1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page_ref.h> 28 #include <linux/memremap.h> 29 #include <linux/overflow.h> 30 #include <linux/sizes.h> 31 #include <linux/sched.h> 32 #include <linux/pgtable.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct file_ra_state; 38 struct user_struct; 39 struct writeback_control; 40 struct bdi_writeback; 41 42 void init_mm_internals(void); 43 44 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 45 extern unsigned long max_mapnr; 46 47 static inline void set_max_mapnr(unsigned long limit) 48 { 49 max_mapnr = limit; 50 } 51 #else 52 static inline void set_max_mapnr(unsigned long limit) { } 53 #endif 54 55 extern atomic_long_t _totalram_pages; 56 static inline unsigned long totalram_pages(void) 57 { 58 return (unsigned long)atomic_long_read(&_totalram_pages); 59 } 60 61 static inline void totalram_pages_inc(void) 62 { 63 atomic_long_inc(&_totalram_pages); 64 } 65 66 static inline void totalram_pages_dec(void) 67 { 68 atomic_long_dec(&_totalram_pages); 69 } 70 71 static inline void totalram_pages_add(long count) 72 { 73 atomic_long_add(count, &_totalram_pages); 74 } 75 76 extern void * high_memory; 77 extern int page_cluster; 78 79 #ifdef CONFIG_SYSCTL 80 extern int sysctl_legacy_va_layout; 81 #else 82 #define sysctl_legacy_va_layout 0 83 #endif 84 85 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 86 extern const int mmap_rnd_bits_min; 87 extern const int mmap_rnd_bits_max; 88 extern int mmap_rnd_bits __read_mostly; 89 #endif 90 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 91 extern const int mmap_rnd_compat_bits_min; 92 extern const int mmap_rnd_compat_bits_max; 93 extern int mmap_rnd_compat_bits __read_mostly; 94 #endif 95 96 #include <asm/page.h> 97 #include <asm/processor.h> 98 99 /* 100 * Architectures that support memory tagging (assigning tags to memory regions, 101 * embedding these tags into addresses that point to these memory regions, and 102 * checking that the memory and the pointer tags match on memory accesses) 103 * redefine this macro to strip tags from pointers. 104 * It's defined as noop for arcitectures that don't support memory tagging. 105 */ 106 #ifndef untagged_addr 107 #define untagged_addr(addr) (addr) 108 #endif 109 110 #ifndef __pa_symbol 111 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 112 #endif 113 114 #ifndef page_to_virt 115 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 116 #endif 117 118 #ifndef lm_alias 119 #define lm_alias(x) __va(__pa_symbol(x)) 120 #endif 121 122 /* 123 * To prevent common memory management code establishing 124 * a zero page mapping on a read fault. 125 * This macro should be defined within <asm/pgtable.h>. 126 * s390 does this to prevent multiplexing of hardware bits 127 * related to the physical page in case of virtualization. 128 */ 129 #ifndef mm_forbids_zeropage 130 #define mm_forbids_zeropage(X) (0) 131 #endif 132 133 /* 134 * On some architectures it is expensive to call memset() for small sizes. 135 * If an architecture decides to implement their own version of 136 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 137 * define their own version of this macro in <asm/pgtable.h> 138 */ 139 #if BITS_PER_LONG == 64 140 /* This function must be updated when the size of struct page grows above 80 141 * or reduces below 56. The idea that compiler optimizes out switch() 142 * statement, and only leaves move/store instructions. Also the compiler can 143 * combine write statments if they are both assignments and can be reordered, 144 * this can result in several of the writes here being dropped. 145 */ 146 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 147 static inline void __mm_zero_struct_page(struct page *page) 148 { 149 unsigned long *_pp = (void *)page; 150 151 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 152 BUILD_BUG_ON(sizeof(struct page) & 7); 153 BUILD_BUG_ON(sizeof(struct page) < 56); 154 BUILD_BUG_ON(sizeof(struct page) > 80); 155 156 switch (sizeof(struct page)) { 157 case 80: 158 _pp[9] = 0; /* fallthrough */ 159 case 72: 160 _pp[8] = 0; /* fallthrough */ 161 case 64: 162 _pp[7] = 0; /* fallthrough */ 163 case 56: 164 _pp[6] = 0; 165 _pp[5] = 0; 166 _pp[4] = 0; 167 _pp[3] = 0; 168 _pp[2] = 0; 169 _pp[1] = 0; 170 _pp[0] = 0; 171 } 172 } 173 #else 174 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 175 #endif 176 177 /* 178 * Default maximum number of active map areas, this limits the number of vmas 179 * per mm struct. Users can overwrite this number by sysctl but there is a 180 * problem. 181 * 182 * When a program's coredump is generated as ELF format, a section is created 183 * per a vma. In ELF, the number of sections is represented in unsigned short. 184 * This means the number of sections should be smaller than 65535 at coredump. 185 * Because the kernel adds some informative sections to a image of program at 186 * generating coredump, we need some margin. The number of extra sections is 187 * 1-3 now and depends on arch. We use "5" as safe margin, here. 188 * 189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 190 * not a hard limit any more. Although some userspace tools can be surprised by 191 * that. 192 */ 193 #define MAPCOUNT_ELF_CORE_MARGIN (5) 194 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 195 196 extern int sysctl_max_map_count; 197 198 extern unsigned long sysctl_user_reserve_kbytes; 199 extern unsigned long sysctl_admin_reserve_kbytes; 200 201 extern int sysctl_overcommit_memory; 202 extern int sysctl_overcommit_ratio; 203 extern unsigned long sysctl_overcommit_kbytes; 204 205 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 206 loff_t *); 207 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 208 loff_t *); 209 210 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 211 212 /* to align the pointer to the (next) page boundary */ 213 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 214 215 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 216 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 217 218 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 219 220 /* 221 * Linux kernel virtual memory manager primitives. 222 * The idea being to have a "virtual" mm in the same way 223 * we have a virtual fs - giving a cleaner interface to the 224 * mm details, and allowing different kinds of memory mappings 225 * (from shared memory to executable loading to arbitrary 226 * mmap() functions). 227 */ 228 229 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 230 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 231 void vm_area_free(struct vm_area_struct *); 232 233 #ifndef CONFIG_MMU 234 extern struct rb_root nommu_region_tree; 235 extern struct rw_semaphore nommu_region_sem; 236 237 extern unsigned int kobjsize(const void *objp); 238 #endif 239 240 /* 241 * vm_flags in vm_area_struct, see mm_types.h. 242 * When changing, update also include/trace/events/mmflags.h 243 */ 244 #define VM_NONE 0x00000000 245 246 #define VM_READ 0x00000001 /* currently active flags */ 247 #define VM_WRITE 0x00000002 248 #define VM_EXEC 0x00000004 249 #define VM_SHARED 0x00000008 250 251 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 252 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 253 #define VM_MAYWRITE 0x00000020 254 #define VM_MAYEXEC 0x00000040 255 #define VM_MAYSHARE 0x00000080 256 257 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 258 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 259 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 260 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 261 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 262 263 #define VM_LOCKED 0x00002000 264 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 265 266 /* Used by sys_madvise() */ 267 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 268 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 269 270 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 271 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 272 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 273 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 274 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 275 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 276 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 277 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 278 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 279 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 280 281 #ifdef CONFIG_MEM_SOFT_DIRTY 282 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 283 #else 284 # define VM_SOFTDIRTY 0 285 #endif 286 287 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 288 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 289 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 290 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 291 292 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 293 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 294 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 295 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 296 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 299 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 300 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 301 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 302 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 303 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 304 305 #ifdef CONFIG_ARCH_HAS_PKEYS 306 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 307 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 308 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 309 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 310 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 311 #ifdef CONFIG_PPC 312 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 313 #else 314 # define VM_PKEY_BIT4 0 315 #endif 316 #endif /* CONFIG_ARCH_HAS_PKEYS */ 317 318 #if defined(CONFIG_X86) 319 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 320 #elif defined(CONFIG_PARISC) 321 # define VM_GROWSUP VM_ARCH_1 322 #elif defined(CONFIG_IA64) 323 # define VM_GROWSUP VM_ARCH_1 324 #elif defined(CONFIG_SPARC64) 325 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 326 # define VM_ARCH_CLEAR VM_SPARC_ADI 327 #elif defined(CONFIG_ARM64) 328 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 329 # define VM_ARCH_CLEAR VM_ARM64_BTI 330 #elif !defined(CONFIG_MMU) 331 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 332 #endif 333 334 #ifndef VM_GROWSUP 335 # define VM_GROWSUP VM_NONE 336 #endif 337 338 /* Bits set in the VMA until the stack is in its final location */ 339 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 340 341 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 342 343 /* Common data flag combinations */ 344 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 345 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 346 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 347 VM_MAYWRITE | VM_MAYEXEC) 348 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 349 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 350 351 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 352 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 353 #endif 354 355 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 356 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 357 #endif 358 359 #ifdef CONFIG_STACK_GROWSUP 360 #define VM_STACK VM_GROWSUP 361 #else 362 #define VM_STACK VM_GROWSDOWN 363 #endif 364 365 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 366 367 /* VMA basic access permission flags */ 368 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 369 370 371 /* 372 * Special vmas that are non-mergable, non-mlock()able. 373 */ 374 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 375 376 /* This mask prevents VMA from being scanned with khugepaged */ 377 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 378 379 /* This mask defines which mm->def_flags a process can inherit its parent */ 380 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 381 382 /* This mask is used to clear all the VMA flags used by mlock */ 383 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 384 385 /* Arch-specific flags to clear when updating VM flags on protection change */ 386 #ifndef VM_ARCH_CLEAR 387 # define VM_ARCH_CLEAR VM_NONE 388 #endif 389 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 390 391 /* 392 * mapping from the currently active vm_flags protection bits (the 393 * low four bits) to a page protection mask.. 394 */ 395 extern pgprot_t protection_map[16]; 396 397 /** 398 * Fault flag definitions. 399 * 400 * @FAULT_FLAG_WRITE: Fault was a write fault. 401 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 402 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 403 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 404 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 405 * @FAULT_FLAG_TRIED: The fault has been tried once. 406 * @FAULT_FLAG_USER: The fault originated in userspace. 407 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 408 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 409 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 410 * 411 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 412 * whether we would allow page faults to retry by specifying these two 413 * fault flags correctly. Currently there can be three legal combinations: 414 * 415 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 416 * this is the first try 417 * 418 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 419 * we've already tried at least once 420 * 421 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 422 * 423 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 424 * be used. Note that page faults can be allowed to retry for multiple times, 425 * in which case we'll have an initial fault with flags (a) then later on 426 * continuous faults with flags (b). We should always try to detect pending 427 * signals before a retry to make sure the continuous page faults can still be 428 * interrupted if necessary. 429 */ 430 #define FAULT_FLAG_WRITE 0x01 431 #define FAULT_FLAG_MKWRITE 0x02 432 #define FAULT_FLAG_ALLOW_RETRY 0x04 433 #define FAULT_FLAG_RETRY_NOWAIT 0x08 434 #define FAULT_FLAG_KILLABLE 0x10 435 #define FAULT_FLAG_TRIED 0x20 436 #define FAULT_FLAG_USER 0x40 437 #define FAULT_FLAG_REMOTE 0x80 438 #define FAULT_FLAG_INSTRUCTION 0x100 439 #define FAULT_FLAG_INTERRUPTIBLE 0x200 440 441 /* 442 * The default fault flags that should be used by most of the 443 * arch-specific page fault handlers. 444 */ 445 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 446 FAULT_FLAG_KILLABLE | \ 447 FAULT_FLAG_INTERRUPTIBLE) 448 449 /** 450 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 451 * 452 * This is mostly used for places where we want to try to avoid taking 453 * the mmap_lock for too long a time when waiting for another condition 454 * to change, in which case we can try to be polite to release the 455 * mmap_lock in the first round to avoid potential starvation of other 456 * processes that would also want the mmap_lock. 457 * 458 * Return: true if the page fault allows retry and this is the first 459 * attempt of the fault handling; false otherwise. 460 */ 461 static inline bool fault_flag_allow_retry_first(unsigned int flags) 462 { 463 return (flags & FAULT_FLAG_ALLOW_RETRY) && 464 (!(flags & FAULT_FLAG_TRIED)); 465 } 466 467 #define FAULT_FLAG_TRACE \ 468 { FAULT_FLAG_WRITE, "WRITE" }, \ 469 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 470 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 471 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 472 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 473 { FAULT_FLAG_TRIED, "TRIED" }, \ 474 { FAULT_FLAG_USER, "USER" }, \ 475 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 476 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 477 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 478 479 /* 480 * vm_fault is filled by the the pagefault handler and passed to the vma's 481 * ->fault function. The vma's ->fault is responsible for returning a bitmask 482 * of VM_FAULT_xxx flags that give details about how the fault was handled. 483 * 484 * MM layer fills up gfp_mask for page allocations but fault handler might 485 * alter it if its implementation requires a different allocation context. 486 * 487 * pgoff should be used in favour of virtual_address, if possible. 488 */ 489 struct vm_fault { 490 struct vm_area_struct *vma; /* Target VMA */ 491 unsigned int flags; /* FAULT_FLAG_xxx flags */ 492 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 493 pgoff_t pgoff; /* Logical page offset based on vma */ 494 unsigned long address; /* Faulting virtual address */ 495 pmd_t *pmd; /* Pointer to pmd entry matching 496 * the 'address' */ 497 pud_t *pud; /* Pointer to pud entry matching 498 * the 'address' 499 */ 500 pte_t orig_pte; /* Value of PTE at the time of fault */ 501 502 struct page *cow_page; /* Page handler may use for COW fault */ 503 struct page *page; /* ->fault handlers should return a 504 * page here, unless VM_FAULT_NOPAGE 505 * is set (which is also implied by 506 * VM_FAULT_ERROR). 507 */ 508 /* These three entries are valid only while holding ptl lock */ 509 pte_t *pte; /* Pointer to pte entry matching 510 * the 'address'. NULL if the page 511 * table hasn't been allocated. 512 */ 513 spinlock_t *ptl; /* Page table lock. 514 * Protects pte page table if 'pte' 515 * is not NULL, otherwise pmd. 516 */ 517 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 518 * vm_ops->map_pages() calls 519 * alloc_set_pte() from atomic context. 520 * do_fault_around() pre-allocates 521 * page table to avoid allocation from 522 * atomic context. 523 */ 524 }; 525 526 /* page entry size for vm->huge_fault() */ 527 enum page_entry_size { 528 PE_SIZE_PTE = 0, 529 PE_SIZE_PMD, 530 PE_SIZE_PUD, 531 }; 532 533 /* 534 * These are the virtual MM functions - opening of an area, closing and 535 * unmapping it (needed to keep files on disk up-to-date etc), pointer 536 * to the functions called when a no-page or a wp-page exception occurs. 537 */ 538 struct vm_operations_struct { 539 void (*open)(struct vm_area_struct * area); 540 void (*close)(struct vm_area_struct * area); 541 int (*split)(struct vm_area_struct * area, unsigned long addr); 542 int (*mremap)(struct vm_area_struct * area); 543 vm_fault_t (*fault)(struct vm_fault *vmf); 544 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 545 enum page_entry_size pe_size); 546 void (*map_pages)(struct vm_fault *vmf, 547 pgoff_t start_pgoff, pgoff_t end_pgoff); 548 unsigned long (*pagesize)(struct vm_area_struct * area); 549 550 /* notification that a previously read-only page is about to become 551 * writable, if an error is returned it will cause a SIGBUS */ 552 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 553 554 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 555 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 556 557 /* called by access_process_vm when get_user_pages() fails, typically 558 * for use by special VMAs that can switch between memory and hardware 559 */ 560 int (*access)(struct vm_area_struct *vma, unsigned long addr, 561 void *buf, int len, int write); 562 563 /* Called by the /proc/PID/maps code to ask the vma whether it 564 * has a special name. Returning non-NULL will also cause this 565 * vma to be dumped unconditionally. */ 566 const char *(*name)(struct vm_area_struct *vma); 567 568 #ifdef CONFIG_NUMA 569 /* 570 * set_policy() op must add a reference to any non-NULL @new mempolicy 571 * to hold the policy upon return. Caller should pass NULL @new to 572 * remove a policy and fall back to surrounding context--i.e. do not 573 * install a MPOL_DEFAULT policy, nor the task or system default 574 * mempolicy. 575 */ 576 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 577 578 /* 579 * get_policy() op must add reference [mpol_get()] to any policy at 580 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 581 * in mm/mempolicy.c will do this automatically. 582 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 583 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 584 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 585 * must return NULL--i.e., do not "fallback" to task or system default 586 * policy. 587 */ 588 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 589 unsigned long addr); 590 #endif 591 /* 592 * Called by vm_normal_page() for special PTEs to find the 593 * page for @addr. This is useful if the default behavior 594 * (using pte_page()) would not find the correct page. 595 */ 596 struct page *(*find_special_page)(struct vm_area_struct *vma, 597 unsigned long addr); 598 }; 599 600 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 601 { 602 static const struct vm_operations_struct dummy_vm_ops = {}; 603 604 memset(vma, 0, sizeof(*vma)); 605 vma->vm_mm = mm; 606 vma->vm_ops = &dummy_vm_ops; 607 INIT_LIST_HEAD(&vma->anon_vma_chain); 608 } 609 610 static inline void vma_set_anonymous(struct vm_area_struct *vma) 611 { 612 vma->vm_ops = NULL; 613 } 614 615 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 616 { 617 return !vma->vm_ops; 618 } 619 620 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 621 { 622 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 623 624 if (!maybe_stack) 625 return false; 626 627 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 628 VM_STACK_INCOMPLETE_SETUP) 629 return true; 630 631 return false; 632 } 633 634 static inline bool vma_is_foreign(struct vm_area_struct *vma) 635 { 636 if (!current->mm) 637 return true; 638 639 if (current->mm != vma->vm_mm) 640 return true; 641 642 return false; 643 } 644 645 static inline bool vma_is_accessible(struct vm_area_struct *vma) 646 { 647 return vma->vm_flags & VM_ACCESS_FLAGS; 648 } 649 650 #ifdef CONFIG_SHMEM 651 /* 652 * The vma_is_shmem is not inline because it is used only by slow 653 * paths in userfault. 654 */ 655 bool vma_is_shmem(struct vm_area_struct *vma); 656 #else 657 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 658 #endif 659 660 int vma_is_stack_for_current(struct vm_area_struct *vma); 661 662 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 663 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 664 665 struct mmu_gather; 666 struct inode; 667 668 /* 669 * FIXME: take this include out, include page-flags.h in 670 * files which need it (119 of them) 671 */ 672 #include <linux/page-flags.h> 673 #include <linux/huge_mm.h> 674 675 /* 676 * Methods to modify the page usage count. 677 * 678 * What counts for a page usage: 679 * - cache mapping (page->mapping) 680 * - private data (page->private) 681 * - page mapped in a task's page tables, each mapping 682 * is counted separately 683 * 684 * Also, many kernel routines increase the page count before a critical 685 * routine so they can be sure the page doesn't go away from under them. 686 */ 687 688 /* 689 * Drop a ref, return true if the refcount fell to zero (the page has no users) 690 */ 691 static inline int put_page_testzero(struct page *page) 692 { 693 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 694 return page_ref_dec_and_test(page); 695 } 696 697 /* 698 * Try to grab a ref unless the page has a refcount of zero, return false if 699 * that is the case. 700 * This can be called when MMU is off so it must not access 701 * any of the virtual mappings. 702 */ 703 static inline int get_page_unless_zero(struct page *page) 704 { 705 return page_ref_add_unless(page, 1, 0); 706 } 707 708 extern int page_is_ram(unsigned long pfn); 709 710 enum { 711 REGION_INTERSECTS, 712 REGION_DISJOINT, 713 REGION_MIXED, 714 }; 715 716 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 717 unsigned long desc); 718 719 /* Support for virtually mapped pages */ 720 struct page *vmalloc_to_page(const void *addr); 721 unsigned long vmalloc_to_pfn(const void *addr); 722 723 /* 724 * Determine if an address is within the vmalloc range 725 * 726 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 727 * is no special casing required. 728 */ 729 730 #ifndef is_ioremap_addr 731 #define is_ioremap_addr(x) is_vmalloc_addr(x) 732 #endif 733 734 #ifdef CONFIG_MMU 735 extern bool is_vmalloc_addr(const void *x); 736 extern int is_vmalloc_or_module_addr(const void *x); 737 #else 738 static inline bool is_vmalloc_addr(const void *x) 739 { 740 return false; 741 } 742 static inline int is_vmalloc_or_module_addr(const void *x) 743 { 744 return 0; 745 } 746 #endif 747 748 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 749 static inline void *kvmalloc(size_t size, gfp_t flags) 750 { 751 return kvmalloc_node(size, flags, NUMA_NO_NODE); 752 } 753 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 754 { 755 return kvmalloc_node(size, flags | __GFP_ZERO, node); 756 } 757 static inline void *kvzalloc(size_t size, gfp_t flags) 758 { 759 return kvmalloc(size, flags | __GFP_ZERO); 760 } 761 762 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 763 { 764 size_t bytes; 765 766 if (unlikely(check_mul_overflow(n, size, &bytes))) 767 return NULL; 768 769 return kvmalloc(bytes, flags); 770 } 771 772 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 773 { 774 return kvmalloc_array(n, size, flags | __GFP_ZERO); 775 } 776 777 extern void kvfree(const void *addr); 778 extern void kvfree_sensitive(const void *addr, size_t len); 779 780 /* 781 * Mapcount of compound page as a whole, does not include mapped sub-pages. 782 * 783 * Must be called only for compound pages or any their tail sub-pages. 784 */ 785 static inline int compound_mapcount(struct page *page) 786 { 787 VM_BUG_ON_PAGE(!PageCompound(page), page); 788 page = compound_head(page); 789 return atomic_read(compound_mapcount_ptr(page)) + 1; 790 } 791 792 /* 793 * The atomic page->_mapcount, starts from -1: so that transitions 794 * both from it and to it can be tracked, using atomic_inc_and_test 795 * and atomic_add_negative(-1). 796 */ 797 static inline void page_mapcount_reset(struct page *page) 798 { 799 atomic_set(&(page)->_mapcount, -1); 800 } 801 802 int __page_mapcount(struct page *page); 803 804 /* 805 * Mapcount of 0-order page; when compound sub-page, includes 806 * compound_mapcount(). 807 * 808 * Result is undefined for pages which cannot be mapped into userspace. 809 * For example SLAB or special types of pages. See function page_has_type(). 810 * They use this place in struct page differently. 811 */ 812 static inline int page_mapcount(struct page *page) 813 { 814 if (unlikely(PageCompound(page))) 815 return __page_mapcount(page); 816 return atomic_read(&page->_mapcount) + 1; 817 } 818 819 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 820 int total_mapcount(struct page *page); 821 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 822 #else 823 static inline int total_mapcount(struct page *page) 824 { 825 return page_mapcount(page); 826 } 827 static inline int page_trans_huge_mapcount(struct page *page, 828 int *total_mapcount) 829 { 830 int mapcount = page_mapcount(page); 831 if (total_mapcount) 832 *total_mapcount = mapcount; 833 return mapcount; 834 } 835 #endif 836 837 static inline struct page *virt_to_head_page(const void *x) 838 { 839 struct page *page = virt_to_page(x); 840 841 return compound_head(page); 842 } 843 844 void __put_page(struct page *page); 845 846 void put_pages_list(struct list_head *pages); 847 848 void split_page(struct page *page, unsigned int order); 849 850 /* 851 * Compound pages have a destructor function. Provide a 852 * prototype for that function and accessor functions. 853 * These are _only_ valid on the head of a compound page. 854 */ 855 typedef void compound_page_dtor(struct page *); 856 857 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 858 enum compound_dtor_id { 859 NULL_COMPOUND_DTOR, 860 COMPOUND_PAGE_DTOR, 861 #ifdef CONFIG_HUGETLB_PAGE 862 HUGETLB_PAGE_DTOR, 863 #endif 864 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 865 TRANSHUGE_PAGE_DTOR, 866 #endif 867 NR_COMPOUND_DTORS, 868 }; 869 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 870 871 static inline void set_compound_page_dtor(struct page *page, 872 enum compound_dtor_id compound_dtor) 873 { 874 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 875 page[1].compound_dtor = compound_dtor; 876 } 877 878 static inline void destroy_compound_page(struct page *page) 879 { 880 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 881 compound_page_dtors[page[1].compound_dtor](page); 882 } 883 884 static inline unsigned int compound_order(struct page *page) 885 { 886 if (!PageHead(page)) 887 return 0; 888 return page[1].compound_order; 889 } 890 891 static inline bool hpage_pincount_available(struct page *page) 892 { 893 /* 894 * Can the page->hpage_pinned_refcount field be used? That field is in 895 * the 3rd page of the compound page, so the smallest (2-page) compound 896 * pages cannot support it. 897 */ 898 page = compound_head(page); 899 return PageCompound(page) && compound_order(page) > 1; 900 } 901 902 static inline int compound_pincount(struct page *page) 903 { 904 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 905 page = compound_head(page); 906 return atomic_read(compound_pincount_ptr(page)); 907 } 908 909 static inline void set_compound_order(struct page *page, unsigned int order) 910 { 911 page[1].compound_order = order; 912 } 913 914 /* Returns the number of pages in this potentially compound page. */ 915 static inline unsigned long compound_nr(struct page *page) 916 { 917 return 1UL << compound_order(page); 918 } 919 920 /* Returns the number of bytes in this potentially compound page. */ 921 static inline unsigned long page_size(struct page *page) 922 { 923 return PAGE_SIZE << compound_order(page); 924 } 925 926 /* Returns the number of bits needed for the number of bytes in a page */ 927 static inline unsigned int page_shift(struct page *page) 928 { 929 return PAGE_SHIFT + compound_order(page); 930 } 931 932 void free_compound_page(struct page *page); 933 934 #ifdef CONFIG_MMU 935 /* 936 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 937 * servicing faults for write access. In the normal case, do always want 938 * pte_mkwrite. But get_user_pages can cause write faults for mappings 939 * that do not have writing enabled, when used by access_process_vm. 940 */ 941 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 942 { 943 if (likely(vma->vm_flags & VM_WRITE)) 944 pte = pte_mkwrite(pte); 945 return pte; 946 } 947 948 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 949 vm_fault_t finish_fault(struct vm_fault *vmf); 950 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 951 #endif 952 953 /* 954 * Multiple processes may "see" the same page. E.g. for untouched 955 * mappings of /dev/null, all processes see the same page full of 956 * zeroes, and text pages of executables and shared libraries have 957 * only one copy in memory, at most, normally. 958 * 959 * For the non-reserved pages, page_count(page) denotes a reference count. 960 * page_count() == 0 means the page is free. page->lru is then used for 961 * freelist management in the buddy allocator. 962 * page_count() > 0 means the page has been allocated. 963 * 964 * Pages are allocated by the slab allocator in order to provide memory 965 * to kmalloc and kmem_cache_alloc. In this case, the management of the 966 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 967 * unless a particular usage is carefully commented. (the responsibility of 968 * freeing the kmalloc memory is the caller's, of course). 969 * 970 * A page may be used by anyone else who does a __get_free_page(). 971 * In this case, page_count still tracks the references, and should only 972 * be used through the normal accessor functions. The top bits of page->flags 973 * and page->virtual store page management information, but all other fields 974 * are unused and could be used privately, carefully. The management of this 975 * page is the responsibility of the one who allocated it, and those who have 976 * subsequently been given references to it. 977 * 978 * The other pages (we may call them "pagecache pages") are completely 979 * managed by the Linux memory manager: I/O, buffers, swapping etc. 980 * The following discussion applies only to them. 981 * 982 * A pagecache page contains an opaque `private' member, which belongs to the 983 * page's address_space. Usually, this is the address of a circular list of 984 * the page's disk buffers. PG_private must be set to tell the VM to call 985 * into the filesystem to release these pages. 986 * 987 * A page may belong to an inode's memory mapping. In this case, page->mapping 988 * is the pointer to the inode, and page->index is the file offset of the page, 989 * in units of PAGE_SIZE. 990 * 991 * If pagecache pages are not associated with an inode, they are said to be 992 * anonymous pages. These may become associated with the swapcache, and in that 993 * case PG_swapcache is set, and page->private is an offset into the swapcache. 994 * 995 * In either case (swapcache or inode backed), the pagecache itself holds one 996 * reference to the page. Setting PG_private should also increment the 997 * refcount. The each user mapping also has a reference to the page. 998 * 999 * The pagecache pages are stored in a per-mapping radix tree, which is 1000 * rooted at mapping->i_pages, and indexed by offset. 1001 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1002 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1003 * 1004 * All pagecache pages may be subject to I/O: 1005 * - inode pages may need to be read from disk, 1006 * - inode pages which have been modified and are MAP_SHARED may need 1007 * to be written back to the inode on disk, 1008 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1009 * modified may need to be swapped out to swap space and (later) to be read 1010 * back into memory. 1011 */ 1012 1013 /* 1014 * The zone field is never updated after free_area_init_core() 1015 * sets it, so none of the operations on it need to be atomic. 1016 */ 1017 1018 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1019 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1020 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1021 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1022 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1023 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1024 1025 /* 1026 * Define the bit shifts to access each section. For non-existent 1027 * sections we define the shift as 0; that plus a 0 mask ensures 1028 * the compiler will optimise away reference to them. 1029 */ 1030 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1031 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1032 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1033 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1034 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1035 1036 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1037 #ifdef NODE_NOT_IN_PAGE_FLAGS 1038 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1039 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1040 SECTIONS_PGOFF : ZONES_PGOFF) 1041 #else 1042 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1043 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1044 NODES_PGOFF : ZONES_PGOFF) 1045 #endif 1046 1047 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1048 1049 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1050 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1051 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1052 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1053 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1054 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1055 1056 static inline enum zone_type page_zonenum(const struct page *page) 1057 { 1058 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1059 } 1060 1061 #ifdef CONFIG_ZONE_DEVICE 1062 static inline bool is_zone_device_page(const struct page *page) 1063 { 1064 return page_zonenum(page) == ZONE_DEVICE; 1065 } 1066 extern void memmap_init_zone_device(struct zone *, unsigned long, 1067 unsigned long, struct dev_pagemap *); 1068 #else 1069 static inline bool is_zone_device_page(const struct page *page) 1070 { 1071 return false; 1072 } 1073 #endif 1074 1075 #ifdef CONFIG_DEV_PAGEMAP_OPS 1076 void free_devmap_managed_page(struct page *page); 1077 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1078 1079 static inline bool page_is_devmap_managed(struct page *page) 1080 { 1081 if (!static_branch_unlikely(&devmap_managed_key)) 1082 return false; 1083 if (!is_zone_device_page(page)) 1084 return false; 1085 switch (page->pgmap->type) { 1086 case MEMORY_DEVICE_PRIVATE: 1087 case MEMORY_DEVICE_FS_DAX: 1088 return true; 1089 default: 1090 break; 1091 } 1092 return false; 1093 } 1094 1095 void put_devmap_managed_page(struct page *page); 1096 1097 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1098 static inline bool page_is_devmap_managed(struct page *page) 1099 { 1100 return false; 1101 } 1102 1103 static inline void put_devmap_managed_page(struct page *page) 1104 { 1105 } 1106 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1107 1108 static inline bool is_device_private_page(const struct page *page) 1109 { 1110 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1111 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1112 is_zone_device_page(page) && 1113 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1114 } 1115 1116 static inline bool is_pci_p2pdma_page(const struct page *page) 1117 { 1118 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1119 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1120 is_zone_device_page(page) && 1121 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1122 } 1123 1124 /* 127: arbitrary random number, small enough to assemble well */ 1125 #define page_ref_zero_or_close_to_overflow(page) \ 1126 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1127 1128 static inline void get_page(struct page *page) 1129 { 1130 page = compound_head(page); 1131 /* 1132 * Getting a normal page or the head of a compound page 1133 * requires to already have an elevated page->_refcount. 1134 */ 1135 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1136 page_ref_inc(page); 1137 } 1138 1139 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1140 1141 static inline __must_check bool try_get_page(struct page *page) 1142 { 1143 page = compound_head(page); 1144 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1145 return false; 1146 page_ref_inc(page); 1147 return true; 1148 } 1149 1150 static inline void put_page(struct page *page) 1151 { 1152 page = compound_head(page); 1153 1154 /* 1155 * For devmap managed pages we need to catch refcount transition from 1156 * 2 to 1, when refcount reach one it means the page is free and we 1157 * need to inform the device driver through callback. See 1158 * include/linux/memremap.h and HMM for details. 1159 */ 1160 if (page_is_devmap_managed(page)) { 1161 put_devmap_managed_page(page); 1162 return; 1163 } 1164 1165 if (put_page_testzero(page)) 1166 __put_page(page); 1167 } 1168 1169 /* 1170 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1171 * the page's refcount so that two separate items are tracked: the original page 1172 * reference count, and also a new count of how many pin_user_pages() calls were 1173 * made against the page. ("gup-pinned" is another term for the latter). 1174 * 1175 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1176 * distinct from normal pages. As such, the unpin_user_page() call (and its 1177 * variants) must be used in order to release gup-pinned pages. 1178 * 1179 * Choice of value: 1180 * 1181 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1182 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1183 * simpler, due to the fact that adding an even power of two to the page 1184 * refcount has the effect of using only the upper N bits, for the code that 1185 * counts up using the bias value. This means that the lower bits are left for 1186 * the exclusive use of the original code that increments and decrements by one 1187 * (or at least, by much smaller values than the bias value). 1188 * 1189 * Of course, once the lower bits overflow into the upper bits (and this is 1190 * OK, because subtraction recovers the original values), then visual inspection 1191 * no longer suffices to directly view the separate counts. However, for normal 1192 * applications that don't have huge page reference counts, this won't be an 1193 * issue. 1194 * 1195 * Locking: the lockless algorithm described in page_cache_get_speculative() 1196 * and page_cache_gup_pin_speculative() provides safe operation for 1197 * get_user_pages and page_mkclean and other calls that race to set up page 1198 * table entries. 1199 */ 1200 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1201 1202 void unpin_user_page(struct page *page); 1203 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1204 bool make_dirty); 1205 void unpin_user_pages(struct page **pages, unsigned long npages); 1206 1207 /** 1208 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1209 * 1210 * This function checks if a page has been pinned via a call to 1211 * pin_user_pages*(). 1212 * 1213 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1214 * because it means "definitely not pinned for DMA", but true means "probably 1215 * pinned for DMA, but possibly a false positive due to having at least 1216 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1217 * 1218 * False positives are OK, because: a) it's unlikely for a page to get that many 1219 * refcounts, and b) all the callers of this routine are expected to be able to 1220 * deal gracefully with a false positive. 1221 * 1222 * For huge pages, the result will be exactly correct. That's because we have 1223 * more tracking data available: the 3rd struct page in the compound page is 1224 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1225 * scheme). 1226 * 1227 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1228 * 1229 * @page: pointer to page to be queried. 1230 * @Return: True, if it is likely that the page has been "dma-pinned". 1231 * False, if the page is definitely not dma-pinned. 1232 */ 1233 static inline bool page_maybe_dma_pinned(struct page *page) 1234 { 1235 if (hpage_pincount_available(page)) 1236 return compound_pincount(page) > 0; 1237 1238 /* 1239 * page_ref_count() is signed. If that refcount overflows, then 1240 * page_ref_count() returns a negative value, and callers will avoid 1241 * further incrementing the refcount. 1242 * 1243 * Here, for that overflow case, use the signed bit to count a little 1244 * bit higher via unsigned math, and thus still get an accurate result. 1245 */ 1246 return ((unsigned int)page_ref_count(compound_head(page))) >= 1247 GUP_PIN_COUNTING_BIAS; 1248 } 1249 1250 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1251 #define SECTION_IN_PAGE_FLAGS 1252 #endif 1253 1254 /* 1255 * The identification function is mainly used by the buddy allocator for 1256 * determining if two pages could be buddies. We are not really identifying 1257 * the zone since we could be using the section number id if we do not have 1258 * node id available in page flags. 1259 * We only guarantee that it will return the same value for two combinable 1260 * pages in a zone. 1261 */ 1262 static inline int page_zone_id(struct page *page) 1263 { 1264 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1265 } 1266 1267 #ifdef NODE_NOT_IN_PAGE_FLAGS 1268 extern int page_to_nid(const struct page *page); 1269 #else 1270 static inline int page_to_nid(const struct page *page) 1271 { 1272 struct page *p = (struct page *)page; 1273 1274 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1275 } 1276 #endif 1277 1278 #ifdef CONFIG_NUMA_BALANCING 1279 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1280 { 1281 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1282 } 1283 1284 static inline int cpupid_to_pid(int cpupid) 1285 { 1286 return cpupid & LAST__PID_MASK; 1287 } 1288 1289 static inline int cpupid_to_cpu(int cpupid) 1290 { 1291 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1292 } 1293 1294 static inline int cpupid_to_nid(int cpupid) 1295 { 1296 return cpu_to_node(cpupid_to_cpu(cpupid)); 1297 } 1298 1299 static inline bool cpupid_pid_unset(int cpupid) 1300 { 1301 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1302 } 1303 1304 static inline bool cpupid_cpu_unset(int cpupid) 1305 { 1306 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1307 } 1308 1309 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1310 { 1311 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1312 } 1313 1314 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1315 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1316 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1317 { 1318 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1319 } 1320 1321 static inline int page_cpupid_last(struct page *page) 1322 { 1323 return page->_last_cpupid; 1324 } 1325 static inline void page_cpupid_reset_last(struct page *page) 1326 { 1327 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1328 } 1329 #else 1330 static inline int page_cpupid_last(struct page *page) 1331 { 1332 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1333 } 1334 1335 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1336 1337 static inline void page_cpupid_reset_last(struct page *page) 1338 { 1339 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1340 } 1341 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1342 #else /* !CONFIG_NUMA_BALANCING */ 1343 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1344 { 1345 return page_to_nid(page); /* XXX */ 1346 } 1347 1348 static inline int page_cpupid_last(struct page *page) 1349 { 1350 return page_to_nid(page); /* XXX */ 1351 } 1352 1353 static inline int cpupid_to_nid(int cpupid) 1354 { 1355 return -1; 1356 } 1357 1358 static inline int cpupid_to_pid(int cpupid) 1359 { 1360 return -1; 1361 } 1362 1363 static inline int cpupid_to_cpu(int cpupid) 1364 { 1365 return -1; 1366 } 1367 1368 static inline int cpu_pid_to_cpupid(int nid, int pid) 1369 { 1370 return -1; 1371 } 1372 1373 static inline bool cpupid_pid_unset(int cpupid) 1374 { 1375 return true; 1376 } 1377 1378 static inline void page_cpupid_reset_last(struct page *page) 1379 { 1380 } 1381 1382 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1383 { 1384 return false; 1385 } 1386 #endif /* CONFIG_NUMA_BALANCING */ 1387 1388 #ifdef CONFIG_KASAN_SW_TAGS 1389 static inline u8 page_kasan_tag(const struct page *page) 1390 { 1391 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1392 } 1393 1394 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1395 { 1396 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1397 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1398 } 1399 1400 static inline void page_kasan_tag_reset(struct page *page) 1401 { 1402 page_kasan_tag_set(page, 0xff); 1403 } 1404 #else 1405 static inline u8 page_kasan_tag(const struct page *page) 1406 { 1407 return 0xff; 1408 } 1409 1410 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1411 static inline void page_kasan_tag_reset(struct page *page) { } 1412 #endif 1413 1414 static inline struct zone *page_zone(const struct page *page) 1415 { 1416 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1417 } 1418 1419 static inline pg_data_t *page_pgdat(const struct page *page) 1420 { 1421 return NODE_DATA(page_to_nid(page)); 1422 } 1423 1424 #ifdef SECTION_IN_PAGE_FLAGS 1425 static inline void set_page_section(struct page *page, unsigned long section) 1426 { 1427 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1428 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1429 } 1430 1431 static inline unsigned long page_to_section(const struct page *page) 1432 { 1433 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1434 } 1435 #endif 1436 1437 static inline void set_page_zone(struct page *page, enum zone_type zone) 1438 { 1439 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1440 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1441 } 1442 1443 static inline void set_page_node(struct page *page, unsigned long node) 1444 { 1445 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1446 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1447 } 1448 1449 static inline void set_page_links(struct page *page, enum zone_type zone, 1450 unsigned long node, unsigned long pfn) 1451 { 1452 set_page_zone(page, zone); 1453 set_page_node(page, node); 1454 #ifdef SECTION_IN_PAGE_FLAGS 1455 set_page_section(page, pfn_to_section_nr(pfn)); 1456 #endif 1457 } 1458 1459 #ifdef CONFIG_MEMCG 1460 static inline struct mem_cgroup *page_memcg(struct page *page) 1461 { 1462 return page->mem_cgroup; 1463 } 1464 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1465 { 1466 WARN_ON_ONCE(!rcu_read_lock_held()); 1467 return READ_ONCE(page->mem_cgroup); 1468 } 1469 #else 1470 static inline struct mem_cgroup *page_memcg(struct page *page) 1471 { 1472 return NULL; 1473 } 1474 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1475 { 1476 WARN_ON_ONCE(!rcu_read_lock_held()); 1477 return NULL; 1478 } 1479 #endif 1480 1481 /* 1482 * Some inline functions in vmstat.h depend on page_zone() 1483 */ 1484 #include <linux/vmstat.h> 1485 1486 static __always_inline void *lowmem_page_address(const struct page *page) 1487 { 1488 return page_to_virt(page); 1489 } 1490 1491 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1492 #define HASHED_PAGE_VIRTUAL 1493 #endif 1494 1495 #if defined(WANT_PAGE_VIRTUAL) 1496 static inline void *page_address(const struct page *page) 1497 { 1498 return page->virtual; 1499 } 1500 static inline void set_page_address(struct page *page, void *address) 1501 { 1502 page->virtual = address; 1503 } 1504 #define page_address_init() do { } while(0) 1505 #endif 1506 1507 #if defined(HASHED_PAGE_VIRTUAL) 1508 void *page_address(const struct page *page); 1509 void set_page_address(struct page *page, void *virtual); 1510 void page_address_init(void); 1511 #endif 1512 1513 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1514 #define page_address(page) lowmem_page_address(page) 1515 #define set_page_address(page, address) do { } while(0) 1516 #define page_address_init() do { } while(0) 1517 #endif 1518 1519 extern void *page_rmapping(struct page *page); 1520 extern struct anon_vma *page_anon_vma(struct page *page); 1521 extern struct address_space *page_mapping(struct page *page); 1522 1523 extern struct address_space *__page_file_mapping(struct page *); 1524 1525 static inline 1526 struct address_space *page_file_mapping(struct page *page) 1527 { 1528 if (unlikely(PageSwapCache(page))) 1529 return __page_file_mapping(page); 1530 1531 return page->mapping; 1532 } 1533 1534 extern pgoff_t __page_file_index(struct page *page); 1535 1536 /* 1537 * Return the pagecache index of the passed page. Regular pagecache pages 1538 * use ->index whereas swapcache pages use swp_offset(->private) 1539 */ 1540 static inline pgoff_t page_index(struct page *page) 1541 { 1542 if (unlikely(PageSwapCache(page))) 1543 return __page_file_index(page); 1544 return page->index; 1545 } 1546 1547 bool page_mapped(struct page *page); 1548 struct address_space *page_mapping(struct page *page); 1549 struct address_space *page_mapping_file(struct page *page); 1550 1551 /* 1552 * Return true only if the page has been allocated with 1553 * ALLOC_NO_WATERMARKS and the low watermark was not 1554 * met implying that the system is under some pressure. 1555 */ 1556 static inline bool page_is_pfmemalloc(struct page *page) 1557 { 1558 /* 1559 * Page index cannot be this large so this must be 1560 * a pfmemalloc page. 1561 */ 1562 return page->index == -1UL; 1563 } 1564 1565 /* 1566 * Only to be called by the page allocator on a freshly allocated 1567 * page. 1568 */ 1569 static inline void set_page_pfmemalloc(struct page *page) 1570 { 1571 page->index = -1UL; 1572 } 1573 1574 static inline void clear_page_pfmemalloc(struct page *page) 1575 { 1576 page->index = 0; 1577 } 1578 1579 /* 1580 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1581 */ 1582 extern void pagefault_out_of_memory(void); 1583 1584 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1585 1586 /* 1587 * Flags passed to show_mem() and show_free_areas() to suppress output in 1588 * various contexts. 1589 */ 1590 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1591 1592 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1593 1594 #ifdef CONFIG_MMU 1595 extern bool can_do_mlock(void); 1596 #else 1597 static inline bool can_do_mlock(void) { return false; } 1598 #endif 1599 extern int user_shm_lock(size_t, struct user_struct *); 1600 extern void user_shm_unlock(size_t, struct user_struct *); 1601 1602 /* 1603 * Parameter block passed down to zap_pte_range in exceptional cases. 1604 */ 1605 struct zap_details { 1606 struct address_space *check_mapping; /* Check page->mapping if set */ 1607 pgoff_t first_index; /* Lowest page->index to unmap */ 1608 pgoff_t last_index; /* Highest page->index to unmap */ 1609 }; 1610 1611 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1612 pte_t pte); 1613 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1614 pmd_t pmd); 1615 1616 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1617 unsigned long size); 1618 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1619 unsigned long size); 1620 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1621 unsigned long start, unsigned long end); 1622 1623 struct mmu_notifier_range; 1624 1625 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1626 unsigned long end, unsigned long floor, unsigned long ceiling); 1627 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1628 struct vm_area_struct *vma); 1629 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1630 struct mmu_notifier_range *range, 1631 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1632 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1633 unsigned long *pfn); 1634 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1635 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1636 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1637 void *buf, int len, int write); 1638 1639 extern void truncate_pagecache(struct inode *inode, loff_t new); 1640 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1641 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1642 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1643 int truncate_inode_page(struct address_space *mapping, struct page *page); 1644 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1645 int invalidate_inode_page(struct page *page); 1646 1647 #ifdef CONFIG_MMU 1648 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1649 unsigned long address, unsigned int flags); 1650 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1651 unsigned long address, unsigned int fault_flags, 1652 bool *unlocked); 1653 void unmap_mapping_pages(struct address_space *mapping, 1654 pgoff_t start, pgoff_t nr, bool even_cows); 1655 void unmap_mapping_range(struct address_space *mapping, 1656 loff_t const holebegin, loff_t const holelen, int even_cows); 1657 #else 1658 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1659 unsigned long address, unsigned int flags) 1660 { 1661 /* should never happen if there's no MMU */ 1662 BUG(); 1663 return VM_FAULT_SIGBUS; 1664 } 1665 static inline int fixup_user_fault(struct task_struct *tsk, 1666 struct mm_struct *mm, unsigned long address, 1667 unsigned int fault_flags, bool *unlocked) 1668 { 1669 /* should never happen if there's no MMU */ 1670 BUG(); 1671 return -EFAULT; 1672 } 1673 static inline void unmap_mapping_pages(struct address_space *mapping, 1674 pgoff_t start, pgoff_t nr, bool even_cows) { } 1675 static inline void unmap_mapping_range(struct address_space *mapping, 1676 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1677 #endif 1678 1679 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1680 loff_t const holebegin, loff_t const holelen) 1681 { 1682 unmap_mapping_range(mapping, holebegin, holelen, 0); 1683 } 1684 1685 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1686 void *buf, int len, unsigned int gup_flags); 1687 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1688 void *buf, int len, unsigned int gup_flags); 1689 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1690 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1691 1692 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1693 unsigned long start, unsigned long nr_pages, 1694 unsigned int gup_flags, struct page **pages, 1695 struct vm_area_struct **vmas, int *locked); 1696 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1697 unsigned long start, unsigned long nr_pages, 1698 unsigned int gup_flags, struct page **pages, 1699 struct vm_area_struct **vmas, int *locked); 1700 long get_user_pages(unsigned long start, unsigned long nr_pages, 1701 unsigned int gup_flags, struct page **pages, 1702 struct vm_area_struct **vmas); 1703 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1704 unsigned int gup_flags, struct page **pages, 1705 struct vm_area_struct **vmas); 1706 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1707 unsigned int gup_flags, struct page **pages, int *locked); 1708 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1709 unsigned int gup_flags, struct page **pages, int *locked); 1710 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1711 struct page **pages, unsigned int gup_flags); 1712 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1713 struct page **pages, unsigned int gup_flags); 1714 1715 int get_user_pages_fast(unsigned long start, int nr_pages, 1716 unsigned int gup_flags, struct page **pages); 1717 int pin_user_pages_fast(unsigned long start, int nr_pages, 1718 unsigned int gup_flags, struct page **pages); 1719 1720 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1721 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1722 struct task_struct *task, bool bypass_rlim); 1723 1724 /* Container for pinned pfns / pages */ 1725 struct frame_vector { 1726 unsigned int nr_allocated; /* Number of frames we have space for */ 1727 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1728 bool got_ref; /* Did we pin pages by getting page ref? */ 1729 bool is_pfns; /* Does array contain pages or pfns? */ 1730 void *ptrs[]; /* Array of pinned pfns / pages. Use 1731 * pfns_vector_pages() or pfns_vector_pfns() 1732 * for access */ 1733 }; 1734 1735 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1736 void frame_vector_destroy(struct frame_vector *vec); 1737 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1738 unsigned int gup_flags, struct frame_vector *vec); 1739 void put_vaddr_frames(struct frame_vector *vec); 1740 int frame_vector_to_pages(struct frame_vector *vec); 1741 void frame_vector_to_pfns(struct frame_vector *vec); 1742 1743 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1744 { 1745 return vec->nr_frames; 1746 } 1747 1748 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1749 { 1750 if (vec->is_pfns) { 1751 int err = frame_vector_to_pages(vec); 1752 1753 if (err) 1754 return ERR_PTR(err); 1755 } 1756 return (struct page **)(vec->ptrs); 1757 } 1758 1759 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1760 { 1761 if (!vec->is_pfns) 1762 frame_vector_to_pfns(vec); 1763 return (unsigned long *)(vec->ptrs); 1764 } 1765 1766 struct kvec; 1767 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1768 struct page **pages); 1769 int get_kernel_page(unsigned long start, int write, struct page **pages); 1770 struct page *get_dump_page(unsigned long addr); 1771 1772 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1773 extern void do_invalidatepage(struct page *page, unsigned int offset, 1774 unsigned int length); 1775 1776 void __set_page_dirty(struct page *, struct address_space *, int warn); 1777 int __set_page_dirty_nobuffers(struct page *page); 1778 int __set_page_dirty_no_writeback(struct page *page); 1779 int redirty_page_for_writepage(struct writeback_control *wbc, 1780 struct page *page); 1781 void account_page_dirtied(struct page *page, struct address_space *mapping); 1782 void account_page_cleaned(struct page *page, struct address_space *mapping, 1783 struct bdi_writeback *wb); 1784 int set_page_dirty(struct page *page); 1785 int set_page_dirty_lock(struct page *page); 1786 void __cancel_dirty_page(struct page *page); 1787 static inline void cancel_dirty_page(struct page *page) 1788 { 1789 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1790 if (PageDirty(page)) 1791 __cancel_dirty_page(page); 1792 } 1793 int clear_page_dirty_for_io(struct page *page); 1794 1795 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1796 1797 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1798 unsigned long old_addr, struct vm_area_struct *new_vma, 1799 unsigned long new_addr, unsigned long len, 1800 bool need_rmap_locks); 1801 1802 /* 1803 * Flags used by change_protection(). For now we make it a bitmap so 1804 * that we can pass in multiple flags just like parameters. However 1805 * for now all the callers are only use one of the flags at the same 1806 * time. 1807 */ 1808 /* Whether we should allow dirty bit accounting */ 1809 #define MM_CP_DIRTY_ACCT (1UL << 0) 1810 /* Whether this protection change is for NUMA hints */ 1811 #define MM_CP_PROT_NUMA (1UL << 1) 1812 /* Whether this change is for write protecting */ 1813 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1814 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1815 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1816 MM_CP_UFFD_WP_RESOLVE) 1817 1818 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1819 unsigned long end, pgprot_t newprot, 1820 unsigned long cp_flags); 1821 extern int mprotect_fixup(struct vm_area_struct *vma, 1822 struct vm_area_struct **pprev, unsigned long start, 1823 unsigned long end, unsigned long newflags); 1824 1825 /* 1826 * doesn't attempt to fault and will return short. 1827 */ 1828 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1829 unsigned int gup_flags, struct page **pages); 1830 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1831 unsigned int gup_flags, struct page **pages); 1832 1833 static inline bool get_user_page_fast_only(unsigned long addr, 1834 unsigned int gup_flags, struct page **pagep) 1835 { 1836 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1837 } 1838 /* 1839 * per-process(per-mm_struct) statistics. 1840 */ 1841 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1842 { 1843 long val = atomic_long_read(&mm->rss_stat.count[member]); 1844 1845 #ifdef SPLIT_RSS_COUNTING 1846 /* 1847 * counter is updated in asynchronous manner and may go to minus. 1848 * But it's never be expected number for users. 1849 */ 1850 if (val < 0) 1851 val = 0; 1852 #endif 1853 return (unsigned long)val; 1854 } 1855 1856 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1857 1858 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1859 { 1860 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1861 1862 mm_trace_rss_stat(mm, member, count); 1863 } 1864 1865 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1866 { 1867 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1868 1869 mm_trace_rss_stat(mm, member, count); 1870 } 1871 1872 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1873 { 1874 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1875 1876 mm_trace_rss_stat(mm, member, count); 1877 } 1878 1879 /* Optimized variant when page is already known not to be PageAnon */ 1880 static inline int mm_counter_file(struct page *page) 1881 { 1882 if (PageSwapBacked(page)) 1883 return MM_SHMEMPAGES; 1884 return MM_FILEPAGES; 1885 } 1886 1887 static inline int mm_counter(struct page *page) 1888 { 1889 if (PageAnon(page)) 1890 return MM_ANONPAGES; 1891 return mm_counter_file(page); 1892 } 1893 1894 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1895 { 1896 return get_mm_counter(mm, MM_FILEPAGES) + 1897 get_mm_counter(mm, MM_ANONPAGES) + 1898 get_mm_counter(mm, MM_SHMEMPAGES); 1899 } 1900 1901 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1902 { 1903 return max(mm->hiwater_rss, get_mm_rss(mm)); 1904 } 1905 1906 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1907 { 1908 return max(mm->hiwater_vm, mm->total_vm); 1909 } 1910 1911 static inline void update_hiwater_rss(struct mm_struct *mm) 1912 { 1913 unsigned long _rss = get_mm_rss(mm); 1914 1915 if ((mm)->hiwater_rss < _rss) 1916 (mm)->hiwater_rss = _rss; 1917 } 1918 1919 static inline void update_hiwater_vm(struct mm_struct *mm) 1920 { 1921 if (mm->hiwater_vm < mm->total_vm) 1922 mm->hiwater_vm = mm->total_vm; 1923 } 1924 1925 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1926 { 1927 mm->hiwater_rss = get_mm_rss(mm); 1928 } 1929 1930 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1931 struct mm_struct *mm) 1932 { 1933 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1934 1935 if (*maxrss < hiwater_rss) 1936 *maxrss = hiwater_rss; 1937 } 1938 1939 #if defined(SPLIT_RSS_COUNTING) 1940 void sync_mm_rss(struct mm_struct *mm); 1941 #else 1942 static inline void sync_mm_rss(struct mm_struct *mm) 1943 { 1944 } 1945 #endif 1946 1947 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1948 static inline int pte_special(pte_t pte) 1949 { 1950 return 0; 1951 } 1952 1953 static inline pte_t pte_mkspecial(pte_t pte) 1954 { 1955 return pte; 1956 } 1957 #endif 1958 1959 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1960 static inline int pte_devmap(pte_t pte) 1961 { 1962 return 0; 1963 } 1964 #endif 1965 1966 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1967 1968 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1969 spinlock_t **ptl); 1970 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1971 spinlock_t **ptl) 1972 { 1973 pte_t *ptep; 1974 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1975 return ptep; 1976 } 1977 1978 #ifdef __PAGETABLE_P4D_FOLDED 1979 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1980 unsigned long address) 1981 { 1982 return 0; 1983 } 1984 #else 1985 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1986 #endif 1987 1988 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1989 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1990 unsigned long address) 1991 { 1992 return 0; 1993 } 1994 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1995 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1996 1997 #else 1998 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1999 2000 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2001 { 2002 if (mm_pud_folded(mm)) 2003 return; 2004 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2005 } 2006 2007 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2008 { 2009 if (mm_pud_folded(mm)) 2010 return; 2011 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2012 } 2013 #endif 2014 2015 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2016 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2017 unsigned long address) 2018 { 2019 return 0; 2020 } 2021 2022 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2023 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2024 2025 #else 2026 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2027 2028 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2029 { 2030 if (mm_pmd_folded(mm)) 2031 return; 2032 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2033 } 2034 2035 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2036 { 2037 if (mm_pmd_folded(mm)) 2038 return; 2039 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2040 } 2041 #endif 2042 2043 #ifdef CONFIG_MMU 2044 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2045 { 2046 atomic_long_set(&mm->pgtables_bytes, 0); 2047 } 2048 2049 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2050 { 2051 return atomic_long_read(&mm->pgtables_bytes); 2052 } 2053 2054 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2055 { 2056 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2057 } 2058 2059 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2060 { 2061 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2062 } 2063 #else 2064 2065 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2066 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2067 { 2068 return 0; 2069 } 2070 2071 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2072 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2073 #endif 2074 2075 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2076 int __pte_alloc_kernel(pmd_t *pmd); 2077 2078 #if defined(CONFIG_MMU) 2079 2080 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2081 unsigned long address) 2082 { 2083 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2084 NULL : p4d_offset(pgd, address); 2085 } 2086 2087 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2088 unsigned long address) 2089 { 2090 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2091 NULL : pud_offset(p4d, address); 2092 } 2093 2094 static inline p4d_t *p4d_alloc_track(struct mm_struct *mm, pgd_t *pgd, 2095 unsigned long address, 2096 pgtbl_mod_mask *mod_mask) 2097 2098 { 2099 if (unlikely(pgd_none(*pgd))) { 2100 if (__p4d_alloc(mm, pgd, address)) 2101 return NULL; 2102 *mod_mask |= PGTBL_PGD_MODIFIED; 2103 } 2104 2105 return p4d_offset(pgd, address); 2106 } 2107 2108 static inline pud_t *pud_alloc_track(struct mm_struct *mm, p4d_t *p4d, 2109 unsigned long address, 2110 pgtbl_mod_mask *mod_mask) 2111 { 2112 if (unlikely(p4d_none(*p4d))) { 2113 if (__pud_alloc(mm, p4d, address)) 2114 return NULL; 2115 *mod_mask |= PGTBL_P4D_MODIFIED; 2116 } 2117 2118 return pud_offset(p4d, address); 2119 } 2120 2121 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2122 { 2123 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2124 NULL: pmd_offset(pud, address); 2125 } 2126 2127 static inline pmd_t *pmd_alloc_track(struct mm_struct *mm, pud_t *pud, 2128 unsigned long address, 2129 pgtbl_mod_mask *mod_mask) 2130 { 2131 if (unlikely(pud_none(*pud))) { 2132 if (__pmd_alloc(mm, pud, address)) 2133 return NULL; 2134 *mod_mask |= PGTBL_PUD_MODIFIED; 2135 } 2136 2137 return pmd_offset(pud, address); 2138 } 2139 #endif /* CONFIG_MMU */ 2140 2141 #if USE_SPLIT_PTE_PTLOCKS 2142 #if ALLOC_SPLIT_PTLOCKS 2143 void __init ptlock_cache_init(void); 2144 extern bool ptlock_alloc(struct page *page); 2145 extern void ptlock_free(struct page *page); 2146 2147 static inline spinlock_t *ptlock_ptr(struct page *page) 2148 { 2149 return page->ptl; 2150 } 2151 #else /* ALLOC_SPLIT_PTLOCKS */ 2152 static inline void ptlock_cache_init(void) 2153 { 2154 } 2155 2156 static inline bool ptlock_alloc(struct page *page) 2157 { 2158 return true; 2159 } 2160 2161 static inline void ptlock_free(struct page *page) 2162 { 2163 } 2164 2165 static inline spinlock_t *ptlock_ptr(struct page *page) 2166 { 2167 return &page->ptl; 2168 } 2169 #endif /* ALLOC_SPLIT_PTLOCKS */ 2170 2171 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2172 { 2173 return ptlock_ptr(pmd_page(*pmd)); 2174 } 2175 2176 static inline bool ptlock_init(struct page *page) 2177 { 2178 /* 2179 * prep_new_page() initialize page->private (and therefore page->ptl) 2180 * with 0. Make sure nobody took it in use in between. 2181 * 2182 * It can happen if arch try to use slab for page table allocation: 2183 * slab code uses page->slab_cache, which share storage with page->ptl. 2184 */ 2185 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2186 if (!ptlock_alloc(page)) 2187 return false; 2188 spin_lock_init(ptlock_ptr(page)); 2189 return true; 2190 } 2191 2192 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2193 /* 2194 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2195 */ 2196 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2197 { 2198 return &mm->page_table_lock; 2199 } 2200 static inline void ptlock_cache_init(void) {} 2201 static inline bool ptlock_init(struct page *page) { return true; } 2202 static inline void ptlock_free(struct page *page) {} 2203 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2204 2205 static inline void pgtable_init(void) 2206 { 2207 ptlock_cache_init(); 2208 pgtable_cache_init(); 2209 } 2210 2211 static inline bool pgtable_pte_page_ctor(struct page *page) 2212 { 2213 if (!ptlock_init(page)) 2214 return false; 2215 __SetPageTable(page); 2216 inc_zone_page_state(page, NR_PAGETABLE); 2217 return true; 2218 } 2219 2220 static inline void pgtable_pte_page_dtor(struct page *page) 2221 { 2222 ptlock_free(page); 2223 __ClearPageTable(page); 2224 dec_zone_page_state(page, NR_PAGETABLE); 2225 } 2226 2227 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2228 ({ \ 2229 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2230 pte_t *__pte = pte_offset_map(pmd, address); \ 2231 *(ptlp) = __ptl; \ 2232 spin_lock(__ptl); \ 2233 __pte; \ 2234 }) 2235 2236 #define pte_unmap_unlock(pte, ptl) do { \ 2237 spin_unlock(ptl); \ 2238 pte_unmap(pte); \ 2239 } while (0) 2240 2241 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2242 2243 #define pte_alloc_map(mm, pmd, address) \ 2244 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2245 2246 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2247 (pte_alloc(mm, pmd) ? \ 2248 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2249 2250 #define pte_alloc_kernel(pmd, address) \ 2251 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2252 NULL: pte_offset_kernel(pmd, address)) 2253 2254 #define pte_alloc_kernel_track(pmd, address, mask) \ 2255 ((unlikely(pmd_none(*(pmd))) && \ 2256 (__pte_alloc_kernel(pmd) || ({*(mask)|=PGTBL_PMD_MODIFIED;0;})))?\ 2257 NULL: pte_offset_kernel(pmd, address)) 2258 2259 #if USE_SPLIT_PMD_PTLOCKS 2260 2261 static struct page *pmd_to_page(pmd_t *pmd) 2262 { 2263 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2264 return virt_to_page((void *)((unsigned long) pmd & mask)); 2265 } 2266 2267 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2268 { 2269 return ptlock_ptr(pmd_to_page(pmd)); 2270 } 2271 2272 static inline bool pgtable_pmd_page_ctor(struct page *page) 2273 { 2274 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2275 page->pmd_huge_pte = NULL; 2276 #endif 2277 return ptlock_init(page); 2278 } 2279 2280 static inline void pgtable_pmd_page_dtor(struct page *page) 2281 { 2282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2283 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2284 #endif 2285 ptlock_free(page); 2286 } 2287 2288 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2289 2290 #else 2291 2292 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2293 { 2294 return &mm->page_table_lock; 2295 } 2296 2297 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2298 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2299 2300 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2301 2302 #endif 2303 2304 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2305 { 2306 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2307 spin_lock(ptl); 2308 return ptl; 2309 } 2310 2311 /* 2312 * No scalability reason to split PUD locks yet, but follow the same pattern 2313 * as the PMD locks to make it easier if we decide to. The VM should not be 2314 * considered ready to switch to split PUD locks yet; there may be places 2315 * which need to be converted from page_table_lock. 2316 */ 2317 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2318 { 2319 return &mm->page_table_lock; 2320 } 2321 2322 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2323 { 2324 spinlock_t *ptl = pud_lockptr(mm, pud); 2325 2326 spin_lock(ptl); 2327 return ptl; 2328 } 2329 2330 extern void __init pagecache_init(void); 2331 extern void __init free_area_init_memoryless_node(int nid); 2332 extern void free_initmem(void); 2333 2334 /* 2335 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2336 * into the buddy system. The freed pages will be poisoned with pattern 2337 * "poison" if it's within range [0, UCHAR_MAX]. 2338 * Return pages freed into the buddy system. 2339 */ 2340 extern unsigned long free_reserved_area(void *start, void *end, 2341 int poison, const char *s); 2342 2343 #ifdef CONFIG_HIGHMEM 2344 /* 2345 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2346 * and totalram_pages. 2347 */ 2348 extern void free_highmem_page(struct page *page); 2349 #endif 2350 2351 extern void adjust_managed_page_count(struct page *page, long count); 2352 extern void mem_init_print_info(const char *str); 2353 2354 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2355 2356 /* Free the reserved page into the buddy system, so it gets managed. */ 2357 static inline void __free_reserved_page(struct page *page) 2358 { 2359 ClearPageReserved(page); 2360 init_page_count(page); 2361 __free_page(page); 2362 } 2363 2364 static inline void free_reserved_page(struct page *page) 2365 { 2366 __free_reserved_page(page); 2367 adjust_managed_page_count(page, 1); 2368 } 2369 2370 static inline void mark_page_reserved(struct page *page) 2371 { 2372 SetPageReserved(page); 2373 adjust_managed_page_count(page, -1); 2374 } 2375 2376 /* 2377 * Default method to free all the __init memory into the buddy system. 2378 * The freed pages will be poisoned with pattern "poison" if it's within 2379 * range [0, UCHAR_MAX]. 2380 * Return pages freed into the buddy system. 2381 */ 2382 static inline unsigned long free_initmem_default(int poison) 2383 { 2384 extern char __init_begin[], __init_end[]; 2385 2386 return free_reserved_area(&__init_begin, &__init_end, 2387 poison, "unused kernel"); 2388 } 2389 2390 static inline unsigned long get_num_physpages(void) 2391 { 2392 int nid; 2393 unsigned long phys_pages = 0; 2394 2395 for_each_online_node(nid) 2396 phys_pages += node_present_pages(nid); 2397 2398 return phys_pages; 2399 } 2400 2401 /* 2402 * Using memblock node mappings, an architecture may initialise its 2403 * zones, allocate the backing mem_map and account for memory holes in an 2404 * architecture independent manner. 2405 * 2406 * An architecture is expected to register range of page frames backed by 2407 * physical memory with memblock_add[_node]() before calling 2408 * free_area_init() passing in the PFN each zone ends at. At a basic 2409 * usage, an architecture is expected to do something like 2410 * 2411 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2412 * max_highmem_pfn}; 2413 * for_each_valid_physical_page_range() 2414 * memblock_add_node(base, size, nid) 2415 * free_area_init(max_zone_pfns); 2416 * 2417 * sparse_memory_present_with_active_regions() calls memory_present() for 2418 * each range when SPARSEMEM is enabled. 2419 */ 2420 void free_area_init(unsigned long *max_zone_pfn); 2421 unsigned long node_map_pfn_alignment(void); 2422 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2423 unsigned long end_pfn); 2424 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2425 unsigned long end_pfn); 2426 extern void get_pfn_range_for_nid(unsigned int nid, 2427 unsigned long *start_pfn, unsigned long *end_pfn); 2428 extern unsigned long find_min_pfn_with_active_regions(void); 2429 extern void sparse_memory_present_with_active_regions(int nid); 2430 2431 #ifndef CONFIG_NEED_MULTIPLE_NODES 2432 static inline int early_pfn_to_nid(unsigned long pfn) 2433 { 2434 return 0; 2435 } 2436 #else 2437 /* please see mm/page_alloc.c */ 2438 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2439 /* there is a per-arch backend function. */ 2440 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2441 struct mminit_pfnnid_cache *state); 2442 #endif 2443 2444 extern void set_dma_reserve(unsigned long new_dma_reserve); 2445 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2446 enum memmap_context, struct vmem_altmap *); 2447 extern void setup_per_zone_wmarks(void); 2448 extern int __meminit init_per_zone_wmark_min(void); 2449 extern void mem_init(void); 2450 extern void __init mmap_init(void); 2451 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2452 extern long si_mem_available(void); 2453 extern void si_meminfo(struct sysinfo * val); 2454 extern void si_meminfo_node(struct sysinfo *val, int nid); 2455 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2456 extern unsigned long arch_reserved_kernel_pages(void); 2457 #endif 2458 2459 extern __printf(3, 4) 2460 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2461 2462 extern void setup_per_cpu_pageset(void); 2463 2464 /* page_alloc.c */ 2465 extern int min_free_kbytes; 2466 extern int watermark_boost_factor; 2467 extern int watermark_scale_factor; 2468 extern bool arch_has_descending_max_zone_pfns(void); 2469 2470 /* nommu.c */ 2471 extern atomic_long_t mmap_pages_allocated; 2472 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2473 2474 /* interval_tree.c */ 2475 void vma_interval_tree_insert(struct vm_area_struct *node, 2476 struct rb_root_cached *root); 2477 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2478 struct vm_area_struct *prev, 2479 struct rb_root_cached *root); 2480 void vma_interval_tree_remove(struct vm_area_struct *node, 2481 struct rb_root_cached *root); 2482 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2483 unsigned long start, unsigned long last); 2484 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2485 unsigned long start, unsigned long last); 2486 2487 #define vma_interval_tree_foreach(vma, root, start, last) \ 2488 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2489 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2490 2491 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2492 struct rb_root_cached *root); 2493 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2494 struct rb_root_cached *root); 2495 struct anon_vma_chain * 2496 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2497 unsigned long start, unsigned long last); 2498 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2499 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2500 #ifdef CONFIG_DEBUG_VM_RB 2501 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2502 #endif 2503 2504 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2505 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2506 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2507 2508 /* mmap.c */ 2509 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2510 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2511 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2512 struct vm_area_struct *expand); 2513 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2514 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2515 { 2516 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2517 } 2518 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2519 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2520 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2521 struct mempolicy *, struct vm_userfaultfd_ctx); 2522 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2523 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2524 unsigned long addr, int new_below); 2525 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2526 unsigned long addr, int new_below); 2527 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2528 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2529 struct rb_node **, struct rb_node *); 2530 extern void unlink_file_vma(struct vm_area_struct *); 2531 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2532 unsigned long addr, unsigned long len, pgoff_t pgoff, 2533 bool *need_rmap_locks); 2534 extern void exit_mmap(struct mm_struct *); 2535 2536 static inline int check_data_rlimit(unsigned long rlim, 2537 unsigned long new, 2538 unsigned long start, 2539 unsigned long end_data, 2540 unsigned long start_data) 2541 { 2542 if (rlim < RLIM_INFINITY) { 2543 if (((new - start) + (end_data - start_data)) > rlim) 2544 return -ENOSPC; 2545 } 2546 2547 return 0; 2548 } 2549 2550 extern int mm_take_all_locks(struct mm_struct *mm); 2551 extern void mm_drop_all_locks(struct mm_struct *mm); 2552 2553 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2554 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2555 extern struct file *get_task_exe_file(struct task_struct *task); 2556 2557 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2558 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2559 2560 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2561 const struct vm_special_mapping *sm); 2562 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2563 unsigned long addr, unsigned long len, 2564 unsigned long flags, 2565 const struct vm_special_mapping *spec); 2566 /* This is an obsolete alternative to _install_special_mapping. */ 2567 extern int install_special_mapping(struct mm_struct *mm, 2568 unsigned long addr, unsigned long len, 2569 unsigned long flags, struct page **pages); 2570 2571 unsigned long randomize_stack_top(unsigned long stack_top); 2572 2573 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2574 2575 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2576 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2577 struct list_head *uf); 2578 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2579 unsigned long len, unsigned long prot, unsigned long flags, 2580 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2581 struct list_head *uf); 2582 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2583 struct list_head *uf, bool downgrade); 2584 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2585 struct list_head *uf); 2586 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2587 2588 static inline unsigned long 2589 do_mmap_pgoff(struct file *file, unsigned long addr, 2590 unsigned long len, unsigned long prot, unsigned long flags, 2591 unsigned long pgoff, unsigned long *populate, 2592 struct list_head *uf) 2593 { 2594 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2595 } 2596 2597 #ifdef CONFIG_MMU 2598 extern int __mm_populate(unsigned long addr, unsigned long len, 2599 int ignore_errors); 2600 static inline void mm_populate(unsigned long addr, unsigned long len) 2601 { 2602 /* Ignore errors */ 2603 (void) __mm_populate(addr, len, 1); 2604 } 2605 #else 2606 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2607 #endif 2608 2609 /* These take the mm semaphore themselves */ 2610 extern int __must_check vm_brk(unsigned long, unsigned long); 2611 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2612 extern int vm_munmap(unsigned long, size_t); 2613 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2614 unsigned long, unsigned long, 2615 unsigned long, unsigned long); 2616 2617 struct vm_unmapped_area_info { 2618 #define VM_UNMAPPED_AREA_TOPDOWN 1 2619 unsigned long flags; 2620 unsigned long length; 2621 unsigned long low_limit; 2622 unsigned long high_limit; 2623 unsigned long align_mask; 2624 unsigned long align_offset; 2625 }; 2626 2627 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2628 2629 /* truncate.c */ 2630 extern void truncate_inode_pages(struct address_space *, loff_t); 2631 extern void truncate_inode_pages_range(struct address_space *, 2632 loff_t lstart, loff_t lend); 2633 extern void truncate_inode_pages_final(struct address_space *); 2634 2635 /* generic vm_area_ops exported for stackable file systems */ 2636 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2637 extern void filemap_map_pages(struct vm_fault *vmf, 2638 pgoff_t start_pgoff, pgoff_t end_pgoff); 2639 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2640 2641 /* mm/page-writeback.c */ 2642 int __must_check write_one_page(struct page *page); 2643 void task_dirty_inc(struct task_struct *tsk); 2644 2645 extern unsigned long stack_guard_gap; 2646 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2647 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2648 2649 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2650 extern int expand_downwards(struct vm_area_struct *vma, 2651 unsigned long address); 2652 #if VM_GROWSUP 2653 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2654 #else 2655 #define expand_upwards(vma, address) (0) 2656 #endif 2657 2658 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2659 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2660 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2661 struct vm_area_struct **pprev); 2662 2663 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2664 NULL if none. Assume start_addr < end_addr. */ 2665 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2666 { 2667 struct vm_area_struct * vma = find_vma(mm,start_addr); 2668 2669 if (vma && end_addr <= vma->vm_start) 2670 vma = NULL; 2671 return vma; 2672 } 2673 2674 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2675 { 2676 unsigned long vm_start = vma->vm_start; 2677 2678 if (vma->vm_flags & VM_GROWSDOWN) { 2679 vm_start -= stack_guard_gap; 2680 if (vm_start > vma->vm_start) 2681 vm_start = 0; 2682 } 2683 return vm_start; 2684 } 2685 2686 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2687 { 2688 unsigned long vm_end = vma->vm_end; 2689 2690 if (vma->vm_flags & VM_GROWSUP) { 2691 vm_end += stack_guard_gap; 2692 if (vm_end < vma->vm_end) 2693 vm_end = -PAGE_SIZE; 2694 } 2695 return vm_end; 2696 } 2697 2698 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2699 { 2700 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2701 } 2702 2703 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2704 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2705 unsigned long vm_start, unsigned long vm_end) 2706 { 2707 struct vm_area_struct *vma = find_vma(mm, vm_start); 2708 2709 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2710 vma = NULL; 2711 2712 return vma; 2713 } 2714 2715 static inline bool range_in_vma(struct vm_area_struct *vma, 2716 unsigned long start, unsigned long end) 2717 { 2718 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2719 } 2720 2721 #ifdef CONFIG_MMU 2722 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2723 void vma_set_page_prot(struct vm_area_struct *vma); 2724 #else 2725 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2726 { 2727 return __pgprot(0); 2728 } 2729 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2730 { 2731 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2732 } 2733 #endif 2734 2735 #ifdef CONFIG_NUMA_BALANCING 2736 unsigned long change_prot_numa(struct vm_area_struct *vma, 2737 unsigned long start, unsigned long end); 2738 #endif 2739 2740 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2741 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2742 unsigned long pfn, unsigned long size, pgprot_t); 2743 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2744 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2745 struct page **pages, unsigned long *num); 2746 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2747 unsigned long num); 2748 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2749 unsigned long num); 2750 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2751 unsigned long pfn); 2752 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2753 unsigned long pfn, pgprot_t pgprot); 2754 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2755 pfn_t pfn); 2756 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2757 pfn_t pfn, pgprot_t pgprot); 2758 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2759 unsigned long addr, pfn_t pfn); 2760 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2761 2762 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2763 unsigned long addr, struct page *page) 2764 { 2765 int err = vm_insert_page(vma, addr, page); 2766 2767 if (err == -ENOMEM) 2768 return VM_FAULT_OOM; 2769 if (err < 0 && err != -EBUSY) 2770 return VM_FAULT_SIGBUS; 2771 2772 return VM_FAULT_NOPAGE; 2773 } 2774 2775 static inline vm_fault_t vmf_error(int err) 2776 { 2777 if (err == -ENOMEM) 2778 return VM_FAULT_OOM; 2779 return VM_FAULT_SIGBUS; 2780 } 2781 2782 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2783 unsigned int foll_flags); 2784 2785 #define FOLL_WRITE 0x01 /* check pte is writable */ 2786 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2787 #define FOLL_GET 0x04 /* do get_page on page */ 2788 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2789 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2790 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2791 * and return without waiting upon it */ 2792 #define FOLL_POPULATE 0x40 /* fault in page */ 2793 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2794 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2795 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2796 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2797 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2798 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2799 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2800 #define FOLL_COW 0x4000 /* internal GUP flag */ 2801 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2802 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2803 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2804 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2805 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2806 2807 /* 2808 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2809 * other. Here is what they mean, and how to use them: 2810 * 2811 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2812 * period _often_ under userspace control. This is in contrast to 2813 * iov_iter_get_pages(), whose usages are transient. 2814 * 2815 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2816 * lifetime enforced by the filesystem and we need guarantees that longterm 2817 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2818 * the filesystem. Ideas for this coordination include revoking the longterm 2819 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2820 * added after the problem with filesystems was found FS DAX VMAs are 2821 * specifically failed. Filesystem pages are still subject to bugs and use of 2822 * FOLL_LONGTERM should be avoided on those pages. 2823 * 2824 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2825 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2826 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2827 * is due to an incompatibility with the FS DAX check and 2828 * FAULT_FLAG_ALLOW_RETRY. 2829 * 2830 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2831 * that region. And so, CMA attempts to migrate the page before pinning, when 2832 * FOLL_LONGTERM is specified. 2833 * 2834 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2835 * but an additional pin counting system) will be invoked. This is intended for 2836 * anything that gets a page reference and then touches page data (for example, 2837 * Direct IO). This lets the filesystem know that some non-file-system entity is 2838 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2839 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2840 * a call to unpin_user_page(). 2841 * 2842 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2843 * and separate refcounting mechanisms, however, and that means that each has 2844 * its own acquire and release mechanisms: 2845 * 2846 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2847 * 2848 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2849 * 2850 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2851 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2852 * calls applied to them, and that's perfectly OK. This is a constraint on the 2853 * callers, not on the pages.) 2854 * 2855 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2856 * directly by the caller. That's in order to help avoid mismatches when 2857 * releasing pages: get_user_pages*() pages must be released via put_page(), 2858 * while pin_user_pages*() pages must be released via unpin_user_page(). 2859 * 2860 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2861 */ 2862 2863 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2864 { 2865 if (vm_fault & VM_FAULT_OOM) 2866 return -ENOMEM; 2867 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2868 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2869 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2870 return -EFAULT; 2871 return 0; 2872 } 2873 2874 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2875 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2876 unsigned long size, pte_fn_t fn, void *data); 2877 extern int apply_to_existing_page_range(struct mm_struct *mm, 2878 unsigned long address, unsigned long size, 2879 pte_fn_t fn, void *data); 2880 2881 #ifdef CONFIG_PAGE_POISONING 2882 extern bool page_poisoning_enabled(void); 2883 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2884 #else 2885 static inline bool page_poisoning_enabled(void) { return false; } 2886 static inline void kernel_poison_pages(struct page *page, int numpages, 2887 int enable) { } 2888 #endif 2889 2890 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2891 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2892 #else 2893 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2894 #endif 2895 static inline bool want_init_on_alloc(gfp_t flags) 2896 { 2897 if (static_branch_unlikely(&init_on_alloc) && 2898 !page_poisoning_enabled()) 2899 return true; 2900 return flags & __GFP_ZERO; 2901 } 2902 2903 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2904 DECLARE_STATIC_KEY_TRUE(init_on_free); 2905 #else 2906 DECLARE_STATIC_KEY_FALSE(init_on_free); 2907 #endif 2908 static inline bool want_init_on_free(void) 2909 { 2910 return static_branch_unlikely(&init_on_free) && 2911 !page_poisoning_enabled(); 2912 } 2913 2914 #ifdef CONFIG_DEBUG_PAGEALLOC 2915 extern void init_debug_pagealloc(void); 2916 #else 2917 static inline void init_debug_pagealloc(void) {} 2918 #endif 2919 extern bool _debug_pagealloc_enabled_early; 2920 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2921 2922 static inline bool debug_pagealloc_enabled(void) 2923 { 2924 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2925 _debug_pagealloc_enabled_early; 2926 } 2927 2928 /* 2929 * For use in fast paths after init_debug_pagealloc() has run, or when a 2930 * false negative result is not harmful when called too early. 2931 */ 2932 static inline bool debug_pagealloc_enabled_static(void) 2933 { 2934 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2935 return false; 2936 2937 return static_branch_unlikely(&_debug_pagealloc_enabled); 2938 } 2939 2940 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2941 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2942 2943 /* 2944 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2945 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2946 */ 2947 static inline void 2948 kernel_map_pages(struct page *page, int numpages, int enable) 2949 { 2950 __kernel_map_pages(page, numpages, enable); 2951 } 2952 #ifdef CONFIG_HIBERNATION 2953 extern bool kernel_page_present(struct page *page); 2954 #endif /* CONFIG_HIBERNATION */ 2955 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2956 static inline void 2957 kernel_map_pages(struct page *page, int numpages, int enable) {} 2958 #ifdef CONFIG_HIBERNATION 2959 static inline bool kernel_page_present(struct page *page) { return true; } 2960 #endif /* CONFIG_HIBERNATION */ 2961 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2962 2963 #ifdef __HAVE_ARCH_GATE_AREA 2964 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2965 extern int in_gate_area_no_mm(unsigned long addr); 2966 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2967 #else 2968 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2969 { 2970 return NULL; 2971 } 2972 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2973 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2974 { 2975 return 0; 2976 } 2977 #endif /* __HAVE_ARCH_GATE_AREA */ 2978 2979 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2980 2981 #ifdef CONFIG_SYSCTL 2982 extern int sysctl_drop_caches; 2983 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2984 loff_t *); 2985 #endif 2986 2987 void drop_slab(void); 2988 void drop_slab_node(int nid); 2989 2990 #ifndef CONFIG_MMU 2991 #define randomize_va_space 0 2992 #else 2993 extern int randomize_va_space; 2994 #endif 2995 2996 const char * arch_vma_name(struct vm_area_struct *vma); 2997 #ifdef CONFIG_MMU 2998 void print_vma_addr(char *prefix, unsigned long rip); 2999 #else 3000 static inline void print_vma_addr(char *prefix, unsigned long rip) 3001 { 3002 } 3003 #endif 3004 3005 void *sparse_buffer_alloc(unsigned long size); 3006 struct page * __populate_section_memmap(unsigned long pfn, 3007 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 3008 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 3009 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 3010 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 3011 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 3012 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 3013 void *vmemmap_alloc_block(unsigned long size, int node); 3014 struct vmem_altmap; 3015 void *vmemmap_alloc_block_buf(unsigned long size, int node); 3016 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 3017 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 3018 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 3019 int node); 3020 int vmemmap_populate(unsigned long start, unsigned long end, int node, 3021 struct vmem_altmap *altmap); 3022 void vmemmap_populate_print_last(void); 3023 #ifdef CONFIG_MEMORY_HOTPLUG 3024 void vmemmap_free(unsigned long start, unsigned long end, 3025 struct vmem_altmap *altmap); 3026 #endif 3027 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 3028 unsigned long nr_pages); 3029 3030 enum mf_flags { 3031 MF_COUNT_INCREASED = 1 << 0, 3032 MF_ACTION_REQUIRED = 1 << 1, 3033 MF_MUST_KILL = 1 << 2, 3034 MF_SOFT_OFFLINE = 1 << 3, 3035 }; 3036 extern int memory_failure(unsigned long pfn, int flags); 3037 extern void memory_failure_queue(unsigned long pfn, int flags); 3038 extern void memory_failure_queue_kick(int cpu); 3039 extern int unpoison_memory(unsigned long pfn); 3040 extern int get_hwpoison_page(struct page *page); 3041 #define put_hwpoison_page(page) put_page(page) 3042 extern int sysctl_memory_failure_early_kill; 3043 extern int sysctl_memory_failure_recovery; 3044 extern void shake_page(struct page *p, int access); 3045 extern atomic_long_t num_poisoned_pages __read_mostly; 3046 extern int soft_offline_page(unsigned long pfn, int flags); 3047 3048 3049 /* 3050 * Error handlers for various types of pages. 3051 */ 3052 enum mf_result { 3053 MF_IGNORED, /* Error: cannot be handled */ 3054 MF_FAILED, /* Error: handling failed */ 3055 MF_DELAYED, /* Will be handled later */ 3056 MF_RECOVERED, /* Successfully recovered */ 3057 }; 3058 3059 enum mf_action_page_type { 3060 MF_MSG_KERNEL, 3061 MF_MSG_KERNEL_HIGH_ORDER, 3062 MF_MSG_SLAB, 3063 MF_MSG_DIFFERENT_COMPOUND, 3064 MF_MSG_POISONED_HUGE, 3065 MF_MSG_HUGE, 3066 MF_MSG_FREE_HUGE, 3067 MF_MSG_NON_PMD_HUGE, 3068 MF_MSG_UNMAP_FAILED, 3069 MF_MSG_DIRTY_SWAPCACHE, 3070 MF_MSG_CLEAN_SWAPCACHE, 3071 MF_MSG_DIRTY_MLOCKED_LRU, 3072 MF_MSG_CLEAN_MLOCKED_LRU, 3073 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3074 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3075 MF_MSG_DIRTY_LRU, 3076 MF_MSG_CLEAN_LRU, 3077 MF_MSG_TRUNCATED_LRU, 3078 MF_MSG_BUDDY, 3079 MF_MSG_BUDDY_2ND, 3080 MF_MSG_DAX, 3081 MF_MSG_UNKNOWN, 3082 }; 3083 3084 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3085 extern void clear_huge_page(struct page *page, 3086 unsigned long addr_hint, 3087 unsigned int pages_per_huge_page); 3088 extern void copy_user_huge_page(struct page *dst, struct page *src, 3089 unsigned long addr_hint, 3090 struct vm_area_struct *vma, 3091 unsigned int pages_per_huge_page); 3092 extern long copy_huge_page_from_user(struct page *dst_page, 3093 const void __user *usr_src, 3094 unsigned int pages_per_huge_page, 3095 bool allow_pagefault); 3096 3097 /** 3098 * vma_is_special_huge - Are transhuge page-table entries considered special? 3099 * @vma: Pointer to the struct vm_area_struct to consider 3100 * 3101 * Whether transhuge page-table entries are considered "special" following 3102 * the definition in vm_normal_page(). 3103 * 3104 * Return: true if transhuge page-table entries should be considered special, 3105 * false otherwise. 3106 */ 3107 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3108 { 3109 return vma_is_dax(vma) || (vma->vm_file && 3110 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3111 } 3112 3113 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3114 3115 #ifdef CONFIG_DEBUG_PAGEALLOC 3116 extern unsigned int _debug_guardpage_minorder; 3117 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3118 3119 static inline unsigned int debug_guardpage_minorder(void) 3120 { 3121 return _debug_guardpage_minorder; 3122 } 3123 3124 static inline bool debug_guardpage_enabled(void) 3125 { 3126 return static_branch_unlikely(&_debug_guardpage_enabled); 3127 } 3128 3129 static inline bool page_is_guard(struct page *page) 3130 { 3131 if (!debug_guardpage_enabled()) 3132 return false; 3133 3134 return PageGuard(page); 3135 } 3136 #else 3137 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3138 static inline bool debug_guardpage_enabled(void) { return false; } 3139 static inline bool page_is_guard(struct page *page) { return false; } 3140 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3141 3142 #if MAX_NUMNODES > 1 3143 void __init setup_nr_node_ids(void); 3144 #else 3145 static inline void setup_nr_node_ids(void) {} 3146 #endif 3147 3148 extern int memcmp_pages(struct page *page1, struct page *page2); 3149 3150 static inline int pages_identical(struct page *page1, struct page *page2) 3151 { 3152 return !memcmp_pages(page1, page2); 3153 } 3154 3155 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3156 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3157 pgoff_t first_index, pgoff_t nr, 3158 pgoff_t bitmap_pgoff, 3159 unsigned long *bitmap, 3160 pgoff_t *start, 3161 pgoff_t *end); 3162 3163 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3164 pgoff_t first_index, pgoff_t nr); 3165 #endif 3166 3167 extern int sysctl_nr_trim_pages; 3168 3169 #endif /* __KERNEL__ */ 3170 #endif /* _LINUX_MM_H */ 3171