xref: /linux-6.15/include/linux/mm.h (revision c75bec79)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/range.h>
19 #include <linux/pfn.h>
20 #include <linux/percpu-refcount.h>
21 #include <linux/bit_spinlock.h>
22 #include <linux/shrinker.h>
23 #include <linux/resource.h>
24 #include <linux/page_ext.h>
25 #include <linux/err.h>
26 #include <linux/page_ref.h>
27 #include <linux/memremap.h>
28 #include <linux/overflow.h>
29 #include <linux/sizes.h>
30 
31 struct mempolicy;
32 struct anon_vma;
33 struct anon_vma_chain;
34 struct file_ra_state;
35 struct user_struct;
36 struct writeback_control;
37 struct bdi_writeback;
38 
39 void init_mm_internals(void);
40 
41 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
42 extern unsigned long max_mapnr;
43 
44 static inline void set_max_mapnr(unsigned long limit)
45 {
46 	max_mapnr = limit;
47 }
48 #else
49 static inline void set_max_mapnr(unsigned long limit) { }
50 #endif
51 
52 extern atomic_long_t _totalram_pages;
53 static inline unsigned long totalram_pages(void)
54 {
55 	return (unsigned long)atomic_long_read(&_totalram_pages);
56 }
57 
58 static inline void totalram_pages_inc(void)
59 {
60 	atomic_long_inc(&_totalram_pages);
61 }
62 
63 static inline void totalram_pages_dec(void)
64 {
65 	atomic_long_dec(&_totalram_pages);
66 }
67 
68 static inline void totalram_pages_add(long count)
69 {
70 	atomic_long_add(count, &_totalram_pages);
71 }
72 
73 extern void * high_memory;
74 extern int page_cluster;
75 
76 #ifdef CONFIG_SYSCTL
77 extern int sysctl_legacy_va_layout;
78 #else
79 #define sysctl_legacy_va_layout 0
80 #endif
81 
82 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
83 extern const int mmap_rnd_bits_min;
84 extern const int mmap_rnd_bits_max;
85 extern int mmap_rnd_bits __read_mostly;
86 #endif
87 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
88 extern const int mmap_rnd_compat_bits_min;
89 extern const int mmap_rnd_compat_bits_max;
90 extern int mmap_rnd_compat_bits __read_mostly;
91 #endif
92 
93 #include <asm/page.h>
94 #include <asm/pgtable.h>
95 #include <asm/processor.h>
96 
97 /*
98  * Architectures that support memory tagging (assigning tags to memory regions,
99  * embedding these tags into addresses that point to these memory regions, and
100  * checking that the memory and the pointer tags match on memory accesses)
101  * redefine this macro to strip tags from pointers.
102  * It's defined as noop for arcitectures that don't support memory tagging.
103  */
104 #ifndef untagged_addr
105 #define untagged_addr(addr) (addr)
106 #endif
107 
108 #ifndef __pa_symbol
109 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
110 #endif
111 
112 #ifndef page_to_virt
113 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
114 #endif
115 
116 #ifndef lm_alias
117 #define lm_alias(x)	__va(__pa_symbol(x))
118 #endif
119 
120 /*
121  * To prevent common memory management code establishing
122  * a zero page mapping on a read fault.
123  * This macro should be defined within <asm/pgtable.h>.
124  * s390 does this to prevent multiplexing of hardware bits
125  * related to the physical page in case of virtualization.
126  */
127 #ifndef mm_forbids_zeropage
128 #define mm_forbids_zeropage(X)	(0)
129 #endif
130 
131 /*
132  * On some architectures it is expensive to call memset() for small sizes.
133  * If an architecture decides to implement their own version of
134  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
135  * define their own version of this macro in <asm/pgtable.h>
136  */
137 #if BITS_PER_LONG == 64
138 /* This function must be updated when the size of struct page grows above 80
139  * or reduces below 56. The idea that compiler optimizes out switch()
140  * statement, and only leaves move/store instructions. Also the compiler can
141  * combine write statments if they are both assignments and can be reordered,
142  * this can result in several of the writes here being dropped.
143  */
144 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
145 static inline void __mm_zero_struct_page(struct page *page)
146 {
147 	unsigned long *_pp = (void *)page;
148 
149 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
150 	BUILD_BUG_ON(sizeof(struct page) & 7);
151 	BUILD_BUG_ON(sizeof(struct page) < 56);
152 	BUILD_BUG_ON(sizeof(struct page) > 80);
153 
154 	switch (sizeof(struct page)) {
155 	case 80:
156 		_pp[9] = 0;	/* fallthrough */
157 	case 72:
158 		_pp[8] = 0;	/* fallthrough */
159 	case 64:
160 		_pp[7] = 0;	/* fallthrough */
161 	case 56:
162 		_pp[6] = 0;
163 		_pp[5] = 0;
164 		_pp[4] = 0;
165 		_pp[3] = 0;
166 		_pp[2] = 0;
167 		_pp[1] = 0;
168 		_pp[0] = 0;
169 	}
170 }
171 #else
172 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
173 #endif
174 
175 /*
176  * Default maximum number of active map areas, this limits the number of vmas
177  * per mm struct. Users can overwrite this number by sysctl but there is a
178  * problem.
179  *
180  * When a program's coredump is generated as ELF format, a section is created
181  * per a vma. In ELF, the number of sections is represented in unsigned short.
182  * This means the number of sections should be smaller than 65535 at coredump.
183  * Because the kernel adds some informative sections to a image of program at
184  * generating coredump, we need some margin. The number of extra sections is
185  * 1-3 now and depends on arch. We use "5" as safe margin, here.
186  *
187  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
188  * not a hard limit any more. Although some userspace tools can be surprised by
189  * that.
190  */
191 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
192 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
193 
194 extern int sysctl_max_map_count;
195 
196 extern unsigned long sysctl_user_reserve_kbytes;
197 extern unsigned long sysctl_admin_reserve_kbytes;
198 
199 extern int sysctl_overcommit_memory;
200 extern int sysctl_overcommit_ratio;
201 extern unsigned long sysctl_overcommit_kbytes;
202 
203 extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
204 				    size_t *, loff_t *);
205 extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
206 				    size_t *, loff_t *);
207 
208 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
209 
210 /* to align the pointer to the (next) page boundary */
211 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
212 
213 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
214 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
215 
216 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
217 
218 /*
219  * Linux kernel virtual memory manager primitives.
220  * The idea being to have a "virtual" mm in the same way
221  * we have a virtual fs - giving a cleaner interface to the
222  * mm details, and allowing different kinds of memory mappings
223  * (from shared memory to executable loading to arbitrary
224  * mmap() functions).
225  */
226 
227 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
228 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
229 void vm_area_free(struct vm_area_struct *);
230 
231 #ifndef CONFIG_MMU
232 extern struct rb_root nommu_region_tree;
233 extern struct rw_semaphore nommu_region_sem;
234 
235 extern unsigned int kobjsize(const void *objp);
236 #endif
237 
238 /*
239  * vm_flags in vm_area_struct, see mm_types.h.
240  * When changing, update also include/trace/events/mmflags.h
241  */
242 #define VM_NONE		0x00000000
243 
244 #define VM_READ		0x00000001	/* currently active flags */
245 #define VM_WRITE	0x00000002
246 #define VM_EXEC		0x00000004
247 #define VM_SHARED	0x00000008
248 
249 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
250 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
251 #define VM_MAYWRITE	0x00000020
252 #define VM_MAYEXEC	0x00000040
253 #define VM_MAYSHARE	0x00000080
254 
255 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
256 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
257 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
258 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
259 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
260 
261 #define VM_LOCKED	0x00002000
262 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
263 
264 					/* Used by sys_madvise() */
265 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
266 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
267 
268 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
269 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
270 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
271 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
272 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
273 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
274 #define VM_SYNC		0x00800000	/* Synchronous page faults */
275 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
276 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
277 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
278 
279 #ifdef CONFIG_MEM_SOFT_DIRTY
280 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
281 #else
282 # define VM_SOFTDIRTY	0
283 #endif
284 
285 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
286 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
287 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
288 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
289 
290 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
291 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
292 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
293 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
294 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
295 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
296 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
297 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
298 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
299 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
300 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
301 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
302 
303 #ifdef CONFIG_ARCH_HAS_PKEYS
304 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
305 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
306 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
307 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
308 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
309 #ifdef CONFIG_PPC
310 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
311 #else
312 # define VM_PKEY_BIT4  0
313 #endif
314 #endif /* CONFIG_ARCH_HAS_PKEYS */
315 
316 #if defined(CONFIG_X86)
317 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
318 #elif defined(CONFIG_PPC)
319 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
320 #elif defined(CONFIG_PARISC)
321 # define VM_GROWSUP	VM_ARCH_1
322 #elif defined(CONFIG_IA64)
323 # define VM_GROWSUP	VM_ARCH_1
324 #elif defined(CONFIG_SPARC64)
325 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
326 # define VM_ARCH_CLEAR	VM_SPARC_ADI
327 #elif !defined(CONFIG_MMU)
328 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
329 #endif
330 
331 #if defined(CONFIG_X86_INTEL_MPX)
332 /* MPX specific bounds table or bounds directory */
333 # define VM_MPX		VM_HIGH_ARCH_4
334 #else
335 # define VM_MPX		VM_NONE
336 #endif
337 
338 #ifndef VM_GROWSUP
339 # define VM_GROWSUP	VM_NONE
340 #endif
341 
342 /* Bits set in the VMA until the stack is in its final location */
343 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
344 
345 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
346 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
347 #endif
348 
349 #ifdef CONFIG_STACK_GROWSUP
350 #define VM_STACK	VM_GROWSUP
351 #else
352 #define VM_STACK	VM_GROWSDOWN
353 #endif
354 
355 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
356 
357 /*
358  * Special vmas that are non-mergable, non-mlock()able.
359  * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
360  */
361 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
362 
363 /* This mask defines which mm->def_flags a process can inherit its parent */
364 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
365 
366 /* This mask is used to clear all the VMA flags used by mlock */
367 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
368 
369 /* Arch-specific flags to clear when updating VM flags on protection change */
370 #ifndef VM_ARCH_CLEAR
371 # define VM_ARCH_CLEAR	VM_NONE
372 #endif
373 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
374 
375 /*
376  * mapping from the currently active vm_flags protection bits (the
377  * low four bits) to a page protection mask..
378  */
379 extern pgprot_t protection_map[16];
380 
381 #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */
382 #define FAULT_FLAG_MKWRITE	0x02	/* Fault was mkwrite of existing pte */
383 #define FAULT_FLAG_ALLOW_RETRY	0x04	/* Retry fault if blocking */
384 #define FAULT_FLAG_RETRY_NOWAIT	0x08	/* Don't drop mmap_sem and wait when retrying */
385 #define FAULT_FLAG_KILLABLE	0x10	/* The fault task is in SIGKILL killable region */
386 #define FAULT_FLAG_TRIED	0x20	/* Second try */
387 #define FAULT_FLAG_USER		0x40	/* The fault originated in userspace */
388 #define FAULT_FLAG_REMOTE	0x80	/* faulting for non current tsk/mm */
389 #define FAULT_FLAG_INSTRUCTION  0x100	/* The fault was during an instruction fetch */
390 
391 #define FAULT_FLAG_TRACE \
392 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
393 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
394 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
395 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
396 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
397 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
398 	{ FAULT_FLAG_USER,		"USER" }, \
399 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
400 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }
401 
402 /*
403  * vm_fault is filled by the the pagefault handler and passed to the vma's
404  * ->fault function. The vma's ->fault is responsible for returning a bitmask
405  * of VM_FAULT_xxx flags that give details about how the fault was handled.
406  *
407  * MM layer fills up gfp_mask for page allocations but fault handler might
408  * alter it if its implementation requires a different allocation context.
409  *
410  * pgoff should be used in favour of virtual_address, if possible.
411  */
412 struct vm_fault {
413 	struct vm_area_struct *vma;	/* Target VMA */
414 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
415 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
416 	pgoff_t pgoff;			/* Logical page offset based on vma */
417 	unsigned long address;		/* Faulting virtual address */
418 	pmd_t *pmd;			/* Pointer to pmd entry matching
419 					 * the 'address' */
420 	pud_t *pud;			/* Pointer to pud entry matching
421 					 * the 'address'
422 					 */
423 	pte_t orig_pte;			/* Value of PTE at the time of fault */
424 
425 	struct page *cow_page;		/* Page handler may use for COW fault */
426 	struct mem_cgroup *memcg;	/* Cgroup cow_page belongs to */
427 	struct page *page;		/* ->fault handlers should return a
428 					 * page here, unless VM_FAULT_NOPAGE
429 					 * is set (which is also implied by
430 					 * VM_FAULT_ERROR).
431 					 */
432 	/* These three entries are valid only while holding ptl lock */
433 	pte_t *pte;			/* Pointer to pte entry matching
434 					 * the 'address'. NULL if the page
435 					 * table hasn't been allocated.
436 					 */
437 	spinlock_t *ptl;		/* Page table lock.
438 					 * Protects pte page table if 'pte'
439 					 * is not NULL, otherwise pmd.
440 					 */
441 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
442 					 * vm_ops->map_pages() calls
443 					 * alloc_set_pte() from atomic context.
444 					 * do_fault_around() pre-allocates
445 					 * page table to avoid allocation from
446 					 * atomic context.
447 					 */
448 };
449 
450 /* page entry size for vm->huge_fault() */
451 enum page_entry_size {
452 	PE_SIZE_PTE = 0,
453 	PE_SIZE_PMD,
454 	PE_SIZE_PUD,
455 };
456 
457 /*
458  * These are the virtual MM functions - opening of an area, closing and
459  * unmapping it (needed to keep files on disk up-to-date etc), pointer
460  * to the functions called when a no-page or a wp-page exception occurs.
461  */
462 struct vm_operations_struct {
463 	void (*open)(struct vm_area_struct * area);
464 	void (*close)(struct vm_area_struct * area);
465 	int (*split)(struct vm_area_struct * area, unsigned long addr);
466 	int (*mremap)(struct vm_area_struct * area);
467 	vm_fault_t (*fault)(struct vm_fault *vmf);
468 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
469 			enum page_entry_size pe_size);
470 	void (*map_pages)(struct vm_fault *vmf,
471 			pgoff_t start_pgoff, pgoff_t end_pgoff);
472 	unsigned long (*pagesize)(struct vm_area_struct * area);
473 
474 	/* notification that a previously read-only page is about to become
475 	 * writable, if an error is returned it will cause a SIGBUS */
476 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
477 
478 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
479 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
480 
481 	/* called by access_process_vm when get_user_pages() fails, typically
482 	 * for use by special VMAs that can switch between memory and hardware
483 	 */
484 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
485 		      void *buf, int len, int write);
486 
487 	/* Called by the /proc/PID/maps code to ask the vma whether it
488 	 * has a special name.  Returning non-NULL will also cause this
489 	 * vma to be dumped unconditionally. */
490 	const char *(*name)(struct vm_area_struct *vma);
491 
492 #ifdef CONFIG_NUMA
493 	/*
494 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
495 	 * to hold the policy upon return.  Caller should pass NULL @new to
496 	 * remove a policy and fall back to surrounding context--i.e. do not
497 	 * install a MPOL_DEFAULT policy, nor the task or system default
498 	 * mempolicy.
499 	 */
500 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
501 
502 	/*
503 	 * get_policy() op must add reference [mpol_get()] to any policy at
504 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
505 	 * in mm/mempolicy.c will do this automatically.
506 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
507 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
508 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
509 	 * must return NULL--i.e., do not "fallback" to task or system default
510 	 * policy.
511 	 */
512 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
513 					unsigned long addr);
514 #endif
515 	/*
516 	 * Called by vm_normal_page() for special PTEs to find the
517 	 * page for @addr.  This is useful if the default behavior
518 	 * (using pte_page()) would not find the correct page.
519 	 */
520 	struct page *(*find_special_page)(struct vm_area_struct *vma,
521 					  unsigned long addr);
522 };
523 
524 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
525 {
526 	static const struct vm_operations_struct dummy_vm_ops = {};
527 
528 	memset(vma, 0, sizeof(*vma));
529 	vma->vm_mm = mm;
530 	vma->vm_ops = &dummy_vm_ops;
531 	INIT_LIST_HEAD(&vma->anon_vma_chain);
532 }
533 
534 static inline void vma_set_anonymous(struct vm_area_struct *vma)
535 {
536 	vma->vm_ops = NULL;
537 }
538 
539 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
540 {
541 	return !vma->vm_ops;
542 }
543 
544 #ifdef CONFIG_SHMEM
545 /*
546  * The vma_is_shmem is not inline because it is used only by slow
547  * paths in userfault.
548  */
549 bool vma_is_shmem(struct vm_area_struct *vma);
550 #else
551 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
552 #endif
553 
554 int vma_is_stack_for_current(struct vm_area_struct *vma);
555 
556 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
557 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
558 
559 struct mmu_gather;
560 struct inode;
561 
562 /*
563  * FIXME: take this include out, include page-flags.h in
564  * files which need it (119 of them)
565  */
566 #include <linux/page-flags.h>
567 #include <linux/huge_mm.h>
568 
569 /*
570  * Methods to modify the page usage count.
571  *
572  * What counts for a page usage:
573  * - cache mapping   (page->mapping)
574  * - private data    (page->private)
575  * - page mapped in a task's page tables, each mapping
576  *   is counted separately
577  *
578  * Also, many kernel routines increase the page count before a critical
579  * routine so they can be sure the page doesn't go away from under them.
580  */
581 
582 /*
583  * Drop a ref, return true if the refcount fell to zero (the page has no users)
584  */
585 static inline int put_page_testzero(struct page *page)
586 {
587 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
588 	return page_ref_dec_and_test(page);
589 }
590 
591 /*
592  * Try to grab a ref unless the page has a refcount of zero, return false if
593  * that is the case.
594  * This can be called when MMU is off so it must not access
595  * any of the virtual mappings.
596  */
597 static inline int get_page_unless_zero(struct page *page)
598 {
599 	return page_ref_add_unless(page, 1, 0);
600 }
601 
602 extern int page_is_ram(unsigned long pfn);
603 
604 enum {
605 	REGION_INTERSECTS,
606 	REGION_DISJOINT,
607 	REGION_MIXED,
608 };
609 
610 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
611 		      unsigned long desc);
612 
613 /* Support for virtually mapped pages */
614 struct page *vmalloc_to_page(const void *addr);
615 unsigned long vmalloc_to_pfn(const void *addr);
616 
617 /*
618  * Determine if an address is within the vmalloc range
619  *
620  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
621  * is no special casing required.
622  */
623 
624 #ifndef is_ioremap_addr
625 #define is_ioremap_addr(x) is_vmalloc_addr(x)
626 #endif
627 
628 #ifdef CONFIG_MMU
629 extern bool is_vmalloc_addr(const void *x);
630 extern int is_vmalloc_or_module_addr(const void *x);
631 #else
632 static inline bool is_vmalloc_addr(const void *x)
633 {
634 	return false;
635 }
636 static inline int is_vmalloc_or_module_addr(const void *x)
637 {
638 	return 0;
639 }
640 #endif
641 
642 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
643 static inline void *kvmalloc(size_t size, gfp_t flags)
644 {
645 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
646 }
647 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
648 {
649 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
650 }
651 static inline void *kvzalloc(size_t size, gfp_t flags)
652 {
653 	return kvmalloc(size, flags | __GFP_ZERO);
654 }
655 
656 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
657 {
658 	size_t bytes;
659 
660 	if (unlikely(check_mul_overflow(n, size, &bytes)))
661 		return NULL;
662 
663 	return kvmalloc(bytes, flags);
664 }
665 
666 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
667 {
668 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
669 }
670 
671 extern void kvfree(const void *addr);
672 
673 static inline int compound_mapcount(struct page *page)
674 {
675 	VM_BUG_ON_PAGE(!PageCompound(page), page);
676 	page = compound_head(page);
677 	return atomic_read(compound_mapcount_ptr(page)) + 1;
678 }
679 
680 /*
681  * The atomic page->_mapcount, starts from -1: so that transitions
682  * both from it and to it can be tracked, using atomic_inc_and_test
683  * and atomic_add_negative(-1).
684  */
685 static inline void page_mapcount_reset(struct page *page)
686 {
687 	atomic_set(&(page)->_mapcount, -1);
688 }
689 
690 int __page_mapcount(struct page *page);
691 
692 static inline int page_mapcount(struct page *page)
693 {
694 	VM_BUG_ON_PAGE(PageSlab(page), page);
695 
696 	if (unlikely(PageCompound(page)))
697 		return __page_mapcount(page);
698 	return atomic_read(&page->_mapcount) + 1;
699 }
700 
701 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
702 int total_mapcount(struct page *page);
703 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
704 #else
705 static inline int total_mapcount(struct page *page)
706 {
707 	return page_mapcount(page);
708 }
709 static inline int page_trans_huge_mapcount(struct page *page,
710 					   int *total_mapcount)
711 {
712 	int mapcount = page_mapcount(page);
713 	if (total_mapcount)
714 		*total_mapcount = mapcount;
715 	return mapcount;
716 }
717 #endif
718 
719 static inline struct page *virt_to_head_page(const void *x)
720 {
721 	struct page *page = virt_to_page(x);
722 
723 	return compound_head(page);
724 }
725 
726 void __put_page(struct page *page);
727 
728 void put_pages_list(struct list_head *pages);
729 
730 void split_page(struct page *page, unsigned int order);
731 
732 /*
733  * Compound pages have a destructor function.  Provide a
734  * prototype for that function and accessor functions.
735  * These are _only_ valid on the head of a compound page.
736  */
737 typedef void compound_page_dtor(struct page *);
738 
739 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
740 enum compound_dtor_id {
741 	NULL_COMPOUND_DTOR,
742 	COMPOUND_PAGE_DTOR,
743 #ifdef CONFIG_HUGETLB_PAGE
744 	HUGETLB_PAGE_DTOR,
745 #endif
746 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
747 	TRANSHUGE_PAGE_DTOR,
748 #endif
749 	NR_COMPOUND_DTORS,
750 };
751 extern compound_page_dtor * const compound_page_dtors[];
752 
753 static inline void set_compound_page_dtor(struct page *page,
754 		enum compound_dtor_id compound_dtor)
755 {
756 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
757 	page[1].compound_dtor = compound_dtor;
758 }
759 
760 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
761 {
762 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
763 	return compound_page_dtors[page[1].compound_dtor];
764 }
765 
766 static inline unsigned int compound_order(struct page *page)
767 {
768 	if (!PageHead(page))
769 		return 0;
770 	return page[1].compound_order;
771 }
772 
773 static inline void set_compound_order(struct page *page, unsigned int order)
774 {
775 	page[1].compound_order = order;
776 }
777 
778 /* Returns the number of pages in this potentially compound page. */
779 static inline unsigned long compound_nr(struct page *page)
780 {
781 	return 1UL << compound_order(page);
782 }
783 
784 /* Returns the number of bytes in this potentially compound page. */
785 static inline unsigned long page_size(struct page *page)
786 {
787 	return PAGE_SIZE << compound_order(page);
788 }
789 
790 /* Returns the number of bits needed for the number of bytes in a page */
791 static inline unsigned int page_shift(struct page *page)
792 {
793 	return PAGE_SHIFT + compound_order(page);
794 }
795 
796 void free_compound_page(struct page *page);
797 
798 #ifdef CONFIG_MMU
799 /*
800  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
801  * servicing faults for write access.  In the normal case, do always want
802  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
803  * that do not have writing enabled, when used by access_process_vm.
804  */
805 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
806 {
807 	if (likely(vma->vm_flags & VM_WRITE))
808 		pte = pte_mkwrite(pte);
809 	return pte;
810 }
811 
812 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
813 		struct page *page);
814 vm_fault_t finish_fault(struct vm_fault *vmf);
815 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
816 #endif
817 
818 /*
819  * Multiple processes may "see" the same page. E.g. for untouched
820  * mappings of /dev/null, all processes see the same page full of
821  * zeroes, and text pages of executables and shared libraries have
822  * only one copy in memory, at most, normally.
823  *
824  * For the non-reserved pages, page_count(page) denotes a reference count.
825  *   page_count() == 0 means the page is free. page->lru is then used for
826  *   freelist management in the buddy allocator.
827  *   page_count() > 0  means the page has been allocated.
828  *
829  * Pages are allocated by the slab allocator in order to provide memory
830  * to kmalloc and kmem_cache_alloc. In this case, the management of the
831  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
832  * unless a particular usage is carefully commented. (the responsibility of
833  * freeing the kmalloc memory is the caller's, of course).
834  *
835  * A page may be used by anyone else who does a __get_free_page().
836  * In this case, page_count still tracks the references, and should only
837  * be used through the normal accessor functions. The top bits of page->flags
838  * and page->virtual store page management information, but all other fields
839  * are unused and could be used privately, carefully. The management of this
840  * page is the responsibility of the one who allocated it, and those who have
841  * subsequently been given references to it.
842  *
843  * The other pages (we may call them "pagecache pages") are completely
844  * managed by the Linux memory manager: I/O, buffers, swapping etc.
845  * The following discussion applies only to them.
846  *
847  * A pagecache page contains an opaque `private' member, which belongs to the
848  * page's address_space. Usually, this is the address of a circular list of
849  * the page's disk buffers. PG_private must be set to tell the VM to call
850  * into the filesystem to release these pages.
851  *
852  * A page may belong to an inode's memory mapping. In this case, page->mapping
853  * is the pointer to the inode, and page->index is the file offset of the page,
854  * in units of PAGE_SIZE.
855  *
856  * If pagecache pages are not associated with an inode, they are said to be
857  * anonymous pages. These may become associated with the swapcache, and in that
858  * case PG_swapcache is set, and page->private is an offset into the swapcache.
859  *
860  * In either case (swapcache or inode backed), the pagecache itself holds one
861  * reference to the page. Setting PG_private should also increment the
862  * refcount. The each user mapping also has a reference to the page.
863  *
864  * The pagecache pages are stored in a per-mapping radix tree, which is
865  * rooted at mapping->i_pages, and indexed by offset.
866  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
867  * lists, we instead now tag pages as dirty/writeback in the radix tree.
868  *
869  * All pagecache pages may be subject to I/O:
870  * - inode pages may need to be read from disk,
871  * - inode pages which have been modified and are MAP_SHARED may need
872  *   to be written back to the inode on disk,
873  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
874  *   modified may need to be swapped out to swap space and (later) to be read
875  *   back into memory.
876  */
877 
878 /*
879  * The zone field is never updated after free_area_init_core()
880  * sets it, so none of the operations on it need to be atomic.
881  */
882 
883 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
884 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
885 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
886 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
887 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
888 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
889 
890 /*
891  * Define the bit shifts to access each section.  For non-existent
892  * sections we define the shift as 0; that plus a 0 mask ensures
893  * the compiler will optimise away reference to them.
894  */
895 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
896 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
897 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
898 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
899 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
900 
901 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
902 #ifdef NODE_NOT_IN_PAGE_FLAGS
903 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
904 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
905 						SECTIONS_PGOFF : ZONES_PGOFF)
906 #else
907 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
908 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
909 						NODES_PGOFF : ZONES_PGOFF)
910 #endif
911 
912 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
913 
914 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
915 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
916 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
917 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
918 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
919 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
920 
921 static inline enum zone_type page_zonenum(const struct page *page)
922 {
923 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
924 }
925 
926 #ifdef CONFIG_ZONE_DEVICE
927 static inline bool is_zone_device_page(const struct page *page)
928 {
929 	return page_zonenum(page) == ZONE_DEVICE;
930 }
931 extern void memmap_init_zone_device(struct zone *, unsigned long,
932 				    unsigned long, struct dev_pagemap *);
933 #else
934 static inline bool is_zone_device_page(const struct page *page)
935 {
936 	return false;
937 }
938 #endif
939 
940 #ifdef CONFIG_DEV_PAGEMAP_OPS
941 void free_devmap_managed_page(struct page *page);
942 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
943 
944 static inline bool page_is_devmap_managed(struct page *page)
945 {
946 	if (!static_branch_unlikely(&devmap_managed_key))
947 		return false;
948 	if (!is_zone_device_page(page))
949 		return false;
950 	switch (page->pgmap->type) {
951 	case MEMORY_DEVICE_PRIVATE:
952 	case MEMORY_DEVICE_FS_DAX:
953 		return true;
954 	default:
955 		break;
956 	}
957 	return false;
958 }
959 
960 void put_devmap_managed_page(struct page *page);
961 
962 #else /* CONFIG_DEV_PAGEMAP_OPS */
963 static inline bool page_is_devmap_managed(struct page *page)
964 {
965 	return false;
966 }
967 
968 static inline void put_devmap_managed_page(struct page *page)
969 {
970 }
971 #endif /* CONFIG_DEV_PAGEMAP_OPS */
972 
973 static inline bool is_device_private_page(const struct page *page)
974 {
975 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
976 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
977 		is_zone_device_page(page) &&
978 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
979 }
980 
981 static inline bool is_pci_p2pdma_page(const struct page *page)
982 {
983 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
984 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
985 		is_zone_device_page(page) &&
986 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
987 }
988 
989 /* 127: arbitrary random number, small enough to assemble well */
990 #define page_ref_zero_or_close_to_overflow(page) \
991 	((unsigned int) page_ref_count(page) + 127u <= 127u)
992 
993 static inline void get_page(struct page *page)
994 {
995 	page = compound_head(page);
996 	/*
997 	 * Getting a normal page or the head of a compound page
998 	 * requires to already have an elevated page->_refcount.
999 	 */
1000 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1001 	page_ref_inc(page);
1002 }
1003 
1004 static inline __must_check bool try_get_page(struct page *page)
1005 {
1006 	page = compound_head(page);
1007 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1008 		return false;
1009 	page_ref_inc(page);
1010 	return true;
1011 }
1012 
1013 static inline void put_page(struct page *page)
1014 {
1015 	page = compound_head(page);
1016 
1017 	/*
1018 	 * For devmap managed pages we need to catch refcount transition from
1019 	 * 2 to 1, when refcount reach one it means the page is free and we
1020 	 * need to inform the device driver through callback. See
1021 	 * include/linux/memremap.h and HMM for details.
1022 	 */
1023 	if (page_is_devmap_managed(page)) {
1024 		put_devmap_managed_page(page);
1025 		return;
1026 	}
1027 
1028 	if (put_page_testzero(page))
1029 		__put_page(page);
1030 }
1031 
1032 /**
1033  * unpin_user_page() - release a gup-pinned page
1034  * @page:            pointer to page to be released
1035  *
1036  * Pages that were pinned via pin_user_pages*() must be released via either
1037  * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
1038  * that eventually such pages can be separately tracked and uniquely handled. In
1039  * particular, interactions with RDMA and filesystems need special handling.
1040  *
1041  * unpin_user_page() and put_page() are not interchangeable, despite this early
1042  * implementation that makes them look the same. unpin_user_page() calls must
1043  * be perfectly matched up with pin*() calls.
1044  */
1045 static inline void unpin_user_page(struct page *page)
1046 {
1047 	put_page(page);
1048 }
1049 
1050 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1051 				 bool make_dirty);
1052 
1053 void unpin_user_pages(struct page **pages, unsigned long npages);
1054 
1055 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1056 #define SECTION_IN_PAGE_FLAGS
1057 #endif
1058 
1059 /*
1060  * The identification function is mainly used by the buddy allocator for
1061  * determining if two pages could be buddies. We are not really identifying
1062  * the zone since we could be using the section number id if we do not have
1063  * node id available in page flags.
1064  * We only guarantee that it will return the same value for two combinable
1065  * pages in a zone.
1066  */
1067 static inline int page_zone_id(struct page *page)
1068 {
1069 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1070 }
1071 
1072 #ifdef NODE_NOT_IN_PAGE_FLAGS
1073 extern int page_to_nid(const struct page *page);
1074 #else
1075 static inline int page_to_nid(const struct page *page)
1076 {
1077 	struct page *p = (struct page *)page;
1078 
1079 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1080 }
1081 #endif
1082 
1083 #ifdef CONFIG_NUMA_BALANCING
1084 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1085 {
1086 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1087 }
1088 
1089 static inline int cpupid_to_pid(int cpupid)
1090 {
1091 	return cpupid & LAST__PID_MASK;
1092 }
1093 
1094 static inline int cpupid_to_cpu(int cpupid)
1095 {
1096 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1097 }
1098 
1099 static inline int cpupid_to_nid(int cpupid)
1100 {
1101 	return cpu_to_node(cpupid_to_cpu(cpupid));
1102 }
1103 
1104 static inline bool cpupid_pid_unset(int cpupid)
1105 {
1106 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1107 }
1108 
1109 static inline bool cpupid_cpu_unset(int cpupid)
1110 {
1111 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1112 }
1113 
1114 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1115 {
1116 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1117 }
1118 
1119 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1120 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1121 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1122 {
1123 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1124 }
1125 
1126 static inline int page_cpupid_last(struct page *page)
1127 {
1128 	return page->_last_cpupid;
1129 }
1130 static inline void page_cpupid_reset_last(struct page *page)
1131 {
1132 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1133 }
1134 #else
1135 static inline int page_cpupid_last(struct page *page)
1136 {
1137 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1138 }
1139 
1140 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1141 
1142 static inline void page_cpupid_reset_last(struct page *page)
1143 {
1144 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1145 }
1146 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1147 #else /* !CONFIG_NUMA_BALANCING */
1148 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1149 {
1150 	return page_to_nid(page); /* XXX */
1151 }
1152 
1153 static inline int page_cpupid_last(struct page *page)
1154 {
1155 	return page_to_nid(page); /* XXX */
1156 }
1157 
1158 static inline int cpupid_to_nid(int cpupid)
1159 {
1160 	return -1;
1161 }
1162 
1163 static inline int cpupid_to_pid(int cpupid)
1164 {
1165 	return -1;
1166 }
1167 
1168 static inline int cpupid_to_cpu(int cpupid)
1169 {
1170 	return -1;
1171 }
1172 
1173 static inline int cpu_pid_to_cpupid(int nid, int pid)
1174 {
1175 	return -1;
1176 }
1177 
1178 static inline bool cpupid_pid_unset(int cpupid)
1179 {
1180 	return 1;
1181 }
1182 
1183 static inline void page_cpupid_reset_last(struct page *page)
1184 {
1185 }
1186 
1187 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1188 {
1189 	return false;
1190 }
1191 #endif /* CONFIG_NUMA_BALANCING */
1192 
1193 #ifdef CONFIG_KASAN_SW_TAGS
1194 static inline u8 page_kasan_tag(const struct page *page)
1195 {
1196 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1197 }
1198 
1199 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1200 {
1201 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1202 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1203 }
1204 
1205 static inline void page_kasan_tag_reset(struct page *page)
1206 {
1207 	page_kasan_tag_set(page, 0xff);
1208 }
1209 #else
1210 static inline u8 page_kasan_tag(const struct page *page)
1211 {
1212 	return 0xff;
1213 }
1214 
1215 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1216 static inline void page_kasan_tag_reset(struct page *page) { }
1217 #endif
1218 
1219 static inline struct zone *page_zone(const struct page *page)
1220 {
1221 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1222 }
1223 
1224 static inline pg_data_t *page_pgdat(const struct page *page)
1225 {
1226 	return NODE_DATA(page_to_nid(page));
1227 }
1228 
1229 #ifdef SECTION_IN_PAGE_FLAGS
1230 static inline void set_page_section(struct page *page, unsigned long section)
1231 {
1232 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1233 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1234 }
1235 
1236 static inline unsigned long page_to_section(const struct page *page)
1237 {
1238 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1239 }
1240 #endif
1241 
1242 static inline void set_page_zone(struct page *page, enum zone_type zone)
1243 {
1244 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1245 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1246 }
1247 
1248 static inline void set_page_node(struct page *page, unsigned long node)
1249 {
1250 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1251 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1252 }
1253 
1254 static inline void set_page_links(struct page *page, enum zone_type zone,
1255 	unsigned long node, unsigned long pfn)
1256 {
1257 	set_page_zone(page, zone);
1258 	set_page_node(page, node);
1259 #ifdef SECTION_IN_PAGE_FLAGS
1260 	set_page_section(page, pfn_to_section_nr(pfn));
1261 #endif
1262 }
1263 
1264 #ifdef CONFIG_MEMCG
1265 static inline struct mem_cgroup *page_memcg(struct page *page)
1266 {
1267 	return page->mem_cgroup;
1268 }
1269 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1270 {
1271 	WARN_ON_ONCE(!rcu_read_lock_held());
1272 	return READ_ONCE(page->mem_cgroup);
1273 }
1274 #else
1275 static inline struct mem_cgroup *page_memcg(struct page *page)
1276 {
1277 	return NULL;
1278 }
1279 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1280 {
1281 	WARN_ON_ONCE(!rcu_read_lock_held());
1282 	return NULL;
1283 }
1284 #endif
1285 
1286 /*
1287  * Some inline functions in vmstat.h depend on page_zone()
1288  */
1289 #include <linux/vmstat.h>
1290 
1291 static __always_inline void *lowmem_page_address(const struct page *page)
1292 {
1293 	return page_to_virt(page);
1294 }
1295 
1296 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1297 #define HASHED_PAGE_VIRTUAL
1298 #endif
1299 
1300 #if defined(WANT_PAGE_VIRTUAL)
1301 static inline void *page_address(const struct page *page)
1302 {
1303 	return page->virtual;
1304 }
1305 static inline void set_page_address(struct page *page, void *address)
1306 {
1307 	page->virtual = address;
1308 }
1309 #define page_address_init()  do { } while(0)
1310 #endif
1311 
1312 #if defined(HASHED_PAGE_VIRTUAL)
1313 void *page_address(const struct page *page);
1314 void set_page_address(struct page *page, void *virtual);
1315 void page_address_init(void);
1316 #endif
1317 
1318 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1319 #define page_address(page) lowmem_page_address(page)
1320 #define set_page_address(page, address)  do { } while(0)
1321 #define page_address_init()  do { } while(0)
1322 #endif
1323 
1324 extern void *page_rmapping(struct page *page);
1325 extern struct anon_vma *page_anon_vma(struct page *page);
1326 extern struct address_space *page_mapping(struct page *page);
1327 
1328 extern struct address_space *__page_file_mapping(struct page *);
1329 
1330 static inline
1331 struct address_space *page_file_mapping(struct page *page)
1332 {
1333 	if (unlikely(PageSwapCache(page)))
1334 		return __page_file_mapping(page);
1335 
1336 	return page->mapping;
1337 }
1338 
1339 extern pgoff_t __page_file_index(struct page *page);
1340 
1341 /*
1342  * Return the pagecache index of the passed page.  Regular pagecache pages
1343  * use ->index whereas swapcache pages use swp_offset(->private)
1344  */
1345 static inline pgoff_t page_index(struct page *page)
1346 {
1347 	if (unlikely(PageSwapCache(page)))
1348 		return __page_file_index(page);
1349 	return page->index;
1350 }
1351 
1352 bool page_mapped(struct page *page);
1353 struct address_space *page_mapping(struct page *page);
1354 struct address_space *page_mapping_file(struct page *page);
1355 
1356 /*
1357  * Return true only if the page has been allocated with
1358  * ALLOC_NO_WATERMARKS and the low watermark was not
1359  * met implying that the system is under some pressure.
1360  */
1361 static inline bool page_is_pfmemalloc(struct page *page)
1362 {
1363 	/*
1364 	 * Page index cannot be this large so this must be
1365 	 * a pfmemalloc page.
1366 	 */
1367 	return page->index == -1UL;
1368 }
1369 
1370 /*
1371  * Only to be called by the page allocator on a freshly allocated
1372  * page.
1373  */
1374 static inline void set_page_pfmemalloc(struct page *page)
1375 {
1376 	page->index = -1UL;
1377 }
1378 
1379 static inline void clear_page_pfmemalloc(struct page *page)
1380 {
1381 	page->index = 0;
1382 }
1383 
1384 /*
1385  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1386  */
1387 extern void pagefault_out_of_memory(void);
1388 
1389 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1390 
1391 /*
1392  * Flags passed to show_mem() and show_free_areas() to suppress output in
1393  * various contexts.
1394  */
1395 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1396 
1397 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1398 
1399 #ifdef CONFIG_MMU
1400 extern bool can_do_mlock(void);
1401 #else
1402 static inline bool can_do_mlock(void) { return false; }
1403 #endif
1404 extern int user_shm_lock(size_t, struct user_struct *);
1405 extern void user_shm_unlock(size_t, struct user_struct *);
1406 
1407 /*
1408  * Parameter block passed down to zap_pte_range in exceptional cases.
1409  */
1410 struct zap_details {
1411 	struct address_space *check_mapping;	/* Check page->mapping if set */
1412 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1413 	pgoff_t last_index;			/* Highest page->index to unmap */
1414 };
1415 
1416 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1417 			     pte_t pte);
1418 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1419 				pmd_t pmd);
1420 
1421 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1422 		  unsigned long size);
1423 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1424 		    unsigned long size);
1425 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1426 		unsigned long start, unsigned long end);
1427 
1428 struct mmu_notifier_range;
1429 
1430 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1431 		unsigned long end, unsigned long floor, unsigned long ceiling);
1432 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1433 			struct vm_area_struct *vma);
1434 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1435 		   struct mmu_notifier_range *range,
1436 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1437 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1438 	unsigned long *pfn);
1439 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1440 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1441 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1442 			void *buf, int len, int write);
1443 
1444 extern void truncate_pagecache(struct inode *inode, loff_t new);
1445 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1446 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1447 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1448 int truncate_inode_page(struct address_space *mapping, struct page *page);
1449 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1450 int invalidate_inode_page(struct page *page);
1451 
1452 #ifdef CONFIG_MMU
1453 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1454 			unsigned long address, unsigned int flags);
1455 extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
1456 			    unsigned long address, unsigned int fault_flags,
1457 			    bool *unlocked);
1458 void unmap_mapping_pages(struct address_space *mapping,
1459 		pgoff_t start, pgoff_t nr, bool even_cows);
1460 void unmap_mapping_range(struct address_space *mapping,
1461 		loff_t const holebegin, loff_t const holelen, int even_cows);
1462 #else
1463 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1464 		unsigned long address, unsigned int flags)
1465 {
1466 	/* should never happen if there's no MMU */
1467 	BUG();
1468 	return VM_FAULT_SIGBUS;
1469 }
1470 static inline int fixup_user_fault(struct task_struct *tsk,
1471 		struct mm_struct *mm, unsigned long address,
1472 		unsigned int fault_flags, bool *unlocked)
1473 {
1474 	/* should never happen if there's no MMU */
1475 	BUG();
1476 	return -EFAULT;
1477 }
1478 static inline void unmap_mapping_pages(struct address_space *mapping,
1479 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1480 static inline void unmap_mapping_range(struct address_space *mapping,
1481 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1482 #endif
1483 
1484 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1485 		loff_t const holebegin, loff_t const holelen)
1486 {
1487 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1488 }
1489 
1490 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1491 		void *buf, int len, unsigned int gup_flags);
1492 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1493 		void *buf, int len, unsigned int gup_flags);
1494 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1495 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1496 
1497 long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1498 			    unsigned long start, unsigned long nr_pages,
1499 			    unsigned int gup_flags, struct page **pages,
1500 			    struct vm_area_struct **vmas, int *locked);
1501 long pin_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1502 			   unsigned long start, unsigned long nr_pages,
1503 			   unsigned int gup_flags, struct page **pages,
1504 			   struct vm_area_struct **vmas, int *locked);
1505 long get_user_pages(unsigned long start, unsigned long nr_pages,
1506 			    unsigned int gup_flags, struct page **pages,
1507 			    struct vm_area_struct **vmas);
1508 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1509 		    unsigned int gup_flags, struct page **pages,
1510 		    struct vm_area_struct **vmas);
1511 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1512 		    unsigned int gup_flags, struct page **pages, int *locked);
1513 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1514 		    struct page **pages, unsigned int gup_flags);
1515 
1516 int get_user_pages_fast(unsigned long start, int nr_pages,
1517 			unsigned int gup_flags, struct page **pages);
1518 int pin_user_pages_fast(unsigned long start, int nr_pages,
1519 			unsigned int gup_flags, struct page **pages);
1520 
1521 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1522 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1523 			struct task_struct *task, bool bypass_rlim);
1524 
1525 /* Container for pinned pfns / pages */
1526 struct frame_vector {
1527 	unsigned int nr_allocated;	/* Number of frames we have space for */
1528 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1529 	bool got_ref;		/* Did we pin pages by getting page ref? */
1530 	bool is_pfns;		/* Does array contain pages or pfns? */
1531 	void *ptrs[0];		/* Array of pinned pfns / pages. Use
1532 				 * pfns_vector_pages() or pfns_vector_pfns()
1533 				 * for access */
1534 };
1535 
1536 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1537 void frame_vector_destroy(struct frame_vector *vec);
1538 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1539 		     unsigned int gup_flags, struct frame_vector *vec);
1540 void put_vaddr_frames(struct frame_vector *vec);
1541 int frame_vector_to_pages(struct frame_vector *vec);
1542 void frame_vector_to_pfns(struct frame_vector *vec);
1543 
1544 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1545 {
1546 	return vec->nr_frames;
1547 }
1548 
1549 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1550 {
1551 	if (vec->is_pfns) {
1552 		int err = frame_vector_to_pages(vec);
1553 
1554 		if (err)
1555 			return ERR_PTR(err);
1556 	}
1557 	return (struct page **)(vec->ptrs);
1558 }
1559 
1560 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1561 {
1562 	if (!vec->is_pfns)
1563 		frame_vector_to_pfns(vec);
1564 	return (unsigned long *)(vec->ptrs);
1565 }
1566 
1567 struct kvec;
1568 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1569 			struct page **pages);
1570 int get_kernel_page(unsigned long start, int write, struct page **pages);
1571 struct page *get_dump_page(unsigned long addr);
1572 
1573 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1574 extern void do_invalidatepage(struct page *page, unsigned int offset,
1575 			      unsigned int length);
1576 
1577 void __set_page_dirty(struct page *, struct address_space *, int warn);
1578 int __set_page_dirty_nobuffers(struct page *page);
1579 int __set_page_dirty_no_writeback(struct page *page);
1580 int redirty_page_for_writepage(struct writeback_control *wbc,
1581 				struct page *page);
1582 void account_page_dirtied(struct page *page, struct address_space *mapping);
1583 void account_page_cleaned(struct page *page, struct address_space *mapping,
1584 			  struct bdi_writeback *wb);
1585 int set_page_dirty(struct page *page);
1586 int set_page_dirty_lock(struct page *page);
1587 void __cancel_dirty_page(struct page *page);
1588 static inline void cancel_dirty_page(struct page *page)
1589 {
1590 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1591 	if (PageDirty(page))
1592 		__cancel_dirty_page(page);
1593 }
1594 int clear_page_dirty_for_io(struct page *page);
1595 
1596 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1597 
1598 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1599 		unsigned long old_addr, struct vm_area_struct *new_vma,
1600 		unsigned long new_addr, unsigned long len,
1601 		bool need_rmap_locks);
1602 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1603 			      unsigned long end, pgprot_t newprot,
1604 			      int dirty_accountable, int prot_numa);
1605 extern int mprotect_fixup(struct vm_area_struct *vma,
1606 			  struct vm_area_struct **pprev, unsigned long start,
1607 			  unsigned long end, unsigned long newflags);
1608 
1609 /*
1610  * doesn't attempt to fault and will return short.
1611  */
1612 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1613 			  struct page **pages);
1614 /*
1615  * per-process(per-mm_struct) statistics.
1616  */
1617 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1618 {
1619 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1620 
1621 #ifdef SPLIT_RSS_COUNTING
1622 	/*
1623 	 * counter is updated in asynchronous manner and may go to minus.
1624 	 * But it's never be expected number for users.
1625 	 */
1626 	if (val < 0)
1627 		val = 0;
1628 #endif
1629 	return (unsigned long)val;
1630 }
1631 
1632 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1633 
1634 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1635 {
1636 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1637 
1638 	mm_trace_rss_stat(mm, member, count);
1639 }
1640 
1641 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1642 {
1643 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1644 
1645 	mm_trace_rss_stat(mm, member, count);
1646 }
1647 
1648 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1649 {
1650 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1651 
1652 	mm_trace_rss_stat(mm, member, count);
1653 }
1654 
1655 /* Optimized variant when page is already known not to be PageAnon */
1656 static inline int mm_counter_file(struct page *page)
1657 {
1658 	if (PageSwapBacked(page))
1659 		return MM_SHMEMPAGES;
1660 	return MM_FILEPAGES;
1661 }
1662 
1663 static inline int mm_counter(struct page *page)
1664 {
1665 	if (PageAnon(page))
1666 		return MM_ANONPAGES;
1667 	return mm_counter_file(page);
1668 }
1669 
1670 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1671 {
1672 	return get_mm_counter(mm, MM_FILEPAGES) +
1673 		get_mm_counter(mm, MM_ANONPAGES) +
1674 		get_mm_counter(mm, MM_SHMEMPAGES);
1675 }
1676 
1677 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1678 {
1679 	return max(mm->hiwater_rss, get_mm_rss(mm));
1680 }
1681 
1682 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1683 {
1684 	return max(mm->hiwater_vm, mm->total_vm);
1685 }
1686 
1687 static inline void update_hiwater_rss(struct mm_struct *mm)
1688 {
1689 	unsigned long _rss = get_mm_rss(mm);
1690 
1691 	if ((mm)->hiwater_rss < _rss)
1692 		(mm)->hiwater_rss = _rss;
1693 }
1694 
1695 static inline void update_hiwater_vm(struct mm_struct *mm)
1696 {
1697 	if (mm->hiwater_vm < mm->total_vm)
1698 		mm->hiwater_vm = mm->total_vm;
1699 }
1700 
1701 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1702 {
1703 	mm->hiwater_rss = get_mm_rss(mm);
1704 }
1705 
1706 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1707 					 struct mm_struct *mm)
1708 {
1709 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1710 
1711 	if (*maxrss < hiwater_rss)
1712 		*maxrss = hiwater_rss;
1713 }
1714 
1715 #if defined(SPLIT_RSS_COUNTING)
1716 void sync_mm_rss(struct mm_struct *mm);
1717 #else
1718 static inline void sync_mm_rss(struct mm_struct *mm)
1719 {
1720 }
1721 #endif
1722 
1723 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1724 static inline int pte_devmap(pte_t pte)
1725 {
1726 	return 0;
1727 }
1728 #endif
1729 
1730 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1731 
1732 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1733 			       spinlock_t **ptl);
1734 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1735 				    spinlock_t **ptl)
1736 {
1737 	pte_t *ptep;
1738 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1739 	return ptep;
1740 }
1741 
1742 #ifdef __PAGETABLE_P4D_FOLDED
1743 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1744 						unsigned long address)
1745 {
1746 	return 0;
1747 }
1748 #else
1749 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
1750 #endif
1751 
1752 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
1753 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1754 						unsigned long address)
1755 {
1756 	return 0;
1757 }
1758 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
1759 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
1760 
1761 #else
1762 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
1763 
1764 static inline void mm_inc_nr_puds(struct mm_struct *mm)
1765 {
1766 	if (mm_pud_folded(mm))
1767 		return;
1768 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1769 }
1770 
1771 static inline void mm_dec_nr_puds(struct mm_struct *mm)
1772 {
1773 	if (mm_pud_folded(mm))
1774 		return;
1775 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
1776 }
1777 #endif
1778 
1779 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
1780 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1781 						unsigned long address)
1782 {
1783 	return 0;
1784 }
1785 
1786 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1787 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1788 
1789 #else
1790 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
1791 
1792 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1793 {
1794 	if (mm_pmd_folded(mm))
1795 		return;
1796 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1797 }
1798 
1799 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1800 {
1801 	if (mm_pmd_folded(mm))
1802 		return;
1803 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
1804 }
1805 #endif
1806 
1807 #ifdef CONFIG_MMU
1808 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
1809 {
1810 	atomic_long_set(&mm->pgtables_bytes, 0);
1811 }
1812 
1813 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1814 {
1815 	return atomic_long_read(&mm->pgtables_bytes);
1816 }
1817 
1818 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
1819 {
1820 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1821 }
1822 
1823 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
1824 {
1825 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
1826 }
1827 #else
1828 
1829 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
1830 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
1831 {
1832 	return 0;
1833 }
1834 
1835 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
1836 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
1837 #endif
1838 
1839 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
1840 int __pte_alloc_kernel(pmd_t *pmd);
1841 
1842 #if defined(CONFIG_MMU)
1843 
1844 /*
1845  * The following ifdef needed to get the 5level-fixup.h header to work.
1846  * Remove it when 5level-fixup.h has been removed.
1847  */
1848 #ifndef __ARCH_HAS_5LEVEL_HACK
1849 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1850 		unsigned long address)
1851 {
1852 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
1853 		NULL : p4d_offset(pgd, address);
1854 }
1855 
1856 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
1857 		unsigned long address)
1858 {
1859 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
1860 		NULL : pud_offset(p4d, address);
1861 }
1862 #endif /* !__ARCH_HAS_5LEVEL_HACK */
1863 
1864 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1865 {
1866 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1867 		NULL: pmd_offset(pud, address);
1868 }
1869 #endif /* CONFIG_MMU */
1870 
1871 #if USE_SPLIT_PTE_PTLOCKS
1872 #if ALLOC_SPLIT_PTLOCKS
1873 void __init ptlock_cache_init(void);
1874 extern bool ptlock_alloc(struct page *page);
1875 extern void ptlock_free(struct page *page);
1876 
1877 static inline spinlock_t *ptlock_ptr(struct page *page)
1878 {
1879 	return page->ptl;
1880 }
1881 #else /* ALLOC_SPLIT_PTLOCKS */
1882 static inline void ptlock_cache_init(void)
1883 {
1884 }
1885 
1886 static inline bool ptlock_alloc(struct page *page)
1887 {
1888 	return true;
1889 }
1890 
1891 static inline void ptlock_free(struct page *page)
1892 {
1893 }
1894 
1895 static inline spinlock_t *ptlock_ptr(struct page *page)
1896 {
1897 	return &page->ptl;
1898 }
1899 #endif /* ALLOC_SPLIT_PTLOCKS */
1900 
1901 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1902 {
1903 	return ptlock_ptr(pmd_page(*pmd));
1904 }
1905 
1906 static inline bool ptlock_init(struct page *page)
1907 {
1908 	/*
1909 	 * prep_new_page() initialize page->private (and therefore page->ptl)
1910 	 * with 0. Make sure nobody took it in use in between.
1911 	 *
1912 	 * It can happen if arch try to use slab for page table allocation:
1913 	 * slab code uses page->slab_cache, which share storage with page->ptl.
1914 	 */
1915 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
1916 	if (!ptlock_alloc(page))
1917 		return false;
1918 	spin_lock_init(ptlock_ptr(page));
1919 	return true;
1920 }
1921 
1922 #else	/* !USE_SPLIT_PTE_PTLOCKS */
1923 /*
1924  * We use mm->page_table_lock to guard all pagetable pages of the mm.
1925  */
1926 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1927 {
1928 	return &mm->page_table_lock;
1929 }
1930 static inline void ptlock_cache_init(void) {}
1931 static inline bool ptlock_init(struct page *page) { return true; }
1932 static inline void ptlock_free(struct page *page) {}
1933 #endif /* USE_SPLIT_PTE_PTLOCKS */
1934 
1935 static inline void pgtable_init(void)
1936 {
1937 	ptlock_cache_init();
1938 	pgtable_cache_init();
1939 }
1940 
1941 static inline bool pgtable_pte_page_ctor(struct page *page)
1942 {
1943 	if (!ptlock_init(page))
1944 		return false;
1945 	__SetPageTable(page);
1946 	inc_zone_page_state(page, NR_PAGETABLE);
1947 	return true;
1948 }
1949 
1950 static inline void pgtable_pte_page_dtor(struct page *page)
1951 {
1952 	ptlock_free(page);
1953 	__ClearPageTable(page);
1954 	dec_zone_page_state(page, NR_PAGETABLE);
1955 }
1956 
1957 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
1958 ({							\
1959 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
1960 	pte_t *__pte = pte_offset_map(pmd, address);	\
1961 	*(ptlp) = __ptl;				\
1962 	spin_lock(__ptl);				\
1963 	__pte;						\
1964 })
1965 
1966 #define pte_unmap_unlock(pte, ptl)	do {		\
1967 	spin_unlock(ptl);				\
1968 	pte_unmap(pte);					\
1969 } while (0)
1970 
1971 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
1972 
1973 #define pte_alloc_map(mm, pmd, address)			\
1974 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
1975 
1976 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
1977 	(pte_alloc(mm, pmd) ?			\
1978 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
1979 
1980 #define pte_alloc_kernel(pmd, address)			\
1981 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
1982 		NULL: pte_offset_kernel(pmd, address))
1983 
1984 #if USE_SPLIT_PMD_PTLOCKS
1985 
1986 static struct page *pmd_to_page(pmd_t *pmd)
1987 {
1988 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1989 	return virt_to_page((void *)((unsigned long) pmd & mask));
1990 }
1991 
1992 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1993 {
1994 	return ptlock_ptr(pmd_to_page(pmd));
1995 }
1996 
1997 static inline bool pgtable_pmd_page_ctor(struct page *page)
1998 {
1999 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2000 	page->pmd_huge_pte = NULL;
2001 #endif
2002 	return ptlock_init(page);
2003 }
2004 
2005 static inline void pgtable_pmd_page_dtor(struct page *page)
2006 {
2007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2008 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2009 #endif
2010 	ptlock_free(page);
2011 }
2012 
2013 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2014 
2015 #else
2016 
2017 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2018 {
2019 	return &mm->page_table_lock;
2020 }
2021 
2022 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2023 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2024 
2025 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2026 
2027 #endif
2028 
2029 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2030 {
2031 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2032 	spin_lock(ptl);
2033 	return ptl;
2034 }
2035 
2036 /*
2037  * No scalability reason to split PUD locks yet, but follow the same pattern
2038  * as the PMD locks to make it easier if we decide to.  The VM should not be
2039  * considered ready to switch to split PUD locks yet; there may be places
2040  * which need to be converted from page_table_lock.
2041  */
2042 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2043 {
2044 	return &mm->page_table_lock;
2045 }
2046 
2047 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2048 {
2049 	spinlock_t *ptl = pud_lockptr(mm, pud);
2050 
2051 	spin_lock(ptl);
2052 	return ptl;
2053 }
2054 
2055 extern void __init pagecache_init(void);
2056 extern void free_area_init(unsigned long * zones_size);
2057 extern void __init free_area_init_node(int nid, unsigned long * zones_size,
2058 		unsigned long zone_start_pfn, unsigned long *zholes_size);
2059 extern void free_initmem(void);
2060 
2061 /*
2062  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2063  * into the buddy system. The freed pages will be poisoned with pattern
2064  * "poison" if it's within range [0, UCHAR_MAX].
2065  * Return pages freed into the buddy system.
2066  */
2067 extern unsigned long free_reserved_area(void *start, void *end,
2068 					int poison, const char *s);
2069 
2070 #ifdef	CONFIG_HIGHMEM
2071 /*
2072  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2073  * and totalram_pages.
2074  */
2075 extern void free_highmem_page(struct page *page);
2076 #endif
2077 
2078 extern void adjust_managed_page_count(struct page *page, long count);
2079 extern void mem_init_print_info(const char *str);
2080 
2081 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2082 
2083 /* Free the reserved page into the buddy system, so it gets managed. */
2084 static inline void __free_reserved_page(struct page *page)
2085 {
2086 	ClearPageReserved(page);
2087 	init_page_count(page);
2088 	__free_page(page);
2089 }
2090 
2091 static inline void free_reserved_page(struct page *page)
2092 {
2093 	__free_reserved_page(page);
2094 	adjust_managed_page_count(page, 1);
2095 }
2096 
2097 static inline void mark_page_reserved(struct page *page)
2098 {
2099 	SetPageReserved(page);
2100 	adjust_managed_page_count(page, -1);
2101 }
2102 
2103 /*
2104  * Default method to free all the __init memory into the buddy system.
2105  * The freed pages will be poisoned with pattern "poison" if it's within
2106  * range [0, UCHAR_MAX].
2107  * Return pages freed into the buddy system.
2108  */
2109 static inline unsigned long free_initmem_default(int poison)
2110 {
2111 	extern char __init_begin[], __init_end[];
2112 
2113 	return free_reserved_area(&__init_begin, &__init_end,
2114 				  poison, "unused kernel");
2115 }
2116 
2117 static inline unsigned long get_num_physpages(void)
2118 {
2119 	int nid;
2120 	unsigned long phys_pages = 0;
2121 
2122 	for_each_online_node(nid)
2123 		phys_pages += node_present_pages(nid);
2124 
2125 	return phys_pages;
2126 }
2127 
2128 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
2129 /*
2130  * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
2131  * zones, allocate the backing mem_map and account for memory holes in a more
2132  * architecture independent manner. This is a substitute for creating the
2133  * zone_sizes[] and zholes_size[] arrays and passing them to
2134  * free_area_init_node()
2135  *
2136  * An architecture is expected to register range of page frames backed by
2137  * physical memory with memblock_add[_node]() before calling
2138  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
2139  * usage, an architecture is expected to do something like
2140  *
2141  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2142  * 							 max_highmem_pfn};
2143  * for_each_valid_physical_page_range()
2144  * 	memblock_add_node(base, size, nid)
2145  * free_area_init_nodes(max_zone_pfns);
2146  *
2147  * free_bootmem_with_active_regions() calls free_bootmem_node() for each
2148  * registered physical page range.  Similarly
2149  * sparse_memory_present_with_active_regions() calls memory_present() for
2150  * each range when SPARSEMEM is enabled.
2151  *
2152  * See mm/page_alloc.c for more information on each function exposed by
2153  * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
2154  */
2155 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
2156 unsigned long node_map_pfn_alignment(void);
2157 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2158 						unsigned long end_pfn);
2159 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2160 						unsigned long end_pfn);
2161 extern void get_pfn_range_for_nid(unsigned int nid,
2162 			unsigned long *start_pfn, unsigned long *end_pfn);
2163 extern unsigned long find_min_pfn_with_active_regions(void);
2164 extern void free_bootmem_with_active_regions(int nid,
2165 						unsigned long max_low_pfn);
2166 extern void sparse_memory_present_with_active_regions(int nid);
2167 
2168 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
2169 
2170 #if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
2171     !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
2172 static inline int __early_pfn_to_nid(unsigned long pfn,
2173 					struct mminit_pfnnid_cache *state)
2174 {
2175 	return 0;
2176 }
2177 #else
2178 /* please see mm/page_alloc.c */
2179 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2180 /* there is a per-arch backend function. */
2181 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2182 					struct mminit_pfnnid_cache *state);
2183 #endif
2184 
2185 extern void set_dma_reserve(unsigned long new_dma_reserve);
2186 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2187 		enum memmap_context, struct vmem_altmap *);
2188 extern void setup_per_zone_wmarks(void);
2189 extern int __meminit init_per_zone_wmark_min(void);
2190 extern void mem_init(void);
2191 extern void __init mmap_init(void);
2192 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2193 extern long si_mem_available(void);
2194 extern void si_meminfo(struct sysinfo * val);
2195 extern void si_meminfo_node(struct sysinfo *val, int nid);
2196 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2197 extern unsigned long arch_reserved_kernel_pages(void);
2198 #endif
2199 
2200 extern __printf(3, 4)
2201 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2202 
2203 extern void setup_per_cpu_pageset(void);
2204 
2205 /* page_alloc.c */
2206 extern int min_free_kbytes;
2207 extern int watermark_boost_factor;
2208 extern int watermark_scale_factor;
2209 
2210 /* nommu.c */
2211 extern atomic_long_t mmap_pages_allocated;
2212 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2213 
2214 /* interval_tree.c */
2215 void vma_interval_tree_insert(struct vm_area_struct *node,
2216 			      struct rb_root_cached *root);
2217 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2218 				    struct vm_area_struct *prev,
2219 				    struct rb_root_cached *root);
2220 void vma_interval_tree_remove(struct vm_area_struct *node,
2221 			      struct rb_root_cached *root);
2222 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2223 				unsigned long start, unsigned long last);
2224 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2225 				unsigned long start, unsigned long last);
2226 
2227 #define vma_interval_tree_foreach(vma, root, start, last)		\
2228 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2229 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2230 
2231 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2232 				   struct rb_root_cached *root);
2233 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2234 				   struct rb_root_cached *root);
2235 struct anon_vma_chain *
2236 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2237 				  unsigned long start, unsigned long last);
2238 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2239 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2240 #ifdef CONFIG_DEBUG_VM_RB
2241 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2242 #endif
2243 
2244 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2245 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2246 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2247 
2248 /* mmap.c */
2249 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2250 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2251 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2252 	struct vm_area_struct *expand);
2253 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2254 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2255 {
2256 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2257 }
2258 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2259 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2260 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2261 	struct mempolicy *, struct vm_userfaultfd_ctx);
2262 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2263 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2264 	unsigned long addr, int new_below);
2265 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2266 	unsigned long addr, int new_below);
2267 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2268 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2269 	struct rb_node **, struct rb_node *);
2270 extern void unlink_file_vma(struct vm_area_struct *);
2271 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2272 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2273 	bool *need_rmap_locks);
2274 extern void exit_mmap(struct mm_struct *);
2275 
2276 static inline int check_data_rlimit(unsigned long rlim,
2277 				    unsigned long new,
2278 				    unsigned long start,
2279 				    unsigned long end_data,
2280 				    unsigned long start_data)
2281 {
2282 	if (rlim < RLIM_INFINITY) {
2283 		if (((new - start) + (end_data - start_data)) > rlim)
2284 			return -ENOSPC;
2285 	}
2286 
2287 	return 0;
2288 }
2289 
2290 extern int mm_take_all_locks(struct mm_struct *mm);
2291 extern void mm_drop_all_locks(struct mm_struct *mm);
2292 
2293 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2294 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2295 extern struct file *get_task_exe_file(struct task_struct *task);
2296 
2297 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2298 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2299 
2300 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2301 				   const struct vm_special_mapping *sm);
2302 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2303 				   unsigned long addr, unsigned long len,
2304 				   unsigned long flags,
2305 				   const struct vm_special_mapping *spec);
2306 /* This is an obsolete alternative to _install_special_mapping. */
2307 extern int install_special_mapping(struct mm_struct *mm,
2308 				   unsigned long addr, unsigned long len,
2309 				   unsigned long flags, struct page **pages);
2310 
2311 unsigned long randomize_stack_top(unsigned long stack_top);
2312 
2313 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2314 
2315 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2316 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2317 	struct list_head *uf);
2318 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2319 	unsigned long len, unsigned long prot, unsigned long flags,
2320 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
2321 	struct list_head *uf);
2322 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2323 		       struct list_head *uf, bool downgrade);
2324 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2325 		     struct list_head *uf);
2326 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2327 
2328 static inline unsigned long
2329 do_mmap_pgoff(struct file *file, unsigned long addr,
2330 	unsigned long len, unsigned long prot, unsigned long flags,
2331 	unsigned long pgoff, unsigned long *populate,
2332 	struct list_head *uf)
2333 {
2334 	return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate, uf);
2335 }
2336 
2337 #ifdef CONFIG_MMU
2338 extern int __mm_populate(unsigned long addr, unsigned long len,
2339 			 int ignore_errors);
2340 static inline void mm_populate(unsigned long addr, unsigned long len)
2341 {
2342 	/* Ignore errors */
2343 	(void) __mm_populate(addr, len, 1);
2344 }
2345 #else
2346 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2347 #endif
2348 
2349 /* These take the mm semaphore themselves */
2350 extern int __must_check vm_brk(unsigned long, unsigned long);
2351 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2352 extern int vm_munmap(unsigned long, size_t);
2353 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2354         unsigned long, unsigned long,
2355         unsigned long, unsigned long);
2356 
2357 struct vm_unmapped_area_info {
2358 #define VM_UNMAPPED_AREA_TOPDOWN 1
2359 	unsigned long flags;
2360 	unsigned long length;
2361 	unsigned long low_limit;
2362 	unsigned long high_limit;
2363 	unsigned long align_mask;
2364 	unsigned long align_offset;
2365 };
2366 
2367 extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2368 extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2369 
2370 /*
2371  * Search for an unmapped address range.
2372  *
2373  * We are looking for a range that:
2374  * - does not intersect with any VMA;
2375  * - is contained within the [low_limit, high_limit) interval;
2376  * - is at least the desired size.
2377  * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2378  */
2379 static inline unsigned long
2380 vm_unmapped_area(struct vm_unmapped_area_info *info)
2381 {
2382 	if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
2383 		return unmapped_area_topdown(info);
2384 	else
2385 		return unmapped_area(info);
2386 }
2387 
2388 /* truncate.c */
2389 extern void truncate_inode_pages(struct address_space *, loff_t);
2390 extern void truncate_inode_pages_range(struct address_space *,
2391 				       loff_t lstart, loff_t lend);
2392 extern void truncate_inode_pages_final(struct address_space *);
2393 
2394 /* generic vm_area_ops exported for stackable file systems */
2395 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2396 extern void filemap_map_pages(struct vm_fault *vmf,
2397 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2398 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2399 
2400 /* mm/page-writeback.c */
2401 int __must_check write_one_page(struct page *page);
2402 void task_dirty_inc(struct task_struct *tsk);
2403 
2404 /* readahead.c */
2405 #define VM_READAHEAD_PAGES	(SZ_128K / PAGE_SIZE)
2406 
2407 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
2408 			pgoff_t offset, unsigned long nr_to_read);
2409 
2410 void page_cache_sync_readahead(struct address_space *mapping,
2411 			       struct file_ra_state *ra,
2412 			       struct file *filp,
2413 			       pgoff_t offset,
2414 			       unsigned long size);
2415 
2416 void page_cache_async_readahead(struct address_space *mapping,
2417 				struct file_ra_state *ra,
2418 				struct file *filp,
2419 				struct page *pg,
2420 				pgoff_t offset,
2421 				unsigned long size);
2422 
2423 extern unsigned long stack_guard_gap;
2424 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2425 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2426 
2427 /* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2428 extern int expand_downwards(struct vm_area_struct *vma,
2429 		unsigned long address);
2430 #if VM_GROWSUP
2431 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2432 #else
2433   #define expand_upwards(vma, address) (0)
2434 #endif
2435 
2436 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2437 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2438 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2439 					     struct vm_area_struct **pprev);
2440 
2441 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2442    NULL if none.  Assume start_addr < end_addr. */
2443 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2444 {
2445 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2446 
2447 	if (vma && end_addr <= vma->vm_start)
2448 		vma = NULL;
2449 	return vma;
2450 }
2451 
2452 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2453 {
2454 	unsigned long vm_start = vma->vm_start;
2455 
2456 	if (vma->vm_flags & VM_GROWSDOWN) {
2457 		vm_start -= stack_guard_gap;
2458 		if (vm_start > vma->vm_start)
2459 			vm_start = 0;
2460 	}
2461 	return vm_start;
2462 }
2463 
2464 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2465 {
2466 	unsigned long vm_end = vma->vm_end;
2467 
2468 	if (vma->vm_flags & VM_GROWSUP) {
2469 		vm_end += stack_guard_gap;
2470 		if (vm_end < vma->vm_end)
2471 			vm_end = -PAGE_SIZE;
2472 	}
2473 	return vm_end;
2474 }
2475 
2476 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2477 {
2478 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2479 }
2480 
2481 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2482 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2483 				unsigned long vm_start, unsigned long vm_end)
2484 {
2485 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2486 
2487 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2488 		vma = NULL;
2489 
2490 	return vma;
2491 }
2492 
2493 static inline bool range_in_vma(struct vm_area_struct *vma,
2494 				unsigned long start, unsigned long end)
2495 {
2496 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2497 }
2498 
2499 #ifdef CONFIG_MMU
2500 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2501 void vma_set_page_prot(struct vm_area_struct *vma);
2502 #else
2503 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2504 {
2505 	return __pgprot(0);
2506 }
2507 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2508 {
2509 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2510 }
2511 #endif
2512 
2513 #ifdef CONFIG_NUMA_BALANCING
2514 unsigned long change_prot_numa(struct vm_area_struct *vma,
2515 			unsigned long start, unsigned long end);
2516 #endif
2517 
2518 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2519 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2520 			unsigned long pfn, unsigned long size, pgprot_t);
2521 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2522 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2523 				unsigned long num);
2524 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2525 				unsigned long num);
2526 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2527 			unsigned long pfn);
2528 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2529 			unsigned long pfn, pgprot_t pgprot);
2530 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2531 			pfn_t pfn);
2532 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2533 			pfn_t pfn, pgprot_t pgprot);
2534 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2535 		unsigned long addr, pfn_t pfn);
2536 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2537 
2538 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2539 				unsigned long addr, struct page *page)
2540 {
2541 	int err = vm_insert_page(vma, addr, page);
2542 
2543 	if (err == -ENOMEM)
2544 		return VM_FAULT_OOM;
2545 	if (err < 0 && err != -EBUSY)
2546 		return VM_FAULT_SIGBUS;
2547 
2548 	return VM_FAULT_NOPAGE;
2549 }
2550 
2551 static inline vm_fault_t vmf_error(int err)
2552 {
2553 	if (err == -ENOMEM)
2554 		return VM_FAULT_OOM;
2555 	return VM_FAULT_SIGBUS;
2556 }
2557 
2558 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2559 			 unsigned int foll_flags);
2560 
2561 #define FOLL_WRITE	0x01	/* check pte is writable */
2562 #define FOLL_TOUCH	0x02	/* mark page accessed */
2563 #define FOLL_GET	0x04	/* do get_page on page */
2564 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2565 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2566 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2567 				 * and return without waiting upon it */
2568 #define FOLL_POPULATE	0x40	/* fault in page */
2569 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2570 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2571 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2572 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2573 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2574 #define FOLL_MLOCK	0x1000	/* lock present pages */
2575 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2576 #define FOLL_COW	0x4000	/* internal GUP flag */
2577 #define FOLL_ANON	0x8000	/* don't do file mappings */
2578 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2579 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2580 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2581 
2582 /*
2583  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2584  * other. Here is what they mean, and how to use them:
2585  *
2586  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2587  * period _often_ under userspace control.  This is in contrast to
2588  * iov_iter_get_pages(), whose usages are transient.
2589  *
2590  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2591  * lifetime enforced by the filesystem and we need guarantees that longterm
2592  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2593  * the filesystem.  Ideas for this coordination include revoking the longterm
2594  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2595  * added after the problem with filesystems was found FS DAX VMAs are
2596  * specifically failed.  Filesystem pages are still subject to bugs and use of
2597  * FOLL_LONGTERM should be avoided on those pages.
2598  *
2599  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2600  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2601  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2602  * is due to an incompatibility with the FS DAX check and
2603  * FAULT_FLAG_ALLOW_RETRY.
2604  *
2605  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2606  * that region.  And so, CMA attempts to migrate the page before pinning, when
2607  * FOLL_LONGTERM is specified.
2608  *
2609  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2610  * but an additional pin counting system) will be invoked. This is intended for
2611  * anything that gets a page reference and then touches page data (for example,
2612  * Direct IO). This lets the filesystem know that some non-file-system entity is
2613  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2614  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2615  * a call to unpin_user_page().
2616  *
2617  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2618  * and separate refcounting mechanisms, however, and that means that each has
2619  * its own acquire and release mechanisms:
2620  *
2621  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2622  *
2623  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2624  *
2625  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2626  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2627  * calls applied to them, and that's perfectly OK. This is a constraint on the
2628  * callers, not on the pages.)
2629  *
2630  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2631  * directly by the caller. That's in order to help avoid mismatches when
2632  * releasing pages: get_user_pages*() pages must be released via put_page(),
2633  * while pin_user_pages*() pages must be released via unpin_user_page().
2634  *
2635  * Please see Documentation/vm/pin_user_pages.rst for more information.
2636  */
2637 
2638 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2639 {
2640 	if (vm_fault & VM_FAULT_OOM)
2641 		return -ENOMEM;
2642 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2643 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2644 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2645 		return -EFAULT;
2646 	return 0;
2647 }
2648 
2649 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2650 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2651 			       unsigned long size, pte_fn_t fn, void *data);
2652 extern int apply_to_existing_page_range(struct mm_struct *mm,
2653 				   unsigned long address, unsigned long size,
2654 				   pte_fn_t fn, void *data);
2655 
2656 #ifdef CONFIG_PAGE_POISONING
2657 extern bool page_poisoning_enabled(void);
2658 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2659 #else
2660 static inline bool page_poisoning_enabled(void) { return false; }
2661 static inline void kernel_poison_pages(struct page *page, int numpages,
2662 					int enable) { }
2663 #endif
2664 
2665 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2666 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2667 #else
2668 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2669 #endif
2670 static inline bool want_init_on_alloc(gfp_t flags)
2671 {
2672 	if (static_branch_unlikely(&init_on_alloc) &&
2673 	    !page_poisoning_enabled())
2674 		return true;
2675 	return flags & __GFP_ZERO;
2676 }
2677 
2678 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2679 DECLARE_STATIC_KEY_TRUE(init_on_free);
2680 #else
2681 DECLARE_STATIC_KEY_FALSE(init_on_free);
2682 #endif
2683 static inline bool want_init_on_free(void)
2684 {
2685 	return static_branch_unlikely(&init_on_free) &&
2686 	       !page_poisoning_enabled();
2687 }
2688 
2689 #ifdef CONFIG_DEBUG_PAGEALLOC
2690 extern void init_debug_pagealloc(void);
2691 #else
2692 static inline void init_debug_pagealloc(void) {}
2693 #endif
2694 extern bool _debug_pagealloc_enabled_early;
2695 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2696 
2697 static inline bool debug_pagealloc_enabled(void)
2698 {
2699 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2700 		_debug_pagealloc_enabled_early;
2701 }
2702 
2703 /*
2704  * For use in fast paths after init_debug_pagealloc() has run, or when a
2705  * false negative result is not harmful when called too early.
2706  */
2707 static inline bool debug_pagealloc_enabled_static(void)
2708 {
2709 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2710 		return false;
2711 
2712 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2713 }
2714 
2715 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2716 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2717 
2718 static inline void
2719 kernel_map_pages(struct page *page, int numpages, int enable)
2720 {
2721 	__kernel_map_pages(page, numpages, enable);
2722 }
2723 #ifdef CONFIG_HIBERNATION
2724 extern bool kernel_page_present(struct page *page);
2725 #endif	/* CONFIG_HIBERNATION */
2726 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2727 static inline void
2728 kernel_map_pages(struct page *page, int numpages, int enable) {}
2729 #ifdef CONFIG_HIBERNATION
2730 static inline bool kernel_page_present(struct page *page) { return true; }
2731 #endif	/* CONFIG_HIBERNATION */
2732 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2733 
2734 #ifdef __HAVE_ARCH_GATE_AREA
2735 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2736 extern int in_gate_area_no_mm(unsigned long addr);
2737 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2738 #else
2739 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2740 {
2741 	return NULL;
2742 }
2743 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2744 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2745 {
2746 	return 0;
2747 }
2748 #endif	/* __HAVE_ARCH_GATE_AREA */
2749 
2750 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2751 
2752 #ifdef CONFIG_SYSCTL
2753 extern int sysctl_drop_caches;
2754 int drop_caches_sysctl_handler(struct ctl_table *, int,
2755 					void __user *, size_t *, loff_t *);
2756 #endif
2757 
2758 void drop_slab(void);
2759 void drop_slab_node(int nid);
2760 
2761 #ifndef CONFIG_MMU
2762 #define randomize_va_space 0
2763 #else
2764 extern int randomize_va_space;
2765 #endif
2766 
2767 const char * arch_vma_name(struct vm_area_struct *vma);
2768 #ifdef CONFIG_MMU
2769 void print_vma_addr(char *prefix, unsigned long rip);
2770 #else
2771 static inline void print_vma_addr(char *prefix, unsigned long rip)
2772 {
2773 }
2774 #endif
2775 
2776 void *sparse_buffer_alloc(unsigned long size);
2777 struct page * __populate_section_memmap(unsigned long pfn,
2778 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2779 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2780 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2781 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2782 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2783 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
2784 void *vmemmap_alloc_block(unsigned long size, int node);
2785 struct vmem_altmap;
2786 void *vmemmap_alloc_block_buf(unsigned long size, int node);
2787 void *altmap_alloc_block_buf(unsigned long size, struct vmem_altmap *altmap);
2788 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2789 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2790 			       int node);
2791 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2792 		struct vmem_altmap *altmap);
2793 void vmemmap_populate_print_last(void);
2794 #ifdef CONFIG_MEMORY_HOTPLUG
2795 void vmemmap_free(unsigned long start, unsigned long end,
2796 		struct vmem_altmap *altmap);
2797 #endif
2798 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2799 				  unsigned long nr_pages);
2800 
2801 enum mf_flags {
2802 	MF_COUNT_INCREASED = 1 << 0,
2803 	MF_ACTION_REQUIRED = 1 << 1,
2804 	MF_MUST_KILL = 1 << 2,
2805 	MF_SOFT_OFFLINE = 1 << 3,
2806 };
2807 extern int memory_failure(unsigned long pfn, int flags);
2808 extern void memory_failure_queue(unsigned long pfn, int flags);
2809 extern int unpoison_memory(unsigned long pfn);
2810 extern int get_hwpoison_page(struct page *page);
2811 #define put_hwpoison_page(page)	put_page(page)
2812 extern int sysctl_memory_failure_early_kill;
2813 extern int sysctl_memory_failure_recovery;
2814 extern void shake_page(struct page *p, int access);
2815 extern atomic_long_t num_poisoned_pages __read_mostly;
2816 extern int soft_offline_page(unsigned long pfn, int flags);
2817 
2818 
2819 /*
2820  * Error handlers for various types of pages.
2821  */
2822 enum mf_result {
2823 	MF_IGNORED,	/* Error: cannot be handled */
2824 	MF_FAILED,	/* Error: handling failed */
2825 	MF_DELAYED,	/* Will be handled later */
2826 	MF_RECOVERED,	/* Successfully recovered */
2827 };
2828 
2829 enum mf_action_page_type {
2830 	MF_MSG_KERNEL,
2831 	MF_MSG_KERNEL_HIGH_ORDER,
2832 	MF_MSG_SLAB,
2833 	MF_MSG_DIFFERENT_COMPOUND,
2834 	MF_MSG_POISONED_HUGE,
2835 	MF_MSG_HUGE,
2836 	MF_MSG_FREE_HUGE,
2837 	MF_MSG_NON_PMD_HUGE,
2838 	MF_MSG_UNMAP_FAILED,
2839 	MF_MSG_DIRTY_SWAPCACHE,
2840 	MF_MSG_CLEAN_SWAPCACHE,
2841 	MF_MSG_DIRTY_MLOCKED_LRU,
2842 	MF_MSG_CLEAN_MLOCKED_LRU,
2843 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
2844 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
2845 	MF_MSG_DIRTY_LRU,
2846 	MF_MSG_CLEAN_LRU,
2847 	MF_MSG_TRUNCATED_LRU,
2848 	MF_MSG_BUDDY,
2849 	MF_MSG_BUDDY_2ND,
2850 	MF_MSG_DAX,
2851 	MF_MSG_UNKNOWN,
2852 };
2853 
2854 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2855 extern void clear_huge_page(struct page *page,
2856 			    unsigned long addr_hint,
2857 			    unsigned int pages_per_huge_page);
2858 extern void copy_user_huge_page(struct page *dst, struct page *src,
2859 				unsigned long addr_hint,
2860 				struct vm_area_struct *vma,
2861 				unsigned int pages_per_huge_page);
2862 extern long copy_huge_page_from_user(struct page *dst_page,
2863 				const void __user *usr_src,
2864 				unsigned int pages_per_huge_page,
2865 				bool allow_pagefault);
2866 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2867 
2868 #ifdef CONFIG_DEBUG_PAGEALLOC
2869 extern unsigned int _debug_guardpage_minorder;
2870 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
2871 
2872 static inline unsigned int debug_guardpage_minorder(void)
2873 {
2874 	return _debug_guardpage_minorder;
2875 }
2876 
2877 static inline bool debug_guardpage_enabled(void)
2878 {
2879 	return static_branch_unlikely(&_debug_guardpage_enabled);
2880 }
2881 
2882 static inline bool page_is_guard(struct page *page)
2883 {
2884 	if (!debug_guardpage_enabled())
2885 		return false;
2886 
2887 	return PageGuard(page);
2888 }
2889 #else
2890 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
2891 static inline bool debug_guardpage_enabled(void) { return false; }
2892 static inline bool page_is_guard(struct page *page) { return false; }
2893 #endif /* CONFIG_DEBUG_PAGEALLOC */
2894 
2895 #if MAX_NUMNODES > 1
2896 void __init setup_nr_node_ids(void);
2897 #else
2898 static inline void setup_nr_node_ids(void) {}
2899 #endif
2900 
2901 extern int memcmp_pages(struct page *page1, struct page *page2);
2902 
2903 static inline int pages_identical(struct page *page1, struct page *page2)
2904 {
2905 	return !memcmp_pages(page1, page2);
2906 }
2907 
2908 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
2909 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
2910 						pgoff_t first_index, pgoff_t nr,
2911 						pgoff_t bitmap_pgoff,
2912 						unsigned long *bitmap,
2913 						pgoff_t *start,
2914 						pgoff_t *end);
2915 
2916 unsigned long wp_shared_mapping_range(struct address_space *mapping,
2917 				      pgoff_t first_index, pgoff_t nr);
2918 #endif
2919 
2920 #endif /* __KERNEL__ */
2921 #endif /* _LINUX_MM_H */
2922