1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/range.h> 19 #include <linux/pfn.h> 20 #include <linux/percpu-refcount.h> 21 #include <linux/bit_spinlock.h> 22 #include <linux/shrinker.h> 23 #include <linux/resource.h> 24 #include <linux/page_ext.h> 25 #include <linux/err.h> 26 #include <linux/page_ref.h> 27 #include <linux/memremap.h> 28 #include <linux/overflow.h> 29 #include <linux/sizes.h> 30 31 struct mempolicy; 32 struct anon_vma; 33 struct anon_vma_chain; 34 struct file_ra_state; 35 struct user_struct; 36 struct writeback_control; 37 struct bdi_writeback; 38 39 void init_mm_internals(void); 40 41 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 42 extern unsigned long max_mapnr; 43 44 static inline void set_max_mapnr(unsigned long limit) 45 { 46 max_mapnr = limit; 47 } 48 #else 49 static inline void set_max_mapnr(unsigned long limit) { } 50 #endif 51 52 extern atomic_long_t _totalram_pages; 53 static inline unsigned long totalram_pages(void) 54 { 55 return (unsigned long)atomic_long_read(&_totalram_pages); 56 } 57 58 static inline void totalram_pages_inc(void) 59 { 60 atomic_long_inc(&_totalram_pages); 61 } 62 63 static inline void totalram_pages_dec(void) 64 { 65 atomic_long_dec(&_totalram_pages); 66 } 67 68 static inline void totalram_pages_add(long count) 69 { 70 atomic_long_add(count, &_totalram_pages); 71 } 72 73 extern void * high_memory; 74 extern int page_cluster; 75 76 #ifdef CONFIG_SYSCTL 77 extern int sysctl_legacy_va_layout; 78 #else 79 #define sysctl_legacy_va_layout 0 80 #endif 81 82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 83 extern const int mmap_rnd_bits_min; 84 extern const int mmap_rnd_bits_max; 85 extern int mmap_rnd_bits __read_mostly; 86 #endif 87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 88 extern const int mmap_rnd_compat_bits_min; 89 extern const int mmap_rnd_compat_bits_max; 90 extern int mmap_rnd_compat_bits __read_mostly; 91 #endif 92 93 #include <asm/page.h> 94 #include <asm/pgtable.h> 95 #include <asm/processor.h> 96 97 /* 98 * Architectures that support memory tagging (assigning tags to memory regions, 99 * embedding these tags into addresses that point to these memory regions, and 100 * checking that the memory and the pointer tags match on memory accesses) 101 * redefine this macro to strip tags from pointers. 102 * It's defined as noop for arcitectures that don't support memory tagging. 103 */ 104 #ifndef untagged_addr 105 #define untagged_addr(addr) (addr) 106 #endif 107 108 #ifndef __pa_symbol 109 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 110 #endif 111 112 #ifndef page_to_virt 113 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 114 #endif 115 116 #ifndef lm_alias 117 #define lm_alias(x) __va(__pa_symbol(x)) 118 #endif 119 120 /* 121 * To prevent common memory management code establishing 122 * a zero page mapping on a read fault. 123 * This macro should be defined within <asm/pgtable.h>. 124 * s390 does this to prevent multiplexing of hardware bits 125 * related to the physical page in case of virtualization. 126 */ 127 #ifndef mm_forbids_zeropage 128 #define mm_forbids_zeropage(X) (0) 129 #endif 130 131 /* 132 * On some architectures it is expensive to call memset() for small sizes. 133 * If an architecture decides to implement their own version of 134 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 135 * define their own version of this macro in <asm/pgtable.h> 136 */ 137 #if BITS_PER_LONG == 64 138 /* This function must be updated when the size of struct page grows above 80 139 * or reduces below 56. The idea that compiler optimizes out switch() 140 * statement, and only leaves move/store instructions. Also the compiler can 141 * combine write statments if they are both assignments and can be reordered, 142 * this can result in several of the writes here being dropped. 143 */ 144 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 145 static inline void __mm_zero_struct_page(struct page *page) 146 { 147 unsigned long *_pp = (void *)page; 148 149 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 150 BUILD_BUG_ON(sizeof(struct page) & 7); 151 BUILD_BUG_ON(sizeof(struct page) < 56); 152 BUILD_BUG_ON(sizeof(struct page) > 80); 153 154 switch (sizeof(struct page)) { 155 case 80: 156 _pp[9] = 0; /* fallthrough */ 157 case 72: 158 _pp[8] = 0; /* fallthrough */ 159 case 64: 160 _pp[7] = 0; /* fallthrough */ 161 case 56: 162 _pp[6] = 0; 163 _pp[5] = 0; 164 _pp[4] = 0; 165 _pp[3] = 0; 166 _pp[2] = 0; 167 _pp[1] = 0; 168 _pp[0] = 0; 169 } 170 } 171 #else 172 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 173 #endif 174 175 /* 176 * Default maximum number of active map areas, this limits the number of vmas 177 * per mm struct. Users can overwrite this number by sysctl but there is a 178 * problem. 179 * 180 * When a program's coredump is generated as ELF format, a section is created 181 * per a vma. In ELF, the number of sections is represented in unsigned short. 182 * This means the number of sections should be smaller than 65535 at coredump. 183 * Because the kernel adds some informative sections to a image of program at 184 * generating coredump, we need some margin. The number of extra sections is 185 * 1-3 now and depends on arch. We use "5" as safe margin, here. 186 * 187 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 188 * not a hard limit any more. Although some userspace tools can be surprised by 189 * that. 190 */ 191 #define MAPCOUNT_ELF_CORE_MARGIN (5) 192 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 193 194 extern int sysctl_max_map_count; 195 196 extern unsigned long sysctl_user_reserve_kbytes; 197 extern unsigned long sysctl_admin_reserve_kbytes; 198 199 extern int sysctl_overcommit_memory; 200 extern int sysctl_overcommit_ratio; 201 extern unsigned long sysctl_overcommit_kbytes; 202 203 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *, 204 size_t *, loff_t *); 205 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *, 206 size_t *, loff_t *); 207 208 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 209 210 /* to align the pointer to the (next) page boundary */ 211 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 212 213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 214 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 215 216 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 217 218 /* 219 * Linux kernel virtual memory manager primitives. 220 * The idea being to have a "virtual" mm in the same way 221 * we have a virtual fs - giving a cleaner interface to the 222 * mm details, and allowing different kinds of memory mappings 223 * (from shared memory to executable loading to arbitrary 224 * mmap() functions). 225 */ 226 227 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 228 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 229 void vm_area_free(struct vm_area_struct *); 230 231 #ifndef CONFIG_MMU 232 extern struct rb_root nommu_region_tree; 233 extern struct rw_semaphore nommu_region_sem; 234 235 extern unsigned int kobjsize(const void *objp); 236 #endif 237 238 /* 239 * vm_flags in vm_area_struct, see mm_types.h. 240 * When changing, update also include/trace/events/mmflags.h 241 */ 242 #define VM_NONE 0x00000000 243 244 #define VM_READ 0x00000001 /* currently active flags */ 245 #define VM_WRITE 0x00000002 246 #define VM_EXEC 0x00000004 247 #define VM_SHARED 0x00000008 248 249 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 250 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 251 #define VM_MAYWRITE 0x00000020 252 #define VM_MAYEXEC 0x00000040 253 #define VM_MAYSHARE 0x00000080 254 255 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 256 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 257 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 258 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 259 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 260 261 #define VM_LOCKED 0x00002000 262 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 263 264 /* Used by sys_madvise() */ 265 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 266 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 267 268 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 269 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 270 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 271 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 272 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 273 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 274 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 275 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 276 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 277 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 278 279 #ifdef CONFIG_MEM_SOFT_DIRTY 280 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 281 #else 282 # define VM_SOFTDIRTY 0 283 #endif 284 285 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 286 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 287 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 288 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 289 290 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 291 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 292 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 293 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 294 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 295 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 296 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 297 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 298 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 299 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 300 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 301 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 302 303 #ifdef CONFIG_ARCH_HAS_PKEYS 304 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 305 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 306 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 307 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 308 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 309 #ifdef CONFIG_PPC 310 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 311 #else 312 # define VM_PKEY_BIT4 0 313 #endif 314 #endif /* CONFIG_ARCH_HAS_PKEYS */ 315 316 #if defined(CONFIG_X86) 317 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 318 #elif defined(CONFIG_PPC) 319 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */ 320 #elif defined(CONFIG_PARISC) 321 # define VM_GROWSUP VM_ARCH_1 322 #elif defined(CONFIG_IA64) 323 # define VM_GROWSUP VM_ARCH_1 324 #elif defined(CONFIG_SPARC64) 325 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 326 # define VM_ARCH_CLEAR VM_SPARC_ADI 327 #elif !defined(CONFIG_MMU) 328 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 329 #endif 330 331 #if defined(CONFIG_X86_INTEL_MPX) 332 /* MPX specific bounds table or bounds directory */ 333 # define VM_MPX VM_HIGH_ARCH_4 334 #else 335 # define VM_MPX VM_NONE 336 #endif 337 338 #ifndef VM_GROWSUP 339 # define VM_GROWSUP VM_NONE 340 #endif 341 342 /* Bits set in the VMA until the stack is in its final location */ 343 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 344 345 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 346 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 347 #endif 348 349 #ifdef CONFIG_STACK_GROWSUP 350 #define VM_STACK VM_GROWSUP 351 #else 352 #define VM_STACK VM_GROWSDOWN 353 #endif 354 355 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 356 357 /* 358 * Special vmas that are non-mergable, non-mlock()able. 359 * Note: mm/huge_memory.c VM_NO_THP depends on this definition. 360 */ 361 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 362 363 /* This mask defines which mm->def_flags a process can inherit its parent */ 364 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 365 366 /* This mask is used to clear all the VMA flags used by mlock */ 367 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 368 369 /* Arch-specific flags to clear when updating VM flags on protection change */ 370 #ifndef VM_ARCH_CLEAR 371 # define VM_ARCH_CLEAR VM_NONE 372 #endif 373 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 374 375 /* 376 * mapping from the currently active vm_flags protection bits (the 377 * low four bits) to a page protection mask.. 378 */ 379 extern pgprot_t protection_map[16]; 380 381 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */ 382 #define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */ 383 #define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */ 384 #define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */ 385 #define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */ 386 #define FAULT_FLAG_TRIED 0x20 /* Second try */ 387 #define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */ 388 #define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */ 389 #define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */ 390 391 #define FAULT_FLAG_TRACE \ 392 { FAULT_FLAG_WRITE, "WRITE" }, \ 393 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 394 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 395 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 396 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 397 { FAULT_FLAG_TRIED, "TRIED" }, \ 398 { FAULT_FLAG_USER, "USER" }, \ 399 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 400 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" } 401 402 /* 403 * vm_fault is filled by the the pagefault handler and passed to the vma's 404 * ->fault function. The vma's ->fault is responsible for returning a bitmask 405 * of VM_FAULT_xxx flags that give details about how the fault was handled. 406 * 407 * MM layer fills up gfp_mask for page allocations but fault handler might 408 * alter it if its implementation requires a different allocation context. 409 * 410 * pgoff should be used in favour of virtual_address, if possible. 411 */ 412 struct vm_fault { 413 struct vm_area_struct *vma; /* Target VMA */ 414 unsigned int flags; /* FAULT_FLAG_xxx flags */ 415 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 416 pgoff_t pgoff; /* Logical page offset based on vma */ 417 unsigned long address; /* Faulting virtual address */ 418 pmd_t *pmd; /* Pointer to pmd entry matching 419 * the 'address' */ 420 pud_t *pud; /* Pointer to pud entry matching 421 * the 'address' 422 */ 423 pte_t orig_pte; /* Value of PTE at the time of fault */ 424 425 struct page *cow_page; /* Page handler may use for COW fault */ 426 struct mem_cgroup *memcg; /* Cgroup cow_page belongs to */ 427 struct page *page; /* ->fault handlers should return a 428 * page here, unless VM_FAULT_NOPAGE 429 * is set (which is also implied by 430 * VM_FAULT_ERROR). 431 */ 432 /* These three entries are valid only while holding ptl lock */ 433 pte_t *pte; /* Pointer to pte entry matching 434 * the 'address'. NULL if the page 435 * table hasn't been allocated. 436 */ 437 spinlock_t *ptl; /* Page table lock. 438 * Protects pte page table if 'pte' 439 * is not NULL, otherwise pmd. 440 */ 441 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 442 * vm_ops->map_pages() calls 443 * alloc_set_pte() from atomic context. 444 * do_fault_around() pre-allocates 445 * page table to avoid allocation from 446 * atomic context. 447 */ 448 }; 449 450 /* page entry size for vm->huge_fault() */ 451 enum page_entry_size { 452 PE_SIZE_PTE = 0, 453 PE_SIZE_PMD, 454 PE_SIZE_PUD, 455 }; 456 457 /* 458 * These are the virtual MM functions - opening of an area, closing and 459 * unmapping it (needed to keep files on disk up-to-date etc), pointer 460 * to the functions called when a no-page or a wp-page exception occurs. 461 */ 462 struct vm_operations_struct { 463 void (*open)(struct vm_area_struct * area); 464 void (*close)(struct vm_area_struct * area); 465 int (*split)(struct vm_area_struct * area, unsigned long addr); 466 int (*mremap)(struct vm_area_struct * area); 467 vm_fault_t (*fault)(struct vm_fault *vmf); 468 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 469 enum page_entry_size pe_size); 470 void (*map_pages)(struct vm_fault *vmf, 471 pgoff_t start_pgoff, pgoff_t end_pgoff); 472 unsigned long (*pagesize)(struct vm_area_struct * area); 473 474 /* notification that a previously read-only page is about to become 475 * writable, if an error is returned it will cause a SIGBUS */ 476 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 477 478 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 479 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 480 481 /* called by access_process_vm when get_user_pages() fails, typically 482 * for use by special VMAs that can switch between memory and hardware 483 */ 484 int (*access)(struct vm_area_struct *vma, unsigned long addr, 485 void *buf, int len, int write); 486 487 /* Called by the /proc/PID/maps code to ask the vma whether it 488 * has a special name. Returning non-NULL will also cause this 489 * vma to be dumped unconditionally. */ 490 const char *(*name)(struct vm_area_struct *vma); 491 492 #ifdef CONFIG_NUMA 493 /* 494 * set_policy() op must add a reference to any non-NULL @new mempolicy 495 * to hold the policy upon return. Caller should pass NULL @new to 496 * remove a policy and fall back to surrounding context--i.e. do not 497 * install a MPOL_DEFAULT policy, nor the task or system default 498 * mempolicy. 499 */ 500 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 501 502 /* 503 * get_policy() op must add reference [mpol_get()] to any policy at 504 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 505 * in mm/mempolicy.c will do this automatically. 506 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 507 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem. 508 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 509 * must return NULL--i.e., do not "fallback" to task or system default 510 * policy. 511 */ 512 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 513 unsigned long addr); 514 #endif 515 /* 516 * Called by vm_normal_page() for special PTEs to find the 517 * page for @addr. This is useful if the default behavior 518 * (using pte_page()) would not find the correct page. 519 */ 520 struct page *(*find_special_page)(struct vm_area_struct *vma, 521 unsigned long addr); 522 }; 523 524 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 525 { 526 static const struct vm_operations_struct dummy_vm_ops = {}; 527 528 memset(vma, 0, sizeof(*vma)); 529 vma->vm_mm = mm; 530 vma->vm_ops = &dummy_vm_ops; 531 INIT_LIST_HEAD(&vma->anon_vma_chain); 532 } 533 534 static inline void vma_set_anonymous(struct vm_area_struct *vma) 535 { 536 vma->vm_ops = NULL; 537 } 538 539 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 540 { 541 return !vma->vm_ops; 542 } 543 544 #ifdef CONFIG_SHMEM 545 /* 546 * The vma_is_shmem is not inline because it is used only by slow 547 * paths in userfault. 548 */ 549 bool vma_is_shmem(struct vm_area_struct *vma); 550 #else 551 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 552 #endif 553 554 int vma_is_stack_for_current(struct vm_area_struct *vma); 555 556 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 557 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 558 559 struct mmu_gather; 560 struct inode; 561 562 /* 563 * FIXME: take this include out, include page-flags.h in 564 * files which need it (119 of them) 565 */ 566 #include <linux/page-flags.h> 567 #include <linux/huge_mm.h> 568 569 /* 570 * Methods to modify the page usage count. 571 * 572 * What counts for a page usage: 573 * - cache mapping (page->mapping) 574 * - private data (page->private) 575 * - page mapped in a task's page tables, each mapping 576 * is counted separately 577 * 578 * Also, many kernel routines increase the page count before a critical 579 * routine so they can be sure the page doesn't go away from under them. 580 */ 581 582 /* 583 * Drop a ref, return true if the refcount fell to zero (the page has no users) 584 */ 585 static inline int put_page_testzero(struct page *page) 586 { 587 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 588 return page_ref_dec_and_test(page); 589 } 590 591 /* 592 * Try to grab a ref unless the page has a refcount of zero, return false if 593 * that is the case. 594 * This can be called when MMU is off so it must not access 595 * any of the virtual mappings. 596 */ 597 static inline int get_page_unless_zero(struct page *page) 598 { 599 return page_ref_add_unless(page, 1, 0); 600 } 601 602 extern int page_is_ram(unsigned long pfn); 603 604 enum { 605 REGION_INTERSECTS, 606 REGION_DISJOINT, 607 REGION_MIXED, 608 }; 609 610 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 611 unsigned long desc); 612 613 /* Support for virtually mapped pages */ 614 struct page *vmalloc_to_page(const void *addr); 615 unsigned long vmalloc_to_pfn(const void *addr); 616 617 /* 618 * Determine if an address is within the vmalloc range 619 * 620 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 621 * is no special casing required. 622 */ 623 624 #ifndef is_ioremap_addr 625 #define is_ioremap_addr(x) is_vmalloc_addr(x) 626 #endif 627 628 #ifdef CONFIG_MMU 629 extern bool is_vmalloc_addr(const void *x); 630 extern int is_vmalloc_or_module_addr(const void *x); 631 #else 632 static inline bool is_vmalloc_addr(const void *x) 633 { 634 return false; 635 } 636 static inline int is_vmalloc_or_module_addr(const void *x) 637 { 638 return 0; 639 } 640 #endif 641 642 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 643 static inline void *kvmalloc(size_t size, gfp_t flags) 644 { 645 return kvmalloc_node(size, flags, NUMA_NO_NODE); 646 } 647 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 648 { 649 return kvmalloc_node(size, flags | __GFP_ZERO, node); 650 } 651 static inline void *kvzalloc(size_t size, gfp_t flags) 652 { 653 return kvmalloc(size, flags | __GFP_ZERO); 654 } 655 656 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 657 { 658 size_t bytes; 659 660 if (unlikely(check_mul_overflow(n, size, &bytes))) 661 return NULL; 662 663 return kvmalloc(bytes, flags); 664 } 665 666 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 667 { 668 return kvmalloc_array(n, size, flags | __GFP_ZERO); 669 } 670 671 extern void kvfree(const void *addr); 672 673 static inline int compound_mapcount(struct page *page) 674 { 675 VM_BUG_ON_PAGE(!PageCompound(page), page); 676 page = compound_head(page); 677 return atomic_read(compound_mapcount_ptr(page)) + 1; 678 } 679 680 /* 681 * The atomic page->_mapcount, starts from -1: so that transitions 682 * both from it and to it can be tracked, using atomic_inc_and_test 683 * and atomic_add_negative(-1). 684 */ 685 static inline void page_mapcount_reset(struct page *page) 686 { 687 atomic_set(&(page)->_mapcount, -1); 688 } 689 690 int __page_mapcount(struct page *page); 691 692 static inline int page_mapcount(struct page *page) 693 { 694 VM_BUG_ON_PAGE(PageSlab(page), page); 695 696 if (unlikely(PageCompound(page))) 697 return __page_mapcount(page); 698 return atomic_read(&page->_mapcount) + 1; 699 } 700 701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 702 int total_mapcount(struct page *page); 703 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 704 #else 705 static inline int total_mapcount(struct page *page) 706 { 707 return page_mapcount(page); 708 } 709 static inline int page_trans_huge_mapcount(struct page *page, 710 int *total_mapcount) 711 { 712 int mapcount = page_mapcount(page); 713 if (total_mapcount) 714 *total_mapcount = mapcount; 715 return mapcount; 716 } 717 #endif 718 719 static inline struct page *virt_to_head_page(const void *x) 720 { 721 struct page *page = virt_to_page(x); 722 723 return compound_head(page); 724 } 725 726 void __put_page(struct page *page); 727 728 void put_pages_list(struct list_head *pages); 729 730 void split_page(struct page *page, unsigned int order); 731 732 /* 733 * Compound pages have a destructor function. Provide a 734 * prototype for that function and accessor functions. 735 * These are _only_ valid on the head of a compound page. 736 */ 737 typedef void compound_page_dtor(struct page *); 738 739 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 740 enum compound_dtor_id { 741 NULL_COMPOUND_DTOR, 742 COMPOUND_PAGE_DTOR, 743 #ifdef CONFIG_HUGETLB_PAGE 744 HUGETLB_PAGE_DTOR, 745 #endif 746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 747 TRANSHUGE_PAGE_DTOR, 748 #endif 749 NR_COMPOUND_DTORS, 750 }; 751 extern compound_page_dtor * const compound_page_dtors[]; 752 753 static inline void set_compound_page_dtor(struct page *page, 754 enum compound_dtor_id compound_dtor) 755 { 756 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 757 page[1].compound_dtor = compound_dtor; 758 } 759 760 static inline compound_page_dtor *get_compound_page_dtor(struct page *page) 761 { 762 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 763 return compound_page_dtors[page[1].compound_dtor]; 764 } 765 766 static inline unsigned int compound_order(struct page *page) 767 { 768 if (!PageHead(page)) 769 return 0; 770 return page[1].compound_order; 771 } 772 773 static inline void set_compound_order(struct page *page, unsigned int order) 774 { 775 page[1].compound_order = order; 776 } 777 778 /* Returns the number of pages in this potentially compound page. */ 779 static inline unsigned long compound_nr(struct page *page) 780 { 781 return 1UL << compound_order(page); 782 } 783 784 /* Returns the number of bytes in this potentially compound page. */ 785 static inline unsigned long page_size(struct page *page) 786 { 787 return PAGE_SIZE << compound_order(page); 788 } 789 790 /* Returns the number of bits needed for the number of bytes in a page */ 791 static inline unsigned int page_shift(struct page *page) 792 { 793 return PAGE_SHIFT + compound_order(page); 794 } 795 796 void free_compound_page(struct page *page); 797 798 #ifdef CONFIG_MMU 799 /* 800 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 801 * servicing faults for write access. In the normal case, do always want 802 * pte_mkwrite. But get_user_pages can cause write faults for mappings 803 * that do not have writing enabled, when used by access_process_vm. 804 */ 805 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 806 { 807 if (likely(vma->vm_flags & VM_WRITE)) 808 pte = pte_mkwrite(pte); 809 return pte; 810 } 811 812 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg, 813 struct page *page); 814 vm_fault_t finish_fault(struct vm_fault *vmf); 815 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 816 #endif 817 818 /* 819 * Multiple processes may "see" the same page. E.g. for untouched 820 * mappings of /dev/null, all processes see the same page full of 821 * zeroes, and text pages of executables and shared libraries have 822 * only one copy in memory, at most, normally. 823 * 824 * For the non-reserved pages, page_count(page) denotes a reference count. 825 * page_count() == 0 means the page is free. page->lru is then used for 826 * freelist management in the buddy allocator. 827 * page_count() > 0 means the page has been allocated. 828 * 829 * Pages are allocated by the slab allocator in order to provide memory 830 * to kmalloc and kmem_cache_alloc. In this case, the management of the 831 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 832 * unless a particular usage is carefully commented. (the responsibility of 833 * freeing the kmalloc memory is the caller's, of course). 834 * 835 * A page may be used by anyone else who does a __get_free_page(). 836 * In this case, page_count still tracks the references, and should only 837 * be used through the normal accessor functions. The top bits of page->flags 838 * and page->virtual store page management information, but all other fields 839 * are unused and could be used privately, carefully. The management of this 840 * page is the responsibility of the one who allocated it, and those who have 841 * subsequently been given references to it. 842 * 843 * The other pages (we may call them "pagecache pages") are completely 844 * managed by the Linux memory manager: I/O, buffers, swapping etc. 845 * The following discussion applies only to them. 846 * 847 * A pagecache page contains an opaque `private' member, which belongs to the 848 * page's address_space. Usually, this is the address of a circular list of 849 * the page's disk buffers. PG_private must be set to tell the VM to call 850 * into the filesystem to release these pages. 851 * 852 * A page may belong to an inode's memory mapping. In this case, page->mapping 853 * is the pointer to the inode, and page->index is the file offset of the page, 854 * in units of PAGE_SIZE. 855 * 856 * If pagecache pages are not associated with an inode, they are said to be 857 * anonymous pages. These may become associated with the swapcache, and in that 858 * case PG_swapcache is set, and page->private is an offset into the swapcache. 859 * 860 * In either case (swapcache or inode backed), the pagecache itself holds one 861 * reference to the page. Setting PG_private should also increment the 862 * refcount. The each user mapping also has a reference to the page. 863 * 864 * The pagecache pages are stored in a per-mapping radix tree, which is 865 * rooted at mapping->i_pages, and indexed by offset. 866 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 867 * lists, we instead now tag pages as dirty/writeback in the radix tree. 868 * 869 * All pagecache pages may be subject to I/O: 870 * - inode pages may need to be read from disk, 871 * - inode pages which have been modified and are MAP_SHARED may need 872 * to be written back to the inode on disk, 873 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 874 * modified may need to be swapped out to swap space and (later) to be read 875 * back into memory. 876 */ 877 878 /* 879 * The zone field is never updated after free_area_init_core() 880 * sets it, so none of the operations on it need to be atomic. 881 */ 882 883 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 884 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 885 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 886 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 887 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 888 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 889 890 /* 891 * Define the bit shifts to access each section. For non-existent 892 * sections we define the shift as 0; that plus a 0 mask ensures 893 * the compiler will optimise away reference to them. 894 */ 895 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 896 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 897 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 898 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 899 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 900 901 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 902 #ifdef NODE_NOT_IN_PAGE_FLAGS 903 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 904 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 905 SECTIONS_PGOFF : ZONES_PGOFF) 906 #else 907 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 908 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 909 NODES_PGOFF : ZONES_PGOFF) 910 #endif 911 912 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 913 914 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 915 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 916 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 917 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 918 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 919 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 920 921 static inline enum zone_type page_zonenum(const struct page *page) 922 { 923 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 924 } 925 926 #ifdef CONFIG_ZONE_DEVICE 927 static inline bool is_zone_device_page(const struct page *page) 928 { 929 return page_zonenum(page) == ZONE_DEVICE; 930 } 931 extern void memmap_init_zone_device(struct zone *, unsigned long, 932 unsigned long, struct dev_pagemap *); 933 #else 934 static inline bool is_zone_device_page(const struct page *page) 935 { 936 return false; 937 } 938 #endif 939 940 #ifdef CONFIG_DEV_PAGEMAP_OPS 941 void free_devmap_managed_page(struct page *page); 942 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 943 944 static inline bool page_is_devmap_managed(struct page *page) 945 { 946 if (!static_branch_unlikely(&devmap_managed_key)) 947 return false; 948 if (!is_zone_device_page(page)) 949 return false; 950 switch (page->pgmap->type) { 951 case MEMORY_DEVICE_PRIVATE: 952 case MEMORY_DEVICE_FS_DAX: 953 return true; 954 default: 955 break; 956 } 957 return false; 958 } 959 960 void put_devmap_managed_page(struct page *page); 961 962 #else /* CONFIG_DEV_PAGEMAP_OPS */ 963 static inline bool page_is_devmap_managed(struct page *page) 964 { 965 return false; 966 } 967 968 static inline void put_devmap_managed_page(struct page *page) 969 { 970 } 971 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 972 973 static inline bool is_device_private_page(const struct page *page) 974 { 975 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 976 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 977 is_zone_device_page(page) && 978 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 979 } 980 981 static inline bool is_pci_p2pdma_page(const struct page *page) 982 { 983 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 984 IS_ENABLED(CONFIG_PCI_P2PDMA) && 985 is_zone_device_page(page) && 986 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 987 } 988 989 /* 127: arbitrary random number, small enough to assemble well */ 990 #define page_ref_zero_or_close_to_overflow(page) \ 991 ((unsigned int) page_ref_count(page) + 127u <= 127u) 992 993 static inline void get_page(struct page *page) 994 { 995 page = compound_head(page); 996 /* 997 * Getting a normal page or the head of a compound page 998 * requires to already have an elevated page->_refcount. 999 */ 1000 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1001 page_ref_inc(page); 1002 } 1003 1004 static inline __must_check bool try_get_page(struct page *page) 1005 { 1006 page = compound_head(page); 1007 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1008 return false; 1009 page_ref_inc(page); 1010 return true; 1011 } 1012 1013 static inline void put_page(struct page *page) 1014 { 1015 page = compound_head(page); 1016 1017 /* 1018 * For devmap managed pages we need to catch refcount transition from 1019 * 2 to 1, when refcount reach one it means the page is free and we 1020 * need to inform the device driver through callback. See 1021 * include/linux/memremap.h and HMM for details. 1022 */ 1023 if (page_is_devmap_managed(page)) { 1024 put_devmap_managed_page(page); 1025 return; 1026 } 1027 1028 if (put_page_testzero(page)) 1029 __put_page(page); 1030 } 1031 1032 /** 1033 * unpin_user_page() - release a gup-pinned page 1034 * @page: pointer to page to be released 1035 * 1036 * Pages that were pinned via pin_user_pages*() must be released via either 1037 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so 1038 * that eventually such pages can be separately tracked and uniquely handled. In 1039 * particular, interactions with RDMA and filesystems need special handling. 1040 * 1041 * unpin_user_page() and put_page() are not interchangeable, despite this early 1042 * implementation that makes them look the same. unpin_user_page() calls must 1043 * be perfectly matched up with pin*() calls. 1044 */ 1045 static inline void unpin_user_page(struct page *page) 1046 { 1047 put_page(page); 1048 } 1049 1050 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1051 bool make_dirty); 1052 1053 void unpin_user_pages(struct page **pages, unsigned long npages); 1054 1055 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1056 #define SECTION_IN_PAGE_FLAGS 1057 #endif 1058 1059 /* 1060 * The identification function is mainly used by the buddy allocator for 1061 * determining if two pages could be buddies. We are not really identifying 1062 * the zone since we could be using the section number id if we do not have 1063 * node id available in page flags. 1064 * We only guarantee that it will return the same value for two combinable 1065 * pages in a zone. 1066 */ 1067 static inline int page_zone_id(struct page *page) 1068 { 1069 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1070 } 1071 1072 #ifdef NODE_NOT_IN_PAGE_FLAGS 1073 extern int page_to_nid(const struct page *page); 1074 #else 1075 static inline int page_to_nid(const struct page *page) 1076 { 1077 struct page *p = (struct page *)page; 1078 1079 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1080 } 1081 #endif 1082 1083 #ifdef CONFIG_NUMA_BALANCING 1084 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1085 { 1086 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1087 } 1088 1089 static inline int cpupid_to_pid(int cpupid) 1090 { 1091 return cpupid & LAST__PID_MASK; 1092 } 1093 1094 static inline int cpupid_to_cpu(int cpupid) 1095 { 1096 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1097 } 1098 1099 static inline int cpupid_to_nid(int cpupid) 1100 { 1101 return cpu_to_node(cpupid_to_cpu(cpupid)); 1102 } 1103 1104 static inline bool cpupid_pid_unset(int cpupid) 1105 { 1106 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1107 } 1108 1109 static inline bool cpupid_cpu_unset(int cpupid) 1110 { 1111 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1112 } 1113 1114 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1115 { 1116 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1117 } 1118 1119 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1121 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1122 { 1123 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1124 } 1125 1126 static inline int page_cpupid_last(struct page *page) 1127 { 1128 return page->_last_cpupid; 1129 } 1130 static inline void page_cpupid_reset_last(struct page *page) 1131 { 1132 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1133 } 1134 #else 1135 static inline int page_cpupid_last(struct page *page) 1136 { 1137 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1138 } 1139 1140 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1141 1142 static inline void page_cpupid_reset_last(struct page *page) 1143 { 1144 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1145 } 1146 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1147 #else /* !CONFIG_NUMA_BALANCING */ 1148 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1149 { 1150 return page_to_nid(page); /* XXX */ 1151 } 1152 1153 static inline int page_cpupid_last(struct page *page) 1154 { 1155 return page_to_nid(page); /* XXX */ 1156 } 1157 1158 static inline int cpupid_to_nid(int cpupid) 1159 { 1160 return -1; 1161 } 1162 1163 static inline int cpupid_to_pid(int cpupid) 1164 { 1165 return -1; 1166 } 1167 1168 static inline int cpupid_to_cpu(int cpupid) 1169 { 1170 return -1; 1171 } 1172 1173 static inline int cpu_pid_to_cpupid(int nid, int pid) 1174 { 1175 return -1; 1176 } 1177 1178 static inline bool cpupid_pid_unset(int cpupid) 1179 { 1180 return 1; 1181 } 1182 1183 static inline void page_cpupid_reset_last(struct page *page) 1184 { 1185 } 1186 1187 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1188 { 1189 return false; 1190 } 1191 #endif /* CONFIG_NUMA_BALANCING */ 1192 1193 #ifdef CONFIG_KASAN_SW_TAGS 1194 static inline u8 page_kasan_tag(const struct page *page) 1195 { 1196 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1197 } 1198 1199 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1200 { 1201 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1202 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1203 } 1204 1205 static inline void page_kasan_tag_reset(struct page *page) 1206 { 1207 page_kasan_tag_set(page, 0xff); 1208 } 1209 #else 1210 static inline u8 page_kasan_tag(const struct page *page) 1211 { 1212 return 0xff; 1213 } 1214 1215 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1216 static inline void page_kasan_tag_reset(struct page *page) { } 1217 #endif 1218 1219 static inline struct zone *page_zone(const struct page *page) 1220 { 1221 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1222 } 1223 1224 static inline pg_data_t *page_pgdat(const struct page *page) 1225 { 1226 return NODE_DATA(page_to_nid(page)); 1227 } 1228 1229 #ifdef SECTION_IN_PAGE_FLAGS 1230 static inline void set_page_section(struct page *page, unsigned long section) 1231 { 1232 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1233 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1234 } 1235 1236 static inline unsigned long page_to_section(const struct page *page) 1237 { 1238 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1239 } 1240 #endif 1241 1242 static inline void set_page_zone(struct page *page, enum zone_type zone) 1243 { 1244 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1245 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1246 } 1247 1248 static inline void set_page_node(struct page *page, unsigned long node) 1249 { 1250 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1251 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1252 } 1253 1254 static inline void set_page_links(struct page *page, enum zone_type zone, 1255 unsigned long node, unsigned long pfn) 1256 { 1257 set_page_zone(page, zone); 1258 set_page_node(page, node); 1259 #ifdef SECTION_IN_PAGE_FLAGS 1260 set_page_section(page, pfn_to_section_nr(pfn)); 1261 #endif 1262 } 1263 1264 #ifdef CONFIG_MEMCG 1265 static inline struct mem_cgroup *page_memcg(struct page *page) 1266 { 1267 return page->mem_cgroup; 1268 } 1269 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1270 { 1271 WARN_ON_ONCE(!rcu_read_lock_held()); 1272 return READ_ONCE(page->mem_cgroup); 1273 } 1274 #else 1275 static inline struct mem_cgroup *page_memcg(struct page *page) 1276 { 1277 return NULL; 1278 } 1279 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1280 { 1281 WARN_ON_ONCE(!rcu_read_lock_held()); 1282 return NULL; 1283 } 1284 #endif 1285 1286 /* 1287 * Some inline functions in vmstat.h depend on page_zone() 1288 */ 1289 #include <linux/vmstat.h> 1290 1291 static __always_inline void *lowmem_page_address(const struct page *page) 1292 { 1293 return page_to_virt(page); 1294 } 1295 1296 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1297 #define HASHED_PAGE_VIRTUAL 1298 #endif 1299 1300 #if defined(WANT_PAGE_VIRTUAL) 1301 static inline void *page_address(const struct page *page) 1302 { 1303 return page->virtual; 1304 } 1305 static inline void set_page_address(struct page *page, void *address) 1306 { 1307 page->virtual = address; 1308 } 1309 #define page_address_init() do { } while(0) 1310 #endif 1311 1312 #if defined(HASHED_PAGE_VIRTUAL) 1313 void *page_address(const struct page *page); 1314 void set_page_address(struct page *page, void *virtual); 1315 void page_address_init(void); 1316 #endif 1317 1318 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1319 #define page_address(page) lowmem_page_address(page) 1320 #define set_page_address(page, address) do { } while(0) 1321 #define page_address_init() do { } while(0) 1322 #endif 1323 1324 extern void *page_rmapping(struct page *page); 1325 extern struct anon_vma *page_anon_vma(struct page *page); 1326 extern struct address_space *page_mapping(struct page *page); 1327 1328 extern struct address_space *__page_file_mapping(struct page *); 1329 1330 static inline 1331 struct address_space *page_file_mapping(struct page *page) 1332 { 1333 if (unlikely(PageSwapCache(page))) 1334 return __page_file_mapping(page); 1335 1336 return page->mapping; 1337 } 1338 1339 extern pgoff_t __page_file_index(struct page *page); 1340 1341 /* 1342 * Return the pagecache index of the passed page. Regular pagecache pages 1343 * use ->index whereas swapcache pages use swp_offset(->private) 1344 */ 1345 static inline pgoff_t page_index(struct page *page) 1346 { 1347 if (unlikely(PageSwapCache(page))) 1348 return __page_file_index(page); 1349 return page->index; 1350 } 1351 1352 bool page_mapped(struct page *page); 1353 struct address_space *page_mapping(struct page *page); 1354 struct address_space *page_mapping_file(struct page *page); 1355 1356 /* 1357 * Return true only if the page has been allocated with 1358 * ALLOC_NO_WATERMARKS and the low watermark was not 1359 * met implying that the system is under some pressure. 1360 */ 1361 static inline bool page_is_pfmemalloc(struct page *page) 1362 { 1363 /* 1364 * Page index cannot be this large so this must be 1365 * a pfmemalloc page. 1366 */ 1367 return page->index == -1UL; 1368 } 1369 1370 /* 1371 * Only to be called by the page allocator on a freshly allocated 1372 * page. 1373 */ 1374 static inline void set_page_pfmemalloc(struct page *page) 1375 { 1376 page->index = -1UL; 1377 } 1378 1379 static inline void clear_page_pfmemalloc(struct page *page) 1380 { 1381 page->index = 0; 1382 } 1383 1384 /* 1385 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1386 */ 1387 extern void pagefault_out_of_memory(void); 1388 1389 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1390 1391 /* 1392 * Flags passed to show_mem() and show_free_areas() to suppress output in 1393 * various contexts. 1394 */ 1395 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1396 1397 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1398 1399 #ifdef CONFIG_MMU 1400 extern bool can_do_mlock(void); 1401 #else 1402 static inline bool can_do_mlock(void) { return false; } 1403 #endif 1404 extern int user_shm_lock(size_t, struct user_struct *); 1405 extern void user_shm_unlock(size_t, struct user_struct *); 1406 1407 /* 1408 * Parameter block passed down to zap_pte_range in exceptional cases. 1409 */ 1410 struct zap_details { 1411 struct address_space *check_mapping; /* Check page->mapping if set */ 1412 pgoff_t first_index; /* Lowest page->index to unmap */ 1413 pgoff_t last_index; /* Highest page->index to unmap */ 1414 }; 1415 1416 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1417 pte_t pte); 1418 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1419 pmd_t pmd); 1420 1421 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1422 unsigned long size); 1423 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1424 unsigned long size); 1425 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1426 unsigned long start, unsigned long end); 1427 1428 struct mmu_notifier_range; 1429 1430 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1431 unsigned long end, unsigned long floor, unsigned long ceiling); 1432 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1433 struct vm_area_struct *vma); 1434 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1435 struct mmu_notifier_range *range, 1436 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1437 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1438 unsigned long *pfn); 1439 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1440 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1441 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1442 void *buf, int len, int write); 1443 1444 extern void truncate_pagecache(struct inode *inode, loff_t new); 1445 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1446 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1447 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1448 int truncate_inode_page(struct address_space *mapping, struct page *page); 1449 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1450 int invalidate_inode_page(struct page *page); 1451 1452 #ifdef CONFIG_MMU 1453 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1454 unsigned long address, unsigned int flags); 1455 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm, 1456 unsigned long address, unsigned int fault_flags, 1457 bool *unlocked); 1458 void unmap_mapping_pages(struct address_space *mapping, 1459 pgoff_t start, pgoff_t nr, bool even_cows); 1460 void unmap_mapping_range(struct address_space *mapping, 1461 loff_t const holebegin, loff_t const holelen, int even_cows); 1462 #else 1463 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1464 unsigned long address, unsigned int flags) 1465 { 1466 /* should never happen if there's no MMU */ 1467 BUG(); 1468 return VM_FAULT_SIGBUS; 1469 } 1470 static inline int fixup_user_fault(struct task_struct *tsk, 1471 struct mm_struct *mm, unsigned long address, 1472 unsigned int fault_flags, bool *unlocked) 1473 { 1474 /* should never happen if there's no MMU */ 1475 BUG(); 1476 return -EFAULT; 1477 } 1478 static inline void unmap_mapping_pages(struct address_space *mapping, 1479 pgoff_t start, pgoff_t nr, bool even_cows) { } 1480 static inline void unmap_mapping_range(struct address_space *mapping, 1481 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1482 #endif 1483 1484 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1485 loff_t const holebegin, loff_t const holelen) 1486 { 1487 unmap_mapping_range(mapping, holebegin, holelen, 0); 1488 } 1489 1490 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1491 void *buf, int len, unsigned int gup_flags); 1492 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1493 void *buf, int len, unsigned int gup_flags); 1494 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1495 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1496 1497 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1498 unsigned long start, unsigned long nr_pages, 1499 unsigned int gup_flags, struct page **pages, 1500 struct vm_area_struct **vmas, int *locked); 1501 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm, 1502 unsigned long start, unsigned long nr_pages, 1503 unsigned int gup_flags, struct page **pages, 1504 struct vm_area_struct **vmas, int *locked); 1505 long get_user_pages(unsigned long start, unsigned long nr_pages, 1506 unsigned int gup_flags, struct page **pages, 1507 struct vm_area_struct **vmas); 1508 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1509 unsigned int gup_flags, struct page **pages, 1510 struct vm_area_struct **vmas); 1511 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1512 unsigned int gup_flags, struct page **pages, int *locked); 1513 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1514 struct page **pages, unsigned int gup_flags); 1515 1516 int get_user_pages_fast(unsigned long start, int nr_pages, 1517 unsigned int gup_flags, struct page **pages); 1518 int pin_user_pages_fast(unsigned long start, int nr_pages, 1519 unsigned int gup_flags, struct page **pages); 1520 1521 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1522 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1523 struct task_struct *task, bool bypass_rlim); 1524 1525 /* Container for pinned pfns / pages */ 1526 struct frame_vector { 1527 unsigned int nr_allocated; /* Number of frames we have space for */ 1528 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1529 bool got_ref; /* Did we pin pages by getting page ref? */ 1530 bool is_pfns; /* Does array contain pages or pfns? */ 1531 void *ptrs[0]; /* Array of pinned pfns / pages. Use 1532 * pfns_vector_pages() or pfns_vector_pfns() 1533 * for access */ 1534 }; 1535 1536 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1537 void frame_vector_destroy(struct frame_vector *vec); 1538 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1539 unsigned int gup_flags, struct frame_vector *vec); 1540 void put_vaddr_frames(struct frame_vector *vec); 1541 int frame_vector_to_pages(struct frame_vector *vec); 1542 void frame_vector_to_pfns(struct frame_vector *vec); 1543 1544 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1545 { 1546 return vec->nr_frames; 1547 } 1548 1549 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1550 { 1551 if (vec->is_pfns) { 1552 int err = frame_vector_to_pages(vec); 1553 1554 if (err) 1555 return ERR_PTR(err); 1556 } 1557 return (struct page **)(vec->ptrs); 1558 } 1559 1560 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1561 { 1562 if (!vec->is_pfns) 1563 frame_vector_to_pfns(vec); 1564 return (unsigned long *)(vec->ptrs); 1565 } 1566 1567 struct kvec; 1568 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1569 struct page **pages); 1570 int get_kernel_page(unsigned long start, int write, struct page **pages); 1571 struct page *get_dump_page(unsigned long addr); 1572 1573 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1574 extern void do_invalidatepage(struct page *page, unsigned int offset, 1575 unsigned int length); 1576 1577 void __set_page_dirty(struct page *, struct address_space *, int warn); 1578 int __set_page_dirty_nobuffers(struct page *page); 1579 int __set_page_dirty_no_writeback(struct page *page); 1580 int redirty_page_for_writepage(struct writeback_control *wbc, 1581 struct page *page); 1582 void account_page_dirtied(struct page *page, struct address_space *mapping); 1583 void account_page_cleaned(struct page *page, struct address_space *mapping, 1584 struct bdi_writeback *wb); 1585 int set_page_dirty(struct page *page); 1586 int set_page_dirty_lock(struct page *page); 1587 void __cancel_dirty_page(struct page *page); 1588 static inline void cancel_dirty_page(struct page *page) 1589 { 1590 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1591 if (PageDirty(page)) 1592 __cancel_dirty_page(page); 1593 } 1594 int clear_page_dirty_for_io(struct page *page); 1595 1596 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1597 1598 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1599 unsigned long old_addr, struct vm_area_struct *new_vma, 1600 unsigned long new_addr, unsigned long len, 1601 bool need_rmap_locks); 1602 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1603 unsigned long end, pgprot_t newprot, 1604 int dirty_accountable, int prot_numa); 1605 extern int mprotect_fixup(struct vm_area_struct *vma, 1606 struct vm_area_struct **pprev, unsigned long start, 1607 unsigned long end, unsigned long newflags); 1608 1609 /* 1610 * doesn't attempt to fault and will return short. 1611 */ 1612 int __get_user_pages_fast(unsigned long start, int nr_pages, int write, 1613 struct page **pages); 1614 /* 1615 * per-process(per-mm_struct) statistics. 1616 */ 1617 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1618 { 1619 long val = atomic_long_read(&mm->rss_stat.count[member]); 1620 1621 #ifdef SPLIT_RSS_COUNTING 1622 /* 1623 * counter is updated in asynchronous manner and may go to minus. 1624 * But it's never be expected number for users. 1625 */ 1626 if (val < 0) 1627 val = 0; 1628 #endif 1629 return (unsigned long)val; 1630 } 1631 1632 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1633 1634 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1635 { 1636 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1637 1638 mm_trace_rss_stat(mm, member, count); 1639 } 1640 1641 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1642 { 1643 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1644 1645 mm_trace_rss_stat(mm, member, count); 1646 } 1647 1648 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1649 { 1650 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1651 1652 mm_trace_rss_stat(mm, member, count); 1653 } 1654 1655 /* Optimized variant when page is already known not to be PageAnon */ 1656 static inline int mm_counter_file(struct page *page) 1657 { 1658 if (PageSwapBacked(page)) 1659 return MM_SHMEMPAGES; 1660 return MM_FILEPAGES; 1661 } 1662 1663 static inline int mm_counter(struct page *page) 1664 { 1665 if (PageAnon(page)) 1666 return MM_ANONPAGES; 1667 return mm_counter_file(page); 1668 } 1669 1670 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1671 { 1672 return get_mm_counter(mm, MM_FILEPAGES) + 1673 get_mm_counter(mm, MM_ANONPAGES) + 1674 get_mm_counter(mm, MM_SHMEMPAGES); 1675 } 1676 1677 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1678 { 1679 return max(mm->hiwater_rss, get_mm_rss(mm)); 1680 } 1681 1682 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1683 { 1684 return max(mm->hiwater_vm, mm->total_vm); 1685 } 1686 1687 static inline void update_hiwater_rss(struct mm_struct *mm) 1688 { 1689 unsigned long _rss = get_mm_rss(mm); 1690 1691 if ((mm)->hiwater_rss < _rss) 1692 (mm)->hiwater_rss = _rss; 1693 } 1694 1695 static inline void update_hiwater_vm(struct mm_struct *mm) 1696 { 1697 if (mm->hiwater_vm < mm->total_vm) 1698 mm->hiwater_vm = mm->total_vm; 1699 } 1700 1701 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1702 { 1703 mm->hiwater_rss = get_mm_rss(mm); 1704 } 1705 1706 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1707 struct mm_struct *mm) 1708 { 1709 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1710 1711 if (*maxrss < hiwater_rss) 1712 *maxrss = hiwater_rss; 1713 } 1714 1715 #if defined(SPLIT_RSS_COUNTING) 1716 void sync_mm_rss(struct mm_struct *mm); 1717 #else 1718 static inline void sync_mm_rss(struct mm_struct *mm) 1719 { 1720 } 1721 #endif 1722 1723 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1724 static inline int pte_devmap(pte_t pte) 1725 { 1726 return 0; 1727 } 1728 #endif 1729 1730 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1731 1732 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1733 spinlock_t **ptl); 1734 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1735 spinlock_t **ptl) 1736 { 1737 pte_t *ptep; 1738 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1739 return ptep; 1740 } 1741 1742 #ifdef __PAGETABLE_P4D_FOLDED 1743 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1744 unsigned long address) 1745 { 1746 return 0; 1747 } 1748 #else 1749 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 1750 #endif 1751 1752 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 1753 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1754 unsigned long address) 1755 { 1756 return 0; 1757 } 1758 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 1759 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 1760 1761 #else 1762 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 1763 1764 static inline void mm_inc_nr_puds(struct mm_struct *mm) 1765 { 1766 if (mm_pud_folded(mm)) 1767 return; 1768 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1769 } 1770 1771 static inline void mm_dec_nr_puds(struct mm_struct *mm) 1772 { 1773 if (mm_pud_folded(mm)) 1774 return; 1775 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 1776 } 1777 #endif 1778 1779 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 1780 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 1781 unsigned long address) 1782 { 1783 return 0; 1784 } 1785 1786 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 1787 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 1788 1789 #else 1790 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 1791 1792 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 1793 { 1794 if (mm_pmd_folded(mm)) 1795 return; 1796 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1797 } 1798 1799 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 1800 { 1801 if (mm_pmd_folded(mm)) 1802 return; 1803 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 1804 } 1805 #endif 1806 1807 #ifdef CONFIG_MMU 1808 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 1809 { 1810 atomic_long_set(&mm->pgtables_bytes, 0); 1811 } 1812 1813 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1814 { 1815 return atomic_long_read(&mm->pgtables_bytes); 1816 } 1817 1818 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 1819 { 1820 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1821 } 1822 1823 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 1824 { 1825 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 1826 } 1827 #else 1828 1829 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 1830 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 1831 { 1832 return 0; 1833 } 1834 1835 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 1836 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 1837 #endif 1838 1839 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 1840 int __pte_alloc_kernel(pmd_t *pmd); 1841 1842 #if defined(CONFIG_MMU) 1843 1844 /* 1845 * The following ifdef needed to get the 5level-fixup.h header to work. 1846 * Remove it when 5level-fixup.h has been removed. 1847 */ 1848 #ifndef __ARCH_HAS_5LEVEL_HACK 1849 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1850 unsigned long address) 1851 { 1852 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 1853 NULL : p4d_offset(pgd, address); 1854 } 1855 1856 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 1857 unsigned long address) 1858 { 1859 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 1860 NULL : pud_offset(p4d, address); 1861 } 1862 #endif /* !__ARCH_HAS_5LEVEL_HACK */ 1863 1864 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 1865 { 1866 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 1867 NULL: pmd_offset(pud, address); 1868 } 1869 #endif /* CONFIG_MMU */ 1870 1871 #if USE_SPLIT_PTE_PTLOCKS 1872 #if ALLOC_SPLIT_PTLOCKS 1873 void __init ptlock_cache_init(void); 1874 extern bool ptlock_alloc(struct page *page); 1875 extern void ptlock_free(struct page *page); 1876 1877 static inline spinlock_t *ptlock_ptr(struct page *page) 1878 { 1879 return page->ptl; 1880 } 1881 #else /* ALLOC_SPLIT_PTLOCKS */ 1882 static inline void ptlock_cache_init(void) 1883 { 1884 } 1885 1886 static inline bool ptlock_alloc(struct page *page) 1887 { 1888 return true; 1889 } 1890 1891 static inline void ptlock_free(struct page *page) 1892 { 1893 } 1894 1895 static inline spinlock_t *ptlock_ptr(struct page *page) 1896 { 1897 return &page->ptl; 1898 } 1899 #endif /* ALLOC_SPLIT_PTLOCKS */ 1900 1901 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1902 { 1903 return ptlock_ptr(pmd_page(*pmd)); 1904 } 1905 1906 static inline bool ptlock_init(struct page *page) 1907 { 1908 /* 1909 * prep_new_page() initialize page->private (and therefore page->ptl) 1910 * with 0. Make sure nobody took it in use in between. 1911 * 1912 * It can happen if arch try to use slab for page table allocation: 1913 * slab code uses page->slab_cache, which share storage with page->ptl. 1914 */ 1915 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 1916 if (!ptlock_alloc(page)) 1917 return false; 1918 spin_lock_init(ptlock_ptr(page)); 1919 return true; 1920 } 1921 1922 #else /* !USE_SPLIT_PTE_PTLOCKS */ 1923 /* 1924 * We use mm->page_table_lock to guard all pagetable pages of the mm. 1925 */ 1926 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 1927 { 1928 return &mm->page_table_lock; 1929 } 1930 static inline void ptlock_cache_init(void) {} 1931 static inline bool ptlock_init(struct page *page) { return true; } 1932 static inline void ptlock_free(struct page *page) {} 1933 #endif /* USE_SPLIT_PTE_PTLOCKS */ 1934 1935 static inline void pgtable_init(void) 1936 { 1937 ptlock_cache_init(); 1938 pgtable_cache_init(); 1939 } 1940 1941 static inline bool pgtable_pte_page_ctor(struct page *page) 1942 { 1943 if (!ptlock_init(page)) 1944 return false; 1945 __SetPageTable(page); 1946 inc_zone_page_state(page, NR_PAGETABLE); 1947 return true; 1948 } 1949 1950 static inline void pgtable_pte_page_dtor(struct page *page) 1951 { 1952 ptlock_free(page); 1953 __ClearPageTable(page); 1954 dec_zone_page_state(page, NR_PAGETABLE); 1955 } 1956 1957 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 1958 ({ \ 1959 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 1960 pte_t *__pte = pte_offset_map(pmd, address); \ 1961 *(ptlp) = __ptl; \ 1962 spin_lock(__ptl); \ 1963 __pte; \ 1964 }) 1965 1966 #define pte_unmap_unlock(pte, ptl) do { \ 1967 spin_unlock(ptl); \ 1968 pte_unmap(pte); \ 1969 } while (0) 1970 1971 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 1972 1973 #define pte_alloc_map(mm, pmd, address) \ 1974 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 1975 1976 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 1977 (pte_alloc(mm, pmd) ? \ 1978 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 1979 1980 #define pte_alloc_kernel(pmd, address) \ 1981 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 1982 NULL: pte_offset_kernel(pmd, address)) 1983 1984 #if USE_SPLIT_PMD_PTLOCKS 1985 1986 static struct page *pmd_to_page(pmd_t *pmd) 1987 { 1988 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 1989 return virt_to_page((void *)((unsigned long) pmd & mask)); 1990 } 1991 1992 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 1993 { 1994 return ptlock_ptr(pmd_to_page(pmd)); 1995 } 1996 1997 static inline bool pgtable_pmd_page_ctor(struct page *page) 1998 { 1999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2000 page->pmd_huge_pte = NULL; 2001 #endif 2002 return ptlock_init(page); 2003 } 2004 2005 static inline void pgtable_pmd_page_dtor(struct page *page) 2006 { 2007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2008 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2009 #endif 2010 ptlock_free(page); 2011 } 2012 2013 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2014 2015 #else 2016 2017 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2018 { 2019 return &mm->page_table_lock; 2020 } 2021 2022 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2023 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2024 2025 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2026 2027 #endif 2028 2029 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2030 { 2031 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2032 spin_lock(ptl); 2033 return ptl; 2034 } 2035 2036 /* 2037 * No scalability reason to split PUD locks yet, but follow the same pattern 2038 * as the PMD locks to make it easier if we decide to. The VM should not be 2039 * considered ready to switch to split PUD locks yet; there may be places 2040 * which need to be converted from page_table_lock. 2041 */ 2042 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2043 { 2044 return &mm->page_table_lock; 2045 } 2046 2047 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2048 { 2049 spinlock_t *ptl = pud_lockptr(mm, pud); 2050 2051 spin_lock(ptl); 2052 return ptl; 2053 } 2054 2055 extern void __init pagecache_init(void); 2056 extern void free_area_init(unsigned long * zones_size); 2057 extern void __init free_area_init_node(int nid, unsigned long * zones_size, 2058 unsigned long zone_start_pfn, unsigned long *zholes_size); 2059 extern void free_initmem(void); 2060 2061 /* 2062 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2063 * into the buddy system. The freed pages will be poisoned with pattern 2064 * "poison" if it's within range [0, UCHAR_MAX]. 2065 * Return pages freed into the buddy system. 2066 */ 2067 extern unsigned long free_reserved_area(void *start, void *end, 2068 int poison, const char *s); 2069 2070 #ifdef CONFIG_HIGHMEM 2071 /* 2072 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2073 * and totalram_pages. 2074 */ 2075 extern void free_highmem_page(struct page *page); 2076 #endif 2077 2078 extern void adjust_managed_page_count(struct page *page, long count); 2079 extern void mem_init_print_info(const char *str); 2080 2081 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2082 2083 /* Free the reserved page into the buddy system, so it gets managed. */ 2084 static inline void __free_reserved_page(struct page *page) 2085 { 2086 ClearPageReserved(page); 2087 init_page_count(page); 2088 __free_page(page); 2089 } 2090 2091 static inline void free_reserved_page(struct page *page) 2092 { 2093 __free_reserved_page(page); 2094 adjust_managed_page_count(page, 1); 2095 } 2096 2097 static inline void mark_page_reserved(struct page *page) 2098 { 2099 SetPageReserved(page); 2100 adjust_managed_page_count(page, -1); 2101 } 2102 2103 /* 2104 * Default method to free all the __init memory into the buddy system. 2105 * The freed pages will be poisoned with pattern "poison" if it's within 2106 * range [0, UCHAR_MAX]. 2107 * Return pages freed into the buddy system. 2108 */ 2109 static inline unsigned long free_initmem_default(int poison) 2110 { 2111 extern char __init_begin[], __init_end[]; 2112 2113 return free_reserved_area(&__init_begin, &__init_end, 2114 poison, "unused kernel"); 2115 } 2116 2117 static inline unsigned long get_num_physpages(void) 2118 { 2119 int nid; 2120 unsigned long phys_pages = 0; 2121 2122 for_each_online_node(nid) 2123 phys_pages += node_present_pages(nid); 2124 2125 return phys_pages; 2126 } 2127 2128 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 2129 /* 2130 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its 2131 * zones, allocate the backing mem_map and account for memory holes in a more 2132 * architecture independent manner. This is a substitute for creating the 2133 * zone_sizes[] and zholes_size[] arrays and passing them to 2134 * free_area_init_node() 2135 * 2136 * An architecture is expected to register range of page frames backed by 2137 * physical memory with memblock_add[_node]() before calling 2138 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic 2139 * usage, an architecture is expected to do something like 2140 * 2141 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2142 * max_highmem_pfn}; 2143 * for_each_valid_physical_page_range() 2144 * memblock_add_node(base, size, nid) 2145 * free_area_init_nodes(max_zone_pfns); 2146 * 2147 * free_bootmem_with_active_regions() calls free_bootmem_node() for each 2148 * registered physical page range. Similarly 2149 * sparse_memory_present_with_active_regions() calls memory_present() for 2150 * each range when SPARSEMEM is enabled. 2151 * 2152 * See mm/page_alloc.c for more information on each function exposed by 2153 * CONFIG_HAVE_MEMBLOCK_NODE_MAP. 2154 */ 2155 extern void free_area_init_nodes(unsigned long *max_zone_pfn); 2156 unsigned long node_map_pfn_alignment(void); 2157 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2158 unsigned long end_pfn); 2159 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2160 unsigned long end_pfn); 2161 extern void get_pfn_range_for_nid(unsigned int nid, 2162 unsigned long *start_pfn, unsigned long *end_pfn); 2163 extern unsigned long find_min_pfn_with_active_regions(void); 2164 extern void free_bootmem_with_active_regions(int nid, 2165 unsigned long max_low_pfn); 2166 extern void sparse_memory_present_with_active_regions(int nid); 2167 2168 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 2169 2170 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \ 2171 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) 2172 static inline int __early_pfn_to_nid(unsigned long pfn, 2173 struct mminit_pfnnid_cache *state) 2174 { 2175 return 0; 2176 } 2177 #else 2178 /* please see mm/page_alloc.c */ 2179 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2180 /* there is a per-arch backend function. */ 2181 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2182 struct mminit_pfnnid_cache *state); 2183 #endif 2184 2185 extern void set_dma_reserve(unsigned long new_dma_reserve); 2186 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2187 enum memmap_context, struct vmem_altmap *); 2188 extern void setup_per_zone_wmarks(void); 2189 extern int __meminit init_per_zone_wmark_min(void); 2190 extern void mem_init(void); 2191 extern void __init mmap_init(void); 2192 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2193 extern long si_mem_available(void); 2194 extern void si_meminfo(struct sysinfo * val); 2195 extern void si_meminfo_node(struct sysinfo *val, int nid); 2196 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2197 extern unsigned long arch_reserved_kernel_pages(void); 2198 #endif 2199 2200 extern __printf(3, 4) 2201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2202 2203 extern void setup_per_cpu_pageset(void); 2204 2205 /* page_alloc.c */ 2206 extern int min_free_kbytes; 2207 extern int watermark_boost_factor; 2208 extern int watermark_scale_factor; 2209 2210 /* nommu.c */ 2211 extern atomic_long_t mmap_pages_allocated; 2212 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2213 2214 /* interval_tree.c */ 2215 void vma_interval_tree_insert(struct vm_area_struct *node, 2216 struct rb_root_cached *root); 2217 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2218 struct vm_area_struct *prev, 2219 struct rb_root_cached *root); 2220 void vma_interval_tree_remove(struct vm_area_struct *node, 2221 struct rb_root_cached *root); 2222 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2223 unsigned long start, unsigned long last); 2224 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2225 unsigned long start, unsigned long last); 2226 2227 #define vma_interval_tree_foreach(vma, root, start, last) \ 2228 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2229 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2230 2231 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2232 struct rb_root_cached *root); 2233 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2234 struct rb_root_cached *root); 2235 struct anon_vma_chain * 2236 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2237 unsigned long start, unsigned long last); 2238 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2239 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2240 #ifdef CONFIG_DEBUG_VM_RB 2241 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2242 #endif 2243 2244 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2245 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2246 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2247 2248 /* mmap.c */ 2249 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2250 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2251 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2252 struct vm_area_struct *expand); 2253 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2254 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2255 { 2256 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2257 } 2258 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2259 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2260 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2261 struct mempolicy *, struct vm_userfaultfd_ctx); 2262 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2263 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2264 unsigned long addr, int new_below); 2265 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2266 unsigned long addr, int new_below); 2267 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2268 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2269 struct rb_node **, struct rb_node *); 2270 extern void unlink_file_vma(struct vm_area_struct *); 2271 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2272 unsigned long addr, unsigned long len, pgoff_t pgoff, 2273 bool *need_rmap_locks); 2274 extern void exit_mmap(struct mm_struct *); 2275 2276 static inline int check_data_rlimit(unsigned long rlim, 2277 unsigned long new, 2278 unsigned long start, 2279 unsigned long end_data, 2280 unsigned long start_data) 2281 { 2282 if (rlim < RLIM_INFINITY) { 2283 if (((new - start) + (end_data - start_data)) > rlim) 2284 return -ENOSPC; 2285 } 2286 2287 return 0; 2288 } 2289 2290 extern int mm_take_all_locks(struct mm_struct *mm); 2291 extern void mm_drop_all_locks(struct mm_struct *mm); 2292 2293 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2294 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2295 extern struct file *get_task_exe_file(struct task_struct *task); 2296 2297 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2298 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2299 2300 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2301 const struct vm_special_mapping *sm); 2302 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2303 unsigned long addr, unsigned long len, 2304 unsigned long flags, 2305 const struct vm_special_mapping *spec); 2306 /* This is an obsolete alternative to _install_special_mapping. */ 2307 extern int install_special_mapping(struct mm_struct *mm, 2308 unsigned long addr, unsigned long len, 2309 unsigned long flags, struct page **pages); 2310 2311 unsigned long randomize_stack_top(unsigned long stack_top); 2312 2313 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2314 2315 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2316 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2317 struct list_head *uf); 2318 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2319 unsigned long len, unsigned long prot, unsigned long flags, 2320 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate, 2321 struct list_head *uf); 2322 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2323 struct list_head *uf, bool downgrade); 2324 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2325 struct list_head *uf); 2326 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2327 2328 static inline unsigned long 2329 do_mmap_pgoff(struct file *file, unsigned long addr, 2330 unsigned long len, unsigned long prot, unsigned long flags, 2331 unsigned long pgoff, unsigned long *populate, 2332 struct list_head *uf) 2333 { 2334 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf); 2335 } 2336 2337 #ifdef CONFIG_MMU 2338 extern int __mm_populate(unsigned long addr, unsigned long len, 2339 int ignore_errors); 2340 static inline void mm_populate(unsigned long addr, unsigned long len) 2341 { 2342 /* Ignore errors */ 2343 (void) __mm_populate(addr, len, 1); 2344 } 2345 #else 2346 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2347 #endif 2348 2349 /* These take the mm semaphore themselves */ 2350 extern int __must_check vm_brk(unsigned long, unsigned long); 2351 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2352 extern int vm_munmap(unsigned long, size_t); 2353 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2354 unsigned long, unsigned long, 2355 unsigned long, unsigned long); 2356 2357 struct vm_unmapped_area_info { 2358 #define VM_UNMAPPED_AREA_TOPDOWN 1 2359 unsigned long flags; 2360 unsigned long length; 2361 unsigned long low_limit; 2362 unsigned long high_limit; 2363 unsigned long align_mask; 2364 unsigned long align_offset; 2365 }; 2366 2367 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info); 2368 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info); 2369 2370 /* 2371 * Search for an unmapped address range. 2372 * 2373 * We are looking for a range that: 2374 * - does not intersect with any VMA; 2375 * - is contained within the [low_limit, high_limit) interval; 2376 * - is at least the desired size. 2377 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask) 2378 */ 2379 static inline unsigned long 2380 vm_unmapped_area(struct vm_unmapped_area_info *info) 2381 { 2382 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN) 2383 return unmapped_area_topdown(info); 2384 else 2385 return unmapped_area(info); 2386 } 2387 2388 /* truncate.c */ 2389 extern void truncate_inode_pages(struct address_space *, loff_t); 2390 extern void truncate_inode_pages_range(struct address_space *, 2391 loff_t lstart, loff_t lend); 2392 extern void truncate_inode_pages_final(struct address_space *); 2393 2394 /* generic vm_area_ops exported for stackable file systems */ 2395 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2396 extern void filemap_map_pages(struct vm_fault *vmf, 2397 pgoff_t start_pgoff, pgoff_t end_pgoff); 2398 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2399 2400 /* mm/page-writeback.c */ 2401 int __must_check write_one_page(struct page *page); 2402 void task_dirty_inc(struct task_struct *tsk); 2403 2404 /* readahead.c */ 2405 #define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE) 2406 2407 int force_page_cache_readahead(struct address_space *mapping, struct file *filp, 2408 pgoff_t offset, unsigned long nr_to_read); 2409 2410 void page_cache_sync_readahead(struct address_space *mapping, 2411 struct file_ra_state *ra, 2412 struct file *filp, 2413 pgoff_t offset, 2414 unsigned long size); 2415 2416 void page_cache_async_readahead(struct address_space *mapping, 2417 struct file_ra_state *ra, 2418 struct file *filp, 2419 struct page *pg, 2420 pgoff_t offset, 2421 unsigned long size); 2422 2423 extern unsigned long stack_guard_gap; 2424 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2425 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2426 2427 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */ 2428 extern int expand_downwards(struct vm_area_struct *vma, 2429 unsigned long address); 2430 #if VM_GROWSUP 2431 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2432 #else 2433 #define expand_upwards(vma, address) (0) 2434 #endif 2435 2436 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2437 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2438 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2439 struct vm_area_struct **pprev); 2440 2441 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2442 NULL if none. Assume start_addr < end_addr. */ 2443 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2444 { 2445 struct vm_area_struct * vma = find_vma(mm,start_addr); 2446 2447 if (vma && end_addr <= vma->vm_start) 2448 vma = NULL; 2449 return vma; 2450 } 2451 2452 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2453 { 2454 unsigned long vm_start = vma->vm_start; 2455 2456 if (vma->vm_flags & VM_GROWSDOWN) { 2457 vm_start -= stack_guard_gap; 2458 if (vm_start > vma->vm_start) 2459 vm_start = 0; 2460 } 2461 return vm_start; 2462 } 2463 2464 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2465 { 2466 unsigned long vm_end = vma->vm_end; 2467 2468 if (vma->vm_flags & VM_GROWSUP) { 2469 vm_end += stack_guard_gap; 2470 if (vm_end < vma->vm_end) 2471 vm_end = -PAGE_SIZE; 2472 } 2473 return vm_end; 2474 } 2475 2476 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2477 { 2478 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2479 } 2480 2481 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2482 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2483 unsigned long vm_start, unsigned long vm_end) 2484 { 2485 struct vm_area_struct *vma = find_vma(mm, vm_start); 2486 2487 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2488 vma = NULL; 2489 2490 return vma; 2491 } 2492 2493 static inline bool range_in_vma(struct vm_area_struct *vma, 2494 unsigned long start, unsigned long end) 2495 { 2496 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2497 } 2498 2499 #ifdef CONFIG_MMU 2500 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2501 void vma_set_page_prot(struct vm_area_struct *vma); 2502 #else 2503 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2504 { 2505 return __pgprot(0); 2506 } 2507 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2508 { 2509 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2510 } 2511 #endif 2512 2513 #ifdef CONFIG_NUMA_BALANCING 2514 unsigned long change_prot_numa(struct vm_area_struct *vma, 2515 unsigned long start, unsigned long end); 2516 #endif 2517 2518 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2519 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2520 unsigned long pfn, unsigned long size, pgprot_t); 2521 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2522 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2523 unsigned long num); 2524 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2525 unsigned long num); 2526 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2527 unsigned long pfn); 2528 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2529 unsigned long pfn, pgprot_t pgprot); 2530 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2531 pfn_t pfn); 2532 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2533 pfn_t pfn, pgprot_t pgprot); 2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2535 unsigned long addr, pfn_t pfn); 2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2537 2538 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2539 unsigned long addr, struct page *page) 2540 { 2541 int err = vm_insert_page(vma, addr, page); 2542 2543 if (err == -ENOMEM) 2544 return VM_FAULT_OOM; 2545 if (err < 0 && err != -EBUSY) 2546 return VM_FAULT_SIGBUS; 2547 2548 return VM_FAULT_NOPAGE; 2549 } 2550 2551 static inline vm_fault_t vmf_error(int err) 2552 { 2553 if (err == -ENOMEM) 2554 return VM_FAULT_OOM; 2555 return VM_FAULT_SIGBUS; 2556 } 2557 2558 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2559 unsigned int foll_flags); 2560 2561 #define FOLL_WRITE 0x01 /* check pte is writable */ 2562 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2563 #define FOLL_GET 0x04 /* do get_page on page */ 2564 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2565 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2566 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2567 * and return without waiting upon it */ 2568 #define FOLL_POPULATE 0x40 /* fault in page */ 2569 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2570 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2571 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2572 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2573 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2574 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2575 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2576 #define FOLL_COW 0x4000 /* internal GUP flag */ 2577 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2578 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2579 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2580 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2581 2582 /* 2583 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2584 * other. Here is what they mean, and how to use them: 2585 * 2586 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2587 * period _often_ under userspace control. This is in contrast to 2588 * iov_iter_get_pages(), whose usages are transient. 2589 * 2590 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2591 * lifetime enforced by the filesystem and we need guarantees that longterm 2592 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2593 * the filesystem. Ideas for this coordination include revoking the longterm 2594 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2595 * added after the problem with filesystems was found FS DAX VMAs are 2596 * specifically failed. Filesystem pages are still subject to bugs and use of 2597 * FOLL_LONGTERM should be avoided on those pages. 2598 * 2599 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2600 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2601 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2602 * is due to an incompatibility with the FS DAX check and 2603 * FAULT_FLAG_ALLOW_RETRY. 2604 * 2605 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2606 * that region. And so, CMA attempts to migrate the page before pinning, when 2607 * FOLL_LONGTERM is specified. 2608 * 2609 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2610 * but an additional pin counting system) will be invoked. This is intended for 2611 * anything that gets a page reference and then touches page data (for example, 2612 * Direct IO). This lets the filesystem know that some non-file-system entity is 2613 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2614 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2615 * a call to unpin_user_page(). 2616 * 2617 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2618 * and separate refcounting mechanisms, however, and that means that each has 2619 * its own acquire and release mechanisms: 2620 * 2621 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2622 * 2623 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2624 * 2625 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2626 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2627 * calls applied to them, and that's perfectly OK. This is a constraint on the 2628 * callers, not on the pages.) 2629 * 2630 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2631 * directly by the caller. That's in order to help avoid mismatches when 2632 * releasing pages: get_user_pages*() pages must be released via put_page(), 2633 * while pin_user_pages*() pages must be released via unpin_user_page(). 2634 * 2635 * Please see Documentation/vm/pin_user_pages.rst for more information. 2636 */ 2637 2638 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2639 { 2640 if (vm_fault & VM_FAULT_OOM) 2641 return -ENOMEM; 2642 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2643 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2644 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2645 return -EFAULT; 2646 return 0; 2647 } 2648 2649 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2650 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2651 unsigned long size, pte_fn_t fn, void *data); 2652 extern int apply_to_existing_page_range(struct mm_struct *mm, 2653 unsigned long address, unsigned long size, 2654 pte_fn_t fn, void *data); 2655 2656 #ifdef CONFIG_PAGE_POISONING 2657 extern bool page_poisoning_enabled(void); 2658 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2659 #else 2660 static inline bool page_poisoning_enabled(void) { return false; } 2661 static inline void kernel_poison_pages(struct page *page, int numpages, 2662 int enable) { } 2663 #endif 2664 2665 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2666 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2667 #else 2668 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2669 #endif 2670 static inline bool want_init_on_alloc(gfp_t flags) 2671 { 2672 if (static_branch_unlikely(&init_on_alloc) && 2673 !page_poisoning_enabled()) 2674 return true; 2675 return flags & __GFP_ZERO; 2676 } 2677 2678 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2679 DECLARE_STATIC_KEY_TRUE(init_on_free); 2680 #else 2681 DECLARE_STATIC_KEY_FALSE(init_on_free); 2682 #endif 2683 static inline bool want_init_on_free(void) 2684 { 2685 return static_branch_unlikely(&init_on_free) && 2686 !page_poisoning_enabled(); 2687 } 2688 2689 #ifdef CONFIG_DEBUG_PAGEALLOC 2690 extern void init_debug_pagealloc(void); 2691 #else 2692 static inline void init_debug_pagealloc(void) {} 2693 #endif 2694 extern bool _debug_pagealloc_enabled_early; 2695 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2696 2697 static inline bool debug_pagealloc_enabled(void) 2698 { 2699 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2700 _debug_pagealloc_enabled_early; 2701 } 2702 2703 /* 2704 * For use in fast paths after init_debug_pagealloc() has run, or when a 2705 * false negative result is not harmful when called too early. 2706 */ 2707 static inline bool debug_pagealloc_enabled_static(void) 2708 { 2709 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2710 return false; 2711 2712 return static_branch_unlikely(&_debug_pagealloc_enabled); 2713 } 2714 2715 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2716 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2717 2718 static inline void 2719 kernel_map_pages(struct page *page, int numpages, int enable) 2720 { 2721 __kernel_map_pages(page, numpages, enable); 2722 } 2723 #ifdef CONFIG_HIBERNATION 2724 extern bool kernel_page_present(struct page *page); 2725 #endif /* CONFIG_HIBERNATION */ 2726 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2727 static inline void 2728 kernel_map_pages(struct page *page, int numpages, int enable) {} 2729 #ifdef CONFIG_HIBERNATION 2730 static inline bool kernel_page_present(struct page *page) { return true; } 2731 #endif /* CONFIG_HIBERNATION */ 2732 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2733 2734 #ifdef __HAVE_ARCH_GATE_AREA 2735 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2736 extern int in_gate_area_no_mm(unsigned long addr); 2737 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2738 #else 2739 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2740 { 2741 return NULL; 2742 } 2743 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2744 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2745 { 2746 return 0; 2747 } 2748 #endif /* __HAVE_ARCH_GATE_AREA */ 2749 2750 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2751 2752 #ifdef CONFIG_SYSCTL 2753 extern int sysctl_drop_caches; 2754 int drop_caches_sysctl_handler(struct ctl_table *, int, 2755 void __user *, size_t *, loff_t *); 2756 #endif 2757 2758 void drop_slab(void); 2759 void drop_slab_node(int nid); 2760 2761 #ifndef CONFIG_MMU 2762 #define randomize_va_space 0 2763 #else 2764 extern int randomize_va_space; 2765 #endif 2766 2767 const char * arch_vma_name(struct vm_area_struct *vma); 2768 #ifdef CONFIG_MMU 2769 void print_vma_addr(char *prefix, unsigned long rip); 2770 #else 2771 static inline void print_vma_addr(char *prefix, unsigned long rip) 2772 { 2773 } 2774 #endif 2775 2776 void *sparse_buffer_alloc(unsigned long size); 2777 struct page * __populate_section_memmap(unsigned long pfn, 2778 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2779 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2780 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2781 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2782 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2783 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); 2784 void *vmemmap_alloc_block(unsigned long size, int node); 2785 struct vmem_altmap; 2786 void *vmemmap_alloc_block_buf(unsigned long size, int node); 2787 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap); 2788 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2789 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2790 int node); 2791 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2792 struct vmem_altmap *altmap); 2793 void vmemmap_populate_print_last(void); 2794 #ifdef CONFIG_MEMORY_HOTPLUG 2795 void vmemmap_free(unsigned long start, unsigned long end, 2796 struct vmem_altmap *altmap); 2797 #endif 2798 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2799 unsigned long nr_pages); 2800 2801 enum mf_flags { 2802 MF_COUNT_INCREASED = 1 << 0, 2803 MF_ACTION_REQUIRED = 1 << 1, 2804 MF_MUST_KILL = 1 << 2, 2805 MF_SOFT_OFFLINE = 1 << 3, 2806 }; 2807 extern int memory_failure(unsigned long pfn, int flags); 2808 extern void memory_failure_queue(unsigned long pfn, int flags); 2809 extern int unpoison_memory(unsigned long pfn); 2810 extern int get_hwpoison_page(struct page *page); 2811 #define put_hwpoison_page(page) put_page(page) 2812 extern int sysctl_memory_failure_early_kill; 2813 extern int sysctl_memory_failure_recovery; 2814 extern void shake_page(struct page *p, int access); 2815 extern atomic_long_t num_poisoned_pages __read_mostly; 2816 extern int soft_offline_page(unsigned long pfn, int flags); 2817 2818 2819 /* 2820 * Error handlers for various types of pages. 2821 */ 2822 enum mf_result { 2823 MF_IGNORED, /* Error: cannot be handled */ 2824 MF_FAILED, /* Error: handling failed */ 2825 MF_DELAYED, /* Will be handled later */ 2826 MF_RECOVERED, /* Successfully recovered */ 2827 }; 2828 2829 enum mf_action_page_type { 2830 MF_MSG_KERNEL, 2831 MF_MSG_KERNEL_HIGH_ORDER, 2832 MF_MSG_SLAB, 2833 MF_MSG_DIFFERENT_COMPOUND, 2834 MF_MSG_POISONED_HUGE, 2835 MF_MSG_HUGE, 2836 MF_MSG_FREE_HUGE, 2837 MF_MSG_NON_PMD_HUGE, 2838 MF_MSG_UNMAP_FAILED, 2839 MF_MSG_DIRTY_SWAPCACHE, 2840 MF_MSG_CLEAN_SWAPCACHE, 2841 MF_MSG_DIRTY_MLOCKED_LRU, 2842 MF_MSG_CLEAN_MLOCKED_LRU, 2843 MF_MSG_DIRTY_UNEVICTABLE_LRU, 2844 MF_MSG_CLEAN_UNEVICTABLE_LRU, 2845 MF_MSG_DIRTY_LRU, 2846 MF_MSG_CLEAN_LRU, 2847 MF_MSG_TRUNCATED_LRU, 2848 MF_MSG_BUDDY, 2849 MF_MSG_BUDDY_2ND, 2850 MF_MSG_DAX, 2851 MF_MSG_UNKNOWN, 2852 }; 2853 2854 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 2855 extern void clear_huge_page(struct page *page, 2856 unsigned long addr_hint, 2857 unsigned int pages_per_huge_page); 2858 extern void copy_user_huge_page(struct page *dst, struct page *src, 2859 unsigned long addr_hint, 2860 struct vm_area_struct *vma, 2861 unsigned int pages_per_huge_page); 2862 extern long copy_huge_page_from_user(struct page *dst_page, 2863 const void __user *usr_src, 2864 unsigned int pages_per_huge_page, 2865 bool allow_pagefault); 2866 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 2867 2868 #ifdef CONFIG_DEBUG_PAGEALLOC 2869 extern unsigned int _debug_guardpage_minorder; 2870 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 2871 2872 static inline unsigned int debug_guardpage_minorder(void) 2873 { 2874 return _debug_guardpage_minorder; 2875 } 2876 2877 static inline bool debug_guardpage_enabled(void) 2878 { 2879 return static_branch_unlikely(&_debug_guardpage_enabled); 2880 } 2881 2882 static inline bool page_is_guard(struct page *page) 2883 { 2884 if (!debug_guardpage_enabled()) 2885 return false; 2886 2887 return PageGuard(page); 2888 } 2889 #else 2890 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 2891 static inline bool debug_guardpage_enabled(void) { return false; } 2892 static inline bool page_is_guard(struct page *page) { return false; } 2893 #endif /* CONFIG_DEBUG_PAGEALLOC */ 2894 2895 #if MAX_NUMNODES > 1 2896 void __init setup_nr_node_ids(void); 2897 #else 2898 static inline void setup_nr_node_ids(void) {} 2899 #endif 2900 2901 extern int memcmp_pages(struct page *page1, struct page *page2); 2902 2903 static inline int pages_identical(struct page *page1, struct page *page2) 2904 { 2905 return !memcmp_pages(page1, page2); 2906 } 2907 2908 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 2909 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 2910 pgoff_t first_index, pgoff_t nr, 2911 pgoff_t bitmap_pgoff, 2912 unsigned long *bitmap, 2913 pgoff_t *start, 2914 pgoff_t *end); 2915 2916 unsigned long wp_shared_mapping_range(struct address_space *mapping, 2917 pgoff_t first_index, pgoff_t nr); 2918 #endif 2919 2920 #endif /* __KERNEL__ */ 2921 #endif /* _LINUX_MM_H */ 2922