: true if transhuge page-table entries should be considered special,
3105  * false otherwise.
3106  */
3107 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3108 {
3109 	return vma_is_dax(vma) || (vma->vm_file &&
3110 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3111 }
3112 
3113 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3114 
3115 #ifdef CONFIG_DEBUG_PAGEALLOC
3116 extern unsigned int _debug_guardpage_minorder;
3117 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3118 
3119 static inline unsigned int debug_guardpage_minorder(void)
3120 {
3121 	return _debug_guardpage_minorder;
3122 }
3123 
3124 static inline bool debug_guardpage_enabled(void)
3125 {
3126 	return static_branch_unlikely(&_debug_guardpage_enabled);
3127 }
3128 
3129 static inline bool page_is_guard(struct page *page)
3130 {
3131 	if (!debug_guardpage_enabled())
3132 		return false;
3133 
3134 	return PageGuard(page);
3135 }
3136 #else
3137 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3138 static inline bool debug_guardpage_enabled(void) { return false; }
3139 static inline bool page_is_guard(struct page *page) { return false; }
3140 #endif /* CONFIG_DEBUG_PAGEALLOC */
3141 
3142 #if MAX_NUMNODES > 1
3143 void __init setup_nr_node_ids(void);
3144 #else
3145 static inline void setup_nr_node_ids(void) {}
3146 #endif
3147 
3148 extern int memcmp_pages(struct page *page1, struct page *page2);
3149 
3150 static inline int pages_identical(struct page *page1, struct page *page2)
3151 {
3152 	return !memcmp_pages(page1, page2);
3153 }
3154 
3155 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3156 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3157 						pgoff_t first_index, pgoff_t nr,
3158 						pgoff_t bitmap_pgoff,
3159 						unsigned long *bitmap,
3160 						pgoff_t *start,
3161 						pgoff_t *end);
3162 
3163 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3164 				      pgoff_t first_index, pgoff_t nr);
3165 #endif
3166 
3167 extern int sysctl_nr_trim_pages;
3168 
3169 #endif /* __KERNEL__ */
3170 #endif /* _LINUX_MM_H */
3171