1 /* SPDX-License-Identifier: GPL-2.0 */ 2 #ifndef _LINUX_MM_H 3 #define _LINUX_MM_H 4 5 #include <linux/errno.h> 6 7 #ifdef __KERNEL__ 8 9 #include <linux/mmdebug.h> 10 #include <linux/gfp.h> 11 #include <linux/bug.h> 12 #include <linux/list.h> 13 #include <linux/mmzone.h> 14 #include <linux/rbtree.h> 15 #include <linux/atomic.h> 16 #include <linux/debug_locks.h> 17 #include <linux/mm_types.h> 18 #include <linux/mmap_lock.h> 19 #include <linux/range.h> 20 #include <linux/pfn.h> 21 #include <linux/percpu-refcount.h> 22 #include <linux/bit_spinlock.h> 23 #include <linux/shrinker.h> 24 #include <linux/resource.h> 25 #include <linux/page_ext.h> 26 #include <linux/err.h> 27 #include <linux/page_ref.h> 28 #include <linux/memremap.h> 29 #include <linux/overflow.h> 30 #include <linux/sizes.h> 31 #include <linux/sched.h> 32 #include <linux/pgtable.h> 33 34 struct mempolicy; 35 struct anon_vma; 36 struct anon_vma_chain; 37 struct file_ra_state; 38 struct user_struct; 39 struct writeback_control; 40 struct bdi_writeback; 41 struct pt_regs; 42 43 void init_mm_internals(void); 44 45 #ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */ 46 extern unsigned long max_mapnr; 47 48 static inline void set_max_mapnr(unsigned long limit) 49 { 50 max_mapnr = limit; 51 } 52 #else 53 static inline void set_max_mapnr(unsigned long limit) { } 54 #endif 55 56 extern atomic_long_t _totalram_pages; 57 static inline unsigned long totalram_pages(void) 58 { 59 return (unsigned long)atomic_long_read(&_totalram_pages); 60 } 61 62 static inline void totalram_pages_inc(void) 63 { 64 atomic_long_inc(&_totalram_pages); 65 } 66 67 static inline void totalram_pages_dec(void) 68 { 69 atomic_long_dec(&_totalram_pages); 70 } 71 72 static inline void totalram_pages_add(long count) 73 { 74 atomic_long_add(count, &_totalram_pages); 75 } 76 77 extern void * high_memory; 78 extern int page_cluster; 79 80 #ifdef CONFIG_SYSCTL 81 extern int sysctl_legacy_va_layout; 82 #else 83 #define sysctl_legacy_va_layout 0 84 #endif 85 86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS 87 extern const int mmap_rnd_bits_min; 88 extern const int mmap_rnd_bits_max; 89 extern int mmap_rnd_bits __read_mostly; 90 #endif 91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS 92 extern const int mmap_rnd_compat_bits_min; 93 extern const int mmap_rnd_compat_bits_max; 94 extern int mmap_rnd_compat_bits __read_mostly; 95 #endif 96 97 #include <asm/page.h> 98 #include <asm/processor.h> 99 100 /* 101 * Architectures that support memory tagging (assigning tags to memory regions, 102 * embedding these tags into addresses that point to these memory regions, and 103 * checking that the memory and the pointer tags match on memory accesses) 104 * redefine this macro to strip tags from pointers. 105 * It's defined as noop for arcitectures that don't support memory tagging. 106 */ 107 #ifndef untagged_addr 108 #define untagged_addr(addr) (addr) 109 #endif 110 111 #ifndef __pa_symbol 112 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0)) 113 #endif 114 115 #ifndef page_to_virt 116 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x))) 117 #endif 118 119 #ifndef lm_alias 120 #define lm_alias(x) __va(__pa_symbol(x)) 121 #endif 122 123 /* 124 * To prevent common memory management code establishing 125 * a zero page mapping on a read fault. 126 * This macro should be defined within <asm/pgtable.h>. 127 * s390 does this to prevent multiplexing of hardware bits 128 * related to the physical page in case of virtualization. 129 */ 130 #ifndef mm_forbids_zeropage 131 #define mm_forbids_zeropage(X) (0) 132 #endif 133 134 /* 135 * On some architectures it is expensive to call memset() for small sizes. 136 * If an architecture decides to implement their own version of 137 * mm_zero_struct_page they should wrap the defines below in a #ifndef and 138 * define their own version of this macro in <asm/pgtable.h> 139 */ 140 #if BITS_PER_LONG == 64 141 /* This function must be updated when the size of struct page grows above 80 142 * or reduces below 56. The idea that compiler optimizes out switch() 143 * statement, and only leaves move/store instructions. Also the compiler can 144 * combine write statments if they are both assignments and can be reordered, 145 * this can result in several of the writes here being dropped. 146 */ 147 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp) 148 static inline void __mm_zero_struct_page(struct page *page) 149 { 150 unsigned long *_pp = (void *)page; 151 152 /* Check that struct page is either 56, 64, 72, or 80 bytes */ 153 BUILD_BUG_ON(sizeof(struct page) & 7); 154 BUILD_BUG_ON(sizeof(struct page) < 56); 155 BUILD_BUG_ON(sizeof(struct page) > 80); 156 157 switch (sizeof(struct page)) { 158 case 80: 159 _pp[9] = 0; /* fallthrough */ 160 case 72: 161 _pp[8] = 0; /* fallthrough */ 162 case 64: 163 _pp[7] = 0; /* fallthrough */ 164 case 56: 165 _pp[6] = 0; 166 _pp[5] = 0; 167 _pp[4] = 0; 168 _pp[3] = 0; 169 _pp[2] = 0; 170 _pp[1] = 0; 171 _pp[0] = 0; 172 } 173 } 174 #else 175 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page))) 176 #endif 177 178 /* 179 * Default maximum number of active map areas, this limits the number of vmas 180 * per mm struct. Users can overwrite this number by sysctl but there is a 181 * problem. 182 * 183 * When a program's coredump is generated as ELF format, a section is created 184 * per a vma. In ELF, the number of sections is represented in unsigned short. 185 * This means the number of sections should be smaller than 65535 at coredump. 186 * Because the kernel adds some informative sections to a image of program at 187 * generating coredump, we need some margin. The number of extra sections is 188 * 1-3 now and depends on arch. We use "5" as safe margin, here. 189 * 190 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is 191 * not a hard limit any more. Although some userspace tools can be surprised by 192 * that. 193 */ 194 #define MAPCOUNT_ELF_CORE_MARGIN (5) 195 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN) 196 197 extern int sysctl_max_map_count; 198 199 extern unsigned long sysctl_user_reserve_kbytes; 200 extern unsigned long sysctl_admin_reserve_kbytes; 201 202 extern int sysctl_overcommit_memory; 203 extern int sysctl_overcommit_ratio; 204 extern unsigned long sysctl_overcommit_kbytes; 205 206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *, 207 loff_t *); 208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *, 209 loff_t *); 210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *, 211 loff_t *); 212 213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) 214 215 /* to align the pointer to the (next) page boundary */ 216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE) 217 218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */ 219 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE) 220 221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru)) 222 223 /* 224 * Linux kernel virtual memory manager primitives. 225 * The idea being to have a "virtual" mm in the same way 226 * we have a virtual fs - giving a cleaner interface to the 227 * mm details, and allowing different kinds of memory mappings 228 * (from shared memory to executable loading to arbitrary 229 * mmap() functions). 230 */ 231 232 struct vm_area_struct *vm_area_alloc(struct mm_struct *); 233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *); 234 void vm_area_free(struct vm_area_struct *); 235 236 #ifndef CONFIG_MMU 237 extern struct rb_root nommu_region_tree; 238 extern struct rw_semaphore nommu_region_sem; 239 240 extern unsigned int kobjsize(const void *objp); 241 #endif 242 243 /* 244 * vm_flags in vm_area_struct, see mm_types.h. 245 * When changing, update also include/trace/events/mmflags.h 246 */ 247 #define VM_NONE 0x00000000 248 249 #define VM_READ 0x00000001 /* currently active flags */ 250 #define VM_WRITE 0x00000002 251 #define VM_EXEC 0x00000004 252 #define VM_SHARED 0x00000008 253 254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ 255 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */ 256 #define VM_MAYWRITE 0x00000020 257 #define VM_MAYEXEC 0x00000040 258 #define VM_MAYSHARE 0x00000080 259 260 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */ 261 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */ 262 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */ 263 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */ 264 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */ 265 266 #define VM_LOCKED 0x00002000 267 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */ 268 269 /* Used by sys_madvise() */ 270 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */ 271 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */ 272 273 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */ 274 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */ 275 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */ 276 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */ 277 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */ 278 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */ 279 #define VM_SYNC 0x00800000 /* Synchronous page faults */ 280 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */ 281 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */ 282 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */ 283 284 #ifdef CONFIG_MEM_SOFT_DIRTY 285 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */ 286 #else 287 # define VM_SOFTDIRTY 0 288 #endif 289 290 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */ 291 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */ 292 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */ 293 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */ 294 295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS 296 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */ 297 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */ 298 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */ 299 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */ 300 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */ 301 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0) 302 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1) 303 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2) 304 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3) 305 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4) 306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */ 307 308 #ifdef CONFIG_ARCH_HAS_PKEYS 309 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0 310 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */ 311 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */ 312 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2 313 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3 314 #ifdef CONFIG_PPC 315 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4 316 #else 317 # define VM_PKEY_BIT4 0 318 #endif 319 #endif /* CONFIG_ARCH_HAS_PKEYS */ 320 321 #if defined(CONFIG_X86) 322 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */ 323 #elif defined(CONFIG_PARISC) 324 # define VM_GROWSUP VM_ARCH_1 325 #elif defined(CONFIG_IA64) 326 # define VM_GROWSUP VM_ARCH_1 327 #elif defined(CONFIG_SPARC64) 328 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */ 329 # define VM_ARCH_CLEAR VM_SPARC_ADI 330 #elif defined(CONFIG_ARM64) 331 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */ 332 # define VM_ARCH_CLEAR VM_ARM64_BTI 333 #elif !defined(CONFIG_MMU) 334 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */ 335 #endif 336 337 #ifndef VM_GROWSUP 338 # define VM_GROWSUP VM_NONE 339 #endif 340 341 /* Bits set in the VMA until the stack is in its final location */ 342 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ) 343 344 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0) 345 346 /* Common data flag combinations */ 347 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \ 348 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 349 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \ 350 VM_MAYWRITE | VM_MAYEXEC) 351 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \ 352 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC) 353 354 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */ 355 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC 356 #endif 357 358 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */ 359 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS 360 #endif 361 362 #ifdef CONFIG_STACK_GROWSUP 363 #define VM_STACK VM_GROWSUP 364 #else 365 #define VM_STACK VM_GROWSDOWN 366 #endif 367 368 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) 369 370 /* VMA basic access permission flags */ 371 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC) 372 373 374 /* 375 * Special vmas that are non-mergable, non-mlock()able. 376 */ 377 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP) 378 379 /* This mask prevents VMA from being scanned with khugepaged */ 380 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB) 381 382 /* This mask defines which mm->def_flags a process can inherit its parent */ 383 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE 384 385 /* This mask is used to clear all the VMA flags used by mlock */ 386 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT)) 387 388 /* Arch-specific flags to clear when updating VM flags on protection change */ 389 #ifndef VM_ARCH_CLEAR 390 # define VM_ARCH_CLEAR VM_NONE 391 #endif 392 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR) 393 394 /* 395 * mapping from the currently active vm_flags protection bits (the 396 * low four bits) to a page protection mask.. 397 */ 398 extern pgprot_t protection_map[16]; 399 400 /** 401 * Fault flag definitions. 402 * 403 * @FAULT_FLAG_WRITE: Fault was a write fault. 404 * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE. 405 * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked. 406 * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying. 407 * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region. 408 * @FAULT_FLAG_TRIED: The fault has been tried once. 409 * @FAULT_FLAG_USER: The fault originated in userspace. 410 * @FAULT_FLAG_REMOTE: The fault is not for current task/mm. 411 * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch. 412 * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals. 413 * 414 * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify 415 * whether we would allow page faults to retry by specifying these two 416 * fault flags correctly. Currently there can be three legal combinations: 417 * 418 * (a) ALLOW_RETRY and !TRIED: this means the page fault allows retry, and 419 * this is the first try 420 * 421 * (b) ALLOW_RETRY and TRIED: this means the page fault allows retry, and 422 * we've already tried at least once 423 * 424 * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry 425 * 426 * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never 427 * be used. Note that page faults can be allowed to retry for multiple times, 428 * in which case we'll have an initial fault with flags (a) then later on 429 * continuous faults with flags (b). We should always try to detect pending 430 * signals before a retry to make sure the continuous page faults can still be 431 * interrupted if necessary. 432 */ 433 #define FAULT_FLAG_WRITE 0x01 434 #define FAULT_FLAG_MKWRITE 0x02 435 #define FAULT_FLAG_ALLOW_RETRY 0x04 436 #define FAULT_FLAG_RETRY_NOWAIT 0x08 437 #define FAULT_FLAG_KILLABLE 0x10 438 #define FAULT_FLAG_TRIED 0x20 439 #define FAULT_FLAG_USER 0x40 440 #define FAULT_FLAG_REMOTE 0x80 441 #define FAULT_FLAG_INSTRUCTION 0x100 442 #define FAULT_FLAG_INTERRUPTIBLE 0x200 443 444 /* 445 * The default fault flags that should be used by most of the 446 * arch-specific page fault handlers. 447 */ 448 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \ 449 FAULT_FLAG_KILLABLE | \ 450 FAULT_FLAG_INTERRUPTIBLE) 451 452 /** 453 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time 454 * 455 * This is mostly used for places where we want to try to avoid taking 456 * the mmap_lock for too long a time when waiting for another condition 457 * to change, in which case we can try to be polite to release the 458 * mmap_lock in the first round to avoid potential starvation of other 459 * processes that would also want the mmap_lock. 460 * 461 * Return: true if the page fault allows retry and this is the first 462 * attempt of the fault handling; false otherwise. 463 */ 464 static inline bool fault_flag_allow_retry_first(unsigned int flags) 465 { 466 return (flags & FAULT_FLAG_ALLOW_RETRY) && 467 (!(flags & FAULT_FLAG_TRIED)); 468 } 469 470 #define FAULT_FLAG_TRACE \ 471 { FAULT_FLAG_WRITE, "WRITE" }, \ 472 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \ 473 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \ 474 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \ 475 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \ 476 { FAULT_FLAG_TRIED, "TRIED" }, \ 477 { FAULT_FLAG_USER, "USER" }, \ 478 { FAULT_FLAG_REMOTE, "REMOTE" }, \ 479 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \ 480 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" } 481 482 /* 483 * vm_fault is filled by the pagefault handler and passed to the vma's 484 * ->fault function. The vma's ->fault is responsible for returning a bitmask 485 * of VM_FAULT_xxx flags that give details about how the fault was handled. 486 * 487 * MM layer fills up gfp_mask for page allocations but fault handler might 488 * alter it if its implementation requires a different allocation context. 489 * 490 * pgoff should be used in favour of virtual_address, if possible. 491 */ 492 struct vm_fault { 493 struct vm_area_struct *vma; /* Target VMA */ 494 unsigned int flags; /* FAULT_FLAG_xxx flags */ 495 gfp_t gfp_mask; /* gfp mask to be used for allocations */ 496 pgoff_t pgoff; /* Logical page offset based on vma */ 497 unsigned long address; /* Faulting virtual address */ 498 pmd_t *pmd; /* Pointer to pmd entry matching 499 * the 'address' */ 500 pud_t *pud; /* Pointer to pud entry matching 501 * the 'address' 502 */ 503 pte_t orig_pte; /* Value of PTE at the time of fault */ 504 505 struct page *cow_page; /* Page handler may use for COW fault */ 506 struct page *page; /* ->fault handlers should return a 507 * page here, unless VM_FAULT_NOPAGE 508 * is set (which is also implied by 509 * VM_FAULT_ERROR). 510 */ 511 /* These three entries are valid only while holding ptl lock */ 512 pte_t *pte; /* Pointer to pte entry matching 513 * the 'address'. NULL if the page 514 * table hasn't been allocated. 515 */ 516 spinlock_t *ptl; /* Page table lock. 517 * Protects pte page table if 'pte' 518 * is not NULL, otherwise pmd. 519 */ 520 pgtable_t prealloc_pte; /* Pre-allocated pte page table. 521 * vm_ops->map_pages() calls 522 * alloc_set_pte() from atomic context. 523 * do_fault_around() pre-allocates 524 * page table to avoid allocation from 525 * atomic context. 526 */ 527 }; 528 529 /* page entry size for vm->huge_fault() */ 530 enum page_entry_size { 531 PE_SIZE_PTE = 0, 532 PE_SIZE_PMD, 533 PE_SIZE_PUD, 534 }; 535 536 /* 537 * These are the virtual MM functions - opening of an area, closing and 538 * unmapping it (needed to keep files on disk up-to-date etc), pointer 539 * to the functions called when a no-page or a wp-page exception occurs. 540 */ 541 struct vm_operations_struct { 542 void (*open)(struct vm_area_struct * area); 543 void (*close)(struct vm_area_struct * area); 544 int (*split)(struct vm_area_struct * area, unsigned long addr); 545 int (*mremap)(struct vm_area_struct * area); 546 vm_fault_t (*fault)(struct vm_fault *vmf); 547 vm_fault_t (*huge_fault)(struct vm_fault *vmf, 548 enum page_entry_size pe_size); 549 void (*map_pages)(struct vm_fault *vmf, 550 pgoff_t start_pgoff, pgoff_t end_pgoff); 551 unsigned long (*pagesize)(struct vm_area_struct * area); 552 553 /* notification that a previously read-only page is about to become 554 * writable, if an error is returned it will cause a SIGBUS */ 555 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf); 556 557 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */ 558 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf); 559 560 /* called by access_process_vm when get_user_pages() fails, typically 561 * for use by special VMAs that can switch between memory and hardware 562 */ 563 int (*access)(struct vm_area_struct *vma, unsigned long addr, 564 void *buf, int len, int write); 565 566 /* Called by the /proc/PID/maps code to ask the vma whether it 567 * has a special name. Returning non-NULL will also cause this 568 * vma to be dumped unconditionally. */ 569 const char *(*name)(struct vm_area_struct *vma); 570 571 #ifdef CONFIG_NUMA 572 /* 573 * set_policy() op must add a reference to any non-NULL @new mempolicy 574 * to hold the policy upon return. Caller should pass NULL @new to 575 * remove a policy and fall back to surrounding context--i.e. do not 576 * install a MPOL_DEFAULT policy, nor the task or system default 577 * mempolicy. 578 */ 579 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); 580 581 /* 582 * get_policy() op must add reference [mpol_get()] to any policy at 583 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure 584 * in mm/mempolicy.c will do this automatically. 585 * get_policy() must NOT add a ref if the policy at (vma,addr) is not 586 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock. 587 * If no [shared/vma] mempolicy exists at the addr, get_policy() op 588 * must return NULL--i.e., do not "fallback" to task or system default 589 * policy. 590 */ 591 struct mempolicy *(*get_policy)(struct vm_area_struct *vma, 592 unsigned long addr); 593 #endif 594 /* 595 * Called by vm_normal_page() for special PTEs to find the 596 * page for @addr. This is useful if the default behavior 597 * (using pte_page()) would not find the correct page. 598 */ 599 struct page *(*find_special_page)(struct vm_area_struct *vma, 600 unsigned long addr); 601 }; 602 603 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm) 604 { 605 static const struct vm_operations_struct dummy_vm_ops = {}; 606 607 memset(vma, 0, sizeof(*vma)); 608 vma->vm_mm = mm; 609 vma->vm_ops = &dummy_vm_ops; 610 INIT_LIST_HEAD(&vma->anon_vma_chain); 611 } 612 613 static inline void vma_set_anonymous(struct vm_area_struct *vma) 614 { 615 vma->vm_ops = NULL; 616 } 617 618 static inline bool vma_is_anonymous(struct vm_area_struct *vma) 619 { 620 return !vma->vm_ops; 621 } 622 623 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma) 624 { 625 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP); 626 627 if (!maybe_stack) 628 return false; 629 630 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) == 631 VM_STACK_INCOMPLETE_SETUP) 632 return true; 633 634 return false; 635 } 636 637 static inline bool vma_is_foreign(struct vm_area_struct *vma) 638 { 639 if (!current->mm) 640 return true; 641 642 if (current->mm != vma->vm_mm) 643 return true; 644 645 return false; 646 } 647 648 static inline bool vma_is_accessible(struct vm_area_struct *vma) 649 { 650 return vma->vm_flags & VM_ACCESS_FLAGS; 651 } 652 653 #ifdef CONFIG_SHMEM 654 /* 655 * The vma_is_shmem is not inline because it is used only by slow 656 * paths in userfault. 657 */ 658 bool vma_is_shmem(struct vm_area_struct *vma); 659 #else 660 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; } 661 #endif 662 663 int vma_is_stack_for_current(struct vm_area_struct *vma); 664 665 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */ 666 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) } 667 668 struct mmu_gather; 669 struct inode; 670 671 /* 672 * FIXME: take this include out, include page-flags.h in 673 * files which need it (119 of them) 674 */ 675 #include <linux/page-flags.h> 676 #include <linux/huge_mm.h> 677 678 /* 679 * Methods to modify the page usage count. 680 * 681 * What counts for a page usage: 682 * - cache mapping (page->mapping) 683 * - private data (page->private) 684 * - page mapped in a task's page tables, each mapping 685 * is counted separately 686 * 687 * Also, many kernel routines increase the page count before a critical 688 * routine so they can be sure the page doesn't go away from under them. 689 */ 690 691 /* 692 * Drop a ref, return true if the refcount fell to zero (the page has no users) 693 */ 694 static inline int put_page_testzero(struct page *page) 695 { 696 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 697 return page_ref_dec_and_test(page); 698 } 699 700 /* 701 * Try to grab a ref unless the page has a refcount of zero, return false if 702 * that is the case. 703 * This can be called when MMU is off so it must not access 704 * any of the virtual mappings. 705 */ 706 static inline int get_page_unless_zero(struct page *page) 707 { 708 return page_ref_add_unless(page, 1, 0); 709 } 710 711 extern int page_is_ram(unsigned long pfn); 712 713 enum { 714 REGION_INTERSECTS, 715 REGION_DISJOINT, 716 REGION_MIXED, 717 }; 718 719 int region_intersects(resource_size_t offset, size_t size, unsigned long flags, 720 unsigned long desc); 721 722 /* Support for virtually mapped pages */ 723 struct page *vmalloc_to_page(const void *addr); 724 unsigned long vmalloc_to_pfn(const void *addr); 725 726 /* 727 * Determine if an address is within the vmalloc range 728 * 729 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there 730 * is no special casing required. 731 */ 732 733 #ifndef is_ioremap_addr 734 #define is_ioremap_addr(x) is_vmalloc_addr(x) 735 #endif 736 737 #ifdef CONFIG_MMU 738 extern bool is_vmalloc_addr(const void *x); 739 extern int is_vmalloc_or_module_addr(const void *x); 740 #else 741 static inline bool is_vmalloc_addr(const void *x) 742 { 743 return false; 744 } 745 static inline int is_vmalloc_or_module_addr(const void *x) 746 { 747 return 0; 748 } 749 #endif 750 751 extern void *kvmalloc_node(size_t size, gfp_t flags, int node); 752 static inline void *kvmalloc(size_t size, gfp_t flags) 753 { 754 return kvmalloc_node(size, flags, NUMA_NO_NODE); 755 } 756 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node) 757 { 758 return kvmalloc_node(size, flags | __GFP_ZERO, node); 759 } 760 static inline void *kvzalloc(size_t size, gfp_t flags) 761 { 762 return kvmalloc(size, flags | __GFP_ZERO); 763 } 764 765 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags) 766 { 767 size_t bytes; 768 769 if (unlikely(check_mul_overflow(n, size, &bytes))) 770 return NULL; 771 772 return kvmalloc(bytes, flags); 773 } 774 775 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags) 776 { 777 return kvmalloc_array(n, size, flags | __GFP_ZERO); 778 } 779 780 extern void kvfree(const void *addr); 781 extern void kvfree_sensitive(const void *addr, size_t len); 782 783 static inline int head_mapcount(struct page *head) 784 { 785 return atomic_read(compound_mapcount_ptr(head)) + 1; 786 } 787 788 /* 789 * Mapcount of compound page as a whole, does not include mapped sub-pages. 790 * 791 * Must be called only for compound pages or any their tail sub-pages. 792 */ 793 static inline int compound_mapcount(struct page *page) 794 { 795 VM_BUG_ON_PAGE(!PageCompound(page), page); 796 page = compound_head(page); 797 return head_mapcount(page); 798 } 799 800 /* 801 * The atomic page->_mapcount, starts from -1: so that transitions 802 * both from it and to it can be tracked, using atomic_inc_and_test 803 * and atomic_add_negative(-1). 804 */ 805 static inline void page_mapcount_reset(struct page *page) 806 { 807 atomic_set(&(page)->_mapcount, -1); 808 } 809 810 int __page_mapcount(struct page *page); 811 812 /* 813 * Mapcount of 0-order page; when compound sub-page, includes 814 * compound_mapcount(). 815 * 816 * Result is undefined for pages which cannot be mapped into userspace. 817 * For example SLAB or special types of pages. See function page_has_type(). 818 * They use this place in struct page differently. 819 */ 820 static inline int page_mapcount(struct page *page) 821 { 822 if (unlikely(PageCompound(page))) 823 return __page_mapcount(page); 824 return atomic_read(&page->_mapcount) + 1; 825 } 826 827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 828 int total_mapcount(struct page *page); 829 int page_trans_huge_mapcount(struct page *page, int *total_mapcount); 830 #else 831 static inline int total_mapcount(struct page *page) 832 { 833 return page_mapcount(page); 834 } 835 static inline int page_trans_huge_mapcount(struct page *page, 836 int *total_mapcount) 837 { 838 int mapcount = page_mapcount(page); 839 if (total_mapcount) 840 *total_mapcount = mapcount; 841 return mapcount; 842 } 843 #endif 844 845 static inline struct page *virt_to_head_page(const void *x) 846 { 847 struct page *page = virt_to_page(x); 848 849 return compound_head(page); 850 } 851 852 void __put_page(struct page *page); 853 854 void put_pages_list(struct list_head *pages); 855 856 void split_page(struct page *page, unsigned int order); 857 858 /* 859 * Compound pages have a destructor function. Provide a 860 * prototype for that function and accessor functions. 861 * These are _only_ valid on the head of a compound page. 862 */ 863 typedef void compound_page_dtor(struct page *); 864 865 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */ 866 enum compound_dtor_id { 867 NULL_COMPOUND_DTOR, 868 COMPOUND_PAGE_DTOR, 869 #ifdef CONFIG_HUGETLB_PAGE 870 HUGETLB_PAGE_DTOR, 871 #endif 872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 873 TRANSHUGE_PAGE_DTOR, 874 #endif 875 NR_COMPOUND_DTORS, 876 }; 877 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS]; 878 879 static inline void set_compound_page_dtor(struct page *page, 880 enum compound_dtor_id compound_dtor) 881 { 882 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page); 883 page[1].compound_dtor = compound_dtor; 884 } 885 886 static inline void destroy_compound_page(struct page *page) 887 { 888 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page); 889 compound_page_dtors[page[1].compound_dtor](page); 890 } 891 892 static inline unsigned int compound_order(struct page *page) 893 { 894 if (!PageHead(page)) 895 return 0; 896 return page[1].compound_order; 897 } 898 899 static inline bool hpage_pincount_available(struct page *page) 900 { 901 /* 902 * Can the page->hpage_pinned_refcount field be used? That field is in 903 * the 3rd page of the compound page, so the smallest (2-page) compound 904 * pages cannot support it. 905 */ 906 page = compound_head(page); 907 return PageCompound(page) && compound_order(page) > 1; 908 } 909 910 static inline int head_pincount(struct page *head) 911 { 912 return atomic_read(compound_pincount_ptr(head)); 913 } 914 915 static inline int compound_pincount(struct page *page) 916 { 917 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page); 918 page = compound_head(page); 919 return head_pincount(page); 920 } 921 922 static inline void set_compound_order(struct page *page, unsigned int order) 923 { 924 page[1].compound_order = order; 925 } 926 927 /* Returns the number of pages in this potentially compound page. */ 928 static inline unsigned long compound_nr(struct page *page) 929 { 930 return 1UL << compound_order(page); 931 } 932 933 /* Returns the number of bytes in this potentially compound page. */ 934 static inline unsigned long page_size(struct page *page) 935 { 936 return PAGE_SIZE << compound_order(page); 937 } 938 939 /* Returns the number of bits needed for the number of bytes in a page */ 940 static inline unsigned int page_shift(struct page *page) 941 { 942 return PAGE_SHIFT + compound_order(page); 943 } 944 945 void free_compound_page(struct page *page); 946 947 #ifdef CONFIG_MMU 948 /* 949 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when 950 * servicing faults for write access. In the normal case, do always want 951 * pte_mkwrite. But get_user_pages can cause write faults for mappings 952 * that do not have writing enabled, when used by access_process_vm. 953 */ 954 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) 955 { 956 if (likely(vma->vm_flags & VM_WRITE)) 957 pte = pte_mkwrite(pte); 958 return pte; 959 } 960 961 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page); 962 vm_fault_t finish_fault(struct vm_fault *vmf); 963 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf); 964 #endif 965 966 /* 967 * Multiple processes may "see" the same page. E.g. for untouched 968 * mappings of /dev/null, all processes see the same page full of 969 * zeroes, and text pages of executables and shared libraries have 970 * only one copy in memory, at most, normally. 971 * 972 * For the non-reserved pages, page_count(page) denotes a reference count. 973 * page_count() == 0 means the page is free. page->lru is then used for 974 * freelist management in the buddy allocator. 975 * page_count() > 0 means the page has been allocated. 976 * 977 * Pages are allocated by the slab allocator in order to provide memory 978 * to kmalloc and kmem_cache_alloc. In this case, the management of the 979 * page, and the fields in 'struct page' are the responsibility of mm/slab.c 980 * unless a particular usage is carefully commented. (the responsibility of 981 * freeing the kmalloc memory is the caller's, of course). 982 * 983 * A page may be used by anyone else who does a __get_free_page(). 984 * In this case, page_count still tracks the references, and should only 985 * be used through the normal accessor functions. The top bits of page->flags 986 * and page->virtual store page management information, but all other fields 987 * are unused and could be used privately, carefully. The management of this 988 * page is the responsibility of the one who allocated it, and those who have 989 * subsequently been given references to it. 990 * 991 * The other pages (we may call them "pagecache pages") are completely 992 * managed by the Linux memory manager: I/O, buffers, swapping etc. 993 * The following discussion applies only to them. 994 * 995 * A pagecache page contains an opaque `private' member, which belongs to the 996 * page's address_space. Usually, this is the address of a circular list of 997 * the page's disk buffers. PG_private must be set to tell the VM to call 998 * into the filesystem to release these pages. 999 * 1000 * A page may belong to an inode's memory mapping. In this case, page->mapping 1001 * is the pointer to the inode, and page->index is the file offset of the page, 1002 * in units of PAGE_SIZE. 1003 * 1004 * If pagecache pages are not associated with an inode, they are said to be 1005 * anonymous pages. These may become associated with the swapcache, and in that 1006 * case PG_swapcache is set, and page->private is an offset into the swapcache. 1007 * 1008 * In either case (swapcache or inode backed), the pagecache itself holds one 1009 * reference to the page. Setting PG_private should also increment the 1010 * refcount. The each user mapping also has a reference to the page. 1011 * 1012 * The pagecache pages are stored in a per-mapping radix tree, which is 1013 * rooted at mapping->i_pages, and indexed by offset. 1014 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space 1015 * lists, we instead now tag pages as dirty/writeback in the radix tree. 1016 * 1017 * All pagecache pages may be subject to I/O: 1018 * - inode pages may need to be read from disk, 1019 * - inode pages which have been modified and are MAP_SHARED may need 1020 * to be written back to the inode on disk, 1021 * - anonymous pages (including MAP_PRIVATE file mappings) which have been 1022 * modified may need to be swapped out to swap space and (later) to be read 1023 * back into memory. 1024 */ 1025 1026 /* 1027 * The zone field is never updated after free_area_init_core() 1028 * sets it, so none of the operations on it need to be atomic. 1029 */ 1030 1031 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1032 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1033 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1034 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1035 #define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1036 #define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1037 1038 /* 1039 * Define the bit shifts to access each section. For non-existent 1040 * sections we define the shift as 0; that plus a 0 mask ensures 1041 * the compiler will optimise away reference to them. 1042 */ 1043 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1044 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1045 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1046 #define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1047 #define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1048 1049 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1050 #ifdef NODE_NOT_IN_PAGE_FLAGS 1051 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1052 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \ 1053 SECTIONS_PGOFF : ZONES_PGOFF) 1054 #else 1055 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1056 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \ 1057 NODES_PGOFF : ZONES_PGOFF) 1058 #endif 1059 1060 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1061 1062 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1063 #define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1064 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1065 #define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1066 #define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1067 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1068 1069 static inline enum zone_type page_zonenum(const struct page *page) 1070 { 1071 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1072 } 1073 1074 #ifdef CONFIG_ZONE_DEVICE 1075 static inline bool is_zone_device_page(const struct page *page) 1076 { 1077 return page_zonenum(page) == ZONE_DEVICE; 1078 } 1079 extern void memmap_init_zone_device(struct zone *, unsigned long, 1080 unsigned long, struct dev_pagemap *); 1081 #else 1082 static inline bool is_zone_device_page(const struct page *page) 1083 { 1084 return false; 1085 } 1086 #endif 1087 1088 #ifdef CONFIG_DEV_PAGEMAP_OPS 1089 void free_devmap_managed_page(struct page *page); 1090 DECLARE_STATIC_KEY_FALSE(devmap_managed_key); 1091 1092 static inline bool page_is_devmap_managed(struct page *page) 1093 { 1094 if (!static_branch_unlikely(&devmap_managed_key)) 1095 return false; 1096 if (!is_zone_device_page(page)) 1097 return false; 1098 switch (page->pgmap->type) { 1099 case MEMORY_DEVICE_PRIVATE: 1100 case MEMORY_DEVICE_FS_DAX: 1101 return true; 1102 default: 1103 break; 1104 } 1105 return false; 1106 } 1107 1108 void put_devmap_managed_page(struct page *page); 1109 1110 #else /* CONFIG_DEV_PAGEMAP_OPS */ 1111 static inline bool page_is_devmap_managed(struct page *page) 1112 { 1113 return false; 1114 } 1115 1116 static inline void put_devmap_managed_page(struct page *page) 1117 { 1118 } 1119 #endif /* CONFIG_DEV_PAGEMAP_OPS */ 1120 1121 static inline bool is_device_private_page(const struct page *page) 1122 { 1123 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1124 IS_ENABLED(CONFIG_DEVICE_PRIVATE) && 1125 is_zone_device_page(page) && 1126 page->pgmap->type == MEMORY_DEVICE_PRIVATE; 1127 } 1128 1129 static inline bool is_pci_p2pdma_page(const struct page *page) 1130 { 1131 return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) && 1132 IS_ENABLED(CONFIG_PCI_P2PDMA) && 1133 is_zone_device_page(page) && 1134 page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA; 1135 } 1136 1137 /* 127: arbitrary random number, small enough to assemble well */ 1138 #define page_ref_zero_or_close_to_overflow(page) \ 1139 ((unsigned int) page_ref_count(page) + 127u <= 127u) 1140 1141 static inline void get_page(struct page *page) 1142 { 1143 page = compound_head(page); 1144 /* 1145 * Getting a normal page or the head of a compound page 1146 * requires to already have an elevated page->_refcount. 1147 */ 1148 VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page); 1149 page_ref_inc(page); 1150 } 1151 1152 bool __must_check try_grab_page(struct page *page, unsigned int flags); 1153 1154 static inline __must_check bool try_get_page(struct page *page) 1155 { 1156 page = compound_head(page); 1157 if (WARN_ON_ONCE(page_ref_count(page) <= 0)) 1158 return false; 1159 page_ref_inc(page); 1160 return true; 1161 } 1162 1163 static inline void put_page(struct page *page) 1164 { 1165 page = compound_head(page); 1166 1167 /* 1168 * For devmap managed pages we need to catch refcount transition from 1169 * 2 to 1, when refcount reach one it means the page is free and we 1170 * need to inform the device driver through callback. See 1171 * include/linux/memremap.h and HMM for details. 1172 */ 1173 if (page_is_devmap_managed(page)) { 1174 put_devmap_managed_page(page); 1175 return; 1176 } 1177 1178 if (put_page_testzero(page)) 1179 __put_page(page); 1180 } 1181 1182 /* 1183 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload 1184 * the page's refcount so that two separate items are tracked: the original page 1185 * reference count, and also a new count of how many pin_user_pages() calls were 1186 * made against the page. ("gup-pinned" is another term for the latter). 1187 * 1188 * With this scheme, pin_user_pages() becomes special: such pages are marked as 1189 * distinct from normal pages. As such, the unpin_user_page() call (and its 1190 * variants) must be used in order to release gup-pinned pages. 1191 * 1192 * Choice of value: 1193 * 1194 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference 1195 * counts with respect to pin_user_pages() and unpin_user_page() becomes 1196 * simpler, due to the fact that adding an even power of two to the page 1197 * refcount has the effect of using only the upper N bits, for the code that 1198 * counts up using the bias value. This means that the lower bits are left for 1199 * the exclusive use of the original code that increments and decrements by one 1200 * (or at least, by much smaller values than the bias value). 1201 * 1202 * Of course, once the lower bits overflow into the upper bits (and this is 1203 * OK, because subtraction recovers the original values), then visual inspection 1204 * no longer suffices to directly view the separate counts. However, for normal 1205 * applications that don't have huge page reference counts, this won't be an 1206 * issue. 1207 * 1208 * Locking: the lockless algorithm described in page_cache_get_speculative() 1209 * and page_cache_gup_pin_speculative() provides safe operation for 1210 * get_user_pages and page_mkclean and other calls that race to set up page 1211 * table entries. 1212 */ 1213 #define GUP_PIN_COUNTING_BIAS (1U << 10) 1214 1215 void unpin_user_page(struct page *page); 1216 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages, 1217 bool make_dirty); 1218 void unpin_user_pages(struct page **pages, unsigned long npages); 1219 1220 /** 1221 * page_maybe_dma_pinned() - report if a page is pinned for DMA. 1222 * 1223 * This function checks if a page has been pinned via a call to 1224 * pin_user_pages*(). 1225 * 1226 * For non-huge pages, the return value is partially fuzzy: false is not fuzzy, 1227 * because it means "definitely not pinned for DMA", but true means "probably 1228 * pinned for DMA, but possibly a false positive due to having at least 1229 * GUP_PIN_COUNTING_BIAS worth of normal page references". 1230 * 1231 * False positives are OK, because: a) it's unlikely for a page to get that many 1232 * refcounts, and b) all the callers of this routine are expected to be able to 1233 * deal gracefully with a false positive. 1234 * 1235 * For huge pages, the result will be exactly correct. That's because we have 1236 * more tracking data available: the 3rd struct page in the compound page is 1237 * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS 1238 * scheme). 1239 * 1240 * For more information, please see Documentation/core-api/pin_user_pages.rst. 1241 * 1242 * @page: pointer to page to be queried. 1243 * @Return: True, if it is likely that the page has been "dma-pinned". 1244 * False, if the page is definitely not dma-pinned. 1245 */ 1246 static inline bool page_maybe_dma_pinned(struct page *page) 1247 { 1248 if (hpage_pincount_available(page)) 1249 return compound_pincount(page) > 0; 1250 1251 /* 1252 * page_ref_count() is signed. If that refcount overflows, then 1253 * page_ref_count() returns a negative value, and callers will avoid 1254 * further incrementing the refcount. 1255 * 1256 * Here, for that overflow case, use the signed bit to count a little 1257 * bit higher via unsigned math, and thus still get an accurate result. 1258 */ 1259 return ((unsigned int)page_ref_count(compound_head(page))) >= 1260 GUP_PIN_COUNTING_BIAS; 1261 } 1262 1263 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP) 1264 #define SECTION_IN_PAGE_FLAGS 1265 #endif 1266 1267 /* 1268 * The identification function is mainly used by the buddy allocator for 1269 * determining if two pages could be buddies. We are not really identifying 1270 * the zone since we could be using the section number id if we do not have 1271 * node id available in page flags. 1272 * We only guarantee that it will return the same value for two combinable 1273 * pages in a zone. 1274 */ 1275 static inline int page_zone_id(struct page *page) 1276 { 1277 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; 1278 } 1279 1280 #ifdef NODE_NOT_IN_PAGE_FLAGS 1281 extern int page_to_nid(const struct page *page); 1282 #else 1283 static inline int page_to_nid(const struct page *page) 1284 { 1285 struct page *p = (struct page *)page; 1286 1287 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK; 1288 } 1289 #endif 1290 1291 #ifdef CONFIG_NUMA_BALANCING 1292 static inline int cpu_pid_to_cpupid(int cpu, int pid) 1293 { 1294 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK); 1295 } 1296 1297 static inline int cpupid_to_pid(int cpupid) 1298 { 1299 return cpupid & LAST__PID_MASK; 1300 } 1301 1302 static inline int cpupid_to_cpu(int cpupid) 1303 { 1304 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK; 1305 } 1306 1307 static inline int cpupid_to_nid(int cpupid) 1308 { 1309 return cpu_to_node(cpupid_to_cpu(cpupid)); 1310 } 1311 1312 static inline bool cpupid_pid_unset(int cpupid) 1313 { 1314 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK); 1315 } 1316 1317 static inline bool cpupid_cpu_unset(int cpupid) 1318 { 1319 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK); 1320 } 1321 1322 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid) 1323 { 1324 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid); 1325 } 1326 1327 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid) 1328 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS 1329 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1330 { 1331 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK); 1332 } 1333 1334 static inline int page_cpupid_last(struct page *page) 1335 { 1336 return page->_last_cpupid; 1337 } 1338 static inline void page_cpupid_reset_last(struct page *page) 1339 { 1340 page->_last_cpupid = -1 & LAST_CPUPID_MASK; 1341 } 1342 #else 1343 static inline int page_cpupid_last(struct page *page) 1344 { 1345 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK; 1346 } 1347 1348 extern int page_cpupid_xchg_last(struct page *page, int cpupid); 1349 1350 static inline void page_cpupid_reset_last(struct page *page) 1351 { 1352 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT; 1353 } 1354 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */ 1355 #else /* !CONFIG_NUMA_BALANCING */ 1356 static inline int page_cpupid_xchg_last(struct page *page, int cpupid) 1357 { 1358 return page_to_nid(page); /* XXX */ 1359 } 1360 1361 static inline int page_cpupid_last(struct page *page) 1362 { 1363 return page_to_nid(page); /* XXX */ 1364 } 1365 1366 static inline int cpupid_to_nid(int cpupid) 1367 { 1368 return -1; 1369 } 1370 1371 static inline int cpupid_to_pid(int cpupid) 1372 { 1373 return -1; 1374 } 1375 1376 static inline int cpupid_to_cpu(int cpupid) 1377 { 1378 return -1; 1379 } 1380 1381 static inline int cpu_pid_to_cpupid(int nid, int pid) 1382 { 1383 return -1; 1384 } 1385 1386 static inline bool cpupid_pid_unset(int cpupid) 1387 { 1388 return true; 1389 } 1390 1391 static inline void page_cpupid_reset_last(struct page *page) 1392 { 1393 } 1394 1395 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid) 1396 { 1397 return false; 1398 } 1399 #endif /* CONFIG_NUMA_BALANCING */ 1400 1401 #ifdef CONFIG_KASAN_SW_TAGS 1402 static inline u8 page_kasan_tag(const struct page *page) 1403 { 1404 return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK; 1405 } 1406 1407 static inline void page_kasan_tag_set(struct page *page, u8 tag) 1408 { 1409 page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT); 1410 page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT; 1411 } 1412 1413 static inline void page_kasan_tag_reset(struct page *page) 1414 { 1415 page_kasan_tag_set(page, 0xff); 1416 } 1417 #else 1418 static inline u8 page_kasan_tag(const struct page *page) 1419 { 1420 return 0xff; 1421 } 1422 1423 static inline void page_kasan_tag_set(struct page *page, u8 tag) { } 1424 static inline void page_kasan_tag_reset(struct page *page) { } 1425 #endif 1426 1427 static inline struct zone *page_zone(const struct page *page) 1428 { 1429 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; 1430 } 1431 1432 static inline pg_data_t *page_pgdat(const struct page *page) 1433 { 1434 return NODE_DATA(page_to_nid(page)); 1435 } 1436 1437 #ifdef SECTION_IN_PAGE_FLAGS 1438 static inline void set_page_section(struct page *page, unsigned long section) 1439 { 1440 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); 1441 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; 1442 } 1443 1444 static inline unsigned long page_to_section(const struct page *page) 1445 { 1446 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; 1447 } 1448 #endif 1449 1450 static inline void set_page_zone(struct page *page, enum zone_type zone) 1451 { 1452 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); 1453 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; 1454 } 1455 1456 static inline void set_page_node(struct page *page, unsigned long node) 1457 { 1458 page->flags &= ~(NODES_MASK << NODES_PGSHIFT); 1459 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; 1460 } 1461 1462 static inline void set_page_links(struct page *page, enum zone_type zone, 1463 unsigned long node, unsigned long pfn) 1464 { 1465 set_page_zone(page, zone); 1466 set_page_node(page, node); 1467 #ifdef SECTION_IN_PAGE_FLAGS 1468 set_page_section(page, pfn_to_section_nr(pfn)); 1469 #endif 1470 } 1471 1472 #ifdef CONFIG_MEMCG 1473 static inline struct mem_cgroup *page_memcg(struct page *page) 1474 { 1475 return page->mem_cgroup; 1476 } 1477 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1478 { 1479 WARN_ON_ONCE(!rcu_read_lock_held()); 1480 return READ_ONCE(page->mem_cgroup); 1481 } 1482 #else 1483 static inline struct mem_cgroup *page_memcg(struct page *page) 1484 { 1485 return NULL; 1486 } 1487 static inline struct mem_cgroup *page_memcg_rcu(struct page *page) 1488 { 1489 WARN_ON_ONCE(!rcu_read_lock_held()); 1490 return NULL; 1491 } 1492 #endif 1493 1494 /* 1495 * Some inline functions in vmstat.h depend on page_zone() 1496 */ 1497 #include <linux/vmstat.h> 1498 1499 static __always_inline void *lowmem_page_address(const struct page *page) 1500 { 1501 return page_to_virt(page); 1502 } 1503 1504 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) 1505 #define HASHED_PAGE_VIRTUAL 1506 #endif 1507 1508 #if defined(WANT_PAGE_VIRTUAL) 1509 static inline void *page_address(const struct page *page) 1510 { 1511 return page->virtual; 1512 } 1513 static inline void set_page_address(struct page *page, void *address) 1514 { 1515 page->virtual = address; 1516 } 1517 #define page_address_init() do { } while(0) 1518 #endif 1519 1520 #if defined(HASHED_PAGE_VIRTUAL) 1521 void *page_address(const struct page *page); 1522 void set_page_address(struct page *page, void *virtual); 1523 void page_address_init(void); 1524 #endif 1525 1526 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) 1527 #define page_address(page) lowmem_page_address(page) 1528 #define set_page_address(page, address) do { } while(0) 1529 #define page_address_init() do { } while(0) 1530 #endif 1531 1532 extern void *page_rmapping(struct page *page); 1533 extern struct anon_vma *page_anon_vma(struct page *page); 1534 extern struct address_space *page_mapping(struct page *page); 1535 1536 extern struct address_space *__page_file_mapping(struct page *); 1537 1538 static inline 1539 struct address_space *page_file_mapping(struct page *page) 1540 { 1541 if (unlikely(PageSwapCache(page))) 1542 return __page_file_mapping(page); 1543 1544 return page->mapping; 1545 } 1546 1547 extern pgoff_t __page_file_index(struct page *page); 1548 1549 /* 1550 * Return the pagecache index of the passed page. Regular pagecache pages 1551 * use ->index whereas swapcache pages use swp_offset(->private) 1552 */ 1553 static inline pgoff_t page_index(struct page *page) 1554 { 1555 if (unlikely(PageSwapCache(page))) 1556 return __page_file_index(page); 1557 return page->index; 1558 } 1559 1560 bool page_mapped(struct page *page); 1561 struct address_space *page_mapping(struct page *page); 1562 struct address_space *page_mapping_file(struct page *page); 1563 1564 /* 1565 * Return true only if the page has been allocated with 1566 * ALLOC_NO_WATERMARKS and the low watermark was not 1567 * met implying that the system is under some pressure. 1568 */ 1569 static inline bool page_is_pfmemalloc(struct page *page) 1570 { 1571 /* 1572 * Page index cannot be this large so this must be 1573 * a pfmemalloc page. 1574 */ 1575 return page->index == -1UL; 1576 } 1577 1578 /* 1579 * Only to be called by the page allocator on a freshly allocated 1580 * page. 1581 */ 1582 static inline void set_page_pfmemalloc(struct page *page) 1583 { 1584 page->index = -1UL; 1585 } 1586 1587 static inline void clear_page_pfmemalloc(struct page *page) 1588 { 1589 page->index = 0; 1590 } 1591 1592 /* 1593 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM. 1594 */ 1595 extern void pagefault_out_of_memory(void); 1596 1597 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK) 1598 1599 /* 1600 * Flags passed to show_mem() and show_free_areas() to suppress output in 1601 * various contexts. 1602 */ 1603 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */ 1604 1605 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask); 1606 1607 #ifdef CONFIG_MMU 1608 extern bool can_do_mlock(void); 1609 #else 1610 static inline bool can_do_mlock(void) { return false; } 1611 #endif 1612 extern int user_shm_lock(size_t, struct user_struct *); 1613 extern void user_shm_unlock(size_t, struct user_struct *); 1614 1615 /* 1616 * Parameter block passed down to zap_pte_range in exceptional cases. 1617 */ 1618 struct zap_details { 1619 struct address_space *check_mapping; /* Check page->mapping if set */ 1620 pgoff_t first_index; /* Lowest page->index to unmap */ 1621 pgoff_t last_index; /* Highest page->index to unmap */ 1622 }; 1623 1624 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr, 1625 pte_t pte); 1626 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr, 1627 pmd_t pmd); 1628 1629 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address, 1630 unsigned long size); 1631 void zap_page_range(struct vm_area_struct *vma, unsigned long address, 1632 unsigned long size); 1633 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma, 1634 unsigned long start, unsigned long end); 1635 1636 struct mmu_notifier_range; 1637 1638 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr, 1639 unsigned long end, unsigned long floor, unsigned long ceiling); 1640 int copy_page_range(struct mm_struct *dst, struct mm_struct *src, 1641 struct vm_area_struct *vma); 1642 int follow_pte_pmd(struct mm_struct *mm, unsigned long address, 1643 struct mmu_notifier_range *range, 1644 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp); 1645 int follow_pfn(struct vm_area_struct *vma, unsigned long address, 1646 unsigned long *pfn); 1647 int follow_phys(struct vm_area_struct *vma, unsigned long address, 1648 unsigned int flags, unsigned long *prot, resource_size_t *phys); 1649 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr, 1650 void *buf, int len, int write); 1651 1652 extern void truncate_pagecache(struct inode *inode, loff_t new); 1653 extern void truncate_setsize(struct inode *inode, loff_t newsize); 1654 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to); 1655 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end); 1656 int truncate_inode_page(struct address_space *mapping, struct page *page); 1657 int generic_error_remove_page(struct address_space *mapping, struct page *page); 1658 int invalidate_inode_page(struct page *page); 1659 1660 #ifdef CONFIG_MMU 1661 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1662 unsigned long address, unsigned int flags, 1663 struct pt_regs *regs); 1664 extern int fixup_user_fault(struct mm_struct *mm, 1665 unsigned long address, unsigned int fault_flags, 1666 bool *unlocked); 1667 void unmap_mapping_pages(struct address_space *mapping, 1668 pgoff_t start, pgoff_t nr, bool even_cows); 1669 void unmap_mapping_range(struct address_space *mapping, 1670 loff_t const holebegin, loff_t const holelen, int even_cows); 1671 #else 1672 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma, 1673 unsigned long address, unsigned int flags, 1674 struct pt_regs *regs) 1675 { 1676 /* should never happen if there's no MMU */ 1677 BUG(); 1678 return VM_FAULT_SIGBUS; 1679 } 1680 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address, 1681 unsigned int fault_flags, bool *unlocked) 1682 { 1683 /* should never happen if there's no MMU */ 1684 BUG(); 1685 return -EFAULT; 1686 } 1687 static inline void unmap_mapping_pages(struct address_space *mapping, 1688 pgoff_t start, pgoff_t nr, bool even_cows) { } 1689 static inline void unmap_mapping_range(struct address_space *mapping, 1690 loff_t const holebegin, loff_t const holelen, int even_cows) { } 1691 #endif 1692 1693 static inline void unmap_shared_mapping_range(struct address_space *mapping, 1694 loff_t const holebegin, loff_t const holelen) 1695 { 1696 unmap_mapping_range(mapping, holebegin, holelen, 0); 1697 } 1698 1699 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, 1700 void *buf, int len, unsigned int gup_flags); 1701 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr, 1702 void *buf, int len, unsigned int gup_flags); 1703 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm, 1704 unsigned long addr, void *buf, int len, unsigned int gup_flags); 1705 1706 long get_user_pages_remote(struct mm_struct *mm, 1707 unsigned long start, unsigned long nr_pages, 1708 unsigned int gup_flags, struct page **pages, 1709 struct vm_area_struct **vmas, int *locked); 1710 long pin_user_pages_remote(struct mm_struct *mm, 1711 unsigned long start, unsigned long nr_pages, 1712 unsigned int gup_flags, struct page **pages, 1713 struct vm_area_struct **vmas, int *locked); 1714 long get_user_pages(unsigned long start, unsigned long nr_pages, 1715 unsigned int gup_flags, struct page **pages, 1716 struct vm_area_struct **vmas); 1717 long pin_user_pages(unsigned long start, unsigned long nr_pages, 1718 unsigned int gup_flags, struct page **pages, 1719 struct vm_area_struct **vmas); 1720 long get_user_pages_locked(unsigned long start, unsigned long nr_pages, 1721 unsigned int gup_flags, struct page **pages, int *locked); 1722 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages, 1723 unsigned int gup_flags, struct page **pages, int *locked); 1724 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1725 struct page **pages, unsigned int gup_flags); 1726 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages, 1727 struct page **pages, unsigned int gup_flags); 1728 1729 int get_user_pages_fast(unsigned long start, int nr_pages, 1730 unsigned int gup_flags, struct page **pages); 1731 int pin_user_pages_fast(unsigned long start, int nr_pages, 1732 unsigned int gup_flags, struct page **pages); 1733 1734 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc); 1735 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc, 1736 struct task_struct *task, bool bypass_rlim); 1737 1738 /* Container for pinned pfns / pages */ 1739 struct frame_vector { 1740 unsigned int nr_allocated; /* Number of frames we have space for */ 1741 unsigned int nr_frames; /* Number of frames stored in ptrs array */ 1742 bool got_ref; /* Did we pin pages by getting page ref? */ 1743 bool is_pfns; /* Does array contain pages or pfns? */ 1744 void *ptrs[]; /* Array of pinned pfns / pages. Use 1745 * pfns_vector_pages() or pfns_vector_pfns() 1746 * for access */ 1747 }; 1748 1749 struct frame_vector *frame_vector_create(unsigned int nr_frames); 1750 void frame_vector_destroy(struct frame_vector *vec); 1751 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns, 1752 unsigned int gup_flags, struct frame_vector *vec); 1753 void put_vaddr_frames(struct frame_vector *vec); 1754 int frame_vector_to_pages(struct frame_vector *vec); 1755 void frame_vector_to_pfns(struct frame_vector *vec); 1756 1757 static inline unsigned int frame_vector_count(struct frame_vector *vec) 1758 { 1759 return vec->nr_frames; 1760 } 1761 1762 static inline struct page **frame_vector_pages(struct frame_vector *vec) 1763 { 1764 if (vec->is_pfns) { 1765 int err = frame_vector_to_pages(vec); 1766 1767 if (err) 1768 return ERR_PTR(err); 1769 } 1770 return (struct page **)(vec->ptrs); 1771 } 1772 1773 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec) 1774 { 1775 if (!vec->is_pfns) 1776 frame_vector_to_pfns(vec); 1777 return (unsigned long *)(vec->ptrs); 1778 } 1779 1780 struct kvec; 1781 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write, 1782 struct page **pages); 1783 int get_kernel_page(unsigned long start, int write, struct page **pages); 1784 struct page *get_dump_page(unsigned long addr); 1785 1786 extern int try_to_release_page(struct page * page, gfp_t gfp_mask); 1787 extern void do_invalidatepage(struct page *page, unsigned int offset, 1788 unsigned int length); 1789 1790 void __set_page_dirty(struct page *, struct address_space *, int warn); 1791 int __set_page_dirty_nobuffers(struct page *page); 1792 int __set_page_dirty_no_writeback(struct page *page); 1793 int redirty_page_for_writepage(struct writeback_control *wbc, 1794 struct page *page); 1795 void account_page_dirtied(struct page *page, struct address_space *mapping); 1796 void account_page_cleaned(struct page *page, struct address_space *mapping, 1797 struct bdi_writeback *wb); 1798 int set_page_dirty(struct page *page); 1799 int set_page_dirty_lock(struct page *page); 1800 void __cancel_dirty_page(struct page *page); 1801 static inline void cancel_dirty_page(struct page *page) 1802 { 1803 /* Avoid atomic ops, locking, etc. when not actually needed. */ 1804 if (PageDirty(page)) 1805 __cancel_dirty_page(page); 1806 } 1807 int clear_page_dirty_for_io(struct page *page); 1808 1809 int get_cmdline(struct task_struct *task, char *buffer, int buflen); 1810 1811 extern unsigned long move_page_tables(struct vm_area_struct *vma, 1812 unsigned long old_addr, struct vm_area_struct *new_vma, 1813 unsigned long new_addr, unsigned long len, 1814 bool need_rmap_locks); 1815 1816 /* 1817 * Flags used by change_protection(). For now we make it a bitmap so 1818 * that we can pass in multiple flags just like parameters. However 1819 * for now all the callers are only use one of the flags at the same 1820 * time. 1821 */ 1822 /* Whether we should allow dirty bit accounting */ 1823 #define MM_CP_DIRTY_ACCT (1UL << 0) 1824 /* Whether this protection change is for NUMA hints */ 1825 #define MM_CP_PROT_NUMA (1UL << 1) 1826 /* Whether this change is for write protecting */ 1827 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */ 1828 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */ 1829 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \ 1830 MM_CP_UFFD_WP_RESOLVE) 1831 1832 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start, 1833 unsigned long end, pgprot_t newprot, 1834 unsigned long cp_flags); 1835 extern int mprotect_fixup(struct vm_area_struct *vma, 1836 struct vm_area_struct **pprev, unsigned long start, 1837 unsigned long end, unsigned long newflags); 1838 1839 /* 1840 * doesn't attempt to fault and will return short. 1841 */ 1842 int get_user_pages_fast_only(unsigned long start, int nr_pages, 1843 unsigned int gup_flags, struct page **pages); 1844 int pin_user_pages_fast_only(unsigned long start, int nr_pages, 1845 unsigned int gup_flags, struct page **pages); 1846 1847 static inline bool get_user_page_fast_only(unsigned long addr, 1848 unsigned int gup_flags, struct page **pagep) 1849 { 1850 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1; 1851 } 1852 /* 1853 * per-process(per-mm_struct) statistics. 1854 */ 1855 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member) 1856 { 1857 long val = atomic_long_read(&mm->rss_stat.count[member]); 1858 1859 #ifdef SPLIT_RSS_COUNTING 1860 /* 1861 * counter is updated in asynchronous manner and may go to minus. 1862 * But it's never be expected number for users. 1863 */ 1864 if (val < 0) 1865 val = 0; 1866 #endif 1867 return (unsigned long)val; 1868 } 1869 1870 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count); 1871 1872 static inline void add_mm_counter(struct mm_struct *mm, int member, long value) 1873 { 1874 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]); 1875 1876 mm_trace_rss_stat(mm, member, count); 1877 } 1878 1879 static inline void inc_mm_counter(struct mm_struct *mm, int member) 1880 { 1881 long count = atomic_long_inc_return(&mm->rss_stat.count[member]); 1882 1883 mm_trace_rss_stat(mm, member, count); 1884 } 1885 1886 static inline void dec_mm_counter(struct mm_struct *mm, int member) 1887 { 1888 long count = atomic_long_dec_return(&mm->rss_stat.count[member]); 1889 1890 mm_trace_rss_stat(mm, member, count); 1891 } 1892 1893 /* Optimized variant when page is already known not to be PageAnon */ 1894 static inline int mm_counter_file(struct page *page) 1895 { 1896 if (PageSwapBacked(page)) 1897 return MM_SHMEMPAGES; 1898 return MM_FILEPAGES; 1899 } 1900 1901 static inline int mm_counter(struct page *page) 1902 { 1903 if (PageAnon(page)) 1904 return MM_ANONPAGES; 1905 return mm_counter_file(page); 1906 } 1907 1908 static inline unsigned long get_mm_rss(struct mm_struct *mm) 1909 { 1910 return get_mm_counter(mm, MM_FILEPAGES) + 1911 get_mm_counter(mm, MM_ANONPAGES) + 1912 get_mm_counter(mm, MM_SHMEMPAGES); 1913 } 1914 1915 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm) 1916 { 1917 return max(mm->hiwater_rss, get_mm_rss(mm)); 1918 } 1919 1920 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm) 1921 { 1922 return max(mm->hiwater_vm, mm->total_vm); 1923 } 1924 1925 static inline void update_hiwater_rss(struct mm_struct *mm) 1926 { 1927 unsigned long _rss = get_mm_rss(mm); 1928 1929 if ((mm)->hiwater_rss < _rss) 1930 (mm)->hiwater_rss = _rss; 1931 } 1932 1933 static inline void update_hiwater_vm(struct mm_struct *mm) 1934 { 1935 if (mm->hiwater_vm < mm->total_vm) 1936 mm->hiwater_vm = mm->total_vm; 1937 } 1938 1939 static inline void reset_mm_hiwater_rss(struct mm_struct *mm) 1940 { 1941 mm->hiwater_rss = get_mm_rss(mm); 1942 } 1943 1944 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss, 1945 struct mm_struct *mm) 1946 { 1947 unsigned long hiwater_rss = get_mm_hiwater_rss(mm); 1948 1949 if (*maxrss < hiwater_rss) 1950 *maxrss = hiwater_rss; 1951 } 1952 1953 #if defined(SPLIT_RSS_COUNTING) 1954 void sync_mm_rss(struct mm_struct *mm); 1955 #else 1956 static inline void sync_mm_rss(struct mm_struct *mm) 1957 { 1958 } 1959 #endif 1960 1961 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL 1962 static inline int pte_special(pte_t pte) 1963 { 1964 return 0; 1965 } 1966 1967 static inline pte_t pte_mkspecial(pte_t pte) 1968 { 1969 return pte; 1970 } 1971 #endif 1972 1973 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP 1974 static inline int pte_devmap(pte_t pte) 1975 { 1976 return 0; 1977 } 1978 #endif 1979 1980 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot); 1981 1982 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr, 1983 spinlock_t **ptl); 1984 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, 1985 spinlock_t **ptl) 1986 { 1987 pte_t *ptep; 1988 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl)); 1989 return ptep; 1990 } 1991 1992 #ifdef __PAGETABLE_P4D_FOLDED 1993 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 1994 unsigned long address) 1995 { 1996 return 0; 1997 } 1998 #else 1999 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); 2000 #endif 2001 2002 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU) 2003 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2004 unsigned long address) 2005 { 2006 return 0; 2007 } 2008 static inline void mm_inc_nr_puds(struct mm_struct *mm) {} 2009 static inline void mm_dec_nr_puds(struct mm_struct *mm) {} 2010 2011 #else 2012 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address); 2013 2014 static inline void mm_inc_nr_puds(struct mm_struct *mm) 2015 { 2016 if (mm_pud_folded(mm)) 2017 return; 2018 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2019 } 2020 2021 static inline void mm_dec_nr_puds(struct mm_struct *mm) 2022 { 2023 if (mm_pud_folded(mm)) 2024 return; 2025 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes); 2026 } 2027 #endif 2028 2029 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU) 2030 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, 2031 unsigned long address) 2032 { 2033 return 0; 2034 } 2035 2036 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {} 2037 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {} 2038 2039 #else 2040 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); 2041 2042 static inline void mm_inc_nr_pmds(struct mm_struct *mm) 2043 { 2044 if (mm_pmd_folded(mm)) 2045 return; 2046 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2047 } 2048 2049 static inline void mm_dec_nr_pmds(struct mm_struct *mm) 2050 { 2051 if (mm_pmd_folded(mm)) 2052 return; 2053 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes); 2054 } 2055 #endif 2056 2057 #ifdef CONFIG_MMU 2058 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) 2059 { 2060 atomic_long_set(&mm->pgtables_bytes, 0); 2061 } 2062 2063 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2064 { 2065 return atomic_long_read(&mm->pgtables_bytes); 2066 } 2067 2068 static inline void mm_inc_nr_ptes(struct mm_struct *mm) 2069 { 2070 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2071 } 2072 2073 static inline void mm_dec_nr_ptes(struct mm_struct *mm) 2074 { 2075 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes); 2076 } 2077 #else 2078 2079 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {} 2080 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm) 2081 { 2082 return 0; 2083 } 2084 2085 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {} 2086 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {} 2087 #endif 2088 2089 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd); 2090 int __pte_alloc_kernel(pmd_t *pmd); 2091 2092 #if defined(CONFIG_MMU) 2093 2094 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd, 2095 unsigned long address) 2096 { 2097 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ? 2098 NULL : p4d_offset(pgd, address); 2099 } 2100 2101 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d, 2102 unsigned long address) 2103 { 2104 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ? 2105 NULL : pud_offset(p4d, address); 2106 } 2107 2108 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) 2109 { 2110 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? 2111 NULL: pmd_offset(pud, address); 2112 } 2113 #endif /* CONFIG_MMU */ 2114 2115 #if USE_SPLIT_PTE_PTLOCKS 2116 #if ALLOC_SPLIT_PTLOCKS 2117 void __init ptlock_cache_init(void); 2118 extern bool ptlock_alloc(struct page *page); 2119 extern void ptlock_free(struct page *page); 2120 2121 static inline spinlock_t *ptlock_ptr(struct page *page) 2122 { 2123 return page->ptl; 2124 } 2125 #else /* ALLOC_SPLIT_PTLOCKS */ 2126 static inline void ptlock_cache_init(void) 2127 { 2128 } 2129 2130 static inline bool ptlock_alloc(struct page *page) 2131 { 2132 return true; 2133 } 2134 2135 static inline void ptlock_free(struct page *page) 2136 { 2137 } 2138 2139 static inline spinlock_t *ptlock_ptr(struct page *page) 2140 { 2141 return &page->ptl; 2142 } 2143 #endif /* ALLOC_SPLIT_PTLOCKS */ 2144 2145 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2146 { 2147 return ptlock_ptr(pmd_page(*pmd)); 2148 } 2149 2150 static inline bool ptlock_init(struct page *page) 2151 { 2152 /* 2153 * prep_new_page() initialize page->private (and therefore page->ptl) 2154 * with 0. Make sure nobody took it in use in between. 2155 * 2156 * It can happen if arch try to use slab for page table allocation: 2157 * slab code uses page->slab_cache, which share storage with page->ptl. 2158 */ 2159 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page); 2160 if (!ptlock_alloc(page)) 2161 return false; 2162 spin_lock_init(ptlock_ptr(page)); 2163 return true; 2164 } 2165 2166 #else /* !USE_SPLIT_PTE_PTLOCKS */ 2167 /* 2168 * We use mm->page_table_lock to guard all pagetable pages of the mm. 2169 */ 2170 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd) 2171 { 2172 return &mm->page_table_lock; 2173 } 2174 static inline void ptlock_cache_init(void) {} 2175 static inline bool ptlock_init(struct page *page) { return true; } 2176 static inline void ptlock_free(struct page *page) {} 2177 #endif /* USE_SPLIT_PTE_PTLOCKS */ 2178 2179 static inline void pgtable_init(void) 2180 { 2181 ptlock_cache_init(); 2182 pgtable_cache_init(); 2183 } 2184 2185 static inline bool pgtable_pte_page_ctor(struct page *page) 2186 { 2187 if (!ptlock_init(page)) 2188 return false; 2189 __SetPageTable(page); 2190 inc_zone_page_state(page, NR_PAGETABLE); 2191 return true; 2192 } 2193 2194 static inline void pgtable_pte_page_dtor(struct page *page) 2195 { 2196 ptlock_free(page); 2197 __ClearPageTable(page); 2198 dec_zone_page_state(page, NR_PAGETABLE); 2199 } 2200 2201 #define pte_offset_map_lock(mm, pmd, address, ptlp) \ 2202 ({ \ 2203 spinlock_t *__ptl = pte_lockptr(mm, pmd); \ 2204 pte_t *__pte = pte_offset_map(pmd, address); \ 2205 *(ptlp) = __ptl; \ 2206 spin_lock(__ptl); \ 2207 __pte; \ 2208 }) 2209 2210 #define pte_unmap_unlock(pte, ptl) do { \ 2211 spin_unlock(ptl); \ 2212 pte_unmap(pte); \ 2213 } while (0) 2214 2215 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd)) 2216 2217 #define pte_alloc_map(mm, pmd, address) \ 2218 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address)) 2219 2220 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \ 2221 (pte_alloc(mm, pmd) ? \ 2222 NULL : pte_offset_map_lock(mm, pmd, address, ptlp)) 2223 2224 #define pte_alloc_kernel(pmd, address) \ 2225 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \ 2226 NULL: pte_offset_kernel(pmd, address)) 2227 2228 #if USE_SPLIT_PMD_PTLOCKS 2229 2230 static struct page *pmd_to_page(pmd_t *pmd) 2231 { 2232 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1); 2233 return virt_to_page((void *)((unsigned long) pmd & mask)); 2234 } 2235 2236 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2237 { 2238 return ptlock_ptr(pmd_to_page(pmd)); 2239 } 2240 2241 static inline bool pgtable_pmd_page_ctor(struct page *page) 2242 { 2243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2244 page->pmd_huge_pte = NULL; 2245 #endif 2246 return ptlock_init(page); 2247 } 2248 2249 static inline void pgtable_pmd_page_dtor(struct page *page) 2250 { 2251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 2252 VM_BUG_ON_PAGE(page->pmd_huge_pte, page); 2253 #endif 2254 ptlock_free(page); 2255 } 2256 2257 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte) 2258 2259 #else 2260 2261 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd) 2262 { 2263 return &mm->page_table_lock; 2264 } 2265 2266 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; } 2267 static inline void pgtable_pmd_page_dtor(struct page *page) {} 2268 2269 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte) 2270 2271 #endif 2272 2273 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd) 2274 { 2275 spinlock_t *ptl = pmd_lockptr(mm, pmd); 2276 spin_lock(ptl); 2277 return ptl; 2278 } 2279 2280 /* 2281 * No scalability reason to split PUD locks yet, but follow the same pattern 2282 * as the PMD locks to make it easier if we decide to. The VM should not be 2283 * considered ready to switch to split PUD locks yet; there may be places 2284 * which need to be converted from page_table_lock. 2285 */ 2286 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud) 2287 { 2288 return &mm->page_table_lock; 2289 } 2290 2291 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud) 2292 { 2293 spinlock_t *ptl = pud_lockptr(mm, pud); 2294 2295 spin_lock(ptl); 2296 return ptl; 2297 } 2298 2299 extern void __init pagecache_init(void); 2300 extern void __init free_area_init_memoryless_node(int nid); 2301 extern void free_initmem(void); 2302 2303 /* 2304 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK) 2305 * into the buddy system. The freed pages will be poisoned with pattern 2306 * "poison" if it's within range [0, UCHAR_MAX]. 2307 * Return pages freed into the buddy system. 2308 */ 2309 extern unsigned long free_reserved_area(void *start, void *end, 2310 int poison, const char *s); 2311 2312 #ifdef CONFIG_HIGHMEM 2313 /* 2314 * Free a highmem page into the buddy system, adjusting totalhigh_pages 2315 * and totalram_pages. 2316 */ 2317 extern void free_highmem_page(struct page *page); 2318 #endif 2319 2320 extern void adjust_managed_page_count(struct page *page, long count); 2321 extern void mem_init_print_info(const char *str); 2322 2323 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end); 2324 2325 /* Free the reserved page into the buddy system, so it gets managed. */ 2326 static inline void __free_reserved_page(struct page *page) 2327 { 2328 ClearPageReserved(page); 2329 init_page_count(page); 2330 __free_page(page); 2331 } 2332 2333 static inline void free_reserved_page(struct page *page) 2334 { 2335 __free_reserved_page(page); 2336 adjust_managed_page_count(page, 1); 2337 } 2338 2339 static inline void mark_page_reserved(struct page *page) 2340 { 2341 SetPageReserved(page); 2342 adjust_managed_page_count(page, -1); 2343 } 2344 2345 /* 2346 * Default method to free all the __init memory into the buddy system. 2347 * The freed pages will be poisoned with pattern "poison" if it's within 2348 * range [0, UCHAR_MAX]. 2349 * Return pages freed into the buddy system. 2350 */ 2351 static inline unsigned long free_initmem_default(int poison) 2352 { 2353 extern char __init_begin[], __init_end[]; 2354 2355 return free_reserved_area(&__init_begin, &__init_end, 2356 poison, "unused kernel"); 2357 } 2358 2359 static inline unsigned long get_num_physpages(void) 2360 { 2361 int nid; 2362 unsigned long phys_pages = 0; 2363 2364 for_each_online_node(nid) 2365 phys_pages += node_present_pages(nid); 2366 2367 return phys_pages; 2368 } 2369 2370 /* 2371 * Using memblock node mappings, an architecture may initialise its 2372 * zones, allocate the backing mem_map and account for memory holes in an 2373 * architecture independent manner. 2374 * 2375 * An architecture is expected to register range of page frames backed by 2376 * physical memory with memblock_add[_node]() before calling 2377 * free_area_init() passing in the PFN each zone ends at. At a basic 2378 * usage, an architecture is expected to do something like 2379 * 2380 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, 2381 * max_highmem_pfn}; 2382 * for_each_valid_physical_page_range() 2383 * memblock_add_node(base, size, nid) 2384 * free_area_init(max_zone_pfns); 2385 */ 2386 void free_area_init(unsigned long *max_zone_pfn); 2387 unsigned long node_map_pfn_alignment(void); 2388 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn, 2389 unsigned long end_pfn); 2390 extern unsigned long absent_pages_in_range(unsigned long start_pfn, 2391 unsigned long end_pfn); 2392 extern void get_pfn_range_for_nid(unsigned int nid, 2393 unsigned long *start_pfn, unsigned long *end_pfn); 2394 extern unsigned long find_min_pfn_with_active_regions(void); 2395 2396 #ifndef CONFIG_NEED_MULTIPLE_NODES 2397 static inline int early_pfn_to_nid(unsigned long pfn) 2398 { 2399 return 0; 2400 } 2401 #else 2402 /* please see mm/page_alloc.c */ 2403 extern int __meminit early_pfn_to_nid(unsigned long pfn); 2404 /* there is a per-arch backend function. */ 2405 extern int __meminit __early_pfn_to_nid(unsigned long pfn, 2406 struct mminit_pfnnid_cache *state); 2407 #endif 2408 2409 extern void set_dma_reserve(unsigned long new_dma_reserve); 2410 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long, 2411 enum memmap_context, struct vmem_altmap *); 2412 extern void setup_per_zone_wmarks(void); 2413 extern int __meminit init_per_zone_wmark_min(void); 2414 extern void mem_init(void); 2415 extern void __init mmap_init(void); 2416 extern void show_mem(unsigned int flags, nodemask_t *nodemask); 2417 extern long si_mem_available(void); 2418 extern void si_meminfo(struct sysinfo * val); 2419 extern void si_meminfo_node(struct sysinfo *val, int nid); 2420 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES 2421 extern unsigned long arch_reserved_kernel_pages(void); 2422 #endif 2423 2424 extern __printf(3, 4) 2425 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...); 2426 2427 extern void setup_per_cpu_pageset(void); 2428 2429 /* page_alloc.c */ 2430 extern int min_free_kbytes; 2431 extern int watermark_boost_factor; 2432 extern int watermark_scale_factor; 2433 extern bool arch_has_descending_max_zone_pfns(void); 2434 2435 /* nommu.c */ 2436 extern atomic_long_t mmap_pages_allocated; 2437 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t); 2438 2439 /* interval_tree.c */ 2440 void vma_interval_tree_insert(struct vm_area_struct *node, 2441 struct rb_root_cached *root); 2442 void vma_interval_tree_insert_after(struct vm_area_struct *node, 2443 struct vm_area_struct *prev, 2444 struct rb_root_cached *root); 2445 void vma_interval_tree_remove(struct vm_area_struct *node, 2446 struct rb_root_cached *root); 2447 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root, 2448 unsigned long start, unsigned long last); 2449 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node, 2450 unsigned long start, unsigned long last); 2451 2452 #define vma_interval_tree_foreach(vma, root, start, last) \ 2453 for (vma = vma_interval_tree_iter_first(root, start, last); \ 2454 vma; vma = vma_interval_tree_iter_next(vma, start, last)) 2455 2456 void anon_vma_interval_tree_insert(struct anon_vma_chain *node, 2457 struct rb_root_cached *root); 2458 void anon_vma_interval_tree_remove(struct anon_vma_chain *node, 2459 struct rb_root_cached *root); 2460 struct anon_vma_chain * 2461 anon_vma_interval_tree_iter_first(struct rb_root_cached *root, 2462 unsigned long start, unsigned long last); 2463 struct anon_vma_chain *anon_vma_interval_tree_iter_next( 2464 struct anon_vma_chain *node, unsigned long start, unsigned long last); 2465 #ifdef CONFIG_DEBUG_VM_RB 2466 void anon_vma_interval_tree_verify(struct anon_vma_chain *node); 2467 #endif 2468 2469 #define anon_vma_interval_tree_foreach(avc, root, start, last) \ 2470 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \ 2471 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last)) 2472 2473 /* mmap.c */ 2474 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); 2475 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start, 2476 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert, 2477 struct vm_area_struct *expand); 2478 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start, 2479 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert) 2480 { 2481 return __vma_adjust(vma, start, end, pgoff, insert, NULL); 2482 } 2483 extern struct vm_area_struct *vma_merge(struct mm_struct *, 2484 struct vm_area_struct *prev, unsigned long addr, unsigned long end, 2485 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, 2486 struct mempolicy *, struct vm_userfaultfd_ctx); 2487 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); 2488 extern int __split_vma(struct mm_struct *, struct vm_area_struct *, 2489 unsigned long addr, int new_below); 2490 extern int split_vma(struct mm_struct *, struct vm_area_struct *, 2491 unsigned long addr, int new_below); 2492 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); 2493 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, 2494 struct rb_node **, struct rb_node *); 2495 extern void unlink_file_vma(struct vm_area_struct *); 2496 extern struct vm_area_struct *copy_vma(struct vm_area_struct **, 2497 unsigned long addr, unsigned long len, pgoff_t pgoff, 2498 bool *need_rmap_locks); 2499 extern void exit_mmap(struct mm_struct *); 2500 2501 static inline int check_data_rlimit(unsigned long rlim, 2502 unsigned long new, 2503 unsigned long start, 2504 unsigned long end_data, 2505 unsigned long start_data) 2506 { 2507 if (rlim < RLIM_INFINITY) { 2508 if (((new - start) + (end_data - start_data)) > rlim) 2509 return -ENOSPC; 2510 } 2511 2512 return 0; 2513 } 2514 2515 extern int mm_take_all_locks(struct mm_struct *mm); 2516 extern void mm_drop_all_locks(struct mm_struct *mm); 2517 2518 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file); 2519 extern struct file *get_mm_exe_file(struct mm_struct *mm); 2520 extern struct file *get_task_exe_file(struct task_struct *task); 2521 2522 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages); 2523 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages); 2524 2525 extern bool vma_is_special_mapping(const struct vm_area_struct *vma, 2526 const struct vm_special_mapping *sm); 2527 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm, 2528 unsigned long addr, unsigned long len, 2529 unsigned long flags, 2530 const struct vm_special_mapping *spec); 2531 /* This is an obsolete alternative to _install_special_mapping. */ 2532 extern int install_special_mapping(struct mm_struct *mm, 2533 unsigned long addr, unsigned long len, 2534 unsigned long flags, struct page **pages); 2535 2536 unsigned long randomize_stack_top(unsigned long stack_top); 2537 2538 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); 2539 2540 extern unsigned long mmap_region(struct file *file, unsigned long addr, 2541 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff, 2542 struct list_head *uf); 2543 extern unsigned long do_mmap(struct file *file, unsigned long addr, 2544 unsigned long len, unsigned long prot, unsigned long flags, 2545 unsigned long pgoff, unsigned long *populate, struct list_head *uf); 2546 extern int __do_munmap(struct mm_struct *, unsigned long, size_t, 2547 struct list_head *uf, bool downgrade); 2548 extern int do_munmap(struct mm_struct *, unsigned long, size_t, 2549 struct list_head *uf); 2550 extern int do_madvise(unsigned long start, size_t len_in, int behavior); 2551 2552 #ifdef CONFIG_MMU 2553 extern int __mm_populate(unsigned long addr, unsigned long len, 2554 int ignore_errors); 2555 static inline void mm_populate(unsigned long addr, unsigned long len) 2556 { 2557 /* Ignore errors */ 2558 (void) __mm_populate(addr, len, 1); 2559 } 2560 #else 2561 static inline void mm_populate(unsigned long addr, unsigned long len) {} 2562 #endif 2563 2564 /* These take the mm semaphore themselves */ 2565 extern int __must_check vm_brk(unsigned long, unsigned long); 2566 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long); 2567 extern int vm_munmap(unsigned long, size_t); 2568 extern unsigned long __must_check vm_mmap(struct file *, unsigned long, 2569 unsigned long, unsigned long, 2570 unsigned long, unsigned long); 2571 2572 struct vm_unmapped_area_info { 2573 #define VM_UNMAPPED_AREA_TOPDOWN 1 2574 unsigned long flags; 2575 unsigned long length; 2576 unsigned long low_limit; 2577 unsigned long high_limit; 2578 unsigned long align_mask; 2579 unsigned long align_offset; 2580 }; 2581 2582 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info); 2583 2584 /* truncate.c */ 2585 extern void truncate_inode_pages(struct address_space *, loff_t); 2586 extern void truncate_inode_pages_range(struct address_space *, 2587 loff_t lstart, loff_t lend); 2588 extern void truncate_inode_pages_final(struct address_space *); 2589 2590 /* generic vm_area_ops exported for stackable file systems */ 2591 extern vm_fault_t filemap_fault(struct vm_fault *vmf); 2592 extern void filemap_map_pages(struct vm_fault *vmf, 2593 pgoff_t start_pgoff, pgoff_t end_pgoff); 2594 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf); 2595 2596 /* mm/page-writeback.c */ 2597 int __must_check write_one_page(struct page *page); 2598 void task_dirty_inc(struct task_struct *tsk); 2599 2600 extern unsigned long stack_guard_gap; 2601 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */ 2602 extern int expand_stack(struct vm_area_struct *vma, unsigned long address); 2603 2604 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */ 2605 extern int expand_downwards(struct vm_area_struct *vma, 2606 unsigned long address); 2607 #if VM_GROWSUP 2608 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); 2609 #else 2610 #define expand_upwards(vma, address) (0) 2611 #endif 2612 2613 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */ 2614 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); 2615 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, 2616 struct vm_area_struct **pprev); 2617 2618 /* Look up the first VMA which intersects the interval start_addr..end_addr-1, 2619 NULL if none. Assume start_addr < end_addr. */ 2620 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) 2621 { 2622 struct vm_area_struct * vma = find_vma(mm,start_addr); 2623 2624 if (vma && end_addr <= vma->vm_start) 2625 vma = NULL; 2626 return vma; 2627 } 2628 2629 static inline unsigned long vm_start_gap(struct vm_area_struct *vma) 2630 { 2631 unsigned long vm_start = vma->vm_start; 2632 2633 if (vma->vm_flags & VM_GROWSDOWN) { 2634 vm_start -= stack_guard_gap; 2635 if (vm_start > vma->vm_start) 2636 vm_start = 0; 2637 } 2638 return vm_start; 2639 } 2640 2641 static inline unsigned long vm_end_gap(struct vm_area_struct *vma) 2642 { 2643 unsigned long vm_end = vma->vm_end; 2644 2645 if (vma->vm_flags & VM_GROWSUP) { 2646 vm_end += stack_guard_gap; 2647 if (vm_end < vma->vm_end) 2648 vm_end = -PAGE_SIZE; 2649 } 2650 return vm_end; 2651 } 2652 2653 static inline unsigned long vma_pages(struct vm_area_struct *vma) 2654 { 2655 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; 2656 } 2657 2658 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */ 2659 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm, 2660 unsigned long vm_start, unsigned long vm_end) 2661 { 2662 struct vm_area_struct *vma = find_vma(mm, vm_start); 2663 2664 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end)) 2665 vma = NULL; 2666 2667 return vma; 2668 } 2669 2670 static inline bool range_in_vma(struct vm_area_struct *vma, 2671 unsigned long start, unsigned long end) 2672 { 2673 return (vma && vma->vm_start <= start && end <= vma->vm_end); 2674 } 2675 2676 #ifdef CONFIG_MMU 2677 pgprot_t vm_get_page_prot(unsigned long vm_flags); 2678 void vma_set_page_prot(struct vm_area_struct *vma); 2679 #else 2680 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags) 2681 { 2682 return __pgprot(0); 2683 } 2684 static inline void vma_set_page_prot(struct vm_area_struct *vma) 2685 { 2686 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 2687 } 2688 #endif 2689 2690 #ifdef CONFIG_NUMA_BALANCING 2691 unsigned long change_prot_numa(struct vm_area_struct *vma, 2692 unsigned long start, unsigned long end); 2693 #endif 2694 2695 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); 2696 int remap_pfn_range(struct vm_area_struct *, unsigned long addr, 2697 unsigned long pfn, unsigned long size, pgprot_t); 2698 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); 2699 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr, 2700 struct page **pages, unsigned long *num); 2701 int vm_map_pages(struct vm_area_struct *vma, struct page **pages, 2702 unsigned long num); 2703 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages, 2704 unsigned long num); 2705 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr, 2706 unsigned long pfn); 2707 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr, 2708 unsigned long pfn, pgprot_t pgprot); 2709 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr, 2710 pfn_t pfn); 2711 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr, 2712 pfn_t pfn, pgprot_t pgprot); 2713 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma, 2714 unsigned long addr, pfn_t pfn); 2715 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len); 2716 2717 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma, 2718 unsigned long addr, struct page *page) 2719 { 2720 int err = vm_insert_page(vma, addr, page); 2721 2722 if (err == -ENOMEM) 2723 return VM_FAULT_OOM; 2724 if (err < 0 && err != -EBUSY) 2725 return VM_FAULT_SIGBUS; 2726 2727 return VM_FAULT_NOPAGE; 2728 } 2729 2730 static inline vm_fault_t vmf_error(int err) 2731 { 2732 if (err == -ENOMEM) 2733 return VM_FAULT_OOM; 2734 return VM_FAULT_SIGBUS; 2735 } 2736 2737 struct page *follow_page(struct vm_area_struct *vma, unsigned long address, 2738 unsigned int foll_flags); 2739 2740 #define FOLL_WRITE 0x01 /* check pte is writable */ 2741 #define FOLL_TOUCH 0x02 /* mark page accessed */ 2742 #define FOLL_GET 0x04 /* do get_page on page */ 2743 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */ 2744 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */ 2745 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO 2746 * and return without waiting upon it */ 2747 #define FOLL_POPULATE 0x40 /* fault in page */ 2748 #define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */ 2749 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */ 2750 #define FOLL_NUMA 0x200 /* force NUMA hinting page fault */ 2751 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */ 2752 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */ 2753 #define FOLL_MLOCK 0x1000 /* lock present pages */ 2754 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */ 2755 #define FOLL_COW 0x4000 /* internal GUP flag */ 2756 #define FOLL_ANON 0x8000 /* don't do file mappings */ 2757 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */ 2758 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */ 2759 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */ 2760 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */ 2761 2762 /* 2763 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each 2764 * other. Here is what they mean, and how to use them: 2765 * 2766 * FOLL_LONGTERM indicates that the page will be held for an indefinite time 2767 * period _often_ under userspace control. This is in contrast to 2768 * iov_iter_get_pages(), whose usages are transient. 2769 * 2770 * FIXME: For pages which are part of a filesystem, mappings are subject to the 2771 * lifetime enforced by the filesystem and we need guarantees that longterm 2772 * users like RDMA and V4L2 only establish mappings which coordinate usage with 2773 * the filesystem. Ideas for this coordination include revoking the longterm 2774 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was 2775 * added after the problem with filesystems was found FS DAX VMAs are 2776 * specifically failed. Filesystem pages are still subject to bugs and use of 2777 * FOLL_LONGTERM should be avoided on those pages. 2778 * 2779 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call. 2780 * Currently only get_user_pages() and get_user_pages_fast() support this flag 2781 * and calls to get_user_pages_[un]locked are specifically not allowed. This 2782 * is due to an incompatibility with the FS DAX check and 2783 * FAULT_FLAG_ALLOW_RETRY. 2784 * 2785 * In the CMA case: long term pins in a CMA region would unnecessarily fragment 2786 * that region. And so, CMA attempts to migrate the page before pinning, when 2787 * FOLL_LONGTERM is specified. 2788 * 2789 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount, 2790 * but an additional pin counting system) will be invoked. This is intended for 2791 * anything that gets a page reference and then touches page data (for example, 2792 * Direct IO). This lets the filesystem know that some non-file-system entity is 2793 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages 2794 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by 2795 * a call to unpin_user_page(). 2796 * 2797 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different 2798 * and separate refcounting mechanisms, however, and that means that each has 2799 * its own acquire and release mechanisms: 2800 * 2801 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release. 2802 * 2803 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release. 2804 * 2805 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call. 2806 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based 2807 * calls applied to them, and that's perfectly OK. This is a constraint on the 2808 * callers, not on the pages.) 2809 * 2810 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never 2811 * directly by the caller. That's in order to help avoid mismatches when 2812 * releasing pages: get_user_pages*() pages must be released via put_page(), 2813 * while pin_user_pages*() pages must be released via unpin_user_page(). 2814 * 2815 * Please see Documentation/core-api/pin_user_pages.rst for more information. 2816 */ 2817 2818 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags) 2819 { 2820 if (vm_fault & VM_FAULT_OOM) 2821 return -ENOMEM; 2822 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE)) 2823 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT; 2824 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV)) 2825 return -EFAULT; 2826 return 0; 2827 } 2828 2829 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data); 2830 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, 2831 unsigned long size, pte_fn_t fn, void *data); 2832 extern int apply_to_existing_page_range(struct mm_struct *mm, 2833 unsigned long address, unsigned long size, 2834 pte_fn_t fn, void *data); 2835 2836 #ifdef CONFIG_PAGE_POISONING 2837 extern bool page_poisoning_enabled(void); 2838 extern void kernel_poison_pages(struct page *page, int numpages, int enable); 2839 #else 2840 static inline bool page_poisoning_enabled(void) { return false; } 2841 static inline void kernel_poison_pages(struct page *page, int numpages, 2842 int enable) { } 2843 #endif 2844 2845 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 2846 DECLARE_STATIC_KEY_TRUE(init_on_alloc); 2847 #else 2848 DECLARE_STATIC_KEY_FALSE(init_on_alloc); 2849 #endif 2850 static inline bool want_init_on_alloc(gfp_t flags) 2851 { 2852 if (static_branch_unlikely(&init_on_alloc) && 2853 !page_poisoning_enabled()) 2854 return true; 2855 return flags & __GFP_ZERO; 2856 } 2857 2858 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 2859 DECLARE_STATIC_KEY_TRUE(init_on_free); 2860 #else 2861 DECLARE_STATIC_KEY_FALSE(init_on_free); 2862 #endif 2863 static inline bool want_init_on_free(void) 2864 { 2865 return static_branch_unlikely(&init_on_free) && 2866 !page_poisoning_enabled(); 2867 } 2868 2869 #ifdef CONFIG_DEBUG_PAGEALLOC 2870 extern void init_debug_pagealloc(void); 2871 #else 2872 static inline void init_debug_pagealloc(void) {} 2873 #endif 2874 extern bool _debug_pagealloc_enabled_early; 2875 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 2876 2877 static inline bool debug_pagealloc_enabled(void) 2878 { 2879 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) && 2880 _debug_pagealloc_enabled_early; 2881 } 2882 2883 /* 2884 * For use in fast paths after init_debug_pagealloc() has run, or when a 2885 * false negative result is not harmful when called too early. 2886 */ 2887 static inline bool debug_pagealloc_enabled_static(void) 2888 { 2889 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) 2890 return false; 2891 2892 return static_branch_unlikely(&_debug_pagealloc_enabled); 2893 } 2894 2895 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP) 2896 extern void __kernel_map_pages(struct page *page, int numpages, int enable); 2897 2898 /* 2899 * When called in DEBUG_PAGEALLOC context, the call should most likely be 2900 * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static() 2901 */ 2902 static inline void 2903 kernel_map_pages(struct page *page, int numpages, int enable) 2904 { 2905 __kernel_map_pages(page, numpages, enable); 2906 } 2907 #ifdef CONFIG_HIBERNATION 2908 extern bool kernel_page_present(struct page *page); 2909 #endif /* CONFIG_HIBERNATION */ 2910 #else /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2911 static inline void 2912 kernel_map_pages(struct page *page, int numpages, int enable) {} 2913 #ifdef CONFIG_HIBERNATION 2914 static inline bool kernel_page_present(struct page *page) { return true; } 2915 #endif /* CONFIG_HIBERNATION */ 2916 #endif /* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */ 2917 2918 #ifdef __HAVE_ARCH_GATE_AREA 2919 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm); 2920 extern int in_gate_area_no_mm(unsigned long addr); 2921 extern int in_gate_area(struct mm_struct *mm, unsigned long addr); 2922 #else 2923 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm) 2924 { 2925 return NULL; 2926 } 2927 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; } 2928 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr) 2929 { 2930 return 0; 2931 } 2932 #endif /* __HAVE_ARCH_GATE_AREA */ 2933 2934 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm); 2935 2936 #ifdef CONFIG_SYSCTL 2937 extern int sysctl_drop_caches; 2938 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *, 2939 loff_t *); 2940 #endif 2941 2942 void drop_slab(void); 2943 void drop_slab_node(int nid); 2944 2945 #ifndef CONFIG_MMU 2946 #define randomize_va_space 0 2947 #else 2948 extern int randomize_va_space; 2949 #endif 2950 2951 const char * arch_vma_name(struct vm_area_struct *vma); 2952 #ifdef CONFIG_MMU 2953 void print_vma_addr(char *prefix, unsigned long rip); 2954 #else 2955 static inline void print_vma_addr(char *prefix, unsigned long rip) 2956 { 2957 } 2958 #endif 2959 2960 void *sparse_buffer_alloc(unsigned long size); 2961 struct page * __populate_section_memmap(unsigned long pfn, 2962 unsigned long nr_pages, int nid, struct vmem_altmap *altmap); 2963 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); 2964 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node); 2965 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node); 2966 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); 2967 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node, 2968 struct vmem_altmap *altmap); 2969 void *vmemmap_alloc_block(unsigned long size, int node); 2970 struct vmem_altmap; 2971 void *vmemmap_alloc_block_buf(unsigned long size, int node, 2972 struct vmem_altmap *altmap); 2973 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); 2974 int vmemmap_populate_basepages(unsigned long start, unsigned long end, 2975 int node, struct vmem_altmap *altmap); 2976 int vmemmap_populate(unsigned long start, unsigned long end, int node, 2977 struct vmem_altmap *altmap); 2978 void vmemmap_populate_print_last(void); 2979 #ifdef CONFIG_MEMORY_HOTPLUG 2980 void vmemmap_free(unsigned long start, unsigned long end, 2981 struct vmem_altmap *altmap); 2982 #endif 2983 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map, 2984 unsigned long nr_pages); 2985 2986 enum mf_flags { 2987 MF_COUNT_INCREASED = 1 << 0, 2988 MF_ACTION_REQUIRED = 1 << 1, 2989 MF_MUST_KILL = 1 << 2, 2990 MF_SOFT_OFFLINE = 1 << 3, 2991 }; 2992 extern int memory_failure(unsigned long pfn, int flags); 2993 extern void memory_failure_queue(unsigned long pfn, int flags); 2994 extern void memory_failure_queue_kick(int cpu); 2995 extern int unpoison_memory(unsigned long pfn); 2996 extern int get_hwpoison_page(struct page *page); 2997 #define put_hwpoison_page(page) put_page(page) 2998 extern int sysctl_memory_failure_early_kill; 2999 extern int sysctl_memory_failure_recovery; 3000 extern void shake_page(struct page *p, int access); 3001 extern atomic_long_t num_poisoned_pages __read_mostly; 3002 extern int soft_offline_page(unsigned long pfn, int flags); 3003 3004 3005 /* 3006 * Error handlers for various types of pages. 3007 */ 3008 enum mf_result { 3009 MF_IGNORED, /* Error: cannot be handled */ 3010 MF_FAILED, /* Error: handling failed */ 3011 MF_DELAYED, /* Will be handled later */ 3012 MF_RECOVERED, /* Successfully recovered */ 3013 }; 3014 3015 enum mf_action_page_type { 3016 MF_MSG_KERNEL, 3017 MF_MSG_KERNEL_HIGH_ORDER, 3018 MF_MSG_SLAB, 3019 MF_MSG_DIFFERENT_COMPOUND, 3020 MF_MSG_POISONED_HUGE, 3021 MF_MSG_HUGE, 3022 MF_MSG_FREE_HUGE, 3023 MF_MSG_NON_PMD_HUGE, 3024 MF_MSG_UNMAP_FAILED, 3025 MF_MSG_DIRTY_SWAPCACHE, 3026 MF_MSG_CLEAN_SWAPCACHE, 3027 MF_MSG_DIRTY_MLOCKED_LRU, 3028 MF_MSG_CLEAN_MLOCKED_LRU, 3029 MF_MSG_DIRTY_UNEVICTABLE_LRU, 3030 MF_MSG_CLEAN_UNEVICTABLE_LRU, 3031 MF_MSG_DIRTY_LRU, 3032 MF_MSG_CLEAN_LRU, 3033 MF_MSG_TRUNCATED_LRU, 3034 MF_MSG_BUDDY, 3035 MF_MSG_BUDDY_2ND, 3036 MF_MSG_DAX, 3037 MF_MSG_UNKNOWN, 3038 }; 3039 3040 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS) 3041 extern void clear_huge_page(struct page *page, 3042 unsigned long addr_hint, 3043 unsigned int pages_per_huge_page); 3044 extern void copy_user_huge_page(struct page *dst, struct page *src, 3045 unsigned long addr_hint, 3046 struct vm_area_struct *vma, 3047 unsigned int pages_per_huge_page); 3048 extern long copy_huge_page_from_user(struct page *dst_page, 3049 const void __user *usr_src, 3050 unsigned int pages_per_huge_page, 3051 bool allow_pagefault); 3052 3053 /** 3054 * vma_is_special_huge - Are transhuge page-table entries considered special? 3055 * @vma: Pointer to the struct vm_area_struct to consider 3056 * 3057 * Whether transhuge page-table entries are considered "special" following 3058 * the definition in vm_normal_page(). 3059 * 3060 * Return: true if transhuge page-table entries should be considered special, 3061 * false otherwise. 3062 */ 3063 static inline bool vma_is_special_huge(const struct vm_area_struct *vma) 3064 { 3065 return vma_is_dax(vma) || (vma->vm_file && 3066 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))); 3067 } 3068 3069 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */ 3070 3071 #ifdef CONFIG_DEBUG_PAGEALLOC 3072 extern unsigned int _debug_guardpage_minorder; 3073 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 3074 3075 static inline unsigned int debug_guardpage_minorder(void) 3076 { 3077 return _debug_guardpage_minorder; 3078 } 3079 3080 static inline bool debug_guardpage_enabled(void) 3081 { 3082 return static_branch_unlikely(&_debug_guardpage_enabled); 3083 } 3084 3085 static inline bool page_is_guard(struct page *page) 3086 { 3087 if (!debug_guardpage_enabled()) 3088 return false; 3089 3090 return PageGuard(page); 3091 } 3092 #else 3093 static inline unsigned int debug_guardpage_minorder(void) { return 0; } 3094 static inline bool debug_guardpage_enabled(void) { return false; } 3095 static inline bool page_is_guard(struct page *page) { return false; } 3096 #endif /* CONFIG_DEBUG_PAGEALLOC */ 3097 3098 #if MAX_NUMNODES > 1 3099 void __init setup_nr_node_ids(void); 3100 #else 3101 static inline void setup_nr_node_ids(void) {} 3102 #endif 3103 3104 extern int memcmp_pages(struct page *page1, struct page *page2); 3105 3106 static inline int pages_identical(struct page *page1, struct page *page2) 3107 { 3108 return !memcmp_pages(page1, page2); 3109 } 3110 3111 #ifdef CONFIG_MAPPING_DIRTY_HELPERS 3112 unsigned long clean_record_shared_mapping_range(struct address_space *mapping, 3113 pgoff_t first_index, pgoff_t nr, 3114 pgoff_t bitmap_pgoff, 3115 unsigned long *bitmap, 3116 pgoff_t *start, 3117 pgoff_t *end); 3118 3119 unsigned long wp_shared_mapping_range(struct address_space *mapping, 3120 pgoff_t first_index, pgoff_t nr); 3121 #endif 3122 3123 extern int sysctl_nr_trim_pages; 3124 3125 #endif /* __KERNEL__ */ 3126 #endif /* _LINUX_MM_H */ 3127