xref: /linux-6.15/include/linux/mm.h (revision c604abc3)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 
7 #ifdef __KERNEL__
8 
9 #include <linux/mmdebug.h>
10 #include <linux/gfp.h>
11 #include <linux/bug.h>
12 #include <linux/list.h>
13 #include <linux/mmzone.h>
14 #include <linux/rbtree.h>
15 #include <linux/atomic.h>
16 #include <linux/debug_locks.h>
17 #include <linux/mm_types.h>
18 #include <linux/mmap_lock.h>
19 #include <linux/range.h>
20 #include <linux/pfn.h>
21 #include <linux/percpu-refcount.h>
22 #include <linux/bit_spinlock.h>
23 #include <linux/shrinker.h>
24 #include <linux/resource.h>
25 #include <linux/page_ext.h>
26 #include <linux/err.h>
27 #include <linux/page_ref.h>
28 #include <linux/memremap.h>
29 #include <linux/overflow.h>
30 #include <linux/sizes.h>
31 #include <linux/sched.h>
32 #include <linux/pgtable.h>
33 
34 struct mempolicy;
35 struct anon_vma;
36 struct anon_vma_chain;
37 struct file_ra_state;
38 struct user_struct;
39 struct writeback_control;
40 struct bdi_writeback;
41 struct pt_regs;
42 
43 void init_mm_internals(void);
44 
45 #ifndef CONFIG_NEED_MULTIPLE_NODES	/* Don't use mapnrs, do it properly */
46 extern unsigned long max_mapnr;
47 
48 static inline void set_max_mapnr(unsigned long limit)
49 {
50 	max_mapnr = limit;
51 }
52 #else
53 static inline void set_max_mapnr(unsigned long limit) { }
54 #endif
55 
56 extern atomic_long_t _totalram_pages;
57 static inline unsigned long totalram_pages(void)
58 {
59 	return (unsigned long)atomic_long_read(&_totalram_pages);
60 }
61 
62 static inline void totalram_pages_inc(void)
63 {
64 	atomic_long_inc(&_totalram_pages);
65 }
66 
67 static inline void totalram_pages_dec(void)
68 {
69 	atomic_long_dec(&_totalram_pages);
70 }
71 
72 static inline void totalram_pages_add(long count)
73 {
74 	atomic_long_add(count, &_totalram_pages);
75 }
76 
77 extern void * high_memory;
78 extern int page_cluster;
79 
80 #ifdef CONFIG_SYSCTL
81 extern int sysctl_legacy_va_layout;
82 #else
83 #define sysctl_legacy_va_layout 0
84 #endif
85 
86 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
87 extern const int mmap_rnd_bits_min;
88 extern const int mmap_rnd_bits_max;
89 extern int mmap_rnd_bits __read_mostly;
90 #endif
91 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
92 extern const int mmap_rnd_compat_bits_min;
93 extern const int mmap_rnd_compat_bits_max;
94 extern int mmap_rnd_compat_bits __read_mostly;
95 #endif
96 
97 #include <asm/page.h>
98 #include <asm/processor.h>
99 
100 /*
101  * Architectures that support memory tagging (assigning tags to memory regions,
102  * embedding these tags into addresses that point to these memory regions, and
103  * checking that the memory and the pointer tags match on memory accesses)
104  * redefine this macro to strip tags from pointers.
105  * It's defined as noop for arcitectures that don't support memory tagging.
106  */
107 #ifndef untagged_addr
108 #define untagged_addr(addr) (addr)
109 #endif
110 
111 #ifndef __pa_symbol
112 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
113 #endif
114 
115 #ifndef page_to_virt
116 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
117 #endif
118 
119 #ifndef lm_alias
120 #define lm_alias(x)	__va(__pa_symbol(x))
121 #endif
122 
123 /*
124  * To prevent common memory management code establishing
125  * a zero page mapping on a read fault.
126  * This macro should be defined within <asm/pgtable.h>.
127  * s390 does this to prevent multiplexing of hardware bits
128  * related to the physical page in case of virtualization.
129  */
130 #ifndef mm_forbids_zeropage
131 #define mm_forbids_zeropage(X)	(0)
132 #endif
133 
134 /*
135  * On some architectures it is expensive to call memset() for small sizes.
136  * If an architecture decides to implement their own version of
137  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
138  * define their own version of this macro in <asm/pgtable.h>
139  */
140 #if BITS_PER_LONG == 64
141 /* This function must be updated when the size of struct page grows above 80
142  * or reduces below 56. The idea that compiler optimizes out switch()
143  * statement, and only leaves move/store instructions. Also the compiler can
144  * combine write statments if they are both assignments and can be reordered,
145  * this can result in several of the writes here being dropped.
146  */
147 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
148 static inline void __mm_zero_struct_page(struct page *page)
149 {
150 	unsigned long *_pp = (void *)page;
151 
152 	 /* Check that struct page is either 56, 64, 72, or 80 bytes */
153 	BUILD_BUG_ON(sizeof(struct page) & 7);
154 	BUILD_BUG_ON(sizeof(struct page) < 56);
155 	BUILD_BUG_ON(sizeof(struct page) > 80);
156 
157 	switch (sizeof(struct page)) {
158 	case 80:
159 		_pp[9] = 0;	/* fallthrough */
160 	case 72:
161 		_pp[8] = 0;	/* fallthrough */
162 	case 64:
163 		_pp[7] = 0;	/* fallthrough */
164 	case 56:
165 		_pp[6] = 0;
166 		_pp[5] = 0;
167 		_pp[4] = 0;
168 		_pp[3] = 0;
169 		_pp[2] = 0;
170 		_pp[1] = 0;
171 		_pp[0] = 0;
172 	}
173 }
174 #else
175 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
176 #endif
177 
178 /*
179  * Default maximum number of active map areas, this limits the number of vmas
180  * per mm struct. Users can overwrite this number by sysctl but there is a
181  * problem.
182  *
183  * When a program's coredump is generated as ELF format, a section is created
184  * per a vma. In ELF, the number of sections is represented in unsigned short.
185  * This means the number of sections should be smaller than 65535 at coredump.
186  * Because the kernel adds some informative sections to a image of program at
187  * generating coredump, we need some margin. The number of extra sections is
188  * 1-3 now and depends on arch. We use "5" as safe margin, here.
189  *
190  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
191  * not a hard limit any more. Although some userspace tools can be surprised by
192  * that.
193  */
194 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
195 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
196 
197 extern int sysctl_max_map_count;
198 
199 extern unsigned long sysctl_user_reserve_kbytes;
200 extern unsigned long sysctl_admin_reserve_kbytes;
201 
202 extern int sysctl_overcommit_memory;
203 extern int sysctl_overcommit_ratio;
204 extern unsigned long sysctl_overcommit_kbytes;
205 
206 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
207 		loff_t *);
208 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
209 		loff_t *);
210 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
211 		loff_t *);
212 
213 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214 
215 /* to align the pointer to the (next) page boundary */
216 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
217 
218 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
219 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
220 
221 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
222 
223 /*
224  * Linux kernel virtual memory manager primitives.
225  * The idea being to have a "virtual" mm in the same way
226  * we have a virtual fs - giving a cleaner interface to the
227  * mm details, and allowing different kinds of memory mappings
228  * (from shared memory to executable loading to arbitrary
229  * mmap() functions).
230  */
231 
232 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
233 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
234 void vm_area_free(struct vm_area_struct *);
235 
236 #ifndef CONFIG_MMU
237 extern struct rb_root nommu_region_tree;
238 extern struct rw_semaphore nommu_region_sem;
239 
240 extern unsigned int kobjsize(const void *objp);
241 #endif
242 
243 /*
244  * vm_flags in vm_area_struct, see mm_types.h.
245  * When changing, update also include/trace/events/mmflags.h
246  */
247 #define VM_NONE		0x00000000
248 
249 #define VM_READ		0x00000001	/* currently active flags */
250 #define VM_WRITE	0x00000002
251 #define VM_EXEC		0x00000004
252 #define VM_SHARED	0x00000008
253 
254 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
255 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
256 #define VM_MAYWRITE	0x00000020
257 #define VM_MAYEXEC	0x00000040
258 #define VM_MAYSHARE	0x00000080
259 
260 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
261 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
262 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
263 #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */
264 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
265 
266 #define VM_LOCKED	0x00002000
267 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
268 
269 					/* Used by sys_madvise() */
270 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
271 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
272 
273 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
274 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
275 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
276 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
277 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
278 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
279 #define VM_SYNC		0x00800000	/* Synchronous page faults */
280 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
281 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
282 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
283 
284 #ifdef CONFIG_MEM_SOFT_DIRTY
285 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
286 #else
287 # define VM_SOFTDIRTY	0
288 #endif
289 
290 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
291 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
292 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
293 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
294 
295 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
296 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
297 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
298 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
299 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
300 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
301 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
302 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
303 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
304 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
305 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
306 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
307 
308 #ifdef CONFIG_ARCH_HAS_PKEYS
309 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
310 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
311 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
312 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
313 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
314 #ifdef CONFIG_PPC
315 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
316 #else
317 # define VM_PKEY_BIT4  0
318 #endif
319 #endif /* CONFIG_ARCH_HAS_PKEYS */
320 
321 #if defined(CONFIG_X86)
322 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
323 #elif defined(CONFIG_PARISC)
324 # define VM_GROWSUP	VM_ARCH_1
325 #elif defined(CONFIG_IA64)
326 # define VM_GROWSUP	VM_ARCH_1
327 #elif defined(CONFIG_SPARC64)
328 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
329 # define VM_ARCH_CLEAR	VM_SPARC_ADI
330 #elif defined(CONFIG_ARM64)
331 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
332 # define VM_ARCH_CLEAR	VM_ARM64_BTI
333 #elif !defined(CONFIG_MMU)
334 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
335 #endif
336 
337 #ifndef VM_GROWSUP
338 # define VM_GROWSUP	VM_NONE
339 #endif
340 
341 /* Bits set in the VMA until the stack is in its final location */
342 #define VM_STACK_INCOMPLETE_SETUP	(VM_RAND_READ | VM_SEQ_READ)
343 
344 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
345 
346 /* Common data flag combinations */
347 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
348 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
349 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
350 				 VM_MAYWRITE | VM_MAYEXEC)
351 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
352 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
353 
354 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
355 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
356 #endif
357 
358 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
359 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
360 #endif
361 
362 #ifdef CONFIG_STACK_GROWSUP
363 #define VM_STACK	VM_GROWSUP
364 #else
365 #define VM_STACK	VM_GROWSDOWN
366 #endif
367 
368 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
369 
370 /* VMA basic access permission flags */
371 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
372 
373 
374 /*
375  * Special vmas that are non-mergable, non-mlock()able.
376  */
377 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
378 
379 /* This mask prevents VMA from being scanned with khugepaged */
380 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
381 
382 /* This mask defines which mm->def_flags a process can inherit its parent */
383 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
384 
385 /* This mask is used to clear all the VMA flags used by mlock */
386 #define VM_LOCKED_CLEAR_MASK	(~(VM_LOCKED | VM_LOCKONFAULT))
387 
388 /* Arch-specific flags to clear when updating VM flags on protection change */
389 #ifndef VM_ARCH_CLEAR
390 # define VM_ARCH_CLEAR	VM_NONE
391 #endif
392 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
393 
394 /*
395  * mapping from the currently active vm_flags protection bits (the
396  * low four bits) to a page protection mask..
397  */
398 extern pgprot_t protection_map[16];
399 
400 /**
401  * Fault flag definitions.
402  *
403  * @FAULT_FLAG_WRITE: Fault was a write fault.
404  * @FAULT_FLAG_MKWRITE: Fault was mkwrite of existing PTE.
405  * @FAULT_FLAG_ALLOW_RETRY: Allow to retry the fault if blocked.
406  * @FAULT_FLAG_RETRY_NOWAIT: Don't drop mmap_lock and wait when retrying.
407  * @FAULT_FLAG_KILLABLE: The fault task is in SIGKILL killable region.
408  * @FAULT_FLAG_TRIED: The fault has been tried once.
409  * @FAULT_FLAG_USER: The fault originated in userspace.
410  * @FAULT_FLAG_REMOTE: The fault is not for current task/mm.
411  * @FAULT_FLAG_INSTRUCTION: The fault was during an instruction fetch.
412  * @FAULT_FLAG_INTERRUPTIBLE: The fault can be interrupted by non-fatal signals.
413  *
414  * About @FAULT_FLAG_ALLOW_RETRY and @FAULT_FLAG_TRIED: we can specify
415  * whether we would allow page faults to retry by specifying these two
416  * fault flags correctly.  Currently there can be three legal combinations:
417  *
418  * (a) ALLOW_RETRY and !TRIED:  this means the page fault allows retry, and
419  *                              this is the first try
420  *
421  * (b) ALLOW_RETRY and TRIED:   this means the page fault allows retry, and
422  *                              we've already tried at least once
423  *
424  * (c) !ALLOW_RETRY and !TRIED: this means the page fault does not allow retry
425  *
426  * The unlisted combination (!ALLOW_RETRY && TRIED) is illegal and should never
427  * be used.  Note that page faults can be allowed to retry for multiple times,
428  * in which case we'll have an initial fault with flags (a) then later on
429  * continuous faults with flags (b).  We should always try to detect pending
430  * signals before a retry to make sure the continuous page faults can still be
431  * interrupted if necessary.
432  */
433 #define FAULT_FLAG_WRITE			0x01
434 #define FAULT_FLAG_MKWRITE			0x02
435 #define FAULT_FLAG_ALLOW_RETRY			0x04
436 #define FAULT_FLAG_RETRY_NOWAIT			0x08
437 #define FAULT_FLAG_KILLABLE			0x10
438 #define FAULT_FLAG_TRIED			0x20
439 #define FAULT_FLAG_USER				0x40
440 #define FAULT_FLAG_REMOTE			0x80
441 #define FAULT_FLAG_INSTRUCTION  		0x100
442 #define FAULT_FLAG_INTERRUPTIBLE		0x200
443 
444 /*
445  * The default fault flags that should be used by most of the
446  * arch-specific page fault handlers.
447  */
448 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
449 			     FAULT_FLAG_KILLABLE | \
450 			     FAULT_FLAG_INTERRUPTIBLE)
451 
452 /**
453  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
454  *
455  * This is mostly used for places where we want to try to avoid taking
456  * the mmap_lock for too long a time when waiting for another condition
457  * to change, in which case we can try to be polite to release the
458  * mmap_lock in the first round to avoid potential starvation of other
459  * processes that would also want the mmap_lock.
460  *
461  * Return: true if the page fault allows retry and this is the first
462  * attempt of the fault handling; false otherwise.
463  */
464 static inline bool fault_flag_allow_retry_first(unsigned int flags)
465 {
466 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
467 	    (!(flags & FAULT_FLAG_TRIED));
468 }
469 
470 #define FAULT_FLAG_TRACE \
471 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
472 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
473 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
474 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
475 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
476 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
477 	{ FAULT_FLAG_USER,		"USER" }, \
478 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
479 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
480 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }
481 
482 /*
483  * vm_fault is filled by the pagefault handler and passed to the vma's
484  * ->fault function. The vma's ->fault is responsible for returning a bitmask
485  * of VM_FAULT_xxx flags that give details about how the fault was handled.
486  *
487  * MM layer fills up gfp_mask for page allocations but fault handler might
488  * alter it if its implementation requires a different allocation context.
489  *
490  * pgoff should be used in favour of virtual_address, if possible.
491  */
492 struct vm_fault {
493 	struct vm_area_struct *vma;	/* Target VMA */
494 	unsigned int flags;		/* FAULT_FLAG_xxx flags */
495 	gfp_t gfp_mask;			/* gfp mask to be used for allocations */
496 	pgoff_t pgoff;			/* Logical page offset based on vma */
497 	unsigned long address;		/* Faulting virtual address */
498 	pmd_t *pmd;			/* Pointer to pmd entry matching
499 					 * the 'address' */
500 	pud_t *pud;			/* Pointer to pud entry matching
501 					 * the 'address'
502 					 */
503 	pte_t orig_pte;			/* Value of PTE at the time of fault */
504 
505 	struct page *cow_page;		/* Page handler may use for COW fault */
506 	struct page *page;		/* ->fault handlers should return a
507 					 * page here, unless VM_FAULT_NOPAGE
508 					 * is set (which is also implied by
509 					 * VM_FAULT_ERROR).
510 					 */
511 	/* These three entries are valid only while holding ptl lock */
512 	pte_t *pte;			/* Pointer to pte entry matching
513 					 * the 'address'. NULL if the page
514 					 * table hasn't been allocated.
515 					 */
516 	spinlock_t *ptl;		/* Page table lock.
517 					 * Protects pte page table if 'pte'
518 					 * is not NULL, otherwise pmd.
519 					 */
520 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
521 					 * vm_ops->map_pages() calls
522 					 * alloc_set_pte() from atomic context.
523 					 * do_fault_around() pre-allocates
524 					 * page table to avoid allocation from
525 					 * atomic context.
526 					 */
527 };
528 
529 /* page entry size for vm->huge_fault() */
530 enum page_entry_size {
531 	PE_SIZE_PTE = 0,
532 	PE_SIZE_PMD,
533 	PE_SIZE_PUD,
534 };
535 
536 /*
537  * These are the virtual MM functions - opening of an area, closing and
538  * unmapping it (needed to keep files on disk up-to-date etc), pointer
539  * to the functions called when a no-page or a wp-page exception occurs.
540  */
541 struct vm_operations_struct {
542 	void (*open)(struct vm_area_struct * area);
543 	void (*close)(struct vm_area_struct * area);
544 	int (*split)(struct vm_area_struct * area, unsigned long addr);
545 	int (*mremap)(struct vm_area_struct * area);
546 	vm_fault_t (*fault)(struct vm_fault *vmf);
547 	vm_fault_t (*huge_fault)(struct vm_fault *vmf,
548 			enum page_entry_size pe_size);
549 	void (*map_pages)(struct vm_fault *vmf,
550 			pgoff_t start_pgoff, pgoff_t end_pgoff);
551 	unsigned long (*pagesize)(struct vm_area_struct * area);
552 
553 	/* notification that a previously read-only page is about to become
554 	 * writable, if an error is returned it will cause a SIGBUS */
555 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
556 
557 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
558 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
559 
560 	/* called by access_process_vm when get_user_pages() fails, typically
561 	 * for use by special VMAs that can switch between memory and hardware
562 	 */
563 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
564 		      void *buf, int len, int write);
565 
566 	/* Called by the /proc/PID/maps code to ask the vma whether it
567 	 * has a special name.  Returning non-NULL will also cause this
568 	 * vma to be dumped unconditionally. */
569 	const char *(*name)(struct vm_area_struct *vma);
570 
571 #ifdef CONFIG_NUMA
572 	/*
573 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
574 	 * to hold the policy upon return.  Caller should pass NULL @new to
575 	 * remove a policy and fall back to surrounding context--i.e. do not
576 	 * install a MPOL_DEFAULT policy, nor the task or system default
577 	 * mempolicy.
578 	 */
579 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
580 
581 	/*
582 	 * get_policy() op must add reference [mpol_get()] to any policy at
583 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
584 	 * in mm/mempolicy.c will do this automatically.
585 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
586 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
587 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
588 	 * must return NULL--i.e., do not "fallback" to task or system default
589 	 * policy.
590 	 */
591 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
592 					unsigned long addr);
593 #endif
594 	/*
595 	 * Called by vm_normal_page() for special PTEs to find the
596 	 * page for @addr.  This is useful if the default behavior
597 	 * (using pte_page()) would not find the correct page.
598 	 */
599 	struct page *(*find_special_page)(struct vm_area_struct *vma,
600 					  unsigned long addr);
601 };
602 
603 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
604 {
605 	static const struct vm_operations_struct dummy_vm_ops = {};
606 
607 	memset(vma, 0, sizeof(*vma));
608 	vma->vm_mm = mm;
609 	vma->vm_ops = &dummy_vm_ops;
610 	INIT_LIST_HEAD(&vma->anon_vma_chain);
611 }
612 
613 static inline void vma_set_anonymous(struct vm_area_struct *vma)
614 {
615 	vma->vm_ops = NULL;
616 }
617 
618 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
619 {
620 	return !vma->vm_ops;
621 }
622 
623 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
624 {
625 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
626 
627 	if (!maybe_stack)
628 		return false;
629 
630 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
631 						VM_STACK_INCOMPLETE_SETUP)
632 		return true;
633 
634 	return false;
635 }
636 
637 static inline bool vma_is_foreign(struct vm_area_struct *vma)
638 {
639 	if (!current->mm)
640 		return true;
641 
642 	if (current->mm != vma->vm_mm)
643 		return true;
644 
645 	return false;
646 }
647 
648 static inline bool vma_is_accessible(struct vm_area_struct *vma)
649 {
650 	return vma->vm_flags & VM_ACCESS_FLAGS;
651 }
652 
653 #ifdef CONFIG_SHMEM
654 /*
655  * The vma_is_shmem is not inline because it is used only by slow
656  * paths in userfault.
657  */
658 bool vma_is_shmem(struct vm_area_struct *vma);
659 #else
660 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
661 #endif
662 
663 int vma_is_stack_for_current(struct vm_area_struct *vma);
664 
665 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
666 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
667 
668 struct mmu_gather;
669 struct inode;
670 
671 /*
672  * FIXME: take this include out, include page-flags.h in
673  * files which need it (119 of them)
674  */
675 #include <linux/page-flags.h>
676 #include <linux/huge_mm.h>
677 
678 /*
679  * Methods to modify the page usage count.
680  *
681  * What counts for a page usage:
682  * - cache mapping   (page->mapping)
683  * - private data    (page->private)
684  * - page mapped in a task's page tables, each mapping
685  *   is counted separately
686  *
687  * Also, many kernel routines increase the page count before a critical
688  * routine so they can be sure the page doesn't go away from under them.
689  */
690 
691 /*
692  * Drop a ref, return true if the refcount fell to zero (the page has no users)
693  */
694 static inline int put_page_testzero(struct page *page)
695 {
696 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
697 	return page_ref_dec_and_test(page);
698 }
699 
700 /*
701  * Try to grab a ref unless the page has a refcount of zero, return false if
702  * that is the case.
703  * This can be called when MMU is off so it must not access
704  * any of the virtual mappings.
705  */
706 static inline int get_page_unless_zero(struct page *page)
707 {
708 	return page_ref_add_unless(page, 1, 0);
709 }
710 
711 extern int page_is_ram(unsigned long pfn);
712 
713 enum {
714 	REGION_INTERSECTS,
715 	REGION_DISJOINT,
716 	REGION_MIXED,
717 };
718 
719 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
720 		      unsigned long desc);
721 
722 /* Support for virtually mapped pages */
723 struct page *vmalloc_to_page(const void *addr);
724 unsigned long vmalloc_to_pfn(const void *addr);
725 
726 /*
727  * Determine if an address is within the vmalloc range
728  *
729  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
730  * is no special casing required.
731  */
732 
733 #ifndef is_ioremap_addr
734 #define is_ioremap_addr(x) is_vmalloc_addr(x)
735 #endif
736 
737 #ifdef CONFIG_MMU
738 extern bool is_vmalloc_addr(const void *x);
739 extern int is_vmalloc_or_module_addr(const void *x);
740 #else
741 static inline bool is_vmalloc_addr(const void *x)
742 {
743 	return false;
744 }
745 static inline int is_vmalloc_or_module_addr(const void *x)
746 {
747 	return 0;
748 }
749 #endif
750 
751 extern void *kvmalloc_node(size_t size, gfp_t flags, int node);
752 static inline void *kvmalloc(size_t size, gfp_t flags)
753 {
754 	return kvmalloc_node(size, flags, NUMA_NO_NODE);
755 }
756 static inline void *kvzalloc_node(size_t size, gfp_t flags, int node)
757 {
758 	return kvmalloc_node(size, flags | __GFP_ZERO, node);
759 }
760 static inline void *kvzalloc(size_t size, gfp_t flags)
761 {
762 	return kvmalloc(size, flags | __GFP_ZERO);
763 }
764 
765 static inline void *kvmalloc_array(size_t n, size_t size, gfp_t flags)
766 {
767 	size_t bytes;
768 
769 	if (unlikely(check_mul_overflow(n, size, &bytes)))
770 		return NULL;
771 
772 	return kvmalloc(bytes, flags);
773 }
774 
775 static inline void *kvcalloc(size_t n, size_t size, gfp_t flags)
776 {
777 	return kvmalloc_array(n, size, flags | __GFP_ZERO);
778 }
779 
780 extern void kvfree(const void *addr);
781 extern void kvfree_sensitive(const void *addr, size_t len);
782 
783 static inline int head_mapcount(struct page *head)
784 {
785 	return atomic_read(compound_mapcount_ptr(head)) + 1;
786 }
787 
788 /*
789  * Mapcount of compound page as a whole, does not include mapped sub-pages.
790  *
791  * Must be called only for compound pages or any their tail sub-pages.
792  */
793 static inline int compound_mapcount(struct page *page)
794 {
795 	VM_BUG_ON_PAGE(!PageCompound(page), page);
796 	page = compound_head(page);
797 	return head_mapcount(page);
798 }
799 
800 /*
801  * The atomic page->_mapcount, starts from -1: so that transitions
802  * both from it and to it can be tracked, using atomic_inc_and_test
803  * and atomic_add_negative(-1).
804  */
805 static inline void page_mapcount_reset(struct page *page)
806 {
807 	atomic_set(&(page)->_mapcount, -1);
808 }
809 
810 int __page_mapcount(struct page *page);
811 
812 /*
813  * Mapcount of 0-order page; when compound sub-page, includes
814  * compound_mapcount().
815  *
816  * Result is undefined for pages which cannot be mapped into userspace.
817  * For example SLAB or special types of pages. See function page_has_type().
818  * They use this place in struct page differently.
819  */
820 static inline int page_mapcount(struct page *page)
821 {
822 	if (unlikely(PageCompound(page)))
823 		return __page_mapcount(page);
824 	return atomic_read(&page->_mapcount) + 1;
825 }
826 
827 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
828 int total_mapcount(struct page *page);
829 int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
830 #else
831 static inline int total_mapcount(struct page *page)
832 {
833 	return page_mapcount(page);
834 }
835 static inline int page_trans_huge_mapcount(struct page *page,
836 					   int *total_mapcount)
837 {
838 	int mapcount = page_mapcount(page);
839 	if (total_mapcount)
840 		*total_mapcount = mapcount;
841 	return mapcount;
842 }
843 #endif
844 
845 static inline struct page *virt_to_head_page(const void *x)
846 {
847 	struct page *page = virt_to_page(x);
848 
849 	return compound_head(page);
850 }
851 
852 void __put_page(struct page *page);
853 
854 void put_pages_list(struct list_head *pages);
855 
856 void split_page(struct page *page, unsigned int order);
857 
858 /*
859  * Compound pages have a destructor function.  Provide a
860  * prototype for that function and accessor functions.
861  * These are _only_ valid on the head of a compound page.
862  */
863 typedef void compound_page_dtor(struct page *);
864 
865 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
866 enum compound_dtor_id {
867 	NULL_COMPOUND_DTOR,
868 	COMPOUND_PAGE_DTOR,
869 #ifdef CONFIG_HUGETLB_PAGE
870 	HUGETLB_PAGE_DTOR,
871 #endif
872 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
873 	TRANSHUGE_PAGE_DTOR,
874 #endif
875 	NR_COMPOUND_DTORS,
876 };
877 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
878 
879 static inline void set_compound_page_dtor(struct page *page,
880 		enum compound_dtor_id compound_dtor)
881 {
882 	VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
883 	page[1].compound_dtor = compound_dtor;
884 }
885 
886 static inline void destroy_compound_page(struct page *page)
887 {
888 	VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
889 	compound_page_dtors[page[1].compound_dtor](page);
890 }
891 
892 static inline unsigned int compound_order(struct page *page)
893 {
894 	if (!PageHead(page))
895 		return 0;
896 	return page[1].compound_order;
897 }
898 
899 static inline bool hpage_pincount_available(struct page *page)
900 {
901 	/*
902 	 * Can the page->hpage_pinned_refcount field be used? That field is in
903 	 * the 3rd page of the compound page, so the smallest (2-page) compound
904 	 * pages cannot support it.
905 	 */
906 	page = compound_head(page);
907 	return PageCompound(page) && compound_order(page) > 1;
908 }
909 
910 static inline int head_pincount(struct page *head)
911 {
912 	return atomic_read(compound_pincount_ptr(head));
913 }
914 
915 static inline int compound_pincount(struct page *page)
916 {
917 	VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
918 	page = compound_head(page);
919 	return head_pincount(page);
920 }
921 
922 static inline void set_compound_order(struct page *page, unsigned int order)
923 {
924 	page[1].compound_order = order;
925 }
926 
927 /* Returns the number of pages in this potentially compound page. */
928 static inline unsigned long compound_nr(struct page *page)
929 {
930 	return 1UL << compound_order(page);
931 }
932 
933 /* Returns the number of bytes in this potentially compound page. */
934 static inline unsigned long page_size(struct page *page)
935 {
936 	return PAGE_SIZE << compound_order(page);
937 }
938 
939 /* Returns the number of bits needed for the number of bytes in a page */
940 static inline unsigned int page_shift(struct page *page)
941 {
942 	return PAGE_SHIFT + compound_order(page);
943 }
944 
945 void free_compound_page(struct page *page);
946 
947 #ifdef CONFIG_MMU
948 /*
949  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
950  * servicing faults for write access.  In the normal case, do always want
951  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
952  * that do not have writing enabled, when used by access_process_vm.
953  */
954 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
955 {
956 	if (likely(vma->vm_flags & VM_WRITE))
957 		pte = pte_mkwrite(pte);
958 	return pte;
959 }
960 
961 vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct page *page);
962 vm_fault_t finish_fault(struct vm_fault *vmf);
963 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
964 #endif
965 
966 /*
967  * Multiple processes may "see" the same page. E.g. for untouched
968  * mappings of /dev/null, all processes see the same page full of
969  * zeroes, and text pages of executables and shared libraries have
970  * only one copy in memory, at most, normally.
971  *
972  * For the non-reserved pages, page_count(page) denotes a reference count.
973  *   page_count() == 0 means the page is free. page->lru is then used for
974  *   freelist management in the buddy allocator.
975  *   page_count() > 0  means the page has been allocated.
976  *
977  * Pages are allocated by the slab allocator in order to provide memory
978  * to kmalloc and kmem_cache_alloc. In this case, the management of the
979  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
980  * unless a particular usage is carefully commented. (the responsibility of
981  * freeing the kmalloc memory is the caller's, of course).
982  *
983  * A page may be used by anyone else who does a __get_free_page().
984  * In this case, page_count still tracks the references, and should only
985  * be used through the normal accessor functions. The top bits of page->flags
986  * and page->virtual store page management information, but all other fields
987  * are unused and could be used privately, carefully. The management of this
988  * page is the responsibility of the one who allocated it, and those who have
989  * subsequently been given references to it.
990  *
991  * The other pages (we may call them "pagecache pages") are completely
992  * managed by the Linux memory manager: I/O, buffers, swapping etc.
993  * The following discussion applies only to them.
994  *
995  * A pagecache page contains an opaque `private' member, which belongs to the
996  * page's address_space. Usually, this is the address of a circular list of
997  * the page's disk buffers. PG_private must be set to tell the VM to call
998  * into the filesystem to release these pages.
999  *
1000  * A page may belong to an inode's memory mapping. In this case, page->mapping
1001  * is the pointer to the inode, and page->index is the file offset of the page,
1002  * in units of PAGE_SIZE.
1003  *
1004  * If pagecache pages are not associated with an inode, they are said to be
1005  * anonymous pages. These may become associated with the swapcache, and in that
1006  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1007  *
1008  * In either case (swapcache or inode backed), the pagecache itself holds one
1009  * reference to the page. Setting PG_private should also increment the
1010  * refcount. The each user mapping also has a reference to the page.
1011  *
1012  * The pagecache pages are stored in a per-mapping radix tree, which is
1013  * rooted at mapping->i_pages, and indexed by offset.
1014  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1015  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1016  *
1017  * All pagecache pages may be subject to I/O:
1018  * - inode pages may need to be read from disk,
1019  * - inode pages which have been modified and are MAP_SHARED may need
1020  *   to be written back to the inode on disk,
1021  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1022  *   modified may need to be swapped out to swap space and (later) to be read
1023  *   back into memory.
1024  */
1025 
1026 /*
1027  * The zone field is never updated after free_area_init_core()
1028  * sets it, so none of the operations on it need to be atomic.
1029  */
1030 
1031 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1032 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1033 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1034 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1035 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1036 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1037 
1038 /*
1039  * Define the bit shifts to access each section.  For non-existent
1040  * sections we define the shift as 0; that plus a 0 mask ensures
1041  * the compiler will optimise away reference to them.
1042  */
1043 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1044 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1045 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1046 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1047 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1048 
1049 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1050 #ifdef NODE_NOT_IN_PAGE_FLAGS
1051 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1052 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \
1053 						SECTIONS_PGOFF : ZONES_PGOFF)
1054 #else
1055 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1056 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \
1057 						NODES_PGOFF : ZONES_PGOFF)
1058 #endif
1059 
1060 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1061 
1062 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1063 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1064 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1065 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1066 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1067 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1068 
1069 static inline enum zone_type page_zonenum(const struct page *page)
1070 {
1071 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1072 }
1073 
1074 #ifdef CONFIG_ZONE_DEVICE
1075 static inline bool is_zone_device_page(const struct page *page)
1076 {
1077 	return page_zonenum(page) == ZONE_DEVICE;
1078 }
1079 extern void memmap_init_zone_device(struct zone *, unsigned long,
1080 				    unsigned long, struct dev_pagemap *);
1081 #else
1082 static inline bool is_zone_device_page(const struct page *page)
1083 {
1084 	return false;
1085 }
1086 #endif
1087 
1088 #ifdef CONFIG_DEV_PAGEMAP_OPS
1089 void free_devmap_managed_page(struct page *page);
1090 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1091 
1092 static inline bool page_is_devmap_managed(struct page *page)
1093 {
1094 	if (!static_branch_unlikely(&devmap_managed_key))
1095 		return false;
1096 	if (!is_zone_device_page(page))
1097 		return false;
1098 	switch (page->pgmap->type) {
1099 	case MEMORY_DEVICE_PRIVATE:
1100 	case MEMORY_DEVICE_FS_DAX:
1101 		return true;
1102 	default:
1103 		break;
1104 	}
1105 	return false;
1106 }
1107 
1108 void put_devmap_managed_page(struct page *page);
1109 
1110 #else /* CONFIG_DEV_PAGEMAP_OPS */
1111 static inline bool page_is_devmap_managed(struct page *page)
1112 {
1113 	return false;
1114 }
1115 
1116 static inline void put_devmap_managed_page(struct page *page)
1117 {
1118 }
1119 #endif /* CONFIG_DEV_PAGEMAP_OPS */
1120 
1121 static inline bool is_device_private_page(const struct page *page)
1122 {
1123 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1124 		IS_ENABLED(CONFIG_DEVICE_PRIVATE) &&
1125 		is_zone_device_page(page) &&
1126 		page->pgmap->type == MEMORY_DEVICE_PRIVATE;
1127 }
1128 
1129 static inline bool is_pci_p2pdma_page(const struct page *page)
1130 {
1131 	return IS_ENABLED(CONFIG_DEV_PAGEMAP_OPS) &&
1132 		IS_ENABLED(CONFIG_PCI_P2PDMA) &&
1133 		is_zone_device_page(page) &&
1134 		page->pgmap->type == MEMORY_DEVICE_PCI_P2PDMA;
1135 }
1136 
1137 /* 127: arbitrary random number, small enough to assemble well */
1138 #define page_ref_zero_or_close_to_overflow(page) \
1139 	((unsigned int) page_ref_count(page) + 127u <= 127u)
1140 
1141 static inline void get_page(struct page *page)
1142 {
1143 	page = compound_head(page);
1144 	/*
1145 	 * Getting a normal page or the head of a compound page
1146 	 * requires to already have an elevated page->_refcount.
1147 	 */
1148 	VM_BUG_ON_PAGE(page_ref_zero_or_close_to_overflow(page), page);
1149 	page_ref_inc(page);
1150 }
1151 
1152 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1153 
1154 static inline __must_check bool try_get_page(struct page *page)
1155 {
1156 	page = compound_head(page);
1157 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1158 		return false;
1159 	page_ref_inc(page);
1160 	return true;
1161 }
1162 
1163 static inline void put_page(struct page *page)
1164 {
1165 	page = compound_head(page);
1166 
1167 	/*
1168 	 * For devmap managed pages we need to catch refcount transition from
1169 	 * 2 to 1, when refcount reach one it means the page is free and we
1170 	 * need to inform the device driver through callback. See
1171 	 * include/linux/memremap.h and HMM for details.
1172 	 */
1173 	if (page_is_devmap_managed(page)) {
1174 		put_devmap_managed_page(page);
1175 		return;
1176 	}
1177 
1178 	if (put_page_testzero(page))
1179 		__put_page(page);
1180 }
1181 
1182 /*
1183  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1184  * the page's refcount so that two separate items are tracked: the original page
1185  * reference count, and also a new count of how many pin_user_pages() calls were
1186  * made against the page. ("gup-pinned" is another term for the latter).
1187  *
1188  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1189  * distinct from normal pages. As such, the unpin_user_page() call (and its
1190  * variants) must be used in order to release gup-pinned pages.
1191  *
1192  * Choice of value:
1193  *
1194  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1195  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1196  * simpler, due to the fact that adding an even power of two to the page
1197  * refcount has the effect of using only the upper N bits, for the code that
1198  * counts up using the bias value. This means that the lower bits are left for
1199  * the exclusive use of the original code that increments and decrements by one
1200  * (or at least, by much smaller values than the bias value).
1201  *
1202  * Of course, once the lower bits overflow into the upper bits (and this is
1203  * OK, because subtraction recovers the original values), then visual inspection
1204  * no longer suffices to directly view the separate counts. However, for normal
1205  * applications that don't have huge page reference counts, this won't be an
1206  * issue.
1207  *
1208  * Locking: the lockless algorithm described in page_cache_get_speculative()
1209  * and page_cache_gup_pin_speculative() provides safe operation for
1210  * get_user_pages and page_mkclean and other calls that race to set up page
1211  * table entries.
1212  */
1213 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1214 
1215 void unpin_user_page(struct page *page);
1216 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1217 				 bool make_dirty);
1218 void unpin_user_pages(struct page **pages, unsigned long npages);
1219 
1220 /**
1221  * page_maybe_dma_pinned() - report if a page is pinned for DMA.
1222  *
1223  * This function checks if a page has been pinned via a call to
1224  * pin_user_pages*().
1225  *
1226  * For non-huge pages, the return value is partially fuzzy: false is not fuzzy,
1227  * because it means "definitely not pinned for DMA", but true means "probably
1228  * pinned for DMA, but possibly a false positive due to having at least
1229  * GUP_PIN_COUNTING_BIAS worth of normal page references".
1230  *
1231  * False positives are OK, because: a) it's unlikely for a page to get that many
1232  * refcounts, and b) all the callers of this routine are expected to be able to
1233  * deal gracefully with a false positive.
1234  *
1235  * For huge pages, the result will be exactly correct. That's because we have
1236  * more tracking data available: the 3rd struct page in the compound page is
1237  * used to track the pincount (instead using of the GUP_PIN_COUNTING_BIAS
1238  * scheme).
1239  *
1240  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1241  *
1242  * @page:	pointer to page to be queried.
1243  * @Return:	True, if it is likely that the page has been "dma-pinned".
1244  *		False, if the page is definitely not dma-pinned.
1245  */
1246 static inline bool page_maybe_dma_pinned(struct page *page)
1247 {
1248 	if (hpage_pincount_available(page))
1249 		return compound_pincount(page) > 0;
1250 
1251 	/*
1252 	 * page_ref_count() is signed. If that refcount overflows, then
1253 	 * page_ref_count() returns a negative value, and callers will avoid
1254 	 * further incrementing the refcount.
1255 	 *
1256 	 * Here, for that overflow case, use the signed bit to count a little
1257 	 * bit higher via unsigned math, and thus still get an accurate result.
1258 	 */
1259 	return ((unsigned int)page_ref_count(compound_head(page))) >=
1260 		GUP_PIN_COUNTING_BIAS;
1261 }
1262 
1263 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1264 #define SECTION_IN_PAGE_FLAGS
1265 #endif
1266 
1267 /*
1268  * The identification function is mainly used by the buddy allocator for
1269  * determining if two pages could be buddies. We are not really identifying
1270  * the zone since we could be using the section number id if we do not have
1271  * node id available in page flags.
1272  * We only guarantee that it will return the same value for two combinable
1273  * pages in a zone.
1274  */
1275 static inline int page_zone_id(struct page *page)
1276 {
1277 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1278 }
1279 
1280 #ifdef NODE_NOT_IN_PAGE_FLAGS
1281 extern int page_to_nid(const struct page *page);
1282 #else
1283 static inline int page_to_nid(const struct page *page)
1284 {
1285 	struct page *p = (struct page *)page;
1286 
1287 	return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1288 }
1289 #endif
1290 
1291 #ifdef CONFIG_NUMA_BALANCING
1292 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1293 {
1294 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1295 }
1296 
1297 static inline int cpupid_to_pid(int cpupid)
1298 {
1299 	return cpupid & LAST__PID_MASK;
1300 }
1301 
1302 static inline int cpupid_to_cpu(int cpupid)
1303 {
1304 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1305 }
1306 
1307 static inline int cpupid_to_nid(int cpupid)
1308 {
1309 	return cpu_to_node(cpupid_to_cpu(cpupid));
1310 }
1311 
1312 static inline bool cpupid_pid_unset(int cpupid)
1313 {
1314 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1315 }
1316 
1317 static inline bool cpupid_cpu_unset(int cpupid)
1318 {
1319 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1320 }
1321 
1322 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1323 {
1324 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1325 }
1326 
1327 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1328 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1329 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1330 {
1331 	return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1332 }
1333 
1334 static inline int page_cpupid_last(struct page *page)
1335 {
1336 	return page->_last_cpupid;
1337 }
1338 static inline void page_cpupid_reset_last(struct page *page)
1339 {
1340 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1341 }
1342 #else
1343 static inline int page_cpupid_last(struct page *page)
1344 {
1345 	return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1346 }
1347 
1348 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1349 
1350 static inline void page_cpupid_reset_last(struct page *page)
1351 {
1352 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1353 }
1354 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1355 #else /* !CONFIG_NUMA_BALANCING */
1356 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1357 {
1358 	return page_to_nid(page); /* XXX */
1359 }
1360 
1361 static inline int page_cpupid_last(struct page *page)
1362 {
1363 	return page_to_nid(page); /* XXX */
1364 }
1365 
1366 static inline int cpupid_to_nid(int cpupid)
1367 {
1368 	return -1;
1369 }
1370 
1371 static inline int cpupid_to_pid(int cpupid)
1372 {
1373 	return -1;
1374 }
1375 
1376 static inline int cpupid_to_cpu(int cpupid)
1377 {
1378 	return -1;
1379 }
1380 
1381 static inline int cpu_pid_to_cpupid(int nid, int pid)
1382 {
1383 	return -1;
1384 }
1385 
1386 static inline bool cpupid_pid_unset(int cpupid)
1387 {
1388 	return true;
1389 }
1390 
1391 static inline void page_cpupid_reset_last(struct page *page)
1392 {
1393 }
1394 
1395 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1396 {
1397 	return false;
1398 }
1399 #endif /* CONFIG_NUMA_BALANCING */
1400 
1401 #ifdef CONFIG_KASAN_SW_TAGS
1402 static inline u8 page_kasan_tag(const struct page *page)
1403 {
1404 	return (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1405 }
1406 
1407 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1408 {
1409 	page->flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1410 	page->flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1411 }
1412 
1413 static inline void page_kasan_tag_reset(struct page *page)
1414 {
1415 	page_kasan_tag_set(page, 0xff);
1416 }
1417 #else
1418 static inline u8 page_kasan_tag(const struct page *page)
1419 {
1420 	return 0xff;
1421 }
1422 
1423 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1424 static inline void page_kasan_tag_reset(struct page *page) { }
1425 #endif
1426 
1427 static inline struct zone *page_zone(const struct page *page)
1428 {
1429 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1430 }
1431 
1432 static inline pg_data_t *page_pgdat(const struct page *page)
1433 {
1434 	return NODE_DATA(page_to_nid(page));
1435 }
1436 
1437 #ifdef SECTION_IN_PAGE_FLAGS
1438 static inline void set_page_section(struct page *page, unsigned long section)
1439 {
1440 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1441 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1442 }
1443 
1444 static inline unsigned long page_to_section(const struct page *page)
1445 {
1446 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1447 }
1448 #endif
1449 
1450 static inline void set_page_zone(struct page *page, enum zone_type zone)
1451 {
1452 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1453 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1454 }
1455 
1456 static inline void set_page_node(struct page *page, unsigned long node)
1457 {
1458 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1459 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1460 }
1461 
1462 static inline void set_page_links(struct page *page, enum zone_type zone,
1463 	unsigned long node, unsigned long pfn)
1464 {
1465 	set_page_zone(page, zone);
1466 	set_page_node(page, node);
1467 #ifdef SECTION_IN_PAGE_FLAGS
1468 	set_page_section(page, pfn_to_section_nr(pfn));
1469 #endif
1470 }
1471 
1472 #ifdef CONFIG_MEMCG
1473 static inline struct mem_cgroup *page_memcg(struct page *page)
1474 {
1475 	return page->mem_cgroup;
1476 }
1477 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1478 {
1479 	WARN_ON_ONCE(!rcu_read_lock_held());
1480 	return READ_ONCE(page->mem_cgroup);
1481 }
1482 #else
1483 static inline struct mem_cgroup *page_memcg(struct page *page)
1484 {
1485 	return NULL;
1486 }
1487 static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
1488 {
1489 	WARN_ON_ONCE(!rcu_read_lock_held());
1490 	return NULL;
1491 }
1492 #endif
1493 
1494 /*
1495  * Some inline functions in vmstat.h depend on page_zone()
1496  */
1497 #include <linux/vmstat.h>
1498 
1499 static __always_inline void *lowmem_page_address(const struct page *page)
1500 {
1501 	return page_to_virt(page);
1502 }
1503 
1504 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1505 #define HASHED_PAGE_VIRTUAL
1506 #endif
1507 
1508 #if defined(WANT_PAGE_VIRTUAL)
1509 static inline void *page_address(const struct page *page)
1510 {
1511 	return page->virtual;
1512 }
1513 static inline void set_page_address(struct page *page, void *address)
1514 {
1515 	page->virtual = address;
1516 }
1517 #define page_address_init()  do { } while(0)
1518 #endif
1519 
1520 #if defined(HASHED_PAGE_VIRTUAL)
1521 void *page_address(const struct page *page);
1522 void set_page_address(struct page *page, void *virtual);
1523 void page_address_init(void);
1524 #endif
1525 
1526 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1527 #define page_address(page) lowmem_page_address(page)
1528 #define set_page_address(page, address)  do { } while(0)
1529 #define page_address_init()  do { } while(0)
1530 #endif
1531 
1532 extern void *page_rmapping(struct page *page);
1533 extern struct anon_vma *page_anon_vma(struct page *page);
1534 extern struct address_space *page_mapping(struct page *page);
1535 
1536 extern struct address_space *__page_file_mapping(struct page *);
1537 
1538 static inline
1539 struct address_space *page_file_mapping(struct page *page)
1540 {
1541 	if (unlikely(PageSwapCache(page)))
1542 		return __page_file_mapping(page);
1543 
1544 	return page->mapping;
1545 }
1546 
1547 extern pgoff_t __page_file_index(struct page *page);
1548 
1549 /*
1550  * Return the pagecache index of the passed page.  Regular pagecache pages
1551  * use ->index whereas swapcache pages use swp_offset(->private)
1552  */
1553 static inline pgoff_t page_index(struct page *page)
1554 {
1555 	if (unlikely(PageSwapCache(page)))
1556 		return __page_file_index(page);
1557 	return page->index;
1558 }
1559 
1560 bool page_mapped(struct page *page);
1561 struct address_space *page_mapping(struct page *page);
1562 struct address_space *page_mapping_file(struct page *page);
1563 
1564 /*
1565  * Return true only if the page has been allocated with
1566  * ALLOC_NO_WATERMARKS and the low watermark was not
1567  * met implying that the system is under some pressure.
1568  */
1569 static inline bool page_is_pfmemalloc(struct page *page)
1570 {
1571 	/*
1572 	 * Page index cannot be this large so this must be
1573 	 * a pfmemalloc page.
1574 	 */
1575 	return page->index == -1UL;
1576 }
1577 
1578 /*
1579  * Only to be called by the page allocator on a freshly allocated
1580  * page.
1581  */
1582 static inline void set_page_pfmemalloc(struct page *page)
1583 {
1584 	page->index = -1UL;
1585 }
1586 
1587 static inline void clear_page_pfmemalloc(struct page *page)
1588 {
1589 	page->index = 0;
1590 }
1591 
1592 /*
1593  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1594  */
1595 extern void pagefault_out_of_memory(void);
1596 
1597 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
1598 
1599 /*
1600  * Flags passed to show_mem() and show_free_areas() to suppress output in
1601  * various contexts.
1602  */
1603 #define SHOW_MEM_FILTER_NODES		(0x0001u)	/* disallowed nodes */
1604 
1605 extern void show_free_areas(unsigned int flags, nodemask_t *nodemask);
1606 
1607 #ifdef CONFIG_MMU
1608 extern bool can_do_mlock(void);
1609 #else
1610 static inline bool can_do_mlock(void) { return false; }
1611 #endif
1612 extern int user_shm_lock(size_t, struct user_struct *);
1613 extern void user_shm_unlock(size_t, struct user_struct *);
1614 
1615 /*
1616  * Parameter block passed down to zap_pte_range in exceptional cases.
1617  */
1618 struct zap_details {
1619 	struct address_space *check_mapping;	/* Check page->mapping if set */
1620 	pgoff_t	first_index;			/* Lowest page->index to unmap */
1621 	pgoff_t last_index;			/* Highest page->index to unmap */
1622 };
1623 
1624 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1625 			     pte_t pte);
1626 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1627 				pmd_t pmd);
1628 
1629 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1630 		  unsigned long size);
1631 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1632 		    unsigned long size);
1633 void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1634 		unsigned long start, unsigned long end);
1635 
1636 struct mmu_notifier_range;
1637 
1638 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1639 		unsigned long end, unsigned long floor, unsigned long ceiling);
1640 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1641 			struct vm_area_struct *vma);
1642 int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
1643 		   struct mmu_notifier_range *range,
1644 		   pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp);
1645 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1646 	unsigned long *pfn);
1647 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1648 		unsigned int flags, unsigned long *prot, resource_size_t *phys);
1649 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1650 			void *buf, int len, int write);
1651 
1652 extern void truncate_pagecache(struct inode *inode, loff_t new);
1653 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1654 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1655 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1656 int truncate_inode_page(struct address_space *mapping, struct page *page);
1657 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1658 int invalidate_inode_page(struct page *page);
1659 
1660 #ifdef CONFIG_MMU
1661 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1662 				  unsigned long address, unsigned int flags,
1663 				  struct pt_regs *regs);
1664 extern int fixup_user_fault(struct mm_struct *mm,
1665 			    unsigned long address, unsigned int fault_flags,
1666 			    bool *unlocked);
1667 void unmap_mapping_pages(struct address_space *mapping,
1668 		pgoff_t start, pgoff_t nr, bool even_cows);
1669 void unmap_mapping_range(struct address_space *mapping,
1670 		loff_t const holebegin, loff_t const holelen, int even_cows);
1671 #else
1672 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1673 					 unsigned long address, unsigned int flags,
1674 					 struct pt_regs *regs)
1675 {
1676 	/* should never happen if there's no MMU */
1677 	BUG();
1678 	return VM_FAULT_SIGBUS;
1679 }
1680 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1681 		unsigned int fault_flags, bool *unlocked)
1682 {
1683 	/* should never happen if there's no MMU */
1684 	BUG();
1685 	return -EFAULT;
1686 }
1687 static inline void unmap_mapping_pages(struct address_space *mapping,
1688 		pgoff_t start, pgoff_t nr, bool even_cows) { }
1689 static inline void unmap_mapping_range(struct address_space *mapping,
1690 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
1691 #endif
1692 
1693 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1694 		loff_t const holebegin, loff_t const holelen)
1695 {
1696 	unmap_mapping_range(mapping, holebegin, holelen, 0);
1697 }
1698 
1699 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1700 		void *buf, int len, unsigned int gup_flags);
1701 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1702 		void *buf, int len, unsigned int gup_flags);
1703 extern int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1704 		unsigned long addr, void *buf, int len, unsigned int gup_flags);
1705 
1706 long get_user_pages_remote(struct mm_struct *mm,
1707 			    unsigned long start, unsigned long nr_pages,
1708 			    unsigned int gup_flags, struct page **pages,
1709 			    struct vm_area_struct **vmas, int *locked);
1710 long pin_user_pages_remote(struct mm_struct *mm,
1711 			   unsigned long start, unsigned long nr_pages,
1712 			   unsigned int gup_flags, struct page **pages,
1713 			   struct vm_area_struct **vmas, int *locked);
1714 long get_user_pages(unsigned long start, unsigned long nr_pages,
1715 			    unsigned int gup_flags, struct page **pages,
1716 			    struct vm_area_struct **vmas);
1717 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1718 		    unsigned int gup_flags, struct page **pages,
1719 		    struct vm_area_struct **vmas);
1720 long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1721 		    unsigned int gup_flags, struct page **pages, int *locked);
1722 long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
1723 		    unsigned int gup_flags, struct page **pages, int *locked);
1724 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1725 		    struct page **pages, unsigned int gup_flags);
1726 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1727 		    struct page **pages, unsigned int gup_flags);
1728 
1729 int get_user_pages_fast(unsigned long start, int nr_pages,
1730 			unsigned int gup_flags, struct page **pages);
1731 int pin_user_pages_fast(unsigned long start, int nr_pages,
1732 			unsigned int gup_flags, struct page **pages);
1733 
1734 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1735 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1736 			struct task_struct *task, bool bypass_rlim);
1737 
1738 /* Container for pinned pfns / pages */
1739 struct frame_vector {
1740 	unsigned int nr_allocated;	/* Number of frames we have space for */
1741 	unsigned int nr_frames;	/* Number of frames stored in ptrs array */
1742 	bool got_ref;		/* Did we pin pages by getting page ref? */
1743 	bool is_pfns;		/* Does array contain pages or pfns? */
1744 	void *ptrs[];		/* Array of pinned pfns / pages. Use
1745 				 * pfns_vector_pages() or pfns_vector_pfns()
1746 				 * for access */
1747 };
1748 
1749 struct frame_vector *frame_vector_create(unsigned int nr_frames);
1750 void frame_vector_destroy(struct frame_vector *vec);
1751 int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1752 		     unsigned int gup_flags, struct frame_vector *vec);
1753 void put_vaddr_frames(struct frame_vector *vec);
1754 int frame_vector_to_pages(struct frame_vector *vec);
1755 void frame_vector_to_pfns(struct frame_vector *vec);
1756 
1757 static inline unsigned int frame_vector_count(struct frame_vector *vec)
1758 {
1759 	return vec->nr_frames;
1760 }
1761 
1762 static inline struct page **frame_vector_pages(struct frame_vector *vec)
1763 {
1764 	if (vec->is_pfns) {
1765 		int err = frame_vector_to_pages(vec);
1766 
1767 		if (err)
1768 			return ERR_PTR(err);
1769 	}
1770 	return (struct page **)(vec->ptrs);
1771 }
1772 
1773 static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1774 {
1775 	if (!vec->is_pfns)
1776 		frame_vector_to_pfns(vec);
1777 	return (unsigned long *)(vec->ptrs);
1778 }
1779 
1780 struct kvec;
1781 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1782 			struct page **pages);
1783 int get_kernel_page(unsigned long start, int write, struct page **pages);
1784 struct page *get_dump_page(unsigned long addr);
1785 
1786 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
1787 extern void do_invalidatepage(struct page *page, unsigned int offset,
1788 			      unsigned int length);
1789 
1790 void __set_page_dirty(struct page *, struct address_space *, int warn);
1791 int __set_page_dirty_nobuffers(struct page *page);
1792 int __set_page_dirty_no_writeback(struct page *page);
1793 int redirty_page_for_writepage(struct writeback_control *wbc,
1794 				struct page *page);
1795 void account_page_dirtied(struct page *page, struct address_space *mapping);
1796 void account_page_cleaned(struct page *page, struct address_space *mapping,
1797 			  struct bdi_writeback *wb);
1798 int set_page_dirty(struct page *page);
1799 int set_page_dirty_lock(struct page *page);
1800 void __cancel_dirty_page(struct page *page);
1801 static inline void cancel_dirty_page(struct page *page)
1802 {
1803 	/* Avoid atomic ops, locking, etc. when not actually needed. */
1804 	if (PageDirty(page))
1805 		__cancel_dirty_page(page);
1806 }
1807 int clear_page_dirty_for_io(struct page *page);
1808 
1809 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1810 
1811 extern unsigned long move_page_tables(struct vm_area_struct *vma,
1812 		unsigned long old_addr, struct vm_area_struct *new_vma,
1813 		unsigned long new_addr, unsigned long len,
1814 		bool need_rmap_locks);
1815 
1816 /*
1817  * Flags used by change_protection().  For now we make it a bitmap so
1818  * that we can pass in multiple flags just like parameters.  However
1819  * for now all the callers are only use one of the flags at the same
1820  * time.
1821  */
1822 /* Whether we should allow dirty bit accounting */
1823 #define  MM_CP_DIRTY_ACCT                  (1UL << 0)
1824 /* Whether this protection change is for NUMA hints */
1825 #define  MM_CP_PROT_NUMA                   (1UL << 1)
1826 /* Whether this change is for write protecting */
1827 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
1828 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
1829 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
1830 					    MM_CP_UFFD_WP_RESOLVE)
1831 
1832 extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1833 			      unsigned long end, pgprot_t newprot,
1834 			      unsigned long cp_flags);
1835 extern int mprotect_fixup(struct vm_area_struct *vma,
1836 			  struct vm_area_struct **pprev, unsigned long start,
1837 			  unsigned long end, unsigned long newflags);
1838 
1839 /*
1840  * doesn't attempt to fault and will return short.
1841  */
1842 int get_user_pages_fast_only(unsigned long start, int nr_pages,
1843 			     unsigned int gup_flags, struct page **pages);
1844 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
1845 			     unsigned int gup_flags, struct page **pages);
1846 
1847 static inline bool get_user_page_fast_only(unsigned long addr,
1848 			unsigned int gup_flags, struct page **pagep)
1849 {
1850 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
1851 }
1852 /*
1853  * per-process(per-mm_struct) statistics.
1854  */
1855 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1856 {
1857 	long val = atomic_long_read(&mm->rss_stat.count[member]);
1858 
1859 #ifdef SPLIT_RSS_COUNTING
1860 	/*
1861 	 * counter is updated in asynchronous manner and may go to minus.
1862 	 * But it's never be expected number for users.
1863 	 */
1864 	if (val < 0)
1865 		val = 0;
1866 #endif
1867 	return (unsigned long)val;
1868 }
1869 
1870 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
1871 
1872 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1873 {
1874 	long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
1875 
1876 	mm_trace_rss_stat(mm, member, count);
1877 }
1878 
1879 static inline void inc_mm_counter(struct mm_struct *mm, int member)
1880 {
1881 	long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
1882 
1883 	mm_trace_rss_stat(mm, member, count);
1884 }
1885 
1886 static inline void dec_mm_counter(struct mm_struct *mm, int member)
1887 {
1888 	long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
1889 
1890 	mm_trace_rss_stat(mm, member, count);
1891 }
1892 
1893 /* Optimized variant when page is already known not to be PageAnon */
1894 static inline int mm_counter_file(struct page *page)
1895 {
1896 	if (PageSwapBacked(page))
1897 		return MM_SHMEMPAGES;
1898 	return MM_FILEPAGES;
1899 }
1900 
1901 static inline int mm_counter(struct page *page)
1902 {
1903 	if (PageAnon(page))
1904 		return MM_ANONPAGES;
1905 	return mm_counter_file(page);
1906 }
1907 
1908 static inline unsigned long get_mm_rss(struct mm_struct *mm)
1909 {
1910 	return get_mm_counter(mm, MM_FILEPAGES) +
1911 		get_mm_counter(mm, MM_ANONPAGES) +
1912 		get_mm_counter(mm, MM_SHMEMPAGES);
1913 }
1914 
1915 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1916 {
1917 	return max(mm->hiwater_rss, get_mm_rss(mm));
1918 }
1919 
1920 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1921 {
1922 	return max(mm->hiwater_vm, mm->total_vm);
1923 }
1924 
1925 static inline void update_hiwater_rss(struct mm_struct *mm)
1926 {
1927 	unsigned long _rss = get_mm_rss(mm);
1928 
1929 	if ((mm)->hiwater_rss < _rss)
1930 		(mm)->hiwater_rss = _rss;
1931 }
1932 
1933 static inline void update_hiwater_vm(struct mm_struct *mm)
1934 {
1935 	if (mm->hiwater_vm < mm->total_vm)
1936 		mm->hiwater_vm = mm->total_vm;
1937 }
1938 
1939 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1940 {
1941 	mm->hiwater_rss = get_mm_rss(mm);
1942 }
1943 
1944 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1945 					 struct mm_struct *mm)
1946 {
1947 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1948 
1949 	if (*maxrss < hiwater_rss)
1950 		*maxrss = hiwater_rss;
1951 }
1952 
1953 #if defined(SPLIT_RSS_COUNTING)
1954 void sync_mm_rss(struct mm_struct *mm);
1955 #else
1956 static inline void sync_mm_rss(struct mm_struct *mm)
1957 {
1958 }
1959 #endif
1960 
1961 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
1962 static inline int pte_special(pte_t pte)
1963 {
1964 	return 0;
1965 }
1966 
1967 static inline pte_t pte_mkspecial(pte_t pte)
1968 {
1969 	return pte;
1970 }
1971 #endif
1972 
1973 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
1974 static inline int pte_devmap(pte_t pte)
1975 {
1976 	return 0;
1977 }
1978 #endif
1979 
1980 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
1981 
1982 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1983 			       spinlock_t **ptl);
1984 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1985 				    spinlock_t **ptl)
1986 {
1987 	pte_t *ptep;
1988 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1989 	return ptep;
1990 }
1991 
1992 #ifdef __PAGETABLE_P4D_FOLDED
1993 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
1994 						unsigned long address)
1995 {
1996 	return 0;
1997 }
1998 #else
1999 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2000 #endif
2001 
2002 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2003 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2004 						unsigned long address)
2005 {
2006 	return 0;
2007 }
2008 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2009 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2010 
2011 #else
2012 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2013 
2014 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2015 {
2016 	if (mm_pud_folded(mm))
2017 		return;
2018 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2019 }
2020 
2021 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2022 {
2023 	if (mm_pud_folded(mm))
2024 		return;
2025 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2026 }
2027 #endif
2028 
2029 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2030 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2031 						unsigned long address)
2032 {
2033 	return 0;
2034 }
2035 
2036 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2037 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2038 
2039 #else
2040 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2041 
2042 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2043 {
2044 	if (mm_pmd_folded(mm))
2045 		return;
2046 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2047 }
2048 
2049 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2050 {
2051 	if (mm_pmd_folded(mm))
2052 		return;
2053 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2054 }
2055 #endif
2056 
2057 #ifdef CONFIG_MMU
2058 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2059 {
2060 	atomic_long_set(&mm->pgtables_bytes, 0);
2061 }
2062 
2063 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2064 {
2065 	return atomic_long_read(&mm->pgtables_bytes);
2066 }
2067 
2068 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2069 {
2070 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2071 }
2072 
2073 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2074 {
2075 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2076 }
2077 #else
2078 
2079 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2080 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2081 {
2082 	return 0;
2083 }
2084 
2085 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2086 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2087 #endif
2088 
2089 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2090 int __pte_alloc_kernel(pmd_t *pmd);
2091 
2092 #if defined(CONFIG_MMU)
2093 
2094 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2095 		unsigned long address)
2096 {
2097 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2098 		NULL : p4d_offset(pgd, address);
2099 }
2100 
2101 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2102 		unsigned long address)
2103 {
2104 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2105 		NULL : pud_offset(p4d, address);
2106 }
2107 
2108 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2109 {
2110 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2111 		NULL: pmd_offset(pud, address);
2112 }
2113 #endif /* CONFIG_MMU */
2114 
2115 #if USE_SPLIT_PTE_PTLOCKS
2116 #if ALLOC_SPLIT_PTLOCKS
2117 void __init ptlock_cache_init(void);
2118 extern bool ptlock_alloc(struct page *page);
2119 extern void ptlock_free(struct page *page);
2120 
2121 static inline spinlock_t *ptlock_ptr(struct page *page)
2122 {
2123 	return page->ptl;
2124 }
2125 #else /* ALLOC_SPLIT_PTLOCKS */
2126 static inline void ptlock_cache_init(void)
2127 {
2128 }
2129 
2130 static inline bool ptlock_alloc(struct page *page)
2131 {
2132 	return true;
2133 }
2134 
2135 static inline void ptlock_free(struct page *page)
2136 {
2137 }
2138 
2139 static inline spinlock_t *ptlock_ptr(struct page *page)
2140 {
2141 	return &page->ptl;
2142 }
2143 #endif /* ALLOC_SPLIT_PTLOCKS */
2144 
2145 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2146 {
2147 	return ptlock_ptr(pmd_page(*pmd));
2148 }
2149 
2150 static inline bool ptlock_init(struct page *page)
2151 {
2152 	/*
2153 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2154 	 * with 0. Make sure nobody took it in use in between.
2155 	 *
2156 	 * It can happen if arch try to use slab for page table allocation:
2157 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2158 	 */
2159 	VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2160 	if (!ptlock_alloc(page))
2161 		return false;
2162 	spin_lock_init(ptlock_ptr(page));
2163 	return true;
2164 }
2165 
2166 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2167 /*
2168  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2169  */
2170 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2171 {
2172 	return &mm->page_table_lock;
2173 }
2174 static inline void ptlock_cache_init(void) {}
2175 static inline bool ptlock_init(struct page *page) { return true; }
2176 static inline void ptlock_free(struct page *page) {}
2177 #endif /* USE_SPLIT_PTE_PTLOCKS */
2178 
2179 static inline void pgtable_init(void)
2180 {
2181 	ptlock_cache_init();
2182 	pgtable_cache_init();
2183 }
2184 
2185 static inline bool pgtable_pte_page_ctor(struct page *page)
2186 {
2187 	if (!ptlock_init(page))
2188 		return false;
2189 	__SetPageTable(page);
2190 	inc_zone_page_state(page, NR_PAGETABLE);
2191 	return true;
2192 }
2193 
2194 static inline void pgtable_pte_page_dtor(struct page *page)
2195 {
2196 	ptlock_free(page);
2197 	__ClearPageTable(page);
2198 	dec_zone_page_state(page, NR_PAGETABLE);
2199 }
2200 
2201 #define pte_offset_map_lock(mm, pmd, address, ptlp)	\
2202 ({							\
2203 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\
2204 	pte_t *__pte = pte_offset_map(pmd, address);	\
2205 	*(ptlp) = __ptl;				\
2206 	spin_lock(__ptl);				\
2207 	__pte;						\
2208 })
2209 
2210 #define pte_unmap_unlock(pte, ptl)	do {		\
2211 	spin_unlock(ptl);				\
2212 	pte_unmap(pte);					\
2213 } while (0)
2214 
2215 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2216 
2217 #define pte_alloc_map(mm, pmd, address)			\
2218 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2219 
2220 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
2221 	(pte_alloc(mm, pmd) ?			\
2222 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2223 
2224 #define pte_alloc_kernel(pmd, address)			\
2225 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2226 		NULL: pte_offset_kernel(pmd, address))
2227 
2228 #if USE_SPLIT_PMD_PTLOCKS
2229 
2230 static struct page *pmd_to_page(pmd_t *pmd)
2231 {
2232 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2233 	return virt_to_page((void *)((unsigned long) pmd & mask));
2234 }
2235 
2236 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2237 {
2238 	return ptlock_ptr(pmd_to_page(pmd));
2239 }
2240 
2241 static inline bool pgtable_pmd_page_ctor(struct page *page)
2242 {
2243 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2244 	page->pmd_huge_pte = NULL;
2245 #endif
2246 	return ptlock_init(page);
2247 }
2248 
2249 static inline void pgtable_pmd_page_dtor(struct page *page)
2250 {
2251 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2252 	VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2253 #endif
2254 	ptlock_free(page);
2255 }
2256 
2257 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2258 
2259 #else
2260 
2261 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2262 {
2263 	return &mm->page_table_lock;
2264 }
2265 
2266 static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
2267 static inline void pgtable_pmd_page_dtor(struct page *page) {}
2268 
2269 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2270 
2271 #endif
2272 
2273 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2274 {
2275 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
2276 	spin_lock(ptl);
2277 	return ptl;
2278 }
2279 
2280 /*
2281  * No scalability reason to split PUD locks yet, but follow the same pattern
2282  * as the PMD locks to make it easier if we decide to.  The VM should not be
2283  * considered ready to switch to split PUD locks yet; there may be places
2284  * which need to be converted from page_table_lock.
2285  */
2286 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2287 {
2288 	return &mm->page_table_lock;
2289 }
2290 
2291 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2292 {
2293 	spinlock_t *ptl = pud_lockptr(mm, pud);
2294 
2295 	spin_lock(ptl);
2296 	return ptl;
2297 }
2298 
2299 extern void __init pagecache_init(void);
2300 extern void __init free_area_init_memoryless_node(int nid);
2301 extern void free_initmem(void);
2302 
2303 /*
2304  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2305  * into the buddy system. The freed pages will be poisoned with pattern
2306  * "poison" if it's within range [0, UCHAR_MAX].
2307  * Return pages freed into the buddy system.
2308  */
2309 extern unsigned long free_reserved_area(void *start, void *end,
2310 					int poison, const char *s);
2311 
2312 #ifdef	CONFIG_HIGHMEM
2313 /*
2314  * Free a highmem page into the buddy system, adjusting totalhigh_pages
2315  * and totalram_pages.
2316  */
2317 extern void free_highmem_page(struct page *page);
2318 #endif
2319 
2320 extern void adjust_managed_page_count(struct page *page, long count);
2321 extern void mem_init_print_info(const char *str);
2322 
2323 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2324 
2325 /* Free the reserved page into the buddy system, so it gets managed. */
2326 static inline void __free_reserved_page(struct page *page)
2327 {
2328 	ClearPageReserved(page);
2329 	init_page_count(page);
2330 	__free_page(page);
2331 }
2332 
2333 static inline void free_reserved_page(struct page *page)
2334 {
2335 	__free_reserved_page(page);
2336 	adjust_managed_page_count(page, 1);
2337 }
2338 
2339 static inline void mark_page_reserved(struct page *page)
2340 {
2341 	SetPageReserved(page);
2342 	adjust_managed_page_count(page, -1);
2343 }
2344 
2345 /*
2346  * Default method to free all the __init memory into the buddy system.
2347  * The freed pages will be poisoned with pattern "poison" if it's within
2348  * range [0, UCHAR_MAX].
2349  * Return pages freed into the buddy system.
2350  */
2351 static inline unsigned long free_initmem_default(int poison)
2352 {
2353 	extern char __init_begin[], __init_end[];
2354 
2355 	return free_reserved_area(&__init_begin, &__init_end,
2356 				  poison, "unused kernel");
2357 }
2358 
2359 static inline unsigned long get_num_physpages(void)
2360 {
2361 	int nid;
2362 	unsigned long phys_pages = 0;
2363 
2364 	for_each_online_node(nid)
2365 		phys_pages += node_present_pages(nid);
2366 
2367 	return phys_pages;
2368 }
2369 
2370 /*
2371  * Using memblock node mappings, an architecture may initialise its
2372  * zones, allocate the backing mem_map and account for memory holes in an
2373  * architecture independent manner.
2374  *
2375  * An architecture is expected to register range of page frames backed by
2376  * physical memory with memblock_add[_node]() before calling
2377  * free_area_init() passing in the PFN each zone ends at. At a basic
2378  * usage, an architecture is expected to do something like
2379  *
2380  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2381  * 							 max_highmem_pfn};
2382  * for_each_valid_physical_page_range()
2383  * 	memblock_add_node(base, size, nid)
2384  * free_area_init(max_zone_pfns);
2385  */
2386 void free_area_init(unsigned long *max_zone_pfn);
2387 unsigned long node_map_pfn_alignment(void);
2388 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2389 						unsigned long end_pfn);
2390 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2391 						unsigned long end_pfn);
2392 extern void get_pfn_range_for_nid(unsigned int nid,
2393 			unsigned long *start_pfn, unsigned long *end_pfn);
2394 extern unsigned long find_min_pfn_with_active_regions(void);
2395 
2396 #ifndef CONFIG_NEED_MULTIPLE_NODES
2397 static inline int early_pfn_to_nid(unsigned long pfn)
2398 {
2399 	return 0;
2400 }
2401 #else
2402 /* please see mm/page_alloc.c */
2403 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2404 /* there is a per-arch backend function. */
2405 extern int __meminit __early_pfn_to_nid(unsigned long pfn,
2406 					struct mminit_pfnnid_cache *state);
2407 #endif
2408 
2409 extern void set_dma_reserve(unsigned long new_dma_reserve);
2410 extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long,
2411 		enum memmap_context, struct vmem_altmap *);
2412 extern void setup_per_zone_wmarks(void);
2413 extern int __meminit init_per_zone_wmark_min(void);
2414 extern void mem_init(void);
2415 extern void __init mmap_init(void);
2416 extern void show_mem(unsigned int flags, nodemask_t *nodemask);
2417 extern long si_mem_available(void);
2418 extern void si_meminfo(struct sysinfo * val);
2419 extern void si_meminfo_node(struct sysinfo *val, int nid);
2420 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2421 extern unsigned long arch_reserved_kernel_pages(void);
2422 #endif
2423 
2424 extern __printf(3, 4)
2425 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2426 
2427 extern void setup_per_cpu_pageset(void);
2428 
2429 /* page_alloc.c */
2430 extern int min_free_kbytes;
2431 extern int watermark_boost_factor;
2432 extern int watermark_scale_factor;
2433 extern bool arch_has_descending_max_zone_pfns(void);
2434 
2435 /* nommu.c */
2436 extern atomic_long_t mmap_pages_allocated;
2437 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2438 
2439 /* interval_tree.c */
2440 void vma_interval_tree_insert(struct vm_area_struct *node,
2441 			      struct rb_root_cached *root);
2442 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2443 				    struct vm_area_struct *prev,
2444 				    struct rb_root_cached *root);
2445 void vma_interval_tree_remove(struct vm_area_struct *node,
2446 			      struct rb_root_cached *root);
2447 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2448 				unsigned long start, unsigned long last);
2449 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2450 				unsigned long start, unsigned long last);
2451 
2452 #define vma_interval_tree_foreach(vma, root, start, last)		\
2453 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
2454 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
2455 
2456 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2457 				   struct rb_root_cached *root);
2458 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2459 				   struct rb_root_cached *root);
2460 struct anon_vma_chain *
2461 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2462 				  unsigned long start, unsigned long last);
2463 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2464 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
2465 #ifdef CONFIG_DEBUG_VM_RB
2466 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2467 #endif
2468 
2469 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
2470 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2471 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2472 
2473 /* mmap.c */
2474 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2475 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2476 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2477 	struct vm_area_struct *expand);
2478 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2479 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2480 {
2481 	return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2482 }
2483 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2484 	struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2485 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2486 	struct mempolicy *, struct vm_userfaultfd_ctx);
2487 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2488 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2489 	unsigned long addr, int new_below);
2490 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2491 	unsigned long addr, int new_below);
2492 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2493 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
2494 	struct rb_node **, struct rb_node *);
2495 extern void unlink_file_vma(struct vm_area_struct *);
2496 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2497 	unsigned long addr, unsigned long len, pgoff_t pgoff,
2498 	bool *need_rmap_locks);
2499 extern void exit_mmap(struct mm_struct *);
2500 
2501 static inline int check_data_rlimit(unsigned long rlim,
2502 				    unsigned long new,
2503 				    unsigned long start,
2504 				    unsigned long end_data,
2505 				    unsigned long start_data)
2506 {
2507 	if (rlim < RLIM_INFINITY) {
2508 		if (((new - start) + (end_data - start_data)) > rlim)
2509 			return -ENOSPC;
2510 	}
2511 
2512 	return 0;
2513 }
2514 
2515 extern int mm_take_all_locks(struct mm_struct *mm);
2516 extern void mm_drop_all_locks(struct mm_struct *mm);
2517 
2518 extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2519 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2520 extern struct file *get_task_exe_file(struct task_struct *task);
2521 
2522 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2523 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2524 
2525 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2526 				   const struct vm_special_mapping *sm);
2527 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2528 				   unsigned long addr, unsigned long len,
2529 				   unsigned long flags,
2530 				   const struct vm_special_mapping *spec);
2531 /* This is an obsolete alternative to _install_special_mapping. */
2532 extern int install_special_mapping(struct mm_struct *mm,
2533 				   unsigned long addr, unsigned long len,
2534 				   unsigned long flags, struct page **pages);
2535 
2536 unsigned long randomize_stack_top(unsigned long stack_top);
2537 
2538 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2539 
2540 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2541 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2542 	struct list_head *uf);
2543 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2544 	unsigned long len, unsigned long prot, unsigned long flags,
2545 	unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2546 extern int __do_munmap(struct mm_struct *, unsigned long, size_t,
2547 		       struct list_head *uf, bool downgrade);
2548 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2549 		     struct list_head *uf);
2550 extern int do_madvise(unsigned long start, size_t len_in, int behavior);
2551 
2552 #ifdef CONFIG_MMU
2553 extern int __mm_populate(unsigned long addr, unsigned long len,
2554 			 int ignore_errors);
2555 static inline void mm_populate(unsigned long addr, unsigned long len)
2556 {
2557 	/* Ignore errors */
2558 	(void) __mm_populate(addr, len, 1);
2559 }
2560 #else
2561 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2562 #endif
2563 
2564 /* These take the mm semaphore themselves */
2565 extern int __must_check vm_brk(unsigned long, unsigned long);
2566 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2567 extern int vm_munmap(unsigned long, size_t);
2568 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2569         unsigned long, unsigned long,
2570         unsigned long, unsigned long);
2571 
2572 struct vm_unmapped_area_info {
2573 #define VM_UNMAPPED_AREA_TOPDOWN 1
2574 	unsigned long flags;
2575 	unsigned long length;
2576 	unsigned long low_limit;
2577 	unsigned long high_limit;
2578 	unsigned long align_mask;
2579 	unsigned long align_offset;
2580 };
2581 
2582 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2583 
2584 /* truncate.c */
2585 extern void truncate_inode_pages(struct address_space *, loff_t);
2586 extern void truncate_inode_pages_range(struct address_space *,
2587 				       loff_t lstart, loff_t lend);
2588 extern void truncate_inode_pages_final(struct address_space *);
2589 
2590 /* generic vm_area_ops exported for stackable file systems */
2591 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2592 extern void filemap_map_pages(struct vm_fault *vmf,
2593 		pgoff_t start_pgoff, pgoff_t end_pgoff);
2594 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2595 
2596 /* mm/page-writeback.c */
2597 int __must_check write_one_page(struct page *page);
2598 void task_dirty_inc(struct task_struct *tsk);
2599 
2600 extern unsigned long stack_guard_gap;
2601 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2602 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2603 
2604 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2605 extern int expand_downwards(struct vm_area_struct *vma,
2606 		unsigned long address);
2607 #if VM_GROWSUP
2608 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2609 #else
2610   #define expand_upwards(vma, address) (0)
2611 #endif
2612 
2613 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
2614 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2615 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2616 					     struct vm_area_struct **pprev);
2617 
2618 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2619    NULL if none.  Assume start_addr < end_addr. */
2620 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2621 {
2622 	struct vm_area_struct * vma = find_vma(mm,start_addr);
2623 
2624 	if (vma && end_addr <= vma->vm_start)
2625 		vma = NULL;
2626 	return vma;
2627 }
2628 
2629 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2630 {
2631 	unsigned long vm_start = vma->vm_start;
2632 
2633 	if (vma->vm_flags & VM_GROWSDOWN) {
2634 		vm_start -= stack_guard_gap;
2635 		if (vm_start > vma->vm_start)
2636 			vm_start = 0;
2637 	}
2638 	return vm_start;
2639 }
2640 
2641 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2642 {
2643 	unsigned long vm_end = vma->vm_end;
2644 
2645 	if (vma->vm_flags & VM_GROWSUP) {
2646 		vm_end += stack_guard_gap;
2647 		if (vm_end < vma->vm_end)
2648 			vm_end = -PAGE_SIZE;
2649 	}
2650 	return vm_end;
2651 }
2652 
2653 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2654 {
2655 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2656 }
2657 
2658 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2659 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2660 				unsigned long vm_start, unsigned long vm_end)
2661 {
2662 	struct vm_area_struct *vma = find_vma(mm, vm_start);
2663 
2664 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2665 		vma = NULL;
2666 
2667 	return vma;
2668 }
2669 
2670 static inline bool range_in_vma(struct vm_area_struct *vma,
2671 				unsigned long start, unsigned long end)
2672 {
2673 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
2674 }
2675 
2676 #ifdef CONFIG_MMU
2677 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2678 void vma_set_page_prot(struct vm_area_struct *vma);
2679 #else
2680 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2681 {
2682 	return __pgprot(0);
2683 }
2684 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2685 {
2686 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2687 }
2688 #endif
2689 
2690 #ifdef CONFIG_NUMA_BALANCING
2691 unsigned long change_prot_numa(struct vm_area_struct *vma,
2692 			unsigned long start, unsigned long end);
2693 #endif
2694 
2695 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2696 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2697 			unsigned long pfn, unsigned long size, pgprot_t);
2698 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2699 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2700 			struct page **pages, unsigned long *num);
2701 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2702 				unsigned long num);
2703 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2704 				unsigned long num);
2705 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2706 			unsigned long pfn);
2707 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2708 			unsigned long pfn, pgprot_t pgprot);
2709 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2710 			pfn_t pfn);
2711 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2712 			pfn_t pfn, pgprot_t pgprot);
2713 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2714 		unsigned long addr, pfn_t pfn);
2715 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2716 
2717 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2718 				unsigned long addr, struct page *page)
2719 {
2720 	int err = vm_insert_page(vma, addr, page);
2721 
2722 	if (err == -ENOMEM)
2723 		return VM_FAULT_OOM;
2724 	if (err < 0 && err != -EBUSY)
2725 		return VM_FAULT_SIGBUS;
2726 
2727 	return VM_FAULT_NOPAGE;
2728 }
2729 
2730 static inline vm_fault_t vmf_error(int err)
2731 {
2732 	if (err == -ENOMEM)
2733 		return VM_FAULT_OOM;
2734 	return VM_FAULT_SIGBUS;
2735 }
2736 
2737 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2738 			 unsigned int foll_flags);
2739 
2740 #define FOLL_WRITE	0x01	/* check pte is writable */
2741 #define FOLL_TOUCH	0x02	/* mark page accessed */
2742 #define FOLL_GET	0x04	/* do get_page on page */
2743 #define FOLL_DUMP	0x08	/* give error on hole if it would be zero */
2744 #define FOLL_FORCE	0x10	/* get_user_pages read/write w/o permission */
2745 #define FOLL_NOWAIT	0x20	/* if a disk transfer is needed, start the IO
2746 				 * and return without waiting upon it */
2747 #define FOLL_POPULATE	0x40	/* fault in page */
2748 #define FOLL_SPLIT	0x80	/* don't return transhuge pages, split them */
2749 #define FOLL_HWPOISON	0x100	/* check page is hwpoisoned */
2750 #define FOLL_NUMA	0x200	/* force NUMA hinting page fault */
2751 #define FOLL_MIGRATION	0x400	/* wait for page to replace migration entry */
2752 #define FOLL_TRIED	0x800	/* a retry, previous pass started an IO */
2753 #define FOLL_MLOCK	0x1000	/* lock present pages */
2754 #define FOLL_REMOTE	0x2000	/* we are working on non-current tsk/mm */
2755 #define FOLL_COW	0x4000	/* internal GUP flag */
2756 #define FOLL_ANON	0x8000	/* don't do file mappings */
2757 #define FOLL_LONGTERM	0x10000	/* mapping lifetime is indefinite: see below */
2758 #define FOLL_SPLIT_PMD	0x20000	/* split huge pmd before returning */
2759 #define FOLL_PIN	0x40000	/* pages must be released via unpin_user_page */
2760 #define FOLL_FAST_ONLY	0x80000	/* gup_fast: prevent fall-back to slow gup */
2761 
2762 /*
2763  * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2764  * other. Here is what they mean, and how to use them:
2765  *
2766  * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2767  * period _often_ under userspace control.  This is in contrast to
2768  * iov_iter_get_pages(), whose usages are transient.
2769  *
2770  * FIXME: For pages which are part of a filesystem, mappings are subject to the
2771  * lifetime enforced by the filesystem and we need guarantees that longterm
2772  * users like RDMA and V4L2 only establish mappings which coordinate usage with
2773  * the filesystem.  Ideas for this coordination include revoking the longterm
2774  * pin, delaying writeback, bounce buffer page writeback, etc.  As FS DAX was
2775  * added after the problem with filesystems was found FS DAX VMAs are
2776  * specifically failed.  Filesystem pages are still subject to bugs and use of
2777  * FOLL_LONGTERM should be avoided on those pages.
2778  *
2779  * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
2780  * Currently only get_user_pages() and get_user_pages_fast() support this flag
2781  * and calls to get_user_pages_[un]locked are specifically not allowed.  This
2782  * is due to an incompatibility with the FS DAX check and
2783  * FAULT_FLAG_ALLOW_RETRY.
2784  *
2785  * In the CMA case: long term pins in a CMA region would unnecessarily fragment
2786  * that region.  And so, CMA attempts to migrate the page before pinning, when
2787  * FOLL_LONGTERM is specified.
2788  *
2789  * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
2790  * but an additional pin counting system) will be invoked. This is intended for
2791  * anything that gets a page reference and then touches page data (for example,
2792  * Direct IO). This lets the filesystem know that some non-file-system entity is
2793  * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
2794  * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
2795  * a call to unpin_user_page().
2796  *
2797  * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
2798  * and separate refcounting mechanisms, however, and that means that each has
2799  * its own acquire and release mechanisms:
2800  *
2801  *     FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
2802  *
2803  *     FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
2804  *
2805  * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
2806  * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
2807  * calls applied to them, and that's perfectly OK. This is a constraint on the
2808  * callers, not on the pages.)
2809  *
2810  * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
2811  * directly by the caller. That's in order to help avoid mismatches when
2812  * releasing pages: get_user_pages*() pages must be released via put_page(),
2813  * while pin_user_pages*() pages must be released via unpin_user_page().
2814  *
2815  * Please see Documentation/core-api/pin_user_pages.rst for more information.
2816  */
2817 
2818 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
2819 {
2820 	if (vm_fault & VM_FAULT_OOM)
2821 		return -ENOMEM;
2822 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
2823 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
2824 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
2825 		return -EFAULT;
2826 	return 0;
2827 }
2828 
2829 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
2830 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2831 			       unsigned long size, pte_fn_t fn, void *data);
2832 extern int apply_to_existing_page_range(struct mm_struct *mm,
2833 				   unsigned long address, unsigned long size,
2834 				   pte_fn_t fn, void *data);
2835 
2836 #ifdef CONFIG_PAGE_POISONING
2837 extern bool page_poisoning_enabled(void);
2838 extern void kernel_poison_pages(struct page *page, int numpages, int enable);
2839 #else
2840 static inline bool page_poisoning_enabled(void) { return false; }
2841 static inline void kernel_poison_pages(struct page *page, int numpages,
2842 					int enable) { }
2843 #endif
2844 
2845 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
2846 DECLARE_STATIC_KEY_TRUE(init_on_alloc);
2847 #else
2848 DECLARE_STATIC_KEY_FALSE(init_on_alloc);
2849 #endif
2850 static inline bool want_init_on_alloc(gfp_t flags)
2851 {
2852 	if (static_branch_unlikely(&init_on_alloc) &&
2853 	    !page_poisoning_enabled())
2854 		return true;
2855 	return flags & __GFP_ZERO;
2856 }
2857 
2858 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
2859 DECLARE_STATIC_KEY_TRUE(init_on_free);
2860 #else
2861 DECLARE_STATIC_KEY_FALSE(init_on_free);
2862 #endif
2863 static inline bool want_init_on_free(void)
2864 {
2865 	return static_branch_unlikely(&init_on_free) &&
2866 	       !page_poisoning_enabled();
2867 }
2868 
2869 #ifdef CONFIG_DEBUG_PAGEALLOC
2870 extern void init_debug_pagealloc(void);
2871 #else
2872 static inline void init_debug_pagealloc(void) {}
2873 #endif
2874 extern bool _debug_pagealloc_enabled_early;
2875 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
2876 
2877 static inline bool debug_pagealloc_enabled(void)
2878 {
2879 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
2880 		_debug_pagealloc_enabled_early;
2881 }
2882 
2883 /*
2884  * For use in fast paths after init_debug_pagealloc() has run, or when a
2885  * false negative result is not harmful when called too early.
2886  */
2887 static inline bool debug_pagealloc_enabled_static(void)
2888 {
2889 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
2890 		return false;
2891 
2892 	return static_branch_unlikely(&_debug_pagealloc_enabled);
2893 }
2894 
2895 #if defined(CONFIG_DEBUG_PAGEALLOC) || defined(CONFIG_ARCH_HAS_SET_DIRECT_MAP)
2896 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2897 
2898 /*
2899  * When called in DEBUG_PAGEALLOC context, the call should most likely be
2900  * guarded by debug_pagealloc_enabled() or debug_pagealloc_enabled_static()
2901  */
2902 static inline void
2903 kernel_map_pages(struct page *page, int numpages, int enable)
2904 {
2905 	__kernel_map_pages(page, numpages, enable);
2906 }
2907 #ifdef CONFIG_HIBERNATION
2908 extern bool kernel_page_present(struct page *page);
2909 #endif	/* CONFIG_HIBERNATION */
2910 #else	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2911 static inline void
2912 kernel_map_pages(struct page *page, int numpages, int enable) {}
2913 #ifdef CONFIG_HIBERNATION
2914 static inline bool kernel_page_present(struct page *page) { return true; }
2915 #endif	/* CONFIG_HIBERNATION */
2916 #endif	/* CONFIG_DEBUG_PAGEALLOC || CONFIG_ARCH_HAS_SET_DIRECT_MAP */
2917 
2918 #ifdef __HAVE_ARCH_GATE_AREA
2919 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
2920 extern int in_gate_area_no_mm(unsigned long addr);
2921 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
2922 #else
2923 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2924 {
2925 	return NULL;
2926 }
2927 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2928 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2929 {
2930 	return 0;
2931 }
2932 #endif	/* __HAVE_ARCH_GATE_AREA */
2933 
2934 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2935 
2936 #ifdef CONFIG_SYSCTL
2937 extern int sysctl_drop_caches;
2938 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
2939 		loff_t *);
2940 #endif
2941 
2942 void drop_slab(void);
2943 void drop_slab_node(int nid);
2944 
2945 #ifndef CONFIG_MMU
2946 #define randomize_va_space 0
2947 #else
2948 extern int randomize_va_space;
2949 #endif
2950 
2951 const char * arch_vma_name(struct vm_area_struct *vma);
2952 #ifdef CONFIG_MMU
2953 void print_vma_addr(char *prefix, unsigned long rip);
2954 #else
2955 static inline void print_vma_addr(char *prefix, unsigned long rip)
2956 {
2957 }
2958 #endif
2959 
2960 void *sparse_buffer_alloc(unsigned long size);
2961 struct page * __populate_section_memmap(unsigned long pfn,
2962 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap);
2963 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2964 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
2965 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
2966 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2967 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
2968 			    struct vmem_altmap *altmap);
2969 void *vmemmap_alloc_block(unsigned long size, int node);
2970 struct vmem_altmap;
2971 void *vmemmap_alloc_block_buf(unsigned long size, int node,
2972 			      struct vmem_altmap *altmap);
2973 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
2974 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2975 			       int node, struct vmem_altmap *altmap);
2976 int vmemmap_populate(unsigned long start, unsigned long end, int node,
2977 		struct vmem_altmap *altmap);
2978 void vmemmap_populate_print_last(void);
2979 #ifdef CONFIG_MEMORY_HOTPLUG
2980 void vmemmap_free(unsigned long start, unsigned long end,
2981 		struct vmem_altmap *altmap);
2982 #endif
2983 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2984 				  unsigned long nr_pages);
2985 
2986 enum mf_flags {
2987 	MF_COUNT_INCREASED = 1 << 0,
2988 	MF_ACTION_REQUIRED = 1 << 1,
2989 	MF_MUST_KILL = 1 << 2,
2990 	MF_SOFT_OFFLINE = 1 << 3,
2991 };
2992 extern int memory_failure(unsigned long pfn, int flags);
2993 extern void memory_failure_queue(unsigned long pfn, int flags);
2994 extern void memory_failure_queue_kick(int cpu);
2995 extern int unpoison_memory(unsigned long pfn);
2996 extern int get_hwpoison_page(struct page *page);
2997 #define put_hwpoison_page(page)	put_page(page)
2998 extern int sysctl_memory_failure_early_kill;
2999 extern int sysctl_memory_failure_recovery;
3000 extern void shake_page(struct page *p, int access);
3001 extern atomic_long_t num_poisoned_pages __read_mostly;
3002 extern int soft_offline_page(unsigned long pfn, int flags);
3003 
3004 
3005 /*
3006  * Error handlers for various types of pages.
3007  */
3008 enum mf_result {
3009 	MF_IGNORED,	/* Error: cannot be handled */
3010 	MF_FAILED,	/* Error: handling failed */
3011 	MF_DELAYED,	/* Will be handled later */
3012 	MF_RECOVERED,	/* Successfully recovered */
3013 };
3014 
3015 enum mf_action_page_type {
3016 	MF_MSG_KERNEL,
3017 	MF_MSG_KERNEL_HIGH_ORDER,
3018 	MF_MSG_SLAB,
3019 	MF_MSG_DIFFERENT_COMPOUND,
3020 	MF_MSG_POISONED_HUGE,
3021 	MF_MSG_HUGE,
3022 	MF_MSG_FREE_HUGE,
3023 	MF_MSG_NON_PMD_HUGE,
3024 	MF_MSG_UNMAP_FAILED,
3025 	MF_MSG_DIRTY_SWAPCACHE,
3026 	MF_MSG_CLEAN_SWAPCACHE,
3027 	MF_MSG_DIRTY_MLOCKED_LRU,
3028 	MF_MSG_CLEAN_MLOCKED_LRU,
3029 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
3030 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
3031 	MF_MSG_DIRTY_LRU,
3032 	MF_MSG_CLEAN_LRU,
3033 	MF_MSG_TRUNCATED_LRU,
3034 	MF_MSG_BUDDY,
3035 	MF_MSG_BUDDY_2ND,
3036 	MF_MSG_DAX,
3037 	MF_MSG_UNKNOWN,
3038 };
3039 
3040 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3041 extern void clear_huge_page(struct page *page,
3042 			    unsigned long addr_hint,
3043 			    unsigned int pages_per_huge_page);
3044 extern void copy_user_huge_page(struct page *dst, struct page *src,
3045 				unsigned long addr_hint,
3046 				struct vm_area_struct *vma,
3047 				unsigned int pages_per_huge_page);
3048 extern long copy_huge_page_from_user(struct page *dst_page,
3049 				const void __user *usr_src,
3050 				unsigned int pages_per_huge_page,
3051 				bool allow_pagefault);
3052 
3053 /**
3054  * vma_is_special_huge - Are transhuge page-table entries considered special?
3055  * @vma: Pointer to the struct vm_area_struct to consider
3056  *
3057  * Whether transhuge page-table entries are considered "special" following
3058  * the definition in vm_normal_page().
3059  *
3060  * Return: true if transhuge page-table entries should be considered special,
3061  * false otherwise.
3062  */
3063 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3064 {
3065 	return vma_is_dax(vma) || (vma->vm_file &&
3066 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3067 }
3068 
3069 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3070 
3071 #ifdef CONFIG_DEBUG_PAGEALLOC
3072 extern unsigned int _debug_guardpage_minorder;
3073 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3074 
3075 static inline unsigned int debug_guardpage_minorder(void)
3076 {
3077 	return _debug_guardpage_minorder;
3078 }
3079 
3080 static inline bool debug_guardpage_enabled(void)
3081 {
3082 	return static_branch_unlikely(&_debug_guardpage_enabled);
3083 }
3084 
3085 static inline bool page_is_guard(struct page *page)
3086 {
3087 	if (!debug_guardpage_enabled())
3088 		return false;
3089 
3090 	return PageGuard(page);
3091 }
3092 #else
3093 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3094 static inline bool debug_guardpage_enabled(void) { return false; }
3095 static inline bool page_is_guard(struct page *page) { return false; }
3096 #endif /* CONFIG_DEBUG_PAGEALLOC */
3097 
3098 #if MAX_NUMNODES > 1
3099 void __init setup_nr_node_ids(void);
3100 #else
3101 static inline void setup_nr_node_ids(void) {}
3102 #endif
3103 
3104 extern int memcmp_pages(struct page *page1, struct page *page2);
3105 
3106 static inline int pages_identical(struct page *page1, struct page *page2)
3107 {
3108 	return !memcmp_pages(page1, page2);
3109 }
3110 
3111 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3112 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3113 						pgoff_t first_index, pgoff_t nr,
3114 						pgoff_t bitmap_pgoff,
3115 						unsigned long *bitmap,
3116 						pgoff_t *start,
3117 						pgoff_t *end);
3118 
3119 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3120 				      pgoff_t first_index, pgoff_t nr);
3121 #endif
3122 
3123 extern int sysctl_nr_trim_pages;
3124 
3125 #endif /* __KERNEL__ */
3126 #endif /* _LINUX_MM_H */
3127