xref: /linux-6.15/include/linux/mm.h (revision c42e2f07)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(const struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(const struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(const struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 #ifdef CONFIG_64BIT
410 #define VM_DROPPABLE_BIT	40
411 #define VM_DROPPABLE		BIT(VM_DROPPABLE_BIT)
412 #else
413 #define VM_DROPPABLE		VM_NONE
414 #endif
415 
416 #ifdef CONFIG_64BIT
417 /* VM is sealed, in vm_flags */
418 #define VM_SEALED	_BITUL(63)
419 #endif
420 
421 /* Bits set in the VMA until the stack is in its final location */
422 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
423 
424 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
425 
426 /* Common data flag combinations */
427 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
428 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
429 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
430 				 VM_MAYWRITE | VM_MAYEXEC)
431 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
432 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
433 
434 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
435 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
436 #endif
437 
438 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
439 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
440 #endif
441 
442 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
443 
444 #ifdef CONFIG_STACK_GROWSUP
445 #define VM_STACK	VM_GROWSUP
446 #define VM_STACK_EARLY	VM_GROWSDOWN
447 #else
448 #define VM_STACK	VM_GROWSDOWN
449 #define VM_STACK_EARLY	0
450 #endif
451 
452 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
453 
454 /* VMA basic access permission flags */
455 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
456 
457 
458 /*
459  * Special vmas that are non-mergable, non-mlock()able.
460  */
461 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
462 
463 /* This mask prevents VMA from being scanned with khugepaged */
464 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
465 
466 /* This mask defines which mm->def_flags a process can inherit its parent */
467 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
468 
469 /* This mask represents all the VMA flag bits used by mlock */
470 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
471 
472 /* Arch-specific flags to clear when updating VM flags on protection change */
473 #ifndef VM_ARCH_CLEAR
474 # define VM_ARCH_CLEAR	VM_NONE
475 #endif
476 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
477 
478 /*
479  * mapping from the currently active vm_flags protection bits (the
480  * low four bits) to a page protection mask..
481  */
482 
483 /*
484  * The default fault flags that should be used by most of the
485  * arch-specific page fault handlers.
486  */
487 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
488 			     FAULT_FLAG_KILLABLE | \
489 			     FAULT_FLAG_INTERRUPTIBLE)
490 
491 /**
492  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
493  * @flags: Fault flags.
494  *
495  * This is mostly used for places where we want to try to avoid taking
496  * the mmap_lock for too long a time when waiting for another condition
497  * to change, in which case we can try to be polite to release the
498  * mmap_lock in the first round to avoid potential starvation of other
499  * processes that would also want the mmap_lock.
500  *
501  * Return: true if the page fault allows retry and this is the first
502  * attempt of the fault handling; false otherwise.
503  */
504 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
505 {
506 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
507 	    (!(flags & FAULT_FLAG_TRIED));
508 }
509 
510 #define FAULT_FLAG_TRACE \
511 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
512 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
513 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
514 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
515 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
516 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
517 	{ FAULT_FLAG_USER,		"USER" }, \
518 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
519 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
520 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
521 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
522 
523 /*
524  * vm_fault is filled by the pagefault handler and passed to the vma's
525  * ->fault function. The vma's ->fault is responsible for returning a bitmask
526  * of VM_FAULT_xxx flags that give details about how the fault was handled.
527  *
528  * MM layer fills up gfp_mask for page allocations but fault handler might
529  * alter it if its implementation requires a different allocation context.
530  *
531  * pgoff should be used in favour of virtual_address, if possible.
532  */
533 struct vm_fault {
534 	const struct {
535 		struct vm_area_struct *vma;	/* Target VMA */
536 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
537 		pgoff_t pgoff;			/* Logical page offset based on vma */
538 		unsigned long address;		/* Faulting virtual address - masked */
539 		unsigned long real_address;	/* Faulting virtual address - unmasked */
540 	};
541 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
542 					 * XXX: should really be 'const' */
543 	pmd_t *pmd;			/* Pointer to pmd entry matching
544 					 * the 'address' */
545 	pud_t *pud;			/* Pointer to pud entry matching
546 					 * the 'address'
547 					 */
548 	union {
549 		pte_t orig_pte;		/* Value of PTE at the time of fault */
550 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
551 					 * used by PMD fault only.
552 					 */
553 	};
554 
555 	struct page *cow_page;		/* Page handler may use for COW fault */
556 	struct page *page;		/* ->fault handlers should return a
557 					 * page here, unless VM_FAULT_NOPAGE
558 					 * is set (which is also implied by
559 					 * VM_FAULT_ERROR).
560 					 */
561 	/* These three entries are valid only while holding ptl lock */
562 	pte_t *pte;			/* Pointer to pte entry matching
563 					 * the 'address'. NULL if the page
564 					 * table hasn't been allocated.
565 					 */
566 	spinlock_t *ptl;		/* Page table lock.
567 					 * Protects pte page table if 'pte'
568 					 * is not NULL, otherwise pmd.
569 					 */
570 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
571 					 * vm_ops->map_pages() sets up a page
572 					 * table from atomic context.
573 					 * do_fault_around() pre-allocates
574 					 * page table to avoid allocation from
575 					 * atomic context.
576 					 */
577 };
578 
579 /*
580  * These are the virtual MM functions - opening of an area, closing and
581  * unmapping it (needed to keep files on disk up-to-date etc), pointer
582  * to the functions called when a no-page or a wp-page exception occurs.
583  */
584 struct vm_operations_struct {
585 	void (*open)(struct vm_area_struct * area);
586 	/**
587 	 * @close: Called when the VMA is being removed from the MM.
588 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
589 	 */
590 	void (*close)(struct vm_area_struct * area);
591 	/* Called any time before splitting to check if it's allowed */
592 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
593 	int (*mremap)(struct vm_area_struct *area);
594 	/*
595 	 * Called by mprotect() to make driver-specific permission
596 	 * checks before mprotect() is finalised.   The VMA must not
597 	 * be modified.  Returns 0 if mprotect() can proceed.
598 	 */
599 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
600 			unsigned long end, unsigned long newflags);
601 	vm_fault_t (*fault)(struct vm_fault *vmf);
602 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
603 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
604 			pgoff_t start_pgoff, pgoff_t end_pgoff);
605 	unsigned long (*pagesize)(struct vm_area_struct * area);
606 
607 	/* notification that a previously read-only page is about to become
608 	 * writable, if an error is returned it will cause a SIGBUS */
609 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
610 
611 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
612 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
613 
614 	/* called by access_process_vm when get_user_pages() fails, typically
615 	 * for use by special VMAs. See also generic_access_phys() for a generic
616 	 * implementation useful for any iomem mapping.
617 	 */
618 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
619 		      void *buf, int len, int write);
620 
621 	/* Called by the /proc/PID/maps code to ask the vma whether it
622 	 * has a special name.  Returning non-NULL will also cause this
623 	 * vma to be dumped unconditionally. */
624 	const char *(*name)(struct vm_area_struct *vma);
625 
626 #ifdef CONFIG_NUMA
627 	/*
628 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
629 	 * to hold the policy upon return.  Caller should pass NULL @new to
630 	 * remove a policy and fall back to surrounding context--i.e. do not
631 	 * install a MPOL_DEFAULT policy, nor the task or system default
632 	 * mempolicy.
633 	 */
634 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
635 
636 	/*
637 	 * get_policy() op must add reference [mpol_get()] to any policy at
638 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
639 	 * in mm/mempolicy.c will do this automatically.
640 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
641 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
642 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
643 	 * must return NULL--i.e., do not "fallback" to task or system default
644 	 * policy.
645 	 */
646 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
647 					unsigned long addr, pgoff_t *ilx);
648 #endif
649 	/*
650 	 * Called by vm_normal_page() for special PTEs to find the
651 	 * page for @addr.  This is useful if the default behavior
652 	 * (using pte_page()) would not find the correct page.
653 	 */
654 	struct page *(*find_special_page)(struct vm_area_struct *vma,
655 					  unsigned long addr);
656 };
657 
658 #ifdef CONFIG_NUMA_BALANCING
659 static inline void vma_numab_state_init(struct vm_area_struct *vma)
660 {
661 	vma->numab_state = NULL;
662 }
663 static inline void vma_numab_state_free(struct vm_area_struct *vma)
664 {
665 	kfree(vma->numab_state);
666 }
667 #else
668 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
669 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
670 #endif /* CONFIG_NUMA_BALANCING */
671 
672 #ifdef CONFIG_PER_VMA_LOCK
673 /*
674  * Try to read-lock a vma. The function is allowed to occasionally yield false
675  * locked result to avoid performance overhead, in which case we fall back to
676  * using mmap_lock. The function should never yield false unlocked result.
677  */
678 static inline bool vma_start_read(struct vm_area_struct *vma)
679 {
680 	/*
681 	 * Check before locking. A race might cause false locked result.
682 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
683 	 * ACQUIRE semantics, because this is just a lockless check whose result
684 	 * we don't rely on for anything - the mm_lock_seq read against which we
685 	 * need ordering is below.
686 	 */
687 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
688 		return false;
689 
690 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
691 		return false;
692 
693 	/*
694 	 * Overflow might produce false locked result.
695 	 * False unlocked result is impossible because we modify and check
696 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
697 	 * modification invalidates all existing locks.
698 	 *
699 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
700 	 * racing with vma_end_write_all(), we only start reading from the VMA
701 	 * after it has been unlocked.
702 	 * This pairs with RELEASE semantics in vma_end_write_all().
703 	 */
704 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
705 		up_read(&vma->vm_lock->lock);
706 		return false;
707 	}
708 	return true;
709 }
710 
711 static inline void vma_end_read(struct vm_area_struct *vma)
712 {
713 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
714 	up_read(&vma->vm_lock->lock);
715 	rcu_read_unlock();
716 }
717 
718 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
719 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
720 {
721 	mmap_assert_write_locked(vma->vm_mm);
722 
723 	/*
724 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
725 	 * mm->mm_lock_seq can't be concurrently modified.
726 	 */
727 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
728 	return (vma->vm_lock_seq == *mm_lock_seq);
729 }
730 
731 /*
732  * Begin writing to a VMA.
733  * Exclude concurrent readers under the per-VMA lock until the currently
734  * write-locked mmap_lock is dropped or downgraded.
735  */
736 static inline void vma_start_write(struct vm_area_struct *vma)
737 {
738 	int mm_lock_seq;
739 
740 	if (__is_vma_write_locked(vma, &mm_lock_seq))
741 		return;
742 
743 	down_write(&vma->vm_lock->lock);
744 	/*
745 	 * We should use WRITE_ONCE() here because we can have concurrent reads
746 	 * from the early lockless pessimistic check in vma_start_read().
747 	 * We don't really care about the correctness of that early check, but
748 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
749 	 */
750 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
751 	up_write(&vma->vm_lock->lock);
752 }
753 
754 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
755 {
756 	int mm_lock_seq;
757 
758 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
759 }
760 
761 static inline void vma_assert_locked(struct vm_area_struct *vma)
762 {
763 	if (!rwsem_is_locked(&vma->vm_lock->lock))
764 		vma_assert_write_locked(vma);
765 }
766 
767 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
768 {
769 	/* When detaching vma should be write-locked */
770 	if (detached)
771 		vma_assert_write_locked(vma);
772 	vma->detached = detached;
773 }
774 
775 static inline void release_fault_lock(struct vm_fault *vmf)
776 {
777 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
778 		vma_end_read(vmf->vma);
779 	else
780 		mmap_read_unlock(vmf->vma->vm_mm);
781 }
782 
783 static inline void assert_fault_locked(struct vm_fault *vmf)
784 {
785 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
786 		vma_assert_locked(vmf->vma);
787 	else
788 		mmap_assert_locked(vmf->vma->vm_mm);
789 }
790 
791 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
792 					  unsigned long address);
793 
794 #else /* CONFIG_PER_VMA_LOCK */
795 
796 static inline bool vma_start_read(struct vm_area_struct *vma)
797 		{ return false; }
798 static inline void vma_end_read(struct vm_area_struct *vma) {}
799 static inline void vma_start_write(struct vm_area_struct *vma) {}
800 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
801 		{ mmap_assert_write_locked(vma->vm_mm); }
802 static inline void vma_mark_detached(struct vm_area_struct *vma,
803 				     bool detached) {}
804 
805 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
806 		unsigned long address)
807 {
808 	return NULL;
809 }
810 
811 static inline void vma_assert_locked(struct vm_area_struct *vma)
812 {
813 	mmap_assert_locked(vma->vm_mm);
814 }
815 
816 static inline void release_fault_lock(struct vm_fault *vmf)
817 {
818 	mmap_read_unlock(vmf->vma->vm_mm);
819 }
820 
821 static inline void assert_fault_locked(struct vm_fault *vmf)
822 {
823 	mmap_assert_locked(vmf->vma->vm_mm);
824 }
825 
826 #endif /* CONFIG_PER_VMA_LOCK */
827 
828 extern const struct vm_operations_struct vma_dummy_vm_ops;
829 
830 /*
831  * WARNING: vma_init does not initialize vma->vm_lock.
832  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
833  */
834 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
835 {
836 	memset(vma, 0, sizeof(*vma));
837 	vma->vm_mm = mm;
838 	vma->vm_ops = &vma_dummy_vm_ops;
839 	INIT_LIST_HEAD(&vma->anon_vma_chain);
840 	vma_mark_detached(vma, false);
841 	vma_numab_state_init(vma);
842 }
843 
844 /* Use when VMA is not part of the VMA tree and needs no locking */
845 static inline void vm_flags_init(struct vm_area_struct *vma,
846 				 vm_flags_t flags)
847 {
848 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
849 }
850 
851 /*
852  * Use when VMA is part of the VMA tree and modifications need coordination
853  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
854  * it should be locked explicitly beforehand.
855  */
856 static inline void vm_flags_reset(struct vm_area_struct *vma,
857 				  vm_flags_t flags)
858 {
859 	vma_assert_write_locked(vma);
860 	vm_flags_init(vma, flags);
861 }
862 
863 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
864 				       vm_flags_t flags)
865 {
866 	vma_assert_write_locked(vma);
867 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
868 }
869 
870 static inline void vm_flags_set(struct vm_area_struct *vma,
871 				vm_flags_t flags)
872 {
873 	vma_start_write(vma);
874 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
875 }
876 
877 static inline void vm_flags_clear(struct vm_area_struct *vma,
878 				  vm_flags_t flags)
879 {
880 	vma_start_write(vma);
881 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
882 }
883 
884 /*
885  * Use only if VMA is not part of the VMA tree or has no other users and
886  * therefore needs no locking.
887  */
888 static inline void __vm_flags_mod(struct vm_area_struct *vma,
889 				  vm_flags_t set, vm_flags_t clear)
890 {
891 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
892 }
893 
894 /*
895  * Use only when the order of set/clear operations is unimportant, otherwise
896  * use vm_flags_{set|clear} explicitly.
897  */
898 static inline void vm_flags_mod(struct vm_area_struct *vma,
899 				vm_flags_t set, vm_flags_t clear)
900 {
901 	vma_start_write(vma);
902 	__vm_flags_mod(vma, set, clear);
903 }
904 
905 static inline void vma_set_anonymous(struct vm_area_struct *vma)
906 {
907 	vma->vm_ops = NULL;
908 }
909 
910 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
911 {
912 	return !vma->vm_ops;
913 }
914 
915 /*
916  * Indicate if the VMA is a heap for the given task; for
917  * /proc/PID/maps that is the heap of the main task.
918  */
919 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
920 {
921 	return vma->vm_start < vma->vm_mm->brk &&
922 		vma->vm_end > vma->vm_mm->start_brk;
923 }
924 
925 /*
926  * Indicate if the VMA is a stack for the given task; for
927  * /proc/PID/maps that is the stack of the main task.
928  */
929 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
930 {
931 	/*
932 	 * We make no effort to guess what a given thread considers to be
933 	 * its "stack".  It's not even well-defined for programs written
934 	 * languages like Go.
935 	 */
936 	return vma->vm_start <= vma->vm_mm->start_stack &&
937 		vma->vm_end >= vma->vm_mm->start_stack;
938 }
939 
940 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
941 {
942 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
943 
944 	if (!maybe_stack)
945 		return false;
946 
947 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
948 						VM_STACK_INCOMPLETE_SETUP)
949 		return true;
950 
951 	return false;
952 }
953 
954 static inline bool vma_is_foreign(struct vm_area_struct *vma)
955 {
956 	if (!current->mm)
957 		return true;
958 
959 	if (current->mm != vma->vm_mm)
960 		return true;
961 
962 	return false;
963 }
964 
965 static inline bool vma_is_accessible(struct vm_area_struct *vma)
966 {
967 	return vma->vm_flags & VM_ACCESS_FLAGS;
968 }
969 
970 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
971 {
972 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
973 		(VM_SHARED | VM_MAYWRITE);
974 }
975 
976 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
977 {
978 	return is_shared_maywrite(vma->vm_flags);
979 }
980 
981 static inline
982 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
983 {
984 	return mas_find(&vmi->mas, max - 1);
985 }
986 
987 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
988 {
989 	/*
990 	 * Uses mas_find() to get the first VMA when the iterator starts.
991 	 * Calling mas_next() could skip the first entry.
992 	 */
993 	return mas_find(&vmi->mas, ULONG_MAX);
994 }
995 
996 static inline
997 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
998 {
999 	return mas_next_range(&vmi->mas, ULONG_MAX);
1000 }
1001 
1002 
1003 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
1004 {
1005 	return mas_prev(&vmi->mas, 0);
1006 }
1007 
1008 static inline
1009 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
1010 {
1011 	return mas_prev_range(&vmi->mas, 0);
1012 }
1013 
1014 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1015 {
1016 	return vmi->mas.index;
1017 }
1018 
1019 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1020 {
1021 	return vmi->mas.last + 1;
1022 }
1023 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1024 				      unsigned long count)
1025 {
1026 	return mas_expected_entries(&vmi->mas, count);
1027 }
1028 
1029 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1030 			unsigned long start, unsigned long end, gfp_t gfp)
1031 {
1032 	__mas_set_range(&vmi->mas, start, end - 1);
1033 	mas_store_gfp(&vmi->mas, NULL, gfp);
1034 	if (unlikely(mas_is_err(&vmi->mas)))
1035 		return -ENOMEM;
1036 
1037 	return 0;
1038 }
1039 
1040 /* Free any unused preallocations */
1041 static inline void vma_iter_free(struct vma_iterator *vmi)
1042 {
1043 	mas_destroy(&vmi->mas);
1044 }
1045 
1046 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1047 				      struct vm_area_struct *vma)
1048 {
1049 	vmi->mas.index = vma->vm_start;
1050 	vmi->mas.last = vma->vm_end - 1;
1051 	mas_store(&vmi->mas, vma);
1052 	if (unlikely(mas_is_err(&vmi->mas)))
1053 		return -ENOMEM;
1054 
1055 	return 0;
1056 }
1057 
1058 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1059 {
1060 	mas_pause(&vmi->mas);
1061 }
1062 
1063 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1064 {
1065 	mas_set(&vmi->mas, addr);
1066 }
1067 
1068 #define for_each_vma(__vmi, __vma)					\
1069 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1070 
1071 /* The MM code likes to work with exclusive end addresses */
1072 #define for_each_vma_range(__vmi, __vma, __end)				\
1073 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1074 
1075 #ifdef CONFIG_SHMEM
1076 /*
1077  * The vma_is_shmem is not inline because it is used only by slow
1078  * paths in userfault.
1079  */
1080 bool vma_is_shmem(struct vm_area_struct *vma);
1081 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1082 #else
1083 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1084 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1085 #endif
1086 
1087 int vma_is_stack_for_current(struct vm_area_struct *vma);
1088 
1089 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1090 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1091 
1092 struct mmu_gather;
1093 struct inode;
1094 
1095 /*
1096  * compound_order() can be called without holding a reference, which means
1097  * that niceties like page_folio() don't work.  These callers should be
1098  * prepared to handle wild return values.  For example, PG_head may be
1099  * set before the order is initialised, or this may be a tail page.
1100  * See compaction.c for some good examples.
1101  */
1102 static inline unsigned int compound_order(struct page *page)
1103 {
1104 	struct folio *folio = (struct folio *)page;
1105 
1106 	if (!test_bit(PG_head, &folio->flags))
1107 		return 0;
1108 	return folio->_flags_1 & 0xff;
1109 }
1110 
1111 /**
1112  * folio_order - The allocation order of a folio.
1113  * @folio: The folio.
1114  *
1115  * A folio is composed of 2^order pages.  See get_order() for the definition
1116  * of order.
1117  *
1118  * Return: The order of the folio.
1119  */
1120 static inline unsigned int folio_order(const struct folio *folio)
1121 {
1122 	if (!folio_test_large(folio))
1123 		return 0;
1124 	return folio->_flags_1 & 0xff;
1125 }
1126 
1127 #include <linux/huge_mm.h>
1128 
1129 /*
1130  * Methods to modify the page usage count.
1131  *
1132  * What counts for a page usage:
1133  * - cache mapping   (page->mapping)
1134  * - private data    (page->private)
1135  * - page mapped in a task's page tables, each mapping
1136  *   is counted separately
1137  *
1138  * Also, many kernel routines increase the page count before a critical
1139  * routine so they can be sure the page doesn't go away from under them.
1140  */
1141 
1142 /*
1143  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1144  */
1145 static inline int put_page_testzero(struct page *page)
1146 {
1147 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1148 	return page_ref_dec_and_test(page);
1149 }
1150 
1151 static inline int folio_put_testzero(struct folio *folio)
1152 {
1153 	return put_page_testzero(&folio->page);
1154 }
1155 
1156 /*
1157  * Try to grab a ref unless the page has a refcount of zero, return false if
1158  * that is the case.
1159  * This can be called when MMU is off so it must not access
1160  * any of the virtual mappings.
1161  */
1162 static inline bool get_page_unless_zero(struct page *page)
1163 {
1164 	return page_ref_add_unless(page, 1, 0);
1165 }
1166 
1167 static inline struct folio *folio_get_nontail_page(struct page *page)
1168 {
1169 	if (unlikely(!get_page_unless_zero(page)))
1170 		return NULL;
1171 	return (struct folio *)page;
1172 }
1173 
1174 extern int page_is_ram(unsigned long pfn);
1175 
1176 enum {
1177 	REGION_INTERSECTS,
1178 	REGION_DISJOINT,
1179 	REGION_MIXED,
1180 };
1181 
1182 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1183 		      unsigned long desc);
1184 
1185 /* Support for virtually mapped pages */
1186 struct page *vmalloc_to_page(const void *addr);
1187 unsigned long vmalloc_to_pfn(const void *addr);
1188 
1189 /*
1190  * Determine if an address is within the vmalloc range
1191  *
1192  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1193  * is no special casing required.
1194  */
1195 #ifdef CONFIG_MMU
1196 extern bool is_vmalloc_addr(const void *x);
1197 extern int is_vmalloc_or_module_addr(const void *x);
1198 #else
1199 static inline bool is_vmalloc_addr(const void *x)
1200 {
1201 	return false;
1202 }
1203 static inline int is_vmalloc_or_module_addr(const void *x)
1204 {
1205 	return 0;
1206 }
1207 #endif
1208 
1209 /*
1210  * How many times the entire folio is mapped as a single unit (eg by a
1211  * PMD or PUD entry).  This is probably not what you want, except for
1212  * debugging purposes or implementation of other core folio_*() primitives.
1213  */
1214 static inline int folio_entire_mapcount(const struct folio *folio)
1215 {
1216 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1217 	return atomic_read(&folio->_entire_mapcount) + 1;
1218 }
1219 
1220 static inline int folio_large_mapcount(const struct folio *folio)
1221 {
1222 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1223 	return atomic_read(&folio->_large_mapcount) + 1;
1224 }
1225 
1226 /**
1227  * folio_mapcount() - Number of mappings of this folio.
1228  * @folio: The folio.
1229  *
1230  * The folio mapcount corresponds to the number of present user page table
1231  * entries that reference any part of a folio. Each such present user page
1232  * table entry must be paired with exactly on folio reference.
1233  *
1234  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1235  * exactly once.
1236  *
1237  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1238  * references the entire folio counts exactly once, even when such special
1239  * page table entries are comprised of multiple ordinary page table entries.
1240  *
1241  * Will report 0 for pages which cannot be mapped into userspace, such as
1242  * slab, page tables and similar.
1243  *
1244  * Return: The number of times this folio is mapped.
1245  */
1246 static inline int folio_mapcount(const struct folio *folio)
1247 {
1248 	int mapcount;
1249 
1250 	if (likely(!folio_test_large(folio))) {
1251 		mapcount = atomic_read(&folio->_mapcount) + 1;
1252 		/* Handle page_has_type() pages */
1253 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1254 			mapcount = 0;
1255 		return mapcount;
1256 	}
1257 	return folio_large_mapcount(folio);
1258 }
1259 
1260 /**
1261  * folio_mapped - Is this folio mapped into userspace?
1262  * @folio: The folio.
1263  *
1264  * Return: True if any page in this folio is referenced by user page tables.
1265  */
1266 static inline bool folio_mapped(const struct folio *folio)
1267 {
1268 	return folio_mapcount(folio) >= 1;
1269 }
1270 
1271 /*
1272  * Return true if this page is mapped into pagetables.
1273  * For compound page it returns true if any sub-page of compound page is mapped,
1274  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1275  */
1276 static inline bool page_mapped(const struct page *page)
1277 {
1278 	return folio_mapped(page_folio(page));
1279 }
1280 
1281 static inline struct page *virt_to_head_page(const void *x)
1282 {
1283 	struct page *page = virt_to_page(x);
1284 
1285 	return compound_head(page);
1286 }
1287 
1288 static inline struct folio *virt_to_folio(const void *x)
1289 {
1290 	struct page *page = virt_to_page(x);
1291 
1292 	return page_folio(page);
1293 }
1294 
1295 void __folio_put(struct folio *folio);
1296 
1297 void put_pages_list(struct list_head *pages);
1298 
1299 void split_page(struct page *page, unsigned int order);
1300 void folio_copy(struct folio *dst, struct folio *src);
1301 int folio_mc_copy(struct folio *dst, struct folio *src);
1302 
1303 unsigned long nr_free_buffer_pages(void);
1304 
1305 /* Returns the number of bytes in this potentially compound page. */
1306 static inline unsigned long page_size(struct page *page)
1307 {
1308 	return PAGE_SIZE << compound_order(page);
1309 }
1310 
1311 /* Returns the number of bits needed for the number of bytes in a page */
1312 static inline unsigned int page_shift(struct page *page)
1313 {
1314 	return PAGE_SHIFT + compound_order(page);
1315 }
1316 
1317 /**
1318  * thp_order - Order of a transparent huge page.
1319  * @page: Head page of a transparent huge page.
1320  */
1321 static inline unsigned int thp_order(struct page *page)
1322 {
1323 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1324 	return compound_order(page);
1325 }
1326 
1327 /**
1328  * thp_size - Size of a transparent huge page.
1329  * @page: Head page of a transparent huge page.
1330  *
1331  * Return: Number of bytes in this page.
1332  */
1333 static inline unsigned long thp_size(struct page *page)
1334 {
1335 	return PAGE_SIZE << thp_order(page);
1336 }
1337 
1338 #ifdef CONFIG_MMU
1339 /*
1340  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1341  * servicing faults for write access.  In the normal case, do always want
1342  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1343  * that do not have writing enabled, when used by access_process_vm.
1344  */
1345 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1346 {
1347 	if (likely(vma->vm_flags & VM_WRITE))
1348 		pte = pte_mkwrite(pte, vma);
1349 	return pte;
1350 }
1351 
1352 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1353 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1354 		struct page *page, unsigned int nr, unsigned long addr);
1355 
1356 vm_fault_t finish_fault(struct vm_fault *vmf);
1357 #endif
1358 
1359 /*
1360  * Multiple processes may "see" the same page. E.g. for untouched
1361  * mappings of /dev/null, all processes see the same page full of
1362  * zeroes, and text pages of executables and shared libraries have
1363  * only one copy in memory, at most, normally.
1364  *
1365  * For the non-reserved pages, page_count(page) denotes a reference count.
1366  *   page_count() == 0 means the page is free. page->lru is then used for
1367  *   freelist management in the buddy allocator.
1368  *   page_count() > 0  means the page has been allocated.
1369  *
1370  * Pages are allocated by the slab allocator in order to provide memory
1371  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1372  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1373  * unless a particular usage is carefully commented. (the responsibility of
1374  * freeing the kmalloc memory is the caller's, of course).
1375  *
1376  * A page may be used by anyone else who does a __get_free_page().
1377  * In this case, page_count still tracks the references, and should only
1378  * be used through the normal accessor functions. The top bits of page->flags
1379  * and page->virtual store page management information, but all other fields
1380  * are unused and could be used privately, carefully. The management of this
1381  * page is the responsibility of the one who allocated it, and those who have
1382  * subsequently been given references to it.
1383  *
1384  * The other pages (we may call them "pagecache pages") are completely
1385  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1386  * The following discussion applies only to them.
1387  *
1388  * A pagecache page contains an opaque `private' member, which belongs to the
1389  * page's address_space. Usually, this is the address of a circular list of
1390  * the page's disk buffers. PG_private must be set to tell the VM to call
1391  * into the filesystem to release these pages.
1392  *
1393  * A page may belong to an inode's memory mapping. In this case, page->mapping
1394  * is the pointer to the inode, and page->index is the file offset of the page,
1395  * in units of PAGE_SIZE.
1396  *
1397  * If pagecache pages are not associated with an inode, they are said to be
1398  * anonymous pages. These may become associated with the swapcache, and in that
1399  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1400  *
1401  * In either case (swapcache or inode backed), the pagecache itself holds one
1402  * reference to the page. Setting PG_private should also increment the
1403  * refcount. The each user mapping also has a reference to the page.
1404  *
1405  * The pagecache pages are stored in a per-mapping radix tree, which is
1406  * rooted at mapping->i_pages, and indexed by offset.
1407  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1408  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1409  *
1410  * All pagecache pages may be subject to I/O:
1411  * - inode pages may need to be read from disk,
1412  * - inode pages which have been modified and are MAP_SHARED may need
1413  *   to be written back to the inode on disk,
1414  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1415  *   modified may need to be swapped out to swap space and (later) to be read
1416  *   back into memory.
1417  */
1418 
1419 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1420 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1421 
1422 bool __put_devmap_managed_folio_refs(struct folio *folio, int refs);
1423 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1424 {
1425 	if (!static_branch_unlikely(&devmap_managed_key))
1426 		return false;
1427 	if (!folio_is_zone_device(folio))
1428 		return false;
1429 	return __put_devmap_managed_folio_refs(folio, refs);
1430 }
1431 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1432 static inline bool put_devmap_managed_folio_refs(struct folio *folio, int refs)
1433 {
1434 	return false;
1435 }
1436 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1437 
1438 /* 127: arbitrary random number, small enough to assemble well */
1439 #define folio_ref_zero_or_close_to_overflow(folio) \
1440 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1441 
1442 /**
1443  * folio_get - Increment the reference count on a folio.
1444  * @folio: The folio.
1445  *
1446  * Context: May be called in any context, as long as you know that
1447  * you have a refcount on the folio.  If you do not already have one,
1448  * folio_try_get() may be the right interface for you to use.
1449  */
1450 static inline void folio_get(struct folio *folio)
1451 {
1452 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1453 	folio_ref_inc(folio);
1454 }
1455 
1456 static inline void get_page(struct page *page)
1457 {
1458 	folio_get(page_folio(page));
1459 }
1460 
1461 static inline __must_check bool try_get_page(struct page *page)
1462 {
1463 	page = compound_head(page);
1464 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1465 		return false;
1466 	page_ref_inc(page);
1467 	return true;
1468 }
1469 
1470 /**
1471  * folio_put - Decrement the reference count on a folio.
1472  * @folio: The folio.
1473  *
1474  * If the folio's reference count reaches zero, the memory will be
1475  * released back to the page allocator and may be used by another
1476  * allocation immediately.  Do not access the memory or the struct folio
1477  * after calling folio_put() unless you can be sure that it wasn't the
1478  * last reference.
1479  *
1480  * Context: May be called in process or interrupt context, but not in NMI
1481  * context.  May be called while holding a spinlock.
1482  */
1483 static inline void folio_put(struct folio *folio)
1484 {
1485 	if (folio_put_testzero(folio))
1486 		__folio_put(folio);
1487 }
1488 
1489 /**
1490  * folio_put_refs - Reduce the reference count on a folio.
1491  * @folio: The folio.
1492  * @refs: The amount to subtract from the folio's reference count.
1493  *
1494  * If the folio's reference count reaches zero, the memory will be
1495  * released back to the page allocator and may be used by another
1496  * allocation immediately.  Do not access the memory or the struct folio
1497  * after calling folio_put_refs() unless you can be sure that these weren't
1498  * the last references.
1499  *
1500  * Context: May be called in process or interrupt context, but not in NMI
1501  * context.  May be called while holding a spinlock.
1502  */
1503 static inline void folio_put_refs(struct folio *folio, int refs)
1504 {
1505 	if (folio_ref_sub_and_test(folio, refs))
1506 		__folio_put(folio);
1507 }
1508 
1509 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1510 
1511 /*
1512  * union release_pages_arg - an array of pages or folios
1513  *
1514  * release_pages() releases a simple array of multiple pages, and
1515  * accepts various different forms of said page array: either
1516  * a regular old boring array of pages, an array of folios, or
1517  * an array of encoded page pointers.
1518  *
1519  * The transparent union syntax for this kind of "any of these
1520  * argument types" is all kinds of ugly, so look away.
1521  */
1522 typedef union {
1523 	struct page **pages;
1524 	struct folio **folios;
1525 	struct encoded_page **encoded_pages;
1526 } release_pages_arg __attribute__ ((__transparent_union__));
1527 
1528 void release_pages(release_pages_arg, int nr);
1529 
1530 /**
1531  * folios_put - Decrement the reference count on an array of folios.
1532  * @folios: The folios.
1533  *
1534  * Like folio_put(), but for a batch of folios.  This is more efficient
1535  * than writing the loop yourself as it will optimise the locks which need
1536  * to be taken if the folios are freed.  The folios batch is returned
1537  * empty and ready to be reused for another batch; there is no need to
1538  * reinitialise it.
1539  *
1540  * Context: May be called in process or interrupt context, but not in NMI
1541  * context.  May be called while holding a spinlock.
1542  */
1543 static inline void folios_put(struct folio_batch *folios)
1544 {
1545 	folios_put_refs(folios, NULL);
1546 }
1547 
1548 static inline void put_page(struct page *page)
1549 {
1550 	struct folio *folio = page_folio(page);
1551 
1552 	/*
1553 	 * For some devmap managed pages we need to catch refcount transition
1554 	 * from 2 to 1:
1555 	 */
1556 	if (put_devmap_managed_folio_refs(folio, 1))
1557 		return;
1558 	folio_put(folio);
1559 }
1560 
1561 /*
1562  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1563  * the page's refcount so that two separate items are tracked: the original page
1564  * reference count, and also a new count of how many pin_user_pages() calls were
1565  * made against the page. ("gup-pinned" is another term for the latter).
1566  *
1567  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1568  * distinct from normal pages. As such, the unpin_user_page() call (and its
1569  * variants) must be used in order to release gup-pinned pages.
1570  *
1571  * Choice of value:
1572  *
1573  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1574  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1575  * simpler, due to the fact that adding an even power of two to the page
1576  * refcount has the effect of using only the upper N bits, for the code that
1577  * counts up using the bias value. This means that the lower bits are left for
1578  * the exclusive use of the original code that increments and decrements by one
1579  * (or at least, by much smaller values than the bias value).
1580  *
1581  * Of course, once the lower bits overflow into the upper bits (and this is
1582  * OK, because subtraction recovers the original values), then visual inspection
1583  * no longer suffices to directly view the separate counts. However, for normal
1584  * applications that don't have huge page reference counts, this won't be an
1585  * issue.
1586  *
1587  * Locking: the lockless algorithm described in folio_try_get_rcu()
1588  * provides safe operation for get_user_pages(), folio_mkclean() and
1589  * other calls that race to set up page table entries.
1590  */
1591 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1592 
1593 void unpin_user_page(struct page *page);
1594 void unpin_folio(struct folio *folio);
1595 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1596 				 bool make_dirty);
1597 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1598 				      bool make_dirty);
1599 void unpin_user_pages(struct page **pages, unsigned long npages);
1600 void unpin_folios(struct folio **folios, unsigned long nfolios);
1601 
1602 static inline bool is_cow_mapping(vm_flags_t flags)
1603 {
1604 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1605 }
1606 
1607 #ifndef CONFIG_MMU
1608 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1609 {
1610 	/*
1611 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1612 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1613 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1614 	 * underlying memory if ptrace is active, so this is only possible if
1615 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1616 	 * write permissions later.
1617 	 */
1618 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1619 }
1620 #endif
1621 
1622 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1623 #define SECTION_IN_PAGE_FLAGS
1624 #endif
1625 
1626 /*
1627  * The identification function is mainly used by the buddy allocator for
1628  * determining if two pages could be buddies. We are not really identifying
1629  * the zone since we could be using the section number id if we do not have
1630  * node id available in page flags.
1631  * We only guarantee that it will return the same value for two combinable
1632  * pages in a zone.
1633  */
1634 static inline int page_zone_id(struct page *page)
1635 {
1636 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1637 }
1638 
1639 #ifdef NODE_NOT_IN_PAGE_FLAGS
1640 int page_to_nid(const struct page *page);
1641 #else
1642 static inline int page_to_nid(const struct page *page)
1643 {
1644 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1645 }
1646 #endif
1647 
1648 static inline int folio_nid(const struct folio *folio)
1649 {
1650 	return page_to_nid(&folio->page);
1651 }
1652 
1653 #ifdef CONFIG_NUMA_BALANCING
1654 /* page access time bits needs to hold at least 4 seconds */
1655 #define PAGE_ACCESS_TIME_MIN_BITS	12
1656 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1657 #define PAGE_ACCESS_TIME_BUCKETS				\
1658 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1659 #else
1660 #define PAGE_ACCESS_TIME_BUCKETS	0
1661 #endif
1662 
1663 #define PAGE_ACCESS_TIME_MASK				\
1664 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1665 
1666 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1667 {
1668 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1669 }
1670 
1671 static inline int cpupid_to_pid(int cpupid)
1672 {
1673 	return cpupid & LAST__PID_MASK;
1674 }
1675 
1676 static inline int cpupid_to_cpu(int cpupid)
1677 {
1678 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1679 }
1680 
1681 static inline int cpupid_to_nid(int cpupid)
1682 {
1683 	return cpu_to_node(cpupid_to_cpu(cpupid));
1684 }
1685 
1686 static inline bool cpupid_pid_unset(int cpupid)
1687 {
1688 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1689 }
1690 
1691 static inline bool cpupid_cpu_unset(int cpupid)
1692 {
1693 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1694 }
1695 
1696 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1697 {
1698 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1699 }
1700 
1701 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1702 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1703 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1704 {
1705 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1706 }
1707 
1708 static inline int folio_last_cpupid(struct folio *folio)
1709 {
1710 	return folio->_last_cpupid;
1711 }
1712 static inline void page_cpupid_reset_last(struct page *page)
1713 {
1714 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1715 }
1716 #else
1717 static inline int folio_last_cpupid(struct folio *folio)
1718 {
1719 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1720 }
1721 
1722 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1723 
1724 static inline void page_cpupid_reset_last(struct page *page)
1725 {
1726 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1727 }
1728 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1729 
1730 static inline int folio_xchg_access_time(struct folio *folio, int time)
1731 {
1732 	int last_time;
1733 
1734 	last_time = folio_xchg_last_cpupid(folio,
1735 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1736 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1737 }
1738 
1739 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1740 {
1741 	unsigned int pid_bit;
1742 
1743 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1744 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1745 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1746 	}
1747 }
1748 #else /* !CONFIG_NUMA_BALANCING */
1749 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1750 {
1751 	return folio_nid(folio); /* XXX */
1752 }
1753 
1754 static inline int folio_xchg_access_time(struct folio *folio, int time)
1755 {
1756 	return 0;
1757 }
1758 
1759 static inline int folio_last_cpupid(struct folio *folio)
1760 {
1761 	return folio_nid(folio); /* XXX */
1762 }
1763 
1764 static inline int cpupid_to_nid(int cpupid)
1765 {
1766 	return -1;
1767 }
1768 
1769 static inline int cpupid_to_pid(int cpupid)
1770 {
1771 	return -1;
1772 }
1773 
1774 static inline int cpupid_to_cpu(int cpupid)
1775 {
1776 	return -1;
1777 }
1778 
1779 static inline int cpu_pid_to_cpupid(int nid, int pid)
1780 {
1781 	return -1;
1782 }
1783 
1784 static inline bool cpupid_pid_unset(int cpupid)
1785 {
1786 	return true;
1787 }
1788 
1789 static inline void page_cpupid_reset_last(struct page *page)
1790 {
1791 }
1792 
1793 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1794 {
1795 	return false;
1796 }
1797 
1798 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1799 {
1800 }
1801 #endif /* CONFIG_NUMA_BALANCING */
1802 
1803 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1804 
1805 /*
1806  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1807  * setting tags for all pages to native kernel tag value 0xff, as the default
1808  * value 0x00 maps to 0xff.
1809  */
1810 
1811 static inline u8 page_kasan_tag(const struct page *page)
1812 {
1813 	u8 tag = KASAN_TAG_KERNEL;
1814 
1815 	if (kasan_enabled()) {
1816 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1817 		tag ^= 0xff;
1818 	}
1819 
1820 	return tag;
1821 }
1822 
1823 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1824 {
1825 	unsigned long old_flags, flags;
1826 
1827 	if (!kasan_enabled())
1828 		return;
1829 
1830 	tag ^= 0xff;
1831 	old_flags = READ_ONCE(page->flags);
1832 	do {
1833 		flags = old_flags;
1834 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1835 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1836 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1837 }
1838 
1839 static inline void page_kasan_tag_reset(struct page *page)
1840 {
1841 	if (kasan_enabled())
1842 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1843 }
1844 
1845 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1846 
1847 static inline u8 page_kasan_tag(const struct page *page)
1848 {
1849 	return 0xff;
1850 }
1851 
1852 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1853 static inline void page_kasan_tag_reset(struct page *page) { }
1854 
1855 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1856 
1857 static inline struct zone *page_zone(const struct page *page)
1858 {
1859 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1860 }
1861 
1862 static inline pg_data_t *page_pgdat(const struct page *page)
1863 {
1864 	return NODE_DATA(page_to_nid(page));
1865 }
1866 
1867 static inline struct zone *folio_zone(const struct folio *folio)
1868 {
1869 	return page_zone(&folio->page);
1870 }
1871 
1872 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1873 {
1874 	return page_pgdat(&folio->page);
1875 }
1876 
1877 #ifdef SECTION_IN_PAGE_FLAGS
1878 static inline void set_page_section(struct page *page, unsigned long section)
1879 {
1880 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1881 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1882 }
1883 
1884 static inline unsigned long page_to_section(const struct page *page)
1885 {
1886 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1887 }
1888 #endif
1889 
1890 /**
1891  * folio_pfn - Return the Page Frame Number of a folio.
1892  * @folio: The folio.
1893  *
1894  * A folio may contain multiple pages.  The pages have consecutive
1895  * Page Frame Numbers.
1896  *
1897  * Return: The Page Frame Number of the first page in the folio.
1898  */
1899 static inline unsigned long folio_pfn(struct folio *folio)
1900 {
1901 	return page_to_pfn(&folio->page);
1902 }
1903 
1904 static inline struct folio *pfn_folio(unsigned long pfn)
1905 {
1906 	return page_folio(pfn_to_page(pfn));
1907 }
1908 
1909 /**
1910  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1911  * @folio: The folio.
1912  *
1913  * This function checks if a folio has been pinned via a call to
1914  * a function in the pin_user_pages() family.
1915  *
1916  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1917  * because it means "definitely not pinned for DMA", but true means "probably
1918  * pinned for DMA, but possibly a false positive due to having at least
1919  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1920  *
1921  * False positives are OK, because: a) it's unlikely for a folio to
1922  * get that many refcounts, and b) all the callers of this routine are
1923  * expected to be able to deal gracefully with a false positive.
1924  *
1925  * For large folios, the result will be exactly correct. That's because
1926  * we have more tracking data available: the _pincount field is used
1927  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1928  *
1929  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1930  *
1931  * Return: True, if it is likely that the folio has been "dma-pinned".
1932  * False, if the folio is definitely not dma-pinned.
1933  */
1934 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1935 {
1936 	if (folio_test_large(folio))
1937 		return atomic_read(&folio->_pincount) > 0;
1938 
1939 	/*
1940 	 * folio_ref_count() is signed. If that refcount overflows, then
1941 	 * folio_ref_count() returns a negative value, and callers will avoid
1942 	 * further incrementing the refcount.
1943 	 *
1944 	 * Here, for that overflow case, use the sign bit to count a little
1945 	 * bit higher via unsigned math, and thus still get an accurate result.
1946 	 */
1947 	return ((unsigned int)folio_ref_count(folio)) >=
1948 		GUP_PIN_COUNTING_BIAS;
1949 }
1950 
1951 /*
1952  * This should most likely only be called during fork() to see whether we
1953  * should break the cow immediately for an anon page on the src mm.
1954  *
1955  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1956  */
1957 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1958 					  struct folio *folio)
1959 {
1960 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1961 
1962 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1963 		return false;
1964 
1965 	return folio_maybe_dma_pinned(folio);
1966 }
1967 
1968 /**
1969  * is_zero_page - Query if a page is a zero page
1970  * @page: The page to query
1971  *
1972  * This returns true if @page is one of the permanent zero pages.
1973  */
1974 static inline bool is_zero_page(const struct page *page)
1975 {
1976 	return is_zero_pfn(page_to_pfn(page));
1977 }
1978 
1979 /**
1980  * is_zero_folio - Query if a folio is a zero page
1981  * @folio: The folio to query
1982  *
1983  * This returns true if @folio is one of the permanent zero pages.
1984  */
1985 static inline bool is_zero_folio(const struct folio *folio)
1986 {
1987 	return is_zero_page(&folio->page);
1988 }
1989 
1990 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
1991 #ifdef CONFIG_MIGRATION
1992 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1993 {
1994 #ifdef CONFIG_CMA
1995 	int mt = folio_migratetype(folio);
1996 
1997 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1998 		return false;
1999 #endif
2000 	/* The zero page can be "pinned" but gets special handling. */
2001 	if (is_zero_folio(folio))
2002 		return true;
2003 
2004 	/* Coherent device memory must always allow eviction. */
2005 	if (folio_is_device_coherent(folio))
2006 		return false;
2007 
2008 	/* Otherwise, non-movable zone folios can be pinned. */
2009 	return !folio_is_zone_movable(folio);
2010 
2011 }
2012 #else
2013 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2014 {
2015 	return true;
2016 }
2017 #endif
2018 
2019 static inline void set_page_zone(struct page *page, enum zone_type zone)
2020 {
2021 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2022 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2023 }
2024 
2025 static inline void set_page_node(struct page *page, unsigned long node)
2026 {
2027 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2028 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2029 }
2030 
2031 static inline void set_page_links(struct page *page, enum zone_type zone,
2032 	unsigned long node, unsigned long pfn)
2033 {
2034 	set_page_zone(page, zone);
2035 	set_page_node(page, node);
2036 #ifdef SECTION_IN_PAGE_FLAGS
2037 	set_page_section(page, pfn_to_section_nr(pfn));
2038 #endif
2039 }
2040 
2041 /**
2042  * folio_nr_pages - The number of pages in the folio.
2043  * @folio: The folio.
2044  *
2045  * Return: A positive power of two.
2046  */
2047 static inline long folio_nr_pages(const struct folio *folio)
2048 {
2049 	if (!folio_test_large(folio))
2050 		return 1;
2051 #ifdef CONFIG_64BIT
2052 	return folio->_folio_nr_pages;
2053 #else
2054 	return 1L << (folio->_flags_1 & 0xff);
2055 #endif
2056 }
2057 
2058 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2059 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2060 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2061 #else
2062 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2063 #endif
2064 
2065 /*
2066  * compound_nr() returns the number of pages in this potentially compound
2067  * page.  compound_nr() can be called on a tail page, and is defined to
2068  * return 1 in that case.
2069  */
2070 static inline unsigned long compound_nr(struct page *page)
2071 {
2072 	struct folio *folio = (struct folio *)page;
2073 
2074 	if (!test_bit(PG_head, &folio->flags))
2075 		return 1;
2076 #ifdef CONFIG_64BIT
2077 	return folio->_folio_nr_pages;
2078 #else
2079 	return 1L << (folio->_flags_1 & 0xff);
2080 #endif
2081 }
2082 
2083 /**
2084  * thp_nr_pages - The number of regular pages in this huge page.
2085  * @page: The head page of a huge page.
2086  */
2087 static inline int thp_nr_pages(struct page *page)
2088 {
2089 	return folio_nr_pages((struct folio *)page);
2090 }
2091 
2092 /**
2093  * folio_next - Move to the next physical folio.
2094  * @folio: The folio we're currently operating on.
2095  *
2096  * If you have physically contiguous memory which may span more than
2097  * one folio (eg a &struct bio_vec), use this function to move from one
2098  * folio to the next.  Do not use it if the memory is only virtually
2099  * contiguous as the folios are almost certainly not adjacent to each
2100  * other.  This is the folio equivalent to writing ``page++``.
2101  *
2102  * Context: We assume that the folios are refcounted and/or locked at a
2103  * higher level and do not adjust the reference counts.
2104  * Return: The next struct folio.
2105  */
2106 static inline struct folio *folio_next(struct folio *folio)
2107 {
2108 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2109 }
2110 
2111 /**
2112  * folio_shift - The size of the memory described by this folio.
2113  * @folio: The folio.
2114  *
2115  * A folio represents a number of bytes which is a power-of-two in size.
2116  * This function tells you which power-of-two the folio is.  See also
2117  * folio_size() and folio_order().
2118  *
2119  * Context: The caller should have a reference on the folio to prevent
2120  * it from being split.  It is not necessary for the folio to be locked.
2121  * Return: The base-2 logarithm of the size of this folio.
2122  */
2123 static inline unsigned int folio_shift(const struct folio *folio)
2124 {
2125 	return PAGE_SHIFT + folio_order(folio);
2126 }
2127 
2128 /**
2129  * folio_size - The number of bytes in a folio.
2130  * @folio: The folio.
2131  *
2132  * Context: The caller should have a reference on the folio to prevent
2133  * it from being split.  It is not necessary for the folio to be locked.
2134  * Return: The number of bytes in this folio.
2135  */
2136 static inline size_t folio_size(const struct folio *folio)
2137 {
2138 	return PAGE_SIZE << folio_order(folio);
2139 }
2140 
2141 /**
2142  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2143  *				tables of more than one MM
2144  * @folio: The folio.
2145  *
2146  * This function checks if the folio is currently mapped into more than one
2147  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2148  * ("mapped exclusively").
2149  *
2150  * As precise information is not easily available for all folios, this function
2151  * estimates the number of MMs ("sharers") that are currently mapping a folio
2152  * using the number of times the first page of the folio is currently mapped
2153  * into page tables.
2154  *
2155  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2156  * the return value will be exactly correct, because they can only be mapped
2157  * at most once into an MM, and they cannot be partially mapped.
2158  *
2159  * For other folios, the result can be fuzzy:
2160  *    #. For partially-mappable large folios (THP), the return value can wrongly
2161  *       indicate "mapped exclusively" (false negative) when the folio is
2162  *       only partially mapped into at least one MM.
2163  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2164  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2165  *       cover the same file range.
2166  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2167  *       shared" (false positive), when the folio is mapped multiple times into
2168  *       the same MM.
2169  *
2170  * Further, this function only considers current page table mappings that
2171  * are tracked using the folio mapcount(s).
2172  *
2173  * This function does not consider:
2174  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2175  *       pagecache, temporary unmapping for migration).
2176  *    #. If the folio is mapped differently (VM_PFNMAP).
2177  *    #. If hugetlb page table sharing applies. Callers might want to check
2178  *       hugetlb_pmd_shared().
2179  *
2180  * Return: Whether the folio is estimated to be mapped into more than one MM.
2181  */
2182 static inline bool folio_likely_mapped_shared(struct folio *folio)
2183 {
2184 	int mapcount = folio_mapcount(folio);
2185 
2186 	/* Only partially-mappable folios require more care. */
2187 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2188 		return mapcount > 1;
2189 
2190 	/* A single mapping implies "mapped exclusively". */
2191 	if (mapcount <= 1)
2192 		return false;
2193 
2194 	/* If any page is mapped more than once we treat it "mapped shared". */
2195 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2196 		return true;
2197 
2198 	/* Let's guess based on the first subpage. */
2199 	return atomic_read(&folio->_mapcount) > 0;
2200 }
2201 
2202 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2203 static inline int arch_make_page_accessible(struct page *page)
2204 {
2205 	return 0;
2206 }
2207 #endif
2208 
2209 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2210 static inline int arch_make_folio_accessible(struct folio *folio)
2211 {
2212 	int ret;
2213 	long i, nr = folio_nr_pages(folio);
2214 
2215 	for (i = 0; i < nr; i++) {
2216 		ret = arch_make_page_accessible(folio_page(folio, i));
2217 		if (ret)
2218 			break;
2219 	}
2220 
2221 	return ret;
2222 }
2223 #endif
2224 
2225 /*
2226  * Some inline functions in vmstat.h depend on page_zone()
2227  */
2228 #include <linux/vmstat.h>
2229 
2230 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2231 #define HASHED_PAGE_VIRTUAL
2232 #endif
2233 
2234 #if defined(WANT_PAGE_VIRTUAL)
2235 static inline void *page_address(const struct page *page)
2236 {
2237 	return page->virtual;
2238 }
2239 static inline void set_page_address(struct page *page, void *address)
2240 {
2241 	page->virtual = address;
2242 }
2243 #define page_address_init()  do { } while(0)
2244 #endif
2245 
2246 #if defined(HASHED_PAGE_VIRTUAL)
2247 void *page_address(const struct page *page);
2248 void set_page_address(struct page *page, void *virtual);
2249 void page_address_init(void);
2250 #endif
2251 
2252 static __always_inline void *lowmem_page_address(const struct page *page)
2253 {
2254 	return page_to_virt(page);
2255 }
2256 
2257 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2258 #define page_address(page) lowmem_page_address(page)
2259 #define set_page_address(page, address)  do { } while(0)
2260 #define page_address_init()  do { } while(0)
2261 #endif
2262 
2263 static inline void *folio_address(const struct folio *folio)
2264 {
2265 	return page_address(&folio->page);
2266 }
2267 
2268 /*
2269  * Return true only if the page has been allocated with
2270  * ALLOC_NO_WATERMARKS and the low watermark was not
2271  * met implying that the system is under some pressure.
2272  */
2273 static inline bool page_is_pfmemalloc(const struct page *page)
2274 {
2275 	/*
2276 	 * lru.next has bit 1 set if the page is allocated from the
2277 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2278 	 * they do not need to preserve that information.
2279 	 */
2280 	return (uintptr_t)page->lru.next & BIT(1);
2281 }
2282 
2283 /*
2284  * Return true only if the folio has been allocated with
2285  * ALLOC_NO_WATERMARKS and the low watermark was not
2286  * met implying that the system is under some pressure.
2287  */
2288 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2289 {
2290 	/*
2291 	 * lru.next has bit 1 set if the page is allocated from the
2292 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2293 	 * they do not need to preserve that information.
2294 	 */
2295 	return (uintptr_t)folio->lru.next & BIT(1);
2296 }
2297 
2298 /*
2299  * Only to be called by the page allocator on a freshly allocated
2300  * page.
2301  */
2302 static inline void set_page_pfmemalloc(struct page *page)
2303 {
2304 	page->lru.next = (void *)BIT(1);
2305 }
2306 
2307 static inline void clear_page_pfmemalloc(struct page *page)
2308 {
2309 	page->lru.next = NULL;
2310 }
2311 
2312 /*
2313  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2314  */
2315 extern void pagefault_out_of_memory(void);
2316 
2317 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2318 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2319 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2320 
2321 /*
2322  * Parameter block passed down to zap_pte_range in exceptional cases.
2323  */
2324 struct zap_details {
2325 	struct folio *single_folio;	/* Locked folio to be unmapped */
2326 	bool even_cows;			/* Zap COWed private pages too? */
2327 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2328 };
2329 
2330 /*
2331  * Whether to drop the pte markers, for example, the uffd-wp information for
2332  * file-backed memory.  This should only be specified when we will completely
2333  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2334  * default, the flag is not set.
2335  */
2336 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2337 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2338 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2339 
2340 #ifdef CONFIG_SCHED_MM_CID
2341 void sched_mm_cid_before_execve(struct task_struct *t);
2342 void sched_mm_cid_after_execve(struct task_struct *t);
2343 void sched_mm_cid_fork(struct task_struct *t);
2344 void sched_mm_cid_exit_signals(struct task_struct *t);
2345 static inline int task_mm_cid(struct task_struct *t)
2346 {
2347 	return t->mm_cid;
2348 }
2349 #else
2350 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2351 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2352 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2353 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2354 static inline int task_mm_cid(struct task_struct *t)
2355 {
2356 	/*
2357 	 * Use the processor id as a fall-back when the mm cid feature is
2358 	 * disabled. This provides functional per-cpu data structure accesses
2359 	 * in user-space, althrough it won't provide the memory usage benefits.
2360 	 */
2361 	return raw_smp_processor_id();
2362 }
2363 #endif
2364 
2365 #ifdef CONFIG_MMU
2366 extern bool can_do_mlock(void);
2367 #else
2368 static inline bool can_do_mlock(void) { return false; }
2369 #endif
2370 extern int user_shm_lock(size_t, struct ucounts *);
2371 extern void user_shm_unlock(size_t, struct ucounts *);
2372 
2373 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2374 			     pte_t pte);
2375 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2376 			     pte_t pte);
2377 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2378 				  unsigned long addr, pmd_t pmd);
2379 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2380 				pmd_t pmd);
2381 
2382 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2383 		  unsigned long size);
2384 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2385 			   unsigned long size, struct zap_details *details);
2386 static inline void zap_vma_pages(struct vm_area_struct *vma)
2387 {
2388 	zap_page_range_single(vma, vma->vm_start,
2389 			      vma->vm_end - vma->vm_start, NULL);
2390 }
2391 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2392 		struct vm_area_struct *start_vma, unsigned long start,
2393 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2394 
2395 struct mmu_notifier_range;
2396 
2397 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2398 		unsigned long end, unsigned long floor, unsigned long ceiling);
2399 int
2400 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2401 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2402 	       pte_t **ptepp, spinlock_t **ptlp);
2403 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2404 			void *buf, int len, int write);
2405 
2406 extern void truncate_pagecache(struct inode *inode, loff_t new);
2407 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2408 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2409 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2410 int generic_error_remove_folio(struct address_space *mapping,
2411 		struct folio *folio);
2412 
2413 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2414 		unsigned long address, struct pt_regs *regs);
2415 
2416 #ifdef CONFIG_MMU
2417 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2418 				  unsigned long address, unsigned int flags,
2419 				  struct pt_regs *regs);
2420 extern int fixup_user_fault(struct mm_struct *mm,
2421 			    unsigned long address, unsigned int fault_flags,
2422 			    bool *unlocked);
2423 void unmap_mapping_pages(struct address_space *mapping,
2424 		pgoff_t start, pgoff_t nr, bool even_cows);
2425 void unmap_mapping_range(struct address_space *mapping,
2426 		loff_t const holebegin, loff_t const holelen, int even_cows);
2427 #else
2428 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2429 					 unsigned long address, unsigned int flags,
2430 					 struct pt_regs *regs)
2431 {
2432 	/* should never happen if there's no MMU */
2433 	BUG();
2434 	return VM_FAULT_SIGBUS;
2435 }
2436 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2437 		unsigned int fault_flags, bool *unlocked)
2438 {
2439 	/* should never happen if there's no MMU */
2440 	BUG();
2441 	return -EFAULT;
2442 }
2443 static inline void unmap_mapping_pages(struct address_space *mapping,
2444 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2445 static inline void unmap_mapping_range(struct address_space *mapping,
2446 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2447 #endif
2448 
2449 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2450 		loff_t const holebegin, loff_t const holelen)
2451 {
2452 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2453 }
2454 
2455 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2456 						unsigned long addr);
2457 
2458 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2459 		void *buf, int len, unsigned int gup_flags);
2460 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2461 		void *buf, int len, unsigned int gup_flags);
2462 
2463 long get_user_pages_remote(struct mm_struct *mm,
2464 			   unsigned long start, unsigned long nr_pages,
2465 			   unsigned int gup_flags, struct page **pages,
2466 			   int *locked);
2467 long pin_user_pages_remote(struct mm_struct *mm,
2468 			   unsigned long start, unsigned long nr_pages,
2469 			   unsigned int gup_flags, struct page **pages,
2470 			   int *locked);
2471 
2472 /*
2473  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2474  */
2475 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2476 						    unsigned long addr,
2477 						    int gup_flags,
2478 						    struct vm_area_struct **vmap)
2479 {
2480 	struct page *page;
2481 	struct vm_area_struct *vma;
2482 	int got;
2483 
2484 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2485 		return ERR_PTR(-EINVAL);
2486 
2487 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2488 
2489 	if (got < 0)
2490 		return ERR_PTR(got);
2491 
2492 	vma = vma_lookup(mm, addr);
2493 	if (WARN_ON_ONCE(!vma)) {
2494 		put_page(page);
2495 		return ERR_PTR(-EINVAL);
2496 	}
2497 
2498 	*vmap = vma;
2499 	return page;
2500 }
2501 
2502 long get_user_pages(unsigned long start, unsigned long nr_pages,
2503 		    unsigned int gup_flags, struct page **pages);
2504 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2505 		    unsigned int gup_flags, struct page **pages);
2506 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2507 		    struct page **pages, unsigned int gup_flags);
2508 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2509 		    struct page **pages, unsigned int gup_flags);
2510 long memfd_pin_folios(struct file *memfd, loff_t start, loff_t end,
2511 		      struct folio **folios, unsigned int max_folios,
2512 		      pgoff_t *offset);
2513 
2514 int get_user_pages_fast(unsigned long start, int nr_pages,
2515 			unsigned int gup_flags, struct page **pages);
2516 int pin_user_pages_fast(unsigned long start, int nr_pages,
2517 			unsigned int gup_flags, struct page **pages);
2518 void folio_add_pin(struct folio *folio);
2519 
2520 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2521 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2522 			struct task_struct *task, bool bypass_rlim);
2523 
2524 struct kvec;
2525 struct page *get_dump_page(unsigned long addr);
2526 
2527 bool folio_mark_dirty(struct folio *folio);
2528 bool set_page_dirty(struct page *page);
2529 int set_page_dirty_lock(struct page *page);
2530 
2531 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2532 
2533 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2534 		unsigned long old_addr, struct vm_area_struct *new_vma,
2535 		unsigned long new_addr, unsigned long len,
2536 		bool need_rmap_locks, bool for_stack);
2537 
2538 /*
2539  * Flags used by change_protection().  For now we make it a bitmap so
2540  * that we can pass in multiple flags just like parameters.  However
2541  * for now all the callers are only use one of the flags at the same
2542  * time.
2543  */
2544 /*
2545  * Whether we should manually check if we can map individual PTEs writable,
2546  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2547  * PTEs automatically in a writable mapping.
2548  */
2549 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2550 /* Whether this protection change is for NUMA hints */
2551 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2552 /* Whether this change is for write protecting */
2553 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2554 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2555 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2556 					    MM_CP_UFFD_WP_RESOLVE)
2557 
2558 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2559 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2560 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2561 {
2562 	/*
2563 	 * We want to check manually if we can change individual PTEs writable
2564 	 * if we can't do that automatically for all PTEs in a mapping. For
2565 	 * private mappings, that's always the case when we have write
2566 	 * permissions as we properly have to handle COW.
2567 	 */
2568 	if (vma->vm_flags & VM_SHARED)
2569 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2570 	return !!(vma->vm_flags & VM_WRITE);
2571 
2572 }
2573 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2574 			     pte_t pte);
2575 extern long change_protection(struct mmu_gather *tlb,
2576 			      struct vm_area_struct *vma, unsigned long start,
2577 			      unsigned long end, unsigned long cp_flags);
2578 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2579 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2580 	  unsigned long start, unsigned long end, unsigned long newflags);
2581 
2582 /*
2583  * doesn't attempt to fault and will return short.
2584  */
2585 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2586 			     unsigned int gup_flags, struct page **pages);
2587 
2588 static inline bool get_user_page_fast_only(unsigned long addr,
2589 			unsigned int gup_flags, struct page **pagep)
2590 {
2591 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2592 }
2593 /*
2594  * per-process(per-mm_struct) statistics.
2595  */
2596 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2597 {
2598 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2599 }
2600 
2601 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2602 
2603 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2604 {
2605 	percpu_counter_add(&mm->rss_stat[member], value);
2606 
2607 	mm_trace_rss_stat(mm, member);
2608 }
2609 
2610 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2611 {
2612 	percpu_counter_inc(&mm->rss_stat[member]);
2613 
2614 	mm_trace_rss_stat(mm, member);
2615 }
2616 
2617 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2618 {
2619 	percpu_counter_dec(&mm->rss_stat[member]);
2620 
2621 	mm_trace_rss_stat(mm, member);
2622 }
2623 
2624 /* Optimized variant when folio is already known not to be anon */
2625 static inline int mm_counter_file(struct folio *folio)
2626 {
2627 	if (folio_test_swapbacked(folio))
2628 		return MM_SHMEMPAGES;
2629 	return MM_FILEPAGES;
2630 }
2631 
2632 static inline int mm_counter(struct folio *folio)
2633 {
2634 	if (folio_test_anon(folio))
2635 		return MM_ANONPAGES;
2636 	return mm_counter_file(folio);
2637 }
2638 
2639 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2640 {
2641 	return get_mm_counter(mm, MM_FILEPAGES) +
2642 		get_mm_counter(mm, MM_ANONPAGES) +
2643 		get_mm_counter(mm, MM_SHMEMPAGES);
2644 }
2645 
2646 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2647 {
2648 	return max(mm->hiwater_rss, get_mm_rss(mm));
2649 }
2650 
2651 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2652 {
2653 	return max(mm->hiwater_vm, mm->total_vm);
2654 }
2655 
2656 static inline void update_hiwater_rss(struct mm_struct *mm)
2657 {
2658 	unsigned long _rss = get_mm_rss(mm);
2659 
2660 	if ((mm)->hiwater_rss < _rss)
2661 		(mm)->hiwater_rss = _rss;
2662 }
2663 
2664 static inline void update_hiwater_vm(struct mm_struct *mm)
2665 {
2666 	if (mm->hiwater_vm < mm->total_vm)
2667 		mm->hiwater_vm = mm->total_vm;
2668 }
2669 
2670 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2671 {
2672 	mm->hiwater_rss = get_mm_rss(mm);
2673 }
2674 
2675 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2676 					 struct mm_struct *mm)
2677 {
2678 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2679 
2680 	if (*maxrss < hiwater_rss)
2681 		*maxrss = hiwater_rss;
2682 }
2683 
2684 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2685 static inline int pte_special(pte_t pte)
2686 {
2687 	return 0;
2688 }
2689 
2690 static inline pte_t pte_mkspecial(pte_t pte)
2691 {
2692 	return pte;
2693 }
2694 #endif
2695 
2696 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2697 static inline int pte_devmap(pte_t pte)
2698 {
2699 	return 0;
2700 }
2701 #endif
2702 
2703 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2704 			       spinlock_t **ptl);
2705 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2706 				    spinlock_t **ptl)
2707 {
2708 	pte_t *ptep;
2709 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2710 	return ptep;
2711 }
2712 
2713 #ifdef __PAGETABLE_P4D_FOLDED
2714 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2715 						unsigned long address)
2716 {
2717 	return 0;
2718 }
2719 #else
2720 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2721 #endif
2722 
2723 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2724 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2725 						unsigned long address)
2726 {
2727 	return 0;
2728 }
2729 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2730 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2731 
2732 #else
2733 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2734 
2735 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2736 {
2737 	if (mm_pud_folded(mm))
2738 		return;
2739 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2740 }
2741 
2742 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2743 {
2744 	if (mm_pud_folded(mm))
2745 		return;
2746 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2747 }
2748 #endif
2749 
2750 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2751 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2752 						unsigned long address)
2753 {
2754 	return 0;
2755 }
2756 
2757 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2758 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2759 
2760 #else
2761 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2762 
2763 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2764 {
2765 	if (mm_pmd_folded(mm))
2766 		return;
2767 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2768 }
2769 
2770 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2771 {
2772 	if (mm_pmd_folded(mm))
2773 		return;
2774 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2775 }
2776 #endif
2777 
2778 #ifdef CONFIG_MMU
2779 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2780 {
2781 	atomic_long_set(&mm->pgtables_bytes, 0);
2782 }
2783 
2784 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2785 {
2786 	return atomic_long_read(&mm->pgtables_bytes);
2787 }
2788 
2789 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2790 {
2791 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2792 }
2793 
2794 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2795 {
2796 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2797 }
2798 #else
2799 
2800 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2801 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2802 {
2803 	return 0;
2804 }
2805 
2806 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2807 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2808 #endif
2809 
2810 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2811 int __pte_alloc_kernel(pmd_t *pmd);
2812 
2813 #if defined(CONFIG_MMU)
2814 
2815 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2816 		unsigned long address)
2817 {
2818 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2819 		NULL : p4d_offset(pgd, address);
2820 }
2821 
2822 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2823 		unsigned long address)
2824 {
2825 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2826 		NULL : pud_offset(p4d, address);
2827 }
2828 
2829 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2830 {
2831 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2832 		NULL: pmd_offset(pud, address);
2833 }
2834 #endif /* CONFIG_MMU */
2835 
2836 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2837 {
2838 	return page_ptdesc(virt_to_page(x));
2839 }
2840 
2841 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2842 {
2843 	return page_to_virt(ptdesc_page(pt));
2844 }
2845 
2846 static inline void *ptdesc_address(const struct ptdesc *pt)
2847 {
2848 	return folio_address(ptdesc_folio(pt));
2849 }
2850 
2851 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2852 {
2853 	return folio_test_reserved(ptdesc_folio(pt));
2854 }
2855 
2856 /**
2857  * pagetable_alloc - Allocate pagetables
2858  * @gfp:    GFP flags
2859  * @order:  desired pagetable order
2860  *
2861  * pagetable_alloc allocates memory for page tables as well as a page table
2862  * descriptor to describe that memory.
2863  *
2864  * Return: The ptdesc describing the allocated page tables.
2865  */
2866 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2867 {
2868 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2869 
2870 	return page_ptdesc(page);
2871 }
2872 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2873 
2874 /**
2875  * pagetable_free - Free pagetables
2876  * @pt:	The page table descriptor
2877  *
2878  * pagetable_free frees the memory of all page tables described by a page
2879  * table descriptor and the memory for the descriptor itself.
2880  */
2881 static inline void pagetable_free(struct ptdesc *pt)
2882 {
2883 	struct page *page = ptdesc_page(pt);
2884 
2885 	__free_pages(page, compound_order(page));
2886 }
2887 
2888 #if USE_SPLIT_PTE_PTLOCKS
2889 #if ALLOC_SPLIT_PTLOCKS
2890 void __init ptlock_cache_init(void);
2891 bool ptlock_alloc(struct ptdesc *ptdesc);
2892 void ptlock_free(struct ptdesc *ptdesc);
2893 
2894 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2895 {
2896 	return ptdesc->ptl;
2897 }
2898 #else /* ALLOC_SPLIT_PTLOCKS */
2899 static inline void ptlock_cache_init(void)
2900 {
2901 }
2902 
2903 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2904 {
2905 	return true;
2906 }
2907 
2908 static inline void ptlock_free(struct ptdesc *ptdesc)
2909 {
2910 }
2911 
2912 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2913 {
2914 	return &ptdesc->ptl;
2915 }
2916 #endif /* ALLOC_SPLIT_PTLOCKS */
2917 
2918 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2919 {
2920 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2921 }
2922 
2923 static inline bool ptlock_init(struct ptdesc *ptdesc)
2924 {
2925 	/*
2926 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2927 	 * with 0. Make sure nobody took it in use in between.
2928 	 *
2929 	 * It can happen if arch try to use slab for page table allocation:
2930 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2931 	 */
2932 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2933 	if (!ptlock_alloc(ptdesc))
2934 		return false;
2935 	spin_lock_init(ptlock_ptr(ptdesc));
2936 	return true;
2937 }
2938 
2939 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2940 /*
2941  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2942  */
2943 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2944 {
2945 	return &mm->page_table_lock;
2946 }
2947 static inline void ptlock_cache_init(void) {}
2948 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2949 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2950 #endif /* USE_SPLIT_PTE_PTLOCKS */
2951 
2952 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2953 {
2954 	struct folio *folio = ptdesc_folio(ptdesc);
2955 
2956 	if (!ptlock_init(ptdesc))
2957 		return false;
2958 	__folio_set_pgtable(folio);
2959 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
2960 	return true;
2961 }
2962 
2963 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
2964 {
2965 	struct folio *folio = ptdesc_folio(ptdesc);
2966 
2967 	ptlock_free(ptdesc);
2968 	__folio_clear_pgtable(folio);
2969 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
2970 }
2971 
2972 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
2973 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
2974 {
2975 	return __pte_offset_map(pmd, addr, NULL);
2976 }
2977 
2978 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2979 			unsigned long addr, spinlock_t **ptlp);
2980 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
2981 			unsigned long addr, spinlock_t **ptlp)
2982 {
2983 	pte_t *pte;
2984 
2985 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
2986 	return pte;
2987 }
2988 
2989 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
2990 			unsigned long addr, spinlock_t **ptlp);
2991 
2992 #define pte_unmap_unlock(pte, ptl)	do {		\
2993 	spin_unlock(ptl);				\
2994 	pte_unmap(pte);					\
2995 } while (0)
2996 
2997 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2998 
2999 #define pte_alloc_map(mm, pmd, address)			\
3000 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3001 
3002 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3003 	(pte_alloc(mm, pmd) ?			\
3004 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3005 
3006 #define pte_alloc_kernel(pmd, address)			\
3007 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3008 		NULL: pte_offset_kernel(pmd, address))
3009 
3010 #if USE_SPLIT_PMD_PTLOCKS
3011 
3012 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3013 {
3014 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3015 	return virt_to_page((void *)((unsigned long) pmd & mask));
3016 }
3017 
3018 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3019 {
3020 	return page_ptdesc(pmd_pgtable_page(pmd));
3021 }
3022 
3023 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3024 {
3025 	return ptlock_ptr(pmd_ptdesc(pmd));
3026 }
3027 
3028 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3029 {
3030 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3031 	ptdesc->pmd_huge_pte = NULL;
3032 #endif
3033 	return ptlock_init(ptdesc);
3034 }
3035 
3036 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3037 {
3038 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3039 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3040 #endif
3041 	ptlock_free(ptdesc);
3042 }
3043 
3044 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3045 
3046 #else
3047 
3048 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3049 {
3050 	return &mm->page_table_lock;
3051 }
3052 
3053 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3054 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3055 
3056 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3057 
3058 #endif
3059 
3060 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3061 {
3062 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3063 	spin_lock(ptl);
3064 	return ptl;
3065 }
3066 
3067 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3068 {
3069 	struct folio *folio = ptdesc_folio(ptdesc);
3070 
3071 	if (!pmd_ptlock_init(ptdesc))
3072 		return false;
3073 	__folio_set_pgtable(folio);
3074 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3075 	return true;
3076 }
3077 
3078 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3079 {
3080 	struct folio *folio = ptdesc_folio(ptdesc);
3081 
3082 	pmd_ptlock_free(ptdesc);
3083 	__folio_clear_pgtable(folio);
3084 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3085 }
3086 
3087 /*
3088  * No scalability reason to split PUD locks yet, but follow the same pattern
3089  * as the PMD locks to make it easier if we decide to.  The VM should not be
3090  * considered ready to switch to split PUD locks yet; there may be places
3091  * which need to be converted from page_table_lock.
3092  */
3093 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3094 {
3095 	return &mm->page_table_lock;
3096 }
3097 
3098 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3099 {
3100 	spinlock_t *ptl = pud_lockptr(mm, pud);
3101 
3102 	spin_lock(ptl);
3103 	return ptl;
3104 }
3105 
3106 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3107 {
3108 	struct folio *folio = ptdesc_folio(ptdesc);
3109 
3110 	__folio_set_pgtable(folio);
3111 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3112 }
3113 
3114 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3115 {
3116 	struct folio *folio = ptdesc_folio(ptdesc);
3117 
3118 	__folio_clear_pgtable(folio);
3119 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3120 }
3121 
3122 extern void __init pagecache_init(void);
3123 extern void free_initmem(void);
3124 
3125 /*
3126  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3127  * into the buddy system. The freed pages will be poisoned with pattern
3128  * "poison" if it's within range [0, UCHAR_MAX].
3129  * Return pages freed into the buddy system.
3130  */
3131 extern unsigned long free_reserved_area(void *start, void *end,
3132 					int poison, const char *s);
3133 
3134 extern void adjust_managed_page_count(struct page *page, long count);
3135 
3136 extern void reserve_bootmem_region(phys_addr_t start,
3137 				   phys_addr_t end, int nid);
3138 
3139 /* Free the reserved page into the buddy system, so it gets managed. */
3140 void free_reserved_page(struct page *page);
3141 #define free_highmem_page(page) free_reserved_page(page)
3142 
3143 static inline void mark_page_reserved(struct page *page)
3144 {
3145 	SetPageReserved(page);
3146 	adjust_managed_page_count(page, -1);
3147 }
3148 
3149 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3150 {
3151 	free_reserved_page(ptdesc_page(pt));
3152 }
3153 
3154 /*
3155  * Default method to free all the __init memory into the buddy system.
3156  * The freed pages will be poisoned with pattern "poison" if it's within
3157  * range [0, UCHAR_MAX].
3158  * Return pages freed into the buddy system.
3159  */
3160 static inline unsigned long free_initmem_default(int poison)
3161 {
3162 	extern char __init_begin[], __init_end[];
3163 
3164 	return free_reserved_area(&__init_begin, &__init_end,
3165 				  poison, "unused kernel image (initmem)");
3166 }
3167 
3168 static inline unsigned long get_num_physpages(void)
3169 {
3170 	int nid;
3171 	unsigned long phys_pages = 0;
3172 
3173 	for_each_online_node(nid)
3174 		phys_pages += node_present_pages(nid);
3175 
3176 	return phys_pages;
3177 }
3178 
3179 /*
3180  * Using memblock node mappings, an architecture may initialise its
3181  * zones, allocate the backing mem_map and account for memory holes in an
3182  * architecture independent manner.
3183  *
3184  * An architecture is expected to register range of page frames backed by
3185  * physical memory with memblock_add[_node]() before calling
3186  * free_area_init() passing in the PFN each zone ends at. At a basic
3187  * usage, an architecture is expected to do something like
3188  *
3189  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3190  * 							 max_highmem_pfn};
3191  * for_each_valid_physical_page_range()
3192  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3193  * free_area_init(max_zone_pfns);
3194  */
3195 void free_area_init(unsigned long *max_zone_pfn);
3196 unsigned long node_map_pfn_alignment(void);
3197 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3198 						unsigned long end_pfn);
3199 extern void get_pfn_range_for_nid(unsigned int nid,
3200 			unsigned long *start_pfn, unsigned long *end_pfn);
3201 
3202 #ifndef CONFIG_NUMA
3203 static inline int early_pfn_to_nid(unsigned long pfn)
3204 {
3205 	return 0;
3206 }
3207 #else
3208 /* please see mm/page_alloc.c */
3209 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3210 #endif
3211 
3212 extern void mem_init(void);
3213 extern void __init mmap_init(void);
3214 
3215 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3216 static inline void show_mem(void)
3217 {
3218 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3219 }
3220 extern long si_mem_available(void);
3221 extern void si_meminfo(struct sysinfo * val);
3222 extern void si_meminfo_node(struct sysinfo *val, int nid);
3223 
3224 extern __printf(3, 4)
3225 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3226 
3227 extern void setup_per_cpu_pageset(void);
3228 
3229 /* nommu.c */
3230 extern atomic_long_t mmap_pages_allocated;
3231 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3232 
3233 /* interval_tree.c */
3234 void vma_interval_tree_insert(struct vm_area_struct *node,
3235 			      struct rb_root_cached *root);
3236 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3237 				    struct vm_area_struct *prev,
3238 				    struct rb_root_cached *root);
3239 void vma_interval_tree_remove(struct vm_area_struct *node,
3240 			      struct rb_root_cached *root);
3241 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3242 				unsigned long start, unsigned long last);
3243 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3244 				unsigned long start, unsigned long last);
3245 
3246 #define vma_interval_tree_foreach(vma, root, start, last)		\
3247 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3248 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3249 
3250 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3251 				   struct rb_root_cached *root);
3252 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3253 				   struct rb_root_cached *root);
3254 struct anon_vma_chain *
3255 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3256 				  unsigned long start, unsigned long last);
3257 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3258 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3259 #ifdef CONFIG_DEBUG_VM_RB
3260 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3261 #endif
3262 
3263 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3264 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3265 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3266 
3267 /* mmap.c */
3268 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3269 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3270 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3271 		      struct vm_area_struct *next);
3272 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3273 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3274 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3275 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3276 extern void unlink_file_vma(struct vm_area_struct *);
3277 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3278 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3279 	bool *need_rmap_locks);
3280 extern void exit_mmap(struct mm_struct *);
3281 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3282 				  struct vm_area_struct *prev,
3283 				  struct vm_area_struct *vma,
3284 				  unsigned long start, unsigned long end,
3285 				  unsigned long vm_flags,
3286 				  struct mempolicy *policy,
3287 				  struct vm_userfaultfd_ctx uffd_ctx,
3288 				  struct anon_vma_name *anon_name);
3289 
3290 /* We are about to modify the VMA's flags. */
3291 static inline struct vm_area_struct
3292 *vma_modify_flags(struct vma_iterator *vmi,
3293 		  struct vm_area_struct *prev,
3294 		  struct vm_area_struct *vma,
3295 		  unsigned long start, unsigned long end,
3296 		  unsigned long new_flags)
3297 {
3298 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3299 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3300 			  anon_vma_name(vma));
3301 }
3302 
3303 /* We are about to modify the VMA's flags and/or anon_name. */
3304 static inline struct vm_area_struct
3305 *vma_modify_flags_name(struct vma_iterator *vmi,
3306 		       struct vm_area_struct *prev,
3307 		       struct vm_area_struct *vma,
3308 		       unsigned long start,
3309 		       unsigned long end,
3310 		       unsigned long new_flags,
3311 		       struct anon_vma_name *new_name)
3312 {
3313 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3314 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3315 }
3316 
3317 /* We are about to modify the VMA's memory policy. */
3318 static inline struct vm_area_struct
3319 *vma_modify_policy(struct vma_iterator *vmi,
3320 		   struct vm_area_struct *prev,
3321 		   struct vm_area_struct *vma,
3322 		   unsigned long start, unsigned long end,
3323 		   struct mempolicy *new_pol)
3324 {
3325 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3326 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3327 }
3328 
3329 /* We are about to modify the VMA's flags and/or uffd context. */
3330 static inline struct vm_area_struct
3331 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3332 		       struct vm_area_struct *prev,
3333 		       struct vm_area_struct *vma,
3334 		       unsigned long start, unsigned long end,
3335 		       unsigned long new_flags,
3336 		       struct vm_userfaultfd_ctx new_ctx)
3337 {
3338 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3339 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3340 }
3341 
3342 static inline int check_data_rlimit(unsigned long rlim,
3343 				    unsigned long new,
3344 				    unsigned long start,
3345 				    unsigned long end_data,
3346 				    unsigned long start_data)
3347 {
3348 	if (rlim < RLIM_INFINITY) {
3349 		if (((new - start) + (end_data - start_data)) > rlim)
3350 			return -ENOSPC;
3351 	}
3352 
3353 	return 0;
3354 }
3355 
3356 extern int mm_take_all_locks(struct mm_struct *mm);
3357 extern void mm_drop_all_locks(struct mm_struct *mm);
3358 
3359 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3360 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3361 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3362 extern struct file *get_task_exe_file(struct task_struct *task);
3363 
3364 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3365 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3366 
3367 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3368 				   const struct vm_special_mapping *sm);
3369 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3370 				   unsigned long addr, unsigned long len,
3371 				   unsigned long flags,
3372 				   const struct vm_special_mapping *spec);
3373 /* This is an obsolete alternative to _install_special_mapping. */
3374 extern int install_special_mapping(struct mm_struct *mm,
3375 				   unsigned long addr, unsigned long len,
3376 				   unsigned long flags, struct page **pages);
3377 
3378 unsigned long randomize_stack_top(unsigned long stack_top);
3379 unsigned long randomize_page(unsigned long start, unsigned long range);
3380 
3381 unsigned long
3382 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3383 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3384 
3385 static inline unsigned long
3386 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3387 		  unsigned long pgoff, unsigned long flags)
3388 {
3389 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3390 }
3391 
3392 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3393 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3394 	struct list_head *uf);
3395 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3396 	unsigned long len, unsigned long prot, unsigned long flags,
3397 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3398 	struct list_head *uf);
3399 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3400 			 unsigned long start, size_t len, struct list_head *uf,
3401 			 bool unlock);
3402 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3403 		     struct list_head *uf);
3404 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3405 
3406 #ifdef CONFIG_MMU
3407 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3408 			 unsigned long start, unsigned long end,
3409 			 struct list_head *uf, bool unlock);
3410 extern int __mm_populate(unsigned long addr, unsigned long len,
3411 			 int ignore_errors);
3412 static inline void mm_populate(unsigned long addr, unsigned long len)
3413 {
3414 	/* Ignore errors */
3415 	(void) __mm_populate(addr, len, 1);
3416 }
3417 #else
3418 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3419 #endif
3420 
3421 /* This takes the mm semaphore itself */
3422 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3423 extern int vm_munmap(unsigned long, size_t);
3424 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3425         unsigned long, unsigned long,
3426         unsigned long, unsigned long);
3427 
3428 struct vm_unmapped_area_info {
3429 #define VM_UNMAPPED_AREA_TOPDOWN 1
3430 	unsigned long flags;
3431 	unsigned long length;
3432 	unsigned long low_limit;
3433 	unsigned long high_limit;
3434 	unsigned long align_mask;
3435 	unsigned long align_offset;
3436 	unsigned long start_gap;
3437 };
3438 
3439 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3440 
3441 /* truncate.c */
3442 extern void truncate_inode_pages(struct address_space *, loff_t);
3443 extern void truncate_inode_pages_range(struct address_space *,
3444 				       loff_t lstart, loff_t lend);
3445 extern void truncate_inode_pages_final(struct address_space *);
3446 
3447 /* generic vm_area_ops exported for stackable file systems */
3448 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3449 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3450 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3451 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3452 
3453 extern unsigned long stack_guard_gap;
3454 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3455 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3456 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3457 
3458 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3459 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3460 
3461 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3462 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3463 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3464 					     struct vm_area_struct **pprev);
3465 
3466 /*
3467  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3468  * NULL if none.  Assume start_addr < end_addr.
3469  */
3470 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3471 			unsigned long start_addr, unsigned long end_addr);
3472 
3473 /**
3474  * vma_lookup() - Find a VMA at a specific address
3475  * @mm: The process address space.
3476  * @addr: The user address.
3477  *
3478  * Return: The vm_area_struct at the given address, %NULL otherwise.
3479  */
3480 static inline
3481 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3482 {
3483 	return mtree_load(&mm->mm_mt, addr);
3484 }
3485 
3486 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3487 {
3488 	if (vma->vm_flags & VM_GROWSDOWN)
3489 		return stack_guard_gap;
3490 
3491 	/* See reasoning around the VM_SHADOW_STACK definition */
3492 	if (vma->vm_flags & VM_SHADOW_STACK)
3493 		return PAGE_SIZE;
3494 
3495 	return 0;
3496 }
3497 
3498 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3499 {
3500 	unsigned long gap = stack_guard_start_gap(vma);
3501 	unsigned long vm_start = vma->vm_start;
3502 
3503 	vm_start -= gap;
3504 	if (vm_start > vma->vm_start)
3505 		vm_start = 0;
3506 	return vm_start;
3507 }
3508 
3509 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3510 {
3511 	unsigned long vm_end = vma->vm_end;
3512 
3513 	if (vma->vm_flags & VM_GROWSUP) {
3514 		vm_end += stack_guard_gap;
3515 		if (vm_end < vma->vm_end)
3516 			vm_end = -PAGE_SIZE;
3517 	}
3518 	return vm_end;
3519 }
3520 
3521 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3522 {
3523 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3524 }
3525 
3526 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3527 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3528 				unsigned long vm_start, unsigned long vm_end)
3529 {
3530 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3531 
3532 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3533 		vma = NULL;
3534 
3535 	return vma;
3536 }
3537 
3538 static inline bool range_in_vma(struct vm_area_struct *vma,
3539 				unsigned long start, unsigned long end)
3540 {
3541 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3542 }
3543 
3544 #ifdef CONFIG_MMU
3545 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3546 void vma_set_page_prot(struct vm_area_struct *vma);
3547 #else
3548 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3549 {
3550 	return __pgprot(0);
3551 }
3552 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3553 {
3554 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3555 }
3556 #endif
3557 
3558 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3559 
3560 #ifdef CONFIG_NUMA_BALANCING
3561 unsigned long change_prot_numa(struct vm_area_struct *vma,
3562 			unsigned long start, unsigned long end);
3563 #endif
3564 
3565 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3566 		unsigned long addr);
3567 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3568 			unsigned long pfn, unsigned long size, pgprot_t);
3569 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3570 		unsigned long pfn, unsigned long size, pgprot_t prot);
3571 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3572 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3573 			struct page **pages, unsigned long *num);
3574 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3575 				unsigned long num);
3576 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3577 				unsigned long num);
3578 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3579 			unsigned long pfn);
3580 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3581 			unsigned long pfn, pgprot_t pgprot);
3582 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3583 			pfn_t pfn);
3584 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3585 		unsigned long addr, pfn_t pfn);
3586 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3587 
3588 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3589 				unsigned long addr, struct page *page)
3590 {
3591 	int err = vm_insert_page(vma, addr, page);
3592 
3593 	if (err == -ENOMEM)
3594 		return VM_FAULT_OOM;
3595 	if (err < 0 && err != -EBUSY)
3596 		return VM_FAULT_SIGBUS;
3597 
3598 	return VM_FAULT_NOPAGE;
3599 }
3600 
3601 #ifndef io_remap_pfn_range
3602 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3603 				     unsigned long addr, unsigned long pfn,
3604 				     unsigned long size, pgprot_t prot)
3605 {
3606 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3607 }
3608 #endif
3609 
3610 static inline vm_fault_t vmf_error(int err)
3611 {
3612 	if (err == -ENOMEM)
3613 		return VM_FAULT_OOM;
3614 	else if (err == -EHWPOISON)
3615 		return VM_FAULT_HWPOISON;
3616 	return VM_FAULT_SIGBUS;
3617 }
3618 
3619 /*
3620  * Convert errno to return value for ->page_mkwrite() calls.
3621  *
3622  * This should eventually be merged with vmf_error() above, but will need a
3623  * careful audit of all vmf_error() callers.
3624  */
3625 static inline vm_fault_t vmf_fs_error(int err)
3626 {
3627 	if (err == 0)
3628 		return VM_FAULT_LOCKED;
3629 	if (err == -EFAULT || err == -EAGAIN)
3630 		return VM_FAULT_NOPAGE;
3631 	if (err == -ENOMEM)
3632 		return VM_FAULT_OOM;
3633 	/* -ENOSPC, -EDQUOT, -EIO ... */
3634 	return VM_FAULT_SIGBUS;
3635 }
3636 
3637 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3638 			 unsigned int foll_flags);
3639 
3640 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3641 {
3642 	if (vm_fault & VM_FAULT_OOM)
3643 		return -ENOMEM;
3644 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3645 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3646 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3647 		return -EFAULT;
3648 	return 0;
3649 }
3650 
3651 /*
3652  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3653  * a (NUMA hinting) fault is required.
3654  */
3655 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3656 					   unsigned int flags)
3657 {
3658 	/*
3659 	 * If callers don't want to honor NUMA hinting faults, no need to
3660 	 * determine if we would actually have to trigger a NUMA hinting fault.
3661 	 */
3662 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3663 		return true;
3664 
3665 	/*
3666 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3667 	 *
3668 	 * Requiring a fault here even for inaccessible VMAs would mean that
3669 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3670 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3671 	 */
3672 	return !vma_is_accessible(vma);
3673 }
3674 
3675 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3676 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3677 			       unsigned long size, pte_fn_t fn, void *data);
3678 extern int apply_to_existing_page_range(struct mm_struct *mm,
3679 				   unsigned long address, unsigned long size,
3680 				   pte_fn_t fn, void *data);
3681 
3682 #ifdef CONFIG_PAGE_POISONING
3683 extern void __kernel_poison_pages(struct page *page, int numpages);
3684 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3685 extern bool _page_poisoning_enabled_early;
3686 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3687 static inline bool page_poisoning_enabled(void)
3688 {
3689 	return _page_poisoning_enabled_early;
3690 }
3691 /*
3692  * For use in fast paths after init_mem_debugging() has run, or when a
3693  * false negative result is not harmful when called too early.
3694  */
3695 static inline bool page_poisoning_enabled_static(void)
3696 {
3697 	return static_branch_unlikely(&_page_poisoning_enabled);
3698 }
3699 static inline void kernel_poison_pages(struct page *page, int numpages)
3700 {
3701 	if (page_poisoning_enabled_static())
3702 		__kernel_poison_pages(page, numpages);
3703 }
3704 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3705 {
3706 	if (page_poisoning_enabled_static())
3707 		__kernel_unpoison_pages(page, numpages);
3708 }
3709 #else
3710 static inline bool page_poisoning_enabled(void) { return false; }
3711 static inline bool page_poisoning_enabled_static(void) { return false; }
3712 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3713 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3714 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3715 #endif
3716 
3717 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3718 static inline bool want_init_on_alloc(gfp_t flags)
3719 {
3720 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3721 				&init_on_alloc))
3722 		return true;
3723 	return flags & __GFP_ZERO;
3724 }
3725 
3726 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3727 static inline bool want_init_on_free(void)
3728 {
3729 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3730 				   &init_on_free);
3731 }
3732 
3733 extern bool _debug_pagealloc_enabled_early;
3734 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3735 
3736 static inline bool debug_pagealloc_enabled(void)
3737 {
3738 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3739 		_debug_pagealloc_enabled_early;
3740 }
3741 
3742 /*
3743  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3744  * or when a false negative result is not harmful when called too early.
3745  */
3746 static inline bool debug_pagealloc_enabled_static(void)
3747 {
3748 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3749 		return false;
3750 
3751 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3752 }
3753 
3754 /*
3755  * To support DEBUG_PAGEALLOC architecture must ensure that
3756  * __kernel_map_pages() never fails
3757  */
3758 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3759 #ifdef CONFIG_DEBUG_PAGEALLOC
3760 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3761 {
3762 	if (debug_pagealloc_enabled_static())
3763 		__kernel_map_pages(page, numpages, 1);
3764 }
3765 
3766 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3767 {
3768 	if (debug_pagealloc_enabled_static())
3769 		__kernel_map_pages(page, numpages, 0);
3770 }
3771 
3772 extern unsigned int _debug_guardpage_minorder;
3773 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3774 
3775 static inline unsigned int debug_guardpage_minorder(void)
3776 {
3777 	return _debug_guardpage_minorder;
3778 }
3779 
3780 static inline bool debug_guardpage_enabled(void)
3781 {
3782 	return static_branch_unlikely(&_debug_guardpage_enabled);
3783 }
3784 
3785 static inline bool page_is_guard(struct page *page)
3786 {
3787 	if (!debug_guardpage_enabled())
3788 		return false;
3789 
3790 	return PageGuard(page);
3791 }
3792 
3793 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3794 static inline bool set_page_guard(struct zone *zone, struct page *page,
3795 				  unsigned int order)
3796 {
3797 	if (!debug_guardpage_enabled())
3798 		return false;
3799 	return __set_page_guard(zone, page, order);
3800 }
3801 
3802 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3803 static inline void clear_page_guard(struct zone *zone, struct page *page,
3804 				    unsigned int order)
3805 {
3806 	if (!debug_guardpage_enabled())
3807 		return;
3808 	__clear_page_guard(zone, page, order);
3809 }
3810 
3811 #else	/* CONFIG_DEBUG_PAGEALLOC */
3812 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3813 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3814 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3815 static inline bool debug_guardpage_enabled(void) { return false; }
3816 static inline bool page_is_guard(struct page *page) { return false; }
3817 static inline bool set_page_guard(struct zone *zone, struct page *page,
3818 			unsigned int order) { return false; }
3819 static inline void clear_page_guard(struct zone *zone, struct page *page,
3820 				unsigned int order) {}
3821 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3822 
3823 #ifdef __HAVE_ARCH_GATE_AREA
3824 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3825 extern int in_gate_area_no_mm(unsigned long addr);
3826 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3827 #else
3828 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3829 {
3830 	return NULL;
3831 }
3832 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3833 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3834 {
3835 	return 0;
3836 }
3837 #endif	/* __HAVE_ARCH_GATE_AREA */
3838 
3839 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3840 
3841 #ifdef CONFIG_SYSCTL
3842 extern int sysctl_drop_caches;
3843 int drop_caches_sysctl_handler(const struct ctl_table *, int, void *, size_t *,
3844 		loff_t *);
3845 #endif
3846 
3847 void drop_slab(void);
3848 
3849 #ifndef CONFIG_MMU
3850 #define randomize_va_space 0
3851 #else
3852 extern int randomize_va_space;
3853 #endif
3854 
3855 const char * arch_vma_name(struct vm_area_struct *vma);
3856 #ifdef CONFIG_MMU
3857 void print_vma_addr(char *prefix, unsigned long rip);
3858 #else
3859 static inline void print_vma_addr(char *prefix, unsigned long rip)
3860 {
3861 }
3862 #endif
3863 
3864 void *sparse_buffer_alloc(unsigned long size);
3865 struct page * __populate_section_memmap(unsigned long pfn,
3866 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3867 		struct dev_pagemap *pgmap);
3868 void pmd_init(void *addr);
3869 void pud_init(void *addr);
3870 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3871 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3872 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3873 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3874 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3875 			    struct vmem_altmap *altmap, struct page *reuse);
3876 void *vmemmap_alloc_block(unsigned long size, int node);
3877 struct vmem_altmap;
3878 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3879 			      struct vmem_altmap *altmap);
3880 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3881 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3882 		     unsigned long addr, unsigned long next);
3883 int vmemmap_check_pmd(pmd_t *pmd, int node,
3884 		      unsigned long addr, unsigned long next);
3885 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3886 			       int node, struct vmem_altmap *altmap);
3887 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3888 			       int node, struct vmem_altmap *altmap);
3889 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3890 		struct vmem_altmap *altmap);
3891 void vmemmap_populate_print_last(void);
3892 #ifdef CONFIG_MEMORY_HOTPLUG
3893 void vmemmap_free(unsigned long start, unsigned long end,
3894 		struct vmem_altmap *altmap);
3895 #endif
3896 
3897 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3898 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3899 {
3900 	/* number of pfns from base where pfn_to_page() is valid */
3901 	if (altmap)
3902 		return altmap->reserve + altmap->free;
3903 	return 0;
3904 }
3905 
3906 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3907 				    unsigned long nr_pfns)
3908 {
3909 	altmap->alloc -= nr_pfns;
3910 }
3911 #else
3912 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3913 {
3914 	return 0;
3915 }
3916 
3917 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3918 				    unsigned long nr_pfns)
3919 {
3920 }
3921 #endif
3922 
3923 #define VMEMMAP_RESERVE_NR	2
3924 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3925 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3926 					  struct dev_pagemap *pgmap)
3927 {
3928 	unsigned long nr_pages;
3929 	unsigned long nr_vmemmap_pages;
3930 
3931 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3932 		return false;
3933 
3934 	nr_pages = pgmap_vmemmap_nr(pgmap);
3935 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3936 	/*
3937 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3938 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
3939 	 */
3940 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
3941 }
3942 /*
3943  * If we don't have an architecture override, use the generic rule
3944  */
3945 #ifndef vmemmap_can_optimize
3946 #define vmemmap_can_optimize __vmemmap_can_optimize
3947 #endif
3948 
3949 #else
3950 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3951 					   struct dev_pagemap *pgmap)
3952 {
3953 	return false;
3954 }
3955 #endif
3956 
3957 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3958 				  unsigned long nr_pages);
3959 
3960 enum mf_flags {
3961 	MF_COUNT_INCREASED = 1 << 0,
3962 	MF_ACTION_REQUIRED = 1 << 1,
3963 	MF_MUST_KILL = 1 << 2,
3964 	MF_SOFT_OFFLINE = 1 << 3,
3965 	MF_UNPOISON = 1 << 4,
3966 	MF_SW_SIMULATED = 1 << 5,
3967 	MF_NO_RETRY = 1 << 6,
3968 	MF_MEM_PRE_REMOVE = 1 << 7,
3969 };
3970 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3971 		      unsigned long count, int mf_flags);
3972 extern int memory_failure(unsigned long pfn, int flags);
3973 extern void memory_failure_queue_kick(int cpu);
3974 extern int unpoison_memory(unsigned long pfn);
3975 extern atomic_long_t num_poisoned_pages __read_mostly;
3976 extern int soft_offline_page(unsigned long pfn, int flags);
3977 #ifdef CONFIG_MEMORY_FAILURE
3978 /*
3979  * Sysfs entries for memory failure handling statistics.
3980  */
3981 extern const struct attribute_group memory_failure_attr_group;
3982 extern void memory_failure_queue(unsigned long pfn, int flags);
3983 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3984 					bool *migratable_cleared);
3985 void num_poisoned_pages_inc(unsigned long pfn);
3986 void num_poisoned_pages_sub(unsigned long pfn, long i);
3987 #else
3988 static inline void memory_failure_queue(unsigned long pfn, int flags)
3989 {
3990 }
3991 
3992 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3993 					bool *migratable_cleared)
3994 {
3995 	return 0;
3996 }
3997 
3998 static inline void num_poisoned_pages_inc(unsigned long pfn)
3999 {
4000 }
4001 
4002 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4003 {
4004 }
4005 #endif
4006 
4007 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4008 extern void memblk_nr_poison_inc(unsigned long pfn);
4009 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4010 #else
4011 static inline void memblk_nr_poison_inc(unsigned long pfn)
4012 {
4013 }
4014 
4015 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4016 {
4017 }
4018 #endif
4019 
4020 #ifndef arch_memory_failure
4021 static inline int arch_memory_failure(unsigned long pfn, int flags)
4022 {
4023 	return -ENXIO;
4024 }
4025 #endif
4026 
4027 #ifndef arch_is_platform_page
4028 static inline bool arch_is_platform_page(u64 paddr)
4029 {
4030 	return false;
4031 }
4032 #endif
4033 
4034 /*
4035  * Error handlers for various types of pages.
4036  */
4037 enum mf_result {
4038 	MF_IGNORED,	/* Error: cannot be handled */
4039 	MF_FAILED,	/* Error: handling failed */
4040 	MF_DELAYED,	/* Will be handled later */
4041 	MF_RECOVERED,	/* Successfully recovered */
4042 };
4043 
4044 enum mf_action_page_type {
4045 	MF_MSG_KERNEL,
4046 	MF_MSG_KERNEL_HIGH_ORDER,
4047 	MF_MSG_DIFFERENT_COMPOUND,
4048 	MF_MSG_HUGE,
4049 	MF_MSG_FREE_HUGE,
4050 	MF_MSG_GET_HWPOISON,
4051 	MF_MSG_UNMAP_FAILED,
4052 	MF_MSG_DIRTY_SWAPCACHE,
4053 	MF_MSG_CLEAN_SWAPCACHE,
4054 	MF_MSG_DIRTY_MLOCKED_LRU,
4055 	MF_MSG_CLEAN_MLOCKED_LRU,
4056 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4057 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4058 	MF_MSG_DIRTY_LRU,
4059 	MF_MSG_CLEAN_LRU,
4060 	MF_MSG_TRUNCATED_LRU,
4061 	MF_MSG_BUDDY,
4062 	MF_MSG_DAX,
4063 	MF_MSG_UNSPLIT_THP,
4064 	MF_MSG_ALREADY_POISONED,
4065 	MF_MSG_UNKNOWN,
4066 };
4067 
4068 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4069 void folio_zero_user(struct folio *folio, unsigned long addr_hint);
4070 int copy_user_large_folio(struct folio *dst, struct folio *src,
4071 			  unsigned long addr_hint,
4072 			  struct vm_area_struct *vma);
4073 long copy_folio_from_user(struct folio *dst_folio,
4074 			   const void __user *usr_src,
4075 			   bool allow_pagefault);
4076 
4077 /**
4078  * vma_is_special_huge - Are transhuge page-table entries considered special?
4079  * @vma: Pointer to the struct vm_area_struct to consider
4080  *
4081  * Whether transhuge page-table entries are considered "special" following
4082  * the definition in vm_normal_page().
4083  *
4084  * Return: true if transhuge page-table entries should be considered special,
4085  * false otherwise.
4086  */
4087 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4088 {
4089 	return vma_is_dax(vma) || (vma->vm_file &&
4090 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4091 }
4092 
4093 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4094 
4095 #if MAX_NUMNODES > 1
4096 void __init setup_nr_node_ids(void);
4097 #else
4098 static inline void setup_nr_node_ids(void) {}
4099 #endif
4100 
4101 extern int memcmp_pages(struct page *page1, struct page *page2);
4102 
4103 static inline int pages_identical(struct page *page1, struct page *page2)
4104 {
4105 	return !memcmp_pages(page1, page2);
4106 }
4107 
4108 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4109 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4110 						pgoff_t first_index, pgoff_t nr,
4111 						pgoff_t bitmap_pgoff,
4112 						unsigned long *bitmap,
4113 						pgoff_t *start,
4114 						pgoff_t *end);
4115 
4116 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4117 				      pgoff_t first_index, pgoff_t nr);
4118 #endif
4119 
4120 extern int sysctl_nr_trim_pages;
4121 
4122 #ifdef CONFIG_PRINTK
4123 void mem_dump_obj(void *object);
4124 #else
4125 static inline void mem_dump_obj(void *object) {}
4126 #endif
4127 
4128 /**
4129  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4130  *                    handle them.
4131  * @seals: the seals to check
4132  * @vma: the vma to operate on
4133  *
4134  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4135  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4136  */
4137 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4138 {
4139 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4140 		/*
4141 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4142 		 * write seals are active.
4143 		 */
4144 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4145 			return -EPERM;
4146 
4147 		/*
4148 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4149 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4150 		 * revert protections on such mappings. Do this only for shared
4151 		 * mappings. For private mappings, don't need to mask
4152 		 * VM_MAYWRITE as we still want them to be COW-writable.
4153 		 */
4154 		if (vma->vm_flags & VM_SHARED)
4155 			vm_flags_clear(vma, VM_MAYWRITE);
4156 	}
4157 
4158 	return 0;
4159 }
4160 
4161 #ifdef CONFIG_ANON_VMA_NAME
4162 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4163 			  unsigned long len_in,
4164 			  struct anon_vma_name *anon_name);
4165 #else
4166 static inline int
4167 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4168 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4169 	return 0;
4170 }
4171 #endif
4172 
4173 #ifdef CONFIG_UNACCEPTED_MEMORY
4174 
4175 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4176 void accept_memory(phys_addr_t start, phys_addr_t end);
4177 
4178 #else
4179 
4180 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4181 						    phys_addr_t end)
4182 {
4183 	return false;
4184 }
4185 
4186 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4187 {
4188 }
4189 
4190 #endif
4191 
4192 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4193 {
4194 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4195 
4196 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4197 }
4198 
4199 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4200 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4201 
4202 int reserve_mem_find_by_name(const char *name, phys_addr_t *start, phys_addr_t *size);
4203 
4204 #endif /* _LINUX_MM_H */
4205