xref: /linux-6.15/include/linux/mm.h (revision c074e146)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4 
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/pgalloc_tag.h>
9 #include <linux/bug.h>
10 #include <linux/list.h>
11 #include <linux/mmzone.h>
12 #include <linux/rbtree.h>
13 #include <linux/atomic.h>
14 #include <linux/debug_locks.h>
15 #include <linux/mm_types.h>
16 #include <linux/mmap_lock.h>
17 #include <linux/range.h>
18 #include <linux/pfn.h>
19 #include <linux/percpu-refcount.h>
20 #include <linux/bit_spinlock.h>
21 #include <linux/shrinker.h>
22 #include <linux/resource.h>
23 #include <linux/page_ext.h>
24 #include <linux/err.h>
25 #include <linux/page-flags.h>
26 #include <linux/page_ref.h>
27 #include <linux/overflow.h>
28 #include <linux/sizes.h>
29 #include <linux/sched.h>
30 #include <linux/pgtable.h>
31 #include <linux/kasan.h>
32 #include <linux/memremap.h>
33 #include <linux/slab.h>
34 
35 struct mempolicy;
36 struct anon_vma;
37 struct anon_vma_chain;
38 struct user_struct;
39 struct pt_regs;
40 struct folio_batch;
41 
42 extern int sysctl_page_lock_unfairness;
43 
44 void mm_core_init(void);
45 void init_mm_internals(void);
46 
47 #ifndef CONFIG_NUMA		/* Don't use mapnrs, do it properly */
48 extern unsigned long max_mapnr;
49 
50 static inline void set_max_mapnr(unsigned long limit)
51 {
52 	max_mapnr = limit;
53 }
54 #else
55 static inline void set_max_mapnr(unsigned long limit) { }
56 #endif
57 
58 extern atomic_long_t _totalram_pages;
59 static inline unsigned long totalram_pages(void)
60 {
61 	return (unsigned long)atomic_long_read(&_totalram_pages);
62 }
63 
64 static inline void totalram_pages_inc(void)
65 {
66 	atomic_long_inc(&_totalram_pages);
67 }
68 
69 static inline void totalram_pages_dec(void)
70 {
71 	atomic_long_dec(&_totalram_pages);
72 }
73 
74 static inline void totalram_pages_add(long count)
75 {
76 	atomic_long_add(count, &_totalram_pages);
77 }
78 
79 extern void * high_memory;
80 extern int page_cluster;
81 extern const int page_cluster_max;
82 
83 #ifdef CONFIG_SYSCTL
84 extern int sysctl_legacy_va_layout;
85 #else
86 #define sysctl_legacy_va_layout 0
87 #endif
88 
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
90 extern const int mmap_rnd_bits_min;
91 extern int mmap_rnd_bits_max __ro_after_init;
92 extern int mmap_rnd_bits __read_mostly;
93 #endif
94 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
95 extern const int mmap_rnd_compat_bits_min;
96 extern const int mmap_rnd_compat_bits_max;
97 extern int mmap_rnd_compat_bits __read_mostly;
98 #endif
99 
100 #include <asm/page.h>
101 #include <asm/processor.h>
102 
103 #ifndef __pa_symbol
104 #define __pa_symbol(x)  __pa(RELOC_HIDE((unsigned long)(x), 0))
105 #endif
106 
107 #ifndef page_to_virt
108 #define page_to_virt(x)	__va(PFN_PHYS(page_to_pfn(x)))
109 #endif
110 
111 #ifndef lm_alias
112 #define lm_alias(x)	__va(__pa_symbol(x))
113 #endif
114 
115 /*
116  * To prevent common memory management code establishing
117  * a zero page mapping on a read fault.
118  * This macro should be defined within <asm/pgtable.h>.
119  * s390 does this to prevent multiplexing of hardware bits
120  * related to the physical page in case of virtualization.
121  */
122 #ifndef mm_forbids_zeropage
123 #define mm_forbids_zeropage(X)	(0)
124 #endif
125 
126 /*
127  * On some architectures it is expensive to call memset() for small sizes.
128  * If an architecture decides to implement their own version of
129  * mm_zero_struct_page they should wrap the defines below in a #ifndef and
130  * define their own version of this macro in <asm/pgtable.h>
131  */
132 #if BITS_PER_LONG == 64
133 /* This function must be updated when the size of struct page grows above 96
134  * or reduces below 56. The idea that compiler optimizes out switch()
135  * statement, and only leaves move/store instructions. Also the compiler can
136  * combine write statements if they are both assignments and can be reordered,
137  * this can result in several of the writes here being dropped.
138  */
139 #define	mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
140 static inline void __mm_zero_struct_page(struct page *page)
141 {
142 	unsigned long *_pp = (void *)page;
143 
144 	 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
145 	BUILD_BUG_ON(sizeof(struct page) & 7);
146 	BUILD_BUG_ON(sizeof(struct page) < 56);
147 	BUILD_BUG_ON(sizeof(struct page) > 96);
148 
149 	switch (sizeof(struct page)) {
150 	case 96:
151 		_pp[11] = 0;
152 		fallthrough;
153 	case 88:
154 		_pp[10] = 0;
155 		fallthrough;
156 	case 80:
157 		_pp[9] = 0;
158 		fallthrough;
159 	case 72:
160 		_pp[8] = 0;
161 		fallthrough;
162 	case 64:
163 		_pp[7] = 0;
164 		fallthrough;
165 	case 56:
166 		_pp[6] = 0;
167 		_pp[5] = 0;
168 		_pp[4] = 0;
169 		_pp[3] = 0;
170 		_pp[2] = 0;
171 		_pp[1] = 0;
172 		_pp[0] = 0;
173 	}
174 }
175 #else
176 #define mm_zero_struct_page(pp)  ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178 
179 /*
180  * Default maximum number of active map areas, this limits the number of vmas
181  * per mm struct. Users can overwrite this number by sysctl but there is a
182  * problem.
183  *
184  * When a program's coredump is generated as ELF format, a section is created
185  * per a vma. In ELF, the number of sections is represented in unsigned short.
186  * This means the number of sections should be smaller than 65535 at coredump.
187  * Because the kernel adds some informative sections to a image of program at
188  * generating coredump, we need some margin. The number of extra sections is
189  * 1-3 now and depends on arch. We use "5" as safe margin, here.
190  *
191  * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192  * not a hard limit any more. Although some userspace tools can be surprised by
193  * that.
194  */
195 #define MAPCOUNT_ELF_CORE_MARGIN	(5)
196 #define DEFAULT_MAX_MAP_COUNT	(USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197 
198 extern int sysctl_max_map_count;
199 
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202 
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206 
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 		loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 		loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 		loff_t *);
213 
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p)	(page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p)	((p) - &(folio)->page)
220 #endif
221 
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224 
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227 
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr)	IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230 
231 static inline struct folio *lru_to_folio(struct list_head *head)
232 {
233 	return list_entry((head)->prev, struct folio, lru);
234 }
235 
236 void setup_initial_init_mm(void *start_code, void *end_code,
237 			   void *end_data, void *brk);
238 
239 /*
240  * Linux kernel virtual memory manager primitives.
241  * The idea being to have a "virtual" mm in the same way
242  * we have a virtual fs - giving a cleaner interface to the
243  * mm details, and allowing different kinds of memory mappings
244  * (from shared memory to executable loading to arbitrary
245  * mmap() functions).
246  */
247 
248 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
249 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
250 void vm_area_free(struct vm_area_struct *);
251 /* Use only if VMA has no other users */
252 void __vm_area_free(struct vm_area_struct *vma);
253 
254 #ifndef CONFIG_MMU
255 extern struct rb_root nommu_region_tree;
256 extern struct rw_semaphore nommu_region_sem;
257 
258 extern unsigned int kobjsize(const void *objp);
259 #endif
260 
261 /*
262  * vm_flags in vm_area_struct, see mm_types.h.
263  * When changing, update also include/trace/events/mmflags.h
264  */
265 #define VM_NONE		0x00000000
266 
267 #define VM_READ		0x00000001	/* currently active flags */
268 #define VM_WRITE	0x00000002
269 #define VM_EXEC		0x00000004
270 #define VM_SHARED	0x00000008
271 
272 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
273 #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */
274 #define VM_MAYWRITE	0x00000020
275 #define VM_MAYEXEC	0x00000040
276 #define VM_MAYSHARE	0x00000080
277 
278 #define VM_GROWSDOWN	0x00000100	/* general info on the segment */
279 #ifdef CONFIG_MMU
280 #define VM_UFFD_MISSING	0x00000200	/* missing pages tracking */
281 #else /* CONFIG_MMU */
282 #define VM_MAYOVERLAY	0x00000200	/* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
283 #define VM_UFFD_MISSING	0
284 #endif /* CONFIG_MMU */
285 #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */
286 #define VM_UFFD_WP	0x00001000	/* wrprotect pages tracking */
287 
288 #define VM_LOCKED	0x00002000
289 #define VM_IO           0x00004000	/* Memory mapped I/O or similar */
290 
291 					/* Used by sys_madvise() */
292 #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */
293 #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */
294 
295 #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */
296 #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */
297 #define VM_LOCKONFAULT	0x00080000	/* Lock the pages covered when they are faulted in */
298 #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */
299 #define VM_NORESERVE	0x00200000	/* should the VM suppress accounting */
300 #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */
301 #define VM_SYNC		0x00800000	/* Synchronous page faults */
302 #define VM_ARCH_1	0x01000000	/* Architecture-specific flag */
303 #define VM_WIPEONFORK	0x02000000	/* Wipe VMA contents in child. */
304 #define VM_DONTDUMP	0x04000000	/* Do not include in the core dump */
305 
306 #ifdef CONFIG_MEM_SOFT_DIRTY
307 # define VM_SOFTDIRTY	0x08000000	/* Not soft dirty clean area */
308 #else
309 # define VM_SOFTDIRTY	0
310 #endif
311 
312 #define VM_MIXEDMAP	0x10000000	/* Can contain "struct page" and pure PFN pages */
313 #define VM_HUGEPAGE	0x20000000	/* MADV_HUGEPAGE marked this vma */
314 #define VM_NOHUGEPAGE	0x40000000	/* MADV_NOHUGEPAGE marked this vma */
315 #define VM_MERGEABLE	0x80000000	/* KSM may merge identical pages */
316 
317 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
318 #define VM_HIGH_ARCH_BIT_0	32	/* bit only usable on 64-bit architectures */
319 #define VM_HIGH_ARCH_BIT_1	33	/* bit only usable on 64-bit architectures */
320 #define VM_HIGH_ARCH_BIT_2	34	/* bit only usable on 64-bit architectures */
321 #define VM_HIGH_ARCH_BIT_3	35	/* bit only usable on 64-bit architectures */
322 #define VM_HIGH_ARCH_BIT_4	36	/* bit only usable on 64-bit architectures */
323 #define VM_HIGH_ARCH_BIT_5	37	/* bit only usable on 64-bit architectures */
324 #define VM_HIGH_ARCH_0	BIT(VM_HIGH_ARCH_BIT_0)
325 #define VM_HIGH_ARCH_1	BIT(VM_HIGH_ARCH_BIT_1)
326 #define VM_HIGH_ARCH_2	BIT(VM_HIGH_ARCH_BIT_2)
327 #define VM_HIGH_ARCH_3	BIT(VM_HIGH_ARCH_BIT_3)
328 #define VM_HIGH_ARCH_4	BIT(VM_HIGH_ARCH_BIT_4)
329 #define VM_HIGH_ARCH_5	BIT(VM_HIGH_ARCH_BIT_5)
330 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
331 
332 #ifdef CONFIG_ARCH_HAS_PKEYS
333 # define VM_PKEY_SHIFT	VM_HIGH_ARCH_BIT_0
334 # define VM_PKEY_BIT0	VM_HIGH_ARCH_0	/* A protection key is a 4-bit value */
335 # define VM_PKEY_BIT1	VM_HIGH_ARCH_1	/* on x86 and 5-bit value on ppc64   */
336 # define VM_PKEY_BIT2	VM_HIGH_ARCH_2
337 # define VM_PKEY_BIT3	VM_HIGH_ARCH_3
338 #ifdef CONFIG_PPC
339 # define VM_PKEY_BIT4  VM_HIGH_ARCH_4
340 #else
341 # define VM_PKEY_BIT4  0
342 #endif
343 #endif /* CONFIG_ARCH_HAS_PKEYS */
344 
345 #ifdef CONFIG_X86_USER_SHADOW_STACK
346 /*
347  * VM_SHADOW_STACK should not be set with VM_SHARED because of lack of
348  * support core mm.
349  *
350  * These VMAs will get a single end guard page. This helps userspace protect
351  * itself from attacks. A single page is enough for current shadow stack archs
352  * (x86). See the comments near alloc_shstk() in arch/x86/kernel/shstk.c
353  * for more details on the guard size.
354  */
355 # define VM_SHADOW_STACK	VM_HIGH_ARCH_5
356 #else
357 # define VM_SHADOW_STACK	VM_NONE
358 #endif
359 
360 #if defined(CONFIG_X86)
361 # define VM_PAT		VM_ARCH_1	/* PAT reserves whole VMA at once (x86) */
362 #elif defined(CONFIG_PPC)
363 # define VM_SAO		VM_ARCH_1	/* Strong Access Ordering (powerpc) */
364 #elif defined(CONFIG_PARISC)
365 # define VM_GROWSUP	VM_ARCH_1
366 #elif defined(CONFIG_SPARC64)
367 # define VM_SPARC_ADI	VM_ARCH_1	/* Uses ADI tag for access control */
368 # define VM_ARCH_CLEAR	VM_SPARC_ADI
369 #elif defined(CONFIG_ARM64)
370 # define VM_ARM64_BTI	VM_ARCH_1	/* BTI guarded page, a.k.a. GP bit */
371 # define VM_ARCH_CLEAR	VM_ARM64_BTI
372 #elif !defined(CONFIG_MMU)
373 # define VM_MAPPED_COPY	VM_ARCH_1	/* T if mapped copy of data (nommu mmap) */
374 #endif
375 
376 #if defined(CONFIG_ARM64_MTE)
377 # define VM_MTE		VM_HIGH_ARCH_0	/* Use Tagged memory for access control */
378 # define VM_MTE_ALLOWED	VM_HIGH_ARCH_1	/* Tagged memory permitted */
379 #else
380 # define VM_MTE		VM_NONE
381 # define VM_MTE_ALLOWED	VM_NONE
382 #endif
383 
384 #ifndef VM_GROWSUP
385 # define VM_GROWSUP	VM_NONE
386 #endif
387 
388 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
389 # define VM_UFFD_MINOR_BIT	38
390 # define VM_UFFD_MINOR		BIT(VM_UFFD_MINOR_BIT)	/* UFFD minor faults */
391 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
392 # define VM_UFFD_MINOR		VM_NONE
393 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
394 
395 /*
396  * This flag is used to connect VFIO to arch specific KVM code. It
397  * indicates that the memory under this VMA is safe for use with any
398  * non-cachable memory type inside KVM. Some VFIO devices, on some
399  * platforms, are thought to be unsafe and can cause machine crashes
400  * if KVM does not lock down the memory type.
401  */
402 #ifdef CONFIG_64BIT
403 #define VM_ALLOW_ANY_UNCACHED_BIT	39
404 #define VM_ALLOW_ANY_UNCACHED		BIT(VM_ALLOW_ANY_UNCACHED_BIT)
405 #else
406 #define VM_ALLOW_ANY_UNCACHED		VM_NONE
407 #endif
408 
409 /* Bits set in the VMA until the stack is in its final location */
410 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ | VM_STACK_EARLY)
411 
412 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
413 
414 /* Common data flag combinations */
415 #define VM_DATA_FLAGS_TSK_EXEC	(VM_READ | VM_WRITE | TASK_EXEC | \
416 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
417 #define VM_DATA_FLAGS_NON_EXEC	(VM_READ | VM_WRITE | VM_MAYREAD | \
418 				 VM_MAYWRITE | VM_MAYEXEC)
419 #define VM_DATA_FLAGS_EXEC	(VM_READ | VM_WRITE | VM_EXEC | \
420 				 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
421 
422 #ifndef VM_DATA_DEFAULT_FLAGS		/* arch can override this */
423 #define VM_DATA_DEFAULT_FLAGS  VM_DATA_FLAGS_EXEC
424 #endif
425 
426 #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */
427 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
428 #endif
429 
430 #define VM_STARTGAP_FLAGS (VM_GROWSDOWN | VM_SHADOW_STACK)
431 
432 #ifdef CONFIG_STACK_GROWSUP
433 #define VM_STACK	VM_GROWSUP
434 #define VM_STACK_EARLY	VM_GROWSDOWN
435 #else
436 #define VM_STACK	VM_GROWSDOWN
437 #define VM_STACK_EARLY	0
438 #endif
439 
440 #define VM_STACK_FLAGS	(VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
441 
442 /* VMA basic access permission flags */
443 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
444 
445 
446 /*
447  * Special vmas that are non-mergable, non-mlock()able.
448  */
449 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
450 
451 /* This mask prevents VMA from being scanned with khugepaged */
452 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
453 
454 /* This mask defines which mm->def_flags a process can inherit its parent */
455 #define VM_INIT_DEF_MASK	VM_NOHUGEPAGE
456 
457 /* This mask represents all the VMA flag bits used by mlock */
458 #define VM_LOCKED_MASK	(VM_LOCKED | VM_LOCKONFAULT)
459 
460 /* Arch-specific flags to clear when updating VM flags on protection change */
461 #ifndef VM_ARCH_CLEAR
462 # define VM_ARCH_CLEAR	VM_NONE
463 #endif
464 #define VM_FLAGS_CLEAR	(ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
465 
466 /*
467  * mapping from the currently active vm_flags protection bits (the
468  * low four bits) to a page protection mask..
469  */
470 
471 /*
472  * The default fault flags that should be used by most of the
473  * arch-specific page fault handlers.
474  */
475 #define FAULT_FLAG_DEFAULT  (FAULT_FLAG_ALLOW_RETRY | \
476 			     FAULT_FLAG_KILLABLE | \
477 			     FAULT_FLAG_INTERRUPTIBLE)
478 
479 /**
480  * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
481  * @flags: Fault flags.
482  *
483  * This is mostly used for places where we want to try to avoid taking
484  * the mmap_lock for too long a time when waiting for another condition
485  * to change, in which case we can try to be polite to release the
486  * mmap_lock in the first round to avoid potential starvation of other
487  * processes that would also want the mmap_lock.
488  *
489  * Return: true if the page fault allows retry and this is the first
490  * attempt of the fault handling; false otherwise.
491  */
492 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
493 {
494 	return (flags & FAULT_FLAG_ALLOW_RETRY) &&
495 	    (!(flags & FAULT_FLAG_TRIED));
496 }
497 
498 #define FAULT_FLAG_TRACE \
499 	{ FAULT_FLAG_WRITE,		"WRITE" }, \
500 	{ FAULT_FLAG_MKWRITE,		"MKWRITE" }, \
501 	{ FAULT_FLAG_ALLOW_RETRY,	"ALLOW_RETRY" }, \
502 	{ FAULT_FLAG_RETRY_NOWAIT,	"RETRY_NOWAIT" }, \
503 	{ FAULT_FLAG_KILLABLE,		"KILLABLE" }, \
504 	{ FAULT_FLAG_TRIED,		"TRIED" }, \
505 	{ FAULT_FLAG_USER,		"USER" }, \
506 	{ FAULT_FLAG_REMOTE,		"REMOTE" }, \
507 	{ FAULT_FLAG_INSTRUCTION,	"INSTRUCTION" }, \
508 	{ FAULT_FLAG_INTERRUPTIBLE,	"INTERRUPTIBLE" }, \
509 	{ FAULT_FLAG_VMA_LOCK,		"VMA_LOCK" }
510 
511 /*
512  * vm_fault is filled by the pagefault handler and passed to the vma's
513  * ->fault function. The vma's ->fault is responsible for returning a bitmask
514  * of VM_FAULT_xxx flags that give details about how the fault was handled.
515  *
516  * MM layer fills up gfp_mask for page allocations but fault handler might
517  * alter it if its implementation requires a different allocation context.
518  *
519  * pgoff should be used in favour of virtual_address, if possible.
520  */
521 struct vm_fault {
522 	const struct {
523 		struct vm_area_struct *vma;	/* Target VMA */
524 		gfp_t gfp_mask;			/* gfp mask to be used for allocations */
525 		pgoff_t pgoff;			/* Logical page offset based on vma */
526 		unsigned long address;		/* Faulting virtual address - masked */
527 		unsigned long real_address;	/* Faulting virtual address - unmasked */
528 	};
529 	enum fault_flag flags;		/* FAULT_FLAG_xxx flags
530 					 * XXX: should really be 'const' */
531 	pmd_t *pmd;			/* Pointer to pmd entry matching
532 					 * the 'address' */
533 	pud_t *pud;			/* Pointer to pud entry matching
534 					 * the 'address'
535 					 */
536 	union {
537 		pte_t orig_pte;		/* Value of PTE at the time of fault */
538 		pmd_t orig_pmd;		/* Value of PMD at the time of fault,
539 					 * used by PMD fault only.
540 					 */
541 	};
542 
543 	struct page *cow_page;		/* Page handler may use for COW fault */
544 	struct page *page;		/* ->fault handlers should return a
545 					 * page here, unless VM_FAULT_NOPAGE
546 					 * is set (which is also implied by
547 					 * VM_FAULT_ERROR).
548 					 */
549 	/* These three entries are valid only while holding ptl lock */
550 	pte_t *pte;			/* Pointer to pte entry matching
551 					 * the 'address'. NULL if the page
552 					 * table hasn't been allocated.
553 					 */
554 	spinlock_t *ptl;		/* Page table lock.
555 					 * Protects pte page table if 'pte'
556 					 * is not NULL, otherwise pmd.
557 					 */
558 	pgtable_t prealloc_pte;		/* Pre-allocated pte page table.
559 					 * vm_ops->map_pages() sets up a page
560 					 * table from atomic context.
561 					 * do_fault_around() pre-allocates
562 					 * page table to avoid allocation from
563 					 * atomic context.
564 					 */
565 };
566 
567 /*
568  * These are the virtual MM functions - opening of an area, closing and
569  * unmapping it (needed to keep files on disk up-to-date etc), pointer
570  * to the functions called when a no-page or a wp-page exception occurs.
571  */
572 struct vm_operations_struct {
573 	void (*open)(struct vm_area_struct * area);
574 	/**
575 	 * @close: Called when the VMA is being removed from the MM.
576 	 * Context: User context.  May sleep.  Caller holds mmap_lock.
577 	 */
578 	void (*close)(struct vm_area_struct * area);
579 	/* Called any time before splitting to check if it's allowed */
580 	int (*may_split)(struct vm_area_struct *area, unsigned long addr);
581 	int (*mremap)(struct vm_area_struct *area);
582 	/*
583 	 * Called by mprotect() to make driver-specific permission
584 	 * checks before mprotect() is finalised.   The VMA must not
585 	 * be modified.  Returns 0 if mprotect() can proceed.
586 	 */
587 	int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
588 			unsigned long end, unsigned long newflags);
589 	vm_fault_t (*fault)(struct vm_fault *vmf);
590 	vm_fault_t (*huge_fault)(struct vm_fault *vmf, unsigned int order);
591 	vm_fault_t (*map_pages)(struct vm_fault *vmf,
592 			pgoff_t start_pgoff, pgoff_t end_pgoff);
593 	unsigned long (*pagesize)(struct vm_area_struct * area);
594 
595 	/* notification that a previously read-only page is about to become
596 	 * writable, if an error is returned it will cause a SIGBUS */
597 	vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
598 
599 	/* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
600 	vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
601 
602 	/* called by access_process_vm when get_user_pages() fails, typically
603 	 * for use by special VMAs. See also generic_access_phys() for a generic
604 	 * implementation useful for any iomem mapping.
605 	 */
606 	int (*access)(struct vm_area_struct *vma, unsigned long addr,
607 		      void *buf, int len, int write);
608 
609 	/* Called by the /proc/PID/maps code to ask the vma whether it
610 	 * has a special name.  Returning non-NULL will also cause this
611 	 * vma to be dumped unconditionally. */
612 	const char *(*name)(struct vm_area_struct *vma);
613 
614 #ifdef CONFIG_NUMA
615 	/*
616 	 * set_policy() op must add a reference to any non-NULL @new mempolicy
617 	 * to hold the policy upon return.  Caller should pass NULL @new to
618 	 * remove a policy and fall back to surrounding context--i.e. do not
619 	 * install a MPOL_DEFAULT policy, nor the task or system default
620 	 * mempolicy.
621 	 */
622 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
623 
624 	/*
625 	 * get_policy() op must add reference [mpol_get()] to any policy at
626 	 * (vma,addr) marked as MPOL_SHARED.  The shared policy infrastructure
627 	 * in mm/mempolicy.c will do this automatically.
628 	 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
629 	 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
630 	 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
631 	 * must return NULL--i.e., do not "fallback" to task or system default
632 	 * policy.
633 	 */
634 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
635 					unsigned long addr, pgoff_t *ilx);
636 #endif
637 	/*
638 	 * Called by vm_normal_page() for special PTEs to find the
639 	 * page for @addr.  This is useful if the default behavior
640 	 * (using pte_page()) would not find the correct page.
641 	 */
642 	struct page *(*find_special_page)(struct vm_area_struct *vma,
643 					  unsigned long addr);
644 };
645 
646 #ifdef CONFIG_NUMA_BALANCING
647 static inline void vma_numab_state_init(struct vm_area_struct *vma)
648 {
649 	vma->numab_state = NULL;
650 }
651 static inline void vma_numab_state_free(struct vm_area_struct *vma)
652 {
653 	kfree(vma->numab_state);
654 }
655 #else
656 static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
657 static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
658 #endif /* CONFIG_NUMA_BALANCING */
659 
660 #ifdef CONFIG_PER_VMA_LOCK
661 /*
662  * Try to read-lock a vma. The function is allowed to occasionally yield false
663  * locked result to avoid performance overhead, in which case we fall back to
664  * using mmap_lock. The function should never yield false unlocked result.
665  */
666 static inline bool vma_start_read(struct vm_area_struct *vma)
667 {
668 	/*
669 	 * Check before locking. A race might cause false locked result.
670 	 * We can use READ_ONCE() for the mm_lock_seq here, and don't need
671 	 * ACQUIRE semantics, because this is just a lockless check whose result
672 	 * we don't rely on for anything - the mm_lock_seq read against which we
673 	 * need ordering is below.
674 	 */
675 	if (READ_ONCE(vma->vm_lock_seq) == READ_ONCE(vma->vm_mm->mm_lock_seq))
676 		return false;
677 
678 	if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
679 		return false;
680 
681 	/*
682 	 * Overflow might produce false locked result.
683 	 * False unlocked result is impossible because we modify and check
684 	 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
685 	 * modification invalidates all existing locks.
686 	 *
687 	 * We must use ACQUIRE semantics for the mm_lock_seq so that if we are
688 	 * racing with vma_end_write_all(), we only start reading from the VMA
689 	 * after it has been unlocked.
690 	 * This pairs with RELEASE semantics in vma_end_write_all().
691 	 */
692 	if (unlikely(vma->vm_lock_seq == smp_load_acquire(&vma->vm_mm->mm_lock_seq))) {
693 		up_read(&vma->vm_lock->lock);
694 		return false;
695 	}
696 	return true;
697 }
698 
699 static inline void vma_end_read(struct vm_area_struct *vma)
700 {
701 	rcu_read_lock(); /* keeps vma alive till the end of up_read */
702 	up_read(&vma->vm_lock->lock);
703 	rcu_read_unlock();
704 }
705 
706 /* WARNING! Can only be used if mmap_lock is expected to be write-locked */
707 static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
708 {
709 	mmap_assert_write_locked(vma->vm_mm);
710 
711 	/*
712 	 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
713 	 * mm->mm_lock_seq can't be concurrently modified.
714 	 */
715 	*mm_lock_seq = vma->vm_mm->mm_lock_seq;
716 	return (vma->vm_lock_seq == *mm_lock_seq);
717 }
718 
719 /*
720  * Begin writing to a VMA.
721  * Exclude concurrent readers under the per-VMA lock until the currently
722  * write-locked mmap_lock is dropped or downgraded.
723  */
724 static inline void vma_start_write(struct vm_area_struct *vma)
725 {
726 	int mm_lock_seq;
727 
728 	if (__is_vma_write_locked(vma, &mm_lock_seq))
729 		return;
730 
731 	down_write(&vma->vm_lock->lock);
732 	/*
733 	 * We should use WRITE_ONCE() here because we can have concurrent reads
734 	 * from the early lockless pessimistic check in vma_start_read().
735 	 * We don't really care about the correctness of that early check, but
736 	 * we should use WRITE_ONCE() for cleanliness and to keep KCSAN happy.
737 	 */
738 	WRITE_ONCE(vma->vm_lock_seq, mm_lock_seq);
739 	up_write(&vma->vm_lock->lock);
740 }
741 
742 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
743 {
744 	int mm_lock_seq;
745 
746 	VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
747 }
748 
749 static inline void vma_assert_locked(struct vm_area_struct *vma)
750 {
751 	if (!rwsem_is_locked(&vma->vm_lock->lock))
752 		vma_assert_write_locked(vma);
753 }
754 
755 static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
756 {
757 	/* When detaching vma should be write-locked */
758 	if (detached)
759 		vma_assert_write_locked(vma);
760 	vma->detached = detached;
761 }
762 
763 static inline void release_fault_lock(struct vm_fault *vmf)
764 {
765 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
766 		vma_end_read(vmf->vma);
767 	else
768 		mmap_read_unlock(vmf->vma->vm_mm);
769 }
770 
771 static inline void assert_fault_locked(struct vm_fault *vmf)
772 {
773 	if (vmf->flags & FAULT_FLAG_VMA_LOCK)
774 		vma_assert_locked(vmf->vma);
775 	else
776 		mmap_assert_locked(vmf->vma->vm_mm);
777 }
778 
779 struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
780 					  unsigned long address);
781 
782 #else /* CONFIG_PER_VMA_LOCK */
783 
784 static inline bool vma_start_read(struct vm_area_struct *vma)
785 		{ return false; }
786 static inline void vma_end_read(struct vm_area_struct *vma) {}
787 static inline void vma_start_write(struct vm_area_struct *vma) {}
788 static inline void vma_assert_write_locked(struct vm_area_struct *vma)
789 		{ mmap_assert_write_locked(vma->vm_mm); }
790 static inline void vma_mark_detached(struct vm_area_struct *vma,
791 				     bool detached) {}
792 
793 static inline struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
794 		unsigned long address)
795 {
796 	return NULL;
797 }
798 
799 static inline void vma_assert_locked(struct vm_area_struct *vma)
800 {
801 	mmap_assert_locked(vma->vm_mm);
802 }
803 
804 static inline void release_fault_lock(struct vm_fault *vmf)
805 {
806 	mmap_read_unlock(vmf->vma->vm_mm);
807 }
808 
809 static inline void assert_fault_locked(struct vm_fault *vmf)
810 {
811 	mmap_assert_locked(vmf->vma->vm_mm);
812 }
813 
814 #endif /* CONFIG_PER_VMA_LOCK */
815 
816 extern const struct vm_operations_struct vma_dummy_vm_ops;
817 
818 /*
819  * WARNING: vma_init does not initialize vma->vm_lock.
820  * Use vm_area_alloc()/vm_area_free() if vma needs locking.
821  */
822 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
823 {
824 	memset(vma, 0, sizeof(*vma));
825 	vma->vm_mm = mm;
826 	vma->vm_ops = &vma_dummy_vm_ops;
827 	INIT_LIST_HEAD(&vma->anon_vma_chain);
828 	vma_mark_detached(vma, false);
829 	vma_numab_state_init(vma);
830 }
831 
832 /* Use when VMA is not part of the VMA tree and needs no locking */
833 static inline void vm_flags_init(struct vm_area_struct *vma,
834 				 vm_flags_t flags)
835 {
836 	ACCESS_PRIVATE(vma, __vm_flags) = flags;
837 }
838 
839 /*
840  * Use when VMA is part of the VMA tree and modifications need coordination
841  * Note: vm_flags_reset and vm_flags_reset_once do not lock the vma and
842  * it should be locked explicitly beforehand.
843  */
844 static inline void vm_flags_reset(struct vm_area_struct *vma,
845 				  vm_flags_t flags)
846 {
847 	vma_assert_write_locked(vma);
848 	vm_flags_init(vma, flags);
849 }
850 
851 static inline void vm_flags_reset_once(struct vm_area_struct *vma,
852 				       vm_flags_t flags)
853 {
854 	vma_assert_write_locked(vma);
855 	WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
856 }
857 
858 static inline void vm_flags_set(struct vm_area_struct *vma,
859 				vm_flags_t flags)
860 {
861 	vma_start_write(vma);
862 	ACCESS_PRIVATE(vma, __vm_flags) |= flags;
863 }
864 
865 static inline void vm_flags_clear(struct vm_area_struct *vma,
866 				  vm_flags_t flags)
867 {
868 	vma_start_write(vma);
869 	ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
870 }
871 
872 /*
873  * Use only if VMA is not part of the VMA tree or has no other users and
874  * therefore needs no locking.
875  */
876 static inline void __vm_flags_mod(struct vm_area_struct *vma,
877 				  vm_flags_t set, vm_flags_t clear)
878 {
879 	vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
880 }
881 
882 /*
883  * Use only when the order of set/clear operations is unimportant, otherwise
884  * use vm_flags_{set|clear} explicitly.
885  */
886 static inline void vm_flags_mod(struct vm_area_struct *vma,
887 				vm_flags_t set, vm_flags_t clear)
888 {
889 	vma_start_write(vma);
890 	__vm_flags_mod(vma, set, clear);
891 }
892 
893 static inline void vma_set_anonymous(struct vm_area_struct *vma)
894 {
895 	vma->vm_ops = NULL;
896 }
897 
898 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
899 {
900 	return !vma->vm_ops;
901 }
902 
903 /*
904  * Indicate if the VMA is a heap for the given task; for
905  * /proc/PID/maps that is the heap of the main task.
906  */
907 static inline bool vma_is_initial_heap(const struct vm_area_struct *vma)
908 {
909 	return vma->vm_start < vma->vm_mm->brk &&
910 		vma->vm_end > vma->vm_mm->start_brk;
911 }
912 
913 /*
914  * Indicate if the VMA is a stack for the given task; for
915  * /proc/PID/maps that is the stack of the main task.
916  */
917 static inline bool vma_is_initial_stack(const struct vm_area_struct *vma)
918 {
919 	/*
920 	 * We make no effort to guess what a given thread considers to be
921 	 * its "stack".  It's not even well-defined for programs written
922 	 * languages like Go.
923 	 */
924 	return vma->vm_start <= vma->vm_mm->start_stack &&
925 		vma->vm_end >= vma->vm_mm->start_stack;
926 }
927 
928 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
929 {
930 	int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
931 
932 	if (!maybe_stack)
933 		return false;
934 
935 	if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
936 						VM_STACK_INCOMPLETE_SETUP)
937 		return true;
938 
939 	return false;
940 }
941 
942 static inline bool vma_is_foreign(struct vm_area_struct *vma)
943 {
944 	if (!current->mm)
945 		return true;
946 
947 	if (current->mm != vma->vm_mm)
948 		return true;
949 
950 	return false;
951 }
952 
953 static inline bool vma_is_accessible(struct vm_area_struct *vma)
954 {
955 	return vma->vm_flags & VM_ACCESS_FLAGS;
956 }
957 
958 static inline bool is_shared_maywrite(vm_flags_t vm_flags)
959 {
960 	return (vm_flags & (VM_SHARED | VM_MAYWRITE)) ==
961 		(VM_SHARED | VM_MAYWRITE);
962 }
963 
964 static inline bool vma_is_shared_maywrite(struct vm_area_struct *vma)
965 {
966 	return is_shared_maywrite(vma->vm_flags);
967 }
968 
969 static inline
970 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
971 {
972 	return mas_find(&vmi->mas, max - 1);
973 }
974 
975 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
976 {
977 	/*
978 	 * Uses mas_find() to get the first VMA when the iterator starts.
979 	 * Calling mas_next() could skip the first entry.
980 	 */
981 	return mas_find(&vmi->mas, ULONG_MAX);
982 }
983 
984 static inline
985 struct vm_area_struct *vma_iter_next_range(struct vma_iterator *vmi)
986 {
987 	return mas_next_range(&vmi->mas, ULONG_MAX);
988 }
989 
990 
991 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
992 {
993 	return mas_prev(&vmi->mas, 0);
994 }
995 
996 static inline
997 struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
998 {
999 	return mas_prev_range(&vmi->mas, 0);
1000 }
1001 
1002 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
1003 {
1004 	return vmi->mas.index;
1005 }
1006 
1007 static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
1008 {
1009 	return vmi->mas.last + 1;
1010 }
1011 static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
1012 				      unsigned long count)
1013 {
1014 	return mas_expected_entries(&vmi->mas, count);
1015 }
1016 
1017 static inline int vma_iter_clear_gfp(struct vma_iterator *vmi,
1018 			unsigned long start, unsigned long end, gfp_t gfp)
1019 {
1020 	__mas_set_range(&vmi->mas, start, end - 1);
1021 	mas_store_gfp(&vmi->mas, NULL, gfp);
1022 	if (unlikely(mas_is_err(&vmi->mas)))
1023 		return -ENOMEM;
1024 
1025 	return 0;
1026 }
1027 
1028 /* Free any unused preallocations */
1029 static inline void vma_iter_free(struct vma_iterator *vmi)
1030 {
1031 	mas_destroy(&vmi->mas);
1032 }
1033 
1034 static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
1035 				      struct vm_area_struct *vma)
1036 {
1037 	vmi->mas.index = vma->vm_start;
1038 	vmi->mas.last = vma->vm_end - 1;
1039 	mas_store(&vmi->mas, vma);
1040 	if (unlikely(mas_is_err(&vmi->mas)))
1041 		return -ENOMEM;
1042 
1043 	return 0;
1044 }
1045 
1046 static inline void vma_iter_invalidate(struct vma_iterator *vmi)
1047 {
1048 	mas_pause(&vmi->mas);
1049 }
1050 
1051 static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
1052 {
1053 	mas_set(&vmi->mas, addr);
1054 }
1055 
1056 #define for_each_vma(__vmi, __vma)					\
1057 	while (((__vma) = vma_next(&(__vmi))) != NULL)
1058 
1059 /* The MM code likes to work with exclusive end addresses */
1060 #define for_each_vma_range(__vmi, __vma, __end)				\
1061 	while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
1062 
1063 #ifdef CONFIG_SHMEM
1064 /*
1065  * The vma_is_shmem is not inline because it is used only by slow
1066  * paths in userfault.
1067  */
1068 bool vma_is_shmem(struct vm_area_struct *vma);
1069 bool vma_is_anon_shmem(struct vm_area_struct *vma);
1070 #else
1071 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
1072 static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
1073 #endif
1074 
1075 int vma_is_stack_for_current(struct vm_area_struct *vma);
1076 
1077 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
1078 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
1079 
1080 struct mmu_gather;
1081 struct inode;
1082 
1083 /*
1084  * compound_order() can be called without holding a reference, which means
1085  * that niceties like page_folio() don't work.  These callers should be
1086  * prepared to handle wild return values.  For example, PG_head may be
1087  * set before the order is initialised, or this may be a tail page.
1088  * See compaction.c for some good examples.
1089  */
1090 static inline unsigned int compound_order(struct page *page)
1091 {
1092 	struct folio *folio = (struct folio *)page;
1093 
1094 	if (!test_bit(PG_head, &folio->flags))
1095 		return 0;
1096 	return folio->_flags_1 & 0xff;
1097 }
1098 
1099 /**
1100  * folio_order - The allocation order of a folio.
1101  * @folio: The folio.
1102  *
1103  * A folio is composed of 2^order pages.  See get_order() for the definition
1104  * of order.
1105  *
1106  * Return: The order of the folio.
1107  */
1108 static inline unsigned int folio_order(struct folio *folio)
1109 {
1110 	if (!folio_test_large(folio))
1111 		return 0;
1112 	return folio->_flags_1 & 0xff;
1113 }
1114 
1115 #include <linux/huge_mm.h>
1116 
1117 /*
1118  * Methods to modify the page usage count.
1119  *
1120  * What counts for a page usage:
1121  * - cache mapping   (page->mapping)
1122  * - private data    (page->private)
1123  * - page mapped in a task's page tables, each mapping
1124  *   is counted separately
1125  *
1126  * Also, many kernel routines increase the page count before a critical
1127  * routine so they can be sure the page doesn't go away from under them.
1128  */
1129 
1130 /*
1131  * Drop a ref, return true if the refcount fell to zero (the page has no users)
1132  */
1133 static inline int put_page_testzero(struct page *page)
1134 {
1135 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
1136 	return page_ref_dec_and_test(page);
1137 }
1138 
1139 static inline int folio_put_testzero(struct folio *folio)
1140 {
1141 	return put_page_testzero(&folio->page);
1142 }
1143 
1144 /*
1145  * Try to grab a ref unless the page has a refcount of zero, return false if
1146  * that is the case.
1147  * This can be called when MMU is off so it must not access
1148  * any of the virtual mappings.
1149  */
1150 static inline bool get_page_unless_zero(struct page *page)
1151 {
1152 	return page_ref_add_unless(page, 1, 0);
1153 }
1154 
1155 static inline struct folio *folio_get_nontail_page(struct page *page)
1156 {
1157 	if (unlikely(!get_page_unless_zero(page)))
1158 		return NULL;
1159 	return (struct folio *)page;
1160 }
1161 
1162 extern int page_is_ram(unsigned long pfn);
1163 
1164 enum {
1165 	REGION_INTERSECTS,
1166 	REGION_DISJOINT,
1167 	REGION_MIXED,
1168 };
1169 
1170 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1171 		      unsigned long desc);
1172 
1173 /* Support for virtually mapped pages */
1174 struct page *vmalloc_to_page(const void *addr);
1175 unsigned long vmalloc_to_pfn(const void *addr);
1176 
1177 /*
1178  * Determine if an address is within the vmalloc range
1179  *
1180  * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1181  * is no special casing required.
1182  */
1183 #ifdef CONFIG_MMU
1184 extern bool is_vmalloc_addr(const void *x);
1185 extern int is_vmalloc_or_module_addr(const void *x);
1186 #else
1187 static inline bool is_vmalloc_addr(const void *x)
1188 {
1189 	return false;
1190 }
1191 static inline int is_vmalloc_or_module_addr(const void *x)
1192 {
1193 	return 0;
1194 }
1195 #endif
1196 
1197 /*
1198  * How many times the entire folio is mapped as a single unit (eg by a
1199  * PMD or PUD entry).  This is probably not what you want, except for
1200  * debugging purposes - it does not include PTE-mapped sub-pages; look
1201  * at folio_mapcount() or page_mapcount() instead.
1202  */
1203 static inline int folio_entire_mapcount(const struct folio *folio)
1204 {
1205 	VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1206 	return atomic_read(&folio->_entire_mapcount) + 1;
1207 }
1208 
1209 /*
1210  * The atomic page->_mapcount, starts from -1: so that transitions
1211  * both from it and to it can be tracked, using atomic_inc_and_test
1212  * and atomic_add_negative(-1).
1213  */
1214 static inline void page_mapcount_reset(struct page *page)
1215 {
1216 	atomic_set(&(page)->_mapcount, -1);
1217 }
1218 
1219 /**
1220  * page_mapcount() - Number of times this precise page is mapped.
1221  * @page: The page.
1222  *
1223  * The number of times this page is mapped.  If this page is part of
1224  * a large folio, it includes the number of times this page is mapped
1225  * as part of that folio.
1226  *
1227  * Will report 0 for pages which cannot be mapped into userspace, eg
1228  * slab, page tables and similar.
1229  */
1230 static inline int page_mapcount(struct page *page)
1231 {
1232 	int mapcount = atomic_read(&page->_mapcount) + 1;
1233 
1234 	/* Handle page_has_type() pages */
1235 	if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1236 		mapcount = 0;
1237 	if (unlikely(PageCompound(page)))
1238 		mapcount += folio_entire_mapcount(page_folio(page));
1239 
1240 	return mapcount;
1241 }
1242 
1243 static inline int folio_large_mapcount(const struct folio *folio)
1244 {
1245 	VM_WARN_ON_FOLIO(!folio_test_large(folio), folio);
1246 	return atomic_read(&folio->_large_mapcount) + 1;
1247 }
1248 
1249 /**
1250  * folio_mapcount() - Number of mappings of this folio.
1251  * @folio: The folio.
1252  *
1253  * The folio mapcount corresponds to the number of present user page table
1254  * entries that reference any part of a folio. Each such present user page
1255  * table entry must be paired with exactly on folio reference.
1256  *
1257  * For ordindary folios, each user page table entry (PTE/PMD/PUD/...) counts
1258  * exactly once.
1259  *
1260  * For hugetlb folios, each abstracted "hugetlb" user page table entry that
1261  * references the entire folio counts exactly once, even when such special
1262  * page table entries are comprised of multiple ordinary page table entries.
1263  *
1264  * Will report 0 for pages which cannot be mapped into userspace, such as
1265  * slab, page tables and similar.
1266  *
1267  * Return: The number of times this folio is mapped.
1268  */
1269 static inline int folio_mapcount(const struct folio *folio)
1270 {
1271 	int mapcount;
1272 
1273 	if (likely(!folio_test_large(folio))) {
1274 		mapcount = atomic_read(&folio->_mapcount) + 1;
1275 		/* Handle page_has_type() pages */
1276 		if (mapcount < PAGE_MAPCOUNT_RESERVE + 1)
1277 			mapcount = 0;
1278 		return mapcount;
1279 	}
1280 	return folio_large_mapcount(folio);
1281 }
1282 
1283 /**
1284  * folio_mapped - Is this folio mapped into userspace?
1285  * @folio: The folio.
1286  *
1287  * Return: True if any page in this folio is referenced by user page tables.
1288  */
1289 static inline bool folio_mapped(const struct folio *folio)
1290 {
1291 	return folio_mapcount(folio) >= 1;
1292 }
1293 
1294 /*
1295  * Return true if this page is mapped into pagetables.
1296  * For compound page it returns true if any sub-page of compound page is mapped,
1297  * even if this particular sub-page is not itself mapped by any PTE or PMD.
1298  */
1299 static inline bool page_mapped(const struct page *page)
1300 {
1301 	return folio_mapped(page_folio(page));
1302 }
1303 
1304 static inline struct page *virt_to_head_page(const void *x)
1305 {
1306 	struct page *page = virt_to_page(x);
1307 
1308 	return compound_head(page);
1309 }
1310 
1311 static inline struct folio *virt_to_folio(const void *x)
1312 {
1313 	struct page *page = virt_to_page(x);
1314 
1315 	return page_folio(page);
1316 }
1317 
1318 void __folio_put(struct folio *folio);
1319 
1320 void put_pages_list(struct list_head *pages);
1321 
1322 void split_page(struct page *page, unsigned int order);
1323 void folio_copy(struct folio *dst, struct folio *src);
1324 
1325 unsigned long nr_free_buffer_pages(void);
1326 
1327 /* Returns the number of bytes in this potentially compound page. */
1328 static inline unsigned long page_size(struct page *page)
1329 {
1330 	return PAGE_SIZE << compound_order(page);
1331 }
1332 
1333 /* Returns the number of bits needed for the number of bytes in a page */
1334 static inline unsigned int page_shift(struct page *page)
1335 {
1336 	return PAGE_SHIFT + compound_order(page);
1337 }
1338 
1339 /**
1340  * thp_order - Order of a transparent huge page.
1341  * @page: Head page of a transparent huge page.
1342  */
1343 static inline unsigned int thp_order(struct page *page)
1344 {
1345 	VM_BUG_ON_PGFLAGS(PageTail(page), page);
1346 	return compound_order(page);
1347 }
1348 
1349 /**
1350  * thp_size - Size of a transparent huge page.
1351  * @page: Head page of a transparent huge page.
1352  *
1353  * Return: Number of bytes in this page.
1354  */
1355 static inline unsigned long thp_size(struct page *page)
1356 {
1357 	return PAGE_SIZE << thp_order(page);
1358 }
1359 
1360 #ifdef CONFIG_MMU
1361 /*
1362  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when
1363  * servicing faults for write access.  In the normal case, do always want
1364  * pte_mkwrite.  But get_user_pages can cause write faults for mappings
1365  * that do not have writing enabled, when used by access_process_vm.
1366  */
1367 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1368 {
1369 	if (likely(vma->vm_flags & VM_WRITE))
1370 		pte = pte_mkwrite(pte, vma);
1371 	return pte;
1372 }
1373 
1374 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1375 void set_pte_range(struct vm_fault *vmf, struct folio *folio,
1376 		struct page *page, unsigned int nr, unsigned long addr);
1377 
1378 vm_fault_t finish_fault(struct vm_fault *vmf);
1379 #endif
1380 
1381 /*
1382  * Multiple processes may "see" the same page. E.g. for untouched
1383  * mappings of /dev/null, all processes see the same page full of
1384  * zeroes, and text pages of executables and shared libraries have
1385  * only one copy in memory, at most, normally.
1386  *
1387  * For the non-reserved pages, page_count(page) denotes a reference count.
1388  *   page_count() == 0 means the page is free. page->lru is then used for
1389  *   freelist management in the buddy allocator.
1390  *   page_count() > 0  means the page has been allocated.
1391  *
1392  * Pages are allocated by the slab allocator in order to provide memory
1393  * to kmalloc and kmem_cache_alloc. In this case, the management of the
1394  * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1395  * unless a particular usage is carefully commented. (the responsibility of
1396  * freeing the kmalloc memory is the caller's, of course).
1397  *
1398  * A page may be used by anyone else who does a __get_free_page().
1399  * In this case, page_count still tracks the references, and should only
1400  * be used through the normal accessor functions. The top bits of page->flags
1401  * and page->virtual store page management information, but all other fields
1402  * are unused and could be used privately, carefully. The management of this
1403  * page is the responsibility of the one who allocated it, and those who have
1404  * subsequently been given references to it.
1405  *
1406  * The other pages (we may call them "pagecache pages") are completely
1407  * managed by the Linux memory manager: I/O, buffers, swapping etc.
1408  * The following discussion applies only to them.
1409  *
1410  * A pagecache page contains an opaque `private' member, which belongs to the
1411  * page's address_space. Usually, this is the address of a circular list of
1412  * the page's disk buffers. PG_private must be set to tell the VM to call
1413  * into the filesystem to release these pages.
1414  *
1415  * A page may belong to an inode's memory mapping. In this case, page->mapping
1416  * is the pointer to the inode, and page->index is the file offset of the page,
1417  * in units of PAGE_SIZE.
1418  *
1419  * If pagecache pages are not associated with an inode, they are said to be
1420  * anonymous pages. These may become associated with the swapcache, and in that
1421  * case PG_swapcache is set, and page->private is an offset into the swapcache.
1422  *
1423  * In either case (swapcache or inode backed), the pagecache itself holds one
1424  * reference to the page. Setting PG_private should also increment the
1425  * refcount. The each user mapping also has a reference to the page.
1426  *
1427  * The pagecache pages are stored in a per-mapping radix tree, which is
1428  * rooted at mapping->i_pages, and indexed by offset.
1429  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1430  * lists, we instead now tag pages as dirty/writeback in the radix tree.
1431  *
1432  * All pagecache pages may be subject to I/O:
1433  * - inode pages may need to be read from disk,
1434  * - inode pages which have been modified and are MAP_SHARED may need
1435  *   to be written back to the inode on disk,
1436  * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1437  *   modified may need to be swapped out to swap space and (later) to be read
1438  *   back into memory.
1439  */
1440 
1441 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1442 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1443 
1444 bool __put_devmap_managed_page_refs(struct page *page, int refs);
1445 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1446 {
1447 	if (!static_branch_unlikely(&devmap_managed_key))
1448 		return false;
1449 	if (!is_zone_device_page(page))
1450 		return false;
1451 	return __put_devmap_managed_page_refs(page, refs);
1452 }
1453 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1454 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1455 {
1456 	return false;
1457 }
1458 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1459 
1460 static inline bool put_devmap_managed_page(struct page *page)
1461 {
1462 	return put_devmap_managed_page_refs(page, 1);
1463 }
1464 
1465 /* 127: arbitrary random number, small enough to assemble well */
1466 #define folio_ref_zero_or_close_to_overflow(folio) \
1467 	((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1468 
1469 /**
1470  * folio_get - Increment the reference count on a folio.
1471  * @folio: The folio.
1472  *
1473  * Context: May be called in any context, as long as you know that
1474  * you have a refcount on the folio.  If you do not already have one,
1475  * folio_try_get() may be the right interface for you to use.
1476  */
1477 static inline void folio_get(struct folio *folio)
1478 {
1479 	VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1480 	folio_ref_inc(folio);
1481 }
1482 
1483 static inline void get_page(struct page *page)
1484 {
1485 	folio_get(page_folio(page));
1486 }
1487 
1488 static inline __must_check bool try_get_page(struct page *page)
1489 {
1490 	page = compound_head(page);
1491 	if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1492 		return false;
1493 	page_ref_inc(page);
1494 	return true;
1495 }
1496 
1497 /**
1498  * folio_put - Decrement the reference count on a folio.
1499  * @folio: The folio.
1500  *
1501  * If the folio's reference count reaches zero, the memory will be
1502  * released back to the page allocator and may be used by another
1503  * allocation immediately.  Do not access the memory or the struct folio
1504  * after calling folio_put() unless you can be sure that it wasn't the
1505  * last reference.
1506  *
1507  * Context: May be called in process or interrupt context, but not in NMI
1508  * context.  May be called while holding a spinlock.
1509  */
1510 static inline void folio_put(struct folio *folio)
1511 {
1512 	if (folio_put_testzero(folio))
1513 		__folio_put(folio);
1514 }
1515 
1516 /**
1517  * folio_put_refs - Reduce the reference count on a folio.
1518  * @folio: The folio.
1519  * @refs: The amount to subtract from the folio's reference count.
1520  *
1521  * If the folio's reference count reaches zero, the memory will be
1522  * released back to the page allocator and may be used by another
1523  * allocation immediately.  Do not access the memory or the struct folio
1524  * after calling folio_put_refs() unless you can be sure that these weren't
1525  * the last references.
1526  *
1527  * Context: May be called in process or interrupt context, but not in NMI
1528  * context.  May be called while holding a spinlock.
1529  */
1530 static inline void folio_put_refs(struct folio *folio, int refs)
1531 {
1532 	if (folio_ref_sub_and_test(folio, refs))
1533 		__folio_put(folio);
1534 }
1535 
1536 void folios_put_refs(struct folio_batch *folios, unsigned int *refs);
1537 
1538 /*
1539  * union release_pages_arg - an array of pages or folios
1540  *
1541  * release_pages() releases a simple array of multiple pages, and
1542  * accepts various different forms of said page array: either
1543  * a regular old boring array of pages, an array of folios, or
1544  * an array of encoded page pointers.
1545  *
1546  * The transparent union syntax for this kind of "any of these
1547  * argument types" is all kinds of ugly, so look away.
1548  */
1549 typedef union {
1550 	struct page **pages;
1551 	struct folio **folios;
1552 	struct encoded_page **encoded_pages;
1553 } release_pages_arg __attribute__ ((__transparent_union__));
1554 
1555 void release_pages(release_pages_arg, int nr);
1556 
1557 /**
1558  * folios_put - Decrement the reference count on an array of folios.
1559  * @folios: The folios.
1560  *
1561  * Like folio_put(), but for a batch of folios.  This is more efficient
1562  * than writing the loop yourself as it will optimise the locks which need
1563  * to be taken if the folios are freed.  The folios batch is returned
1564  * empty and ready to be reused for another batch; there is no need to
1565  * reinitialise it.
1566  *
1567  * Context: May be called in process or interrupt context, but not in NMI
1568  * context.  May be called while holding a spinlock.
1569  */
1570 static inline void folios_put(struct folio_batch *folios)
1571 {
1572 	folios_put_refs(folios, NULL);
1573 }
1574 
1575 static inline void put_page(struct page *page)
1576 {
1577 	struct folio *folio = page_folio(page);
1578 
1579 	/*
1580 	 * For some devmap managed pages we need to catch refcount transition
1581 	 * from 2 to 1:
1582 	 */
1583 	if (put_devmap_managed_page(&folio->page))
1584 		return;
1585 	folio_put(folio);
1586 }
1587 
1588 /*
1589  * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1590  * the page's refcount so that two separate items are tracked: the original page
1591  * reference count, and also a new count of how many pin_user_pages() calls were
1592  * made against the page. ("gup-pinned" is another term for the latter).
1593  *
1594  * With this scheme, pin_user_pages() becomes special: such pages are marked as
1595  * distinct from normal pages. As such, the unpin_user_page() call (and its
1596  * variants) must be used in order to release gup-pinned pages.
1597  *
1598  * Choice of value:
1599  *
1600  * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1601  * counts with respect to pin_user_pages() and unpin_user_page() becomes
1602  * simpler, due to the fact that adding an even power of two to the page
1603  * refcount has the effect of using only the upper N bits, for the code that
1604  * counts up using the bias value. This means that the lower bits are left for
1605  * the exclusive use of the original code that increments and decrements by one
1606  * (or at least, by much smaller values than the bias value).
1607  *
1608  * Of course, once the lower bits overflow into the upper bits (and this is
1609  * OK, because subtraction recovers the original values), then visual inspection
1610  * no longer suffices to directly view the separate counts. However, for normal
1611  * applications that don't have huge page reference counts, this won't be an
1612  * issue.
1613  *
1614  * Locking: the lockless algorithm described in folio_try_get_rcu()
1615  * provides safe operation for get_user_pages(), page_mkclean() and
1616  * other calls that race to set up page table entries.
1617  */
1618 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1619 
1620 void unpin_user_page(struct page *page);
1621 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1622 				 bool make_dirty);
1623 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1624 				      bool make_dirty);
1625 void unpin_user_pages(struct page **pages, unsigned long npages);
1626 
1627 static inline bool is_cow_mapping(vm_flags_t flags)
1628 {
1629 	return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1630 }
1631 
1632 #ifndef CONFIG_MMU
1633 static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1634 {
1635 	/*
1636 	 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1637 	 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1638 	 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1639 	 * underlying memory if ptrace is active, so this is only possible if
1640 	 * ptrace does not apply. Note that there is no mprotect() to upgrade
1641 	 * write permissions later.
1642 	 */
1643 	return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1644 }
1645 #endif
1646 
1647 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1648 #define SECTION_IN_PAGE_FLAGS
1649 #endif
1650 
1651 /*
1652  * The identification function is mainly used by the buddy allocator for
1653  * determining if two pages could be buddies. We are not really identifying
1654  * the zone since we could be using the section number id if we do not have
1655  * node id available in page flags.
1656  * We only guarantee that it will return the same value for two combinable
1657  * pages in a zone.
1658  */
1659 static inline int page_zone_id(struct page *page)
1660 {
1661 	return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1662 }
1663 
1664 #ifdef NODE_NOT_IN_PAGE_FLAGS
1665 int page_to_nid(const struct page *page);
1666 #else
1667 static inline int page_to_nid(const struct page *page)
1668 {
1669 	return (PF_POISONED_CHECK(page)->flags >> NODES_PGSHIFT) & NODES_MASK;
1670 }
1671 #endif
1672 
1673 static inline int folio_nid(const struct folio *folio)
1674 {
1675 	return page_to_nid(&folio->page);
1676 }
1677 
1678 #ifdef CONFIG_NUMA_BALANCING
1679 /* page access time bits needs to hold at least 4 seconds */
1680 #define PAGE_ACCESS_TIME_MIN_BITS	12
1681 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1682 #define PAGE_ACCESS_TIME_BUCKETS				\
1683 	(PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1684 #else
1685 #define PAGE_ACCESS_TIME_BUCKETS	0
1686 #endif
1687 
1688 #define PAGE_ACCESS_TIME_MASK				\
1689 	(LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1690 
1691 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1692 {
1693 	return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1694 }
1695 
1696 static inline int cpupid_to_pid(int cpupid)
1697 {
1698 	return cpupid & LAST__PID_MASK;
1699 }
1700 
1701 static inline int cpupid_to_cpu(int cpupid)
1702 {
1703 	return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1704 }
1705 
1706 static inline int cpupid_to_nid(int cpupid)
1707 {
1708 	return cpu_to_node(cpupid_to_cpu(cpupid));
1709 }
1710 
1711 static inline bool cpupid_pid_unset(int cpupid)
1712 {
1713 	return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1714 }
1715 
1716 static inline bool cpupid_cpu_unset(int cpupid)
1717 {
1718 	return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1719 }
1720 
1721 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1722 {
1723 	return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1724 }
1725 
1726 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1727 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1728 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1729 {
1730 	return xchg(&folio->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1731 }
1732 
1733 static inline int folio_last_cpupid(struct folio *folio)
1734 {
1735 	return folio->_last_cpupid;
1736 }
1737 static inline void page_cpupid_reset_last(struct page *page)
1738 {
1739 	page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1740 }
1741 #else
1742 static inline int folio_last_cpupid(struct folio *folio)
1743 {
1744 	return (folio->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1745 }
1746 
1747 int folio_xchg_last_cpupid(struct folio *folio, int cpupid);
1748 
1749 static inline void page_cpupid_reset_last(struct page *page)
1750 {
1751 	page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1752 }
1753 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1754 
1755 static inline int folio_xchg_access_time(struct folio *folio, int time)
1756 {
1757 	int last_time;
1758 
1759 	last_time = folio_xchg_last_cpupid(folio,
1760 					   time >> PAGE_ACCESS_TIME_BUCKETS);
1761 	return last_time << PAGE_ACCESS_TIME_BUCKETS;
1762 }
1763 
1764 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1765 {
1766 	unsigned int pid_bit;
1767 
1768 	pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1769 	if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->pids_active[1])) {
1770 		__set_bit(pid_bit, &vma->numab_state->pids_active[1]);
1771 	}
1772 }
1773 #else /* !CONFIG_NUMA_BALANCING */
1774 static inline int folio_xchg_last_cpupid(struct folio *folio, int cpupid)
1775 {
1776 	return folio_nid(folio); /* XXX */
1777 }
1778 
1779 static inline int folio_xchg_access_time(struct folio *folio, int time)
1780 {
1781 	return 0;
1782 }
1783 
1784 static inline int folio_last_cpupid(struct folio *folio)
1785 {
1786 	return folio_nid(folio); /* XXX */
1787 }
1788 
1789 static inline int cpupid_to_nid(int cpupid)
1790 {
1791 	return -1;
1792 }
1793 
1794 static inline int cpupid_to_pid(int cpupid)
1795 {
1796 	return -1;
1797 }
1798 
1799 static inline int cpupid_to_cpu(int cpupid)
1800 {
1801 	return -1;
1802 }
1803 
1804 static inline int cpu_pid_to_cpupid(int nid, int pid)
1805 {
1806 	return -1;
1807 }
1808 
1809 static inline bool cpupid_pid_unset(int cpupid)
1810 {
1811 	return true;
1812 }
1813 
1814 static inline void page_cpupid_reset_last(struct page *page)
1815 {
1816 }
1817 
1818 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1819 {
1820 	return false;
1821 }
1822 
1823 static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1824 {
1825 }
1826 #endif /* CONFIG_NUMA_BALANCING */
1827 
1828 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1829 
1830 /*
1831  * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1832  * setting tags for all pages to native kernel tag value 0xff, as the default
1833  * value 0x00 maps to 0xff.
1834  */
1835 
1836 static inline u8 page_kasan_tag(const struct page *page)
1837 {
1838 	u8 tag = KASAN_TAG_KERNEL;
1839 
1840 	if (kasan_enabled()) {
1841 		tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1842 		tag ^= 0xff;
1843 	}
1844 
1845 	return tag;
1846 }
1847 
1848 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1849 {
1850 	unsigned long old_flags, flags;
1851 
1852 	if (!kasan_enabled())
1853 		return;
1854 
1855 	tag ^= 0xff;
1856 	old_flags = READ_ONCE(page->flags);
1857 	do {
1858 		flags = old_flags;
1859 		flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1860 		flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1861 	} while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1862 }
1863 
1864 static inline void page_kasan_tag_reset(struct page *page)
1865 {
1866 	if (kasan_enabled())
1867 		page_kasan_tag_set(page, KASAN_TAG_KERNEL);
1868 }
1869 
1870 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1871 
1872 static inline u8 page_kasan_tag(const struct page *page)
1873 {
1874 	return 0xff;
1875 }
1876 
1877 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1878 static inline void page_kasan_tag_reset(struct page *page) { }
1879 
1880 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1881 
1882 static inline struct zone *page_zone(const struct page *page)
1883 {
1884 	return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1885 }
1886 
1887 static inline pg_data_t *page_pgdat(const struct page *page)
1888 {
1889 	return NODE_DATA(page_to_nid(page));
1890 }
1891 
1892 static inline struct zone *folio_zone(const struct folio *folio)
1893 {
1894 	return page_zone(&folio->page);
1895 }
1896 
1897 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1898 {
1899 	return page_pgdat(&folio->page);
1900 }
1901 
1902 #ifdef SECTION_IN_PAGE_FLAGS
1903 static inline void set_page_section(struct page *page, unsigned long section)
1904 {
1905 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1906 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1907 }
1908 
1909 static inline unsigned long page_to_section(const struct page *page)
1910 {
1911 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1912 }
1913 #endif
1914 
1915 /**
1916  * folio_pfn - Return the Page Frame Number of a folio.
1917  * @folio: The folio.
1918  *
1919  * A folio may contain multiple pages.  The pages have consecutive
1920  * Page Frame Numbers.
1921  *
1922  * Return: The Page Frame Number of the first page in the folio.
1923  */
1924 static inline unsigned long folio_pfn(struct folio *folio)
1925 {
1926 	return page_to_pfn(&folio->page);
1927 }
1928 
1929 static inline struct folio *pfn_folio(unsigned long pfn)
1930 {
1931 	return page_folio(pfn_to_page(pfn));
1932 }
1933 
1934 /**
1935  * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1936  * @folio: The folio.
1937  *
1938  * This function checks if a folio has been pinned via a call to
1939  * a function in the pin_user_pages() family.
1940  *
1941  * For small folios, the return value is partially fuzzy: false is not fuzzy,
1942  * because it means "definitely not pinned for DMA", but true means "probably
1943  * pinned for DMA, but possibly a false positive due to having at least
1944  * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1945  *
1946  * False positives are OK, because: a) it's unlikely for a folio to
1947  * get that many refcounts, and b) all the callers of this routine are
1948  * expected to be able to deal gracefully with a false positive.
1949  *
1950  * For large folios, the result will be exactly correct. That's because
1951  * we have more tracking data available: the _pincount field is used
1952  * instead of the GUP_PIN_COUNTING_BIAS scheme.
1953  *
1954  * For more information, please see Documentation/core-api/pin_user_pages.rst.
1955  *
1956  * Return: True, if it is likely that the page has been "dma-pinned".
1957  * False, if the page is definitely not dma-pinned.
1958  */
1959 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1960 {
1961 	if (folio_test_large(folio))
1962 		return atomic_read(&folio->_pincount) > 0;
1963 
1964 	/*
1965 	 * folio_ref_count() is signed. If that refcount overflows, then
1966 	 * folio_ref_count() returns a negative value, and callers will avoid
1967 	 * further incrementing the refcount.
1968 	 *
1969 	 * Here, for that overflow case, use the sign bit to count a little
1970 	 * bit higher via unsigned math, and thus still get an accurate result.
1971 	 */
1972 	return ((unsigned int)folio_ref_count(folio)) >=
1973 		GUP_PIN_COUNTING_BIAS;
1974 }
1975 
1976 static inline bool page_maybe_dma_pinned(struct page *page)
1977 {
1978 	return folio_maybe_dma_pinned(page_folio(page));
1979 }
1980 
1981 /*
1982  * This should most likely only be called during fork() to see whether we
1983  * should break the cow immediately for an anon page on the src mm.
1984  *
1985  * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1986  */
1987 static inline bool folio_needs_cow_for_dma(struct vm_area_struct *vma,
1988 					  struct folio *folio)
1989 {
1990 	VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1991 
1992 	if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1993 		return false;
1994 
1995 	return folio_maybe_dma_pinned(folio);
1996 }
1997 
1998 /**
1999  * is_zero_page - Query if a page is a zero page
2000  * @page: The page to query
2001  *
2002  * This returns true if @page is one of the permanent zero pages.
2003  */
2004 static inline bool is_zero_page(const struct page *page)
2005 {
2006 	return is_zero_pfn(page_to_pfn(page));
2007 }
2008 
2009 /**
2010  * is_zero_folio - Query if a folio is a zero page
2011  * @folio: The folio to query
2012  *
2013  * This returns true if @folio is one of the permanent zero pages.
2014  */
2015 static inline bool is_zero_folio(const struct folio *folio)
2016 {
2017 	return is_zero_page(&folio->page);
2018 }
2019 
2020 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin folios */
2021 #ifdef CONFIG_MIGRATION
2022 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2023 {
2024 #ifdef CONFIG_CMA
2025 	int mt = folio_migratetype(folio);
2026 
2027 	if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
2028 		return false;
2029 #endif
2030 	/* The zero page can be "pinned" but gets special handling. */
2031 	if (is_zero_folio(folio))
2032 		return true;
2033 
2034 	/* Coherent device memory must always allow eviction. */
2035 	if (folio_is_device_coherent(folio))
2036 		return false;
2037 
2038 	/* Otherwise, non-movable zone folios can be pinned. */
2039 	return !folio_is_zone_movable(folio);
2040 
2041 }
2042 #else
2043 static inline bool folio_is_longterm_pinnable(struct folio *folio)
2044 {
2045 	return true;
2046 }
2047 #endif
2048 
2049 static inline void set_page_zone(struct page *page, enum zone_type zone)
2050 {
2051 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
2052 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
2053 }
2054 
2055 static inline void set_page_node(struct page *page, unsigned long node)
2056 {
2057 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
2058 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
2059 }
2060 
2061 static inline void set_page_links(struct page *page, enum zone_type zone,
2062 	unsigned long node, unsigned long pfn)
2063 {
2064 	set_page_zone(page, zone);
2065 	set_page_node(page, node);
2066 #ifdef SECTION_IN_PAGE_FLAGS
2067 	set_page_section(page, pfn_to_section_nr(pfn));
2068 #endif
2069 }
2070 
2071 /**
2072  * folio_nr_pages - The number of pages in the folio.
2073  * @folio: The folio.
2074  *
2075  * Return: A positive power of two.
2076  */
2077 static inline long folio_nr_pages(const struct folio *folio)
2078 {
2079 	if (!folio_test_large(folio))
2080 		return 1;
2081 #ifdef CONFIG_64BIT
2082 	return folio->_folio_nr_pages;
2083 #else
2084 	return 1L << (folio->_flags_1 & 0xff);
2085 #endif
2086 }
2087 
2088 /* Only hugetlbfs can allocate folios larger than MAX_ORDER */
2089 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
2090 #define MAX_FOLIO_NR_PAGES	(1UL << PUD_ORDER)
2091 #else
2092 #define MAX_FOLIO_NR_PAGES	MAX_ORDER_NR_PAGES
2093 #endif
2094 
2095 /*
2096  * compound_nr() returns the number of pages in this potentially compound
2097  * page.  compound_nr() can be called on a tail page, and is defined to
2098  * return 1 in that case.
2099  */
2100 static inline unsigned long compound_nr(struct page *page)
2101 {
2102 	struct folio *folio = (struct folio *)page;
2103 
2104 	if (!test_bit(PG_head, &folio->flags))
2105 		return 1;
2106 #ifdef CONFIG_64BIT
2107 	return folio->_folio_nr_pages;
2108 #else
2109 	return 1L << (folio->_flags_1 & 0xff);
2110 #endif
2111 }
2112 
2113 /**
2114  * thp_nr_pages - The number of regular pages in this huge page.
2115  * @page: The head page of a huge page.
2116  */
2117 static inline int thp_nr_pages(struct page *page)
2118 {
2119 	return folio_nr_pages((struct folio *)page);
2120 }
2121 
2122 /**
2123  * folio_next - Move to the next physical folio.
2124  * @folio: The folio we're currently operating on.
2125  *
2126  * If you have physically contiguous memory which may span more than
2127  * one folio (eg a &struct bio_vec), use this function to move from one
2128  * folio to the next.  Do not use it if the memory is only virtually
2129  * contiguous as the folios are almost certainly not adjacent to each
2130  * other.  This is the folio equivalent to writing ``page++``.
2131  *
2132  * Context: We assume that the folios are refcounted and/or locked at a
2133  * higher level and do not adjust the reference counts.
2134  * Return: The next struct folio.
2135  */
2136 static inline struct folio *folio_next(struct folio *folio)
2137 {
2138 	return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2139 }
2140 
2141 /**
2142  * folio_shift - The size of the memory described by this folio.
2143  * @folio: The folio.
2144  *
2145  * A folio represents a number of bytes which is a power-of-two in size.
2146  * This function tells you which power-of-two the folio is.  See also
2147  * folio_size() and folio_order().
2148  *
2149  * Context: The caller should have a reference on the folio to prevent
2150  * it from being split.  It is not necessary for the folio to be locked.
2151  * Return: The base-2 logarithm of the size of this folio.
2152  */
2153 static inline unsigned int folio_shift(struct folio *folio)
2154 {
2155 	return PAGE_SHIFT + folio_order(folio);
2156 }
2157 
2158 /**
2159  * folio_size - The number of bytes in a folio.
2160  * @folio: The folio.
2161  *
2162  * Context: The caller should have a reference on the folio to prevent
2163  * it from being split.  It is not necessary for the folio to be locked.
2164  * Return: The number of bytes in this folio.
2165  */
2166 static inline size_t folio_size(struct folio *folio)
2167 {
2168 	return PAGE_SIZE << folio_order(folio);
2169 }
2170 
2171 /**
2172  * folio_likely_mapped_shared - Estimate if the folio is mapped into the page
2173  *				tables of more than one MM
2174  * @folio: The folio.
2175  *
2176  * This function checks if the folio is currently mapped into more than one
2177  * MM ("mapped shared"), or if the folio is only mapped into a single MM
2178  * ("mapped exclusively").
2179  *
2180  * As precise information is not easily available for all folios, this function
2181  * estimates the number of MMs ("sharers") that are currently mapping a folio
2182  * using the number of times the first page of the folio is currently mapped
2183  * into page tables.
2184  *
2185  * For small anonymous folios (except KSM folios) and anonymous hugetlb folios,
2186  * the return value will be exactly correct, because they can only be mapped
2187  * at most once into an MM, and they cannot be partially mapped.
2188  *
2189  * For other folios, the result can be fuzzy:
2190  *    #. For partially-mappable large folios (THP), the return value can wrongly
2191  *       indicate "mapped exclusively" (false negative) when the folio is
2192  *       only partially mapped into at least one MM.
2193  *    #. For pagecache folios (including hugetlb), the return value can wrongly
2194  *       indicate "mapped shared" (false positive) when two VMAs in the same MM
2195  *       cover the same file range.
2196  *    #. For (small) KSM folios, the return value can wrongly indicate "mapped
2197  *       shared" (false positive), when the folio is mapped multiple times into
2198  *       the same MM.
2199  *
2200  * Further, this function only considers current page table mappings that
2201  * are tracked using the folio mapcount(s).
2202  *
2203  * This function does not consider:
2204  *    #. If the folio might get mapped in the (near) future (e.g., swapcache,
2205  *       pagecache, temporary unmapping for migration).
2206  *    #. If the folio is mapped differently (VM_PFNMAP).
2207  *    #. If hugetlb page table sharing applies. Callers might want to check
2208  *       hugetlb_pmd_shared().
2209  *
2210  * Return: Whether the folio is estimated to be mapped into more than one MM.
2211  */
2212 static inline bool folio_likely_mapped_shared(struct folio *folio)
2213 {
2214 	int mapcount = folio_mapcount(folio);
2215 
2216 	/* Only partially-mappable folios require more care. */
2217 	if (!folio_test_large(folio) || unlikely(folio_test_hugetlb(folio)))
2218 		return mapcount > 1;
2219 
2220 	/* A single mapping implies "mapped exclusively". */
2221 	if (mapcount <= 1)
2222 		return false;
2223 
2224 	/* If any page is mapped more than once we treat it "mapped shared". */
2225 	if (folio_entire_mapcount(folio) || mapcount > folio_nr_pages(folio))
2226 		return true;
2227 
2228 	/* Let's guess based on the first subpage. */
2229 	return atomic_read(&folio->_mapcount) > 0;
2230 }
2231 
2232 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2233 static inline int arch_make_page_accessible(struct page *page)
2234 {
2235 	return 0;
2236 }
2237 #endif
2238 
2239 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2240 static inline int arch_make_folio_accessible(struct folio *folio)
2241 {
2242 	int ret;
2243 	long i, nr = folio_nr_pages(folio);
2244 
2245 	for (i = 0; i < nr; i++) {
2246 		ret = arch_make_page_accessible(folio_page(folio, i));
2247 		if (ret)
2248 			break;
2249 	}
2250 
2251 	return ret;
2252 }
2253 #endif
2254 
2255 /*
2256  * Some inline functions in vmstat.h depend on page_zone()
2257  */
2258 #include <linux/vmstat.h>
2259 
2260 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2261 #define HASHED_PAGE_VIRTUAL
2262 #endif
2263 
2264 #if defined(WANT_PAGE_VIRTUAL)
2265 static inline void *page_address(const struct page *page)
2266 {
2267 	return page->virtual;
2268 }
2269 static inline void set_page_address(struct page *page, void *address)
2270 {
2271 	page->virtual = address;
2272 }
2273 #define page_address_init()  do { } while(0)
2274 #endif
2275 
2276 #if defined(HASHED_PAGE_VIRTUAL)
2277 void *page_address(const struct page *page);
2278 void set_page_address(struct page *page, void *virtual);
2279 void page_address_init(void);
2280 #endif
2281 
2282 static __always_inline void *lowmem_page_address(const struct page *page)
2283 {
2284 	return page_to_virt(page);
2285 }
2286 
2287 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2288 #define page_address(page) lowmem_page_address(page)
2289 #define set_page_address(page, address)  do { } while(0)
2290 #define page_address_init()  do { } while(0)
2291 #endif
2292 
2293 static inline void *folio_address(const struct folio *folio)
2294 {
2295 	return page_address(&folio->page);
2296 }
2297 
2298 extern pgoff_t __page_file_index(struct page *page);
2299 
2300 /*
2301  * Return the pagecache index of the passed page.  Regular pagecache pages
2302  * use ->index whereas swapcache pages use swp_offset(->private)
2303  */
2304 static inline pgoff_t page_index(struct page *page)
2305 {
2306 	if (unlikely(PageSwapCache(page)))
2307 		return __page_file_index(page);
2308 	return page->index;
2309 }
2310 
2311 /*
2312  * Return true only if the page has been allocated with
2313  * ALLOC_NO_WATERMARKS and the low watermark was not
2314  * met implying that the system is under some pressure.
2315  */
2316 static inline bool page_is_pfmemalloc(const struct page *page)
2317 {
2318 	/*
2319 	 * lru.next has bit 1 set if the page is allocated from the
2320 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2321 	 * they do not need to preserve that information.
2322 	 */
2323 	return (uintptr_t)page->lru.next & BIT(1);
2324 }
2325 
2326 /*
2327  * Return true only if the folio has been allocated with
2328  * ALLOC_NO_WATERMARKS and the low watermark was not
2329  * met implying that the system is under some pressure.
2330  */
2331 static inline bool folio_is_pfmemalloc(const struct folio *folio)
2332 {
2333 	/*
2334 	 * lru.next has bit 1 set if the page is allocated from the
2335 	 * pfmemalloc reserves.  Callers may simply overwrite it if
2336 	 * they do not need to preserve that information.
2337 	 */
2338 	return (uintptr_t)folio->lru.next & BIT(1);
2339 }
2340 
2341 /*
2342  * Only to be called by the page allocator on a freshly allocated
2343  * page.
2344  */
2345 static inline void set_page_pfmemalloc(struct page *page)
2346 {
2347 	page->lru.next = (void *)BIT(1);
2348 }
2349 
2350 static inline void clear_page_pfmemalloc(struct page *page)
2351 {
2352 	page->lru.next = NULL;
2353 }
2354 
2355 /*
2356  * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2357  */
2358 extern void pagefault_out_of_memory(void);
2359 
2360 #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK)
2361 #define offset_in_thp(page, p)	((unsigned long)(p) & (thp_size(page) - 1))
2362 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2363 
2364 /*
2365  * Parameter block passed down to zap_pte_range in exceptional cases.
2366  */
2367 struct zap_details {
2368 	struct folio *single_folio;	/* Locked folio to be unmapped */
2369 	bool even_cows;			/* Zap COWed private pages too? */
2370 	zap_flags_t zap_flags;		/* Extra flags for zapping */
2371 };
2372 
2373 /*
2374  * Whether to drop the pte markers, for example, the uffd-wp information for
2375  * file-backed memory.  This should only be specified when we will completely
2376  * drop the page in the mm, either by truncation or unmapping of the vma.  By
2377  * default, the flag is not set.
2378  */
2379 #define  ZAP_FLAG_DROP_MARKER        ((__force zap_flags_t) BIT(0))
2380 /* Set in unmap_vmas() to indicate a final unmap call.  Only used by hugetlb */
2381 #define  ZAP_FLAG_UNMAP              ((__force zap_flags_t) BIT(1))
2382 
2383 #ifdef CONFIG_SCHED_MM_CID
2384 void sched_mm_cid_before_execve(struct task_struct *t);
2385 void sched_mm_cid_after_execve(struct task_struct *t);
2386 void sched_mm_cid_fork(struct task_struct *t);
2387 void sched_mm_cid_exit_signals(struct task_struct *t);
2388 static inline int task_mm_cid(struct task_struct *t)
2389 {
2390 	return t->mm_cid;
2391 }
2392 #else
2393 static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2394 static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2395 static inline void sched_mm_cid_fork(struct task_struct *t) { }
2396 static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2397 static inline int task_mm_cid(struct task_struct *t)
2398 {
2399 	/*
2400 	 * Use the processor id as a fall-back when the mm cid feature is
2401 	 * disabled. This provides functional per-cpu data structure accesses
2402 	 * in user-space, althrough it won't provide the memory usage benefits.
2403 	 */
2404 	return raw_smp_processor_id();
2405 }
2406 #endif
2407 
2408 #ifdef CONFIG_MMU
2409 extern bool can_do_mlock(void);
2410 #else
2411 static inline bool can_do_mlock(void) { return false; }
2412 #endif
2413 extern int user_shm_lock(size_t, struct ucounts *);
2414 extern void user_shm_unlock(size_t, struct ucounts *);
2415 
2416 struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2417 			     pte_t pte);
2418 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2419 			     pte_t pte);
2420 struct folio *vm_normal_folio_pmd(struct vm_area_struct *vma,
2421 				  unsigned long addr, pmd_t pmd);
2422 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2423 				pmd_t pmd);
2424 
2425 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2426 		  unsigned long size);
2427 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2428 			   unsigned long size, struct zap_details *details);
2429 static inline void zap_vma_pages(struct vm_area_struct *vma)
2430 {
2431 	zap_page_range_single(vma, vma->vm_start,
2432 			      vma->vm_end - vma->vm_start, NULL);
2433 }
2434 void unmap_vmas(struct mmu_gather *tlb, struct ma_state *mas,
2435 		struct vm_area_struct *start_vma, unsigned long start,
2436 		unsigned long end, unsigned long tree_end, bool mm_wr_locked);
2437 
2438 struct mmu_notifier_range;
2439 
2440 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2441 		unsigned long end, unsigned long floor, unsigned long ceiling);
2442 int
2443 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2444 int follow_pte(struct vm_area_struct *vma, unsigned long address,
2445 	       pte_t **ptepp, spinlock_t **ptlp);
2446 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2447 			void *buf, int len, int write);
2448 
2449 extern void truncate_pagecache(struct inode *inode, loff_t new);
2450 extern void truncate_setsize(struct inode *inode, loff_t newsize);
2451 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2452 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2453 int generic_error_remove_folio(struct address_space *mapping,
2454 		struct folio *folio);
2455 
2456 struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
2457 		unsigned long address, struct pt_regs *regs);
2458 
2459 #ifdef CONFIG_MMU
2460 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2461 				  unsigned long address, unsigned int flags,
2462 				  struct pt_regs *regs);
2463 extern int fixup_user_fault(struct mm_struct *mm,
2464 			    unsigned long address, unsigned int fault_flags,
2465 			    bool *unlocked);
2466 void unmap_mapping_pages(struct address_space *mapping,
2467 		pgoff_t start, pgoff_t nr, bool even_cows);
2468 void unmap_mapping_range(struct address_space *mapping,
2469 		loff_t const holebegin, loff_t const holelen, int even_cows);
2470 #else
2471 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2472 					 unsigned long address, unsigned int flags,
2473 					 struct pt_regs *regs)
2474 {
2475 	/* should never happen if there's no MMU */
2476 	BUG();
2477 	return VM_FAULT_SIGBUS;
2478 }
2479 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2480 		unsigned int fault_flags, bool *unlocked)
2481 {
2482 	/* should never happen if there's no MMU */
2483 	BUG();
2484 	return -EFAULT;
2485 }
2486 static inline void unmap_mapping_pages(struct address_space *mapping,
2487 		pgoff_t start, pgoff_t nr, bool even_cows) { }
2488 static inline void unmap_mapping_range(struct address_space *mapping,
2489 		loff_t const holebegin, loff_t const holelen, int even_cows) { }
2490 #endif
2491 
2492 static inline void unmap_shared_mapping_range(struct address_space *mapping,
2493 		loff_t const holebegin, loff_t const holelen)
2494 {
2495 	unmap_mapping_range(mapping, holebegin, holelen, 0);
2496 }
2497 
2498 static inline struct vm_area_struct *vma_lookup(struct mm_struct *mm,
2499 						unsigned long addr);
2500 
2501 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2502 		void *buf, int len, unsigned int gup_flags);
2503 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2504 		void *buf, int len, unsigned int gup_flags);
2505 
2506 long get_user_pages_remote(struct mm_struct *mm,
2507 			   unsigned long start, unsigned long nr_pages,
2508 			   unsigned int gup_flags, struct page **pages,
2509 			   int *locked);
2510 long pin_user_pages_remote(struct mm_struct *mm,
2511 			   unsigned long start, unsigned long nr_pages,
2512 			   unsigned int gup_flags, struct page **pages,
2513 			   int *locked);
2514 
2515 /*
2516  * Retrieves a single page alongside its VMA. Does not support FOLL_NOWAIT.
2517  */
2518 static inline struct page *get_user_page_vma_remote(struct mm_struct *mm,
2519 						    unsigned long addr,
2520 						    int gup_flags,
2521 						    struct vm_area_struct **vmap)
2522 {
2523 	struct page *page;
2524 	struct vm_area_struct *vma;
2525 	int got;
2526 
2527 	if (WARN_ON_ONCE(unlikely(gup_flags & FOLL_NOWAIT)))
2528 		return ERR_PTR(-EINVAL);
2529 
2530 	got = get_user_pages_remote(mm, addr, 1, gup_flags, &page, NULL);
2531 
2532 	if (got < 0)
2533 		return ERR_PTR(got);
2534 
2535 	vma = vma_lookup(mm, addr);
2536 	if (WARN_ON_ONCE(!vma)) {
2537 		put_page(page);
2538 		return ERR_PTR(-EINVAL);
2539 	}
2540 
2541 	*vmap = vma;
2542 	return page;
2543 }
2544 
2545 long get_user_pages(unsigned long start, unsigned long nr_pages,
2546 		    unsigned int gup_flags, struct page **pages);
2547 long pin_user_pages(unsigned long start, unsigned long nr_pages,
2548 		    unsigned int gup_flags, struct page **pages);
2549 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2550 		    struct page **pages, unsigned int gup_flags);
2551 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2552 		    struct page **pages, unsigned int gup_flags);
2553 
2554 int get_user_pages_fast(unsigned long start, int nr_pages,
2555 			unsigned int gup_flags, struct page **pages);
2556 int pin_user_pages_fast(unsigned long start, int nr_pages,
2557 			unsigned int gup_flags, struct page **pages);
2558 void folio_add_pin(struct folio *folio);
2559 
2560 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2561 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2562 			struct task_struct *task, bool bypass_rlim);
2563 
2564 struct kvec;
2565 struct page *get_dump_page(unsigned long addr);
2566 
2567 bool folio_mark_dirty(struct folio *folio);
2568 bool set_page_dirty(struct page *page);
2569 int set_page_dirty_lock(struct page *page);
2570 
2571 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2572 
2573 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2574 		unsigned long old_addr, struct vm_area_struct *new_vma,
2575 		unsigned long new_addr, unsigned long len,
2576 		bool need_rmap_locks, bool for_stack);
2577 
2578 /*
2579  * Flags used by change_protection().  For now we make it a bitmap so
2580  * that we can pass in multiple flags just like parameters.  However
2581  * for now all the callers are only use one of the flags at the same
2582  * time.
2583  */
2584 /*
2585  * Whether we should manually check if we can map individual PTEs writable,
2586  * because something (e.g., COW, uffd-wp) blocks that from happening for all
2587  * PTEs automatically in a writable mapping.
2588  */
2589 #define  MM_CP_TRY_CHANGE_WRITABLE	   (1UL << 0)
2590 /* Whether this protection change is for NUMA hints */
2591 #define  MM_CP_PROT_NUMA                   (1UL << 1)
2592 /* Whether this change is for write protecting */
2593 #define  MM_CP_UFFD_WP                     (1UL << 2) /* do wp */
2594 #define  MM_CP_UFFD_WP_RESOLVE             (1UL << 3) /* Resolve wp */
2595 #define  MM_CP_UFFD_WP_ALL                 (MM_CP_UFFD_WP | \
2596 					    MM_CP_UFFD_WP_RESOLVE)
2597 
2598 bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
2599 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2600 static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2601 {
2602 	/*
2603 	 * We want to check manually if we can change individual PTEs writable
2604 	 * if we can't do that automatically for all PTEs in a mapping. For
2605 	 * private mappings, that's always the case when we have write
2606 	 * permissions as we properly have to handle COW.
2607 	 */
2608 	if (vma->vm_flags & VM_SHARED)
2609 		return vma_wants_writenotify(vma, vma->vm_page_prot);
2610 	return !!(vma->vm_flags & VM_WRITE);
2611 
2612 }
2613 bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2614 			     pte_t pte);
2615 extern long change_protection(struct mmu_gather *tlb,
2616 			      struct vm_area_struct *vma, unsigned long start,
2617 			      unsigned long end, unsigned long cp_flags);
2618 extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2619 	  struct vm_area_struct *vma, struct vm_area_struct **pprev,
2620 	  unsigned long start, unsigned long end, unsigned long newflags);
2621 
2622 /*
2623  * doesn't attempt to fault and will return short.
2624  */
2625 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2626 			     unsigned int gup_flags, struct page **pages);
2627 
2628 static inline bool get_user_page_fast_only(unsigned long addr,
2629 			unsigned int gup_flags, struct page **pagep)
2630 {
2631 	return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2632 }
2633 /*
2634  * per-process(per-mm_struct) statistics.
2635  */
2636 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2637 {
2638 	return percpu_counter_read_positive(&mm->rss_stat[member]);
2639 }
2640 
2641 void mm_trace_rss_stat(struct mm_struct *mm, int member);
2642 
2643 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2644 {
2645 	percpu_counter_add(&mm->rss_stat[member], value);
2646 
2647 	mm_trace_rss_stat(mm, member);
2648 }
2649 
2650 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2651 {
2652 	percpu_counter_inc(&mm->rss_stat[member]);
2653 
2654 	mm_trace_rss_stat(mm, member);
2655 }
2656 
2657 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2658 {
2659 	percpu_counter_dec(&mm->rss_stat[member]);
2660 
2661 	mm_trace_rss_stat(mm, member);
2662 }
2663 
2664 /* Optimized variant when folio is already known not to be anon */
2665 static inline int mm_counter_file(struct folio *folio)
2666 {
2667 	if (folio_test_swapbacked(folio))
2668 		return MM_SHMEMPAGES;
2669 	return MM_FILEPAGES;
2670 }
2671 
2672 static inline int mm_counter(struct folio *folio)
2673 {
2674 	if (folio_test_anon(folio))
2675 		return MM_ANONPAGES;
2676 	return mm_counter_file(folio);
2677 }
2678 
2679 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2680 {
2681 	return get_mm_counter(mm, MM_FILEPAGES) +
2682 		get_mm_counter(mm, MM_ANONPAGES) +
2683 		get_mm_counter(mm, MM_SHMEMPAGES);
2684 }
2685 
2686 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2687 {
2688 	return max(mm->hiwater_rss, get_mm_rss(mm));
2689 }
2690 
2691 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2692 {
2693 	return max(mm->hiwater_vm, mm->total_vm);
2694 }
2695 
2696 static inline void update_hiwater_rss(struct mm_struct *mm)
2697 {
2698 	unsigned long _rss = get_mm_rss(mm);
2699 
2700 	if ((mm)->hiwater_rss < _rss)
2701 		(mm)->hiwater_rss = _rss;
2702 }
2703 
2704 static inline void update_hiwater_vm(struct mm_struct *mm)
2705 {
2706 	if (mm->hiwater_vm < mm->total_vm)
2707 		mm->hiwater_vm = mm->total_vm;
2708 }
2709 
2710 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2711 {
2712 	mm->hiwater_rss = get_mm_rss(mm);
2713 }
2714 
2715 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2716 					 struct mm_struct *mm)
2717 {
2718 	unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2719 
2720 	if (*maxrss < hiwater_rss)
2721 		*maxrss = hiwater_rss;
2722 }
2723 
2724 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2725 static inline int pte_special(pte_t pte)
2726 {
2727 	return 0;
2728 }
2729 
2730 static inline pte_t pte_mkspecial(pte_t pte)
2731 {
2732 	return pte;
2733 }
2734 #endif
2735 
2736 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2737 static inline int pte_devmap(pte_t pte)
2738 {
2739 	return 0;
2740 }
2741 #endif
2742 
2743 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2744 			       spinlock_t **ptl);
2745 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2746 				    spinlock_t **ptl)
2747 {
2748 	pte_t *ptep;
2749 	__cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2750 	return ptep;
2751 }
2752 
2753 #ifdef __PAGETABLE_P4D_FOLDED
2754 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2755 						unsigned long address)
2756 {
2757 	return 0;
2758 }
2759 #else
2760 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2761 #endif
2762 
2763 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2764 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2765 						unsigned long address)
2766 {
2767 	return 0;
2768 }
2769 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2770 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2771 
2772 #else
2773 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2774 
2775 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2776 {
2777 	if (mm_pud_folded(mm))
2778 		return;
2779 	atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2780 }
2781 
2782 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2783 {
2784 	if (mm_pud_folded(mm))
2785 		return;
2786 	atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2787 }
2788 #endif
2789 
2790 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2791 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2792 						unsigned long address)
2793 {
2794 	return 0;
2795 }
2796 
2797 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2798 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2799 
2800 #else
2801 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2802 
2803 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2804 {
2805 	if (mm_pmd_folded(mm))
2806 		return;
2807 	atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2808 }
2809 
2810 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2811 {
2812 	if (mm_pmd_folded(mm))
2813 		return;
2814 	atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2815 }
2816 #endif
2817 
2818 #ifdef CONFIG_MMU
2819 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2820 {
2821 	atomic_long_set(&mm->pgtables_bytes, 0);
2822 }
2823 
2824 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2825 {
2826 	return atomic_long_read(&mm->pgtables_bytes);
2827 }
2828 
2829 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2830 {
2831 	atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2832 }
2833 
2834 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2835 {
2836 	atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2837 }
2838 #else
2839 
2840 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2841 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2842 {
2843 	return 0;
2844 }
2845 
2846 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2847 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2848 #endif
2849 
2850 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2851 int __pte_alloc_kernel(pmd_t *pmd);
2852 
2853 #if defined(CONFIG_MMU)
2854 
2855 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2856 		unsigned long address)
2857 {
2858 	return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2859 		NULL : p4d_offset(pgd, address);
2860 }
2861 
2862 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2863 		unsigned long address)
2864 {
2865 	return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2866 		NULL : pud_offset(p4d, address);
2867 }
2868 
2869 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2870 {
2871 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2872 		NULL: pmd_offset(pud, address);
2873 }
2874 #endif /* CONFIG_MMU */
2875 
2876 static inline struct ptdesc *virt_to_ptdesc(const void *x)
2877 {
2878 	return page_ptdesc(virt_to_page(x));
2879 }
2880 
2881 static inline void *ptdesc_to_virt(const struct ptdesc *pt)
2882 {
2883 	return page_to_virt(ptdesc_page(pt));
2884 }
2885 
2886 static inline void *ptdesc_address(const struct ptdesc *pt)
2887 {
2888 	return folio_address(ptdesc_folio(pt));
2889 }
2890 
2891 static inline bool pagetable_is_reserved(struct ptdesc *pt)
2892 {
2893 	return folio_test_reserved(ptdesc_folio(pt));
2894 }
2895 
2896 /**
2897  * pagetable_alloc - Allocate pagetables
2898  * @gfp:    GFP flags
2899  * @order:  desired pagetable order
2900  *
2901  * pagetable_alloc allocates memory for page tables as well as a page table
2902  * descriptor to describe that memory.
2903  *
2904  * Return: The ptdesc describing the allocated page tables.
2905  */
2906 static inline struct ptdesc *pagetable_alloc_noprof(gfp_t gfp, unsigned int order)
2907 {
2908 	struct page *page = alloc_pages_noprof(gfp | __GFP_COMP, order);
2909 
2910 	return page_ptdesc(page);
2911 }
2912 #define pagetable_alloc(...)	alloc_hooks(pagetable_alloc_noprof(__VA_ARGS__))
2913 
2914 /**
2915  * pagetable_free - Free pagetables
2916  * @pt:	The page table descriptor
2917  *
2918  * pagetable_free frees the memory of all page tables described by a page
2919  * table descriptor and the memory for the descriptor itself.
2920  */
2921 static inline void pagetable_free(struct ptdesc *pt)
2922 {
2923 	struct page *page = ptdesc_page(pt);
2924 
2925 	__free_pages(page, compound_order(page));
2926 }
2927 
2928 #if USE_SPLIT_PTE_PTLOCKS
2929 #if ALLOC_SPLIT_PTLOCKS
2930 void __init ptlock_cache_init(void);
2931 bool ptlock_alloc(struct ptdesc *ptdesc);
2932 void ptlock_free(struct ptdesc *ptdesc);
2933 
2934 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2935 {
2936 	return ptdesc->ptl;
2937 }
2938 #else /* ALLOC_SPLIT_PTLOCKS */
2939 static inline void ptlock_cache_init(void)
2940 {
2941 }
2942 
2943 static inline bool ptlock_alloc(struct ptdesc *ptdesc)
2944 {
2945 	return true;
2946 }
2947 
2948 static inline void ptlock_free(struct ptdesc *ptdesc)
2949 {
2950 }
2951 
2952 static inline spinlock_t *ptlock_ptr(struct ptdesc *ptdesc)
2953 {
2954 	return &ptdesc->ptl;
2955 }
2956 #endif /* ALLOC_SPLIT_PTLOCKS */
2957 
2958 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2959 {
2960 	return ptlock_ptr(page_ptdesc(pmd_page(*pmd)));
2961 }
2962 
2963 static inline bool ptlock_init(struct ptdesc *ptdesc)
2964 {
2965 	/*
2966 	 * prep_new_page() initialize page->private (and therefore page->ptl)
2967 	 * with 0. Make sure nobody took it in use in between.
2968 	 *
2969 	 * It can happen if arch try to use slab for page table allocation:
2970 	 * slab code uses page->slab_cache, which share storage with page->ptl.
2971 	 */
2972 	VM_BUG_ON_PAGE(*(unsigned long *)&ptdesc->ptl, ptdesc_page(ptdesc));
2973 	if (!ptlock_alloc(ptdesc))
2974 		return false;
2975 	spin_lock_init(ptlock_ptr(ptdesc));
2976 	return true;
2977 }
2978 
2979 #else	/* !USE_SPLIT_PTE_PTLOCKS */
2980 /*
2981  * We use mm->page_table_lock to guard all pagetable pages of the mm.
2982  */
2983 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2984 {
2985 	return &mm->page_table_lock;
2986 }
2987 static inline void ptlock_cache_init(void) {}
2988 static inline bool ptlock_init(struct ptdesc *ptdesc) { return true; }
2989 static inline void ptlock_free(struct ptdesc *ptdesc) {}
2990 #endif /* USE_SPLIT_PTE_PTLOCKS */
2991 
2992 static inline bool pagetable_pte_ctor(struct ptdesc *ptdesc)
2993 {
2994 	struct folio *folio = ptdesc_folio(ptdesc);
2995 
2996 	if (!ptlock_init(ptdesc))
2997 		return false;
2998 	__folio_set_pgtable(folio);
2999 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3000 	return true;
3001 }
3002 
3003 static inline void pagetable_pte_dtor(struct ptdesc *ptdesc)
3004 {
3005 	struct folio *folio = ptdesc_folio(ptdesc);
3006 
3007 	ptlock_free(ptdesc);
3008 	__folio_clear_pgtable(folio);
3009 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3010 }
3011 
3012 pte_t *__pte_offset_map(pmd_t *pmd, unsigned long addr, pmd_t *pmdvalp);
3013 static inline pte_t *pte_offset_map(pmd_t *pmd, unsigned long addr)
3014 {
3015 	return __pte_offset_map(pmd, addr, NULL);
3016 }
3017 
3018 pte_t *__pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3019 			unsigned long addr, spinlock_t **ptlp);
3020 static inline pte_t *pte_offset_map_lock(struct mm_struct *mm, pmd_t *pmd,
3021 			unsigned long addr, spinlock_t **ptlp)
3022 {
3023 	pte_t *pte;
3024 
3025 	__cond_lock(*ptlp, pte = __pte_offset_map_lock(mm, pmd, addr, ptlp));
3026 	return pte;
3027 }
3028 
3029 pte_t *pte_offset_map_nolock(struct mm_struct *mm, pmd_t *pmd,
3030 			unsigned long addr, spinlock_t **ptlp);
3031 
3032 #define pte_unmap_unlock(pte, ptl)	do {		\
3033 	spin_unlock(ptl);				\
3034 	pte_unmap(pte);					\
3035 } while (0)
3036 
3037 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
3038 
3039 #define pte_alloc_map(mm, pmd, address)			\
3040 	(pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
3041 
3042 #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\
3043 	(pte_alloc(mm, pmd) ?			\
3044 		 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
3045 
3046 #define pte_alloc_kernel(pmd, address)			\
3047 	((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
3048 		NULL: pte_offset_kernel(pmd, address))
3049 
3050 #if USE_SPLIT_PMD_PTLOCKS
3051 
3052 static inline struct page *pmd_pgtable_page(pmd_t *pmd)
3053 {
3054 	unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
3055 	return virt_to_page((void *)((unsigned long) pmd & mask));
3056 }
3057 
3058 static inline struct ptdesc *pmd_ptdesc(pmd_t *pmd)
3059 {
3060 	return page_ptdesc(pmd_pgtable_page(pmd));
3061 }
3062 
3063 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3064 {
3065 	return ptlock_ptr(pmd_ptdesc(pmd));
3066 }
3067 
3068 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc)
3069 {
3070 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3071 	ptdesc->pmd_huge_pte = NULL;
3072 #endif
3073 	return ptlock_init(ptdesc);
3074 }
3075 
3076 static inline void pmd_ptlock_free(struct ptdesc *ptdesc)
3077 {
3078 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3079 	VM_BUG_ON_PAGE(ptdesc->pmd_huge_pte, ptdesc_page(ptdesc));
3080 #endif
3081 	ptlock_free(ptdesc);
3082 }
3083 
3084 #define pmd_huge_pte(mm, pmd) (pmd_ptdesc(pmd)->pmd_huge_pte)
3085 
3086 #else
3087 
3088 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
3089 {
3090 	return &mm->page_table_lock;
3091 }
3092 
3093 static inline bool pmd_ptlock_init(struct ptdesc *ptdesc) { return true; }
3094 static inline void pmd_ptlock_free(struct ptdesc *ptdesc) {}
3095 
3096 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
3097 
3098 #endif
3099 
3100 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
3101 {
3102 	spinlock_t *ptl = pmd_lockptr(mm, pmd);
3103 	spin_lock(ptl);
3104 	return ptl;
3105 }
3106 
3107 static inline bool pagetable_pmd_ctor(struct ptdesc *ptdesc)
3108 {
3109 	struct folio *folio = ptdesc_folio(ptdesc);
3110 
3111 	if (!pmd_ptlock_init(ptdesc))
3112 		return false;
3113 	__folio_set_pgtable(folio);
3114 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3115 	return true;
3116 }
3117 
3118 static inline void pagetable_pmd_dtor(struct ptdesc *ptdesc)
3119 {
3120 	struct folio *folio = ptdesc_folio(ptdesc);
3121 
3122 	pmd_ptlock_free(ptdesc);
3123 	__folio_clear_pgtable(folio);
3124 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3125 }
3126 
3127 /*
3128  * No scalability reason to split PUD locks yet, but follow the same pattern
3129  * as the PMD locks to make it easier if we decide to.  The VM should not be
3130  * considered ready to switch to split PUD locks yet; there may be places
3131  * which need to be converted from page_table_lock.
3132  */
3133 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
3134 {
3135 	return &mm->page_table_lock;
3136 }
3137 
3138 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
3139 {
3140 	spinlock_t *ptl = pud_lockptr(mm, pud);
3141 
3142 	spin_lock(ptl);
3143 	return ptl;
3144 }
3145 
3146 static inline void pagetable_pud_ctor(struct ptdesc *ptdesc)
3147 {
3148 	struct folio *folio = ptdesc_folio(ptdesc);
3149 
3150 	__folio_set_pgtable(folio);
3151 	lruvec_stat_add_folio(folio, NR_PAGETABLE);
3152 }
3153 
3154 static inline void pagetable_pud_dtor(struct ptdesc *ptdesc)
3155 {
3156 	struct folio *folio = ptdesc_folio(ptdesc);
3157 
3158 	__folio_clear_pgtable(folio);
3159 	lruvec_stat_sub_folio(folio, NR_PAGETABLE);
3160 }
3161 
3162 extern void __init pagecache_init(void);
3163 extern void free_initmem(void);
3164 
3165 /*
3166  * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
3167  * into the buddy system. The freed pages will be poisoned with pattern
3168  * "poison" if it's within range [0, UCHAR_MAX].
3169  * Return pages freed into the buddy system.
3170  */
3171 extern unsigned long free_reserved_area(void *start, void *end,
3172 					int poison, const char *s);
3173 
3174 extern void adjust_managed_page_count(struct page *page, long count);
3175 
3176 extern void reserve_bootmem_region(phys_addr_t start,
3177 				   phys_addr_t end, int nid);
3178 
3179 /* Free the reserved page into the buddy system, so it gets managed. */
3180 static inline void free_reserved_page(struct page *page)
3181 {
3182 	if (mem_alloc_profiling_enabled()) {
3183 		union codetag_ref *ref = get_page_tag_ref(page);
3184 
3185 		if (ref) {
3186 			set_codetag_empty(ref);
3187 			put_page_tag_ref(ref);
3188 		}
3189 	}
3190 	ClearPageReserved(page);
3191 	init_page_count(page);
3192 	__free_page(page);
3193 	adjust_managed_page_count(page, 1);
3194 }
3195 #define free_highmem_page(page) free_reserved_page(page)
3196 
3197 static inline void mark_page_reserved(struct page *page)
3198 {
3199 	SetPageReserved(page);
3200 	adjust_managed_page_count(page, -1);
3201 }
3202 
3203 static inline void free_reserved_ptdesc(struct ptdesc *pt)
3204 {
3205 	free_reserved_page(ptdesc_page(pt));
3206 }
3207 
3208 /*
3209  * Default method to free all the __init memory into the buddy system.
3210  * The freed pages will be poisoned with pattern "poison" if it's within
3211  * range [0, UCHAR_MAX].
3212  * Return pages freed into the buddy system.
3213  */
3214 static inline unsigned long free_initmem_default(int poison)
3215 {
3216 	extern char __init_begin[], __init_end[];
3217 
3218 	return free_reserved_area(&__init_begin, &__init_end,
3219 				  poison, "unused kernel image (initmem)");
3220 }
3221 
3222 static inline unsigned long get_num_physpages(void)
3223 {
3224 	int nid;
3225 	unsigned long phys_pages = 0;
3226 
3227 	for_each_online_node(nid)
3228 		phys_pages += node_present_pages(nid);
3229 
3230 	return phys_pages;
3231 }
3232 
3233 /*
3234  * Using memblock node mappings, an architecture may initialise its
3235  * zones, allocate the backing mem_map and account for memory holes in an
3236  * architecture independent manner.
3237  *
3238  * An architecture is expected to register range of page frames backed by
3239  * physical memory with memblock_add[_node]() before calling
3240  * free_area_init() passing in the PFN each zone ends at. At a basic
3241  * usage, an architecture is expected to do something like
3242  *
3243  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
3244  * 							 max_highmem_pfn};
3245  * for_each_valid_physical_page_range()
3246  *	memblock_add_node(base, size, nid, MEMBLOCK_NONE)
3247  * free_area_init(max_zone_pfns);
3248  */
3249 void free_area_init(unsigned long *max_zone_pfn);
3250 unsigned long node_map_pfn_alignment(void);
3251 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
3252 						unsigned long end_pfn);
3253 extern void get_pfn_range_for_nid(unsigned int nid,
3254 			unsigned long *start_pfn, unsigned long *end_pfn);
3255 
3256 #ifndef CONFIG_NUMA
3257 static inline int early_pfn_to_nid(unsigned long pfn)
3258 {
3259 	return 0;
3260 }
3261 #else
3262 /* please see mm/page_alloc.c */
3263 extern int __meminit early_pfn_to_nid(unsigned long pfn);
3264 #endif
3265 
3266 extern void mem_init(void);
3267 extern void __init mmap_init(void);
3268 
3269 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3270 static inline void show_mem(void)
3271 {
3272 	__show_mem(0, NULL, MAX_NR_ZONES - 1);
3273 }
3274 extern long si_mem_available(void);
3275 extern void si_meminfo(struct sysinfo * val);
3276 extern void si_meminfo_node(struct sysinfo *val, int nid);
3277 
3278 extern __printf(3, 4)
3279 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3280 
3281 extern void setup_per_cpu_pageset(void);
3282 
3283 /* nommu.c */
3284 extern atomic_long_t mmap_pages_allocated;
3285 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3286 
3287 /* interval_tree.c */
3288 void vma_interval_tree_insert(struct vm_area_struct *node,
3289 			      struct rb_root_cached *root);
3290 void vma_interval_tree_insert_after(struct vm_area_struct *node,
3291 				    struct vm_area_struct *prev,
3292 				    struct rb_root_cached *root);
3293 void vma_interval_tree_remove(struct vm_area_struct *node,
3294 			      struct rb_root_cached *root);
3295 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3296 				unsigned long start, unsigned long last);
3297 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3298 				unsigned long start, unsigned long last);
3299 
3300 #define vma_interval_tree_foreach(vma, root, start, last)		\
3301 	for (vma = vma_interval_tree_iter_first(root, start, last);	\
3302 	     vma; vma = vma_interval_tree_iter_next(vma, start, last))
3303 
3304 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3305 				   struct rb_root_cached *root);
3306 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3307 				   struct rb_root_cached *root);
3308 struct anon_vma_chain *
3309 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3310 				  unsigned long start, unsigned long last);
3311 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3312 	struct anon_vma_chain *node, unsigned long start, unsigned long last);
3313 #ifdef CONFIG_DEBUG_VM_RB
3314 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3315 #endif
3316 
3317 #define anon_vma_interval_tree_foreach(avc, root, start, last)		 \
3318 	for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3319 	     avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3320 
3321 /* mmap.c */
3322 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3323 extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3324 		      unsigned long start, unsigned long end, pgoff_t pgoff,
3325 		      struct vm_area_struct *next);
3326 extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3327 		       unsigned long start, unsigned long end, pgoff_t pgoff);
3328 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3329 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3330 extern void unlink_file_vma(struct vm_area_struct *);
3331 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3332 	unsigned long addr, unsigned long len, pgoff_t pgoff,
3333 	bool *need_rmap_locks);
3334 extern void exit_mmap(struct mm_struct *);
3335 struct vm_area_struct *vma_modify(struct vma_iterator *vmi,
3336 				  struct vm_area_struct *prev,
3337 				  struct vm_area_struct *vma,
3338 				  unsigned long start, unsigned long end,
3339 				  unsigned long vm_flags,
3340 				  struct mempolicy *policy,
3341 				  struct vm_userfaultfd_ctx uffd_ctx,
3342 				  struct anon_vma_name *anon_name);
3343 
3344 /* We are about to modify the VMA's flags. */
3345 static inline struct vm_area_struct
3346 *vma_modify_flags(struct vma_iterator *vmi,
3347 		  struct vm_area_struct *prev,
3348 		  struct vm_area_struct *vma,
3349 		  unsigned long start, unsigned long end,
3350 		  unsigned long new_flags)
3351 {
3352 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3353 			  vma_policy(vma), vma->vm_userfaultfd_ctx,
3354 			  anon_vma_name(vma));
3355 }
3356 
3357 /* We are about to modify the VMA's flags and/or anon_name. */
3358 static inline struct vm_area_struct
3359 *vma_modify_flags_name(struct vma_iterator *vmi,
3360 		       struct vm_area_struct *prev,
3361 		       struct vm_area_struct *vma,
3362 		       unsigned long start,
3363 		       unsigned long end,
3364 		       unsigned long new_flags,
3365 		       struct anon_vma_name *new_name)
3366 {
3367 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3368 			  vma_policy(vma), vma->vm_userfaultfd_ctx, new_name);
3369 }
3370 
3371 /* We are about to modify the VMA's memory policy. */
3372 static inline struct vm_area_struct
3373 *vma_modify_policy(struct vma_iterator *vmi,
3374 		   struct vm_area_struct *prev,
3375 		   struct vm_area_struct *vma,
3376 		   unsigned long start, unsigned long end,
3377 		   struct mempolicy *new_pol)
3378 {
3379 	return vma_modify(vmi, prev, vma, start, end, vma->vm_flags,
3380 			  new_pol, vma->vm_userfaultfd_ctx, anon_vma_name(vma));
3381 }
3382 
3383 /* We are about to modify the VMA's flags and/or uffd context. */
3384 static inline struct vm_area_struct
3385 *vma_modify_flags_uffd(struct vma_iterator *vmi,
3386 		       struct vm_area_struct *prev,
3387 		       struct vm_area_struct *vma,
3388 		       unsigned long start, unsigned long end,
3389 		       unsigned long new_flags,
3390 		       struct vm_userfaultfd_ctx new_ctx)
3391 {
3392 	return vma_modify(vmi, prev, vma, start, end, new_flags,
3393 			  vma_policy(vma), new_ctx, anon_vma_name(vma));
3394 }
3395 
3396 static inline int check_data_rlimit(unsigned long rlim,
3397 				    unsigned long new,
3398 				    unsigned long start,
3399 				    unsigned long end_data,
3400 				    unsigned long start_data)
3401 {
3402 	if (rlim < RLIM_INFINITY) {
3403 		if (((new - start) + (end_data - start_data)) > rlim)
3404 			return -ENOSPC;
3405 	}
3406 
3407 	return 0;
3408 }
3409 
3410 extern int mm_take_all_locks(struct mm_struct *mm);
3411 extern void mm_drop_all_locks(struct mm_struct *mm);
3412 
3413 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3414 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3415 extern struct file *get_mm_exe_file(struct mm_struct *mm);
3416 extern struct file *get_task_exe_file(struct task_struct *task);
3417 
3418 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3419 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3420 
3421 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3422 				   const struct vm_special_mapping *sm);
3423 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3424 				   unsigned long addr, unsigned long len,
3425 				   unsigned long flags,
3426 				   const struct vm_special_mapping *spec);
3427 /* This is an obsolete alternative to _install_special_mapping. */
3428 extern int install_special_mapping(struct mm_struct *mm,
3429 				   unsigned long addr, unsigned long len,
3430 				   unsigned long flags, struct page **pages);
3431 
3432 unsigned long randomize_stack_top(unsigned long stack_top);
3433 unsigned long randomize_page(unsigned long start, unsigned long range);
3434 
3435 unsigned long
3436 __get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3437 		    unsigned long pgoff, unsigned long flags, vm_flags_t vm_flags);
3438 
3439 static inline unsigned long
3440 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
3441 		  unsigned long pgoff, unsigned long flags)
3442 {
3443 	return __get_unmapped_area(file, addr, len, pgoff, flags, 0);
3444 }
3445 
3446 extern unsigned long mmap_region(struct file *file, unsigned long addr,
3447 	unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3448 	struct list_head *uf);
3449 extern unsigned long do_mmap(struct file *file, unsigned long addr,
3450 	unsigned long len, unsigned long prot, unsigned long flags,
3451 	vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate,
3452 	struct list_head *uf);
3453 extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3454 			 unsigned long start, size_t len, struct list_head *uf,
3455 			 bool unlock);
3456 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3457 		     struct list_head *uf);
3458 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3459 
3460 #ifdef CONFIG_MMU
3461 extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3462 			 unsigned long start, unsigned long end,
3463 			 struct list_head *uf, bool unlock);
3464 extern int __mm_populate(unsigned long addr, unsigned long len,
3465 			 int ignore_errors);
3466 static inline void mm_populate(unsigned long addr, unsigned long len)
3467 {
3468 	/* Ignore errors */
3469 	(void) __mm_populate(addr, len, 1);
3470 }
3471 #else
3472 static inline void mm_populate(unsigned long addr, unsigned long len) {}
3473 #endif
3474 
3475 /* This takes the mm semaphore itself */
3476 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3477 extern int vm_munmap(unsigned long, size_t);
3478 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3479         unsigned long, unsigned long,
3480         unsigned long, unsigned long);
3481 
3482 struct vm_unmapped_area_info {
3483 #define VM_UNMAPPED_AREA_TOPDOWN 1
3484 	unsigned long flags;
3485 	unsigned long length;
3486 	unsigned long low_limit;
3487 	unsigned long high_limit;
3488 	unsigned long align_mask;
3489 	unsigned long align_offset;
3490 	unsigned long start_gap;
3491 };
3492 
3493 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3494 
3495 /* truncate.c */
3496 extern void truncate_inode_pages(struct address_space *, loff_t);
3497 extern void truncate_inode_pages_range(struct address_space *,
3498 				       loff_t lstart, loff_t lend);
3499 extern void truncate_inode_pages_final(struct address_space *);
3500 
3501 /* generic vm_area_ops exported for stackable file systems */
3502 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3503 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3504 		pgoff_t start_pgoff, pgoff_t end_pgoff);
3505 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3506 
3507 extern unsigned long stack_guard_gap;
3508 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3509 int expand_stack_locked(struct vm_area_struct *vma, unsigned long address);
3510 struct vm_area_struct *expand_stack(struct mm_struct * mm, unsigned long addr);
3511 
3512 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3513 int expand_downwards(struct vm_area_struct *vma, unsigned long address);
3514 
3515 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
3516 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3517 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3518 					     struct vm_area_struct **pprev);
3519 
3520 /*
3521  * Look up the first VMA which intersects the interval [start_addr, end_addr)
3522  * NULL if none.  Assume start_addr < end_addr.
3523  */
3524 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3525 			unsigned long start_addr, unsigned long end_addr);
3526 
3527 /**
3528  * vma_lookup() - Find a VMA at a specific address
3529  * @mm: The process address space.
3530  * @addr: The user address.
3531  *
3532  * Return: The vm_area_struct at the given address, %NULL otherwise.
3533  */
3534 static inline
3535 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3536 {
3537 	return mtree_load(&mm->mm_mt, addr);
3538 }
3539 
3540 static inline unsigned long stack_guard_start_gap(struct vm_area_struct *vma)
3541 {
3542 	if (vma->vm_flags & VM_GROWSDOWN)
3543 		return stack_guard_gap;
3544 
3545 	/* See reasoning around the VM_SHADOW_STACK definition */
3546 	if (vma->vm_flags & VM_SHADOW_STACK)
3547 		return PAGE_SIZE;
3548 
3549 	return 0;
3550 }
3551 
3552 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3553 {
3554 	unsigned long gap = stack_guard_start_gap(vma);
3555 	unsigned long vm_start = vma->vm_start;
3556 
3557 	vm_start -= gap;
3558 	if (vm_start > vma->vm_start)
3559 		vm_start = 0;
3560 	return vm_start;
3561 }
3562 
3563 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3564 {
3565 	unsigned long vm_end = vma->vm_end;
3566 
3567 	if (vma->vm_flags & VM_GROWSUP) {
3568 		vm_end += stack_guard_gap;
3569 		if (vm_end < vma->vm_end)
3570 			vm_end = -PAGE_SIZE;
3571 	}
3572 	return vm_end;
3573 }
3574 
3575 static inline unsigned long vma_pages(struct vm_area_struct *vma)
3576 {
3577 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3578 }
3579 
3580 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3581 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3582 				unsigned long vm_start, unsigned long vm_end)
3583 {
3584 	struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3585 
3586 	if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3587 		vma = NULL;
3588 
3589 	return vma;
3590 }
3591 
3592 static inline bool range_in_vma(struct vm_area_struct *vma,
3593 				unsigned long start, unsigned long end)
3594 {
3595 	return (vma && vma->vm_start <= start && end <= vma->vm_end);
3596 }
3597 
3598 #ifdef CONFIG_MMU
3599 pgprot_t vm_get_page_prot(unsigned long vm_flags);
3600 void vma_set_page_prot(struct vm_area_struct *vma);
3601 #else
3602 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3603 {
3604 	return __pgprot(0);
3605 }
3606 static inline void vma_set_page_prot(struct vm_area_struct *vma)
3607 {
3608 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3609 }
3610 #endif
3611 
3612 void vma_set_file(struct vm_area_struct *vma, struct file *file);
3613 
3614 #ifdef CONFIG_NUMA_BALANCING
3615 unsigned long change_prot_numa(struct vm_area_struct *vma,
3616 			unsigned long start, unsigned long end);
3617 #endif
3618 
3619 struct vm_area_struct *find_extend_vma_locked(struct mm_struct *,
3620 		unsigned long addr);
3621 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3622 			unsigned long pfn, unsigned long size, pgprot_t);
3623 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3624 		unsigned long pfn, unsigned long size, pgprot_t prot);
3625 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3626 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3627 			struct page **pages, unsigned long *num);
3628 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3629 				unsigned long num);
3630 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3631 				unsigned long num);
3632 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3633 			unsigned long pfn);
3634 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3635 			unsigned long pfn, pgprot_t pgprot);
3636 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3637 			pfn_t pfn);
3638 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3639 		unsigned long addr, pfn_t pfn);
3640 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3641 
3642 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3643 				unsigned long addr, struct page *page)
3644 {
3645 	int err = vm_insert_page(vma, addr, page);
3646 
3647 	if (err == -ENOMEM)
3648 		return VM_FAULT_OOM;
3649 	if (err < 0 && err != -EBUSY)
3650 		return VM_FAULT_SIGBUS;
3651 
3652 	return VM_FAULT_NOPAGE;
3653 }
3654 
3655 #ifndef io_remap_pfn_range
3656 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3657 				     unsigned long addr, unsigned long pfn,
3658 				     unsigned long size, pgprot_t prot)
3659 {
3660 	return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3661 }
3662 #endif
3663 
3664 static inline vm_fault_t vmf_error(int err)
3665 {
3666 	if (err == -ENOMEM)
3667 		return VM_FAULT_OOM;
3668 	else if (err == -EHWPOISON)
3669 		return VM_FAULT_HWPOISON;
3670 	return VM_FAULT_SIGBUS;
3671 }
3672 
3673 /*
3674  * Convert errno to return value for ->page_mkwrite() calls.
3675  *
3676  * This should eventually be merged with vmf_error() above, but will need a
3677  * careful audit of all vmf_error() callers.
3678  */
3679 static inline vm_fault_t vmf_fs_error(int err)
3680 {
3681 	if (err == 0)
3682 		return VM_FAULT_LOCKED;
3683 	if (err == -EFAULT || err == -EAGAIN)
3684 		return VM_FAULT_NOPAGE;
3685 	if (err == -ENOMEM)
3686 		return VM_FAULT_OOM;
3687 	/* -ENOSPC, -EDQUOT, -EIO ... */
3688 	return VM_FAULT_SIGBUS;
3689 }
3690 
3691 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3692 			 unsigned int foll_flags);
3693 
3694 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3695 {
3696 	if (vm_fault & VM_FAULT_OOM)
3697 		return -ENOMEM;
3698 	if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3699 		return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3700 	if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3701 		return -EFAULT;
3702 	return 0;
3703 }
3704 
3705 /*
3706  * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3707  * a (NUMA hinting) fault is required.
3708  */
3709 static inline bool gup_can_follow_protnone(struct vm_area_struct *vma,
3710 					   unsigned int flags)
3711 {
3712 	/*
3713 	 * If callers don't want to honor NUMA hinting faults, no need to
3714 	 * determine if we would actually have to trigger a NUMA hinting fault.
3715 	 */
3716 	if (!(flags & FOLL_HONOR_NUMA_FAULT))
3717 		return true;
3718 
3719 	/*
3720 	 * NUMA hinting faults don't apply in inaccessible (PROT_NONE) VMAs.
3721 	 *
3722 	 * Requiring a fault here even for inaccessible VMAs would mean that
3723 	 * FOLL_FORCE cannot make any progress, because handle_mm_fault()
3724 	 * refuses to process NUMA hinting faults in inaccessible VMAs.
3725 	 */
3726 	return !vma_is_accessible(vma);
3727 }
3728 
3729 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3730 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3731 			       unsigned long size, pte_fn_t fn, void *data);
3732 extern int apply_to_existing_page_range(struct mm_struct *mm,
3733 				   unsigned long address, unsigned long size,
3734 				   pte_fn_t fn, void *data);
3735 
3736 #ifdef CONFIG_PAGE_POISONING
3737 extern void __kernel_poison_pages(struct page *page, int numpages);
3738 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3739 extern bool _page_poisoning_enabled_early;
3740 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3741 static inline bool page_poisoning_enabled(void)
3742 {
3743 	return _page_poisoning_enabled_early;
3744 }
3745 /*
3746  * For use in fast paths after init_mem_debugging() has run, or when a
3747  * false negative result is not harmful when called too early.
3748  */
3749 static inline bool page_poisoning_enabled_static(void)
3750 {
3751 	return static_branch_unlikely(&_page_poisoning_enabled);
3752 }
3753 static inline void kernel_poison_pages(struct page *page, int numpages)
3754 {
3755 	if (page_poisoning_enabled_static())
3756 		__kernel_poison_pages(page, numpages);
3757 }
3758 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3759 {
3760 	if (page_poisoning_enabled_static())
3761 		__kernel_unpoison_pages(page, numpages);
3762 }
3763 #else
3764 static inline bool page_poisoning_enabled(void) { return false; }
3765 static inline bool page_poisoning_enabled_static(void) { return false; }
3766 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3767 static inline void kernel_poison_pages(struct page *page, int numpages) { }
3768 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3769 #endif
3770 
3771 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3772 static inline bool want_init_on_alloc(gfp_t flags)
3773 {
3774 	if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3775 				&init_on_alloc))
3776 		return true;
3777 	return flags & __GFP_ZERO;
3778 }
3779 
3780 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3781 static inline bool want_init_on_free(void)
3782 {
3783 	return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3784 				&init_on_free);
3785 }
3786 
3787 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON, init_mlocked_on_free);
3788 static inline bool want_init_mlocked_on_free(void)
3789 {
3790 	return static_branch_maybe(CONFIG_INIT_MLOCKED_ON_FREE_DEFAULT_ON,
3791 				&init_mlocked_on_free);
3792 }
3793 
3794 extern bool _debug_pagealloc_enabled_early;
3795 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3796 
3797 static inline bool debug_pagealloc_enabled(void)
3798 {
3799 	return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3800 		_debug_pagealloc_enabled_early;
3801 }
3802 
3803 /*
3804  * For use in fast paths after mem_debugging_and_hardening_init() has run,
3805  * or when a false negative result is not harmful when called too early.
3806  */
3807 static inline bool debug_pagealloc_enabled_static(void)
3808 {
3809 	if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3810 		return false;
3811 
3812 	return static_branch_unlikely(&_debug_pagealloc_enabled);
3813 }
3814 
3815 /*
3816  * To support DEBUG_PAGEALLOC architecture must ensure that
3817  * __kernel_map_pages() never fails
3818  */
3819 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3820 #ifdef CONFIG_DEBUG_PAGEALLOC
3821 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3822 {
3823 	if (debug_pagealloc_enabled_static())
3824 		__kernel_map_pages(page, numpages, 1);
3825 }
3826 
3827 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3828 {
3829 	if (debug_pagealloc_enabled_static())
3830 		__kernel_map_pages(page, numpages, 0);
3831 }
3832 
3833 extern unsigned int _debug_guardpage_minorder;
3834 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3835 
3836 static inline unsigned int debug_guardpage_minorder(void)
3837 {
3838 	return _debug_guardpage_minorder;
3839 }
3840 
3841 static inline bool debug_guardpage_enabled(void)
3842 {
3843 	return static_branch_unlikely(&_debug_guardpage_enabled);
3844 }
3845 
3846 static inline bool page_is_guard(struct page *page)
3847 {
3848 	if (!debug_guardpage_enabled())
3849 		return false;
3850 
3851 	return PageGuard(page);
3852 }
3853 
3854 bool __set_page_guard(struct zone *zone, struct page *page, unsigned int order);
3855 static inline bool set_page_guard(struct zone *zone, struct page *page,
3856 				  unsigned int order)
3857 {
3858 	if (!debug_guardpage_enabled())
3859 		return false;
3860 	return __set_page_guard(zone, page, order);
3861 }
3862 
3863 void __clear_page_guard(struct zone *zone, struct page *page, unsigned int order);
3864 static inline void clear_page_guard(struct zone *zone, struct page *page,
3865 				    unsigned int order)
3866 {
3867 	if (!debug_guardpage_enabled())
3868 		return;
3869 	__clear_page_guard(zone, page, order);
3870 }
3871 
3872 #else	/* CONFIG_DEBUG_PAGEALLOC */
3873 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3874 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3875 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3876 static inline bool debug_guardpage_enabled(void) { return false; }
3877 static inline bool page_is_guard(struct page *page) { return false; }
3878 static inline bool set_page_guard(struct zone *zone, struct page *page,
3879 			unsigned int order) { return false; }
3880 static inline void clear_page_guard(struct zone *zone, struct page *page,
3881 				unsigned int order) {}
3882 #endif	/* CONFIG_DEBUG_PAGEALLOC */
3883 
3884 #ifdef __HAVE_ARCH_GATE_AREA
3885 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3886 extern int in_gate_area_no_mm(unsigned long addr);
3887 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3888 #else
3889 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3890 {
3891 	return NULL;
3892 }
3893 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3894 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3895 {
3896 	return 0;
3897 }
3898 #endif	/* __HAVE_ARCH_GATE_AREA */
3899 
3900 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3901 
3902 #ifdef CONFIG_SYSCTL
3903 extern int sysctl_drop_caches;
3904 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3905 		loff_t *);
3906 #endif
3907 
3908 void drop_slab(void);
3909 
3910 #ifndef CONFIG_MMU
3911 #define randomize_va_space 0
3912 #else
3913 extern int randomize_va_space;
3914 #endif
3915 
3916 const char * arch_vma_name(struct vm_area_struct *vma);
3917 #ifdef CONFIG_MMU
3918 void print_vma_addr(char *prefix, unsigned long rip);
3919 #else
3920 static inline void print_vma_addr(char *prefix, unsigned long rip)
3921 {
3922 }
3923 #endif
3924 
3925 void *sparse_buffer_alloc(unsigned long size);
3926 struct page * __populate_section_memmap(unsigned long pfn,
3927 		unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3928 		struct dev_pagemap *pgmap);
3929 void pmd_init(void *addr);
3930 void pud_init(void *addr);
3931 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3932 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3933 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3934 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3935 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3936 			    struct vmem_altmap *altmap, struct page *reuse);
3937 void *vmemmap_alloc_block(unsigned long size, int node);
3938 struct vmem_altmap;
3939 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3940 			      struct vmem_altmap *altmap);
3941 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3942 void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3943 		     unsigned long addr, unsigned long next);
3944 int vmemmap_check_pmd(pmd_t *pmd, int node,
3945 		      unsigned long addr, unsigned long next);
3946 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3947 			       int node, struct vmem_altmap *altmap);
3948 int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3949 			       int node, struct vmem_altmap *altmap);
3950 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3951 		struct vmem_altmap *altmap);
3952 void vmemmap_populate_print_last(void);
3953 #ifdef CONFIG_MEMORY_HOTPLUG
3954 void vmemmap_free(unsigned long start, unsigned long end,
3955 		struct vmem_altmap *altmap);
3956 #endif
3957 
3958 #ifdef CONFIG_SPARSEMEM_VMEMMAP
3959 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3960 {
3961 	/* number of pfns from base where pfn_to_page() is valid */
3962 	if (altmap)
3963 		return altmap->reserve + altmap->free;
3964 	return 0;
3965 }
3966 
3967 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3968 				    unsigned long nr_pfns)
3969 {
3970 	altmap->alloc -= nr_pfns;
3971 }
3972 #else
3973 static inline unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
3974 {
3975 	return 0;
3976 }
3977 
3978 static inline void vmem_altmap_free(struct vmem_altmap *altmap,
3979 				    unsigned long nr_pfns)
3980 {
3981 }
3982 #endif
3983 
3984 #define VMEMMAP_RESERVE_NR	2
3985 #ifdef CONFIG_ARCH_WANT_OPTIMIZE_DAX_VMEMMAP
3986 static inline bool __vmemmap_can_optimize(struct vmem_altmap *altmap,
3987 					  struct dev_pagemap *pgmap)
3988 {
3989 	unsigned long nr_pages;
3990 	unsigned long nr_vmemmap_pages;
3991 
3992 	if (!pgmap || !is_power_of_2(sizeof(struct page)))
3993 		return false;
3994 
3995 	nr_pages = pgmap_vmemmap_nr(pgmap);
3996 	nr_vmemmap_pages = ((nr_pages * sizeof(struct page)) >> PAGE_SHIFT);
3997 	/*
3998 	 * For vmemmap optimization with DAX we need minimum 2 vmemmap
3999 	 * pages. See layout diagram in Documentation/mm/vmemmap_dedup.rst
4000 	 */
4001 	return !altmap && (nr_vmemmap_pages > VMEMMAP_RESERVE_NR);
4002 }
4003 /*
4004  * If we don't have an architecture override, use the generic rule
4005  */
4006 #ifndef vmemmap_can_optimize
4007 #define vmemmap_can_optimize __vmemmap_can_optimize
4008 #endif
4009 
4010 #else
4011 static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
4012 					   struct dev_pagemap *pgmap)
4013 {
4014 	return false;
4015 }
4016 #endif
4017 
4018 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
4019 				  unsigned long nr_pages);
4020 
4021 enum mf_flags {
4022 	MF_COUNT_INCREASED = 1 << 0,
4023 	MF_ACTION_REQUIRED = 1 << 1,
4024 	MF_MUST_KILL = 1 << 2,
4025 	MF_SOFT_OFFLINE = 1 << 3,
4026 	MF_UNPOISON = 1 << 4,
4027 	MF_SW_SIMULATED = 1 << 5,
4028 	MF_NO_RETRY = 1 << 6,
4029 	MF_MEM_PRE_REMOVE = 1 << 7,
4030 };
4031 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
4032 		      unsigned long count, int mf_flags);
4033 extern int memory_failure(unsigned long pfn, int flags);
4034 extern void memory_failure_queue_kick(int cpu);
4035 extern int unpoison_memory(unsigned long pfn);
4036 extern void shake_page(struct page *p);
4037 extern atomic_long_t num_poisoned_pages __read_mostly;
4038 extern int soft_offline_page(unsigned long pfn, int flags);
4039 #ifdef CONFIG_MEMORY_FAILURE
4040 /*
4041  * Sysfs entries for memory failure handling statistics.
4042  */
4043 extern const struct attribute_group memory_failure_attr_group;
4044 extern void memory_failure_queue(unsigned long pfn, int flags);
4045 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4046 					bool *migratable_cleared);
4047 void num_poisoned_pages_inc(unsigned long pfn);
4048 void num_poisoned_pages_sub(unsigned long pfn, long i);
4049 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
4050 #else
4051 static inline void memory_failure_queue(unsigned long pfn, int flags)
4052 {
4053 }
4054 
4055 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
4056 					bool *migratable_cleared)
4057 {
4058 	return 0;
4059 }
4060 
4061 static inline void num_poisoned_pages_inc(unsigned long pfn)
4062 {
4063 }
4064 
4065 static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
4066 {
4067 }
4068 #endif
4069 
4070 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
4071 void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
4072 		     struct vm_area_struct *vma, struct list_head *to_kill,
4073 		     unsigned long ksm_addr);
4074 #endif
4075 
4076 #if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
4077 extern void memblk_nr_poison_inc(unsigned long pfn);
4078 extern void memblk_nr_poison_sub(unsigned long pfn, long i);
4079 #else
4080 static inline void memblk_nr_poison_inc(unsigned long pfn)
4081 {
4082 }
4083 
4084 static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
4085 {
4086 }
4087 #endif
4088 
4089 #ifndef arch_memory_failure
4090 static inline int arch_memory_failure(unsigned long pfn, int flags)
4091 {
4092 	return -ENXIO;
4093 }
4094 #endif
4095 
4096 #ifndef arch_is_platform_page
4097 static inline bool arch_is_platform_page(u64 paddr)
4098 {
4099 	return false;
4100 }
4101 #endif
4102 
4103 /*
4104  * Error handlers for various types of pages.
4105  */
4106 enum mf_result {
4107 	MF_IGNORED,	/* Error: cannot be handled */
4108 	MF_FAILED,	/* Error: handling failed */
4109 	MF_DELAYED,	/* Will be handled later */
4110 	MF_RECOVERED,	/* Successfully recovered */
4111 };
4112 
4113 enum mf_action_page_type {
4114 	MF_MSG_KERNEL,
4115 	MF_MSG_KERNEL_HIGH_ORDER,
4116 	MF_MSG_SLAB,
4117 	MF_MSG_DIFFERENT_COMPOUND,
4118 	MF_MSG_HUGE,
4119 	MF_MSG_FREE_HUGE,
4120 	MF_MSG_UNMAP_FAILED,
4121 	MF_MSG_DIRTY_SWAPCACHE,
4122 	MF_MSG_CLEAN_SWAPCACHE,
4123 	MF_MSG_DIRTY_MLOCKED_LRU,
4124 	MF_MSG_CLEAN_MLOCKED_LRU,
4125 	MF_MSG_DIRTY_UNEVICTABLE_LRU,
4126 	MF_MSG_CLEAN_UNEVICTABLE_LRU,
4127 	MF_MSG_DIRTY_LRU,
4128 	MF_MSG_CLEAN_LRU,
4129 	MF_MSG_TRUNCATED_LRU,
4130 	MF_MSG_BUDDY,
4131 	MF_MSG_DAX,
4132 	MF_MSG_UNSPLIT_THP,
4133 	MF_MSG_UNKNOWN,
4134 };
4135 
4136 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4137 extern void clear_huge_page(struct page *page,
4138 			    unsigned long addr_hint,
4139 			    unsigned int pages_per_huge_page);
4140 int copy_user_large_folio(struct folio *dst, struct folio *src,
4141 			  unsigned long addr_hint,
4142 			  struct vm_area_struct *vma);
4143 long copy_folio_from_user(struct folio *dst_folio,
4144 			   const void __user *usr_src,
4145 			   bool allow_pagefault);
4146 
4147 /**
4148  * vma_is_special_huge - Are transhuge page-table entries considered special?
4149  * @vma: Pointer to the struct vm_area_struct to consider
4150  *
4151  * Whether transhuge page-table entries are considered "special" following
4152  * the definition in vm_normal_page().
4153  *
4154  * Return: true if transhuge page-table entries should be considered special,
4155  * false otherwise.
4156  */
4157 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
4158 {
4159 	return vma_is_dax(vma) || (vma->vm_file &&
4160 				   (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
4161 }
4162 
4163 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4164 
4165 #if MAX_NUMNODES > 1
4166 void __init setup_nr_node_ids(void);
4167 #else
4168 static inline void setup_nr_node_ids(void) {}
4169 #endif
4170 
4171 extern int memcmp_pages(struct page *page1, struct page *page2);
4172 
4173 static inline int pages_identical(struct page *page1, struct page *page2)
4174 {
4175 	return !memcmp_pages(page1, page2);
4176 }
4177 
4178 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
4179 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
4180 						pgoff_t first_index, pgoff_t nr,
4181 						pgoff_t bitmap_pgoff,
4182 						unsigned long *bitmap,
4183 						pgoff_t *start,
4184 						pgoff_t *end);
4185 
4186 unsigned long wp_shared_mapping_range(struct address_space *mapping,
4187 				      pgoff_t first_index, pgoff_t nr);
4188 #endif
4189 
4190 extern int sysctl_nr_trim_pages;
4191 
4192 #ifdef CONFIG_PRINTK
4193 void mem_dump_obj(void *object);
4194 #else
4195 static inline void mem_dump_obj(void *object) {}
4196 #endif
4197 
4198 /**
4199  * seal_check_write - Check for F_SEAL_WRITE or F_SEAL_FUTURE_WRITE flags and
4200  *                    handle them.
4201  * @seals: the seals to check
4202  * @vma: the vma to operate on
4203  *
4204  * Check whether F_SEAL_WRITE or F_SEAL_FUTURE_WRITE are set; if so, do proper
4205  * check/handling on the vma flags.  Return 0 if check pass, or <0 for errors.
4206  */
4207 static inline int seal_check_write(int seals, struct vm_area_struct *vma)
4208 {
4209 	if (seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
4210 		/*
4211 		 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
4212 		 * write seals are active.
4213 		 */
4214 		if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
4215 			return -EPERM;
4216 
4217 		/*
4218 		 * Since an F_SEAL_[FUTURE_]WRITE sealed memfd can be mapped as
4219 		 * MAP_SHARED and read-only, take care to not allow mprotect to
4220 		 * revert protections on such mappings. Do this only for shared
4221 		 * mappings. For private mappings, don't need to mask
4222 		 * VM_MAYWRITE as we still want them to be COW-writable.
4223 		 */
4224 		if (vma->vm_flags & VM_SHARED)
4225 			vm_flags_clear(vma, VM_MAYWRITE);
4226 	}
4227 
4228 	return 0;
4229 }
4230 
4231 #ifdef CONFIG_ANON_VMA_NAME
4232 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4233 			  unsigned long len_in,
4234 			  struct anon_vma_name *anon_name);
4235 #else
4236 static inline int
4237 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
4238 		      unsigned long len_in, struct anon_vma_name *anon_name) {
4239 	return 0;
4240 }
4241 #endif
4242 
4243 #ifdef CONFIG_UNACCEPTED_MEMORY
4244 
4245 bool range_contains_unaccepted_memory(phys_addr_t start, phys_addr_t end);
4246 void accept_memory(phys_addr_t start, phys_addr_t end);
4247 
4248 #else
4249 
4250 static inline bool range_contains_unaccepted_memory(phys_addr_t start,
4251 						    phys_addr_t end)
4252 {
4253 	return false;
4254 }
4255 
4256 static inline void accept_memory(phys_addr_t start, phys_addr_t end)
4257 {
4258 }
4259 
4260 #endif
4261 
4262 static inline bool pfn_is_unaccepted_memory(unsigned long pfn)
4263 {
4264 	phys_addr_t paddr = pfn << PAGE_SHIFT;
4265 
4266 	return range_contains_unaccepted_memory(paddr, paddr + PAGE_SIZE);
4267 }
4268 
4269 void vma_pgtable_walk_begin(struct vm_area_struct *vma);
4270 void vma_pgtable_walk_end(struct vm_area_struct *vma);
4271 
4272 #endif /* _LINUX_MM_H */
4273